
www.apress.com

George
Beginning django CM

S

Beginning
django CMS

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® I N O P E N S O U R C E

Beginning django CMS

Build a world-class website in less than a week with django CMS. Beginning django
CMS shows you how to simply and easily write a dynamic website with a full
content management system in the backend. It is written for Internet developers
who are sick and tired of dealing with complicated, bloated website frameworks
that are a pain to build and a nightmare to maintain. django CMS is an Open Source
website-building framework that is experiencing exponential growth because it is
built on the simple, secure, and scalable architecture of Django. This book takes
you from knowing nothing about django CMS, to building a functional website and
content management system that you can deploy for your own website or for your
customers.

What You’ll Learn:

• Install and con� gure django CMS
• Build a dynamic website quickly and easily
• Author and submit content for publication
• Administer django CMS
• Install and use custom and third-party plugins
• Deploy a website using django CMS

Build a � rst-class content
management system from
the ground up the easy way
—
Nigel George
Foreword by Daniele Procida from Divio,
the company behind django CMS

9 781484 216705

52999
ISBN 978-1-4842-1670-5 Shelve in:

Web Development/General

User level:
Beginning–Intermediate

SOURCE CODE ONLINE

Beginning
django CMS

Nigel George

Beginning django CMS

Copyright © 2015 by Nigel George

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1670-5

ISBN-13 (electronic): 978-1-4842-1669-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jim DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: James A. Compton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc. is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To Kate, for always being there, and to my boys

—Chris and Zac.

You make me proud.

v

Contents at a Glance

About the Author �� xiii

About the Technical Reviewer ��� xv

Foreword ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Chapter 1: Working with a CMS �� 1

 ■Chapter 2: Installing django CMS ��� 7

 ■Chapter 3: Introduction to django CMS �� 17

 ■Chapter 4: Site Templates ��� 25

 ■Chapter 5: Your Blog Website: Templates ������������������������������������� 45

 ■Chapter 6: django CMS Plugins �� 61

 ■Chapter 7: Advanced Plugins ��� 79

 ■Chapter 8: Authoring in django CMS �� 97

 ■Chapter 9: Menus and Navigation �� 125

 ■Chapter 10: Extending django CMS �� 141

 ■Chapter 11: Next Steps ��� 167

Index �� 173

vii

Contents

About the Author �� xiii

About the Technical Reviewer ��� xv

Foreword ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Chapter 1: Working with a CMS �� 1

A Brief History ��� 1

Content Management 101 ��� 2

Content Management Roles ��� 2

Anatomy of a Modern CMS �� 3

What You Will Learn ��� 4

Summary ��� 5

 ■Chapter 2: Installing django CMS ��� 7

Installing Python �� 8

Check Whether Python Is Installed ��� 8

Download and Install Python �� 10

Installing a Python Virtual Environment ��� 12

Installing django CMS�� 13

Summary ��� 16

■ Contents

viii

 ■Chapter 3: Introduction to django CMS �� 17

Design Philosophy ��� 17

The Structure of django CMS �� 19

The django CMS Toolbar ��� 21

The django CMS Side Pane ��� 22

django CMS for Designers and Developers ��� 22

Summary ��� 23

 ■Chapter 4: Site Templates ��� 25

Django Templates 101 ��� 25

Inheritance �� 25

Separation of Logic and Presentation ��� 27

Extensibility �� 30

Bootstrap ��� 36

The Bootstrap Grid System ��� 37

Bootstrap CSS Classes ��� 39

Bootstrap Components ��� 40

Tying it all Together ��� 41

Summary ��� 44

 ■Chapter 5: Your Blog Website: Templates ������������������������������������� 45

Create a Clean Install �� 45

Create Your Base Template �� 50

Create Your Blog Templates ��� 56

Summary ��� 59

 ■ Contents

ix

 ■Chapter 6: django CMS Plugins �� 61

Getting Started �� 61

Default Plugins �� 63

Installing the Default Plugins �� 63

The Text Plugin ��� 64

The Link Plugin ��� 66

The Picture Plugin �� 68

The File Plugin �� 70

The Video Plugin ��� 70

The Multi Columns Plugin ��� 72

The Style Plugin �� 72

The Teaser Plugin ��� 74

The Flash Plugin ��� 76

The Google Map Plugin ��� 76

The Create Alias Plugin ��� 77

Summary ��� 78

 ■Chapter 7: Advanced Plugins ��� 79

Easy Thumbnails ��� 79

CMSplugin-filer ��� 82

File Manager ��� 85

The File Plugin �� 86

The Folder Plugin �� 86

The Image Plugin �� 87

The Link Plugin ��� 89

The Teaser Plugin ��� 90

The Video Plugin ��� 91

■ Contents

x

djangocms-forms �� 91

Creating a Form �� 94

Adding Form Fields ��� 94

Form Administration ��� 96

Summary ��� 96

 ■Chapter 8: Authoring in django CMS �� 97

The django CMS Toolbar �� 97

Site Root (example�com) ��� 97

Page �� 99

Add Page �� 100

Page Settings ��� 101

Templates ��� 101

Advances Settings �� 101

Permissions �� 102

Publishing Dates ��� 104

Hide in Navigation �� 105

Publish/Unpublish Page �� 105

Delete Page �� 105

Save as Page Type �� 105

History �� 106

Toolbar Buttons ��� 107

Adding Content to Your Site ��� 108

django CMS Administration ��� 113

Page Administration ��� 114

User Management �� 116

Authorization and User Permissions ��� 117

Summary ��� 123

 ■ Contents

xi

 ■Chapter 9: Menus and Navigation �� 125

Customizing the Menu��� 125

Creating a Custom Menu �� 126

Breadcrumbs ��� 132

Social Buttons ��� 134

Sitemaps ��� 138

Summary ��� 140

 ■Chapter 10: Extending django CMS �� 141

Extending the Page and Title Models �� 141

Create the Models �� 142

Register Models with Django Admin ��� 143

Create the Toolbar Item �� 144

Add Category to Your Pages ��� 146

Apps and Apphooks ��� 146

Apphooks �� 149

Extending the Toolbar �� 151

Custom Plugins ��� 155

Sidebar Navigation �� 156

Before You Start �� 156

Create the Plugin Publisher �� 157

Create the Plugin Template ��� 160

Add Placeholder to Page Template ��� 161

Add Configuration Options to Your Plugin ��� 163

Summary ��� 166

■ Contents

xii

 ■Chapter 11: Next Steps ��� 167

Deployment ��� 167

Deploy with Aldryn �� 168

Deploy on a Django Host��� 169

django CMS Advanced ��� 169

The Menu System ��� 170

Multiple Languages �� 170

Testing �� 170

Getting Help ��� 170

django CMS Resources ��� 170

Django Resources ��� 171

Python Resources ��� 171

Summary ��� 171

Index �� 173

xiii

About the Author

Nigel George is a business systems developer specializing
in the application of Open Source technologies to solve
common business problems. He has a broad range of
experience in software development—from writing
database apps for small businesses to developing the
back end and UI for a distributed sensor network at the
University of Newcastle, Australia.

Nigel also has over 15 years of experience
in technical writing for business. He has written
several training manuals and hundreds of technical
procedures for corporations and Australian government
departments. He has been using Django since
version 0.96, and has programmed in C, C#, C++, VB,

VBA, HTML, JavaScript, Python and PHP. He has also worked with frameworks/CMSes:
WordPress, Django CMS, SharePoint, Joomla, Drupal, and Zope.

Nigel lives in Newcastle, NSW, Australia.

xv

About the Technical
Reviewer

Massimo Nardone is an experienced Android, Java,
PHP, Python, and C++ programmer, technical reviewer,
and expert. He holds a Master of Science degree in
Computing Science from the University of Salerno,
Italy. He worked as a PCI QSA and Senior Lead IT
Security/Cloud/SCADA Architect for many years and
currently works as Security, Cloud, and SCADA Lead
IT Architect for Hewlett-Packard Finland. He has more
than 20 years of work experience in IT, including the
security, SCADA, cloud computing, IT infrastructure,
mobile, security, and WWW technology areas for both
national and international projects. Massimo has
worked as a Project Manager, Cloud/SCADA Lead IT
Architect, Software Engineer, Research Engineer, Chief
Security Architect, and Software Specialist. He worked
as visiting lecturer and supervisor for exercises at the

Networking Laboratory of the Helsinki University of Technology (Aalto University). He
has been programming and teaching how to program with Perl, PHP, Java, VB, Python,
and C/C++ for almost 20 years. He holds four international patents, in the PKI, SIP, SAML,
and proxy areas.

xvii

Foreword

The world of Django was a very different place in September 2008, when Divio open-
sourced django CMS.

Django itself had just had its long-awaited 1.0 release and was new and exciting.
Django is now established and mature, and django CMS has developed along with it to
become a recognized and dependable choice for web publishers.

Like Django, django CMS began life as an internal tool, and rapidly found new users
when it was open-sourced. More than seven years later, finding that our software appeals
to new users is still one of the most thrilling parts of the open source software adventure.

Beginning django CMS is a milestone in the story of django CMS. It represents a
moment when the software starts to reach not just more new users, but a new kind
of user altogether. That is, django CMS is becoming a realistic choice not only for the
Django developers wanting to integrate a CMS into their projects, but also for people
from beyond the usual world of Django and software developers—people who are more
comfortable perhaps with a friendly book in their hands than with a README file in a
GitHub repository.

You might be one of those people, in which case we extend you a special welcome.
This book’s for you. It takes a new approach into django CMS, one we heartily endorse,
that doesn’t make the assumptions about knowledge and experience that without doubt
have undermined many people’s attempts to get there.

For us, the community of django CMS developers, it represents an important
challenge: to find ways to make the experience of newcomers to django CMS—people
like you—a better one. Achieving this is essential to the long-term success of the
project. We’ve been working toward it for some time, and Nigel’s book is a very timely
contribution to this effort.

It’s an exciting moment for us, and it will be especially exciting to see the results: new
django CMS users and the new websites they create.

So from us at Divio and in the django CMS development community, thanks to Nigel
George and Apress for helping django CMS take another important step in its journey,
and thank you, too, for joining us in it.

—Daniele Procida
Community & Documentation Manager, Divio AG, Zürich

xix

Acknowledgments

I’d like to thank Ben, Melissa, Massimo, and the team at Apress. It’s been a valuable
learning experience, and the book is all the better for your input.

I would also like to thank Daniele Procida, Matteo Larghi, and Martin Koistinen
from Divio AG for their support and assistance with some of the more technical details
of django CMS; in particular, I would like to thank Daniele for writing such a fitting
Foreword—your support is greatly appreciated.

xxi

Introduction

Beginning django CMS is for Internet developers who are sick and tired of dealing with
complicated, bloated website frameworks that are a pain to build and a nightmare to
maintain. django CMS is an open source website-building framework that is experiencing
exponential growth because it is built on the simple, secure, and scalable architecture of
Django. This book will take you from knowing potentially nothing about django CMS to
building a functional website and content management system you can deploy for your
own website or for your customers.

Who This Book Is For
Beginning django CMS is for developers who wish to build a custom content management
system (CMS), simply and cleanly, without the overhead and bloat that comes with many
other CMS frameworks.

To get the most out of this book, you will ideally have a basic knowledge of
programming, web development, and Internet technologies. django CMS is built on
Django, which is written in Python, and so a working knowledge of Python will make
understanding many of the examples much easier.

Having said that, the book is not too technical for new developers to understand; the
content has been written so that a new developer with minimal prior experience will be
able to create a fully functioning django CMS website by the end of the book.

My only suggesting to those of you who are just starting out is that you familiarize
yourself with all the free resources listed in Chapter 11; so if you do get stuck on some
technical issue, you will know where to look for the answers.

What You’ll Learn
In this book, you will learn how to:

•	 Install and configure django CMS.

•	 Create and manage content in django CMS.

•	 Easily create custom site and page templates for visually stunning
websites that work perfectly on all devices—from mobile phones
to desktop computers.

•	 Create and extend navigation menus for your django CMS website.

http://dx.doi.org/10.1007/978-1-4842-1669-9_11

■ IntroduCtIon

xxii

•	 Install and use a range of plugins from django CMS and third-party
developers.

•	 Install and integrate other Django applications with your django
CMS website.

•	 Create your own custom plugins and Django applications that
integrate with django CMS.

For a complete chapter summary, as well as a more detailed outline of the book, see
Chapter 1.

Software Versions
This book is written for django CMS version 3.2.

You are required to have Python installed before installing django CMS. At the time
of writing, django CMS version 3.2 supports Python 2.6.x or later and Python 3.3.x or later.
However, all of the code in this book is written in Python 3, so it’s recommended that you
install Python 3.4.3 or later. See Chapter 2 for details.

Once Python is installed, if you follow the installation instructions in Chapter 2, the
django CMS installer will install all other software dependencies for you, including the
latest supported version of Django.

If you wish to manually install django CMS, or need a custom configuration, see
http://docs.django-cms.org/en/latest/how_to/install.html.

Source Code
All of the source code for this book can be downloaded from Apress. For detailed infor-
mation about how to locate the source code, go to www.apress.com/source-code/.

http://dx.doi.org/10.1007/978-1-4842-1669-9_1
http://dx.doi.org/10.1007/978-1-4842-1669-9_2
http://dx.doi.org/10.1007/978-1-4842-1669-9_2
http://docs.django-cms.org/en/latest/how_to/install.html
www.apress.com/source-code/

1

Chapter 1

Working with a CMS

In this first chapter we’ll be taking a high-level view of what a content management
system (CMS) is and introducing django CMS: a modern content management system
based on the Django Framework.

We will start with a very brief history of content management and how digital
versions of old paper-based systems have evolved to handle the vast quantities of
information that is disseminated across the world every minute of the day.

I will close the chapter with an outline of the contents of this book and a summary of
the things you will learn as you go.

A Brief History
Back in the old days of the Internet (10 years ago), there was a strong move away from
static HTML websites to more dynamic, interactive websites. This was great for users, but
it presented a particular set of challenges to web designers. To meet the challenge, most
professional websites were built in a particular way:

•	 A designer would create the overall design of a website.

•	 The designer would work with a developer to slice the design
up into a site template that would be a mix of plain HTML and
program code; with the program code providing the interactive
functionality of the website.

•	 The designer would then work with a content creator (usually
the client) to incorporate the website content into the
template—duplicating the template and creating the content
for each and every page of the website.

On very small sites, these roles could be filled by a single person, but for larger sites
whole teams of designers, developers, and content creators needed to be involved to
produce a complex website.

This design approach has one major flaw—the admixture of code, content, and
design elements means that any change to one element has a very real chance of affecting
the others. The consequences of this can range from simple formatting errors to major
breakdowns of website functionality.

Chapter 1 ■ Working With a CMS

2

The solution to this problem was a Content Management System (CMS)—a set of
methodologies and processes that have been around since long before the Internet.

Content Management 101
Content management is the systematic management of information (content). A simple
way to understand content management is to use an example—this book:

•	 The writer (me) will give my draft to an editor who will work with
me to ensure the manuscript is ready to go to the publisher.

•	 The publisher will approve the final manuscript for publication.

•	 The publisher will then send the properly laid out manuscript to a
printer who produces the book you are now holding in your hand.

Of course, the actual process in more complex and much more collaborative than
this sequence would suggest, but the important thing to note is that each person in the
process fulfils a role and can function independent of the others; a publisher does not
have to know the writer’s craft, nor does the writer have to understand how to print a
book.

Content Management Roles
A website CMS requires roles similar to those required to produce a book:

•	 Authors create the articles and page content that is displayed on
the website.

•	 Editors take author-created content and edit it to fit the style and
context of the website, as well as make any corrections to spelling
and grammar. The editor usually fulfils the publisher role on a
website CMS; marking content ready for displaying to the public
via the CMS software running on the server.

•	 The designer still has an important role in creating the overall
visual presentation of the website, although there is an increasing
move towards buying off-the-shelf templates that suit a website
owner’s design goals, rather than employing a designer to create a
custom look.

•	 The site administrator looks after the back end of the
website—assigning roles to other users, maintaining the content,
and applying backups and updates. In some cases, the site
administrator is also the developer—writing code to improve
the functionality of the website—although this is becoming less
common, as you will see in the next section.

Chapter 1 ■ Working With a CMS

3

Anatomy of a Modern CMS
In almost all cases, a modern CMS is a computer application that can be desktop or
cloud-based (or a combination of both). They allow for easy organization of content and
provide tools for creating, editing and publishing content. They use database and file
system storage to provide flexible and scalable storage of data; a modern CMS is capable
of handling everything from a two-page website to massive content publishing platforms
with millions of pages of content (like online news).

The vast majority of modern websites are running some form of CMS. WordPress, the
oldest and most popular, runs roughly 1 in 5 websites on the Internet. CMS software has
grown exponentially in popularity and functionality in recent years.

The current state of the art in CMS design combines all of the content management
tools we have discussed with three design philosophies to create feature rich, scalable,
and responsive websites:

•	 Model/View/Controller (MVC) architecture. It is beyond the
scope of this book to explain MVC, but it is a software design
pattern that epitomizes the modular approach. In MVC the
content, the design, and the code are separated physically in the
website, not just conceptually.

•	 Use of external applications to increase functionality. Rather
than write new code, a modern CMS allows you to “plug in”
additional programs written by other developers that provide
new functions, rather than having to write the code yourself.
These programs can range from simple plugins that change
the formatting to full-blown applications. Using external
applications not only increases the reliability of the CMS, but it
also dramatically reduces the cost, as one developer can sell the
same plugin or application to many different websites that need
the functionality.

•	 Mobile-friendliness. Use of smartphones and tablet computers
exceeds desktop use in most countries around the world. It
is predicted that the shift to mobile computing will continue
to increase over the next few years. It is a given that a modern
CMS must support mobile devices by providing what is called a
responsive interface that automatically adjusts the content of the
website to suit the device it is being viewed on.

django CMS has some key advantages over other CMSes—most notably providing
a dramatic improvement in modularity and separation of functions over programs like
WordPress, which still use the old model of mixing content and code on the page. Other
advantages include these:

•	 It is multilingual.

•	 It supports multiple websites.

•	 It uses Bootstrap out of the box to support mobile devices.

Chapter 1 ■ Working With a CMS

4

•	 It can connect to multiple databases.

•	 Its flexible page model and the availability of formatting plugins
free you from rigid template layouts.

•	 It offers content scheduling out of the box.

•	 It provides clear separation of publishing and administration
roles.

•	 It can integrate with other Django applications easily without
major modifications.

•	 Its plugin-based design allows easy integration of email and
third-party applications and content services.

django CMS combines all of these design elements into a clean, simple interface that
is a delight to use for content creators, editors, and administrators. django CMS is built
upon Django—a web content management system that was originally developed for a
large US newspaper. It was released as open source software in 2007 and has continued to
build a strong user base thanks to its robust architecture and scalability.

What You Will Learn
With django CMS you can build feature-rich, bug-free websites easily and quickly. This
book will take you through the learning process; concluding with a basic blog website
that you can use for your own blog, or to showcase your skills to an employer.

The aim of this book is to teach you the design methodology of django CMS and how
to build a functioning website with it quickly and professionally; it’s not designed to give
you an in-depth, technical knowledge of django CMS. For deeper understanding and
more advanced topics, I have provided resources and links in Chapter 11.

To give you a taste of what is to come:

•	 In Chapter 2 you will learn how to install django CMS and its
dependencies on your computer.

•	 In Chapter 3, I will provide an overview of django CMS covering
its design philosophy and a high-level view of the interface and its
functions.

•	 In Chapter 4 you will learn about django CMS templates and how
they leverage Django’s template engine and Bootstrap to create
fast, clean, and mobile-friendly websites.

•	 In Chapter 5 we will build a full set of responsive templates for
your website. I will take you through each line of code so you will
have a thorough grasp of how to build your own.

•	 In Chapters 6 and 7 we will be exploring the key tools that give
django CMS its flexibility and power: plugins. We will cover all of
the built-in plugins as well as some important third-party plugins
that are available for django CMS.

http://dx.doi.org/10.1007/978-1-4842-1669-9_11
http://dx.doi.org/10.1007/978-1-4842-1669-9_2
http://dx.doi.org/10.1007/978-1-4842-1669-9_3
http://dx.doi.org/10.1007/978-1-4842-1669-9_4
http://dx.doi.org/10.1007/978-1-4842-1669-9_5
http://dx.doi.org/10.1007/978-1-4842-1669-9_6
http://dx.doi.org/10.1007/978-1-4842-1669-9_7

Chapter 1 ■ Working With a CMS

5

•	 In Chapter 8 you will learn about organizing and managing
content with django CMS. We will look at user management, user
roles, and the publishing cycle within django CMS. At the end
of Chapter 8 you will complete an exercise where you create the
content for your website.

•	 In Chapter 9, you will learn about menus and navigation in
django CMS. You will learn how to add breadcrumb navigation to
your site, install social media sharing capability, and generate site
maps. I will also show you how to create a custom menu.

•	 In Chapter 10, we will dig into some of the more advanced
features of django CMS: extending the Page and Title models,
extending the toolbar, and creating custom plugins. We will finish
with a custom plugin that you can use to create a right sidebar
menu for your site.

•	 Finally, in Chapter 11, I will give you tips and links to resources to
continue your journey with django CMS. There are a lot of things
django CMS is capable of, as well as some advanced topics that I
did not have the scope to cover in this book. Chapter 11 will help
you take those next steps to mastering django CMS.

Summary
In this chapter, we have briefly explored the history of content management and how a
modern computer-based content management system (CMS) functions. We have looked
at how django CMS fits into this ecosystem and highlighted some of its key advantages.

I closed with a brief outline of the book and what you can expect by the end. In
the next chapter you will get underway with django CMS by installing the django CMS
application and its dependencies.

http://dx.doi.org/10.1007/978-1-4842-1669-9_8
http://dx.doi.org/10.1007/978-1-4842-1669-9_8
http://dx.doi.org/10.1007/978-1-4842-1669-9_9
http://dx.doi.org/10.1007/978-1-4842-1669-9_10
http://dx.doi.org/10.1007/978-1-4842-1669-9_11
http://dx.doi.org/10.1007/978-1-4842-1669-9_11

7

Chapter 2

Installing django CMS

django CMS is an open source web-based content management system based on the
Django web framework. It is maintained by Divio AG, a commercial web development
company based in Zurich. But before you can start learning how to use django CMS, you
must first install some software on your computer. Fortunately, it is a simple three step
process:

 1. Install Python.

 2. Install a Python Virtual Environment.

 3. Install django CMS.

If this does not sound familiar to you, don’t worry; in this chapter I assume you have
never installed software from the command line before and will lead you through it step
by step.

While the user base for Mac OSX and Linux is growing all the time, I have written
this section for the majority of you who will be using Windows. Your computer can be
running any recent version of the Windows operating system (Windows Vista, Windows 7,
Windows 8.1, or Windows 10).

The process is very similar on machines running Mac OSX and Linux. If you are
using Mac or Linux, don’t worry, as there are a large number of resources on the Internet
with instructions on installing Python and django CMS on these systems. For additional
information on installing software on these systems, see Chapter 11.

 ■ Note Windows users, depending on how your computer has been configured, you will
most likely need to be running in a user account with administrator rights to be able to
install software and run some commands and the command prompt.

http://dx.doi.org/10.1007/978-1-4842-1669-9_11

Chapter 2 ■ InstallIng django CMs

8

Installing Python
Installing Python is very simple, but first you need to check whether Python is already
installed on your system. To do this, we use a tool that may not be familiar to some
Windows users— the command prompt. If you are comfortable using the command
prompt, feel free to skim through this section.

Check Whether Python Is Installed
The command prompt is actually quite useful. As you learn django CMS you will use it
quite a bit, so now is a good time to familiarize yourself with the tool if you have not used
it before.

To launch the command prompt, you need to find cmd.exe and run the program.
In Windows 7 and Vista, click the Start button and type cmd into the Search Programs

and Files box.
In Windows 8.1 and 10, type cmd into the Search the Web and Windows box.
In all versions of Windows, a list will appear—look for the file named cmd.exe. Click

that file to run it, and you should be greeted by a black box similar to the one in Figure 2-1.

Figure 2-1. The Windows command prompt

Chapter 2 ■ InstallIng django CMs

9

 ■ Tip While you have the program running, right-click the cmd.exe icon in the taskbar
(the black icon with c:\ _ in text) and select pin to taskbar. that way you will have easy
access to the program each time you want to run it.

Now that we have the command window open, we need to check whether Python is
already installed. This is easy—just type python at the prompt and hit Enter:

C:\Users\YourUsername>python

If Python is not installed, you will get a message like this:

'python' is not recognized as an internal or external command,
Operable program or batch file.

If Python is installed, you will get a message similar to the one shown in Figure 2-2,
and it will open the Python interactive prompt. We will be getting back to Python’s
interactive prompt shortly.

Figure 2-2. The Python interactive prompt

Chapter 2 ■ InstallIng django CMs

10

 ■ Warning If the python version listed by your system starts with a 2 (such as 2.7.x), you
are running an older version of python and will need to install python 3 as all the code in this
book is written in python 3. If you need to install python 3, please follow the instructions in
the next section.

Close the command window when you are done.

Download and Install Python
Assuming Python is not installed in your system, we first need to get the installer. Go
to https://www.python.org/downloads/ and click the big yellow button that says
Download Python 3.x.x.

At the time of writing, the latest version of Python is 3.4.3, but it may have been
updated by the time you read this, so the numbers may be slightly different.

Do not download version 2.7.x, as this is the old version of Python. All of the code
in this book is written in Python 3, so you will get compilation errors if you try to run the
code on Python 2. If for some reason you must use Python 2 and not Python 3, you will
need to modify some of the code. In most cases, this is as simple as changing __str__()
functions back to __unicode__() and modifying the print() function back to the print
statement; however, other errors may appear. For links to complete references on the
differences between the two versions, please see Chapter 11.

Once you have downloaded the Python installer, go to your Downloads folder and
double click the file python-3.x.x.msi to run the installer.

The installation process is the same as for any other Windows program, so if you
have installed software before, there should be no problem here; however, there is one
extremely important customization you must make.

 ■ Caution do not forget this next step as it will solve most problems that arise from
incorrect mapping of pythonpath (an important variable for python installations) in
Windows.

When the installer opens the customization window, the option “Add python.exe to
Path” is not selected; you must change this to “Will be installed on local hard drive” as
shown in Figure 2-3.

https://www.python.org/downloads/
http://dx.doi.org/10.1007/978-1-4842-1669-9_11

Chapter 2 ■ InstallIng django CMs

11

Once Python is installed, you should be able to reopen the command window and
type python at the command prompt to get the same output as Figure 2-2. Do that now to
make sure Python is installed and working.

While you are at it, there is one more important thing to do.
Exit out of Python by typing Ctrl-C. At the command prompt type the following and

hit Enter:

C:\Users\YourUsername>python –m pip install –U pip

You don’t need to understand exactly what this command does right now; put
briefly, pip is the Python package manager. It is used to install Python packages: pip is
actually a recursive acronym for “Pip Installs Packages.” Pip is important for the next
stage of our installation process, but first we need to make sure we are running the latest
version of pip, which is exactly what this command does.

Figure 2-3. The Add python.exe to Path option

Chapter 2 ■ InstallIng django CMs

12

Installing a Python Virtual Environment
All of the software on your computer operates interdependently—each program has
other bits of software that it depends on (called dependencies) and settings that it needs
to find the files and other software it needs to run (called environment variables). When
you are writing new software, it is possible (and common!) to modify dependencies and
environment variables that your other software depends on. This can cause numerous
problems, so it should be avoided.

 ■ Note the python virtual environment, which allows you to run isolated instances
of python on your machine, should not be confused with a virtual machine. the latter is
software that allows you to run entire operating systems and applications as if they were a
physical computer.

A Python virtual environment solves this problem by wrapping all the dependencies
and environment variables that your new software needs into a file system separate from
the rest of the software on your computer. The virtual environment tool in Python is
called virtualenv, and we install it from the command line using pip (Figure 2-4):

C:\Users\YourUsername>pip install virtualenv

Figure 2-4. Pip installed successfully

Once virtualenv is installed, you need to create a virtual environment for your
project (Figure 2-5):

 C:\Users\YourUsername>virtualenv myCMS

Chapter 2 ■ InstallIng django CMs

13

In this case, I have called the new virtual environment myCMS, but you can call it
whatever you like. Once virtualenv has finished setting up your new virtual environment,
open Windows Explorer and have a look at what virtualenv created for you.

In your home directory, you will now see a folder called \myCMS (or whatever name
you gave the virtual environment). If you open the folder, you will see the following:

\Include
\Lib
\Scripts
 \src

Virtualenv has created a complete Python installation for you, separate from
your other software, so you can work on your project without affecting any of the other
software on your system. To use this new Python virtual environment we have to activate
it, so let’s go back to the command prompt and type the following:

C:\Users\YourUsername>myCMS\scripts\activate

This will run the activate script inside your virtual environment’s \scripts folder.
You will notice that your command prompt has now changed:

(myCMS) C:\Users\YourUsername>

The (myCMS) at the beginning of the command prompt lets you know that you are
running in the virtual environment. Our next step is to install our django CMS project.

Installing django CMS
The first step to install django CMS is to install the django CMS installer. This is done
with pip:

(myCMS) C:\Users\YourUsername>pip install djangocms-installer

Figure 2-5. Python virtualenv active

Chapter 2 ■ InstallIng django CMs

14

Then we have to create a project directory for our django CMS project and change
into that directory:

(myCMS) C:\Users\YourUsername>mkdir myCMS-tutorial
(myCMS) C:\Users\YourUsername>cd myCMS-tutorial

Finally, we need to install the django CMS-powered website:

(myCMS) C:\Users\YourUsername\myCMS-tutorial>djangocms –p . mysite

Don’t forget the "." between -p and mysite!
The django CMS installer will now ask you a few questions. In most cases, you just

accept the default; however, there are some options that you should change. I have
highlighted them in bold.

Database configuration (in URL format) [default sqlite://localhost/project.db]:
django CMS version (choices: 2.4, 3.0, 3.1, stable, develop) [default stable]:
Django version (choices: 1.4, 1.5, 1.6, 1.7, 1.8, stable) [default stable]:
Activate Django I18N / L10N setting (choices: yes, no) [default yes]:
Install and configure reversion support (choices: yes, no) [default yes]:
Languages to enable. Option can be provided multiple times, or as a comma
separated list. Only language codes supported by Django can be used here: en
Optional default time zone [default <your timezone>]:
Activate Django timezone support (choices: yes, no) [default yes]:
Activate CMS permission management (choices: yes, no) [default yes]:
Use Twitter Bootstrap Theme (choices: yes, no) [default no]: yes
Use custom template set [default no]:
Load a starting page with examples after installation (english language
only). Choose "no" if you use a custom template set. (choices: yes, no)
[default no]: yes
Creating the project
Please wait while I install dependencies

##lots more messages…

Creating admin user
Username (leave blank to use '<yourusername>'):
Email address: enter email address
Password: enter a password
Password (again):
Superuser created successfully.
All done!

Chapter 2 ■ InstallIng django CMs

15

Once django CMS is installed, you should be able to run your brand-new project.
Inside your project directory (you should still be there if you launch straight after
installing), you run the Django development server with the following command:

(myCMS) C:\Users\YourUsername\myCMS-tutorial>python manage.py runserver

Once the development server is running, you can enter http://127.0.0.1:8000 into
your browser and the default django CMS template will load, giving you a screen similar
to Figure 2-6.

Figure 2-6. Success!

http://127.0.0.1:8000/

Chapter 2 ■ InstallIng django CMs

16

 ■ Tip Windows users might also want to consider installing git Bash, which is part of the
git for Windows package (https://git-for-windows.github.io/). Most of the examples
online assume you have some form of Unix running, so installing git Bash will allow you to
run Unix format command-line tools without needing to translate examples into Windows
shell commands.

Summary
In this chapter, we have covered installing and configuring Python and django CMS, the
result being a nice and clean (albeit empty) django CMS website. In the next chapter, we
will explore the overall structure and design philosophy behind django CMS.

https://git-for-windows.github.io/

17

Chapter 3

Introduction to django CMS

There are a number of other CMS applications based on Django; however, at the time of
writing, django CMS is the most popular1 and is supported by a large community of users
and developers.

By itself, django CMS is not a “plug and play” website builder where
nonprogrammers can pick a template, add some content, and have a website up and
running in a couple of hours. It has specifically been designed to give developers and
designers a great deal more freedom to customize their websites.

Design Philosophy
Think of django CMS as being like a box of LEGO bricks compared to a model car
kit—both can be used to build a model car, but with the LEGO you have almost total
freedom to build any car you like, whereas with the kit, you will only get the car in the box
(assuming you follow the instructions).

It’s also helpful to understand that django CMS is content-agnostic in that it does
not impose any set structure on your content. django CMS is designed to provide the
publishing framework for your content, but how that content is structured is up to you;
you have the freedom to do everything from formatting text on a page with plug-ins to
dropping in entire Django applications and hooking them to django CMS menus and
administration.

django CMS inherits much of its design philosophy from Django; it does all of the
following:

•	 Implements a Model View Controller (MVC) architecture to
separate presentation logic from business logic.

•	 Provides a pluggable architecture that allows easy addition of
self-contained plug-ins and applications (apps) to expand the
functionality of a website.

•	 Uses search engine friendly URLs by default.

•	 Supports multiple languages by default.

1https://www.djangopackages.com/grids/g/cms/

https://www.djangopackages.com/grids/g/cms/

Chapter 3 ■ IntroduCtIon to django CMS

18

To enhance the content management capabilities of Django, it adds these features:

•	 Front end editing—allowing for structural and content
modifications without needing a dedicated administration
back end.

•	 Full touch interface support, with a focus on tablets and touch
laptops from leading vendors. Many phones will also work, but
you should note that they are explicitly not supported by django
CMS’s touch capabilities.

•	 A range of prebuilt plug-ins for common content management
tasks (such as page editing) and third-party application
integrations (such as social media).

•	 Versioning (history) for all content pages.

•	 Easy permission management for content creators—assignable
create/edit/publish authorizations.

•	 Media asset management—files, images, videos, and animations
(Flash).

Of course, no software package is perfect: django CMS does have disadvantages,
some because of limitations in Django and some because of the way django CMS has
been designed:

•	 It’s not designed for simple content management out of the box;
you can’t just create a page and start entering content like some
other CMS applications. You first need to have a template with a
placeholder; then you have to add at least one plug-in, configure
the plug-in, and add your content.

•	 It’s overly complex for really simple sites as there is no easy way
to detach a Django project from the database, so even if you don’t
need a database, you still need to configure one.

•	 There are not a large number of third-party plug-ins available at
the time of writing. The number of available plug-ins is growing
all the time as django CMS grows in popularity, but there are
many functions that are readily available in more mature CMS
applications that you will have to code yourself in django CMS.

•	 Because django CMS and Django are both open source projects
that are in active development, backward-compatibility with
some plug-ins and Django apps is problematic on occasion.

These disadvantages are very much offset by the power and flexibility of django CMS.
Typically you would choose django CMS for applications where the benefit of building a
fully customized CMS significantly faster than building one from scratch outweighs the
need to be more active managing the more technical aspects of the CMS.

Chapter 3 ■ IntroduCtIon to django CMS

19

The Structure of django CMS
django CMS is structured to allow the majority of CMS management functions to be
performed from the front end of the website, rather than have a separate administrative
back end. django CMS is different from most other CMSes in that it allows you to edit
content and structure from the front end, which makes updating, previewing, and
publishing basic design and content changes very easy.

Accessing the site editor is as simple as appending the string ?edit to the homepage
URL—in our example, this will be http://127.0.0.1:8000/en/?edit. If you enter the
URL correctly, you will see the front page of the demo website change as in Figure 3-1.

Figure 3-1. DjangoCMS home page with edit toolbar displayed

http://127.0.0.1:8000/en/?edit

Chapter 3 ■ IntroduCtIon to django CMS

20

Once django CMS is in edit mode, you can access a range of functions in the toolbar
via the dropdown menus. The available options for each menu will depend on your
access level. At the moment, you are logged in as the administrator, so you will have full
access to the site. We will explore the functions in the toolbar in more detail in the next
section.

You are also able to edit text and page structure directly. Hovering your mouse over
(or tapping) certain sections of your page will bring up a contextual edit link that allows
you to edit both content (Figure 3-3) and structure (Figure 3-4).

Figure 3-3. Link to edit page content

Log in to your demo website with the admin username and password you entered
in Chapter 1. Once you are logged in, the toolbar will change to the logged-in state, as in
Figure 3-2.

Figure 3-2. django CMS toolbar changed to edit mode

http://dx.doi.org/10.1007/978-1-4842-1669-9_1

Chapter 3 ■ IntroduCtIon to django CMS

21

You will see how to edit page structure and content in Chapter 8.

The django CMS Toolbar
For content and layout editors, and the site administrator, the django CMS toolbar
provides all the tools necessary to manage and update a website via four dropdown
menus:

•	 The Site Dropdown (example.com in the default install) has
a number of menu options that allow the site administrator to
manage pages, users, and the Django administration back end.
It is not usually accessible to content and layout editors. We will
explore the site dropdown in more detail in Chapter 8.

•	 The Page Dropdown provides access to all of the page functions,
including adding pages, editing, publishing, and deleting pages.
Depending on the permission settings, editors can also change
the page template, page permissions, and a number of advanced
settings. Chapter 8 also covers the Page dropdown.

•	 The History Dropdown provides access to the complete page
history, with the ability to review page changes and to revert to an
earlier version of the page. More on this in Chapter 8.

•	 The Language Dropdown allows you to manage various
translations of a page. In this introductory book, we will use only
English, so we will not be exploring the function of this menu.

The four buttons on the right of the toolbar are all related to page structure and
editing and will be covered in detail in Chapter 8.

Figure 3-4. Link to edit page structure

http://dx.doi.org/10.1007/978-1-4842-1669-9_8
http://dx.doi.org/10.1007/978-1-4842-1669-9_8
http://dx.doi.org/10.1007/978-1-4842-1669-9_8
http://dx.doi.org/10.1007/978-1-4842-1669-9_8
http://dx.doi.org/10.1007/978-1-4842-1669-9_8

Chapter 3 ■ IntroduCtIon to django CMS

22

The django CMS Side Pane
There is one more structural element to the editing interface we need to cover before we
move on to building our demo site: the side pane. If you select example.com ➤ Pages, you
will see the side pane pop out as in Figure 3-5.

Figure 3-5. The Side pane

A few of the dropdown menu option will open the side pane to allow you to enter
additional information. You will notice the three small navigation tabs on the top right of
the side pane. Use the < > arrows to show and hide the side pane and the X to close it.

django CMS for Designers and Developers
Website designers and developers will have noticed that there is very little design and
no coding at all available from the front end. This is by design and follows the same
philosophy as Django—design, code, and content are three distinctly different disciplines
and as such, need to be separated from each other.

Chapter 3 ■ IntroduCtIon to django CMS

23

But don’t worry; django CMS is just as easy to work with for designers and
developers as it is for content editors:

•	 For designers, django CMS uses a clean, simple HTML-based
template system that does not require any coding. It also fully
supports Bootstrap and rich content. Chapters 4 and 5 cover this
in detail.

•	 For developers, django CMS follows Django’s pluggable,
application oriented architecture. django CMS achieves this
through plug-ins and Django apphooks. We will explore these
topics in detail in Chapters 6, 7, 9, and 10.

Summary
In this chapter, we have taken a high-level view of django CMS, looking at its structure,
functions, and design philosophy. We have examined its strengths and weaknesses and
explored how its design meets the separate needs of designers and developers.

In the next chapter, we will explore django CMS site templates in depth, introducing
you to the django CMS implementation of Django’s templating system, as well as its
custom template tags, and we will lay the foundation for creating the site templates for
your own blog website.

http://dx.doi.org/10.1007/978-1-4842-1669-9_4
http://dx.doi.org/10.1007/978-1-4842-1669-9_5
http://dx.doi.org/10.1007/978-1-4842-1669-9_6
http://dx.doi.org/10.1007/978-1-4842-1669-9_7
http://dx.doi.org/10.1007/978-1-4842-1669-9_9
http://dx.doi.org/10.1007/978-1-4842-1669-9_10

25

Chapter 4

Site Templates

In this chapter, we will explore django CMS site templates in depth. We will start with a
detailed review of the technologies upon which django CMS templates are built. We will
close the chapter by stepping through the templates created by the django CMS installer
and tying them to what you have learned.

Don’t worry if the theory scares you a little at first; in the next chapter we start the
really fun stuff, but don’t be too quick to jump ahead. Once you absorb all the material in
this chapter, you will never complain about not understanding templates again!

Django Templates 101
django CMS inherits and extends Django’s templating system, so it is important to cover
the core principles behind the design of that system, namely:

•	 Inheritance

•	 Separation of logic and presentation

•	 Extensibility

Inheritance
Most modern websites have a common, site-wide design in which certain elements on
the page—like the header, footer, and menus—are repeated on each page. The Django
template system uses a design pattern in which each page inherits design properties from
a single base template that is named, by convention, base.html. (You will find the base.html
template created by the django CMS installer in /mysite/templates directory.)

As a quick refresher, let’s look at how Django’s template inheritance works. The
base template is a complete HTML file; Listing 4-1 illustrates a minimal but valid
implementation of a base.html file.

Chapter 4 ■ Site templateS

26

Listing 4-1. A Minimal base.html File

<!doctype html>
<html>
 <head>
 <title>{% block title %}Default Title{% endblock title %}</title>
 </head>

 <body>
 {% block content %}
 This is the content in the base template
 {% endblock content %}
 </body>
</html>

Figure 4-1 shows how this basic template will render in a browser.

Figure 4-1. Rendering of a simple base template

This minimal example introduces the key element behind Django’s inheritance: the
block tag. Anything between the {%block ... %} and {%endblock ... %} tags can be
overridden in a child template that inherits from base.html. For example, let’s consider a
basic child template (Listing 4-2).

Listing 4-2. Basic Child Template

#child.html

{% extends "base.html" %}
{% block title %}Title of Child Page{% endblock title %}

{% block content %}
 <p>This text will override the block content tag in base.html </p>
{% endblock content %}

Chapter 4 ■ Site templateS

27

Figure 4-2 shows how the child template will render in a browser. Notice that both
the content and the title of the page have been overridden in the child template.

The element that does all the magic here is the {% extends "base.html" %} tag.
This tells the template renderer that child.html extends (inherits) the base.html
template. When the renderer finds a block tag in the child template that is the same as the
base template, the block in the child is sent to your browser.

Or to put it another way, when child.html is rendered in your browser, its title and
content blocks will override the blocks in the base template, thus allowing each page
to render custom content without having to duplicate or modify the site-wide content.
Pretty cool, eh?

To see how inheritance works in a real live template, take a look at page.html and
feature.html in mysites/templates. Don’t worry if a lot of it doesn’t make sense right
now, because we will go through these templates in greater detail shortly.

Separation of Logic and Presentation
Django does not allow the execution of arbitrary code in page templates. This means that
you cannot write code into the page, assign variables, or execute any kind of program logic
in a template. There are some very good reasons for this, which I covered in Chapter 1;
however, the most important with regard to design, and worth mentioning again here is
that Django assumes (correctly!) that most web designers are not programmers and that it
is extremely important not to mix program code and HTML.

Django does, however, provide a number of template tags and template filters that
allow you to make presentation-related decisions. If you are relatively new to Django, the
built in templating system is quite simple and consists of four main tag types:

•	 Variables have the format {{ value }}. When the template
engine encounters a variable, it evaluates it and replaces it with a
result. Variables can be any Python data type.

•	 Filters have the format {{ value|filter }}. Filters are used for
modifying how variables are displayed.

Figure 4-2. Child template overrides the block tags in base template

http://dx.doi.org/10.1007/978-1-4842-1669-9_1

Chapter 4 ■ Site templateS

28

•	 Tags have the format {% tag %}. They are very versatile and can
be used by the template engine to

•	 Create text in the output

•	 Control program flow and perform logic

•	 Load external information

•	 Comments have the format {# comment #}. Their function is
similar to HTML comments: any text in the comment block will
remain in the template to provide information to the template
designer or programmer but will not be rendered to the browser.
This format works only for single-line comments; for multiline
you must use the {% comment %}...{% endcomment %} block tag.

Django’s template tags provide a number of useful functions for presenting data from
your application. For example, for/endfor tags allow easy iteration over list items, and
if/else/endif tags allow simple decision make on what content is displayed. Django’s
template filters allow for sorting, filtering, and formatting of data. Filters are applied
directly to template variables separated by the pipe character (above the \ on most
keyboards); for example, {{ title|upper }}. You can also create libraries of your own
custom template tags. Custom template tags are beyond the scope of this book; however
if you are interested, more information can be found at https://docs.djangoproject.com/
en/1.8/howto/custom-template-tags/. Table 4-1 summarizes Django’s most commonly
used template tags and filters .

Table 4-1. Common Django Template Tags and Filters

Common Django
Template Tags

Description

{% if %}
{% endif %}

Renders content between tags if statement is true. Example:
{% if article_list %}
 <p>There are some articles published</p>
{% endif %}

{% elif %}
{% else %}

Optional tags for if/endif flow control tags. Provide same
functionality as Python elif and else statements. Example:
{% if article_list %}
 <p>There are articles published</p>
{% elif article_drafts %}
 <p>There are some articles in draft</p>
{% else %}
 <p>No articles sorry!</p>
{% endif %}

(continued)

https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/
https://docs.djangoproject.com/en/1.8/howto/custom-template-tags/

Chapter 4 ■ Site templateS

29

Table 4-1. (continued)

Common Django
Template Tags

Description

{% for %}
{% endfor %}

Allows easy iteration over a list of items. Example:

 {% for article in article_list %}
 {{ article.title }}
 {% endfor %}

{% empty %} Optional tag to render an error or message if the list in a
for/endfor statement is empty. Example:
... for statement
{% empty %}
<p>No articles sorry!</p>
{% endfor %}

upper
lower
title

Uppercase, lowercase, and title case formatting. Example:
{{ title|upper }}
If title is “Beginning Django,” the output will be
“BEGINNING DJANGO.”

date If the variable is a datetime object, it will format according
to the format string. Example:
{{ today|date: "D d M Y" }}
would output Sat 19 Sep 2015.
The date format strings follow the same convention as PHP
format strings. This was implemented to make it easier for
designers to switch from PHP to Django.

Default Outputs a default value if a variable is empty. Example:
{{ value|default:"empty" }}
If value is blank, the output will be the string “empty.”

first
last

Returns the first (or last) item in a list. Example:
{{ article_list|first }}
would output the first article from the list of articles.

truncatechars
truncatewords

Truncates the variable to the designated number of
characters/words. Example:
{{ title|truncatechars:7 }}
would truncate “This is the Title” to “This is”, and
{{ title|truncatewords:3 }}
would output “This is the.”

Chapter 4 ■ Site templateS

30

Table 4-2. django CMS Custom Template Tags

django CMS Custom Tags

placeholder
static_placeholder
render_placeholder
render_uncached_placeholder
show_placeholder
show_uncached_placeholder
page_lookup
page_url
page_attribute

render_plugin
render_plugin_block
render_model
render_model_block
render_model_icon
render_model_add
render_model_add_block
page_language_url
language_chooser
cms_toolbar

This is only a small sample of all the Django template tags and filters available.
Please see http://masteringdjango.com/django-built-in-template-tags-and-
filters/ for a complete list.

Extensibility
Django’s template system is designed to be extensible. It is not important to go into detail
right now on how exactly Django achieves this, but it is important to understand how
django CMS leverages Django’s extensibility; namely, with several extended tag libraries,
including these:

•	 cms_tags

•	 sekizai_tags

•	 menu_tags

CMS Tags
There are 19 custom template tags implemented by django CMS (listed in Table 4-2). To
load the django CMS tags, we use Django’s load template tag:

{% load cms_tags %}

This load tag must go at the top of your base.html file.

http://masteringdjango.com/django-built-in-template-tags-and-filters/
http://masteringdjango.com/django-built-in-template-tags-and-filters/

Chapter 4 ■ Site templateS

31

We will be using a number of these tags later in the book, but right now these are the
three most important custom tags to examine:

•	 placeholder

•	 static_placeholder

•	 cms_toolbar

placeholder

The placeholder tag defines a placeholder within the template. A placeholder serves as a
container where you can place plugins when editing a page; for example, this tag:

{% placeholder "content" %}

puts a placeholder within your template that will render as an empty container when you
first add a page based on the template. You can then add a plugin to the container from
the front-end editor to render content on the page.

The placeholder accepts any plugin that is available in the editor, and plugins can
be nested. So, for example, you can add a Multi Columns plugin to add two columns and
then fill each column with a Text plugin to render two columns of text on the page. You
will see how to do this a bit later in the book.

The name of the placeholder does not matter. I have used the name "content" here
because it’s best practice to make your variable names as descriptive as possible, but you
could have called the placeholder anything. On the subject of placeholder names, note
that a placeholder is unique to the page, so you can have a placeholder named "content"
on two different pages and they would refer to different objects. If you want a placeholder
to be common to more than one page, you need to use static_placeholder.

You can also render additional content if the placeholder is empty using the or
argument. To use r, you must add an {% endplaceholder %} closing tag. For example:

{% placeholder "content" or %}Coming Soon!{% endplaceholder %}

The placeholder tag can also inherit from any parent pages above it that have a
placeholder with the same name. So a template containing this tag:

{% placeholder "content" inherit %}

would inherit the content placeholder from the first parent page above it in the
inheritance tree that contains a placeholder named "content".

It is possible to combine inherit with or to create a complete fallback solution for
inherited pages:

{% placeholder "content" inherit or %}No content anywhere!{% endplaceholder %}

Chapter 4 ■ Site templateS

32

static_placeholder

The static_placeholder tag is similar in function to the placeholder tag; however, it
can be used anywhere in a template and is normally used to display content anywhere on
your site, including inside other applications. For example, if we create this placeholder:

{% static_placeholder "footer" %}

and place it inside a template file (it does not matter which one), and add a text plugin
and the text "Copyright 2015" from the front-end editor, every page that implements a
static placeholder named "footer" will also display "Copyright 2015".

Of course, it makes more sense to put the static placeholder in your base.html file,
especially if it is something like a footer or header, but there is no requirement that you do
so. The other advantage is that if you decide to change the content of the placeholder, you
can edit it from any page and it will update the rest automatically; you don’t have to go
back to the base page to edit it.

The static_placeholder tag also takes the or argument and an additional site
argument to allow a static placeholder to be site-specific in a multisite installation. For
example:

{% static_placeholder "footer" mysite or %}
 No footer on mysite.
{% endstatic_placeholder %}

Note that multisite installations are outside the scope of this book, but this example
does give an idea of the easy scalability of django CMS.

cms_toolbar

The cms_toolbar custom tag enables the template engine to render the django CMS
toolbar. The cms_toolbar tag should be placed just after the <body> tag in base.html and
must not be enclosed in block tags:

template header information

. . .

<body>
 {% cms_toolbar %}

rest of the template

. . .

Chapter 4 ■ Site templateS

33

Sekizai Tags
Django-sekizai is a third-party library that uses blocks to render static media files like
CSS and JavaScript (sekizai is the Japanese word for “blocks”). Sekizai allows designers
to extend and/or add CSS and JavaScript files to templates without having to edit the
underlying Python files.

Django-sekizai provides css and js namespaces that allow Django views to add
media without altering templates; for example, the cms_toolbar custom template tag
automatically adds CSS and JavaScript to the sekizai namespaces without any need to
modify templates. Django-sekizai also automatically removes duplicates, so there is no
risk of bloat when media files are included multiple times.

Because Django-sekizai is required by django CMS, the installer will have added
the necessary modules and settings to your project. To include Django-sekizai in your
template, you load it at the top of your base.html file:

{% load sekizai_tags %}

Django-sekizai is extremely simple to use; to add it to your templates, you only need
two tags:

•	 render_block

•	 addtoblock

However, there are some rules you must follow for Django-sekizai to work:

•	 render_block tags cannot be in an included template; they must
be in your base.html file.

•	 render_block tags cannot be placed inside Django block tags.

•	 If addtoblock is being used in an extended template (uses the
{% extends ... %} tag), it must be enclosed within block tags.

 ■ Caution pay close attention to these rules, as they are usually the source of
“invalid block tag” errors when using Django-sekizai. For more information, see
https://django-sekizai.readthedocs.org/en/latest/#restrictions.

https://django-sekizai.readthedocs.org/en/latest/#restrictions

Chapter 4 ■ Site templateS

34

In practice, these rules are quite easy to follow. Place {% render_block 'css' %} in
the header and {% render_block 'js' %} just before the closing body tag of your base.html
file. For example, our basic template from Listing 4-1 would now look like Listing 4-3.

Listing 4-3. Minimal base.html file with Sekizai Tags Added

{% load sekizai_tags %}
<!doctype html>
<html>
 <head>
 <title>{% block title %}Default Title{% endblock title %}</title>
 {% render_block 'css' %}
 </head>

 <body>
 {% block content %}{% endblock content %}
 {% render_block 'js' %}
 </body>
</html>

Then, when you want to add CSS or JavaScript files to one of your child templates,
you just need to make sure addtoblock is enclosed in block tags (Listing 4-4).

Listing 4-4. Basic Child Template With Sekizai Tags

#child.html (fragment)

{% extends "base.html" %}
. . .
{% block "content" %}
{% addtoblock "js" %}

Add extra scripts here
. . .

{% endaddtoblock %}
{% endblock %}

Menu Tags
The menus application implements four additional custom template tags for rendering
menus in django CMS:

•	 show_menu

•	 show_menu_below_id

•	 show_sub_menu

•	 show_breadcrumb

Chapter 4 ■ Site templateS

35

The tag we are most interested in right now is show_menu (we will be covering the rest
in Chapter 10). To enable the menu tags in a template, we use Django’s load tag:

{% load menu_tags %}

show_menu

The show_menu tag renders the default navigation menu for the page. The location of the
menu is dependent on the design of the template. In the demo site created by the django
CMS installer, the default menu is displayed horizontally along the top of the page, as
shown in Figure 4-3.

Figure 4-3. The Default django CMS menu

I have added a couple of pages, as well as a subpage in this example. Notice that the
menu automatically formats the menu titles and creates dropdowns of subpages; the
template engine creates the menu (with a bit of help from Bootstrap) without any input
from you. We will dig into Bootstrap a bit more shortly. Adding pages will be covered a bit
later in the book.

The show_menu tag takes eight optional arguments:

•	 from_level. The node level to start rendering the menu from.
Default is "0" (root node).

•	 to_level. Node depth to render. Default is "100", which in a
practical sense means all child nodes.

•	 extra_inactive. The number of nodes to render under the
current inactive node. The default is "0", which effectively hides
all of the child nodes under the current active menu item.

•	 extra_active. The number of nodes to render under the current
active node. The default is "100", which effectively expands all of
the child nodes under the current active menu item.

•	 template. If a template is specified (for example "menu.hml"),
django CMS will render the file /templates/menu.html in your
application folder. If it is not specified, django CMS will render
the default menu.html file (hidden inside Django’s site-packages
directory). See the accompanying caution for more on this.

http://dx.doi.org/10.1007/978-1-4842-1669-9_10

Chapter 4 ■ Site templateS

36

•	 namespace. The namespace of your template. Template
namespaces are beyond the scope of this book.

•	 root_id. ID of the menu root page. This is used when rendering
child menus.

•	 next_page. This will retrieve all the children of the page ID
specified and render them in the menu.

 ■ Caution it’s best practice to always specify a template when using show_menu. One of
the core philosophies of Django is portability, so all the templates specific to an application
should reside within that application’s template directory. if you don’t do this, a change to
the django CmS default template could break your site.

Because it is easier and neater to pass in positional arguments (rather than keyword
arguments), the most common form of show_menu for a vertical menu is this:

{% show_menu 0 100 0 100 "menu.html" %}

which will show the whole menu from the root, with inactive submenus collapsed and
the active menu expanded. For a horizontal menu (like our demo application), it looks
like this:

{% show_menu 0 1 100 100 "menu.html" %}

which will display only the top-level pages in the menu and expand the children on the
active menu item.

You might be asking yourself why extra_inactive is 100 and not 0, because setting it
to 100 would expand all children of the inactive menu items, which we don’t want—right?

Yes, but we are using this trick to take advantage of one of the features of Bootstrap—
inactive nodes are collapsed automatically, and Bootstrap displays the dropdown arrow
icon so you know that the parent menu item has children. If you set extra_inactive to 0,
you will not see the dropdown arrow unless the menu item is active.

Bootstrap
Back in Chapter 1, I said that a modern website must be mobile-friendly to cater
to the multitude of devices now connected to the Internet. But what exactly does
mobile-friendly mean?

http://dx.doi.org/10.1007/978-1-4842-1669-9_1

Chapter 4 ■ Site templateS

37

While there are many and sometimes contradictory answers to this question,
flexibility is key: the number of types of mobile devices, as well as the operating systems
they run, are incredibly diverse, and a website that will support as many devices as
possible needs to be adaptable. To be flexible and adaptable, site functionality boils down
to three simple requirements:

•	 Responsiveness. This is an industry term, but it means that
your website will automatically resize and rearrange content
depending on the device. A well-designed responsive website
will provide the same positive user experience to a visitor using
a smartphone as to a visitor browsing from a desktop with a 28"
monitor.

•	 Compliance. Android, iOS, OSX, Windows, Linux: they all have
different ways of doing things, incompatible system software,
different fonts and multiple browser versions. A mobile-friendly
site must be able to deliver content that renders correctly across
disparate systems.

•	 Speed. Mobile data speeds are generally slower, and mobile
devices are often light on processing power compared to desktops
and laptops. If your site does not load fast, most mobile users will
move on to a competitor’s site.

While there is still a great deal of variety on the server side of the Internet, these
requirements have pared the browser side down to three basic technologies—CSS,
HTML, and JavaScript.

But using these technologies together to build a website from scratch is prodigiously
difficult and has led to the rise of a number of front-end web frameworks that make the
design, development and management of a website that uses these technologies much
simpler.

Bootstrap, originally the brainchild of two Twitter employees, was released as an
open source technology in 2011. In the four years since, it has become the 800-pound
gorilla of front-end frameworks. Bootstrap is so popular that it is now the default
framework for just about all CMSes and large custom sites implementing responsive
design.

A full explanation of Bootstrap is well beyond the scope of this book; however, a brief
introduction to some key concepts will make designing django CMS responsive templates
much easier.

The Bootstrap Grid System
The Bootstrap grid is a 12-column, infinite-row fluid grid system that automatically
reformats and scales itself depending on the device. The exact layout of the grid and
how it behaves on each screen size is governed by predefined CSS classes (see the
next section). Each cell of the grid contains an HTML <div>...</div> block in which
you can place anything that you would legally be able to place between div tags in a

Chapter 4 ■ Site templateS

38

nonresponsive template. This is easier to illustrate using a simple example. Figure 4-4
shows how a simple page with two-columns and a right-menu might look on a desktop
computer.

Figure 4-5. Responsive template on a tablet

Figure 4-4. Responsive template on a desktop computer

On a smaller screen like a tablet, the design might look like Figure 4-5.

Chapter 4 ■ Site templateS

39

And on a smartphone, the design might look like Figure 4-6.

Figure 4-6. Responsive template on a smartphone

This is a really simple example, but Bootstrap is flexible and powerful enough to
create extremely sophisticated designs, all without any program code. And how does it do
that, I hear you ask? Well, that’s what we will look at next—CSS classes and components.

Bootstrap CSS Classes
Bootstrap achieves its formatting magic with very sophisticated style sheets that define
over 600 classes for formatting and styling HTML elements. These classes are grouped
into eight functional groups:

•	 Grid system. Classes for formatting the grid depending on the
device size—extra small (xs), small (sm), medium (md), and
large (lg)—with column spanning modifiers. For example, the
col-xs-4 class spans four columns on an extra small screen
(smartphone).

Chapter 4 ■ Site templateS

40

•	 Typography. Text styling, such as headings, body copy, inline text
formatting, alignment, and special formatting like block quotes,
addresses, and text transformations.

•	 Code. Inline and code blocks, user input, and variable formatting.

•	 Tables. Formatting and coloring, sizing, and mouse interactions.

•	 Forms. Sophisticated formatting for forms and form controls.

•	 Buttons. Display options, coloring, and sizing.

•	 Images. Image resizing and shaping.

•	 Helper functions. Miscellaneous classes for contextual coloring,
clearfix, screen reader functions, and showing and hiding
columns depending on screen size.

Bootstrap’s CSS uses Less, a CSS preprocessor that adds a number of functions
including variables, mixins, and functions for compiling CSS. Examples include these:

•	 Grayscale colors, such as, @gray, @gray-dark, @gray-light.

•	 Semantic colors, such as @brand-primary, @brand_info.

•	 Use of color variables in CSS, such as background-color:
@brand-primary.

•	 Typographic bases, such as @font-family-base,
@font-size-base.

•	 Typographic mixins, such as @font-size-h1:
floor((@font-size-base* 2.6));

•	 Link styles, such as @link-color, @link-hover-color

We will not be exploring Bootstrap classes any further here; I just wanted to give you
a taste of all the useful design elements you have at your disposal when using Bootstrap
and help you understand that when you are building a site design with django CMS, you
don’t have to reinvent the wheel. To explore Bootstrap fully, please refer to
http://getbootstrap.com/css/.

django CMS leverages the power of Bootstrap right out of the box, so not only do
django CMS default templates take advantage of Bootstrap classes, but you can also
implement them easily in your own templates.

Bootstrap Components
To bring our section on Bootstrap to a close, we just need to touch on one more thing
briefly—components. Bootstrap components are reusable bits of code that are generally
a mix of CSS and JavaScript. django CMS uses a number of Bootstrap components,
including dropdowns, navs, alerts, and the jumbotron. Other components include these:

•	 Glyphicons

•	 Button groups and dropdowns

http://getbootstrap.com/css/

Chapter 4 ■ Site templateS

41

•	 Pagination

•	 Breadcrumbs

•	 Thumbnails

•	 Progress bars

•	 Panels and wells

 ■ Note We have barely scratched the surface with Bootstrap. While it is not necessary
to dig any deeper into Bootstrap to understand the rest of this book, your future as a
professional programmer would be greatly benefitted by bookmarking getbootstrap.
com/getting-started/ and spending a few hours gaining an in-depth understanding of
Bootstrap and its capabilities.

Tying it all Together
We have covered a lot of ground in this chapter, and now it is time to tie together all
the things you have learned. We will do this by examining the template files that were
generated by the django CMS installer.

Assuming you used the same file names as the installation examples in Chapter 2,
you will find these templates in

C:\users\<yourusername>\myCMS-tutorial\mysite\templates\

We will start with the base.html file, which is shown in Listing 4-5 (Note: some of the
URLs have been shortened to improve readability):

Listing 4-5. Complete sample base.html file

1. {% load cms_tags staticfiles sekizai_tags menu_tags %}
2. <!doctype html>
3. <html>
4. <head>
5. <meta charset="utf-8">
6. <title>
7. {% block title %}
8. This is my new project home page
9. {% endblock title %}
10. </title>
11. <meta name="viewport" content="width=device-width,initial-scale=1">
12. <link rel="stylesheet" href="https://cdnjs ... bootstrap.min.css">
13. <link rel="stylesheet" href="https:// ... bootstrap-theme.min.css">
14. {% render_block "css" %}

http://dx.doi.org/10.1007/978-1-4842-1669-9_2
https://cdnjs...bootstrap.min.css
https://...bootstrap-theme.min.css

Chapter 4 ■ Site templateS

42

15. </head>
16. <body>
17. {% cms_toolbar %}
18. <div class="container">
19. <div class="navbar navbar-default" role="navigation">
20. <div class="navbar-header">
21. <button type="button" class="navbar-toggle" 
 data-toggle="collapse" data-target=".navbar-collapse">
22. Toggle navigation
23.
24.
25.
26. </button>
27. Project name
28. </div>
29. <div class="navbar-collapse collapse">
30. <ul class="nav navbar-nav">
31. {% show_menu 0 1 0 100 "menu.html" %}
32.
33. </div>
34. </div>
35. {% block content %}{% endblock content %}
36. </div>
37. <script src="https://cdnjs ... jquery.min.js"></script>
38. <script src="https://cdnjs ... bootstrap.min.js"></script>
39. {% render_block "js" %}
40. </body>
41. </html>

Now that you have the complete listing in front of you, let’s step through the most
important parts:

•	 Line 1. Django’s load tag accepts multiple arguments, so we are
loading all of the extended tag libraries in one go.

•	 Lines 7 to 9. Here Django’s block tags are used to define the title
block for the page. This code will be overridden by any child
template that defines a title block.

•	 Line 14. This is the Sekizai render_block tag to render the CSS at
the top of the file.

https://cdnjs...jquery.min.js
https://cdnjs...bootstrap.min.js

Chapter 4 ■ Site templateS

43

•	 Line 17. This is where we load the django CMS toolbar into the
page.

•	 Lines 19 to 34. This is the page navigation bar implemented in
Bootstrap. For a navigation bar to show anything, you must pass
it a list, which we do on Line 31 with our show_menu tag. For the
curious, lines 21 to 26 are how Bootstrap renders the “hamburger”
icon that shows up instead of the full menu on small screens.

•	 Line 35. Here Django’s block tags are used to define the content
block for the page. This will be overridden by any child template
that defines a content block.

•	 Line 39. This is the Sekizai render_block tag to render the
JavaScript at the bottom of the page. Using it is best practice to
increase page load speed.

As you can see, this is all very easy to follow once you know what each line is doing.
As an exercise, I have left the three remaining sample templates—page.html, feature.
html and menu.html—for you to examine on your own to improve your understanding,
but here are some quick notes to help you along:

•	 Page.html and feature.html correspond to the page and page
with feature templates in the Django editor front-end. We will
dig deeper into page templates in the next chapter.

•	 Both page.html and feature.html extend base.html.

•	 You will notice that our sample home page (Figure 2-6) uses the
feature.html template. The banner at the top is rendered by
Bootstrap’s jumbotron class. Add a new page and select the “page”
template, and you will see a blank page template (Figure 4-7).

•	 Note the use of django CMS placeholder tags in page.html and
feature.html.

•	 Notice how menu.html uses Django’s if/endif and for/endfor
tags to iterate over all the pages listed in the menu.

http://dx.doi.org/10.1007/978-1-4842-1669-9_2#Fig6

Chapter 4 ■ Site templateS

44

Figure 4-7. The blank page template

Summary
That’s it for this chapter. We have covered the templates in great detail, and you should
now have a very solid grounding in how django CMS templates are built. You should
also be comfortable with the basics of Bootstrap and how django CMS leverages
Bootstrap’s CSS classes to create a modern site template that will look good on the
majority of devices.

In the next chapter we are moving on to the fun stuff—designing your own templates.

45

Chapter 5

Your Blog Website:
Templates

Now that you have a thorough grounding in how the django CMS templates are
constructed, it is time to build the templates for your blog website. In this chapter,
you will:

 1. Start with a fresh, empty install of django CMS.

 2. Create your own base.html template.

 3. Create a CSS file to apply custom styling to your blog.

 4. Create a new template, blogpage.html, that will display a
single blog post along with a right sidebar menu listing all
posts.

 5. Edit your setting file to apply the new templates to your blog
site.

 ■ Note All of the source code in this chapter is available for download from the book’s
website; however, it is recommended that you type out the files yourself the first time
through. It can be tedious sometimes, but you will definitely learn more by doing so.

Create a Clean Install
We want to start with a completely empty django CMS installation for our blog site, so the
first step is to create a new virtual environment (call it myBlog) and install django CMS in
a new project directory called myBlogProject.

ChApter 5 ■ Your Blog WeBsIte: templAtes

46

The steps to creating the new installation are almost identical to those you took in
Chapter 2, but I will step through them briefly to refresh your memory (all commands are
entered at the command prompt):

 1. Enter Virtualenv myBlog.

 2. Enter myBlog\scripts\activate, and the command prompt
should change to (myBlog) C:\Users\YourUsername>.

 3. Enter pip install djangocms-installer.

 4. Enter mkdir myBlogProject.

 5. Enter cd myBlogProject.

 6. Enter djangocms -p . myblog.

 7. Configuration is almost the same: accept all defaults, except
enter en for language and yes to use Bootstrap. This time we
don't was the demo starting page, so we accept the default no
for the last question.

I have included an edited version of the output from your command window
in Listing 5-1 to give you an idea of what you should see. It won't be exactly the
same, but it should be close. If all goes according to plan, when you navigate to
http://127.0.0.1:8000/ in your browser, you should be presented with the django CMS
login page (Figure 5-1).

Listing 5-1. Command Window Output

Microsoft Windows [Version 10.0.10240]
(c) 2015 Microsoft Corporation. All rights reserved.

C:\Users\Nigel>virtualenv myBlog
Using base prefix 'c:\\python34'
New python executable in myBlog\Scripts\python.exe
Installing setuptools, pip, wheel...done.

C:\Users\Nigel>myBlog\scripts\activate
(myBlog) C:\Users\Nigel>pip install djangocms-installer
Collecting djangocms-installer
 Downloading djangocms_installer ... #elipsis = additional text removed
...
Installing collected packages: ...
Successfully installed ...

(myBlog) C:\Users\Nigel>mkdir myBlogProject

(myBlog) C:\Users\Nigel>cd myBlogProject

http://dx.doi.org/10.1007/978-1-4842-1669-9_2
http://127.0.0.1:8000/

ChApter 5 ■ Your Blog WeBsIte: templAtes

47

(myBlog) C:\Users\Nigel\myBlogProject>djangocms -p . myblog
Database configuration (in URL format) [default sqlite://localhost/project.
db]:
django CMS version (choices: 2.4, 3.0, 3.1, stable, develop) [default
stable]:
Django version (choices: 1.4, 1.5, 1.6, 1.7, 1.8, stable) [default stable]:
Activate Django I18N / L10N setting (choices: yes, no) [default yes]:
Install and configure reversion support (choices: yes, no) [default yes]:
Languages to enable. Option can be provided multiple times, or as a comma
separated list. Only language codes supported by Django can be used here: en
Optional default time zone [default Australia/Sydney]:
Activate Django timezone support (choices: yes, no) [default yes]:
Activate CMS permission management (choices: yes, no) [default yes]:
Use Twitter Bootstrap Theme (choices: yes, no) [default no]: yes
Use custom template set [default no]:
Load a starting page with examples after installation (english language
only). Choose "no" if you use a custom template set. (choices: yes, no)
[default no]: no
Creating the project
Please wait while I install dependencies
 ...
Dependencies installed
Creating the projectOperations to perform:
 ...
Synchronizing apps without migrations:
 Creating tables...
 Installing custom SQL...
 Installing indexes...
Running migrations:
 ...
Creating admin user
Username (leave blank to use 'nigel'):
Email address: <your email>
Password: <enter a password>
Password (again):
Superuser created successfully.
All done!
Get into "C:\Users\Nigel\myBlogProject" directory and type "python manage.py
runserver" to start your project

(myBlog) C:\Users\Nigel\myBlogProject>

ChApter 5 ■ Your Blog WeBsIte: templAtes

48

Figure 5-1. A clean install of django CMS

ChApter 5 ■ Your Blog WeBsIte: templAtes

49

Once you have logged in, you will be greeted with the django CMS content creation
wizard, a simple automated tool for adding content to your django CMS website. At the
moment, we only have the default New Page content wizard (Figure 5-2). We will discuss
content wizards in greater depth in Chapter 10.

Figure 5-2. The django CMS content creation wizard

http://dx.doi.org/10.1007/978-1-4842-1669-9_10

ChApter 5 ■ Your Blog WeBsIte: templAtes

50

Go ahead and select Next to create your new page. Enter Home for the page title and
some content if you want to. Content is optional at this stage, as we will be adding much
more content to this page later on in the book. Select Create at the bottom right of your
screen, refresh your browser, and your site should look like Figure 5-3.

Figure 5-3. Your new but completely empty website

Create Your Base Template
Your blog site is looking rather empty and boring at this stage, so it is time to build our
new templates. We are going to start with our base template. To make this happen, we
need to

 1. Rename \myblog\templates\base.html to base.html.old.

 2. Create our new base.html file (Listing 5-2) and save it to
\myblog\templates\.

 3. Create our custom CSS file, myblog.css (Listing 5-3), and save
it to \myblog\static\.

ChApter 5 ■ Your Blog WeBsIte: templAtes

51

 4. Create a 50×50 pixel logo and save it to \myblog\static\
logo.png. It does not matter what the logo is, but a simple
design on a transparent background works best. You can use a
program like Microsoft Paint or GIMP to do this (or Photoshop
if you have it). I have also included a simple logo in the source
code if you don't want to create your own.

 5. Download ie10-viewport-bug-workaround.js[1] and save
it to \myblog\static\. This is a workaround put out by
Bootstrap (introduced in Chapter 4) to solve a bug in Internet
Explorer on Windows 10. If you are not planning to deploy
your website, you don't have to add this file.

Listing 5-2. Our base.html File

{% load cms_tags staticfiles sekizai_tags menu_tags %}
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="icon" href="favicon.ico">

 <title>{% block title %}MyBlog Title{% endblock title %}</title>

 <link href="https://cdnjs.cloudflare.com/ajax/libs/twitter-

bootstrap/3.3.4/css/bootstrap.min.css" rel="stylesheet">

 <!-- MyBlog custom styles -->
 <link href="{% static "myblog.css" %}" rel="stylesheet">

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and

media queries -->
 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.

js"></script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
 <![endif]-->
 {% render_block "css" %}
 </head>

[1] https://github.com/twbs/bootstrap/blob/master/docs/assets/js/ie10-viewport-
bug-workaround.js

http://dx.doi.org/10.1007/978-1-4842-1669-9_4
https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.4/css/bootstrap.min.css
https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.4/css/bootstrap.min.css
https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js
https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js
https://oss.maxcdn.com/respond/1.4.2/respond.min.js
https://github.com/twbs/bootstrap/blob/master/docs/assets/js/ie10-viewport-bug-workaround.js
https://github.com/twbs/bootstrap/blob/master/docs/assets/js/ie10-viewport-bug-workaround.js

ChApter 5 ■ Your Blog WeBsIte: templAtes

52

 <body>
 {% cms_toolbar %}
 <nav class="navbar navbar-default navbar-static-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-

toggle="collapse" data-target="#navbar" aria-expanded="false"
aria-controls="navbar">

 Toggle navigation

 </button>

 </div>
 <div id="navbar" class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 {% show_menu 0 1 0 100 "menu.html" %}

 </div>
 </div>
 </nav>

 <div class="container">
 <div class="blog-header">
 <h1 class="blog-title">Not Just Another Blog</h1>
 <p class="lead blog-description">My awesome blog built

with django CMS.</p>
 </div>
 {% block content %}{% endblock content %}
 </div>

 <footer class="footer">
 <div class="container">
 <p class="text-muted">{% block footer %}My Blog©2015{% endblock

footer %}</p>
 </div>
 </footer>

 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.11.3/

jquery.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-

bootstrap/3.3.4/js/bootstrap.min.js"></script>
 <!-- IE10 viewport hack for Surface/desktop Windows 8 bug -->
 <script src="{% static "ie10-viewport-bug-workaround.js" %}"></script>

 {% render_block "js" %}
 </body>
</html>

https://cdnjs.cloudflare.com/ajax/libs/jquery/1.11.3/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/jquery/1.11.3/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.4/js/bootstrap.min.js
https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.4/js/bootstrap.min.js

ChApter 5 ■ Your Blog WeBsIte: templAtes

53

The code in Listing 5-2 is identical in function to Listing 4-5 from the last chapter, so
please refer to that discussion for a more detailed line-by-line analysis. Note the following
changes here:

•	 I have updated the HTML header to the current Bootstrap
header. Basically, this adds some additional support for cross-
browser compatibility and a different Content Delivery Network
(CDN) for the Bootstrap scripts. You can get the latest Bootstrap
templates (which you can use as the basis for your own django
CMS templates) from http://getbootstrap.com/getting-
started/#template.

•	 I have changed the navbar (top menu) class from navbar-default
to navbar-static-top to prevent the django CMS toolbar from
floating over the top of the navbar and obscuring your top menu.

•	 I have removed the “project name” text anchor and replaced it
with a logo image.

•	 I have added a blog header before the page content. This gives
your site a banner-type header that is common on many blogs.

Listing 5-3. The myblog.css File

html {
 position: relative;
 min-height: 100%;
}
body {
 /* Margin bottom by footer height */
 margin-bottom: 60px;
 font-family: Georgia, "Times New Roman", Times, serif;
 color: #555;
}
h1, .h1, h2, .h2, h3, .h3, h4, .h4, h5, .h5,h6, .h6 {
 margin-top: 0;
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
 font-weight: normal;
 color: #333;
}
.footer {
 position: absolute;
 bottom: 0;
 width: 100%;
 height: 60px;
 background-color: #f5f5f5;
}
.blog-header {
 padding-top: 20px;
 padding-bottom: 20px;
}

http://dx.doi.org/10.1007/978-1-4842-1669-9_4#FPar5
http://getbootstrap.com/getting-started/#template
http://getbootstrap.com/getting-started/#template

ChApter 5 ■ Your Blog WeBsIte: templAtes

54

.blog-title {
 margin-top: 30px;
 margin-bottom: 0;
 font-size: 60px;
 font-weight: normal;
}
.blog-description {
 font-size: 20px;
 color: #999;
}
.sidebar-module {
 padding: 15px;
 margin: 0 -15px 15px;
}
.sidebar-module-inset {
 padding: 15px;
 background-color: #f5f5f5;
 border-radius: 4px;
}
.sidebar-module-inset p:last-child,
.sidebar-module-inset ul:last-child,
.sidebar-module-inset ol:last-child {
 margin-bottom: 0;
}
.pager {
 margin-bottom: 60px;
 text-align: left;
}
.pager > li > a {
 width: 140px;
 padding: 10px 20px;
 text-align: center;
 border-radius: 30px;
}
.blog-post {
 margin-bottom: 60px;
}
.blog-post-title {
 margin-bottom: 5px;
 font-size: 40px;
}
.blog-post-meta {
 margin-bottom: 20px;
 color: #999;
}
body > .container {
 padding: 15px 15px 0;

ChApter 5 ■ Your Blog WeBsIte: templAtes

55

}
.container .text-muted {
 margin: 20px 0;
}
.footer > .container {
 padding-right: 15px;
 padding-left: 15px;
}
. row {
 margin-right: 0px!important;
}

Listing 5-3, myblog.css, is a standard CSS file. Going into detail on CSS is beyond the
scope of this book. If you need to brush up on your CSS knowledge, a great resource can
be found at http://www.w3schools.com/css/.

If all goes according to plan, when you reload your homepage, you will be greeted
with a site that looks like Figure 5-4 (note that I have collapsed the django CMS toolbar in
this screenshot so you can see the full template).

Figure 5-4. Your New Blog Base Template

http://www.w3schools.com/css/

ChApter 5 ■ Your Blog WeBsIte: templAtes

56

Create Your Blog Templates
While our blog is looking much prettier than when we started, it still doesn't look much
like a blog. For a start, there isn't the usual sidebar listing recent posts. In fact, there
aren't even any posts! So that's what we are going to do now: Listing 5-4 shows our base
template for blog pages, page.html. This page can be used as a basis for many different
types of blog pages, not just blog posts (for example, a blog roll listing latest posts).

Listing 5-5 shows our blog post page, blogpage.html, which inherits from our
page.html template.

You will notice that the sidebar is in these pages, not the base template. If you were
wondering why, it's so we have maximum flexibility with our site. We want to be able to
show pages without the sidebar (to create, for example, a full-screen reading page), or
maybe even to show a completely different sidebar on certain pages. In the case of our
blog, this makes turning it into a reusable application or django CMS plugin at a later date
much easier.

Keeping your base template as generic as possible is almost always a good thing.
Couple this philosophy with Django's powerful template inheritance capabilities, and
you will find over time that you are collecting a portfolio of basic templates that allow you
to meet even the most demanding design challenges without having to start from scratch
every time.

Listing 5-4. Our page.html Template

{% extends "base.html" %}
{% load cms_tags sekizai_tags %}

{% block title %}{% page_attribute "page_title" %}{% endblock title %}

{% block content %}
<div class="row">

 <div class="col-sm-8 blog-main">
 {% block page-inner %}
 {% placeholder "content" %}
 {% endblock page-inner %}
 </div>

 <div class="col-sm-3 col-sm-offset-1 blog-sidebar">
 <div class="sidebar-module sidebar-module-inset">
 <h4>About</h4>
 <p>My name is Big Nige and I built this blog all by myself.</p>
 </div>
 <div class="sidebar-module">
 <h4>Latest Posts</h4>
 <ol class="list-unstyled">
 Blogpost 1
 Blogpost 2

ChApter 5 ■ Your Blog WeBsIte: templAtes

57

 </div>
 <div class="sidebar-module">
 <h4>User</h4>
 <ol class="list-unstyled">
 Log In

 </div>
 </div>
</div>
{% endblock content %}

The code in Listing 5-4 should be very easy to follow; a couple of things to note are:

•	 I am using Bootstrap's 12-column layout to create an 8-column
content area with a single-column offset and then a 3-column
right sidebar.

•	 I have provided some filler text to create a dummy menu in the
sidebar. This is so we can check the template visually. It will be
replaced by a placeholder in Chapter 9.

•	 I have added a Log In link at the bottom of the right sidebar to
make it easier to log in, rather than having to add ?edit to the
URL every time you want to log in.

Listing 5-5. The blogpage.html Template

{% extends "page.html" %}
{% load cms_tags %}
{% load sekizai_tags %}

{% block title %}{% page_attribute "page_title" %}{% endblock title %}

{% block page-inner %}
<div class="blog-post">
 <h2 class="blog-post-title">{% page_attribute "page_title" %}</h2>
<p class="blog-post-meta">Published {{ 
request.current_page.creation_date|date:'d M Y' }} by 
{{ request.current_page.created_by }}</p>

 {% placeholder "content" %}
 {% static_placeholder "social" %}
</div>
{% endblock page-inner %}

Thanks to Django's template inheritance, our blog post template is very simple, as
all the heavy lifting has been done by base.html and page.html. All blogpage.html does
is replace the {% page-inner %} block tag with a formatted blog post that shows the post
title and author and date information as a header and provides a placeholder for social

http://dx.doi.org/10.1007/978-1-4842-1669-9_9

ChApter 5 ■ Your Blog WeBsIte: templAtes

58

media share buttons that we will add later, in Chapter 9. Note that we are accessing some
of the page attributes that are conveniently passed to the page context by django CMS's
Title and Page models.

Now that we finally have all our templates written, we just need to register them with
django CMS. Fortunately, this is very easy to do; just open up myblog\setting.py in your
text editor and change the CMS_TEMPLATES setting to the following:

CMS_TEMPLATES = (
 ## Customize this
 ('page.html', 'Page'),
 ('blogpage.html', 'Blog Page with Sidebar'),

)

Save the file and refresh your homepage. From the django CMS toolbar, select Page
➤ Templates ➤ Blog Page with Sidebar, and your template should change to look just like
Figure 5-5.

Figure 5-5. Your completed blog template

http://dx.doi.org/10.1007/978-1-4842-1669-9_9

ChApter 5 ■ Your Blog WeBsIte: templAtes

59

And that's it! Have a stretch and give yourself a pat on the back. That was an awful lot
of typing (assuming you didn't cheat and download the files), but I hope you agree that
the result was worth it.

Summary
In this chapter we have created a set of templates for your blog website; in doing so you
have learned a bit more about Django's template inheritance and how Bootstrap makes it
easy to create responsive page templates.

In the next chapter we will move on to actually creating some pages for your website,
and I will introduce you to one of the most powerful features of django CMS: plugins.

61

Chapter 6

django CMS Plugins

Core to the flexibility of django CMS is an open structure that has been designed to be
pluggable. Conceptually, this is different from most other CMS software available. With
the majority of other CMSes, you can only control what is displayed on a page as a single
entity (either a page or an article), and content is usually edited from an administrative
back end.

django CMS takes a different approach—its plugin architecture provides flexible,
drop-in containers that can be edited directly from the front end. These containers
are designed for easy inclusion of all manner of content, from simple HTML tags to
sophisticated embedded applications.

django CMS does not restrict the page layout; for example, you can drop a banner
into the top of a page, write an article to go underneath it, and then drop a social
media plug-in below the article. You are free to copy this layout to other pages, or to do
something completely different on each page. We will get to the steps for doing this in
Chapter 8. In the next two chapters, however, we will first explore all the plug-ins you
already have at your disposal. In this chapter, you will be learning how the built-in django
CMS plugins work.

Getting Started
The best way to understand how this works is to dive right in. Click on the Home page you
created in the last chapter and then click the Structure button right of center in the django
CMS toolbar. Your screen should look something like Figure 6-1.

http://dx.doi.org/10.1007/978-1-4842-1669-9_8

Chapter 6 ■ django CMS pluginS

62

The CONTENT and SOCIAL bars on the page correspond to the placeholders of the
same name in your templates. These are the containers in which you place any plugins
that you want to add to the page. For example, our content wizard has already added
a Text plugin to the Content placeholder. If you look at the underlying HTML code (by
choosing View Source) you will see that they are actually just HTML divs.

Each container has a contextual menu on the right side. If you click the plus (+) icon,
a popup overlay (Figure 6-2) will appear in the center of your screen. Each item on the list
is a plugin. For the remainder of this chapter, we will look at each of these plugins in turn
and you will learn how to use them to create different kinds of content for your website.

Figure 6-1. An empty template in structural view

Chapter 6 ■ django CMS pluginS

63

Default Plugins
There are 11 default plugins installed by django CMS; together they provide all the basic
functionality needed to present and format common web content like text, video and
audio, images, and files. There are many more django CMS plugins available—from both
the django CMS project team and third-parties—and you can easily add your own custom
plugins by copying and enhancing one of the default plugins, or building your own from
scratch. We will cover third-party plugins in the next chapter and building your own
custom plugins in Chapter 8, but first let’s look at the default plugins in more detail.

 ■ Note if you have used previous versions of django CMS, please note that placeholders
and plugins are no longer managed from the administration backend; they must now be
managed from the front end from within the structure view.

Installing the Default Plugins
This step is not necessary if you have followed the installation instructions in Chapter 2,
however, it’s worthwhile knowing how to install a default plugin if you have to reinstall, or
want to use it on a custom site.

Figure 6-2. A placeholder context menu

http://dx.doi.org/10.1007/978-1-4842-1669-9_8
http://dx.doi.org/10.1007/978-1-4842-1669-9_2

Chapter 6 ■ django CMS pluginS

64

Installing a default plugin is very straightforward; just do the following:

 1. Install the plugin using pip.

 2. Add it to your INSTALLED_APPS in settings.py.

For example, you would install the File plugin with pip install django-cms-file
and add 'djangocms_file', to your INSTALLED_APPS to make in available in your
application.

For instructions on installing all of the default plugins individually, see
http://www.django-cms.org/en/addons/.

The Text Plugin
If you have ever used an online, browser-based text editor, the Text plugin will be familiar
to you. If you haven’t, don’t worry because it is very straightforward and works like a
simplified word processor. You will be using the Text plugin a lot, definitely more than any
other plugin in the system, so it pays to really understand how it works. Select the Text
plugin from the dropdown menu, and a window like the one in Figure 6-3 will pop up on
to your screen.

Figure 6-3. The django CMS Text plugin

The functions of the editor may seem basic compared to a word processor or
advanced HTML editor, but in content creation for the web, more is not necessarily better.
Table 6-1 lists each of the functions of the basic editor.

http://www.django-cms.org/en/addons/

Chapter 6 ■ django CMS pluginS

65

Table 6-1. Django CMS Text Plugin Toolbar Functions

Icon Function

Undo/redo

Insert file/link/picture or video. Each of these
plugins behaves exactly the same way as when used
directly on the page.

Show blocks. Shows dotted outline of HTML blocks
on the page. Useful for visualizing layout and
detecting empty HTML tags.

Paragraph format dropdown. Options include
Heading, normal text, and other formats.

Apply special text styles like code formatting,
deleted text, and quotes.

Select text foreground and background color.

Paste Plain Text and Paste from Word. The latter
cleans out Microsoft Work formatting tags.

Text formats: Bold, italic, underline, subscript, and
superscript.

Clear formatting from selected text.

Text alignment: left, center, or right.

Insert a horizontal rule.

Lists. Numbered, bullet. List indent and outdent.

Insert table. This brings up another window where
you can enter row, column, and table width and
height information.

Edit HTML source directly.

Chapter 6 ■ django CMS pluginS

66

There are some limitations to the Text plugin—there is no WYSIWYG resizing of
tables or embedded plugins (images, files and video), and any advanced HTML requires
editing the source directly.

In practice, these problems are not as big as you might think.
For starters, using fixed-width columns in tables is almost always a bad thing,

because they won’t scale and flow properly on small screens; and you should never use
tables for layout. Media files can be previewed quickly by switching to the content view,
and the plugin system makes layouts really simple.

The most important concept to understand is that you don’t need to lay out the
whole page with one single Text plugin. This is probably the first mistake people new to
django CMS make; especially if they have used other CMSes in the past. Let me illustrate
by expanding on the quick example I introduced at the beginning of this chapter. Suppose
you have a fairly standard page: banner at the top, followed by some introductory text,
an image floated left or right and some more text floating alongside the image and
continuing underneath. Generally in this situation, it is the image element and the
banner that have a page author fiddling with HTML to get everything to look right.

In django CMS, you would achieve this by dropping in a Picture plugin for the
banner, followed by a Text plugin with the introduction. Below this you would use a Multi
Column plugin, splitting the percentage width to suit the image and placing the image
in one column and the article text in the other. You then finish with another Text plugin
below containing the rest of the article (the additional plugins mentioned in this example
will be explained in full shortly).

Note that this is not a great example; normally, you should not have any trouble with
text flow around an image for the main article, so you would not go for such an elaborate
layout, but it is really important to understand that you have this flexibility if you have
more demanding layout requirements.

And finally, there is nothing stopping you from using an external HTML editor and
pasting the source straight into the text plugin. The Paste From Word button even allows
you to use Word as your HTML editor (but please don’t).

The Link Plugin
The Link plugin (Figure 6-4) inserts a link into the page content. It can also be used to
insert links inside the Text plugin and the Multi Columns plugin. There are five link types
available—Link (URL), Link to a Page on the Site, Link to an Anchor, Email Link, and
Telephone Link.

 ■ Note the link plugin does not throw an error if you enter multiple links, so make sure
you fill out only one of the link fields.

Chapter 6 ■ django CMS pluginS

67

There are a few things to note about the Link plugin:

•	 When you enter the URL into the Link field, it must have the
http:// or http:// prefix, raw URLs will cause an error.

•	 You need to create the anchors in the page yourself by choosing
Edit Source and entering (replace
anchor_name with your anchor name). Then link the Anchor field
to your anchor name. There is a hack for the Text plugin to fix this,
but it is a bit advanced for this point in the book. I have included it
in the accompanying sidebar.

•	 The Telephone Link will insert a tel://... link into your page.
Depending on what software you have on your computer or
tablet, this may launch another application. On a smartphone, it
will simply call the number.

Figure 6-4. The Link plugin

http://hyperlink/

Chapter 6 ■ django CMS pluginS

68

aDDING “INSert aNChOr” tO the teXt pLUGIN

adding anchors to your source code is quite simple to do and is suitable for most
content-creation jobs; however, if you find you are entering a lot of anchors in your
pages, a tool to add them in the text plugin is going to be useful.

luckily, the text plugin toolbar is based on a javaScript htMl editor called CKeditor.
What is really cool about CKeditor is that it already has an insert anchor tool, and all
we have to do is enable it.

open up your settings.py and add this to the bottom of the file:

CKEDITOR_SETTINGS = {
 'toolbar':[
 ['Undo', 'Redo'],
 ['cmsplugins', '-', 'ShowBlocks'],
 ['Format', 'Styles'],
 ['TextColor', 'BGColor', '-', 'PasteText', 'PasteFromWord'],
 ['Maximize', ''],
 '/',
 ['Bold', 'Italic', 'Underline', '-', 'Subscript',

'Superscript', '-', 'RemoveFormat'],
 ['JustifyLeft', 'JustifyCenter', 'JustifyRight'],
 ['HorizontalRule'],
 ['Anchor'],
 ['NumberedList', 'BulletedList', '-', 'Outdent', 'Indent',

'-', 'Table'],
 ['Source']
],
}

reload your page (you may have to clear your browser cache and restart the
development server), and you will have a nice flag icon (aKa the insert anchor tool)
next to your horizontal rule button.

there are many other things you can do to modify the editor if you are feeling
adventurous, but make sure you back up your files first!

The Picture Plugin
The Picture plugin (Figure 6-5) inserts an image into your page. It can also be used
inside the Text plugin and the Multi Columns plugin. The Picture plugin does not allow
image resizing on uploading, nor does it do any automatic thumbnail conversions; so it’s
important that your image is the right size before you upload.

Chapter 6 ■ django CMS pluginS

69

 ■ Tip to create a thumbnail image that you can click to display the full sized image, save
the full size image to myBlogProject\media\ and then set link: text on your thumbnail
to "../media/<full size image filename>". there is a plugin that we will install a bit
later that can help make this process easier, but first it helps to learn how to achieve this
outcome with the default settings.

Figure 6-5. The Picture plugin

Chapter 6 ■ django CMS pluginS

70

The File Plugin
The File plugin (Figure 6-6) inserts a file into your page. Like the Picture plugin, it can also
be used inside the Text and the Multi Columns plugins. It is a very simple tool—you just
need to pick the file for upload and select a title (which will be used as your anchor text).

The File plugin provides only the most rudimentary file embedding capabilities. For
more complex sites where you will be embedding files regularly, it’s recommended that
you install and use the Django-Filer plugin, which you will learn about in the next chapter.

Figure 6-6. The File plugin

The Video Plugin
The Video plugin (Figure 6-7) embeds a video into your page. It can also be used inside
the Text and Multi Columns plugins. The embedded video can be either a file on your site
or an embedded link to a video on an external site like YouTube or Vimeo. Here are a few
things to keep in mind when using the Video plugin:

•	 If you want to embed your own videos, you may have to play with
the encoding to get the results you want. Generally, any common
video container (.avi,.mp4, .m4v, .mkv) will work if the H.264
codec has been used. There is a wealth of information online
about how to transcode video files if you are having problems.

•	 Width and Height are mandatory fields. If you are using a preview
image, set these to the image dimensions, if you are linking to an
external video, it is a good idea to maintain the same aspect ratio
as the original video, such as 400 wide and 300 high for a 4:3 video.

•	 The Show Colors tab at the bottom of the Video plugin
configuration screen allows you to customize a range of color
settings for the embedded video.

Chapter 6 ■ django CMS pluginS

71

 ■ Tip if you want to apply the custom settings (including color settings) to all the videos
on your site, they can be added to your settings.py file. the available settings are as
follows:

VIDEO_AUTOPLAY ((default: False)

VIDEO_AUTOHIDE (default: False)

VIDEO_FULLSCREEN (default: True)

VIDEO_LOOP (default: False)

VIDEO_AUTOPLAY (default: False)

VIDEO_BG_COLOR (default: "000000")

VIDEO_TEXT_COLOR (default: "FFFFFF")

VIDEO_SEEKBAR_COLOR (default: "13ABEC")

VIDEO_SEEKBARBG_COLOR (default: "333333")

Figure 6-7. The Video plugin

Chapter 6 ■ django CMS pluginS

72

VIDEO_LOADINGBAR_COLOR (default: "828282")

VIDEO_BUTTON_OUT_COLOR (default: "333333")

VIDEO_BUTTON_OVER_COLOR (default: "000000")

VIDEO_BUTTON_HIGHLIGHT_COLOR (default: "FFFFFF")

The Multi Columns Plugin
The Multi Columns plugin (Figure 6-8) allows you to format your page content in
columns. It’s not just useful for multiple-column text; it’s a container for any of the other
default django CMS plugins, as well as for compatible third-party and custom plugins.
You can even nest Multi Columns plugins inside each other.

Figure 6-8. Multi Columns plugin

Using the Multi Columns plugin is very straightforward—choose how many columns
you want and the default column width. Both settings can be changed easily later.

The Style Plugin
The Style plugin (Figure 6-9) allows you to add custom styling to page elements placed
inside it. For example, if you want to apply custom styles to a Text plugin, you place the
Text plugin inside the Style plugin.

Chapter 6 ■ django CMS pluginS

73

Using the Style Plugin is straightforward; just select a class name from the list. This
will apply the class name to the HTML div. You then set the style formatting in your
custom CSS file. For example, if you select the info class, it will apply the styling of the
.info class from your CSS file.

Figure 6-9. The Style plugin

Chapter 6 ■ django CMS pluginS

74

There is nothing special about the default classes; you can add more classes or
replace them entirely by modifying your settings.py file. For example, to add a new class
mystyle to the dropdown, add the following to your settings:

CMS_STYLE_NAMES = (
 ('info', ("info")),
 ('new', ("new")),
 ('hint', ("hint")),
 ('mystyle', ("mystyle")),
)

There are also a number of advanced settings you can add to the Style plugin,
including these:

•	 Using HTML 5 article or section tag instead of the default div tag

•	 Applying additional classes

•	 Setting padding and margins

 ■ Tip You can add Bootstrap classes to the additional classes list. this is really useful if
you want to apply Bootstrap contextual classes (like .warning, or .danger) to content.

The Teaser Plugin
The Teaser plugin (Figure 6-10) displays an image with a heading above and a block of
plain text below it. It’s best used inside a Multi Columns tag to float it left or right inside
your page text, but like everything else in django CMS, its uses are limited only by your
imagination.

Chapter 6 ■ django CMS pluginS

75

Because the description is plain text and will render the same as your body text, it is
also worth wrapping your Teaser plugin inside a Style plugin to apply custom styles to the
teaser.

Figure 6-10. The Teaser plugin

Chapter 6 ■ django CMS pluginS

76

The Flash Plugin
The Flash Plugin (Figure 6-11) is another very simple plugin—just select your Flash (swf)
file and specify a width and height.

 ■ Warning Because we are working on a mobile-friendly website, it should be noted that
Flash files have lots of compatibility issues across several platforms. the general advice is
not to use Flash unless you have a very good reason to do so.

The Google Map Plugin
The Google Map plugin (Figure 6-12) embeds a Google Maps map in your page. The
settings are straightforward; however, there are a couple of things to note:

•	 Outside of the United States, you will have better luck displaying
the correct map reference by entering <city>, <state/
province>, <country> in the City: field.

•	 The Latitude and Longitude settings are not direct map
references; they are for fine-tuning the exact placement of your
map pin.

Figure 6-11. The Flash plugin

Chapter 6 ■ django CMS pluginS

77

The Create Alias Plugin
The Create Alias plugin creates an alias for the selected plugin, which allows it to be used
on any page of your website, and any updates made to one instance of the aliased plugin
will be automatically applied to all the other instances. It is not designed be used on its
own, rather as a way to copy a plugin to multiple pages on your site and have the plugin
content update automatically everywhere when it is changed. Figure 6-13a and 6-13b
illustrate the alias process.

In Figure 6-13a, I have used Create Alias to create an alias for a Text plugin on the page.
Creating a linked copy of the plugin is as simple as pasting the alias into a

placeholder or plugin on the page, as shown in Figure 6-13b. Note here that I am pasting
onto the same page for the purposes of demonstration; in a real website, you would be
pasting this on to a different page.

Figure 6-12. The Google Map plugin

Chapter 6 ■ django CMS pluginS

78

Summary
In this chapter we have looked briefly at the functionality provided by the built-in plugins
in django CMS. We will putting each of these plugins to use in Chapter 8.

In the next chapter we will be adding to the functionality of the basic plugins by
adding some of the great plugins that other developers have made for django CMS.

Figure 6-13(a). Copying a plugin with Create Alias

Figure 6-13(b). Adding the aliased plugin to a page

http://dx.doi.org/10.1007/978-1-4842-1669-9_8

79

Chapter 7

Advanced Plugins

In the previous chapter, we covered all the default plugins that come preinstalled in
django CMS. For simpler websites where content does not change often, these are more
than enough to create and manage a website.

However, once you have a website with more complex content and the need to
publish and update content more regularly, there are a number of third-party plugins
available that will make creating and managing content on your django CMS website
much easier.

This chapter introduces a number of third-party applications that extend and
enhance the plugin functionality of django CMS. In the next chapter we will start putting
them to use building content for your blog site.

Easy Thumbnails
If you remember from the last chapter, in order to create a thumbnail with the default
Image plugin, you must manually resize the source image to create a thumbnail and then
link to the source image for a full resolution view.

Because this is a very common task in a CMS, a number of applications have been
developed for creating thumbnails; Easy Thumbnails is such an application. Originally
created for Django, Easy Thumbnails also works very well with django CMS. It is designed
to create thumbnails dynamically—automatically creating thumbnails for images you
place in your page based on a simple template.

 ■ Note Easy Thumbnails is best suited to smaller sites that do not require sophisticated
media handling. If your site is more complex, you are better off using CMSplugin-filer, which
has Easy Thumbnails built in. The latest version of CMSplugin filer can be downloaded from
https://github.com/stefanfoulis/cmsplugin-filer.

https://github.com/stefanfoulis/cmsplugin-filer

ChapTEr 7 ■ advanCEd plugInS

80

To use Easy Thumbnails, you must first install it using pip:

$ pip install easy-thumbnails

Once Easy Thumbnails has been installed, we need to add it to our project. First, add
it to your installed apps in settings.py:

INSTALLED_APPS = (
 ...
 'easy_thumbnails',
)

Then run the migrate command to add the necessary tables to your project:

$ python manage.py migrate easy_thumbnails

Once Easy Thumbnails has been installed into your project, it requires a template
file to be able to correctly resize your images and create the thumbnail files. A simple
template file is shown in Listing 7-1. To enable the template in your project, name the file
picture.html and save it to \myBlog\templates\cms\plugins. (You will need to create
the new folders in your templates directory.)

Listing 7-1. The Easy Thumbnails Template File (picture.html)

{% load thumbnail %}

{% if link %}{% endif %}
 {% if placeholder == "content" %}
 <img src="{% thumbnail picture.image 300x600 %}"
{% if picture.alt %} alt="{{ picture.alt }}"{% endif %}
{% if picture.longdesc %} title="{{ picture.longdesc }}"{% endif %} />
 {% else %}
 {% if placeholder == "authorbio" %}
 <img src="{% thumbnail picture.image 50x50 crop %}"
{% if picture.alt %} alt="{{ picture.alt }}"{% endif %}
{% if picture.longdesc %} title="{{ picture.longdesc }}"{% endif %} />
 {% endif %}
 {% endif %}
{% if link %}{% endif %}

ChapTEr 7 ■ advanCEd plugInS

81

This template is very straightforward. To see what it is doing, let's step through the code:

•	 We first need to load the custom thumbnail tags into the template
with {% load thumbnail %}.

•	 The outer if/else statement selects the correct thumbnail sizing
depending on the placeholder in your django CMS page template.
We created the content placeholder in Chapter 2. Note that for
this to actually work, you would need to modify your base (or a
child template) to include the authorbio placeholder.

•	 The thumbnail creation magic is performed by the {% thumbnail
picture.image ... %} tag. It sets the size of the thumbnail, and
in the case of the author avatar, crops the image.

•	 The additional if/else tags create an anchor if there is a link
attached to the image and alt and title tags for the image if
those elements exist.

A final note on configuring Easy Thumbnails. If you plan to reuse your app, or want
to maintain consistency and flexibility across your site, it is better to use an alias than to
hard-code thumbnail size, for example, by adding the following to your settings.py:

THUMBNAIL_ALIASES = {
 '': {
 'avatar': {'size': (50, 50), 'crop': True},
 },
}

Also modify your template so that this:

<img src="{% thumbnail picture.image 50x50 crop %}"

becomes this:

<img src="{% thumbnail picture.image avatar %}"

You now have the freedom to copy the template to multiple projects as well as set the
image parameters for all templates that use the avatar alias, without having to modify
multiple files.

This has been only a brief introduction to Easy Thumbnails; for a complete
description and details of all relevant configuration options and settings, please refer to
the Easy Thumbnails documentation 1.

1http://easy-thumbnails.readthedocs.org/en/2.1/

http://dx.doi.org/10.1007/978-1-4842-1669-9_2
http://easy-thumbnails.readthedocs.org/en/2.1/

ChapTEr 7 ■ advanCEd plugInS

82

CMSplugin-filer
CMSplugin-filer adds Django-filer, a file manager for Django, to django CMS. It provides a
number of functions you would expect from a file management application:

•	 Create, rename and delete file folders.

•	 Upload, rename and delete files of any type (although you will
most likely only be managing common media files like images,
videos, PDF and document files.

•	 Organize media files on your server.

•	 Apply file permissions and secure downloads (experimental
features at the time of writing).

To install CMSplugin-filer, we first install the application files with pip:

pip install cmsplugin-filer

To ensure that CMSplugin-filer installs correctly, we must first add Django-filer to
our project. Add the following to your settings.py:

INSTALLED_APPS = (
. . .
'filer',
'easy_thumbnails',
)

Then you need to install the application tables into your project. To do this, run two
commands:

python manage.py makemigrations
python manage.py migrate

The first command ensures that all our migrations are synced, and the second
command performs the actual migration. Now it’s time to install the CMSplugin-filer
application files. First we must make some changes to settings.py:

INSTALLED_APPS = (

 . . .

 'cmsplugin_filer_file',
 'cmsplugin_filer_folder',
 'cmsplugin_filer_link',

ChapTEr 7 ■ advanCEd plugInS

83

 'cmsplugin_filer_image',
 'cmsplugin_filer_teaser',
 'cmsplugin_filer_video',
)

. . .

MIGRATION_MODULES = {

 . . .

 'cmsplugin_filer_file': 'cmsplugin_filer_file.migrations_django',
 'cmsplugin_filer_folder': 'cmsplugin_filer_folder.migrations_django',
 'cmsplugin_filer_link': 'cmsplugin_filer_link.migrations_django',
 'cmsplugin_filer_image': 'cmsplugin_filer_image.migrations_django',
 'cmsplugin_filer_teaser': 'cmsplugin_filer_teaser.migrations_django',
 'cmsplugin_filer_video': 'cmsplugin_filer_video.migrations_django'
}

Then we just need to run migrate again to ensure that we have all the necessary
tables added to the project:

python manage.py migrate

If the installation is successful, you will have six new plugin options added to your
page structure editor (Figure 7-1):

•	 File*

•	 Folder

•	 Image*

•	 Link*

•	 Teaser

•	 Video*

*These plugins are also added to the Text plugin.

ChapTEr 7 ■ advanCEd plugInS

84

By the way, once you have installed CMSplugin-filer, you are unlikely to use
the corresponding default plugins again. To reduce the number of options in your
plugin dropdowns, you just need to remove the duplicates. You can do this easily by
commenting out the duplicates in your settings.py:

INSTALLED_APPS = (

 . . .

 'djangocms_column',
 #'djangocms_file',
 'djangocms_flash',
 'djangocms_googlemap',
 'djangocms_inherit',
 #'djangocms_link',
 #'djangocms_picture',
 #'djangocms_teaser',
 #'djangocms_video',

 . . .

)

We will be using each of the filer plugins in a practical example in the next chapter.
The following introduction to each plugin is provided for easy reference. We will start
with the file manager, which is common to all the plugins, and then discuss each of the
plugins in turn.

Figure 7-1. Plugins added by CMSplugin-filer

ChapTEr 7 ■ advanCEd plugInS

85

File Manager
Common to all six of the new CMSplugin-filer plugins is the file manager (Figure 7-2).
The file manager is opened from within each plugin by clicking the search icon ().

To select a file, click the select icon () next to the file you wish to insert.
With the file manager you have the following options:

•	 New Folder. Adds a new folder under the selected folder. I have
added a new folder called siteimages in this example.

•	 Upload. Lets you upload a new file from your computer to the
selected folder. When you first upload a file it is added to the
clipboard on the right of the screen, where you can either add it
to the current directory or discard the upload if you change your
mind.

•	 Search. Searches all folders for a file.

•	 Change. Lets you change file attributes and metadata. The
options available will depend on the file type being uploaded.
You'll learn more about the Change option when we look at the
individual plugins.

Figure 7-2. The CMSplugin-filer file manager

 ■ Note CMSplugin-filer installs the complete django-filer application, which provides
an effective media manager that is accessible not only from the front end, as in these
examples, but also via the administrative back end. We will be covering more of the admin
back end in the next chapter.

ChapTEr 7 ■ advanCEd plugInS

86

The File Plugin
The filer File plugin is very simple (Figure 7-3); just enter your title (which will become
the file anchor text) and the file you want to embed.

The Folder Plugin
The Folder plugin (Figure 7-4) renders the contents of a folder as either a bulleted list or a
slideshow. It is most useful for creating image slideshows; however, it is also a convenient
tool for listing the contents of a directory on a web page.

Figure 7-4. The Folder plugin

Figure 7-3. The CMSplugin-filer File plugin

ChapTEr 7 ■ advanCEd plugInS

87

Configuration of the folder plugin is simple; just enter a title for the plugin and select
the folder you wish to attach. If you select the “list” style, each file in the folder will be
listed on your page as an anchor with link to your file, if you select the “slideshow” style,
all the images in your folder will display as a slideshow.

The Image Plugin
The Image plugin in CMSplugin-filer (Figure 7-5) provides a number of enhancements
to the basic Picture plugin. Images can be added either via the File Manager, or linked
directly using the Alternative Image URL field. You can also add a caption as well as the
usual alternate text.

Figure 7-5. The Image plugin

ChapTEr 7 ■ advanCEd plugInS

88

The Image plugin also provides image scaling options and advanced linking
(Figure 7-6). The image scaling and linking options are straightforward. Things to note:

•	 Use the original image. This overrides all other settings and
simply displays the image without any resizing.

•	 Width/Height. You can specify either width or height to get
proportional sizing, but for cropping to work, you must specify
both.

•	 Upscale. Simply resizes the image without any resampling. Be
aware that small images are likely to be low-quality if upscaled.

•	 Thumbnail Option. Allows the application of a predefined
thumbnail size setting. Click the green plus (+) sign to add a new
setting. Any new setting you add will be available to all images.

•	 Use automatic scaling. Allows the Image plugin to try to scale
the image based on the context. Note that the image will be scaled
differently depending on the placeholder it is contained within.

•	 Image Alignment. Does not apply any styles to the image, just an
HTML class. It is up to you to provide the styles in a custom CSS
file (blog.css in our case).

•	 Link original image. Opens the full-size image.

•	 Description. django CMS will render anything you put in this
field as text inside a span tag. It is up to you to apply styling
(see the accompanying note).

Figure 7-6. Additional options for the Image plugin

ChapTEr 7 ■ advanCEd plugInS

89

 ■ Note The image caption and description are added as hTMl span tags, and so they
will render inline with the image instead of sitting below it as you would expect. Fortunately,
this is easy to fix. django CMS applies classes to the image caption and description (title
and desc respectively). add these classes to your blog.css file to display the caption and
description below the image:

.title, .desc {

 display: block;

}

The Link Plugin
The CMSplugin-filer Link plugin (Figure 7-7) is very similar to the basic Link plugin,
with the only major difference being the addition of the file manager. The Name field is
the anchor text, and you are provided options for a direct link (URL), page, Mailto and
file links. Like the basic version, this Link plugin does not throw an error if you fill out
multiple link fields, so ensure that you enter information only in the field you want.

Figure 7-7. The Link plugin

ChapTEr 7 ■ advanCEd plugInS

90

The Teaser Plugin
The Teaser plugin (Figure 7-8) in CMSplugin-filer also functions much the same as its
basic version, with the addition of the file manager and image resizing options under the
More link.

 ■ Note The title renders as an hTMl H2 tag and the description as a basic paragraph
(the p tag) with no default hTMl classes, so it’s recommended that the CMSplugin-filer
Teaser plugin be placed inside a Style plugin, just as with the basic version.

Figure 7-8. The Teaser plugin

ChapTEr 7 ■ advanCEd plugInS

91

The Video Plugin
The CMSplugin-filer version of the Video plugin (Figure 7-9) is identical to the basic
version, except for the addition of the file manager and a default size of 320×240.

djangocms-forms
djangocms-forms is a third-party form plugin for django CMS created by Mishbah
Razzaque. It provides all of the form fields you will ever need, along with the ability to add
CAPTCHA for spam filtering and saving of form submissions in the database; all without
needing to write a single line of code. To use djangocms-forms in our project, first we
need to install it:

pip install djangocms-forms

Figure 7-9. The Video plugin

ChapTEr 7 ■ advanCEd plugInS

92

Then we need to add djangocms_forms to INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'djangocms_forms',
 ...
)

Finally, we sync the database:

python manage.py migrate

 ■ Tip So far, we have installed each of these plugins one at a time. It’s probably a good
time to note that all of the plugins (and apps) you wish to include in your website can be
installed at once using a requirements file. Because requirements files are a feature of pip,
not django CMS, I will not go into them here, but if you are curious, check out
https://pip.readthedocs.org/en/1.1/requirements.html.

To use the djangocms-forms plugin in our application, we need to hook it into our
project. First we need to add the form URLs to our project. Open \myblog\urls.py and
add the following to your urlpatterns:

urlpatterns = patterns(
 ...
 url(r'^', include('djangocms_forms.urls')),
 ...
)

You should then be able to hook the form plugin into your page by going to Page
➤ Advanced Settings ➤ Application and selecting Forms from the dropdown. If
the Forms option has not appeared in the dropdown, you may have to restart the
development server.

Save the page settings and now when you edit your page, you will see the Form
option under Generic. Select the plugin and you should be greeted by a popup that looks
like Figure 7-10.

https://pip.readthedocs.org/en/1.1/requirements.html

ChapTEr 7 ■ advanCEd plugInS

93

Don’t be daunted by all the options available; creating a detailed form is actually
very easy, but first we have to take care of one thing.

Because we are in development, we do not have our email set up, and so we cannot
test the form. Luckily, Django provides a file-based email back end designed specifically
for the purpose of assisting developers test emails without having to configure an email
server first. To get our email back end running, add the following to the end of your
settings.py:

EMAIL_BACKEND = 'django.core.mail.backends.filebased.EmailBackend'
EMAIL_FILE_PATH = '/Users/<your username>/maildump'

You don’t need to create the maildump folder; Django will do that for you the first
time you try to send an email. When you do try to send email, you will find this folder
contains files named something like 20151009-100625-98201520.log. Inside this log
file will be your complete message, including any mail headers and error messages. Very
handy for testing.

Figure 7-10. The Djangocms-forms plugin (partial)

ChapTEr 7 ■ advanCEd plugInS

94

Creating a Form
Figure 7-10 show a partial view of the popup that is displayed when you create a form.
The configuration screen is quite long, but all the fields are straightforward:

•	 Form Name. The form name will displayed in your site's
administration back end so you can tell which form was
submitted. More on form administration in the next section.

•	 Title. This is the title that will be displayed in your page.

•	 Description. This will be displayed under the title in your page.
You can use HTML tags here to format your code.

•	 Submit Button Text. Defaults to “submit”, but you can
change this.

•	 Post Submit Message. The message that will be displayed on the
page once the user has submitted the form. You can use HTML
tags here to format your code. Tip: Use the Bootstrap class alert
alert-success here to get a pretty formatted success box around
your message.

•	 Redirect? Select a target if you wish to redirect the user after the
form has been submitted.

•	 Submissions Settings. Sets the recipient(s), sender, and email
subject. Also allows you to set a CAPTCHA. See https://github.
com/mishbahr/djangocms-forms for more information on using
CAPTCHA with djangocms-forms.

Adding Form Fields
Adding form fields is a simple as clicking the green plus (+) icon at the bottom of the form
creation popup. This will expand the window, showing a configuration screen similar to
Figure 7-11.

https://github.com/mishbahr/djangocms-forms
https://github.com/mishbahr/djangocms-forms

ChapTEr 7 ■ advanCEd plugInS

95

The field editor has the following options:

•	 Name. Will be displayed to the left of the field in the form.

•	 Field Type. Data type of the field. Available options are:

•	 Text, Text area, Email, Number, Phone, URL, Checkbox,
Multi Checkbox, Dropdown, Radio, File Upload, Date, Time,
Password, and Hidden.

•	 Djangocms-form provides automatic validation for all
relevant fields (such as Email and Number). All fields marked
as “required” will also throw an error if they are empty.

•	 Default Value. Sets a prefilled value. Note that this will overwrite
anything you enter in Placeholder Text.

•	 Placeholder Text. Grayed-out prompt text inside the field. This is
used instead of a tooltip on most modern web forms.

•	 Description. Short description of the field that will appear
directly below the field.

Figure 7-11. Adding form fields

ChapTEr 7 ■ advanCEd plugInS

96

Form Administration
Selecting “Save to database” when configuring the form will save all the form fields into
your project database. If you navigate to root (example.com) Administration, select Form
Submissions from the sidebar, and expand to full screen, you will be greeted with a
window similar to Figure 7-12.

The Form Submission window allows you to delete submissions as well as export
all the submitted forms to an external file. Available formats are CSV, JSON, YAML, and
Microsoft Excel. Very useful for exporting form data for use in an external program or
even importing to a mailing list manager.

Summary
We have covered only three plugins this chapter, Easy Thumbnails, CMSplugin-filer, and
Djangocms-forms; there are so many plugins available for django CMS, with more being
added each week, that there is not enough room to cover them all.

If you want to explore the full range of plugins available for django CMS on your own,
a good place to start is the django CMS project site: http://www.django-cms.org/en/
addons/.

In the next chapter we will put these three plugins, along with the basic plugins from
Chapter 6, to good use in creating some content for our site.

Figure 7-12. Form Submissions in the Admin tool

http://www.django-cms.org/en/addons/
http://www.django-cms.org/en/addons/
http://dx.doi.org/10.1007/978-1-4842-1669-9_6

97

Chapter 8

Authoring in django CMS

In the first seven chapters, we focused on designing our website templates and exploring
the functionality of django CMS. In this chapter, we are going to put what we have learned
into practice by creating the most important part of your website for your audience:
content.

With front-end editing and flexible plugin architecture, django CMS provides
powerful content formatting and editing capabilities for both administrators and site
content creators.

The chapter starts with an overview of the django CMS toolbar and its functions.
Then we will be using django CMS’s built in plugins, as well as the third-party plugins
we explored last chapter, to create three pages for your site—the home page, an about
page, and a contact page. We will also create a couple of blog posts for you to use in later
chapters once we have your blog application running.

Later in the chapter we will explore site administration in detail; in particular, we will
dig deep into Django’s auth.user model and will set user groups and permissions so that
our website behaves like a professional CMS—with appropriate user, author, editor, and
administrator roles and member-only content.

The django CMS Toolbar
The django CMS toolbar provides access to all the most important functions involved in
site authoring.

Site Root (example.com)
The root menu for the site (Figure 8-1) provides quick links to page and user
administration, as well as a link to the full administration back end. If you haven’t
changed the default site description in the admin interface, it will be called example.com.
I will show you how to change this a little later in the chapter.

These menu options are only available to users with full administrative privileges.
We will cover the administrative functions later in the chapter. The root menu also allows
any registered user (not just administrators) to modify User Settings, including the
default language in the admin interface, and to disable the toolbar. The latter is useful for
previewing the website without the toolbar.

Chapter 8 ■ authoring in django CMS

98

The root menu also provides access to the django CMS clipboard, which will contain
either the latest copied plugin or the last plugin alias created.

 ■ Tip to re-enable the toolbar, return to edit mode (/?edit).

Figure 8-1. The django CMS root menu

Chapter 8 ■ authoring in django CMS

99

Page
The Page menu (Figure 8-2) provides access to all the page management functions in
django CMS.

Figure 8-2. The django CMS Page menu

Chapter 8 ■ authoring in django CMS

100

Add Page
There are three options for adding a page to django CMS:

•	 New Page

•	 New Sub Page

•	 Duplicate This Page

The page settings for these options are identical and are set via the popup overlay
(Figure 8-3). Subpages are added under the currently selected page in your browser;
however, this can be easily changed (see the page administration section later in this
chapter). All these settings are self-explanatory, and you should have no trouble adding
pages. Don’t worry about trying to understand page type at this stage, as we will be
discussing it shortly.

Figure 8-3. Adding new pages

django CMS provides a basic collection of page settings out of the box; however, the Page
model is extensible. You will learn how to extend the Page model and add additional
fields in Chapter 10.

http://dx.doi.org/10.1007/978-1-4842-1669-9_10

Chapter 8 ■ authoring in django CMS

101

Page Settings
The Page Settings menu item provides access to the same settings as Figure 8-3.

Templates
Select a template for the page. If you followed the instructions in Chapter 4, you should
have two options here: Page and Blog Page with Sidebar.

Advances Settings
The Advanced settings menu allows you to set and modify a number of advanced page
settings (Figure 8-4).

Figure 8-4. Page advanced settings

http://dx.doi.org/10.1007/978-1-4842-1669-9_4

Chapter 8 ■ authoring in django CMS

102

•	 Overwrite URL. Replaces the system-generated URL with a
custom URL for the page.

•	 Redirect. Useful for redirecting old pages to a new URL. Can also
be used to redirect to an external URL.

•	 Template. Has the same effect as changing the page template in
Page settings.

•	 ID. This is an advanced option outside the scope of this book. It is
used in template tags for advanced internal linking.

•	 Soft root. Creates a soft root at this page. Useful for creating
submenus; pages checked as a soft root will not display any
ancestors when attached to a menu. More on menus in the next
chapter.

•	 Attached Menu. Custom menu attached to this page. More on
menus in the next chapter.

•	 Application. Provides an apphook to a Django application. You
will learn about apphooks in Chapter 10.

•	 X Frame Options. Sets whether the page can be embedded in
another page. Used to prevent illegal framing of your webpages in
other sites.

Permissions
Individual page permissions can be modified via the Permissions menu (Figure 8-5).
Page permissions provide finer-grained control over pages than global user and group
permissions.

http://dx.doi.org/10.1007/978-1-4842-1669-9_10

Chapter 8 ■ authoring in django CMS

103

Figure 8-5. Page permissions

Chapter 8 ■ authoring in django CMS

104

With page permissions you can:

•	 Require a user to be logged in to access the page.

•	 Hide the page in menu navigation and show only the page link in
the menu for particular users.

•	 Restrict certain users and groups from viewing the page.

•	 Add or remove page editing permissions for certain users and
groups.

Publishing Dates
The Publishing Dates menu option (Figure 8-6) allows you to set a date range for
publication of the page. An ending date can be set for pages that should only be displayed
for a limited time.

Figure 8-6. Page publishing dates

Chapter 8 ■ authoring in django CMS

105

Hide in Navigation
Select this option if you don’t want to display the page in the top menu navigation.

Publish/Unpublish Page
Publishes or remove a previously published page from publication. Unpublished pages
are visible only to editors and administrators and will no longer appear in the navigation
menu for regular users.

Delete Page
Deletes a page from the CMS. Deleted pages can be recovered in the page administration
interface (see later in the chapter).

Save as Page Type
Page types are a very useful tool for creating common layouts for particular types of
content. For example, you may have a product review site, where each article has
a picture, a summary, detailed information, and maybe a table or tabs to display
specifications and recommendation. As this layout is common to all product reviews on
your site, but not the site in general, you don’t want to be modifying the site template.

Saving your first product review as a Page Type allows you to reuse the format for
all of your product reviews. The same principle can be applied to any content on your
site where you want to duplicate formatting or content. Another use for page types is an
author bio at the end of each article, where you don’t want to have to develop a custom
plugin.

Note that the Page Type dropdown is empty when you first create your website; there
are no default page types, you need to define your own.

Chapter 8 ■ authoring in django CMS

106

History
django CMS retains a detailed history of the changes made to each page. The complete
page history is accessed via the History menu (Figure 8-7).

The History menu is pretty simple: there is an option to undo the current changes
as well as to revert to the live version, which will clear all changes back to the current
published version.

 ■ Caution revert to Live also clears any saved drafts of the page.

View History will display a complete history of a page (Figure 8-8). Selecting the
revision date will give you the option of reverting back to the selected revision.

Figure 8-7. The History menu

Chapter 8 ■ authoring in django CMS

107

Toolbar Buttons
The final functions of the django CMS toolbar are the toolbar buttons. These buttons
are context-sensitive, so for an unpublished page the toolbar will look like Figure 8-9a,
whereas for a previously published page it will look like Figure 8-9b. The Structure and
Content buttons provide easy switching between editing the page structure and editing
the content, View Published will switch from the draft version to the current published
version of the page, and Publish Changes does just that: publish the current page to your
site so it is visible to all users (depending on page permissions).

Figure 8-8. Full page history

Figure 8-9a. The toolbar buttons for an unpublished page

Figure 8-9b. The toolbar buttons for an unpublished page

Chapter 8 ■ authoring in django CMS

108

django CMS automatically saves a draft of any page as soon as you start editing it. This
is particularly useful for making large changes to a page, or when another user has to
approve changes before they are published, as any changes will remain invisible to
all but editors and administrators until they are published. This is a big improvement
over CMSes like WordPress, where once a page is published, you can’t save a draft edit
of the page.

The Create button starts the django CMS content creation wizard. In the default
installation, wizards available are for creating a Page and Sub Page. Their function is
identical to that of the page creation toolbar options.

 ■ Note django CMS content creation wizards are new in version 3.2. it’s possible to
add your own wizards to django CMS using a similar registration process as menus and
apphooks (Chapter 10). Wizards are beyond the scope of this book, but if you want to
explore creating them, see:

 http://docs.django-cms.org/en/develop/how_to/wizards.html

Adding Content to Your Site
Now that you have learned about all the different plugins available and explored the
toolbar, it is time to put your new knowledge to practical use. In order for you to be able
to complete the remaining chapters, your site will need some content, so in this section I
have set you an exercise.

eXerCISe: CreatING YOUr SIte CONteNt

the purpose of this exercise is for you to use all of the plugins from the previous
two chapters not only to learn how to use plugins in creating real content, but
also because we need some content in the site so we can complete the remaining
chapters in the book.

i have provided the complete sample website as a part of the source code for this
book; however, it is strongly recommended that you use if only for reference, as you
will learn the most by creating the pages yourself.

in this exercise, we are going to create the three most common pages found on
business websites:

•	 a home page

•	 an “about us” page

•	 a contact page

http://dx.doi.org/10.1007/978-1-4842-1669-9_10
http://docs.django-cms.org/en/develop/how_to/wizards.html

Chapter 8 ■ authoring in django CMS

109

We are also going to create two more pages that will become blog posts a bit later
on. We are going to create them now so you will have something to display on your
site when we create the side menu in the next chapter.

Stage 1: Create a home page

1. add a new page to your site and call it home.

2. Switch to structure view and add an image plugin to the content
placeholder. upload an image of your choice. For a challenge, you
might want to try a Folder plugin instead and create an image slider
to show several banner images, just like many popular websites.

3. add a text plugin to the page and enter a couple of introductory
paragraphs.

4. add a Multi Columns plugin with two columns set to 50%.

5. in the first column, add a Style plugin and then a teaser plugin.
add some styles to format the teaser description. in the second
column add another text plugin and some text.

6. add a final text plugin and some closing text for the page.

Save and publish the page. i have included a sample of the home page in
Figure 8-10. please note that your page does not have to look exactly like this; the
important thing is to practice using the plugins.

Stage 2: Create an about Us page

7. add a new page to your site and call it about.

8. insert a single text plugin and then insert all the content into the
text plugin. i suggest you add another image and a video and
maybe a table—i’ll leave the details up to your imagination.

Save and publish the page. Figure 8-11 shows what this page might look like.

Chapter 8 ■ authoring in django CMS

110

Stage 3: Create the Contact page

9. add a new page to your site and call it Contact

10. add a Form plugin to the content placeholder.

11. at a minimum, your form should contain:

•	 A name field of type text field

•	 An email field of type email

•	 A message field of type textarea

if you want to create a more advanced form, you could add radio buttons or a
combo box to ask the site visitor where they first heard about your company and a
checkbox to give the visitor the opportunity to email the form.

Save and publish the page. Figure 8-12 illustrates what your contact form could look
like. as you can see, it is very basic and the formatting is rudimentary. as a further
exercise, add a Style plugin and apply some styles to the form to make it look more
professional. remember that you will have to drag the Form plugin inside the Style
plugin in your Structure editor to apply the new styles to the form.

Stage 4: Create the Blog posts

using some or all of the plugins, create two additional pages called “blogpost1” and
“blogpost2.” then select page ➤ hide in navigation so these pages don’t show in
the top menu, and publish each page. We will be hooking these pages to the side
menu in the next chapter and later, once you have learned how to extend the page
model, we will create a page category called “blog” in order to show them and any
subsequent blog posts on our side menu as well as on the Latest posts page.

Chapter 8 ■ authoring in django CMS

111

Figure 8-10. A sample home page

Chapter 8 ■ authoring in django CMS

112

Figure 8-11. A sample about page

Chapter 8 ■ authoring in django CMS

113

Figure 8-12. A sample contact page

That’s it for content creation for now. Next we will explore how you administer a
django CMS website.

django CMS Administration
The django CMS administration interface is accessed through the root menu (Figure 8-1)
by choosing example.com ➤ Administration. The default administration dashboard is
shown in Figure 8-13. Your administration dashboard may look a bit different, depending
on which third-party plugins you have installed.

If you have used Django before, this should be familiar to you: the standard Django
Authentication and Authorization and Sites panels are displayed, as well as a custom
panel for django CMS functions. The three most common administrative tasks performed
in the admin interface are:

 1. Adding, editing and deleting pages

 2. Changing user permission settings

 3. Modifying user and group authentication and authorization
settings

Chapter 8 ■ authoring in django CMS

114

 ■ Tip if you want to change your root menu title from example.com to something like
My Blog, go to Sites , select the example.com link, and change display name: to a new title.
When you refresh the page, the toolbar root will have changed from example.com to your
new title.

Page Administration
The django CMS page administration interface is shown in Figure 8-14. It can be accessed
either from the administration dashboard under django CMS ➤ Pages or via the toolbar
root (example.com) ➤ Pages. Figure 8-14 shows what your page admin screen will look
like after you have completed the previous exercise. If you have jumped ahead, the page
list will be blank.

Figure 8-13. Default administration dashboard (shown maximized)

Chapter 8 ■ authoring in django CMS

115

Figure 8-14. django CMS page administration

Table 8-1. Page Administration Page Tools

Tool Function

Root icon. Displayed if the page is a root page.

View page. Select to make this page the current page.

Published icon. Green if the page has been published, blue if the page
has unpublished changes, and gray if it’s unpublished. Can be toggled by
selecting the icon.

(continued)

A number of page management functions can be performed from the page
administration interface:

•	 Add a new page and recover deleted pages via the buttons in the
top right.

•	 Reorder pages in the menu hierarchy by selecting the drag handle

() and dragging the page to the desired location.

•	 The toolbar on the right of the page listing provides some handy
page management tools. Table 8-1 details each of the available tools.

Chapter 8 ■ authoring in django CMS

116

Table 8-1. (continued)

Tool Function

In Menu icon. Checked if page is in top navigation menu. This setting can be
toggled directly by selecting the icon.

Edit page properties. Edits the page settings. You can also Shift-select to
access advanced settings. Note that you can’t edit the page contents or
structure from the admin, just the settings.

Copy page. When it is selected, the insert inside () icon will appear next
to each page in your page list. Select the page you want to insert the page
under. If you want to copy the page to the root level, first insert and then use

the drag handle () to move the page to the desired position in the menu.

Add child page to current page.

Cut page. When it is selected, the insert inside () icon will appear next to
each page in your page list; similar to the copy function. Select the page you
want to insert the page under. If you want to insert the page at root level, it’s

better to use the drag handle () to move the page to the desired position
in the menu, rather than cut and reinsert.

Delete the page. Can be recovered by selecting “Recover deleted pages”
button at top right.

Page information iconn Hover for basic page information. Example:

User Management
The django CMS user administration is shown in Figure 8-15. It can be accessed either
from the administration dashboard under django CMS ➤ Users, or via the toolbar root
(example.com) ➤ Users.

Chapter 8 ■ authoring in django CMS

117

django CMS provides a number of simple and straightforward tools to manage users:

•	 Change users’ username, password, email and first and last name.

•	 Mark a user as active or inactive.

•	 Modify, add, and remove user permissions and groups
(see next section).

•	 Check a user’s history, signup date, and last sign-in date.

To modify a user’s information, select their username and an editing window will open.

Authorization and User Permissions
Before we move on to creating and modifying user permissions, we need to understand
the underlying authentication model on which they are built: the user model and
assigning permissions.

User Model
The django CMS permission system is built upon Django’s user authentication system,
with some special permissions added specifically to simplify the management of a CMS.

Figure 8-15. The User admin interface

Chapter 8 ■ authoring in django CMS

118

Django implements a user-based model for authentication, with the most basic
element being the user object.

The user object receives three basic permissions:

 1. The ability to add an object

 2. The ability to change an object

 3. The ability to delete an object

Django automatically creates all three of these permissions for each Django model
defined in your INSTALLED_APPS. To give a user permission to add, change, or delete any
object in django CMS, you need to add the permissions.

To learn how this is done, go to the user administration dashboard and select a
username to edit that user. Scroll down the page to the permissions panel; the fields
we want to examine here are the Staff Status and Superuser Status checkboxes and the
Groups and User Permissions horizontal filters.

For simple sites with only one or two administrators, it is probably OK for everyone
to have full access to the site. In this case, you just need to ensure that both Staff status
and Superuser status are checked for each user, and you don’t need to set any more
permissions; each user will have full access to the site.

If, on the other hand, you do want to control access to the site, you are going to need
to set permissions. So first, let’s learn how to set user permissions in Django. If you look at
the User permissions filter (Figure 8-16), you will see that there is a list of permissions on
the left that can be selected for each object.

Figure 8-16. Setting user permissions

There are dozens of permissions in the list; however, they all follow the same format:
<app> | <model> | <permission>, with three permissions for each model to allow
you to assign add, change, and/or delete permissions. All of the permissions related
to django CMS core are listed under the cms app (cms| …) and all of the default plugin

Chapter 8 ■ authoring in django CMS

119

app permissions start with djangocms_ (for example, djangocms_column for the Multi
Columns plugin). If you have followed along with the other examples in the book, you will
also see permissions for the filer and easythumbnails plugins.

Groups
Django groups (Figure 8-17) are a generic way of creating categories that can apply
group permissions to individual users. A user assigned to a group will inherit all of the
permissions assigned to that group. Users can belong to multiple groups.

Figure 8-17. Django user groups

For a CMS, groups provide the obvious advantage of being able to define a set of
permissions (as for an author or an editor), that can then be applied to individual users.
At this stage, you might be tempted to do just that: create author and editor groups
and assign each permission individually, but django CMS comes with an extension to
Django’s default permissions that make this quite a bit easier.

Permissions in django CMS
django CMS extends Django’s user model and provides two new models for setting
permissions on django CMS pages:

•	 User groups (page)

•	 Users (page)

Chapter 8 ■ authoring in django CMS

120

The Users (page) model is almost identical to the Django model, so we won’t
cover that again here, but the User groups (page) model (Figure 8-18) adds some useful
functionality that makes setting permissions for common CMS tasks very simple.

Figure 8-18. Adding a user group

As an example, let’s create a new group called Editor. For the new group add the
following permissions:

•	 Page Permissions: Add, change, and delete

•	 User & Group permissions: All unchecked

•	 Page permissions management: All unchecked

These permissions reflect what you would expect from a page editor: they can add
change and delete pages, but can’t add, change, or delete permissions for other users.

Chapter 8 ■ authoring in django CMS

121

You can see here that django CMS has added a number of permissions based on your
permission settings selected when you created the user group. For an exercise, create
a new user and assign them to the editor group. Make sure Staff Status is checked and
Superuser Status is unchecked when you save your new user. If you log out and log back
in as your new user you will notice something right away: the Page menu is missing from
the toolbar, and you can’t edit anything!

What gives?
django CMS, like Django, has a bottom-up permission system, commonly referred to
as “deny by default.” To provide a full set of permissions to a user, you need to add the
permissions to increase access, rather than taking them away to restrict access. This
provides a more robust and secure authentication model.

When you created your user and the Editor group, your new group was granted
only page editing rights, but no actual access to the plugins necessary to edit the pages.
Nor were you provided with toolbar access to the page menu, as this requires global
page access.

If you navigate back to the administration dashboard and open Authentication and
Authorization ➤ Groups ➤ Editor, you should see something like Figure 8-19.

Figure 8-19. Permissions have been added automatically to a group

Chapter 8 ■ authoring in django CMS

122

You might think it is odd not to automatically add the basic plugins like the Text
plugin, as they are necessary to edit anything. I would agree, but django CMS follows
the Python “explicit is better than implicit” philosophy and leaves it up to you to set the
permissions.

A great example that demonstrates where this can be a good thing is a company
website. Because the site administrator has the capability to restrict the plugins
individually, they can allow users to add and edit text to the company website, but can
restrict users from inserting links and video by not providing permission to use those
plugins. Yes, they can bypass this by writing plain HTML, but this approach would be very
effective against potential security issues (and potential inappropriate content!) being
added by users with limited experience outside a word processor.

So, to give our new user the appropriate permissions to be able to edit pages, we
need to add some more permissions. Log out as your new user and log back in as the
administrator.

 ■ Tip it is possible to set the permissions incorrectly so that the toolbar disappears when
you log in as another user. this is a problem because you can’t log back out again without
the toolbar. if you find yourself in this situation, the django admin interface can still be
accessed by appending /admin to your urL. Log back in as the administrator, and you will
have full access again to fix whatever permissions were broken.

First, from the administration dashboard, select “Pages global permissions” and then
the "Add Page global permission" button at the top. You need to set the group dropdown
to your Editor group and check all the boxes except View Restricted and save the record.

Once you have done this, go back to Authentication and Authorization ➤ Groups
➤ Editor (from the administration dashboard) and select all permissions (add, change,
delete) for the following:

•	 cms | alias plugin model

•	 cms | cms plugin

•	 cms | page

•	 cms | placeholder

•	 cms | static placeholder

•	 cms | title | Can add title

•	 cmsplugin_filer_ *

•	 djangocms_*

•	 easy_thumbnails

•	 filer

Chapter 8 ■ authoring in django CMS

123

Once these permissions have been added to the Editor group and saved, your new
user should be able to perform all the same page editing functions as your administrator,
but will not have access to any of the administrative functions of the website.

Summary
That’s it for this chapter. You should now have a few pages and posts added to your site
and have a full understanding of how to administer users and organize content.

In the next chapter we will be making your brand new blog pages available to
users via a sidebar menu, as well as looking at other navigation staples of websites:
breadcrumbs and sitemaps.

125

Chapter 9

Menus and Navigation

At this stage, our complete blog website is beginning to take shape: we have built our
templates, learned how all the django CMS plugins work, and used them to create some
content for our site. However, we still have a way to go, as our site navigation is still
very basic.

In this chapter, we are going to add some common navigation elements, starting with
a custom menu containing links to your blog posts.

Later in the chapter we will add social media buttons and a sitemap that assists your
second most important site visitors: search engines.

This chapter is also the first time we will be digging into writing some Django code,
so if you have got this far without much knowledge of Django and Python, now is the
time to refresh those skills. There are some links to great Django and Python sources in
Chapter 11.

Customizing the Menu
The django CMS menu system is both flexible and extensible. So far, we have only seen
how django CMS automatically adds pages to our main menu, but that is not the limit of
its capability—with django CMS, you can do all of the following:

•	 Statically extend existing menus with custom entries.

•	 Create custom menus that link to your apps and plugins.

•	 Attach a custom menu to a page.

•	 Create navigation modifiers that will modify the whole menu
tree (for example, to apply special formatting).

We will explore the more advanced functionalities in the next chapter, but that can
be a bit complex the first time you do it, so in this chapter I will introduce you to custom
menus by showing how to attach a custom Blog menu to our main menu.

http://dx.doi.org/10.1007/978-1-4842-1669-9_11

Chapter 9 ■ Menus and navigation

126

 ■ Note this chapter assumes that you have already created the blog pages from the
exercise in Chapter 8. if you have not done so, make sure you publish at least two new
pages and select page ➤ hide in navigation to hide them in the root menu.

To get started, we need to create a new page. Name your new page Blog and select
the Blog Page with Sidebar template. We will be attaching the custom menu to this page.

Creating a Custom Menu
There are two options available for customizing the menu: you can statically extend the
existing main menu or attach the custom menu to a specific page in the main menu.

The only difference between the two options is which django CMS class you extend
when you build the menu:

•	 To extend the main menu statically, your custom menu class has
to extend menus.base.Menu.

•	 To attach your custom menu to an existing page, your custom
menu class has to extend cms.menu_bases.CMSAttachMenu.

This is much easier to understand with an example. Create a new file in your app
directory (/myblog/) called menu.py and enter the code shown in Listing 9-1.

Listing 9-1. Custom Menu Attached to Root

#menu.py

from menus.base import Menu, NavigationNode
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _

class BlogMenu(Menu):

 def get_nodes(self, request):
 nodes = []
 n1 = NavigationNode(_('Test1'), "/newpost1/", 1)
 n2 = NavigationNode(_('Test2'), "/newpost2/", 2)
 n3 = NavigationNode(_('Test3'), "/newpost3/", 3)
 nodes.append(n1)
 nodes.append(n2)
 nodes.append(n3)

 return nodes

menu_pool.register_menu(BlogMenu)

http://dx.doi.org/10.1007/978-1-4842-1669-9_8

Chapter 9 ■ Menus and navigation

127

Let’s examine this code:

•	 On line 1, we are importing classes Menu and NavigationNode
from menus.base, which means the menu will be attached to the
root (main menu).

•	 We then create our BlogMenu class, which extends the Menu class.

•	 The get_nodes function builds the menu by appending a list of
menu nodes created by the NavigationNode class.

•	 Finally, we register our new custom menu with django CMS by
adding it to the menu pool.

the NAVIGATIONNODE CLaSS

Central to our new custom menu class is the NavigationNode class, which builds
our menu entries. the get_nodes function returns a list of NavigationNode
instances to your application so they can be rendered in the menu. NavigationNode
takes the following arguments:

•	 Title. the anchor text in the menu link.

•	 url. the urL of the page (internal or external) to which the menu
item links.

•	 Id. aunique id for this menu item.

•	 parent_id. optional; default=None. the id of the parent node if this
is a child node.

•	 parent_namespace. optional; default=None. this is an advanced
setting; see the django CMs documentation for more information.

•	 Attr. optional; default=None. this is an advanced setting; see the
django CMs documentation for more information.

•	 Visible. optional; default=True. set to False to hide this menu
item.

Chapter 9 ■ Menus and navigation

128

Save your menu.py file and restart the development server. When you refresh your
browser, you should see the items from your PostMenu custom menu appended to the
end of the menu (Figure 9-1).

A practical application for extending the root menu in this way is to add menu items
that link to external applications (we will be doing this in Chapter 10) as well as other
websites.

To create a menu that we can attach to a page, we need to make a few modifications
to our file (Listing 9-2). I have highlighted the changes in bold.

Listing 9-2. Custom Menu Attached to Page

from menus.base import NavigationNode #Menu has been removed
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _
from cms.menu_bases import CMSAttachMenu

class PostMenu(CMSAttachMenu):

 #Menu Name (shows in dropdown)
 name = _("post menu")

 def get_nodes(self, request):
 nodes = []
 n1 = NavigationNode(_('Test1'), "/newpost1/", 1)
 n2 = NavigationNode(_('Test2'), "/newpost2/", 2)
 n3 = NavigationNode(_('Test3'), "/newpost3/", 3)
 nodes.append(n1)
 nodes.append(n2)
 nodes.append(n3)

 return nodes

menu_pool.register_menu(PostMenu)

Figure 9-1. Custom menu appended to the main menu

http://dx.doi.org/10.1007/978-1-4842-1669-9_10

Chapter 9 ■ Menus and navigation

129

Once you have saved menu.py, you need to attach the custom menu to a page. We
are going to attach it to your new blog page, so select it on the menu and then go to the
django CMS toolbar and select Page ➤ Advanced Settings ➤ Attached ➤ Post. You will
probably have to scroll down a bit in the Advanced Settings box to find the attached menu
setting. Save your changes. Your main menu should now look like Figure 9-2.

While our new custom menu is impressive, it is not much use; the menu links are
just pointing to nonexistent pages. What would make it useful is if the links pointed to
our blog posts. The way we do that is pretty straightforward; we just need to replace the
sample title and url values with the title and URL of our actual blog posts.

This is quite easy to do, but first we have to understand the django CMS Page and
Title models a bit more. Briefly, django CMS does not store all the information about
your pages in a single model; primarily it has a Title model that stores information about
the various version of your pages (for example, language versions, metadata, and draft
versions). The Page model stores page-related information like publication dates, security
settings, and the page template.

There are many more fields in the Title and Page models than we have time to
cover here; I encourage you to explore the django CMS documentation to gain a thorough
understanding of these models as they are core to more advanced programming in
django CMS. For the purpose of our custom menu, the only fields we are interested in are
the title of our blog post and its URL. Easy?

Not quite. There are a few caveats to address, and the best way to understand what is
going on is for us to digress a bit and explore the Page and Title models with the Python
interactive prompt. Open a command window and make sure you have started your
virtual environment. Your command prompt should look like this:

(myBlog) c:\Users\<your username>\MyBlogProject>

From your project directory, enter this:

python manage.py shell

Figure 9-2. Custom menu attached to a page

Chapter 9 ■ Menus and navigation

130

You should be greeted by some startup messages followed by the Python interactive
prompt (>>>). Enter the following code and press Enter (don’t type the three dots;
Python inserts them automatically):

>>> from cms.models import Title
>>> for t in Title.objects.all():
... print(t.title)

This is straight Django (Python) code. We are looping over all the Title objects
in the database and printing the title field from each. On my machine, this command
outputs the following:

...
Home
Home
About Us
Contact
BlogPost1
BlogPost2
Blog

Obviously this is no good—looping through the titles is going to give you all the
pages in the database, not just the blog posts, so we need to separate them out. You will
also note that Home is repeated. This is because django CMS also keeps a title entry for any
page that has a draft version available, so we have to exclude the draft version of any page
as well.

Finding out whether a page is a draft is easy; the django CMS Page model includes
a Boolean (True/False) attribute called publisher_is_draft. Because we have hidden
the blog posts from the main menu, we are going to use another Boolean page attribute
called in_navigation to extract the blog pages from the page list.

And before you complain, yes I agree, in_navigation is a poor way to identify the
blog posts because any page that is hidden in the main menu will show up in the blog
menu. Since we will not be learning how to extend the Page and Title models until
the next chapter (to add a category field), consider this as an illustrative example, not a
practical one!

Let’s test this out with the interactive console:

>>> from cms.models import Title
>>> for t in Title.objects.all():
... print(t.title, t.page.in_navigation,t.page.publisher_is_draft)
...
Home True True
Home True False
About Us True True
Contact True True
BlogPost1 False True
BlogPost2 False True
Blog True True

Chapter 9 ■ Menus and navigation

131

From this, we can see that the first Home page is indeed a draft and that the two blog
posts are the only pages that are not in the main navigation menu (in_navigation=False).
Note that we are not loading the Page model here; as page is a foreign key of the Title
model, we can access the Page model from the Title model with the dot (.) operator:
Title.page.<attribute>.

So now we are going to turn our newfound knowledge into some usable code. We
still need to find the URL of the blog pages; we do that via the path attribute:

>>> from cms.models import Title
>>> for t in Title.objects.all():
... if t.page.in_navigation==False and t.page.publisher_is_draft==False:
... print(t.title, t.path)
...
BlogPost1 blogpost1
BlogPost2 blogpost2
>>>

Now that you understand how this all works, the new menu.py code (Listing 9-3)
should be easy to follow (new code in bold).

Listing 9-3. The menu.py File with Modifications

#menu.py

from menus.base import NavigationNode #Menu has been removed
from menus.menu_pool import menu_pool
from django.utils.translation import ugettext_lazy as _
from cms.menu_bases import CMSAttachMenu
from cms.models import Title

class PostMenu(CMSAttachMenu):

 #Menu Name (shows in dropdown)
 name = _("post menu")

 def get_nodes(self, request):
 nodes = []
 for t in Title.objects.all():
 if t.page.in_navigation==False and 
 t.page.publisher_is_draft==False:
 n = NavigationNode(_(t.title), "/" + t.path + "/", 1)
 nodes.append(n)

 return nodes

menu_pool.register_menu(PostMenu)

Chapter 9 ■ Menus and navigation

132

Refresh your browser (you may need to restart the development server), and your
blog custom menu should now look like Figure 9-3.

As I said earlier, this is just an example of how easy it is to build a custom menu in
django CMS. I don’t suggest it as a practical solution for displaying blog posts; for starters,
this would create an unwieldy menu as soon as you had any more than a few blog entries.

In the next chapter, once you have learned how to extend the Title and Page
models, you will be able to build much more practical custom menus. For example, once
you add a Category field to each page, this menu can link to all the pages in a particular
category and display the latest five posts using the Blog Roll template.

Breadcrumbs
The term breadcrumbs or a breadcrumb trail refers to a line of secondary navigation on
a website that shows the user’s current location in the page structure. Breadcrumbs are
usually shown just above the body text of a webpage.

To add breadcrumbs to a website, django CMS provides a convenient template tag
called show_breadcrumb. It has three optional parameters:

 1. start_level. Where to start in the navigation hierarchy.
Default = 0 (root).

 2. template. The breadcrumb template to use. For portability,
you should always create a custom template for your app. By
convention, it’s a file named breadcrumb.html, but you can
name the template file anything you wish. We need to create
this file for the breadcrumbs to work. In Listing 9-5 you’ll see a
simple breadcrumb.html file.

 3. only_visible. Only show pages that are visible in the menu
navigation. Default = 1 (true); set to 0 to show all pages.

To render a breadcrumb trail in your app, you need to add the template tag to a page
template using this format:

{% Show_breadcrumb start_level, template, only_visible %}

Figure 9-3. Complete custom blog menu

Chapter 9 ■ Menus and navigation

133

So let’s go right ahead and do that. Modify your base.html file with the code shown
in Listing 9-4. I have included some of the existing code so you can see where to put the
new code.

Listing 9-4. Modifications to base.html for Breadcrumbs

#modify base.html

. . .

<div class="blog-header">
 <h1 class="blog-title">Not Just Another Blog</h1>
 <p class="lead blog-description">My awesome blog built with django CMS.</p>
</div>

<div class="breadcrumb">
 {% show_breadcrumb 0 "breadcrumb.html" %}
</div>

{% block content %}{% endblock content %}
</div>

. . .

The code here is straightforward; we are displaying the breadcrumbs from the root,
and we are using the breadcrumb.html custom template. Now we need to create the
template itself (Listing 9-5). Save the file breadcrumb.html to /myblog/templates.

Also notice that I have applied the class breadcrumb to the div surrounding the
breadcrumb template tag; breadcrumb is a Bootstrap class that will automatically apply
some pretty formatting to our breadcrumb trail.

Listing 9-5. Our breadcrumb.html Template File

#breadcrumb.html

{% for ancestor in ancestors %}

 {% if not forloop.last %}
 
 {{ ancestor.get_menu_title }}
 |
 {% else %}
 {{ ancestor.get_menu_title }}
 {% endif %}

{% endfor %}

Chapter 9 ■ Menus and navigation

134

Stepping through Listing 9-5, we can see that the Django code is looping through
the navigation hierarchy and displaying each ancestor, separated by the pipe character
(“|”). On the last loop through, the if statement fails, executing the else statement, which
appends the current page to the breadcrumb trail. Assuming you got all the code correct,
your pages should now look something like Figure 9-4.

Social Buttons
Social media sites like Facebook and Twitter are extremely popular for sharing all kinds
of content, including favorite blog posts; so popular that Like and Share social media
buttons are on almost all popular blog sites.

django CMS has a couple of third-party plugins to enable interaction with social
media platforms, including Like and Share buttons; in this section, however, I am going to
teach you how to embed simple social media functionality directly into your site. This is
a useful skill to learn as it can be applied to the plethora of apps, other social media sites,
and tools (like Google Analytics) that require you to embed a snippet of HTML and load a
JavaScript library.

django CMS makes embedding social media functionality very simple; we will
be using a combination of a static placeholder, some embed code from Facebook and
Twitter, and a couple of JavaScript libraries. Once we are done, your blog posts will have
Share buttons at the bottom just like Figure 9-5.

Figure 9-4. Our pages with the breadcrumb trail added

Chapter 9 ■ Menus and navigation

135

If you remember back to Chapter 5, we have already added the following static
placeholder to blogpage.html:

{% static_placeholder "social" %}

Select one of your blog posts from the right navigation menu and set its template to
Blog Page with Sidebar (Page ➤ Templates ➤ Blog Page with Sidebar). If you change to
Structure view, you will notice that you have switched to the blog template, which adds
the social buttons placeholder (Figure 9-6).

Figure 9-5. Social media Share buttons added to blog pages

Figure 9-6. Blog template with additional placeholders

http://dx.doi.org/10.1007/978-1-4842-1669-9_5

Chapter 9 ■ Menus and navigation

136

Add a Text plugin to the social placeholder and enter the text in Listing 9-6.

 ■ Caution switch the text plugin to source mode before entering the text; otherwise it
will not work.

Listing 9-6. Code to Embed Social Buttons

<div class="fb-share-button"
 data-layout="button_count"
 style="float: left;">
</div>
<div style="float: left;"><a class="twitter-share-button"
 href="https://twitter.com/intent/tweet? 
 text=check%20this%20out%3A%20 ">Tweet
</div>

The first div embeds the Facebook share button and the second div embeds the
Twitter share button.

Next we need to add the Facebook and Twitter JavaScript libraries. To do this, we
have to modify a couple of our template files: base.html and blogpage.html.

In base.html we need to add an anchor for Facebook to be able to attach elements to
the HTML DOM. Place the following code directly beneath your body tag:

<div id="fb-root"></div>

Then at the bottom, just above the {% render_block "js" %} template tag, add
another template tag:

{% block js %}{% endblock %}

Because we will be adding JavaScript to the extended templates, this new block is
required so that django-sekizai knows to add the additional scripts in our extended
templates. Save base.html before continuing.

Now we need to modify blogpage.html. As this is a pretty extensive modification,
I have reproduced the file in Listing 9-7, and shown the changes in bold.

Listing 9-7. Blogpage.html with Modifications

#blogpage.html

{% extends "page.html" %}
{% load cms_tags %}
{% load sekizai_tags %}

https://twitter.com/intent/tweet

Chapter 9 ■ Menus and navigation

137

{% block title %}{% page_attribute "page_title" %}{% endblock title %}
{% block js %}
 {% addtoblock "js" %}
 <script>
 window.twttr = (function(d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0],
 t = window.twttr || {};
 if (d.getElementById(id)) return t;
 js = d.createElement(s);
 js.id = id;
 js.src = "https://platform.twitter.com/widgets.js";
 fjs.parentNode.insertBefore(js, fjs);
 t._e = [];
 t.ready = function(f) {
 t._e.push(f);
 };
 return t;
 }(document, "script", "twitter-wjs"));
 </script>
 {% endaddtoblock %}
 {% addtoblock "js" %}
 <script>(function(d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.5";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
 </script>
 {% endaddtoblock %}
{% endblock %}

{% block page-inner %}
<div class="blog-post">
 <h2 class="blog-post-title">Sample blog post</h2>
 <p class="blog-post-meta">October 1, 2015 by Nige</p>

 {% placeholder "content" %}

 {% static_placeholder "social" %}
 {% static_placeholder "navbuttons" %}

</div>
{% endblock page-inner %}

https://platform.twitter.com/widgets.js

Chapter 9 ■ Menus and navigation

138

 ■ Tip the latest scripts for twitter can be found at https://dev.twitter.com/web/
javascript/loading, and for Facebook at https://developers.facebook.com/docs/
plugins/share-button.

As you can see from the listing, we are using django-sekizai {% addtoblock %}
tags to insert the JavaScript libraries from Twitter and Facebook. Also note that I am only
loading one script per {% addtoblock %} tag. This is best practice use of django-sekizai
and required for django-sekizai to be able to prevent duplicate JavaScript libraries.

If you save blogpage.html and refresh your website, you should see Facebook and
Twitter share buttons at the end of each post, just as in Figure 9-5.

As I stated at the beginning of this section, this methodology is not just useful
for embedding social media tools; it can be used for any tool or app that requires the
addition of a HTML snippet and loading JavaScript in your pages.

Sitemaps
While there is much debate about whether a sitemap is useful, the major reason why web
developers create a sitemap—Google—suggests that it’s a good idea, especially for new
sites. Fortunately, django CMS makes adding a sitemap so easy that my recommendation
is always the same: given how little effort it takes, add a sitemap.

A sitemap is an XML file that is used by search engines to index your website. You
can provide a link to your sitemap.xml file to the search engines using a tool like Google
Webmaster Tools.

Django has a built-in sitemap framework: django.contrib.sitemaps. django
CMS extends this framework with a new class, named CMSSitemap, which takes care of
indexing titles, publication information, and location information into the sitemap so you
don’t have to create your own Django sitemap class.

Adding a sitemap to your site is as simple as the following steps:

 1. Add django.contrib.sitemaps to your project’s INSTALLED_
APPS setting (should be installed by default).

 2. Add from cms.sitemaps import CMSSitemap to the top of
your main urls.py.

 3. Add

url(r'^sitemap\.xml$', 'django.contrib.sitemaps.
views.sitemap', {'sitemaps':
{'cmspages': CMSSitemap}})
to your urlpatterns.

Listing 9-8 shows a section of urls.py with the relevant modifications
(changes in bold).

https://dev.twitter.com/web/javascript/loading
https://dev.twitter.com/web/javascript/loading
https://developers.facebook.com/docs/plugins/share-button
https://developers.facebook.com/docs/plugins/share-button

Chapter 9 ■ Menus and navigation

139

Listing 9-8. urls.py Sitemap Modifications

#urls.py (partial)
. . .

from django.contrib import admin
from django.conf import settings
from cms.sitemaps import CMSSitemap

admin.autodiscover()

urlpatterns = i18n_patterns('',
 url(r'^admin/', include(admin.site.urls)), # NOQA
 url(r'^sitemap\.xml$', 'django.contrib.sitemaps.views.sitemap',
 {'sitemaps': {'cmspages': CMSSitemap}}),
 url(r'^select2/', include('django_select2.urls')),
 url(r'^', include('cms.urls')),
 url(r'^sitemap\.xml$', 'django.contrib.sitemaps.views.sitemap', 
 {'sitemaps': {'cmspages': CMSSitemap}}),
)
. . .

If you navigate to http://127.0.0.1:8000/en/sitemap.xml, you should see a
sitemap similar to Figure 9-7.

Figure 9-7. Snapshot of your sitemap file

http://127.0.0.1:8000/en/sitemap.xml

Chapter 9 ■ Menus and navigation

140

Summary
In this chapter we have covered some of the more advanced topics on menus and
navigation in django CMS. We have looked at how to create a custom menu, extend the
default navigation menu, create breadcrumb navigation, and add some social sharing
buttons.

In the next chapter, we will dig even deeper into customizing django CMS. We will
write some code to extend django CMS, and you'll see how to write your own custom
apps and plugins for it.

141

Chapter 10

Extending django CMS

django CMS is highly extensible; some of this is thanks to the inherent extensibility of
Django, and some to the open and pluggable design of django CMS. This is by far the
number one capability of django CMS and is core to its power.

Because this is a deep and very detailed topic, this chapter can only cover some of
the more important ways of extending django CMS. For those who want to dig deeper,
I encourage you to explore the django CMS documentation, as well as the many online
forums that discuss Django and django CMS in greater detail (see Chapter 11 for
references).

First, I will show you how to extend the Page and Title models in django CMS
by creating a Category field for your CMS pages. This category will be used later when
building a custom menu plugin.

We will then explore how to add any kind of Django application to your website,
whether a third-party application or one you have built yourself. We will be using the
Polls app from the Django tutorial for this exercise, rather than building your own from
scratch. I will then show you how to attach the application to your website with a django
CMS apphook.

Then we will take a look at another extensible part of django CMS—the toolbar. I will
introduce you to extending the toolbar by adding our Polls app so that it is editable from
the front end of your website.

And finally, I will introduce custom plugins and teach you how to create and
implement your own custom plugins for use in your applications, as well for sharing with
other django CMS users.

Extending the Page and Title Models
In the previous chapter I used our blog pages to demonstrate how you would create a
custom menu but noted that it was not a robust example, because we were using the
in_navigation attribute to identify blog posts. What would be better is a category
attribute so we could identify pages by category: a Page category for static pages on the
website and a Post category for blog posts.

Out of the box, neither the Title model nor the Page model has such an attribute.
Luckily for us, both the Page and Title models are extensible. The ability to extend these
models is one of the powerful features of django CMS.

http://dx.doi.org/10.1007/978-1-4842-1669-9_11

Chapter 10 ■ extending django CMS

142

The process for extending each model is identical, so I will only show you how to
extend the Page model here, but you'll find comments in the listings where you would
change the code to extend the Title model. To add a category to each of your pages, we
need to complete four steps:

 1. Create the models.

 2. Register the models with Django admin.

 3. Create a toolbar item.

 4. Add a category to each page.

Create the Models
To start, we need to build ourselves a couple of models (Listing 10-1). Save this file as
models.py to your app directory (/myblog/).

Listing 10-1. The Category and CategoryExtension Models

from django.db import models
from cms.extensions import PageExtension #TitleExtension
from cms.extensions.extension_pool import extension_pool

class Category(models.Model):
 category = models.CharField(max_length=20)

 class Meta:
 verbose_name_plural = 'Categories'

 def __str__(self):
 return self.category

class CategoryExtension(PageExtension): #TitleExtension
 category = models.ForeignKey(Category)

extension_pool.register(CategoryExtension)

Stepping through this code, note the following:

•	 We are importing PageExtension and extension_pool from the
cms.extensions class.

•	 The Category class is a standard Django model. The Meta class
and __str__(self) function ensure that the model displays
human-friendly text in the admin interface.

•	 Our CategoryExtension class extends the Page model. It has a
single foreign key field that links to our list of categories.

Chapter 10 ■ extending django CMS

143

•	 Finally, we register our extended class with the extension pool.

•	 To change this code so that it extends the Title model, all we
have to do is replace each instance of PageExtension with
TitleExtension.

Once we have created our new models, we need to add them to our application.
To do this, just run these statements:

python manage.py makemigrations
python manage.py migrate

Register Models with Django Admin
Next, we need to register our new models with the admin interface, so we can edit them.
Go ahead and create a new admin.py file in your app directory and enter the code shown
in Listing 10-2.

Listing 10-2. Registering our Models With Django Admin

from django.contrib import admin
from cms.extensions import PageExtensionAdmin #TitleExtensionAdmin

from .models import Category, CategoryExtension

class CategoryAdmin(admin.ModelAdmin):
 pass

class CategoryExtensionAdmin(PageExtensionAdmin): #TitleExtensionAdmin
 pass

admin.site.register(Category, CategoryAdmin)
admin.site.register(CategoryExtension, CategoryExtensionAdmin)

Like the previous listing, this is standard Django code. We have created two class
stubs and registered them with the Django admin application, so that we can edit the
models from the back end. Once you have restarted the development server, you should
have a new panel added to your admin interface (Figure 10-1).

Figure 10-1. Categories model added to admin interface

Chapter 10 ■ extending django CMS

144

While you are in the admin console, go ahead and add a Page and a Post category.
When you are done, your categories list should look like Figure 10-2.

Create the Toolbar Item
You will notice that our extended field does not appear in the admin interface. This is
because the Page model is not directly editable in the default admin application. To
attach our extended field to our pages, we need to create a toolbar item. To do this, we
need to create a file called cms_toolbar.py (Listing 10-3) in our app directory. django
CMS will look for this file when it starts and, if it exists, load the classes in the file into the
toolbar.

Listing 10-3. cms_toolbar.py

from cms.toolbar_pool import toolbar_pool
from cms.extensions.toolbar import ExtensionToolbar
from django.utils.translation import ugettext_lazy as _
from .models import CategoryExtension

@toolbar_pool.register
class CategoryExtensionToolbar(ExtensionToolbar):

 model = CategoryExtension

 def populate(self):

 current_page_menu = self._setup_extension_toolbar()

Figure 10-2. Categories list

Chapter 10 ■ extending django CMS

145

 if current_page_menu:
 page_extension, url = self.get_page_extension_admin()
 if url:
 current_page_menu.add_modal_item(_('Page Category'), 
 url=url, disabled=not self.toolbar.edit_mode)

Stepping through the code, note the following:

•	 We register our toolbar class with the toolbar_pool.register
decorator.

•	 We let django CMS know that we want to use the
CategoryExtension model for our toolbar item.

•	 To add our model to the toolbar, we call the _setup_extension_
toolbar() function from ExtensionToolbar. This does all of the
initialization and setup for our toolbar item. It returns False if
it fails, so if there is a problem with your extended model, the
function will fail gracefully by not loading your class.

Once you have entered the code, save the cms_toolbar.py file and restart the server.
If you entered everything correctly, you will now have a new option on your Page menu
(Figure 10-3).

Figure 10-3. Page extended field added to toolbar

Chapter 10 ■ extending django CMS

146

Apps and Apphooks
Often you will want to extend django CMS beyond its core functions to expand the
functionality of the entire website. The two ways you can extend your website are by
adding or creating Django applications (Django apps) and by adding or creating django
CMS plugins.

The fundamental difference between the two is that an app is a stand-alone
application that is attached to your website and accessible via URL (or attached with an
apphook), whereas a plugin is an object that is put into a placeholder on your page.

We will be learning about apps and apphooks in this section; plugins we will cover
shortly. Adding an app to django CMS follows the same process as adding an app to
Django:

 1. Add a new app folder with startapp (or copy an existing app
into your project directory).

 2. Link to the app from your urls.py file.

Figure 10-4. Adding a category to a page

Add Category to Your Pages
You are now able to add a category to each of your pages (Figure 10-4). As we will be using
categories in the next section of this chapter, go ahead and assign the Blog category to
each of your blog posts, and the Page category to each of the other three pages.

Chapter 10 ■ extending django CMS

147

For this chapter, rather than write an app from scratch, we are going to use the Polls
app from the Django tutorial. To install the app in your project, follow these steps:

 1. Download the Polls app from https://github.com/big-
nige/django-polls. (Select the Download .ZIP button on the
right of the page.)

 2. Extract the downloaded zip file to your computer.

 3. Open the extracted folder and copy the polls directory to
your project directory.

 4. Add the Polls app to your settings.py (Listing 10-4)

 5. Add the Polls app to your urls.py (Listing 10-5)

 6. Run python manage.py migrate polls from your virtual
environment command prompt.

Listing 10-4. Adding the Polls App to settings.py

INSTALLED_APPS = (

 . . .

 'polls',
)

Listing 10-5. Adding the Polls App URLs to urls.py

urlpatterns = i18n_patterns('',

 . . .

 url(r'^polls/', include('polls.urls', namespace='polls')),
 url(r'^', include('cms.urls')),

 . . .
)

Once you have completed these steps, your project directory should look something
like this:

/MyBlogProject
 . . .
 /myBlog/
 /polls/
 . . .

https://github.com/big-nige/django-polls
https://github.com/big-nige/django-polls

Chapter 10 ■ extending django CMS

148

If you navigate to your administration dashboard (via the toolbar), you should see a
new panel that has been added for our Polls app (Figure 10-5).

Go ahead and add a couple of polls. Once you have done that, you can navigate to
http://127.0.0.1:8000/polls/ to see your poll application in action.

You will notice that this is a plain page with no formatting. This is because you
have not yet changed the Polls app to use your site template. To change this, edit
myBlogProject\polls\templates\polls\base.html to match Listing 10-6.

Listing 10-6. The Modified Polls Base Template

{% extends 'page.html' %}

{% block content %}
 {% block polls_content %}
 {% endblock %}
{% endblock %}

When you refresh your /polls/ page, your Polls app should now use your site
template (Figure 10-6).

Figure 10-5. Polls app added to the admin interface

http://127.0.0.1:8000/polls/

Chapter 10 ■ extending django CMS

149

Apphooks
While adding an application to a django CMS project is very simple, as our example Polls
app demonstrates, it’s still not integrated into django CMS such that it can be accessed via
the site menu or modified from the front end.

An apphook allows you to attach an app to an empty django CMS page so that it's
accessible via the main menu. You will learn how to create an apphook in this section.

Modifying the Polls app from the front end requires a toolbar extension, which we
will cover next.

To collect and register apphooks, django CMS looks for a file called cms_apps.py in
the root directory of your application. A basic cms_apps.py file is shown in Listing 10-7.
Go ahead now and create this file in your \polls\ directory.

 ■ Caution note that the the module name is cms_apps.py. in previous versions of
django CMS, the module was named cms_app.py. if you are using older django or django
CMS apps, you need to update them to the new naming convention.

Figure 10-6. Polls app modified to use site template

Chapter 10 ■ extending django CMS

150

Listing 10-7. cms_apps.py

from cms.app_base import CMSApp
from cms.apphook_pool import apphook_pool
from django.utils.translation import ugettext_lazy as _

class PollsApp(CMSApp):
 name = _("Poll App")
 urls = ["polls.urls"]
 app_name = "polls"

apphook_pool.register(PollsApp)

Stepping through this code, note the following:

•	 First we must import the CMSApp and ApphookPool classes
(apphook_pool is an alias for the class).

•	 The CMSApp class is quite simple: our PollsApp subclasses it and
sets three properties:

•	 Name. Sets the apphook name. This is the name that shows
in your page’s advanced properties.

•	 Urls. Links to your apps urls.py file.

•	 App_name. This the name of the app as per your INSTALLED_
APPS setting.

•	 Once we have created our apphook class, we add it to the
apphook pool.

Save your cms_apps.py file and restart the development server to allow the new
apphook to become available.

 ■ Note Be aware that whenever we add or remove an apphook, change the slug of a
page containing an apphook, or change the slug of a page that has a descendant with an
apphook, we must restart the server to reload the UrL cache.

Next, you need to add a new page and navigate to Page ➤ Advanced Settings.
Scroll down until you find the Application dropdown and select Poll App from the list.
Refresh the page, and you’ll find that the Polls application is now available directly

from the new django CMS page (Figure 10-7).

Chapter 10 ■ extending django CMS

151

 ■ Note Because the polls app has been attached to your project with an apphook, you no
longer have to refer to it in your urls.py. the line beginning url(r'^polls/', . . . can
safely be removed.

To complete the integration of our Polls app in the blog website, we want to add the
ability to add and modify polls from the front end. Fortunately, django CMS also allows us
to extend the toolbar.

Extending the Toolbar
When we are adding apps to django CMS, it is very handy to be able to work with them
from the front-end editor. django CMS provides the capability to easily extend the toolbar.

As with other extensions, django CMS will look in your application's root folder
for a special file (in this case cms_toolbar.py) that contains a class, or classes, of type
CMSToolbar. Each class will then be registered as a toolbar extension. For this exercise,
create a new cms_toolbar.py file in your Polls application (Listing 10-8).

Figure 10-7. Polls app hooked to the main menu

Chapter 10 ■ extending django CMS

152

Listing 10-8. cms_toolbar.py

from django.utils.translation import ugettext_lazy as _
from cms.toolbar_pool import toolbar_pool
from cms.toolbar_base import CMSToolbar
from cms.utils.urlutils import admin_reverse
from polls.models import Poll

@toolbar_pool.register
class PollToolbar(CMSToolbar):

 watch_models = [Poll,]

 def populate(self):
 if not self.is_current_app:
 return

 menu = self.toolbar.get_or_create_menu('poll-app', _('Polls'))

 menu.add_sideframe_item(
 name=_('Poll list'),
 url=admin_reverse('polls_poll_changelist'),
)

 menu.add_modal_item(
 name=_('Add new poll'),
 url=admin_reverse('polls_poll_add'),
)

Stepping through this code, note the following:

•	 First we must import the CMSToolbar and ToolbarPool classes
(toolbar_pool is an alias for the class). Note the similarity with
the previous examples using apphooks. django CMS classes
follow a common structure, which makes it easier to work with,
and remember, each class.

•	 We are subclassing CMSToolbar within PollToolbar class.

•	 Note that this time we are using the @register decorator (@
toolbar_pool.register). We could just as easily have used
toolbar_pool.register(PollToolbar) at the end of the file.

Chapter 10 ■ extending django CMS

153

•	 We set watch_models, which allows the front-end editor to
redirect the user to the model instance get_absolute_url
whenever an instance is created or saved through the front-end
editor.

•	 We then define a populate() method that adds an item to the
menu. The populate() method checks whether we’re in a page
belonging to this application, and if so, it does three things:

•	 Creates a menu if one’s not already there.

•	 Adds a menu item to list all polls as a side frame (which will
call polls.changelist() from the Django admin when
selected).

•	 Adds a menu item to add a new poll as a modal window (will
call polls.add()from the Django admin when selected).

Save the cms_toolbar.py file and, once the development server restarts, your
website should look like Figure 10-8 (note that you must be on the Polls page for
this to appear).

Figure 10-8. Polls app added to the toolbar

Chapter 10 ■ extending django CMS

154

Select “Add new poll” and a new window or tab will pop up (Figure 10-9), allowing
you to enter a new poll.

Figure 10-9. Adding a new poll from the django CMS toolbar

Chapter 10 ■ extending django CMS

155

 ■ Note this is a very basic example. django CMS has extensive capabilities for extending
the toolbar; for example, you can add menu items to the root, but they are beyond the scope
of this book. For more info, go to http://docs.django-cms.org/en/latest/how_to/
toolbar.html.

Custom Plugins
We covered a number of the plugins available for django CMS in Chapters 6 and 7. While
there are plugins available to add a variety of features to django CMS, it won’t be long
before you will come across a customer requirement that is not met by the available
plugins. When that happens, it is time to create your own custom plugin.

It is helpful to think of a plugin in django CMS as a special kind of app that can
be placed inside any django CMS placeholder. In this regard, it is no harder to create a
plugin than it is to create (or add) an app and create an apphook as you did earlier in this
chapter.

Figure 10-10. Polls list sidebar

Selecting “Poll list,” on the other hand, will expand the sidebar to show you the polls
list (Figure 10-10).

http://docs.django-cms.org/en/latest/how_to/toolbar.html
http://docs.django-cms.org/en/latest/how_to/toolbar.html
http://dx.doi.org/10.1007/978-1-4842-1669-9_6
http://dx.doi.org/10.1007/978-1-4842-1669-9_7

Chapter 10 ■ extending django CMS

156

A django CMS plugin has three parts:

•	 The plugin editor that configures the plugin each time it’s
deployed. This is the plugin model and is stored in your plugin’s
models.py file.

•	 The plugin publisher. This is your plugin class that selects what is
rendered to the browser. This class resides in the cms_plugins.py
file that you must create in your plugin app's root directory.

•	 The plugin template. This is a standard django CMS template file.
This file can be stored anywhere, but must be referred to by your
plugin class’s render_template attribute.

You will notice that the django CMS plugin design follows the same Model–
Template–View structure as Django. In the case of plugins, the publisher is the view. To
demonstrate how easy it is to create a custom plugin, we are going to start by creating
a custom plugin that will display all your blog posts in a convenient sidebar navigation
menu.

Sidebar Navigation
Although it is becoming less common on mobile-friendly websites, most users still expect
to find a secondary menu and links (for example, to blog posts and articles) in a sidebar.
Whether a left or right sidebar provides a better user experience is an argument that is
unlikely to ever be resolved. I picked right simply because I like right sidebars. If you
are a “leftie,” feel free to experiment with the page.html template file. All of the code in
this chapter will work regardless of which template you use (another one of those good
reasons why MVC is the best design pattern).

Before You Start
Before we get started, make sure your website pages have a sidebar that looks like
Figure 10-11. If it doesn’t, you will need to go back to Chapter 5 and ensure you have built
the templates correctly and they have been added to settings.py.

http://dx.doi.org/10.1007/978-1-4842-1669-9_5

Chapter 10 ■ extending django CMS

157

To get started with our custom plugin, we also need to create a new Django app.
At your Python virtual environment command prompt, type

python manage.py startapp menu_plugin

This will create a new Django app in your /myblog/ directory. Once you have done
these two setup steps, you are ready to create your sidebar plugin. In this section we will

 1. Create the publisher and template for your plugin.

 2. Add a new placeholder to your page template.

 3. Enhance your plugin by adding a configuration option.

Create the Plugin Publisher
As we will be starting with a very simple custom plugin, we do not need a model at
this stage, so our next step is to create our publisher/view (Listing 10-9). Then, in the
following section, we'll create our template (Listing 10-10).

Figure 10-11. Right sidebar navigation

Chapter 10 ■ extending django CMS

158

Listing 10-9. Custom Plugin Publisher (cms_plugins.py)

from cms.plugin_base import CMSPluginBase
from cms.plugin_pool import plugin_pool
from cms.models.pluginmodel import CMSPlugin
from django.utils.translation import ugettext_lazy as _

from myblog.models import Category, CategoryExtension
from cms.models import Title

class MenuPlugin(CMSPluginBase):
 model = CMSPlugin
 name = _("Menu Plugin")
 render_template = "menu_plugin.html"
 cache = False

 def render(self, context, instance, placeholder):
 blogposts = []
 for t in Title.objects.all():
 if t.page.publisher_is_draft==False:
 try:
 if str(t.page.categoryextension.category) == 'post':
 anchor = (t.title,t.path)
 blogposts.append(anchor)
 except:
 pass

 context['blogposts'] = blogposts
 return context
plugin_pool.register_plugin(MenuPlugin)

Listing 10-9 looks a bit complicated, but it’s actually pretty straightforward; you have
already seen most of this in earlier chapters:

•	 You will note that this code follows a similar format to apphooks
and extensions: import some custom classes, set some properties,
and register the plugin with a pool so that django CMS can find it.

•	 The MenuPlugin class subclasses CMSPluginBase and sets some
required properties:

•	 Model. Required. This is the plugin editor that allows custom
configuration of the plugin. As we are not using custom
settings at this stage, we simply inherit from CMSPlugin.

•	 Name. Required. The name that will be displayed in the
plugin's dropdown in the front-end editor.

Chapter 10 ■ extending django CMS

159

•	 Render template. Required. The URL of the plugin template.
As we are not providing path information, django CMS will
look in \menu_plugin\templates for this file.

•	 Cache. Optional. Defines whether we want to cache the
plugin content.

•	 The MenuPlugin class also provides a render() method that
passes a context and instance back to your template. Because
this is the most complex part of the code, I'll explain it separately
next.

The django CMS render() method is fundamentally the same as Django’s render()
method in that it returns an HTTPResponse object of the given template rendered with the
given context.

In our plugin, the template is menu_plugin.html, and we are adding a list of tuples
to the context (blogposts). The complexity comes from the way we need to access the
extensions we made to the Page model at the beginning of this chapter.

To create the anchor text and URL in our side menu, we need to access the title and
path of the page. If you remember from Chapter 9, title and path are both attributes of
the Title model, but our category extension is on the Page model. The logic we follow is
similar to the logic we used in creating the blog menu in Chapter 9:

•	 We step through all of the Title objects, but only select those that
are published (publisher_is_draft==False).

•	 We then check whether the Category is post, and if it is, add a
(title, path) tuple to the blogposts list.

•	 The try/except is necessary to stop Django from throwing an
error when the page does not have a category assigned to it.

•	 We then add the blogposts list to the context for our template
to render.

NOte FOr aDVaNCeD USerS: CMSpLUGINBaSe

the cms.plugin_base.CMSPluginBase class is actually a subclass of django.
contrib.admin.options.ModelAdmin. Because CMSPluginBase subclasses
ModelAdmin, several important ModelAdmin options are also available to CMS plugin
developers. these are the most often used:

•	 exclude

•	 fields

•	 fieldsets

•	 form

http://dx.doi.org/10.1007/978-1-4842-1669-9_9
http://dx.doi.org/10.1007/978-1-4842-1669-9_9

Chapter 10 ■ extending django CMS

160

•	 formfield_overrides

•	 inlines

•	 radio_fields

•	 raw_id_fields

•	 readonly_fields

please note, however, that not all ModelAdmin options are effective in a CMS plugin.
in particular, any options that are used exclusively by the changelist function will
have no effect. For more information, see http://docs.django-cms.org/en/
latest/how_to/custom_plugins.html.

Create the Plugin Template
Next, we need to create our plugin template. Create a \templates\ directory in your
menu_plugin app and save Listing 10-10 to a file named menu_plugin.html.

Listing 10-10. Our Custom Plugin Template (menu_plugin.html)

<ol class="list-unstyled">
 {% for anchortext, link in blogposts %}
 {% with "/"|add:link|add:"/" as full_url %}
 {{ anchortext }}
 {% endwith %}
 {% empty %}
 There are no published blog posts
 {% endfor %}

Stepping through this code, note the following:

•	 We are using a for loop to step over the list of tuples passed to the
browser in blogposts.

•	 The {% with … %} tag provides a simple and effective way
to concatenate a text string (in this case a forward slash /) to
the beginning of a template variable. Django’s standard {%
value|add:’<your string>’ %} tag does not work here, as you
can’t prepend the /.

•	 Each tuple in the blogposts list is used to build an HTML anchor
tag to display the anchor text and link to each of your blog posts.

Once you have created your plugin template, all you need to do is add 'menu_plugin'
to your INSTALLED_APPS (in settings.py) and restart the development server. Your new
menu plugin will now be available to install into any of the placeholders on your
pages (Figure 10-12).

http://docs.django-cms.org/en/latest/how_to/custom_plugins.html
http://docs.django-cms.org/en/latest/how_to/custom_plugins.html

Chapter 10 ■ extending django CMS

161

Add Placeholder to Page Template
Of course, our custom menu isn’t much use in the middle of a page; we need to be able to
add it to our sidebar menu. If you remember back to Chapter 5, we created some dummy
text as a placeholder in our page template (page.html). We now need to replace this code
with a django CMS placeholder. Listing 10-11 shows the changes you need to make to
page.html.

Listing 10-11. Modified page.html template

. . .
<h4>Latest Posts</h4>
 {% static_placeholder "posts" %}
 <ol class="list-unstyled"> #delete this line
 Blogpost 1 #delete this line
 Blogpost 2 #delete this line
 #delete this line
. . .

Figure 10-12. Custom menu plugin added to plugins

http://dx.doi.org/10.1007/978-1-4842-1669-9_5

Chapter 10 ■ extending django CMS

162

Refresh your browser and switch to one of your blog posts (or any page with the right
sidebar). Switch to Structure mode on the toolbar, and your page should have a Posts
placeholder (Figure 10-13).

Add our custom menu plugin to this placeholder, save it, switch back to content
view, and you should be greeted by a fully functional right menu (Figure 10-14) showing
all your blog posts.

Figure 10-13. Posts placeholder in right sidebar

Chapter 10 ■ extending django CMS

163

While our right menu is now working as designed, it does have a flaw—what if
you have hundreds of blog posts? A popular answer is to create a menu that provides
an archive list for years and months, rather than list every post on one page. As there is
not enough scope in this book to build such a detailed model, I am going to show you a
simpler solution: provide a plugin configuration option to limit the number of blog posts
that show in the list.

Add Configuration Options to Your Plugin
In our first version of the menu plugin, we did not create an editor (model.py) for the
plugin. To make our menu plugin configurable, we are going to create a custom model for
our plugin so we can set how many blog posts will show in the right menu.

We will start by creating your new plugin model (Listing 10-12). Save this file to
\menu_plugin\models.py.

Listing 10-12. Menu Plugin (models.py)

from cms.models.pluginmodel import CMSPlugin

from django.db import models

class MaxEntries(CMSPlugin):
 max_entries = models.SmallIntegerField(default=0 , 
 verbose_name='Maximum Entries')

Figure 10-14. Completed right menu with blog posts

Chapter 10 ■ extending django CMS

164

This code should be easy to follow:

•	 The MaxEntries class subclasses the CMSPlugin class.

•	 We are setting a single configuration field (max_entries), which
will hold the maximum number of entries allowed in the menu.
We are using a default value of zero; this will correspond to
unlimited entries. You will see how we implement this logic when
we get to modifying the template.

We also need to make some modifications to our cms_plugins.py file (Listing 10-13).
I have shown the changes in bold.

Listing 10-13. cms_plugins.py Updated to Use New Model

. . .

from myblog.models import Category, CategoryExtension
from cms.models import Title

from .models import MaxEntries

class MenuPlugin(CMSPluginBase):
 model = MaxEntries
 name = _("Menu Plugin")
 render_template = "menu_plugin.html"
 cache = False

 def render(self, context, instance, placeholder):
 categoryID = Category.objects.get(category='post')
 posts = CategoryExtension.objects.filter(category_id=categoryID)
 blogposts = []
 for post in posts:
 if not Title.objects.get
(page_id=post.extended_object_id).publisher_is_draft:
 anchor = 
((Title.objects.get(page_id=post.extended_object_id).title),)
 anchor += 
((Title.objects.get(page_id=post.extended_object_id).path),)
 blogposts.append(anchor)
 context['instance'] = instance
 context['blogposts'] = blogposts
 return context

plugin_pool.register_plugin(MenuPlugin)

Chapter 10 ■ extending django CMS

165

We explored this file in detail earlier in the chapter, so I will just explain the
modifications. We do the following to add our new editor to the menu plugin:

•	 Import the MaxEntries model.

•	 Change our plugin model from the generic CMSPlugin to our
MaxEntries model.

•	 Pass an instance of the model back to the browser when the
plugin code is called. This instance will have our MaxEntries field
included so it can be used by the template's rendering logic.

Now that we have created the new plugin editor, we need to update the database to
include the plugin model. At your Python virtual environment command prompt, type

python manage.py makemigrations

This will create a migration for your new plugin model. Then we need to migrate the
database to include your new model:

python manage.py migrate

Once you have completed the migration and refreshed your browser, your plugin
should now have a MaxEntries configuration option. Go back to your blog page and edit
the menu plugin you added earlier. Your editor window should now have a Maximum
Entries option (Figure 10-15).

Figure 10-15. Maximum Entries configuration option

Because we only have a couple of blog entries at this stage, for the sake of testing our
changes set this to 1 and save the plugin.

Next, we have to update our plugin template so that it will display the right number
of entries in the menu (Listing 10-14). Changes are in bold.

Chapter 10 ■ extending django CMS

166

Listing 10-14. Modified menu_plugin.html

<ol class="list-unstyled">
 {% for anchortext, link in blogposts %}
 {% with "/"|add:link|add:"/" as full_url %}
 {% if instance.max_entries == 0 %}
 {{ anchortext }}
 {% elif forloop.counter <= instance.max_entries %}
 {{ anchortext }}
 {% endif %}
 {% endwith %}
 {% empty %}
 There are no published blog posts
 {% endfor %}

The fundamental logic in Listing 10-14 is the same as in Listing 10-10, with an
additional if … elif statement. This new code basically says that if max_entries is zero
(0), create anchors for all the blog posts; otherwise, only create anchors while the current
count is less than or equal to max_entries.

Refresh your browser and, assuming you set max_entries to 1, you will see only the
first blog post in the menu. Edit your Menu plugin and change max_entries to 0, save the
plugin and refresh your browser, and both blog posts will reappear.

Summary
In this chapter we have explored some of the more advanced features of django CMS. You
learned how to extend the Page and Title models, as well as how to add a Django app
to our project and create an apphook. We used the Polls app from the Django tutorial to
demonstrate how apps and apphooks are constructed and integrated into a django CMS
project.

We also extended the toolbar so that we have front-end access to our new
application. Finally, we learned how custom plugins are built and put our knowledge to
use creating the right sidebar menu for our blog site.

This chapter is also the end of our introduction to django CMS. We have covered a
great deal of ground in these 10 chapters; you should now know more than enough about
django CMS to be able to build your own high-performance, professional websites.

In saying this, you should also take note that this is only the beginning of your
journey with django CMS. Because this is an introductory book, I was not able to go
into greater detail on many of the deeper subjects. This book has also been more of an
introduction to how things work with django CMS, not necessarily what best practice is
for building professional websites with django CMS.

For additional reference materials and pointers on where to go next, check out
Chapter 11, which is called, appropriately, Next Steps…

http://dx.doi.org/10.1007/978-1-4842-1669-9_11

167

Chapter 11

Next Steps

We have covered quite a lot of ground in this book, certainly more than enough to get
you on your way to building professional-quality websites in django CMS. However, this
book is only an introduction to django CMS, and there is still more to learn if you wish to
develop professional programming skills in the system.

In this chapter I will provide you with tips, links, and pointers as to where you can go
next in continuing your journey with django CMS. In particular, I will cover:

•	 Deploying django CMS

•	 Links to more advanced django CMS topics:

•	 Understanding the menu system

•	 Creating multilingual websites

•	 Testing django CMS

•	 A list of community sites and help resources for:

•	 django CMS

•	 Django

•	 Python

The information in this chapter is not exhaustive and, as the open source community
is changing all the time, some of it may already be out of date by the time you read this.
Always check the sources and follow what the community is saying; in general, the
Django and django CMS communities are very active and more than willing to point
newcomers in the right direction.

Deployment
Throughout this book, we have been using the Django development server to develop
and test our project. While the development server is very handy while you are creating
your website, it’s not meant to be used in production. It’s unsecured, slow, and unable to
handle more than a few queries at a time.

Chapter 11 ■ Next StepS

168

We have also used only SQLite as our database. While SQLite is more than adequate
for small sites and local deployments, it is not considered robust enough or scalable for
production websites. PostgreSQL and MySQL are recommended for production sites,
with PostgreSQL being the preferred option suggested by the Django Project.

With django CMS you have three deployment options (in increasing order of difficulty):

 1. Deploy automatically using Aldryn.

 2. Deploy on a host that supports Django.

 3. Build and deploy to your own server (external or internal).

Option 3 is not recommended unless there is a very specific need; there are a
number of caveats if you want a properly configured server that is capable of handling
Python long-running processes. Far better to leave the back-end configuration of your
Python server to an external host that knows what they are doing.

Because of the large number of configurations possible, I won’t be covering the
last option at all in this book. If you really want to go down this path, please refer to the
Django and django CMS resources listed a little later in this chapter.

Deploy with Aldryn
Aldryn is the content management platform created by Divio (creators of django CMS)
specifically to support deploying django CMS applications. The Aldryn platform provides

•	 automated deployment

•	 hosting

•	 shared team access

•	 automated installation (including dependency management) and
integration of third-party add-on packages

•	 management via a web interface or desktop-based application

Aldryn is different from what you would expect in a standard host. Rather than just
providing a tool stack and somewhere to host your Django applications, Aldryn creates a
set of workflows based on the user role:

•	 For content creators, Aldryn provides a control panel for
managing django CMS sites. Along with all of the functions we
have covered in this book, the control panel also provides really
useful functions such as a test server to run your site before it goes
live and a number of preinstalled plugins and content.

•	 For front-end developers, Aldryn provides a desktop application
that supports live linking between a local file repository and the
production server. This allows easy development of site designs
and applications without the need to run FTP servers, or to
commit to external repositories like GitHub.

•	 For back-end developers, Aldryn provides command-line tools
for running local builds and deploying sites.

Chapter 11 ■ Next StepS

169

I will not go through a deployment using Aldryn here; if you wish to explore your
options with Aldryn further, see the help page (http://www.aldryn.com/en/help/) and
for full documentation, see http://docs.aldryn.com/en/latest/index.html.

Deploy on a Django Host
The next best option to Aldryn, in terms of simplicity, is deploying your django CMS
website on a host that explicitly supports Django. A simple web search for “Django
hosts” will bring up hundreds of hosts that support Django or, for a curated list
maintained by Django contributors, see https://code.djangoproject.com/wiki/
DjangoFriendlyWebHosts.

At a minimum, a good host should provide all of the following:

•	 1 gigabyte of dedicated RAM (the more the better)

•	 SSH access so you can run scripts against your server

•	 Periodic backups of your site and database

•	 Automated scripts for restarting the server periodically (to
prevent lockups)

Many of the better hosts also provide “one-click” installation of a new Django
application with a preconfigured database.

Installing a new django CMS project on a host that supports Django is usually no
more complex that running the same scripts you ran in Chapter 2. However, there are
still a number of caveats; some Django-related and some likely to be caused by the
configuration on your host. Other than the host you choose, the very best resource for
deploying Django on any host is the Django Project itself. Deployment options and
instructions can be found here:

https://docs.djangoproject.com/en/1.8/howto/deployment/

For deployment options specifically related to installing django CMS, please refer to

http://docs.django-cms.org/en/latest/how_to/install.html

django CMS Advanced
There are a number of django CMS features that are impossible to cover in depth in an
introductory book. In particular, there are three features of django CMS that you would do
well to explore in depth:

 1. The menu system

 2. Managing multilingual sites

 3. Testing

http://www.aldryn.com/en/help/
http://docs.aldryn.com/en/latest/index.html
https://code.djangoproject.com/wiki/DjangoFriendlyWebHosts
https://code.djangoproject.com/wiki/DjangoFriendlyWebHosts
http://dx.doi.org/10.1007/978-1-4842-1669-9_2
https://docs.djangoproject.com/en/1.8/howto/deployment/
http://docs.django-cms.org/en/latest/how_to/install.html

Chapter 11 ■ Next StepS

170

The Menu System
Although we did explore some of the important features of the django CMS menu system,
there was not space to dig too deeply into this powerful tool. If you want to learn in depth
how the menu system works, see

http://docs.django-cms.org/en/latest/topics/menu_system.html

There are also a number of references for the menu system in the documentation:

http://docs.django-cms.org/en/latest/reference/navigation.html

Multiple Languages
django CMS supports internationalization out of the box, with support for multilingual
URLs and multiple-language versions of your pages. For a complete reference, see

http://docs.django-cms.org/en/latest/topics/i18n.html

Testing
All professional applications need to be thoroughly tested before they are deployed.
Testing in django CMS uses Django’s test suite:

https://docs.djangoproject.com/en/1.8/topics/testing/

Some additional constraints need to be considered when testing django CMS
extensions, as they are not accessible through urls.py. For information on testing django
CMS extensions, see

http://docs.django-cms.org/en/latest/how_to/testing.html

Getting Help
Fortunately, django CMS has the same vibrant and committed community supporting it
as the open source projects it is built on: Python and Django. The following is a brief list
of some leading free resources for each of the projects. The list is far from complete, but
these can be considered the best places to start.

django CMS Resources
The primary django CMS reference is the documentation, which can be found at

http://docs.django-cms.org/en/latest/index.html

http://docs.django-cms.org/en/latest/topics/menu_system.html
http://docs.django-cms.org/en/latest/reference/navigation.html
http://docs.django-cms.org/en/latest/topics/i18n.html
https://docs.djangoproject.com/en/1.8/topics/testing/
http://docs.django-cms.org/en/latest/how_to/testing.html
http://docs.django-cms.org/en/latest/index.html

Chapter 11 ■ Next StepS

171

There are a number of community links on the documentation site under
“Development & community.” There are also a couple of quite active Google Groups on
django CMS as well as plenty of Q&As on Stack Overflow (www.stackoverflow.com).

If you want to play with a demo of django CMS without having to download or install
code, there is a good demo of django CMS at http://demo.django-cms.org.

Not long after the release of this book, I will also be publishing a number of free
resources supporting the book at www.masteringdjango.com/djangocms.

Django Resources
The Django Project maintains probably the most comprehensive resource on Django:

https://docs.djangoproject.com/en/

This link will take you to the latest version of the docs. Look for links to the ever-
popular Django tutorial at the top of this page. Start with the Django Project website (or
search the Internet) to find other popular Django resources. These are some of the best at
the time of writing:

•	 The Django Girls Tutorial (http://tutorial.djangogirls.org/
en/index.html)

•	 Tango With Django (http://www.tangowithdjango.com/book17/)

•	 Mastering Django (www.masteringdjango.com).

•	 DISCLAIMER: This is my free Django resource site.

•	 Two Scoops of Django (www.twoscoopspress.org)

Python Resources
Python is a very mature project and as such has thousands of free (and paid) resources
available. A great place to start is the list compiled by Matt Makai at Full Stack Python
(http://www.fullstackpython.com/best-python-resources.html). I suggest you start
with Matt’s list and go from there.

If you want to learn about the differences between Python 2 and Python 3, the best
place to start is https://wiki.python.org/moin/Python2orPython3.

Summary
In this chapter I have listed a few resources to get you started on your next steps with
django CMS. The list is far from comprehensive, but given the changing nature of the
open source landscape, it provides a starting point for what I hope will be a rewarding
career in programming.

You have now reached the end of the book. I hope you enjoyed learning the
material as much as I enjoyed writing it, and all the best with your future programming
adventures!

http://www.stackoverflow.com/
http://demo.django-cms.org/
http://www.masteringdjango.com/djangocms
https://docs.djangoproject.com/en/
http://tutorial.djangogirls.org/en/index.html
http://tutorial.djangogirls.org/en/index.html
http://www.tangowithdjango.com/book17/
http://www.masteringdjango.com/
http://www.twoscoopspress.org/
http://www.fullstackpython.com/best-python-resources.html
https://wiki.python.org/moin/Python2orPython3

173

��������� A
Aldryn

back-end developers, 168
content creation, 168
front-end developers, 168

��������� B
Blog website, 45

base template, 50–51
base.html File, 51–52
blogpage.html template, 57
CMS_TEMPLATES setting, 58
myblog.css File, 53
page.html template, 56–57

django CMS installation, 45
Bootstrap

compliance, 37
components, 40
CSS classes, 39
grid system, 37
responsiveness, 37
speed, 37

Breadcrumbs
base.html modification, 133
breadcrumb.html template, 133
show_breadcrumb, 132

��������� C
CKEditor, 68
cms_apps.py file, 149
CMSPluginBase class, 159
CMSplugin-filer

Django-filer application, 85
file management application, 82
file manager, 85

filer file plugin, 86
folder plugin, 86–87
image plugin, 87
installation, 82
link plugin, 89
settings.py, 84
Teaser plugin, 90
text plugin, 83
video plugin, 91

CMS tags, django templates
cms_toolbar custom tag, 32
custom template, 30
placeholder tag, 31
static_placeholder tag, 32

Content Delivery Network (CDN), 53
Content management 101, 2
Content management system (CMS), 1

external applications, 3
history, 1
mobile-friendliness, 3
MVC architecture, 3
responsive interface, 3
roles, 2

Create alias plugin, 77
Custom menu

creation, 126
description, 125
menu.py file, 128, 131
NavigationNode class, 127
Page and Title models, 129
page attached, 128–129

��������� D
Default plugins, 63

create alias, 77
file plugin, 70
flash plugin, 76

Index

■ index

174

Google Map plugin, 76
installation, 63
link plugin, 66
multi Columns plugin, 72
picture plugin, 68
style plugin, 72
teaser plugin, 74
text plugin, 64
video plugin, 70

Django apps, 146
Django CMS, 141

administration, 113–114
group permissions, 119
page, 114–115
setting permissions, 119
user management, 116–117
user model, 117

advantages, 3
apphook, 149
cms_apps.py file, 149–150
cms_toolbar.py file, 151–153
deployment, 168

Aldryn, 168–169
django host, 169

design philosophy, 17
django resources, 170–171
for designers, 23
for developers, 23
installation, 13
menu system, 170
multiple-language, 170
Page and Title Model

add category, 146
cms_toolbar.py, 144
creation, 142
process, 142
register with

Django admin, 143
plugins, 155–156

(see also Default plugins)
populate() method, 153
Python

download and install, 10
installation check, 8
resources, 171
virtualenv tool, 12

sidebar navigation, 156
cms.plugin_base class, 159
custom plugin, 158
Menu Plugin, 163
MenuPlugin class, 158–159

page.html template, 161
plugin template creation, 160
posts placeholder, 162
render() method, 159
right menu, 163
right side, 157

structure
edit page content, 20
edit page structure, 21
edit toolbar, 19–20
history dropdown, 21
language dropdown, 21
page dropdown, 21
side pane, 22
site dropdown, 21

testing, 170
Djangocms-forms plugin, 93

administration, 96
creation, 94
field editor, 95
fields, 94–95
installation, 91
submission, 96

Django-sekizai tag, 33
Django templates

cms_tags
cms_toolbar custom tag, 32
custom template, 30
placeholder tag, 31
static_placeholder tag, 32

{# comment #} tag, 28
Django-sekizai, 33
inheritance, 25
show_menu tag, 35
{% tag %}, 28
tags and filters, 28
{{ value|filter }} tag, 27
{{ value }} tag, 27

Dropdown menus, 21

��������� E
Easy Thumbnails, 79

configuration, 81
installation, 80
template file, 80–81

��������� F
File plugin, 70
Flash plugin, 76
Folder plugin, 86

Default plugins (cont.)

■ Index

175

��������� G, H
Google Map plugin, 76
Grid system, 37, 39

��������� I, J, K
Image plugin, 87
Inheritance, 25

��������� L
Link plugin, 66, 89

��������� M
Multi Columns plugin, 72
myBlogProject, 45

��������� N, O
Navigation

breadcrumbs, 132
custom menu

(see Custom menu)
sitemap, 138
social media buttons, 134

��������� P, Q, R
Picture plugin, 68
Python

check already installed, 8
dependencies, 12
download and install, 10
environment variables, 12
virtualenv tool, 12

��������� S
show_menu tag, 35
Sitemap framework

django.contrib.sitemaps, 138
snapshot, 139
urls.py, 139

Style plugin, 72

��������� T, U
Teaser plugin, 74, 90
Text plugin, 64, 68
Thumbnails. See Easy Thumbnails
Toolbar

add page, 100
advanced page settings, 101–102
buttons, 107
history menu, 106–107
navigation bar, 105
page deletion, 105
page menu, 99
page permissions, 102
page settings menu, 101
page types, 105
publishing dates menu, 104
publish/unpublish page, 105
root menu, 97–98
template, 101

��������� V
Video plugin, 70, 91

��������� W, X, Y, Z
Web content, 108

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Chapter 1: Working with a CMS
	 A Brief History
	 Content Management 101
	 Content Management Roles

	 Anatomy of a Modern CMS
	 What You Will Learn
	 Summary

	Chapter 2: Installing django CMS
	 Installing Python
	 Check Whether Python Is Installed
	 Download and Install Python

	 Installing a Python Virtual Environment
	 Installing django CMS
	 Summary

	Chapter 3: Introduction to django CMS
	 Design Philosophy
	 The Structure of django CMS
	 The django CMS Toolbar
	 The django CMS Side Pane

	 django CMS for Designers and Developers
	 Summary

	Chapter 4: Site Templates
	 Django Templates 101
	 Inheritance
	 Separation of Logic and Presentation
	 Extensibility
	placeholder
	 static_placeholder
	cms_toolbar
	Sekizai Tags
	Menu Tags
	show_menu

	 Bootstrap
	 The Bootstrap Grid System
	 Bootstrap CSS Classes
	 Bootstrap Components

	 Tying it all Together
	 Summary

	Chapter 5: Your Blog Website: Templates
	 Create a Clean Install
	 Create Your Base Template
	 Create Your Blog Templates
	 Summary

	Chapter 6: django CMS Plugins
	 Getting Started
	 Default Plugins
	 Installing the Default Plugins
	 The Text Plugin
	 The Link Plugin
	 The Picture Plugin
	 The File Plugin
	 The Video Plugin
	 The Multi Columns Plugin
	 The Style Plugin
	 The Teaser Plugin
	 The Flash Plugin
	 The Google Map Plugin
	 The Create Alias Plugin

	 Summary

	Chapter 7: Advanced Plugins
	 Easy Thumbnails
	 CMSplugin-filer
	 File Manager
	 The File Plugin
	 The Folder Plugin
	 The Image Plugin
	 The Link Plugin
	 The Teaser Plugin
	 The Video Plugin

	 djangocms-forms
	 Creating a Form
	 Adding Form Fields
	 Form Administration

	 Summary

	Chapter 8: Authoring in django CMS
	 The django CMS Toolbar
	 Site Root (example.com)
	 Page
	 Add Page
	 Page Settings
	 Templates
	 Advances Settings
	 Permissions
	 Publishing Dates
	 Hide in Navigation
	 Publish/Unpublish Page
	 Delete Page
	 Save as Page Type
	 History
	 Toolbar Buttons

	 Adding Content to Your Site
	 django CMS Administration
	 Page Administration
	 User Management
	 Authorization and User Permissions
	User Model
	Groups
	Permissions in django CMS

	 Summary

	Chapter 9: Menus and Navigation
	 Customizing the Menu
	 Creating a Custom Menu

	 Breadcrumbs
	 Social Buttons
	 Sitemaps
	 Summary

	Chapter 10: Extending django CMS
	 Extending the Page and Title Models
	 Create the Models
	 Register Models with Django Admin
	 Create the Toolbar Item
	 Add Category to Your Pages

	 Apps and Apphooks
	 Apphooks

	 Extending the Toolbar
	 Custom Plugins
	 Sidebar Navigation
	 Before You Start
	 Create the Plugin Publisher
	 Create the Plugin Template
	 Add Placeholder to Page Template
	 Add Configuration Options to Your Plugin

	 Summary

	Chapter 11: Next Steps
	 Deployment
	 Deploy with Aldryn
	 Deploy on a Django Host

	 django CMS Advanced
	 The Menu System
	 Multiple Languages
	 Testing

	 Getting Help
	 django CMS Resources
	 Django Resources
	 Python Resources

	 Summary

	Index

