Foreword by:

Ankur Gupta

Founder of Numeratelabs LLP

Cloud Native
Python

Practical techniques to build apps that dynamically scale
to handle any volume of data, traffic, or users

L]




< html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-
html40/loose.dtd">



Cloud Native Python

Practical techniques to build apps that dynamically scale to handle any volume of data,
traffic, or users

Manish Sethi

BIRMINGHAM - MUMBAI



< html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC-
html40/loose.dtd">



Cloud Native Python

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for
any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: July 2017
Production reference: 1190717

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-931-3

www.packtpub.com


http://www.packtpub.com

Credits

Author

Manish Sethi

Copy Editor

Sonia Mathur

Reviewers
Sanjeev Kumar Jaiswal

Mohit Sethi

Project Coordinator

Prajakta Naik

Commissioning Editor

Aaron Lazar

Proofreader

Safis Editing

Acquisition Editor

Indexer




Alok Dhuri

Rekha Nair

Content Development Editor

Lawrence Veigas

Graphics

Abhinash Sahu

Technical Editor

Supriya Thabe

Production Coordinator

Nilesh Mohite




Foreword

In 2000, during the peak of the dotcom boom, I developed web applications in C++ and Perl. One had to
personally go to the ISP data center and install the machine along with a RAID setup. From 2003-2006,
the world moved to shared hosting powered by virtual machines. Today, the world is a different place,
one where cloud computing providers, such as AWS, Azure, Google Cloud, and programming languages
such as Python, Ruby, and Scala make it child's play to launch and scale websites.

While cloud computing makes it easy to get started, its offerings are ever expanding with new tools,
deployment methodologies, and changing workflows. Take, for instance, what compute offerings should a
developer build on? Software as a Service, or Platform as a Service, or Infrastructure as a Service
Platform? Should the developer choose Docker, or a normal virtual machine setup for deployment?
Should the entire software architecture follow an MVC or a microservices model?

Manish has a done a good job in the book, equipping a Python developer with skills to thrive in a cloud
computing world. The book starts off with laying the foundation of what cloud computing is all about and
its offerings. It's beneficial that most chapters in the book are self-contained, allowing the reader to pick
up and learn/refresh their knowledge of what's needed for the current sprint/task. The workings of
technologies such as CI and Docker are precisely explained in clear prose that does away with the
underlying complexity. The Agile model of software development keeps us developers on toes, requiring
developers to learn new tools in days and not weeks. The book's hands-on approach to teaching with
screenshots on installation, configuration, and compact code snippets equips developers with the
knowledge they need, thus making them productive.

A preference for full-stack developers, the implicit requirement of knowing cloud computing 101, and
CIOs wanting to achieve a lot more with small teams are the norms today. Cloud Native Python is the
book a freshman, beginner, or intermediate Python developer should read to get themselves up to speed on
the tools and technology that power today's software development.

The complexity of cloud computing is in the details, be it the deployment workflow, managing
infrastructure, security, or the tooling ecosystem. These choices have lasting implications for the software
that's being built and the team developing and maintaining it.

Ankur Gupta
Founder of NumerateLabs LLP
Curator of newsletters: ImportPython & DjangoWeekly



About the Author

Manish Sethi works as an engineer in Bangalore, India. Over the course of his career, he has worked for
startups and Fortune 10 companies, helping organizations adopt a cloud native approach to architecting
massively scalable products.

He regularly spends time learning and implementing new technology paradigms and actively finds himself
solving practical problems using serverless architecture, machine and deep learning, and so on. He
contributes to Bangalore DevOps and the Docker community by writing blog posts, giving talks in
meetups, and so on.

I would like to thank my brother, Mohit Sethi, and my mother, Neelam Sethi, who have been very
supportive and encouraged me throughout my career and when writing this book.



About the Reviewers

Sanjeev Kumar Jaiswal is a computer graduate with 8 years of industrial experience. He uses Perl,
Python, and GNU/Linux for his day-to-day activities. He is currently working on projects involving
Penetration testing, Source Code Review, Security Design and implementations, and Web and Cloud
Security projects.

Currently, Sanjeev is learning NodeJS and React Native as well. He loves teaching engineering students
and IT professionals, and he has been teaching for the last 8 years in his leisure time.

He founded Alien Coders (http://www.aliencoders.org) based on the learning through sharing principle, for
computer science students and IT professionals in 2010, which became a huge hit in India among
engineering students. You can follow him on Facebook at httpz/www.facebook.com/aliencoders, on Twitter at
@aliencoders, and on GitHub at https/github.com/jassics.

He has authored Instant PageSpeed Optimization, and co-authored Learning Django Web Development,
both by Packt. He has reviewed more than seven books for Packt and looks forward to authoring or
reviewing more books for Packt and other publishers.

Mobohit Sethi is a solutions architect with 10+ years of experience in building and managing products
across the IaaS, Paa$S, and SaaS space in the areas of cloud, storage, distributed systems, data analytics,
and machine learning. Previously, he worked for a Silicon Valley startup, a Fortune 10 company, and a
National Defense Organization. He has been an open source contributor for 12+ years and has been
running the DevOps meetup group in Bangalore for more than 3 years.

You can contact him on Twitter at https/twitter.com/mohitsethi, LinkedIn (https:/in.linkedin.com/in/mohitsethi7), and
GitHub (https:/github.com/mohitsethi).


http://www.aliencoders.org
http://www.facebook.com/aliencoders
https://github.com/jassics
https://twitter.com/mohitsethi
https://in.linkedin.com/in/mohitsethi7
https://github.com/mohitsethi

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are
entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.con for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters and receive exclusive discounts and offers on Packt books and eBooks.

wa Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and
video courses, as well as industry-leading tools to help you plan your personal development and advance
your career.


http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e Ondemand and accessible via a web browser



Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us
improve, please leave us an honest review on this book's Amazon page at https:/www.amazon.com/dp/1787129314i»

¢
If YOU'd like to jOiI'l our team of regular TEViEWETS, you Can e-mail us at customerreviews@packtpub.com. We

award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help
us be relentless in improving our products!


https://www.amazon.com/dp/1787129314
https://www.amazon.com/dp/1787129551

Table of Contents

Preface
What this book covers
What you need for this book
Who this book is for
Conventions

Reader feedback
Customer support

Downloading the example code
Errata

Piracy

Questions

1. Introducing Cloud Native Architecture and Microservices
Introduction to cloud computing

Software as a Service
Platform as a Service

Infrastructure as a Service
The cloud native concepts

Cloud native - what it means and why it matters?

The cloud native runtimes
Cloud native architecture

Are microservices a new concept?
Why is Python the best choice for cloud native microservices development?

Readability

Libraries and community
Interactive mode
Scalable

Understanding the twelve-factor app
Setting up the Python environment
Installing Git

Installing Git on Debian-based distribution Linux (such as Ubuntu)

Seting up Git on a Debian-based distribution
Installing Git on Windows

Using Chocolatey
Installing Git on Mac

Installing the command-line tools for OS X

Installing Git for OS X
Installing and configuring Python
Installing Python on a Debian-based distribution (such as Ubuntu)

Using the APT package management tools
Using source code

Installing Python on Windows
Installing Python on Mac

Installing the command-line tools for OS X
Installing Python for OS X
Getting familiar with the GitHub and Git commands



Summary

2. Building Microservices in Python
Python concepts

Modules
Functions

Modeling microservices
Building microservices
Building resource user methods

GET /api/v1l/users

GET /api/v1/users/[user_id]
POST /api/vl/users
DELETE /api/vl/users

PUT /api/vl/users
Building resource tweets methods

GET /api/v2/tweets
POST /api/v2/tweets

GET /api/v2/tweets/[id]
Testing the RESTful API

Unit testing
Summary
3. Building a Web Application in Python

Getting started with applications
Creating application users

Working with Observables and AJAX

Binding data for the adduser template
Creating tweets from users

Working on Observables with AJAX for the addtweet template
Data binding for the addtweet template

CORS - Cross-Origin Resource Sharing

Session management

Cookies

Summary

4. Interacting Data Services
MongoDB - How it is advantageous, and why are we using it?

MongoDB terminology
Setting up MongoDB

Initializing the MongoDB database

Integrating microservices with MongoDB
Working with user resources

GET api/vl/users

GET api/v1/users/[user_id]
POST api/vl/users

PUT api/vl/users/[user_id]

DELETE api/vl/users
Working with the tweets resources

GET api/v2/tweets
GET api/v2/tweets/[user_id]
POST api/v2/tweets



Summary
5. Building WebViews with React

Understanding React
Setting up the React environment

Installing node

Creating package.json
Building webViews with React

Integrating webView with microservices
User authentication

Login user
Sign up user
User profile

Log out users
Testing the React webViews

Jest
Selenium
Summary

6. Creating Uls to Scale with Flux
Understanding Flux

Flux concepts
Adding dates to Ul
Building user interfaces with Flux
Actions and dispatcher
Stores
Summary
7. Learning Event Sourcing and CQRS

Introduction
Understanding Event Sourcing

Laws of Event Sourcing
Introduction to CQRS

Advantages of the CQRS-ified architecture

Challenges related to ES and CQRS
Overcoming challenges
Problem solving

Explanation of the problem

The solution
Kafka as an eventstore

Applying Event Sourcing with Kafka
How it works
Summary

8. Securing the Web Application
Network security versus application security
The web application stack

Application - security alternatives in the platform

Transport protocol

Application protocol

Application - security threats in application logic

Web application security alternatives



A word on developing security-enabled web applications
Summary

9. Continuous Delivery
Evolution of continuous integration and continuous delivery

Understanding SDLC
The Agile software development process

How does the Agile software development process work?

Continuous integration
Jenkins - a continuous integration tool
Installing Jenkins

Prerequisite
Installation on a Debian (Ubuntu)-based system
Configuring Jenkins
Automating Jenkins
Securing Jenkins
Plugins management
Version control systems
Setting up a Jenkins job
Understanding continuous delivery
Need for continuous delivery
Continuous delivery versus continuous deployment
Summary

10. Dockerizing Your Services
Understanding Docker

Few facts about Docker versus virtualization

Docker Engine - The backbone of Docker
Setting up the Docker environment

Installing Docker on Ubuntu

Installation on Windows
Setting up Docker Swarm
Setting up the Docker environment

Assumption
Initializing the Docker manager
Add node1 to master

Testing the Docker Swarm
Deploying an application on Docker

Building and running our MongoDB Docker service
Docker Hub - what is it all about?
Docker Compose
Summary
11. Deploying on the AWS Platform

Getting started with Amazon Web Services (AWS)
Building application infrastructure on AWS

Generating authentication keys
Terraform - a tool to build infrastructure as code

Configuring the MongoDB server

Configuring the Elastic L.oad balancer
CloudFormation - an AWS tool for building infrastructure using code



The VPC stack on AWS
Continuous Deployment for a cloud native application
How it works

Implementation of the Continuous Deployment pipeline
Summary

12. Implementing on the Azure Platform
Getting started with Microsoft Azure
A few points on Microsoft Azure basics

Architecturing our application infrastructure using Azure
Creating a virtual machine in Azure
CI/CD pipeline using Jenkins with Azure
Summary
13. Monitoring the Cloud Application

Monitoring on the cloud platform
AWS-based services

CloudWatch
CloudTrail

AWS Config service
Microsoft Azure services

Application Insights
Introduction to ELK stack

Logstash
Elasticsearch

Kibana
Open source monitoring tool

Prometheus

Summary



Preface

Businesses today are evolving so rapidly that having their own infrastructure to support their expansion is
not feasible. As a result, they have been resorting to the elasticity of the cloud to provide a platform to
build and deploy their highly scalable applications.

This book will be the one stop for you to learn all about building cloud-native architectures in Python. It
will begin by introducing you to cloud-native architecture and will help break it down for you. Then
you'll learn how to build microservices in Python using REST API's in an event-driven approach and you
will build the web layer. Next, you'll learn about interacting with data services and building web views
with React, after which we will take a detailed look at application security and performance. Then, you'll
also learn how to Dockerize your services. And finally, you'll learn how to deploy the application on the
AWS and Azure platforms. We will end the book by discussing some concepts and techniques around
troubleshooting problems that might occur with your applications after you've deployed them.

This book will teach you how to craft applications that are built as small standard units, using all the
proven best practices and avoiding the usual traps. It's a practical book; we're going to build everything
using Python 3 and its amazing tooling ecosystem. The book will take you on a journey, the destination of
which is the creation of a complete Python application based on microservices over the cloud platform.



What this book covers

Chapter 1, Introducing Cloud Native Architecture and Microservices, discusses basic cloud native
architecture and gets you ready to build applications.

Chapter 2, Building Microservices in Python, gives you complete knowledge of building microservices and
extending them as per your use cases.

Chapter 3, Building a Web Application in Python, builds an initial web application with integration with
microservices.

Chapter 4, Interacting Data Services, gives you hands-on knowledge of how to migrate your application to
different database services.

Chapter 5, Building WebViews with React, discusses how to build a user interface using React.
Chapter 6, Creating Uls to Scale with Flux, gives you an understanding about Flux for scaling applications.

Chapter 7, Learning Event Sourcing and CQRS, discusses how to store transactions in the form of events to
improve application performance.

Chapter 8, Securing the Web Application, helps you secure your application from outside threats.
Chapter 9, Continuous Delivery, gives you knowledge towards frequently application release.
Chapter 10, Dockerizing Your Services, talks about container services and running applications in Docker.

Chapter 11, Deploying on the AWS Platform, teaches you how to build an infrastructure and set up a
production environment for your application on AWS.

Chapter 12, Implementing on the Azure Platform, discusses how to build infrastructures and set up a
production environment for your application on Azure.

Chapter 13, Monitoring the Cloud Application, makes you aware of the different infrastructure and
application monitoring tools.



What you need for this book

You will need to have Python installed on your system. A text editor, preferably Vim/Sublime/Notepad++,
would be great. For one of the chapters, you may be required to download POSTMAN, which is a
powerful API testing suite available as a Chrome extension. You can download this at httpsz/chrome.google.com
/webstore/detail/postman/fhbjgbiflinjpdggehcddcbncdddomop?hl=en.

Other than these, it would be great if you have an account on the following web applications:

Jenkins

Docker

Amazon Web Services
Terraform

In case you do not have an account, this book will guide you, or at least direct you with regards to
creating an account on the previously mentioned web applications.


https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en

Who this book is for

This book is for developers with a basic knowledge of Python, the command line, and HTTP-based
application principles. It is ideal for those who want to learn to build, test, and scale their Python-based
applications. No prior experience of writing microservices in Python is required.



Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information.
Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and Twitter handles are shown as follows: "Create a signup route, which will take the cer
and post methods to read the page, and submit the data to the backend database."

A block of code is set as follows:

sendTweet (event){
event.preventDefault();
this.props.sendTweet(this.refs.tweetTextArea.value);
this.refs.tweetTextArea.value = '';

}

Any command-line input or output is written as follows:

| $ apt-get install nodejs

New terms and important words are shown in bold. Words that you see on the screen, for example, in
menus or dialog boxes, appear in the text like this: "Click on the Create user button, the user will be
created, and the policy will be attached to it."

o Warnings or important notes appear like this.

9 Tips and tricks appear like this.




Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you
liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get

the most out of.
To send us general feedback, simply e-mail feedbackepacktpub.com, and mention the book's title in the subject

of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a
book, see our author guide at www.packtpub.com/authors.


http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most
from your purchase.



Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http/www.packtpub.com/support and register to have the files e-
mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NoUukwWN =

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version
of:

e WIinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https/github.com/PacktPublishing/Cloud-Native-Python. We
also have other code bundles from our rich catalog of books and videos available at https/github.com/PacktPubl
ishing/. Check them out!


http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Cloud-Native-Python
https://github.com/PacktPublishing/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find
a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could
report this to us. By doing so, you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the pI‘EViOUSIY submitted errata, g0 10 https//www.packtpub.com/books/content/support and enter the name of
the book in the search field. The required information will appear under the Errata section.


http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.



Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will
do our best to address the problem.



Introducing Cloud Native Architecture and
Microservices

Here we go! Before we begin to build our application, we need to find answers to some of the following
queries:

e What is cloud computing? What are its different types?
e What is microservices and its concept?
e What are the basic requirements for good to go?

In this chapter, we will focus on the different concepts that a developer or application programmer should
understand before they start writing an application.

Let's first understand a bit about system building and how it evolves.

For a long time now, we have been discovering better approaches to constructing frameworks. With
advances in new technologies and adoption of better approaches, the IT framework becomes more
reliable and effective for clients (or customers), and makes engineers happy.

Continuous delivery helps us move our software development cycle into production, and lets us identify
different error-prone perspectives of software, insisting on us the idea of considering every check-in to
code as a suitable candidate to release it to production.

Our comprehension of how the web functions has driven us to grow better methods for having machines
converse with other machines. The virtualization platform has permitted us to make arrangements and
resize our machines freely, with foundation computerization giving us an approach to deal with these
machines at scale. Some huge, effective cloud platforms, such as Amazon, Azure, and Google have
embraced the perspective of little groups owning the full life cycle of their services. Concepts such as
Domain-Driven Design (DDD), continuous delivery (CD), on-request virtualization, infrastructure
robotization, small self-governing groups, and systems at scale are different traits, which effectively, and
efficiently, get our software into production. And now, microservices has risen up out of this world. It
wasn't developed or portrayed before the reality; it rose as a pattern, or, for example, from true
utilization. All through this book, I will haul strands out of this earlier work to help illustrate how to
fabricate, oversee, and advance microservices.

Numerous associations have found that by grasping fine-grained microservice structures, they can convey
programming speedily, and grasp more up-to-date advancements. Microservices gives us, fundamentally,
more flexibility to respond and settle on various choices, permitting us to react quickly to the unavoidable
changes that affect every one of us.



Introduction to cloud computing

Before we begin with microservices and cloud native concepts, let's first understand what cloud
computing is all about.

Cloud computing is a wide term that portrays a wide scope of administrations. Similarly, as with other
huge advancements in innovation, numerous merchants have grabbed the expression cloud and are
utilizing it for items that sit outside of the basic definition. Since the cloud is an expansive accumulation
of administrations, associations can pick where, when, and how they utilize cloud computing.

The cloud computing services can be categorized as follows:

e SaaS: These are baked applications that are ready to be grasped by end users

e PaaS: These are a collection of tools and services that are useful for users/developers who want to
either build their application or quickly host them directly to production without caring about the
underlying hardware

¢ JaaS: This is for customers who want to build their own business model and customize it

Cloud computing, as a stack, can be explained as follows:

¢ Cloud computing is often referred to as stack, which is basically a wide range of services in which
each service is built on top of another under a common term, such as cloud

e The cloud computing model is considered as a collection of different configurable computing
resources (such as servers, databases, and storage), which communicate with each other, and can be
provisioned with minimal supervision

The following diagram showcases the cloud computing stack components:



ComparteStorap e Tetaark

Let's understand cloud computing components in detail, along with their use cases.



Software as a Service

The following are the key points that describe SaaS:

Software as a Service (SaaS) offers users the ability to access software hosted on service provider
premises, which is provided as a service over the internet through a web browser by a provider.
These services are based on subscriptions, and are also referred to as on-demand software.

SaaS-offering companies include the Google Docs productivity suite, Oracle CRM (Customer
Relationships Management), Microsoft and their Office 365 offering, and Salesforce CRM and
QuickBooks.

Saa$S can be further categorized as a vertical SaaS that focuses on the needs of specific industries,
such as healthcare and agriculture, or a horizontal SaaS that focuses on the software industry, such as
human resources and sales.

Saa$S offerings are, basically, for organizations that quickly want to grasp existing applications that
are easy to use and understand, even for a non-technical person. Based on the organization's usage
and budget, enterprises to select support plans. Additionally, you can access these SaaS applications
from anywhere around the globe, and from any device with the internet enabled.



Platform as a Service

The following are the key points that describe PaaS:

In PaaS offerings, the organization/enterprise need not worry about hardware and software
infrastructure management for their in-house applications

The biggest benefits of PaaS are for the development teams (local or remote), which can efficiently
build, test, and deploy their applications on a common framework, wherein, the underlying hardware
and software is managed by the PaaS service provider

The PaaS service provider delivers the platform, and also provides different services around the
platform

The examples of PaaS providers include Amazon Web Services (AWS Elastic Beanstalk), Microsoft
Azure (Azure Websites), Google App Engine, and Oracle (Big Data Cloud Service)



Infrastructure as a Service

The following are the key points that describe IaaS:

Unlike Saa$S offerings, in IaaS, the customer is provided with IT resources, such as bare metal
machines to run applications, hard disk for storage, and network cable for network capability, which
they can customize based on their business model.

In IaaS offerings, since the customer has full access to their infrastructure, they can scale their IT
resources based on their application requirement. Also, in IaaS offerings, the customer has to
manage the security of the application/resources, and needs to build disaster recovery models in
case of sudden failures/crashes.

In laa$, services are on an on-demand basis, where the customer is charged on usage. So, it's the
customer's responsibility to do cost analysis against their resources, which will help restrict them
from exceeding their budget.

It allows customers/consumers to customize their infrastructure based on the requirements of the
application, then tear down the infrastructure and recreate it again very quickly and efficiently.

The pricing model for IaaS-based services is basically on-demand, which means you pay as you go.
You are charged as per your usage of resources and the duration of the usage.

Amazon Web Services (offering Amazon Elastic Compute Cloud (Amazon EC2) and Amazon
Simple Storage Service (Amazon S3)) was the first out of the gate in this cloud offering; however,
players such as Microsoft Azure (virtual machine), Rackspace (virtual cloud servers) and Oracle
(bare metal cloud services) have also made a name for themselves.



The cloud native concepts

Cloud native is structuring teams, culture, and technology to utilize automation and architectures to
manage complexity and unlock velocity.

The cloud native concept goes beyond the technologies with which it is associated. We need to understand
how companies, teams, and people are successful in order to understand where our industry is going.

Currently, companies such as Facebook and Netflix have dedicated a large amount of resources working
towards cloud native techniques. Even now, small and more flexible companies have realized the value of
these techniques.

With feedback from the proven practices of cloud native, the following are some of the advantages that
come to light:

¢ Result-oriented and team satisfaction: The cloud native approach shows the way to break a large
problem into smaller ones, which allows each team to focus on the individual part.

¢ Grunt work: Automation reduces the repetitive manual tasks that cause operations pain, and reduces
the downtime. This makes your system more productive, and it gives more efficient outcomes.

¢ Reliable and efficient application infrastructure: Automation brings more control over deployment
in different environments--whether it is development, stage, or production--and also handles
unexpected events or failures. Building automation not only helps normal deployment, but it also
makes deployment easy when it comes to a disaster recovery situation.

¢ Insights over application: The tools built around cloud native applications provide more insights
into applications, which make them easy to debug, troubleshoot, and audit.

o Efficient and reliable security: In every application, the main concern is toward its security, and
making sure that it is accessible via required channels with authentication. The cloud native
approach provides different ways for the developer to ensure the security of the application.

e Cost-effective system: The cloud approach to managing and deploying your application enables
efficient usage of resources, which also includes application release and, hence, makes the system
cost effective by reducing the wastage of resources.



Cloud native - what it means and why it matters?

Cloud native is a broad term which makes use of different techniques, such as infrastructure automation,
developing middleware, and backing services, which are basically a part of your application delivery
cycle. The cloud native approach includes frequent software releases that are bug-free and stable, and can
scale the application as per the business requirement.

Using the cloud native approach, you will be able to achieve your goal toward application building in a
systematic manner.

The cloud native approach is much better than the legacy virtualization-oriented orchestration, which
needs a lot of effort to build an environment suitable for development, and then, a far more different one
for the software delivery process. An ideal cloud native architecture should have automation and
composition functionalities, which work on your behalf. These automation techniques should also be able
to manage and deploy your application across different platforms and provide you with results.

There are a couple of other operation factors that your cloud native architecture should be able to identify,
such as steady logging, monitoring application and infrastructure in order to make sure the application is
up and running.

The cloud native approach really helps developers build their application across different platforms using
tools such as Docker, which is lightweight and easy to create and destroy.



The cloud native runtimes

Containers are the best solutions for how to get software to run reliably when moved from one computing
environment to another. This could be from one developer machine to the stage environment into
production, and perhaps from a physical machine to a virtual machine in a private or public cloud.
Kubernetes has become synonymous with container services, and is getting popular nowadays.

With the rise of cloud native frameworks and an increase in the applications built around it, the attributes
of container orchestration have received more attention and usage. Here is what you need from a
container runtime:

e Managing container state and high availability: Be sure to maintain the state (such as create and
destroy) of containers, specifically in production, as they are very important from a business
perspective, and should be able to scale as well, based on business needs

e Cost analysis and realization: Containers give you control over resource management as per your
business budget, and can reduce costs to a large extent

¢ Isolated environment: Each process that runs within a container should remain isolated within that
container

¢ Load balancing across clusters: Application traffic, which is basically handled by a cluster of
containers, should be redirected equally within the containers, which will increase the applications
response and maintain high availability

¢ Debugging and disaster recovery: Since we are dealing with the production system here, we need
to make sure we have the right tools to monitor the health of the application, and to take the
necessary action to avoid downtime and provide high availability



Cloud native architecture

The cloud native architecture is similar to any application architecture that we create for a legacy system,
but in the cloud native application architecture, we should consider a few characteristics, such as a
twelve-factor application (collection of patterns for app development), microservices (decomposition of
a monolithic business system into independent deployable services), self-service agile infrastructure
(self-service platform), API-based collaboration (interaction between services via API), and antifragility
(self-realizing and strengthening the application).

First, let's discuss what is microservices all about?

Microservices is a broader term that breaks large applications into smaller modules to get them
developed and make them mature enough for release. This approach not only helps to manage each
module efficiently, but it also identifies the issue at the lower level itself. The following are some of the
key aspects of microservices:

¢ User-friendly interfaces: Microservices enable a clear separation between microservices.
Versioning of microservices enables more control over APIs, and it also provides more freedom for
both the consumers and producers of these services.

e Deployment and management of APIs across the platform: Since each microservice is a separate
entity, it is possible to update a single microservice without making changes to the others. Also, it is
easier to roll back changes for a microservice. This means the artifacts that are deployed for
microservices should be compatible in terms of API and data schemas. These APIs must be tested
across different platforms, and the test results should be shared across different teams, that is,
operation, developers, and so on, to maintain a centralized control system.

¢ Flexibility in application: Microservices that are developed should be capable of handling the
request and must respond back, irrespective of the kind of request, which could be a bad input or an
invalid request. Also, your microservice should be able to deal with an unexpected load request and
respond appropriately. All of these microservices should be tested independently, as well as with
integration.

¢ Distribution of microservices: It's better to split the services into small chunks of services so that
they can be tracked and developed individually and combined to form a microservice. This
technique makes microservices development more efficient and stable in manner.

The following diagram shows a cloud native application's high-level architecture:



. i | o
Client . + i Senice
Survics .

. = H - -
.II. | I
o ————— H -

Seivics

¥

Femterd 0 Backerd

The application architecture should ideally start with two or three service, try to expand it with further
versions. It is very important to understand application architecture, as it may need to integrate with
different components of the system, and it is possible that a separate team manages those components
when it comes to large organizations. Versioning in microservices is vital, as it identifies the supported
method during the specified phase of development.



Are microservices a new concept?

Microservices has been in the industry for a very long time now. It is another way of creating a distinction
between the different components of a large system. Microservices work in a similar fashion, where they
act as a link between the different services, and handle the flow of data for a particular transaction based
on the type of requests.

The following diagram depicts the architecture of microservices:

j,.f-"_ e
@ \

Wabaite “'“"-m‘ Websita URL |

—

Iiohide App

d=

et




Why is Python the best choice for cloud native
microservices development?

Why do I choose Python, and recommend it to as many people as possible? Well, it comes down to the
reasons explained in the upcoming subsections.



Readability

Python is highly expressive and an easy-to-learn programming language. Even an amateur can easily
discover the different functionalities and scope of Python. Unlike other programming languages, such as
Java, which focus more on parenthesis, brackets, commas, and colons, Python let's you spend more time
on programming and less time on debugging the syntax.



Libraries and community

Python's broad range of libraries is very portable over different platforms, such as Unix, Windows, or OS
X. These libraries can be easily extended based on your application/program requirement. There is a
huge community that works on building these libraries and this makes it the best fit for business use cases.

As far as the Python community is concerned, the Python User Group (PUG) is a community that works
on the community-based development model to increase the popularity of Python around the globe. These
group members give talks on Python-based frameworks, which help us build large systems.



Interactive mode

The Python interactive mode helps you debug and test a snippet of code, which can later be added as a
part of the main program.



Scalable

Python provides better structure and concept, such as modules, to maintain large programs in a more
systematic manner than any other scripting language, such as shell scripting.



Understanding the twelve-factor app

Cloud native applications fit in with an agreement intended to augment versatility through predictable
practices. This application maintains a manifesto of sorts called the twelve-factor app. It outlines a
methodology for developers to follow when building modern web-based applications. Developers must
change how they code, creating a new contract between the developers and the infrastructure that their
applications run on.

The following are a few points to consider when developing a cloud native application:

Use an informative design to increase application usage with minimal time and cost to customers
using automation

Use application portability across different environments (such as stage and production) and
different platforms (such as Unix or Windows)

Use application suitability over cloud platforms and understand the resource allocation and
management

Use identical environments to reduce bugs with continuous delivery/deployment for maximum agility
of software release

Enable high availability by scaling the application with minimal supervision and designing disaster-
recovery architectures

Many of the twelve-factors interact with each other. They focus on speed, safety, and scale by
emphasizing on declarative configuration. A twelve-factor app can be described as follows:

Centralized code base: Every code that is deployed is tracked in revision control, and should have
multiple instances deployed on multiple platforms.

Dependencies management: An app should be able to declare the dependencies, and isolate them
using tools such as Bundler, pip, and Maven.

Defining configuration: Configurations (that is, environment variables) that are likely to be different
in different deployment environments (such as development, stage, and production) should be
defined at the operating-system level.

Backing services: Every resource is treated as a part of the application itself. Backing services such
as databases and message queues should be considered as an attached resource, and consumed
equally in all environments.

Isolation in build, release, and run cycle: This involves strict separation between build artifacts,
then combining with configuration, and then starting one or more instances from the artifact and
configuration combination.



Stateless processes: The app should execute one or more instances/processes (for example,
master/workers) that share nothing.

Services port binding: The application should be self-contained, and if any/all services need to be
exposed, then it should be done via port binding (preferably HTTP).

Scaling stateless processes: The architecture should emphasize stateless process management in the
underlying platform instead of implementing more complexity to the application.

Process state management: Processes should scale up very quickly and shut down gracefully
within a small time period. These aspects enable rapid scalability, deployment of changes, and
disaster recovery.

Continuous delivery/deployment to production: Always try to keep your different environments
similar, whether it is development, stage, or production. This will ensure that you get similar results
across multiple environments, and enable continuous delivery from development to production.

Logs as event streams: Logging is very important, whether it is platform level or application level,
as this helps understand the activity of the application. Enable different deployable environments
(preferably production) to collect, aggregate, index, and analyze the events via centralized services.

Ad hoc tasks as on-off processes: In the cloud native approach, management tasks (for example,
database migration) that run as a part of a release should be run as one-off processes into the
environment as opposed to the regular app with long-running processes.

Cloud application platforms such as Cloud Foundry, Heroku, and Amazon Beanstalk are optimized for
deploying twelve-factor apps.

Considering all these standards and integrating applications with steady engineering interfaces, that is,
handling stateless outline design, makes disseminated applications that are cloud prepared. Python
revolutionized application systems with its obstinate, tradition-over-setup way to deal with web
improvements.



Setting up the Python environment

As we will demonstrate throughout this book, having the right environment (local or for your automated
builds) is crucial to the success of any development project. If a workstation has the right tools, and is set
up properly, developing on that workstation can feel like a breath of fresh air. Conversely, a poorly set up
environment can suffocate any developer trying to use it.

The following are the prerequisite accounts that we require in the later part of the book:

e A GitHub account needs to be created for source code management. Use the article on the following
link to do so:

https://medium.convappliedcode/setup-github-account-9a5ec918bcc 1

e AWS and Azure accounts are required for application deployment. Use the articles given on the

following links to create these:
e AWS: httpsy/medium.com/appliedcode/setup-aws-account-1727ce89353e
e Azure: httpss/medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b

Now, let's set up some of the tools that we will need during our development project.


https://medium.com/appliedcode/setup-github-account-9a5ec918bcc1
https://medium.com/appliedcode/setup-aws-account-1727ce89353e.
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b

Installing Git

Git (httpsv/git-scm.com) is a free and open source distributed, version control system designed to handle
everything, ranging from small to very large projects, with speed and efficiency.


https://git-scm.com

Installing Git on Debian-based distribution Linux
(such as Ubuntu)

There are a couple of ways by which you can install Git on a Debian system:
1. Using the Advanced Package Tool (APT) package management tools:

You can use the APT package management tools to update your local package index. Then, you can
download and install the latest Git using the following commands as the root user:

$ apt-get update -y
$ apt-get install git -y

The preceding commands will download and install Git on your system.

2. Using the source code, you can do the following:
1. Download the source from the GitHub repository, and compile the software from the source.

Before you begin, let's first install the dependencies of Git; execute the following
commands as the root user to do so:

$ apt-get update -y
$ apt-get install build-essential libssl-dev
libcurl4-gnutls-dev libexpatil-dev gettext unzip -y

2. After we have installed the necessary dependencies, let's go to the Git project
repository (httpsz/github.com/git/git) to download the source code, as follows:

$ wget https://github.com/git/git/archive/v1.9.1.zip -0git.zip

3. Now, unzip the downloaded ZIP file using the following commands:

$ unzip git.zip
$ cd git-*

4. Now you have to make the package and install it as a sudo user. For this, use the
commands given next:

$ make prefix=/usr/local all
$ make prefix=/usr/local install

The preceding commands will install Git on your system at /usr/local.


https://github.com/git/git

Seting up Git on a Debian-based distribution

Now that we have installed Git on our system, we need to set some configuration so that the commit
messages that will be generated for you contain your correct information.

Basically, we need to provide the name and email in the config. Let's add these values using the following
commands:

$ git config --global user.name "Manish Sethi"
$ git config --global user.email manish@sethis.in



Installing Git on Windows

Let's install Git on Windows; you can download the latest version of Git from the official website (https/git
-scm.com/download/win). Follow the steps listed next to install Git on a Windows system:

1. Once the .exe file is downloaded, double-click on it to run it. First of all, you will be provided with
a GNU license, as seen in this screenshot:

Git 21,1 Setup E=aollizad

Irformation
Hpare read e Tolowng mpos st rfrnabon belee ooy,

Viher you are resgy o conbrus vath Sebep, chds Hesr,

GMNU General Public License
Wigesinn 7, lune 1994

q.-:-:}.l-r (E) 997, 1900 Foed soFCAam: PARBICI0E, DAC
§f Tenpis Plmca - S31te 130 Soatoe, M ODZLLI-170F, LER

l.'lr Jofa 11 parwitted ©2-cgpy ard datribarts vertetie coptas
his Flosee docksenT. DT C4ae ging 1T % Ao a1l

Preamble

The licansas for mest softwars are dasigned to take away vour
freedom to shan= aind changs it. B contrast, the GHU Gen=ral =ublic _
| irmnes iz irFardes te o seaemas wnoe fresdne bn clhsre snd chapae

Click on Next:

Git 2111 Setup == =]

Select Components
Which components should be installed?

Select the companents you want to install; dear the components vou do not want to
install, Click Mext when you are ready to continue.

[E | Additional icons
‘.. [7] on the Desktop
[ Wlndnws Explorer integration
| Git Bash Here
- | Git GUI Here
[¥] Assodate .git™ configuration files with the default text editor
[¥] Aszodiate .sh files to be run with Bash
[T use a TrueType fontin all console windows

Current selection requires at least 202.6 MB of disk space.

| < Back |[ MNext = ]| Cancel I

In the section shown in the preceding screenshot, you will customize your setup based on tools that


https://git-scm.com/download/win

needed, or you can keep it default, which is okay from the book's perspective.

2. Additionally, you can install Git Bash along with Git; click on Next:

Git 2.11.1 Setup o || @[ =]

Adjusting your PATH environment
How would you like to use Git from the command line?

@ Use Git from Git Bash only

This is the safest choice as your PATH will not be modified at all, You will only be
able to use the Git command line tools from Git Bash.

1 Use Git from the Windows Command Prompt

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid duttering your environment with optional Unix tools. You will be
able to use Git from both Git Bash and the Windows Command Prompt,

i) Use Git and optional Unix tools from the Windows Command Prompt

Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows tools lilce "find"” and "sort"”. Only
use this option if you understand the implications.

| <Back || mext> || cancel |

3. Inthe section seen in the next screenshot, you can enable other features that come along with Git
packages. Then, click on Next:

Git 211.1 Setup = @[]
Configuring extra options
Which features would you like to enable?

File system data will be read in bulk and cached in memary for certain
operations {"core. fecache” is set to “true”). This provides a significant
performance boost,

[¥] Enable Git Credential Manager

The Git Credential Manager for Windows provides secure Git credential storage
for Windows, most notably multi-factor authentication support for Visual Studio
Team Services and GitHub. {requires .MET framework v4. 5.1 or or later),

[7] Enable symbolic links

Enable symbalic links {requires the SeCreateSymbolicLink permission).
Please note that existing repositories are unaffected by this setting.

| < Back |[ Mext > ]| Cancel |

4. You can skip the rest of the steps by clicking on Next, and go for the installation part.

Once you complete the installation, you will be able to see a screen like this:



ik 211 Selup =T m el

Completing the Git Setup Wizard

Satap has Artshed nskalng G5 on your compusar.

K AEEh Dooeail Selin,

-'-':.
o T [ Launch Gt gash
e | Wi Bedesre Hooes

Great!! We have successfully installed Git on Windows!!



Using Chocolatey

This is my preferred way to install Git for Windows on Windows 10. It installs the same package as
before, but in one line. If you have not heard of Chocolatey, stop everything, and go learn a bit more. It
can install the software with a single command; you don't have to use click-through installers anymore!

Chocolatey is very powerful, and I use it in combination with Boxstarter to set up my dev machines. If
you are in charge of setting up machines for developers on Windows, it is definitely worth a look.

Let's see how you would install Git using Chocolatey. I assume you have Chocolatey installed (https:/chocola
tey.org/install) already (it's a one-liner in Command Prompt). Then, simply open the administrator command
window, and type this command:

| $ choco install git -params '"/GitAndUnixToolsOnPath"'

This will install Git and the east tools, and add them to your path.


https://chocolatey.org/install

Installing Git on Mac

Before we begin with the Git installation, we need to install command-line tools for OS X.



Installing the command-line tools for OS X

In order to install any developer, you will need to install Xcode (https:/developer.apple.com/xcode/), which is a
nearly 4 GB developer suite. Apple offers this for free from the Mac App Store. In order to install Git and
the GitHub setup, you will need certain command-line tools, which are part of the Xcode development
tools.

If you have enough space, download and install Xcode, which is basically a complete package of
development tools.

You will need to create an Apple developer account at developer.apple.com in order to download command-
line tools. Once you have set up your account, you can select the command-line tools or Xcode based on
the version, as follows:

e If youare on OS X 10.7.x, download the 10.7 command-line tools. If you are on OS X 10.8.x,
download the 10.8 command-line tools.
¢ Once it is downloaded, open the ows file, and follow the instructions to install it.


https://developer.apple.com/xcode/
http://developer.apple.com

Installing Git for OS X

Installing Git on Mac is pretty much similar to how you install it on Windows. Instead of using the .exe
file, we have the dang file, which you can download from the Git website (https://git-scm.Com/download/mac) for
installation as follows:

1. Double-click on the dmg file that got downloaded. It will open a finder with the following files:

& i J Git 2,101 Mavericks Intel Universal
git-2.10.1-intel-universal- README txut WERSION-2.107-universal-
mavericks, phg mavericks

2. Double-click on the package (that is, git-2.10.1-intel-universal-mavericks.dmg) file; it will open the
installation wizard to install, as seen in the following screenshot:



@ w Install git-2.10.1-intel-universal-mavericks

Welcome to the git-2.10.1-intel-universal-mavericks Installer

You will be guided through the steps necessary to install this

» Introduction g

Destination Select
Installation Type
Installation

Summary

Continue

3. Click on Install to begin the installation:




» Introduction

» Destination Select

+ Installation Type
Installation

Summary

« Install git-2.10.1-intel-universal-mavericks

Standard Install on “Macintosh HD"

This will take 54.4 MB of space on your computer.

Click Install to perform a standard installation of this software
on the disk "Macintosh HD",

Change Install Location...

Go Back Install

4. Once the installation is complete, you will see something like this:



. F.AT

@

]

=

i

&

w Install git-2.10.1-intel-universal-mavericks

The installation was completed successfully.

Introduction
Destination Select
Installation Type

Installation

Summary The installation was successful.

The software was installed.

R

If you are using OS X 10.8 and haven't already modified your security settings to allow
the installation of third-party applications, you'll need to make that adjustment before OS
X lets you install these tools.




Installing and configuring Python

Now, let's install Python, which we will use to build our microservices. We will be using the Python 3.x
version throughout the book.



Installing Python on a Debian-based distribution
(such as Ubuntu)

There are different ways to install Python on a Debian-based distribution.



Using the APT package management tools

You can use the APT package management tools to update your local package index. Then, you can
download and install the latest Python using the following commands as a root user:

$ apt-get update -y
$ apt-get install python3 -y

The following packages will automatically be downloaded and installed, as these are the prerequisites
for Python 3 installation:

libpython3-dev libpython3.4 libpython3.4-dev python3-chardet
python3-colorama python3-dev python3-distlib python3-html51ib

python3-requests python3-six python3-urllib3 python3-wheel python3.4-de

Once the prerequisites are installed, it will download and install Python on your system.



Using source code

You can download the source code from the GitHub repository and compile the software from the source,
as follows:

1. Before you begin, let's first install the dependencies of Git; execute the following commands as the
root user to do so:

$ apt-get update -y

$ apt-get install build-essential checkinstall libreadline-gplv2-
dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-
dev libc6-dev libbz2-dev -y

2. Now, let's download Python (https:/www.python.org) using the following command from Python's official
website. You can also download the latest version in place, as specified:

$ cd /usr/local
$ wget https://www.python.org/ftp/python/3.4.6/Python-3.4.6.tgz

3. Now, let's extract the downloaded package with this command:

| $ tar xzf Python-3.4.6.tgz

4. Now we have to compile the source code. Use the following set of commands to do so:

$ sudo ./configure

$ cd python-3.4.6
$ sudo make altinstall

5. The preceding commands will install Python on your system at /usr/1ocal. Use the following
command to check the Python version:

$ python3 -v
Python 3.4.6


https://www.python.org

Installing Python on Windows

Now, let's see how we can install Python on Windows 7 or later systems. Installation of Python on
Windows is pretty simple and quick; we will be using Python 3 and above, which you can download from
Python's download page (httpsv/www.python.org/downloads/windows/). Now perform the following steps:

1. Download the Windows x86-64 executable installer based on your system configuration, and open it
to begin the installation, as shown in the following screenshot:

@ Python 3.5.3 (64-bit) Setup == [[=]

Install Python 3.5.3 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features,

= Install Now
ChlUsers\maniseth. JRADEV  AppDatatLocal\Pregrams\Python' Python35s

Includes IDLE, pip and documentation
Creates shortcuts and file associations

= Customize installation
Choose location and features

python
for ¥ Install launcher for all users (recommended)

windows 7] Add Python 3.5 to PATH Cancel |

2. Next, select the type of installation you want to go with. We will click on Install Now to go for the
default installation, as seen in this screenshot:


https://www.python.org/downloads/windows/

™ | Python 3.5.3 (64-bit) Setup

python

fiar
windows

== =]

Setup Progress

Installing:

Initializing...

H

Cancel

3. Once the installation is complete, you will see the following screen:

| Python 3.5.3 (64-hit) Setup

python

f-l:"
windows

Setup was successful

Special thanks to Mark Hammond, without whose years of freely
shared Windows expertise, Python for Windows would still be Python
for DOS.

Mew to Python? Start with the online tutorial and documentation.

Close

Great! We have successfully installed Python on Windows.




Installing Python on Mac

Before we begin with the Python installation, we need to install the command-line tools for OS X. If you
have already installed the command-line tools at the time of Git installation, you can ignore this step.



Installing the command-line tools for OS X

In order to install any developer, you need to install Xcode (https:/developer.apple.com/xcode/); you will need to
set up an account on connect.apple.com to download the respective Xcode version tools.

However, there is another way you can install command-line tools using a utility, which comes along with
an Xcode called xcode-select, which is shown here:

| % xcode-select --install

The preceding command should trigger an installation wizard for the command-line tools. Follow the
installation wizard, and you will be able to install it successfully.


https://developer.apple.com/xcode/

Installing Python for OS X

Installing Python on Mac is quite similar to how you install Git on Windows. You can download the
Python package from the official website (https//www.python.org/downloads/). Proceed with the following steps:

1. Once the Python package is downloaded, double-click on it to begin the installation; it will show the
following pop-up window:

[ ] « Install Python -

Welcome to the Python Installer

This package will install Python 3.5.3 for Mac OS X 10.6 or later.
+ Introduction , _
Python for Mac OS X consists of the Python programming language
interprater, plus a set of programs to allow easy access to it for Mac OS X
users including an integrated development environment IDLE.

IMPORTANT: IDLE and other programs using the tkinter graphical user
interface toolkit require specific versions of the Tel/Tk platform
independent windowing toolkit. Visit hitps:iwww.python. org/download/
mac/icltk! for current information on supported and recommended
versions of Tcl/Tk for this version of Python and Mac OS X.

Continue

2. The next step will be about the release note and the respective Python version information:


https://www.python.org/downloads/

i ' Install Python

Important Information

This package will install Python 3.5.3 for Mac OS X 10.6 or later for the
o Introduction following architecture(s): 1386, x86_64.

Which installer variant should | use?

Python.org provides two installer variants for download: one that installs a
B64-bit:32-bit Intel Python capable of running on Mac OS X 10.6 (Snow
Leopard) or later; and one that installs a 32-bit-only (Intel and PPC)
Python capable of running on Mac OS5 X 10.5 (Leopard) or later. This
ReadMe was installed with the 10.6 or later variant. Unless you are
installing to an 10.5 system or you need to build applications that can run
on 10.5 systems, use the 10.6 variant if possible. There are some
additional operating system functions that are supported starting with
10.6 and you may see better performance using 64-bit mode. By default,
Python will automatically run in 64-bit mode if your system supports it.
Also see Certificate verification and OpenS5SL below. The Pythons
installed by these installers are built with private coples of some third-
party libraries not included with or newer than those in OS5 X itself. The
list of these libraries varies by installer variant and is included at the end
of the License.rtf file.

Update your version of TclTk to use IDLE or other Tk applications

Print... Save... Go Back Continue

3. Next, you will need to Agree with the license, which is mandatory for installation:




- Ir_1_sj:all F",r_tht_]n

To continue installing the software you must agree to the terms of

the software license agreement. -
Click Agree to continue or click Disagree to cancel the installation and

~ Rei guit the Installer.

Read License Disagree Agree

X 5.0.5
NCurses 5.9
S0Lite 3.8.11

For licenses and acknowledgements for these and other third-party

software incorporated in this Python distribution, please refer to the on-
line documentation here.

Print... Save... Go Back Continue

4. Next, it will show you the installation-related information, such as the disk occupied and the path.
Click on Install to begin:




] « Install Python

Standard Install on “Macintosh HD"

This will take 97.2 MB of space on your computer.

¢ Introduction

Click Install to perform a standard installation of this software
on the disk "Macintosh HD".

Change Install Location...

Customize Go Back Install

5. Once the installation is complete, you will see the following screen:

] ' Install git-2.10.1-intel-universal-mavericks

The installation was completed successfully.

Introduction
Destination Select
Installation Type
Installation
Summary The installation was successful.

The software was installed.

L L] -]

—
L]




6. Use the following command to see whether the Python version is installed:

% python3 -V
Python 3.5.3

Great!! Python is successfully installed.



Getting familiar with the GitHub and Git
commands

In this section, we will go through a list of Git commands, which we will be using frequently throughout
the book:

e git init: This command initializes your local repository once when you are setting it up for the first
time

¢ git remote add origin <server>: This command links your local <indexentry content="Git
command: git remote add origin " dbid="164250" state="mod">directory to the remote server
repository so that all the changes pushed are saved in the remote repository

e git status: This command lists the files/directories that are yet to be added, or are modified and
need to be committed

¢ git add * or git add <filename>: This command adds files/directories so that <indexentry content="6it
command:git add * or git add " dbid="164250" state="mod">they can be tracked, and makes them ready to be
committed

e git commit -m "Commit message": This command helps you commit your track changes in the
local machine and generate the commit ID by which the updated code can be identified

e git commit -am " Commit message": The only difference between the previous command and this
command is that this opens a default editor to add the commit message based on an operating system
such as Ubuntu (Vim) or Windows (Notepad++) after adding all the files to stage

¢ git push origin master: This command pushes the last committed code from the local directory to the
remote repository

Test everything to make sure our environment works.

Here we go. We have installed both Git and Python in the last section, which are needed to begin with
building microservices. In this section, we will focus on testing the installed packages and try to get
familiar with them.

The first thing we can do is to exercise the Git command, which fetches an external Python code from a
repository (usually GitHub) over HTTPs, and copies it into our current workspace in the appropriate
directory:

$ git clone https://github.com/PacktPublishing/Cloud-Native-
Python.git

The preceding command will create a directory named c1oud-native-python On your local machine; switch to
the Cloud-Native-Python/chapteri path from the current location.

We will need to install the requirements of the apps that are needed to run it. In this case, we just need the
Flask module to be available:

$ cd hello.py
$ pip install requirements.txt



Here, Flask works as the web server; we will understand more about it in detail in the next chapter.

Once it is installed successfully, you can run the app using the following command:

$ python hello.py
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

I think we are good to see the output, which is as follows:

$ curl http://0.0.0.0:5000/
Hello World!

If you see this output, then our Python development environment is correctly set up.

Now it's time to write some Python code!



Summary

In this chapter, we began with exploring the cloud platform and the cloud computing stack. During this
chapter, you learned what the different twelve-factor apps methodologies are, and how they can help
develop microservices. Lastly, you got to know about what kind of ideal setup environment a developer

machine should have to create or get started with application creation.

In the next chapter, we will start building our microservices by creating backend REST APIs, and testing
with the API call or using the Python framework as well.



Building Microservices in Python

Now, since you understand what microservices are and, hopefully, have a sense of their key benefits, I'm
sure you are eager to begin building them. In this chapter, we will immediately start writing REST APISs,
which collectively work as microservices.

The topics we will cover in this chapter are as follows:

e Building a REST API
e Testing an API



Python concepts

Let's first understand a few concepts of Python, which we will use in this book.



Modules

A module basically allows you to logically organize your programming code. It is similar to any other
Python program. They are needed in scenarios where we need only a bit of code to be imported instead of
the entire program. A module can be a combination of one or multiple functions classes, and many more.
We will use a couple of inbuilt functions, which are a part of the Python library. Also, wherever needed,
we will create our own modules.

The following example code showcases the structure of modules:

#myprogram. py

### EXAMPLE PYTHON MODULE
# Define some variables:
numberone = 1

age = 78

# define some functions
def printhello():
print "hello"

def timesfour(input):
print input * 4

# define a class
class house:
def __init_ (self):
self.type = raw_input("What type of house? ")
self.height = raw_input("What height (in feet)? ")
self.price = raw_input("How much did it cost? ")
self.age = raw_input("How old is it (in years)? ")

def print_details(self):
print "This house is a/an " + self.height + " foot",
print self.type, "house, " + self.age, "years old and costing\
" + self.price + " dollars."

You can import the preceding module using the following command:

|# import myprogram



Functions

A function is a block of organized, self-contained programs that perform a specific task, which you can
incorporate into your own larger programs. They are defined as follows:

# function

def functionname():

do something
return

These are a few points to remember:

¢ Indentation is very important in Python programs
e By default, parameters have a positional behavior, and you need to inform them in the same order
that they were defined in

Please see the following code snippet example, which showcases functions:

def display ( name ):

#This prints a passed string into this function
print ("Hello" + name)
return;

You can call the preceding function as follows:

display("Manish")
display("Mohit")

The following screenshot shows the execution of the preceding disp1ay function:

arint (el o™ +

" Mohit "}

Murn

Note that if you have more than one Python version installed on your system, you need to
use Python 3 instead of Python, which uses the default version of Python (generally,
2.7.X).



Modeling microservices

In this book, we will develop a full-fledged working web app that works independently.

Now, since we have a basic understanding of Python, let's get started with modeling our microservices
and understanding the application workflow.

The following diagram shows the microservices architecture and application workflow:

g Client
o i)

.
:
:
l\-\I\"\.

= "l
Ul \ Lil ‘
“\H #
JSON | M‘H / 150N
2
S
APl Gatearay
"'I-'H‘x
/= {IsON
J50M _..-"'j HHH“‘*H
REET / REBT Tk
oR APl
. User Taeais
| Manageme=nt Managemsrt




Building microservices

In this book, we will use Flask as a web framework to build our microservices. Flask is a powerful web
framework, which is easy to learn and simple to use. Additionally, in Flask, we need a little boilerplate
code to get a simple app up and running.

Since we will create our application using the twelve-factor app concept, we will begin by ensuring that
we have a centralized code base. By now, you should know how to create a GitHub repository. If not,
make sure you create it as per the blogpost link provided in Chapter 1, Introducing Cloud Native
Architecture and Microservices. We will be pushing the code regularly to the repository.

Assuming you have created the repository during the course of this book, we will use the GitHub
repository (https //github.com/PacktPublishing/Cloud-Native-Python. git) .

So, let's set up our local directory in sync with the remote repository. To ensure that we are in the app
directory, use the following commands:

mkdir Cloud-Native-Python # Creating the directory

cd Cloud-Native-Python # Changing the path to working directory

git init . # Initialising the local directory

echo "Cloud-Native-Python" > README.md # Adding description of repository

git add README.md # Adding README.md

git commit -am "Initial commit" # Committing the changes

git remote add origin https://github.com/PacktPublishing/Cloud-Native-Python.git # Adding to local repository
git push -u origin master # Pushing changes to remote repository.

R R e T T

You will see the following output:

it remzta add erigin  https:dopithis comfFacktFublishing/Cloud- Hative-Fyihon . gil

W

We have successfully pushed our first commit to the remote repository; we will keep doing so in a similar
fashion till we reach a certain milestone in building microservices, as well as the application.

Now, we need to install a file-based database, such as SQLite version 3, which will work as the
datastore for our microservices.

To install SQLite 3, use the following command:

| $ apt-get install sqlite3 libsqlite3-dev -y


https://github.com/PacktPublishing/Cloud-Native-Python.git

We can now create and use (source) a virtualenv environment, which will isolate the local app's
environment from the global site-packages installations. If virtualenv is not installed, you can install it using
the following command:

| $ pip install virtualenv

Now create virtualenv as follows:

$ virtualenv env --no-site-packages --python=python3
$ source env/bin/activate

We should see the output of the preceding command as shown in the following screenshot:

retharepythand

A oS- ap python

"ofor more informotion.

After the virtualenv setup, currently, we need one dependency in our virtualenv environment that needs to
be installed. Use the following command to add one package dependency into requirements. txt:

| $ echo "Flask==0.10.1" >> requirements.txt

In the future, if any more dependencies are needed as part of the application, they will go inside the
requirements.txt file.

Let's use the requirements file to install the dependencies into the virtualenv environment as follows:

| $ pip install -r requirements.txt

Now that we have the dependencies installed, let's create a file, app.py, with the following contents:

from flask import Flask

app = Flask(__name__)

if __name__ == "__main__":
app.run(host='0.0.0.0"', port=5000, debug=True)

The preceding code is the basic structure to run an application using Flask. It basically initializes the r1ask
variable and runs on port seee, which is accessible from anywhere (o.0.6.0).

Now, let's test the preceding code and see if everything is working fine.

Execute the following command to run the application:

| $ python app.py



We should see the output of the preceding command as shown in the following screenshot:

5 e it Bl 4 0 Y o] L il e e

agrant /gl thubs Flosk-g1 croservices-appld cat apg, gy

ILr 1]

arting with
ar 15 activel

At this point in time, before we start building RESTful APIs, we need to decide what will be our root
URL to access the service, which will further decide the sub URI for the different methods. Consider the
following example:

http://[hostname]/api/v1/.

Since, in our case, we will be using a local machine, hostname can be 1ocaihost with port, which is, by
default, seee for a Flask application. So, our root URL will be as follows:

http://localhost:5000/api/vl/.

Now, let's decide the resources on which different actions will be performed, and which will be exposed
by this service. In this case, we will create two resources: users and tweets.

Our users and info resource will use the HTTP methods as follows:

HTTP URI Actions

Method

GET http://localhost:5000/api/vi/info This responds back with the version

GET http://localhost:5000/api/vi/users This responds with the user list

GET http://localhost:5000/api/vi/users/[user_id] EQES_E%SPCHJSG will be the user details of the specified




POST http://localhost:5000/api/vi/users This resource will create new users in the backend

server with values from the object passed

This resource will delete the user with the specified

DELETE http://localhost:5000/api/v1/users R
username passed in JSON format

This resource updates the user information of the
PUT http://localhost:5000/api/vi/users/[user_id] SpECiﬁC user_id based on the JSON otﬁecj passed»as
part of the API call.

Using the client, we will perform actions against resources such as add, remove, modify, and many more.

For the scope of this chapter, we will take a file-based database, such as SQLite 3, which we already
installed earlier.

Let's go and create our first resource, which is /api/vi/info, and show the available versions and their
release details.

Before that, we need to create an apirelease table schema, as defined in SQLite 3, which will contain
information about the API version release. This can be done as follows:

CREATE TABLE apirelease(

buildtime date,

version varchar(30) primary key,

links varchar2(30), methods varchar2(30));

Once it is created, you can add records into SQLite 3 for our first version (v1) using the following
command:

| Insert into apirelease values ('2017-01-01 10:00:00', "vi", "/api/vl/users", "get, post, put, delete");

Let's define the route /api/vi/info and function in app.py, which will basically handle the RESTful call on
the /apisvi/info route. This is done as follows:

from flask import jsonify
import json
import sqlite3
@app.route("/api/vi/info")
def home_index():
conn = sglite3.connect('mydb.db')
print ("Opened database successfully");
api_list=[]
cursor = conn.execute("SELECT buildtime, version,
methods, links  from apirelease")
for row in cursor:
a_dict = {}
a_dict['version'] = row[0]
a_dict['buildtime'] = row[1]
a_dict['methods'] = row[2]
a_dict['links'] = row[3]
api_list.append(a_dict)
conn.close()
return jsonify({'api_version': api_list}), 200




Now that we have added a route and the handle for it, let's make a RESTful call on
http://localhost:5000/api/vi/info, dS shown in this screenshot:

ik ithubsfiosk-micraservices—opn# curl http: S localhost - 5860 0p1
mus MOT foud in DHE: Cocnsa
b

SEARR foiled: Connecticn refusned

T 0.1 port BRAR (207

Awesome! It works!!

Let's move on to the /api/vi/users resource, which will help us perform various actions on the user's
records.

We can define a user as having the following fields:

id: This is a unique identifier for users (Numeric type)

username: This is a unique identifier or nandier for users for authentication (String type)
emailid: This is the user's email (String type)

password: This is the user's password (String type)

full_name: This is the full name of the user (String type)

In order to create the user's table schema in SQLite, use the following command:

CREATE TABLE users(

username varchar2(30),

emailid varchar2(30),

password varchar2(30), full name varchar(30),
id integer primary key autoincrement);



Building resource user methods

Let's define our ceT methods for user resources.



GET /api/vl/users

The cet/apisvi/users method shows the list of all users.

Let's create an /api/vi/users route by adding the following code snippet to app.py:

def get_users():

@app.route('/api/vi/users', methods=['GET'])
return list_users()

Now that we have added the route, we need to define the 1ist_users() function, which will connect with the
database to get you the complete list of users. Add the following code to app.py:

def 1list _users():
conn = sglite3.connect('mydb.db")
print ("Opened database successfully");
api_list=[]
cursor = conn.execute("SELECT username, full name,
email, password, id from users")
for row in cursor:
a_dict = {}
a_dict['username'] = row[0]
a_dict['name'] = row[1]
a_dict['email'] = row[2]
a_dict['password'] = row[3]
a_dict['id'] = row[4]
api_list.append(a_dict)
conn.close()

return jsonify({'user_list': api_list})

Now that we have added the route and the handle for it, let's test check the nttp://1ocalhost:5000/api/vi/users
URL as follows:

|.-___1".'_.r|‘|:.-"|:| 1thubsf Lotk -mieraseryicos-aopR curl Rttpidd localhost (5000 ap1svl/users

o TManLlsh T,

monishlZ3"
MOn1sn

]

TrootEpackipub: fvagrontSgi thub/ flask-microservices-appsd I




GET /api/vl/users/[user_id]

The GET/api/vil/users/[user_id] method shows the user details defined by user_id.

Let's create the route for preceding a cer request into the app.py file as follows:

def get_user(user_id):

@app.route('/api/vi/users/<int:user_id>', methods=['GET'])
return list_user(user_id)

As you can see in the preceding code, we call the 1ist_user(user_id) route into the 1ist_user(user) function,
which is not yet defined in app.py. Let's define it to get the details of the specified user, as follows, in the
app.py file:

def 1list user(user_id):
conn = sglite3.connect('mydb.db"')
print ("Opened database successfully");
api_list=[]
cursor=conn.cursor ()
cursor.execute("SELECT * from users where id=?", (user_id,))
data = cursor.fetchall()
if len(data) != O:
user = {}
user['username'] = data[0][0]
user['name'] = data[0][1]
user['email'] = data[0][2]
user['password'] = data[0][3]
user['id'] = data[0][4]
conn.close()
return jsonify(a_dict)

Now that we've added the 1ist_user(user_id) function, let's test it out and see if everything is working fine:

wan erbersd bhe URL manizally plegse Chack yonir

Oops! It seems the ID is not present; usually, Flask applications respond with an HTML message with a
a04 error if the ID is not present. Since this is a web service application, and we are getting a response in
JSON for other APIs, we need to write handier for the 4e4 error so that, instead of the HTML response, it
should respond back in JSON, even for errors. For example, see the following code for 4e4 error handling.
Now, the server will respond with proper messages which are part of the code, as follows:

from flask import make_response

@app.errorhandler(404)

def resource_not_found(error):
return make_response(jsonify({'error':
'Resource not found!'}), 404)



il b b ST ik Pk r Ao

reotBpocktoub Svagront gl thub A lask -microservices-oppd curl Bitp: Al ecalhost: SAGH api A1 userss2

=Pl = re not found!

TrookEpackip grantSaithubsFlask-microservices-apps I

Additionally, you can add the abort library from Flask, which is basically for calling exceptions.
Similarly, you can create multiple error handlers for different HTTP error codes.

Now that our cer methods are working fine, we will go forward and write the rost method, which is
similar to adding new users to the users list.

There are two methods to pass the data into the rost method, which are as follows:

e JSON: In this approach, we pass the JSON record in the form of an object as part of the request. The
RESTful API call would look like this:

| curl -i -H "Content-Type: application/json" -X POST -d {"field1":"value"} resource_url

e Parameterized: In this approach, we pass the values of the record as parameters, as follows:

| curl -i -H "Content-Type: application/json" -X POST resource_url?fieldl=vali&field2=val2

In the JSON method, we provide the input data in the form of json, and we read it in the same way. On the
other hand, in the parameterized method, we provide the input data (that is, username, and so on) in the form
of URL parameters, and read data in the same way.

Also note that the API creation at the backend will vary with the type of API call being made.



POST /api/vl/users

In this book, we go with the first approach to the rost method. So, let's define our route for the post method
in app.py, and call the function to update the user record to the database file, as follows:

@app.route('/api/vi/users', methods=['POST'])
def create_user():
if not request.json or not 'username' in request.json or not
'email' in request.json or not 'password' in request.json:
abort (400)
user = {

'username': request.json['username'],
'email': request.json['email'],
'name': request.json.get('name',""),
'password': request.json['password']

}

return jsonify({'status': add_user(user)}), 201

As you can see, in the preceding method, we called the exception with error code 4e0; let's write its
handler now:

@app.errorhandler (400)
def invalid_request(error):
return make_response(jsonify({'error': 'Bad Request'}), 400)

We still need to define the add_user(user) function, which will update the new user record. Let's define it in
app.py, dS follows:

def add_user(new_user):
conn = sglite3.connect('mydb.db')
print ("Opened database successfully");
api_list=[]
cursor=conn.cursor ()
cursor.execute("SELECT * from users where username=? or
emailid=?", (new_user['username'],new_user['email']))
data = cursor.fetchall()
if len(data) != O:
abort(409)
else:
cursor.execute("insert into users (username, emailid, password,
full name) values(?,?,?,?)", (new_user['username'],new_user['email'],
new_user[ 'password'], new_user['name']))
conn.commit ()
return "Success"
conn.close()
return jsonify(a_dict)

Now that we have added handier, as well as the route for the rost method of the user, let's test it by adding a
new user using the following API call:

curl -i -H "Content-Type: application/json" -X POST -d '{

"username": "mahesh@rocks", "email": "mahesh99@gmail.com",

"password": "mahesh123", '"name":'"Mahesh" }'
http://localhost:5000/api/v1l/users

Then, validate the user's list curl, nttp://1ocalhost:se00/api/vi/users, as Shown in the following screenshot:



, lemail




DELETE /api/vl/users

The delete method helps remove a specific record, which is defined by a username. We will pass username
as the JSON object that needs to be deleted from the database.

The following code snippet will create a new route in app.py for the oecete method for users:

@app.route('/api/vi/users', methods=['DELETE'])
def delete_user():
if not request.json or not 'username' in request.json:
abort (400)
user=request.json[ 'username']
return jsonify({'status': del_user(user)}), 200

In the next code snippet, we will call de1_user, which deletes the user record specified by username after
validating whether it exists or not:

def del user(del_user):
conn = sglite3.connect('mydb.db"')
print ("Opened database successfully");
cursor=conn.cursor ()
cursor.execute("SELECT * from users where username=? ",
(del_user,))
data = cursor.fetchall()
print ("Data" ,data)
if len(data) == 0:
abort(404)
else:
cursor.execute("delete from users where username==?",
(del_user,))
conn.commit ()
return "Success"

Great! We have added the route /nhandier for the peLete method for the user resource; let's test it using the
following test API call:

curl -i -H "Content-Type: application/json" -X delete -d '{
"username':"manish123" }' http://localhost:5000/api/v1/users

Then, hit the user list API (curl http://localhost:SOOO/api/vl/users) to see if the Changes have been made:



Combent-1ype: amiicoticndjzon’ -K delete -4 '{ “userreame’ :“rorishliE }' httpt

Awesome! User deletion is successful.



PUT /api/vl/users

The PUT API basically helps us update a user's record specified by user_id.

Go ahead and create a route with the pur method to update the user records defined in the app.py file, as
follows:

@app.route('/api/vi/users/<int:user_id>', methods=['PUT'])
def update_user(user_id):
user = {}
if not request.json:
abort (400)
user['id']=user_id
key_list = request.json.keys()
for i in key_list:
user[i] = request.json[i]
print (user)
return jsonify({'status': upd_user(user)}), 200

Let's specify the definition of the upd_user(user) function, which basically updates the information in the
database with the check that the user id exists:

def upd_user(user):
conn = sglite3.connect('mydb.db")
print ("Opened database successfully");
cursor=conn.cursor ()
cursor.execute("SELECT * from users where id=? ", (user['id'],))
data = cursor.fetchall()
print (data)
if len(data) == 0:
abort(404)
else:
key_list=user.keys()
for i in key_list:
if i 1= "id":
print (user, 1)
# cursor.execute("UPDATE users set {0}=? where id=? ",
(i, user[i], user['id']))
cursor.execute("""UPDATE users SET {0} = ? WHERE id =
?'"" format(i), (user[i], user['id']))
conn.commit()
return "Success"

Now that we have added the API handle for the putr method for the user resource, let's test it out as
follows:



-oot@oocktpub: Avagrantigithuby Flask-ricroservices-oppd ourl -i -1 *Comtent-Type: amoliicotiordjzont -X put -4 '{ "possmond®:‘maoheshi-ocks' }' it
Arlocalhost: SR sant Avlsuserssd

HTTPAL.d ZER OH

Conbeak Typo ! Oy catinns 1506

Corhank - LangHh

Seratar ) Werkzewg . 11,15 Fybbeond3 2,3

Derbw s Man, 77 Fab 7317 120335 GNT

i g - T ", - I
status 1 sioeEss

ootEoackipub  Svagronzfgithub Flask-mcroservices-opp® cur. hitp:S/flocalhost: DB apiivl users
user list®s |

"prail™c "maheshiEgmotl . oo,
Uity 4
"node”t "Harwsh"

T e wiihas s es" |

“nserncre" - "muhesh@on bet

i

trootEoackipub s Svagronzsgithuns Flosk-sicroseryices-cppd I

We have defined our resources that are a part of version vi. Now, let's define our next version release, vz,
which will add a tweet resource to our microservices. Users who are defined in users resources are
allowed to perform actions on their tweets. Now, /api/info will be shown, as follows:

I T AT
ravtEpesktpeab  Svogreork Sy LEhebs Flask-microsseryi Can=nppw corl fittp ! A ocalhost 3380 0pi /vy infa ~w
= Hostnare was MDD cuaad . NS coche

connent ta pz1l part SEBE Failed; dannsctian rotused
Trwing 127.9.8.1_ .,
Connested 1o lecalkast (137, 8.4.00 port S0 (A
@ GET dagidsvifunfo ITTRAL.1
= -Agart ) (T I L
» Host: localhost: 5888
Acepki =18
ETTP 1.8, vssare Llose after bBady
HTTFA1. B ZHE (K
v Conterte-Type: ppplicatiaons jsun
Comtent - Langhng 317
cGepyver: Merkzeugsd. 11,35 Pythoms34 3
= [iabe: Mer, 77 Feda 2017 1721054 CHT

i
‘ool _wersson®: [
i
‘buildtime": "2017-@1-01 1d: P RGT,
"Tinks!": "Sapilvliusers”,
malhnds®; "gel, post, aul, calela®,

werzton®: vl

"Buildsine™: "2A17T-@1-11 17704,
"Links": "Joolled tweets”.
‘Methods ™ Tget, paskT,

wersranT s twd’

® [losirg conrsction @
roolEpEackl pule: fvcaeaal fgs b | asiem reosere res-apod

Our tweets resource will use the vt methods as follows:

-




HTTP URI Actions
Method
GET http://localhost:5000/api/v2/tweets This retrieves the tweets list
GET http://localhost:5000/api/v2/users/[user_id] | This retrieves a tweet that is given a Speciﬁc ID
This resource will register new tweets with the JSON
POST http://localhost:5000/api/v2/tweets data passed as part of the API call into the backend
database

We can define a tweet as having the following fields:

id: This is the unique identifier for each tweet (Numeric type)
username: This should exist as a user in the users resources (String type)
body: This is the content of the tweet (String type)

Tweet_time: (Sp@ley tYPE)

You can define the preceding tweets resource schema in SQLite 3 as follows:

CREATE TABLE tweets(

id integer primary key autoincrement,
username varchar2(30),

body varchar2(30),

tweet_time date);

Great! The tweets resource schema is ready; let's create our cet methods for the tweets resource.




Building resource tweets methods

In this section, we will be creating APIs for the tweet resource with a different method which will help us
perform different operations on the backend database for tweets.



GET /api/v2/tweets

This method lists all the tweets from all the users.

Add the following code to app.py to add the route for the et method:

@app.route('/api/v2/tweets', methods=['GET'])
def get_tweets():
return list_tweets()
Let's define list_tweets() function which connects to database and
get us all the tweets and respond back with tweets list

def 1list_tweets():
conn = sglite3.connect('mydb.db")
print ("Opened database successfully");
api_list=[]
cursor = conn.execute("SELECT username, body, tweet_time, id from
tweets")
data = cursor.fetchall()
if data != 0:
for row in cursor:
tweets = {}
tweets['Tweet By'] = row[0]
tweets['Body'] = row[1]
tweets['Timestamp'] = row[2]
tweets['id'] = row[3]
api_list.append(tweets)
else:
return api_list
conn.close()
return jsonify({'tweets_list': api_list})

So, now that we've added a function to get the complete tweets list, let's test out the preceding code by
making a RESTful API call as follows:

oo LFwest : 5030 opi A wi tmentys -w

re close ofte
K

Currently, we haven't added any tweet, that's why it returned the empty set. Let's add a few tweets.



POST /api/v2/tweets

The POST method adds new tweets by a specified user.

Add the following code to app.py to add the route for the rost method for the tweets resource:

@app.route('/api/v2/tweets', methods=['POST'])
def add_tweets():

user_tweet = {}

if not request.json or not 'username' in request.json or not

'body' in request.json:

abort (400)

user_tweet['username'] = request.json['username']
user_tweet['body'] = request.json[ 'body']
user_tweet['created_at']=strftime("%Y-%m-%dT%H:%M:%SZ", gmtime())
print (user_tweet)
return jsonify({'status': add_tweet(user_tweet)}), 200

Let's add the definition of add_tweet (user_tweet) to add tweets by a specified user, as follows:

def add_tweet(new_tweets):
conn = sglite3.connect('mydb.db")
print ("Opened database successfully");
cursor=conn.cursor ()
cursor.execute("SELECT * from users where username=? ",
(new_tweets['username'],))
data = cursor.fetchall()

if len(data) == 0:

abort(404)
else:

cursor.execute("INSERT into tweets (username, body, tweet_time)
values(?,?,?)", (new_tweets['username'], new_tweets['body'],
new_tweets['created_at']))

conn.commit ()

return "Success"

So, now that we've added the function to add the tweets list to the database, let's test out the preceding
code by making a RESTful API call as follows:

curl -i -H "Content-Type: application/json" -X POST -d '{
"username' :"mahesh@rocks", "body": "It works" }'
http://localhost:5000/api/v2/tweets

We should see the output of the preceding API call similar to the following screenshot:

-1 =10 *ombenz-Type: amoiicoticrszon’ =K FLET -d '{ "userrone®:"mohesk@socks” | “body*|

CALCLans 15

11,15 Fytha
2317 17:40-5




Let's check whether the tweet was added successfully or not by checking the tweets status using:

| curl http://localhost:5000/api/v2/tweets -v

microservi ces-npp® curl hilp: sFlacal hosl; SBERsapt Sed s iweets

g Conreotion refussed

LY port SPAG 2Ry

rlose ofter boxly

tcations

Now that we have added our first tweet, what if we need to see only a tweet with a certain ID? In that
case, we go for the cer method with user_id.



GET /api/v2/tweets/[id]

The ceT method lists the tweets made by the specified ID.

Add the following code to app.py to add a route for the cer method with a specified ID:

def get_tweet(id):

@app.route('/api/v2/tweets/<int:id>', methods=['GET'])
return list_tweet(id)

Let's define the 1ist_tweet() function, which connects to the database, gets us the tweets with the specified
ID, and responds with the JSON data. This is done as follows:

def 1list tweet(user_id):
print (user_id)
conn = sglite3.connect('mydb.db')
print ("Opened database successfully");
api_list=[]
cursor=conn.cursor ()
cursor.execute("SELECT * from tweets where id=?", (user_id,))
data = cursor.fetchall()
print (data)
if len(data) == 0:

abort(404)
else:
user = {}

user['id'] = data[0][0]
user['username'] = data[0][1]
user['body'] = data[0][2]
user['tweet_time'] = data[0][3]

conn.close()
return jsonify(user)

Now that we've added the function to get a tweet with the specified ID, let's test out the preceding code by
making a RESTful API call at:

| curl http://localhost:5000/api/v2/tweets/2

‘wagrantSgithubsFlask-microservices-app#E curl hitp:/flocalhost; 3088 api vd tweets 2

¥ i "It works",
time™; "¢

}roctEpacktpub:

With this addition of tweets, we have successfully built the RESTful API that collectively works as the
microservices needed to access data and perform various actions around it.



Testing the RESTful API

So far, we have been building the RESTful API and hitting the URL for the root URL to see the response
and to understand whether the different methods are working properly in the backend or not. Since it's
new code, everything should be tested 100% to make sure it works fine in the production environment. In
this section, we will write the test cases, which should work individually, and also as a system, to make
sure that the complete backend service is good to go for production.

There are different types of testing, which are defined as follows:

¢ Functional testing: This is basically used to test the functionality of a component or a system. We do
this test against the functional specification of a component.

e Non-function testing: This kind of testing is done against the quality characteristics of a component,
which includes efficiency testing, reliability testing, and so on.

¢ Structural testing: This type of testing is used to test the structure of the system. To write test cases,
testers are required to have a knowledge of the internal implementations of the code.

In this section, we will write the test cases, specifically, unit test cases, against our application. We will
write Python code which will run automatically, test out all the API calls, and respond back with the test
results.



Unit testing

A unit test is a piece of code that tests a unit of work or the logical unit in the tested system. The following
are the characteristics of unit test cases:

e Automated: They should be executed automatically

¢ Independent: They shouldn't have any dependencies

e Consistent and repeatable: They should maintain idempotency

¢ Maintainable: They should be easy enough to understand and update

We will use a unit testing framework called nose. As an alternative, we can use docstest
(https://docs.python.org/2/library/doctest.html)ﬁﬂ)rtesthlg.

So, let's install nose using pip with the following command:

| $ pip install nose

Or, you can put it in requirement.txt, and use the following command to install it:

| $ pip install -r requirements.txt

Now that we have installed the nose test framework, let's begin writing the initial test cases on a separate
file, Sdy, flask_test.py, dS follows:

from app import app
import unittest

class FlaskappTests(unittest.TestCase):
def setUp(self):
# creates a test client
self.app = app.test_client()
# propagate the exceptions to the test client
self.app.testing = True

The preceding code will test the app and initialize seif.app With our app.

Let's write our test case to get the response code for cer /api/vi/users and add it to our FlaskappTest class
as follows:
def test_users_status_code(self):
# sends HTTP GET request to the application
result = self.app.get('/api/vi/users')

# assert the status code of the response
self.assertEqual(result.status_code, 200)

The preceding code will test whether we get the response on /api/vi/users as 2ee; if not, it will throw an
error and our test will fail. As you can see, as this code doesn't have any dependency from any other code,
we will call it as a unit test case.

Now, how to run this code? Since we have installed the nose testing framework, simply execute the
following command from the current working directory of the test case file (in this case, fiask_test.py):



| $ nosetests

Great! Similarly, let's write more test cases for the RESTful API for the different methods of the resources
that we created earlier in this chapter.

e The GET /api/ve/tweets test case is given as follows:

def test_tweets_status_code(self):
# sends HTTP GET request to the application
result = self.app.get('/api/v2/tweets')
# assert the status code of the response
self.assertEqual(result.status_code, 200)

e The GET /api/vi/info test case is as follows:

def test_tweets_status_code(self):
# sends HTTP GET request to the application
result = self.app.get('/api/vi/info')
# assert the status code of the response
self.assertEqual(result.status_code, 200)

e The POST /api/vi/users test case is written like this:

def test_addusers_status_code(self):

# sends HTTP POST request to the application

result = self.app.post('/api/vi/users', data='{"username":
"manish21", "email":"manishtest@gmail.com", "password": "test123"}',
content_type="application/json')

print (result)

# assert the status code of the response

self.assertEquals(result.status_code, 201)

e The PUT /apisvi/users test case is as follows:

def test_updusers_status_code(self):
# sends HTTP PUT request to the application
# on the specified path
result = self.app.put('/api/vi/users/4', data='{"password":
"testing123"}', content_type='application/json')
# assert the status code of the response
self.assertEquals(result.status_code, 200)

e The POST /api/vi/tweets test case is as follows:

def test_addtweets_status_code(self):

# sends HTTP GET request to the application

# on the specified path

result = self.app.post('/api/v2/tweets', data='{"username":
"mahesh@rocks", "body":"Wow! Is it working #testing"}',
content_type="application/json')

# assert the status code of the response
self.assertEqual(result.status_code, 201)

e The DELETE /api/vi/users test case is given as follows:

def test_delusers_status_code(self):
# sends HTTP Delete request to the application
result = self.app.delete('/api/vi/users', data='{"username":
"manish21"}', content_type='application/json')
# assert the status code of the response
self.assertEquals(result.status_code, 200)

Similarly, you can write more test cases based on your thinking to make these RESTful APIs more



reliable and bug-free.

Let's execute all of them together and check whether all the tests have passed. The following screenshot
shows the test result to the f1ask_test.py script:

(4

{env) rootBpacktpub: vagrant/github/flask-microservices-app# I

Awesome! Now that all our tests have passed, we are good to go for the next level of creating web pages
around these RESTful API's.



Summary

In this chapter, we focused on writing lots of code to build our microservices. We basically got an
understanding of how the RESTful APIs work. We also saw how we can extend these APIs and make sure
that we understand the wrTe response by the response given by these APIs. Moreover, you learned how to
write test cases, which are most important to ensure that our code works well and is good to go for the

production environment.



Building a Web Application in Python

In the previous chapter, we focused on building our microservices, which is, basically, backend RESTful
APIs, and testing it to make sure the response will be as expected. So far, we have been testing these
RESTful APIs using curl, or maybe, using a testing framework, that is, nose, unittest2, and so on. In this
chapter, we will create some HTML pages and write a JavaScript REST client, which will interact with
microservices.

The topics that we will cover in this chapter are as follows:

¢ Building HTML pages and data binding
e JavaScript REST client using knockout.js

In this chapter, we will create a client application which will need to create dynamic content that is
gathered from an HTML web page and, based on the actions of the user, will update the content as a
response on the backend service.

As a developer, you must have come across many application frameworks that adopt the MVC pattern. It
is a large category, which is a combination of MVC (Model View Controller), MVP (Model View
Presenter), and MVVM (Model View ViewModel).

In our case, we will use knockout.js, which is a library in JavaScript based on the MVVM pattern that
helps developers build rich and responsive websites. It can work as a standalone or used along with other
JavaScript libraries, such as jQuery. Knockout.js binds the UI with the underlying JavaScript model. The
models are updated based on the changes in the Ul and vice versa, which is basically two-way data
binding.

In knockout.js, we will be dealing with two important concepts: Binding and Observables.

Knockout.js is a JavaScript library that is generally used to develop desktop-like web
applications. It is useful, as it provides a responsive mechanism that syncs with your data
sources. It provides a two-way binding mechanism between your data model and user
interface. Read more about knockout.js at http://knockoutjs.com/documentation/introduction. html.

In this chapter, we will create web applications to add a user and tweets to the database, and validate
them.


http://knockoutjs.com/documentation/introduction.html

Getting started with applications

Let's get started with creating a basic HTML template. Create a directory named temp1ate in your app root
location; we will create all our future templates inside this directory.

Now, let's create the basic skeleton for the adduser.ntm1 file as follows:

<!DOCTYPE html>
<html>
<head>
<title>Tweet Application</title>
</head>
<body>
<div class='"navbar'">
<div class="navbar-inner">
<a class="brand" href="#">Tweet App Demo</a>
</div>
</div>
<div id="main" class="container">

Main content here!

</div>
<meta name="viewport" content="width=device-width, initial-
scale=1.0">
<link href="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.2/css/bootstrap-combined.min.css"
rel="stylesheet">
<script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-
1.9.0.js"></script>
<script src="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.2/js/bootstrap.min.js"></script>
<script src="http://ajax.aspnetcdn.com/ajax/knockout/knockout-
2.2.1.js"></script>
</body>
</html>

As you can see in the preceding code, we have specified a couple of .js scripts that are needed to make
our HTML responsive. This is similar to twitter-bootstrap, which has a <meta name="viewport"> attribute to
help scale the page based on the browser dimensions.



Creating application users

Before we start writing our web page, we need to create a route to create a user, as follows:

from flask import render_template

@app.route('/adduser')
def adduser():
return render_template('adduser.html')

Now that we have created the route, let's create a form in adduser.htm1, which will ask for the required
information related to the user and help them submit the information:

<html>
<head>
<title>Twitter Application</title>
</head>
<body>
<form >
<div class='"navbar'">
<div class="navbar-inner">
<a class="brand" href="#">Tweet App Demo</a>
</div>
</div>
<div id="main" class="container">

<table class="table table-striped">
Name: <input placeholder="Full Name of user" type "text"/>
</div>
<div>
Username: <input placeholder="Username" type="username'">
</input>
</div>
<div>
email: <input placeholder="Email id" type="email"></input>
</div>
<div>
password: <input type="password" placeholder="Password">
</input>
</div>
<button type="submit">Add User</button>
</table>
</form>
<script src="http://cdnjs.cloudflare.com/ajax/1libs/
jgquery/1.8.3/jquery.min.js"></script>
<script src="http://cdnjs.cloudflare.com/ajax/1libs/knockout
/2.2.0/knockout-min.js"></script>
<link href="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.2/css/bootstrap-combined.min.css"
rel="stylesheet">
<!-- <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-
1.9.0.js"></script> -->
<script src="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.2/js/bootstrap.min.js"></script>
</body>
</html>

Currently, the preceding HTML page shows only empty fields, and if you try to submit it with data, it
won't work, since no data binding is done with the backend service as yet.

Now we are ready to create JavaScript, which will make a REST call to the backend service, and add the
user content provided from the HTML page.



Working with Observables and AJAX

In order to get the data from the RESTful API, we will use AJAX. Observables keep a track of the
changes made on the data and reflect them, automatically, on all the locations where it is used and defined
by ViewModel.

By using Observables, it becomes very easy to make the UI and viewmode1 communicate dynamically.

Let's create a file named app. js, which has Observables declared, inside the static directory with the
following code--if the directory does not exist, create it:

function User(data) {
this.id = ko.observable(data.id);
this.name = ko.observable(data.name);
this.username = ko.observable(data.username);
this.email = ko.observable(data.email);
this.password = ko.observable(data.password);

}

function UserListViewModel() {

var self = this;

self.user_list = ko.observableArray([]);
self.name = ko.observable();
self.username= ko.observable();
self.email= ko.observable();
self.password= ko.observable();

self.addUser = function() {
self.save();
self.name("");
self.username("");
self.email("");
self.password("");
}
self.save = function() {
return $.ajax({
url: '/api/vi/users',
contentType: 'application/json',
type: 'POST',
data: JSON.stringify({
'name': self.name(),
'username': self.username(),
'email': self.email(),
'password': self.password()
IOk
success: function(data) {
alert("success"
console.log("Pushing to users array");
self.push(new User({ name: data.name, username:
data.username,email: data.email , password:
data.password}));
return;
H
error: function() {
return console.log("Failed");
}
1)
1
}

ko.applyBindings(new UserListViewModel());

I understand it's a lot of code; let's understand the usage of each part of the preceding code.



When you submit your content on the HTML page, a request will be received at app.js, and the following
code will handle the request:

| ko.applyBindings(new UserListViewModel());

It creates the model and sends the content to the following function:

self.addUser = function() {
self.save();
self.name("");
self.username("");
self.email("");
self.password("");

i

The preceding adduser function calls the seif.save function with a passing data object. The save function
makes an AJAX RESTful call to the backend services and performs the rost operation with the data
gathered from the HTML pages. It then clears the content of the HTML pages as well.

Our work is not yet done. As we mentioned earlier, it is two-way data binding, so we need to send the
data from the HTML side as well, so that it can be processed further in the database.

In the script section, add the following line, which will identify the .js file path:

| <script src="{{ url_for('static', filename='app.js') }}"></script>



Binding data for the adduser template

Data binding is useful to bind your data with the UI. The property from the Ul will be processed only for
the first time if we do not use Observables. In this case, it cannot update automatically based on the
underlying data update. To achieve this, bindings must be referred to the Observable properties.

Now we need to bind our data with the form and its field, as shown in the following code:

<form data-bind="submit: addUser">
<div class="navbar">
<div class="navbar-inner">
<a class="brand" href="#">Tweet App Demo</a>
</div>
</div>
<div id="main" class="container">
<table class="table table-striped">
Name: <input data-bind="value: name" placeholder="Full Name of
user" type "text"/>
</div>
<div>
Username: <input data-bind="value: username"
placeholder="Username" type="username'></input>
</div>
<div>
email: <input data-bind="value: email" placeholder="Email id"
type="email"></input>
</div>
<div>
password: <input data-bind="value: password" type="password"
placeholder="Password"></input>
</div>
<button type="submit">Add User</button>
</table>
</form>

Now we are ready to add our users through the template. However, how will we validate whether the
user is added successfully to our database or not? One way would be to manually log in to the database.
However, since we are working on a web application, let's show our data (present in the database) on the
web page itself--even the newly added entries.

In order to read the database and get the user list, add the following code to app. js:

$.9etJISON('/api/vi/users', function(userModels) {
var t = $.map(userModels.user_list, function(item) {
return new User(item);

1)
self.user_list(t);

13K

Now we need to make changes in adduser.nhtm1 to show our user list. For that, let's add the following code:

<ul data-bind="foreach: user_list, visible: user_list().length >
O">
<li>
<p data-bind="text: name"></p>
<p data-bind="text: username"></p>
<p data-bind="text: email'></p>
<p data-bind="text: password"></p>
</1i>
</ul>




Awesome! We are done with adding the web page which will create new users for our application. It will
look something like this:



Tweet App Demo

Mame: Full Name of uaer
Username: |lsername
email: | Emall id

FJE.SEWCI r'd i : ASSW O

Addmﬂrl

» Eric stromberg
eric_strom
gric.strom@google.com

erici@123




Creating tweets from users

Before we start writing our web page, we need to create a route to create tweets. This can be done as
follows:

from flask import render_template

@app.route('/addtweets"')
def addtweetjs():
return render_template('addtweets.html')

Now that, we have created the route, let's create another form in addtweets.htm1, which will ask the user for
the required information related to tweets, and help them submit the information:

<html>
<head>
<title>Twitter Application</title>
</head>
<body>
<form >
<div class="navbar'">
<div class="navbar-inner'">
<a class="brand" href="#">Tweet App Demo</a>
</div>
</div>

<div id="main" class="container">
<table class="table table-striped">
Username: <input placeholder="Username" type="username'">
</input>
</div>
<div>
body: <textarea placeholder="Content of tweet" type="text">
</textarea>
</div>
<div>
</div>
<button type="submit">Add Tweet</button>
</table>

</form>
<script src="http://cdnjs.cloudflare.com/ajax/1libs/
jquery/1.8.3/jquery.min.js"></script>
<script src="http://cdnjs.cloudflare.com/ajax/1libs/
knockout/2.2.0/knockout-min.js"></script>
<link href="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.2/css/bootstrap-combined.min.css"
rel="stylesheet">
<!-- <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-
1.9.0.js"></script> -->
<script src="http://netdna.bootstrapcdn.com/twitter-
bootstrap/2.3.2/js/bootstrap.min.js"></script>
</body>
</html>

Note that currently, this form doesn't have data binding to communicate with the RESTful services.



Working on Observables with AJAX for the
addtweet template

Let's develop a JavaScript that will make a REST call to the backend service and add the tweet content
provided from the HTML page.

Let's create a file with the name tweet.js inside the static directory that we created earlier with the
following code:

function Tweet(data) {
this.id = ko.observable(data.id);
this.username = ko.observable(data.tweetedby);
this.body = ko.observable(data.body);
this.timestamp = ko.observable(data.timestamp);

}

function TweetListViewModel() {
var self = this;
self.tweets_list = ko.observableArray([]);
self.username= ko.observable();
self.body= ko.observable();

self.addTweet = function() {
self.save();
self.username("");
self.body("");

i

$.9etJISON('/api/v2/tweets', function(tweetModels) {
var t = $.map(tweetModels.tweets_list, function(item) {
return new Tweet(item);

1)
self.tweets_list(t);

13K

self.save = function() {
return $.ajax({
url: '/api/v2/tweets',
contentType: 'application/json',
type: 'POST',
data: JSON.stringify({
'username': self.username(),
'body': self.body(),
1),
success: function(data) {
alert("success"
console.log("Pushing to users array");
self.push(new Tweet({ username: data.username, body:
data.body}));
return;
iy
error: function() {
return console.log("Failed");

ko.applyBindings(new TweetListViewModel());
Let's understand the usage of each part of this last code.

When you submit your content on the HTML page, a request will come to tweet. js, and the following part



of the code will handle the request:

| ko.applyBindings(new TweetListViewModel());

The preceding code snippet creates the model and sends the content to the following function:

self.addTweet = function() {
self.save();
self.username("");
self.body("");

’

The preceding addtweet function calls the seif.save function with a passing data object. The save function
makes an AJAX RESTful call to the backend services, and performs the rost operation with the data
gathered from the HTML pages. It then clears the content of the HTML pages as well.

In order to show data on the web page, and to keep the data on it in sync with the data in the backend
service, the following code is needed:
function Tweet(data) {
this.id = ko.observable(data.id);
this.username = ko.observable(data.tweetedby);

this.body = ko.observable(data.body);
this.timestamp = ko.observable(data.timestamp);

}

Our work is not yet done. As we mentioned earlier, it is two-way data binding, so, we will need to send
the data from the HTML side as well, so that it can be processed further in the database.

In the script section, add the following line, which will identify the .js file with the path:

| <script src="{{ url_for('static', filename='tweet.js') }}"></script>



Data binding for the addtweet template

Once this is done, we need to now bind our data with the form and its field, as shown in the following
code:

<form data-bind="submit: addTweet'">
<div class='"navbar'">
<div class="navbar-inner'">
<a class="brand" href="#">Tweet App Demo</a>
</div>
</div>
<div id="main" class="container">

<table class="table table-striped">
Username: <input data-bind="value: username"
placeholder="Username" type="username'></input>
</div>
<div>
body: <textarea data-bind="value: body" placeholder="Content
of tweet" type="text"></textarea>
</div>
<div>
</div>
<button type="submit">Add Tweet</button>
</table>
</form>

Now we are ready to add our tweet through the template. We perform validation for tweets just as we
performed validation for users.

In order to read the database and get the tweet list, add the following code to tweet.js:

$.9etJISON('/api/v2/tweets', function(tweetModels) {
var t = $.map(tweetModels.tweets_list, function(item) {
return new Tweet(item);
1)
self.tweets_list(t);
1)

Now, we need to make changes in addtweets.htm1 to show our tweet list. For that, let's add the following
code:

<ul data-bind="foreach: tweets_list, visible: tweets_list().length
> Q">
<li>

<p data-bind="text: username"></p>

<p data-bind="text: body"></p>

<p data-bind="text: timestamp"></p>

</1i>
</ul>

Awesome! Let's test it out. It will look something like this:



weet App Demo

Usernaer gamams

body:

Al Twest |

= g st
Hay, this 18 my first twest!!
201 T-02-1 1 T8 384588
= Brc.Etrom
Pezwe Bl posl, " Lacnch your apa with the 8WES Slarlup Kil' | #8005

207 7-03-11T6E: 38:402

In a similar fashion, you can extend this use case by deleting users from the web page application, or can
update user information in the backend services.

Also, to know more about the knockout.js library, go through the live examples at http/knockoutjs.com/examples/
helloworld.html, which will help you gain a better understanding, and help you with implementing it in your
application.

We created these web pages to make sure our microservices work and to give you an understanding about
how a web application is developed generally; and, as developers, we can create these web applications
based on our own use case as well.


http://knockoutjs.com/examples/helloWorld.html

CORS - Cross-Origin Resource Sharing

CORS helps maintain data integrity between the API server and the client for the API request.

The idea behind using CORS is that the server and client should have enough information about each other
so that they can authenticate each other, and transfer data over a secure channel using the HTTP header.

When a client makes an API call, it is either a GET or POST request, where the body is usually text/plain
with headers called Origin--this includes protocol, domain name, and port with respect to the requesting
page. When the server acknowledges the request, and sends the response along with the access-contro1-
Allow-origin header to the same Origin, it makes sure the response is received at the correct Origin.

In this way, resource sharing happens between Origins.
Almost all browsers now support CORS, which includes IE 8+, Firefox 3.5+, and Chrome.
Now, since we have the web application ready, but it is not CORS-enabled yet, let's enable it.

Firstly, you need to install the module for CORS in Flask using the following command:

| $pip install flask-cors

The preceding package exposes a Flask extension which, by default, enables CORS support on all the
routes for all Origins and methods. Once the package is installed, let's include it in app.py as follows:

| from flask_cors import CORS, cross_origin

To enable CORS, you need to add the following line:

| CORS(app)
That's it. Now this CORS is enabled for all the resources in your Flask application.

In case you want to enable CORS on specific resources, then add the following code with your specific
resource:

| cors = CORS(app, resources={r"/api/*": {"origins": "*"}})

Currently, we don't have a domain setup, but we are working at the localhost level. You can test CORS by
adding a custom domain in the domain name server as follows:

| 127.0.0.1 <your -domain-name>

Now, if you try to access this <your-domain-name>, it should be able to work properly with this domain name,
and you will be able to access the resource.



Session management

Sessions are a sequence of request and response transactions associated with a single user. The sessions
are usually maintained on the server level by authenticating the user and keeping track of his/her activity
over the web page.

Session with each client is assigned a session ID. Sessions are generally stored on top of cookies and the
server signs them cryptographically--they are decrypted by the Flask application using the secret key for a
temporary duration.

Currently, we haven't set up authentication--we will be defining it in Chapter 8, Securing the Web
Application. So, at this point in time, we will create the session by asking about the username accessing
the web page and making sure that the user is identified using the sessions.

Now let's create a web page, say, main.htm1, which will have a URL to create the session if it is needed to
be set up, and routes to perform operations on the backend services. You could clear the session if it
already exists. See the following code:

<html>
<head>
<title>Twitter App Demo</title>
<link rel=stylesheet type=text/css href="{{ url for('static',
filename='style.css') }}">
</head>
<body>
<div id="container">
<div class="title">
<h1></h1>
</div>
<div id="content">
{% if session['name'] %}
Your name seems to be <strong>{{session['name']}}</strong>.
<br/>
{% else %}
Please set username by clicking it <a href="{{
url _for('addname') }}">here</a>.<br/>
{% endif %}
Visit <a href="{{ url_for('adduser') }}">this for adding new
application user </a> or <a href="{{ url_for('addtweetjs"')
}}">this to add new tweets</a> page to interact with RESTFUL
APT.

<br /><br />
<strong><a href="{{ url_for('clearsession') }}">Clear
session</a></strong>
</div>
</div>

</div>

</body>

</html>

Currently in this web page, a few URLSs, such as ciearsession and addname won't work, since we haven't set
up the web page and route for them.

Also, we haven't set up the route for the main.ntm1 web page; let's first add it in app.py, as follows:

@app.route('/")



def main():
return render_template('main.html')

Since we have added the route for main.ntm1, let's add the route for addname in app.py, as follows:

@app.route('/addname')

def addname():
if request.args.get('yourname'):
session['name'] = request.args.get('yourname')
# And then redirect the user to the main page
return redirect(url_for('main'))

else:
return render_template('addname.html', session=session)

As you can see in the preceding route, it calls addname.htm1, which we haven't created yet. Let's create the
addname template with the following code:

<html>
<head>
<title>Twitter App Demo</title>
<link rel=stylesheet type=text/css href="{{ url for('static',
filename='style.css') }}">
</head>
<body>
<div id="container">
<div class="title">
<hl>Enter your name</h1l>
</div>
<div id="content">
<form method="get" action="{{ url_for('addname') }3}">
<label for="yourname">Please enter your name:</label>
<input type="text" name="yourname" /><br />
<input type="submit" />
</form>
</div>
<div class="title">
<hi></h1>
</div>
<code><pre>
</pre></code>
</div>
</div>
</body>
</html>

Great! Now we can set the session using the preceding code; you will see a web page that looks
something like this:



four mames seems to be EE m

Visit this for adding new application user o this to add new tweets page to interact with RESTFUL AP

laar sessinn

Now, what if we need to clear sessions? Since we are already calling the ciearsession function from the
main web page, we need to create a route in app.py, which further calls the session's ciear inbuilt function
as follows:

@app.route('/clear')

def clearsession():

# Clear the session

session.clear()

# Redirect the user to the main page
return redirect(url_for('main'))

This is how we can set the session, maintain it for users, and clear the session, as per the requirement.



Cookies

Cookies are similar to sessions, other than the fact that they are maintained on the client computer in the
form of a text file; whereas, sessions are maintained on the server side.

Their main purpose is to keep track of the client's usage and, based on their activity, improve the
experience by understanding the cookies.

The cookies attribute is stored in the response object, which is a collection of key-value pairs that have
cookies, variables, and their respective values.

We can set the cookies using the set_cookie() function of the response object to store a cookie as follows:

@app.route('/set_cookie')

def cookie_insertion():
redirect_to_main = redirect('/")
response = current_app.make_response(redirect_to_main )
response.set_cookie( 'cookie_name',value='values')
return response

Similarly, reading cookies is pretty easy; the get() function will help you get the cookies if it is already
set, as shown here:

import flask
cookie = flask.request.cookies.get('my_cookie')

If the cookie exists, it will get assigned to the cookie, and if not, then the cookie will return none.



Summary

In this chapter, you learned how to integrate your microservices with the web application using a
JavaScript library such as knockout.js. You learned about the MVVM pattern, and how these can be
helpful to create fully developed web applications. You also learned user management concepts, such as
cookies and sessions, and how to make use of them.

In the next chapter, we will try to make our database side stronger and secure by moving it from SQLite to
other NoSQL database services, such as MongoDB.



Interacting Data Services

In the previous chapter, we built up our application using JavaScript/HTML and integrated it with
RESTful APIs with AJAX. You also learned how to set cookies on the client and sessions on the server
for a better experience for users. In this chapter, we will focus on improving our backend database by
using a NoSQL database, such as MongoDB instead of an SQLite database, which we are currently using,
or a MySQL database, and integrate our application with it.

The topics that we will cover in this chapter are as follows:

e Setting up MongoDB service
¢ Integrating an application with MongoDB



MongoDB - How it is advantageous, and why are
we using it?

Before we begin with the MongoDB installation, let's understand why we have chosen the MongoDB
database and what it is needed for.

Let's take a look at the advantages of MongoDB over RDBMS:

¢ Flexible schema: MongoDB is a document database in which one collection holds multiple
documents. We don't need to define the schema of the documents prior to inserting the data, which
means MongoDB defines the document's schema based on the data inserted into the documents;
whereas, in an RDBMS, we need to define the schema of the tables before inserting data into it.

e Less complexity: There are no complex joins in MongoDB, as we have in the case of RDBMS (for
example: MySQL) databases.

¢ Easier scalability: It is very easy to scale out MongoDB as compared to an RDBMS.

o Fast accessibility: There is faster retrieval of data in MongoDB as compared to an RDBMS, that is,
the MySQL database.

e Dynamic querying: MongoDB supports dynamic queries on documents, being a document-based
query language, which makes it advantageous over other RDBMS, which could be MySQL.

The following are the reasons why we should use MongoDB:

MongoDB stores data in JSON-style documents, which makes it easy to integrate with the
application

We can set an index on any file and property

MongoDB does auto-sharding, which makes it easy to manage and enables it to be faster
MongoDB provides replication and high availability when used in a cluster

There are different use cases in which to use MongoDB. Let's check them here:

e Bigdata
e User data management
e Content delivery and management

The following image shows the architecture diagram of MongoDB integration with your web application:



Client(JSON
request)

HTTP REST

¥

Web
Application

BSON

Pymongo driver

MongoDB Database




MongoDB terminology

Let's look at the different terminologies of MongoDB, which are listed next:

e Database: This is similar to the database that we have in RDBMS (Relational Database
Management System), but, instead of tables, in MongoDB a database is a physical container of
collections. MongoDB can have multiple databases.

e Collections: This is basically a combination of documents that has its own schema. Collections don't
contribute toward the schema of documents. It's quite equivalent to the tables in RDBMS.

e Document: This is similar to a tuple/row in an RDBMS. 1It's a set of key-value pairs. They have a
dynamic schema, where each document may or may not have the same schema within a single
collection. They may have different fields as well.

The following code is a sample collection for your understanding:

{
_id : ObjectId(58ccdd1a19b08311417b14ee),

body : 'New blog post,Launch your app with the AWS Startup Kit!
HAWS ',

timestamp : "2017-03-11T06:39:40Z2",

id : 18,

tweetedby : "eric.strom"

}

MongoDB represents JSON documents in a binary-encoded format called BSON.



Setting up MongoDB

In the current scenario, we are working on the Ubuntu workstation, so let's install MongoDB on Ubuntu as
follows.

We will use the Ubuntu package management tool, such as apt, to install the MongoDB packages by
authenticating the distributor-signed packages with the GPG keys.

To import the GPG keys, use the following command:

| $ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927

Next, we need to set the MongoDB repository path to our operating system, as follows:

| $ echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.2 multiverse" | sudo tee /etc/apt/sources.list.d

Once this is added, we need to update our Ubuntu repository as follows:

| $ sudo apt-get update

Now that the repository is updated, let's install the latest stable MongoDB release using the following
command:

| $ sudo apt-get install -y mongodb-org

Once it is installed, the MongoDB service should run on port 27e17. We can check the service status using
the following command:

| $ sudo service mongodb status

If it does not run, you can start the service by executing the following command:

| $ sudo service mongodb start

Great! Now we have installed MongoDB on our local machine. At this point in time, we only need a
standalone MongoDB instance, but if you want to create a shared MongoDB cluster, then you can follow
the steps defined on the following link:

https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/

So, now that we have enabled the MongoDB service on our machine, we are good to go to create a
database on top of it.


https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/

Initializing the MongoDB database

Previously, when we were creating a database in SQLite3, we needed to create a database and define the
schema of tables manually. Since MongoDB is schemaless, we will directly add new documents, and
collections will get created automatically. Also, in this case, we will initialize the database using Python
only.

Before we add new documents into MongoDB, we need to install the Python driver for it, that is, pymongo.

Add the pymongo driver to requirements.txt, and then install it using the pip package manager as follows:

$echo "pymongo==3.4.0" >> requirements.txt
$ pip install -r requirements.txt

Once it is installed, we will import it by adding the following line to app.py:

| from pymongo import MongoClient

Now that we have imported the MongoDB driver for Python, we will create a connection to MongoDB
and define a function in app.py, which will initialize the database with initial data documents, as follows:

connection = MongoClient("mongodb://localhost:27017/")
def create_mongodatabase():
try:
dbnames = connection.database_names()
if 'cloud_native' not in dbnames:
db = connection.cloud_native.users
db_tweets = connection.cloud_native.tweets
db_api = connection.cloud_native.apirelease

db.insert({

"email": "eric.strom@google.com",
"id": 33,

"name": "Eric stromberg",
"password": "eric@123",
"username": "eric.strom"

1)

db_tweets.insert({
"body": "New blog post,Launch your app with the AWS Startup

Kit! #AwS",

"id": 18,

"timestamp": "2017-03-11T06:39:40Z",
"tweetedby": "eric.strom"

1)

db_api.insert( {
"buildtime": "2017-01-01 10:00:00",

"links": "/api/v1/users",
"methods": '"get, post, put, delete",
"version": "v1"

1)

db_api.insert( {
"buildtime": "2017-02-11 10:00:00",
"links": "api/v2/tweets",
"methods": "get, post",
"version": "2017-01-10 10:00:00"
1)
print ("Database Initialize completed!")
else:
print ("Database already Initialized!")
except:
print ("Database creation failed!!")




It is recommended that you initialize your resource collections with some documents in the collection so
that we get some response data when we begin testing the APIs, otherwise, you can go ahead without
initializing the collections.

The preceding function should be called before starting the application; our main function will be
something like this:
if __pame__ == '__main__"':

create_mongodatabase()
app.run(host='0.0.0.0"', port=5000, debug=True)



Integrating microservices with MongoDB

Since we have initialized our MongoDB database, it's time to rewrite our microservices functions to store
and retrieve data from MongoDB instead of SQLite 3.

Previously, we used the cur1 command to get a response from the API; instead of that, we will use a new
tool called POSTMAN (https://www.getpostman.com), which is an application that will help you build, test, and
document your APIs faster.

For more information on the workings of POSTMAN, read the documentation at the
following link:

https://www.getpostman.convdocs/

POSTMAN is supported by both Chrome and Firefox, as it can be integrated very easily as an add-on.

First, we will modify the api_version info API to collect the information from MongoDB instead of
SQLite3, as follows:

@app.route("/api/vi/info")
def home_index():
api_list=[]
db = connection.cloud_native.apirelease
for row in db.find():
api_list.append(str(row))
return jsonify({'api_version': api_list}), 200

Now, if you test it using POSTMAN, it should give an output that looks somewhat like this:

LSS R

1 H reibad Tk, Faim; pat, RLome’, CEollebizat: CIZLT-al-dl DBcRcE, CLirkr"c Comps .u: r HE e -d::l L S R L e
{ mrriz1t II. Al -L0 Uil | Cewwan” gt ekt CRalideiowtc TSN -00-0d LEilodl’, T ldnda :!p-' B || . '.i [r g T e Al B 2 :

Great! It works. Now, let's update the other resources of microservices.


https://www.getpostman.com
https://www.getpostman.com/docs/

Working with user resources

We will modify our user resources' API functions for different methods in app.py as follows.



GET api/vl/users

The GET API function gets a complete list of users.

In order to get the complete user list from the MongoDB database, we will rewrite the 1ist_users() function
as follows:

def 1list _users():
api_list=[]
db = connection.cloud_native.users
for row in db.find():
api_list.append(str(row))
return jsonify({'user_list': api_list})

Let's test it on POSTMAN and see if the API responds as expected:

HILrwCvaw:

rw " :

[ 1 : A T w4l

i
I''memrems ™ ‘eriioere’ | amewedt: CaricElITT, femal ok ipene | " ods TR pm bl "SEmaly TORRT M Pkl T, Tt Erid pirmkasg w18

Since we currently have only one document in the user's collection of the MongoDB database, you can see
only one user in the users list in the preceding screenshot.



GET api/vl/users/[user_id]

This API function gets the details of a specific user.

In order to list the details of a specific user from the MongoDB database, use the modify list_user(user_id)
function as follows:

def 1list _user(user_id):
api_list=[]
db = connection.cloud_native.users
for i in db.find({'id':user_id}):
api_list.append(str(i))

if api_list == []:
abort(404)
return jsonify({'user_details':api_list}

Let's test it on POSTMAN to see if it works as expected:

=1 . ¥ o bl v prsmad’ s Terocf]E10 BT - ] sheen® AT D plel t SRS DT S S Lt ] =i " e el e R |

Also, we need to test the scenario where a user entry is not present; try this out, as shown in the following
code:



P

"

[

i




POST api/vl/users

This API function adds new users to the users list.

In this code, we will rewrite the add_user (new_user) function to interact with MongoDB to add a user to the
users collection:

def add_user(new_user):
api_list=[]
print (new_user)
db = connection.cloud_native.users
user = db.find({'$or':[{"username":new_user['username']} ,
{"email":new_user['email']}]})
for i in user:
print (str(i))
api_list.append(str(i))

if api_list == []:
db.insert(new_user)
return "Success"
else :
abort (409)

Now that we have modified our function, one more thing needs to be done--earlier, IDs were generated by
SQLite 3, but now, we need to generate them with a random module by adding it to its route function, as
follows:

def create_user():

if not request.json or not 'username' in request.json or not

'email' in request.json or not 'password' in request.json:
abort (400)

user = {
'username': request.json['username'],
'email': request.json['email'],
'name': request.json.get('name',""),
'password': request.json['password'],
'id': random.randint(1,1000)

3

Let's add one record to the users list to test whether it works as expected.

The following screenshot shows the output status of adding a new record using POSTMAN in MongoDB:



il

o5t e bR e 2t P m s
FE Tl )

e Bt R TR

“varnem T " e e dd”

el Tremmadpnol iwigme L] e T,
(R s SR = L

v "y Reyrmn . el jre

Let's validate whether it has updated the properties in the MongoDB collection as well.
The following screenshot validates that our new record has been added successfully:
(i1 i Ve mAl R Faar m LT

“rem; o Eeic aboorberg W ierisd IRl DRSS ), weman s Ceorhsabriet. Tenlt ke . R ]
“rew Teerd U Mglientl CLid DojecitE T RERTTII DS Serkas ], Tunorom rbmredd’, ‘el “romomplivo¥penlooaet, (W00 A4, T
i
I




PUT api/vl/users/[user_id]

This API function is used to update the attributes of the users in the MongoDB users collection.

In order to update the documents in the MongoDB user collection for a specific user, we will need to
rewrite the upd_user(user) method as follows:

def upd_user(user):
api_list=[]
print (user)
db_user = connection.cloud_native.users
users = db_user.find_one({"id":user['id']})
for i in users:
api_list.append(str(i))
if api_list == []:
abort (409)
else:
db_user.update({'id':user['id']}, {'$set': user}, upsert=False )
return "Success"

Now that we have updated the method, let's test it on POSTMAN and check the response.

The following screenshot shows the response of the update API request using POSTMAN:

Let's validate the user document to check whether the fields were modified or not:



LE L pp Rl

gt s e el s

Pl

npc.tly™i [

‘ramc ' "Lo ko’ L Cuooreomm

" e el O

wric giree’ '_id': Dooechld] ' EEchleld | SRR TR Wt
r "iplihe eyt id'C DEieeEXN]

"ol

= "ericroipogic ot !
L g EL LR L R AR L L Sl RS T

107 3%, "pawmeorr D Ui

HaFsamew s

i “ .-:. -

L




DELETE api/vl/users

This API deletes a specific user from the users list.

In this case, we will modify the de1_user(de1_user) method to delete a user from the MongoDB users
collection as follows:

def del user(del_user):

db = connection.cloud_native.users

api_list = []

for i in db.find({'username':del_user}):
api_list.append(str(i))

if api_list == []:
abort(404)

else:
db.remove({"username":del_user})
return "Success"

Let's test it out over POSTMAN and see if the response is as expected:

Now that we've deleted one user, let's see if it made any changes in the overall users list:



KHafrer e

b o
=l "
i
ety
F1EE
Ty s
aigr Llen™ [
Srailt 1 e L wieambgorgle for® | Trre®l ERic asrmang’, AT A0, U LHT BRactT S N BA RN 0T RS Y i) Tee oI ) kst el '
i

Great! We have made changes in all the RESTful API URLs for the user resources, and validated them as
well.



Working with the tweets resources

Now that our user resources APIs are working fine with MongoDB as the database service, we will do
the same for the tweets resources as well.



GET api/v2/tweets

This function gets the complete list of tweets from all the users.

Let's update our 1ist_tweets() method to begin getting the list of tweets from the tweets collection of
MongoDB using the following code snippet:

def 1list_ tweets():
api_list=[]
db = connection.cloud_native.tweet
for row in db.find():
api_list.append(str(row))
return jsonify({'tweets_list': api_list})

Now that we have updated the code, let's test it out on POSTMAN. The following screenshot lists all the
tweets by making an API request using POSTMAN:

b
P & rd
e it The m iy

Ea |
“remarts ] nE
i LE adt et D e Tl TR BRI QNN ), ey T Blop oeat.Laaedh e cpa itk Hha MRS Searmap iR e Eertenws s Cesitoanrey . HhmtaerTs TEOPR-IINMEIECARIT )T
1
|




GET api/v2/tweets/[user_id]

This function gets the tweets from a specific user.

In order to get tweets from a specific user from the tweets collection, we need to modify our current
list_tweet(user_id) function as follows:

def 1list tweet(user_id):
db = connection.cloud_native.tweets
api_list=[]
tweet = db.find({'id':user_id})
for i in tweet:
api_list.append(str(i))
if api_list == []:
abort(404)
return jsonify({'tweet': api_list})

Let's test out our API and validate whether it is working as expected or not:

& rd LI

Fa [
“temms 1ot
i LE adt et D e Tl TR BRI QNN ), ey T Blop oeat.Laaedh e cpa itk Hha MRS Searmap iR e Eertenws s Cesitoanrey . HhmtaerTs TEOPR-IINMEIECARIT )T

1
|




POST api/v2/tweets

This function adds new tweets from an existing user.

In this case, we need to modify our add_tweet (new_tweet) method to interact with users, and the tweets
collection in MongoDB to add new tweets, as follows:

def add_tweet(new_tweet):
api_list=[]
print (new_tweet)
db_user = connection.cloud_native.users
db_tweet = connection.cloud_native.tweets
user = db_user.find({"username":new_tweet['tweetedby']})
for i in user:
api_list.append(str(i))
if api_list == []:
abort(404)
else:
db_tweet.insert(new_tweet)
return "Success"

Now that we have modified the record, let's test it out. The following screenshot shows the success status
of the rost request to add new tweets using POSTMAN:

L
o ol i o “

Let's now validate whether the newly added tweets were updated in the tweet list, as shown in the
following screenshot:



pl e ]

GET lipem PS5l neirvma i 'l m Hi T

Jed mdaTEd

n W
g B S AT T i
Ty M =

imateln el
i Hb o [ i R TP T B ERT L R PR R E T AR R Rl
1 E TR R s T i S ER TR R AR L o T AR

Y e P
Clmemremnts "R -ad

O Rt wl. TR, 'ldh i)
ol




Summary

In this chapter, we migrated our file-based database service (SQLite) to a NoSQL-document-based
database service (MongoDB). You learned how to integrate MongoDB with your RESTful APIs to
respond to hold data, and respond based on the request from the client. The next chapter will be more
interesting, as we will build our frontend web views using React.



Building WebViews with React

So far, we have been building our microservices and making our backend services more responsive and
efficient. Also, we have been trying out different database services which can secure and increase the
performance of the storage and retrieval of data, which is of essence here.

In this chapter, we will focus on building our frontend page using React and integrating these pages with
the backend to form a complete application.

The topics that we will cover in this chapter are as follows:

e Setting up a React environment
e Creating a user authentication panel
e Integrating react with backend APIs



Understanding React

In simpler terms, React is the UI layer of your application. It is a Javascript library to build fast and quick
user interfaces. React, basically, helps you to create awesome webViews for each state of your
application. So, we are going to use React for this purpose. But before we do that, let's understand a few
concepts/key points of React, which are listed next:

Components: All your collections of HTML and JavaScript are called components. React,
basically, provides hooks to render HTML pages with JavaScript enabled. The important thing here
is that React works as a controller to render different web pages for each state of your application.
Props for static version in React: Usually, in HTML, you need a lot of code for showing all the
data on the frontend and, moreover, it's repetitive. React props help you solve this problem. Props,
basically, keep the state of data and pass values from the parent to the child.

Identifying the minimal state: To build your app correctly, you first need to think of the minimal set
of the mutable state that your app needs. Like, in our case, we need to keep the state of users always
available during the different states of the application.

Identifying active state: React is all about one-way data flow down the component hierarchy. We
need to understand every component that renders something based on that state. Also, we need to
understand how states change at the level of component hierarchy.

React-DOM: The react-dom is a combination of React and DOM. React contains the functionality
utilized in web and mobile apps. The react-dom functionality is utilized only in web apps.



Setting up the React environment

In order to run React, we need to set up an initial environment, which includes installing a couple of
libraries of node.js.



Installing node

Before we start installing React and the package list, we need to have node. js installed on our system.
In Linux (Debian-based system), the process of installation is pretty simple.

First, we need to add PPA from the node. js official website by using the following commands:

$ sudo apt-get install python-software-properties
$ curl -sL https://deb.nodesource.com/setup_7.x | sudo -E bash -

Once it is set up, we can install node. js with the following command:

| $ apt-get install nodejs

Now let's check the node and npm Versions, as follows:

$ npm -v
4.1.2

$ node -v
V7.7.4

In our setup, we use the aforementioned version, but the node version around v7.x should be fine, and for
npm, v4.x should work fine.



Creating package.json

This file is, basically, metadata for your application, which contains the complete libraries /dependencies
that need to be installed for your application. Another real-world advantage is that it makes your build
reproducible, which means that it's way easier to share it with other developers. There are different ways
in which you can create your customized package. json.

The following is the minimum information that needs to be provided in packages. json:

"Name" - lowercase.
"version" - in the form of x.x.x

For example:

{
"name": "my-twitter-package",
"version": "1.0.0"

}

In order to create the package. json template, you can use the following command:

| $ npm init # in your workspace

It will ask for values such as name, version, description, author, license, and so on; fill in the values, and
it will generate package. json.

If you don't want to fill the information in now, you can use the --yes or -y attribute to use the default values
as follows:

| $npm init --yes

For our application, I have generated package. json, which looks something like this:

{

"name": "twitter",

"version": "1.0.0",

"description": "Twitter App",

"main": "index.js",

"dependencies": {
"babel-loader": "76.4.1",
"fbjs": "A@.8.11",
"object-assign": "n4.1.1",
"react": "A15.4.2",
"react-dev": "0.0.1",
"react-dom": "70.14.7",
"requirejs": "n2.3.3"

+

"devDependencies": {
"babel-core": "A6.4.5",
"babel-loader": "76.2.1",
"babel-preset-es2015": "76.3.13",
"babel-preset-react": "76.3.13",
"webpack": "A1.,12.12"

H
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
H
"author": "Manish Sethi",
"license": "ISC"

}



Now, that we have generated package.json, we need to install these dependencies on our workstation using
the following command:

| $ npm install

Please make sure that, when you execute the preceding command, package.json should be in the current
working directory.



Building webViews with React

First of all, we will create a home view from which React will be called. So, let's create index.htm1, which
has the following contents, in the template directory:

<!DOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Flask react</title>
</head>
<body>
<div class="container">
<hi1></h1>
<br>
<div id="react"></div>

</div>

<!l-- scripts -->

<script src="https://code.jquery.com/jquery-2.1.1.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/1libs/
react/15.1.0/react.min. js"></script>

<script src="https://npmcdn.com/react-
router@2.8.1/umd/ReactRouter.min.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/
libs/react/15.1.0/react-dom.min. js"></script>

<script src="http://cdnjs.cloudflare.com/ajax/1libs/
react/0.13.3/JSXTransformer.js"></script>

</body>
</html>

As you can see in the preceding HTML page, we have defined id ="react", which we will use to call the
React main function based on the ID, and perform a certain operation.

So, let's create our main.js, which will send a response, with the following code:

import Tweet from "./components/Tweet";

class Main extends React.Component{

render(){
return (
<div>

<h1>Welcome to cloud-native-app!</h1>

</div>
);

3

3

let documentReady =() =>{
ReactDOM. render (
<Main />,
document.getElementById('react')
);

3

$(documentReady);

Now we have defined our basic structure of the React response. Since we are building an application
with multiple views, we need a build tool which will help us put all our assets, including JavaScript,
images, fonts, and CSS, under one package, and generate it into a single file.



Webpack is the tool which will help us solve this problem.

Webpack should already be available, as we defined the Webpack package as part of package.json, which
we installed earlier.

Webpack, basically, reads a single entry file, which could be the .js file, reads its child components, and
then converts them into a single .js file.

Since we have already defined it in package.json, it is already installed.

In Webpack, we need to define a configuration which will help it to identify the entry file and the loader
that is to be used to generate a single .js file. Also, you need to define the filename for the generated code.

Our Webpack configuration would be something like this:

module.exports = {
entry: "./static/main.js",
output: {
path: _ dirname + "/static/build/",
filename: "bundle.js"
iy
resolve: {
extensions: ['', '.js', '.jsx']
iy
module: {
loaders: [
{ test: /\.js$/, exclude: /node_modules/, loader: "babel-
loader", query:{presets:['react', 'es2015']} }
]
3
}i

You can extend the preceding configuration based on your use cases. Sometimes, developers try *.html as
the entry point. In that case, you need to make appropriate changes.

Let's move on to build our first webView using the following command:

| $ webpack -d

The -4 attribute in the last command is used for debugging; it generates another file, bundie. js.map, which
shows the activity of Webpack.

Since we are going to build the application repeatedly, we can use another flag, --watch or -w, which will
keep track of the changes in the main. s file.
So, now our Webpack command should be something like the following;

| $ webpack -d -w
Now we have built our application. Remember to change your routes in app.py so that home should be
navigated as follows:

@app.route('/index")
def index():
return render_template('index.html")



Let's check what our home page 1ooks like now.

I'hask Kok 2 i i e ;

Vel nane Do b -arive -app! it B g e S gy

You can also check whether we have React and react-dom running in the background in the inspect mode.

This is a very basic structure to understand the workings of React. Let's move on to our use case, where
we have created tweet webViews, and the user can view the old tweets as well.

So, let's create Tweet.js, which will have the basic structure of tweets, such as a textbox for contents, and a
button to post tweets. Add the following code to Tweet. js:

export default class Tweet extends React.Component {

render(){
return(
<div className="row">
</nav>
<form >
<div >
<textarea ref="tweetTextArea" />
<label>How you doing?</label>
<button >Tweet now</button>
</div>
</form>
</div>
)i
}

}

Let's call this function from main. js, so that it is loaded on the home page, by updating the render function as
follows:

import Tweet from "./components/Tweet";
render(){

return (

<div>

<Tweet />

</div>

);
3

If you load the page now, it will be pretty simple. Since we want to create a web application, which
should be attractive, we will use a couple of CSS here to do so. In our case, we are using Materialize



CSS (httpj/materia]jzecss.com/ getting—started.htnﬂ) .

Add the following block of code in index.htm:

<link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/1libs/
materialize/0.98.1/css/materialize.min.css">
<script src="https://cdnjs.cloudflare.com/ajax/1libs/
materialize/0.98.1/js/materialize.min.js"></script>

Also, we need to update Tweet.js as follows

render(){
return(
<div className="row">
<form >
<div className="input-field">
<textarea ref="tweetTextArea" className="materialize-
textarea" />
<label>How you doing?</label>
<button className="btn waves-effect waves-light
right">Tweet now <i className="material-icons
right'">send</i></button>
</div>
</form>
</div>
)i
}

Let's try to add tweets, and send them across with state so that some tweets should be shown.

In the main class of main.js, add the following constructor function to initialize the state:

constructor(props){
super (props);

this.state = { userId: cookie.load('session') };
this.state={tweets:[{'id': 1, 'name': 'guest', 'body': '"Listen to
your heart. It knows all things." - Paulo Coelho #Motivation' }]}

}

Now update the render function as follows:

render(){
return (
<div>
<TweetlList tweets={this.state.tweets}/>
</div>
);
}
}

Let's create another file, tweetList.js, which will show the tweets, with the following code:

export default class TweetList extends React.Component {
render(){

return(

<div>
<ul className="collection">
<1li className="collection-item avatar">
<i className="material-icons circle red">play_arrow</i>
<span className="title">{this.props.tweetedby}</span>
<p>{this.props.body}</p>
<p>{this.props.timestamp}</p>
</1i>

</ul>

</div>

);



http://materializecss.com/getting-started.html

Great! Now we have added this template. Let's check out our home page and see how the CSS works
there. But before that, since we are using Webpack for building, make sure you add the following line to
load bundie.js every time--this will run the webViews in the index.ntm1 file.

<script type="text/javascript" src="./static/build/bundle.js">
</script>

Awesome! The home page should look something like this:

TWEET HOW

duesl
o Lisken 1o wour heact It ko all Brings -+ Fauo Cosho ddatreation

Let's move forward to post tweets--we should be able to add new tweets, and they should be updated in
TweetList.js dS well.

Let's update our Tweet.js code so that it sends the tweets to main.js to process them. Now, we need to send
our tweets to main.js, in order to do so , we need to update our tweet.js file with the following code:

sendTweet (event){
event.preventDefault();
this.props.sendTweet(this.refs.tweetTextArea.value);
this.refs.tweetTextArea.value = '';

b
Also, be sure to update the render function with the form onsubnit attribute as follows:
| <form onSubmit={this.sendTweet.bind(this)}>

So, after adding content into the text area, it should submit the tweet as well.

Now, let's update the render function of main.js to add new tweets, as follows:

| <Tweet sendTweet={this.addTweet.bind(this)}/>

We also need to add the addtweet function in the main class, defined in the following:

addTweet (tweet):
let newTweet = this.state.tweets;
newTweet.unshift({{'id': Date.now(), 'name': 'guest', 'body"':



tweet})
this.setState({tweets: newTweet})

Your page, after adding the new tweet, should look something like this:

TWIET HOW =

quacl
° T arerias el e wng yooem T - Tes e SeSriEaline

o qums]
Tieter v vmar hmar Fionoesn pll T e " - Frd o Onebhe SRSmiseline

Currently, we are using React to hold the data in an array. Since we have built our microservices to hold
this kind of data, we should integrate our webView with the backend services.



Integrating webView with microservices

In order to integrate our microservices with webViews, we will use AJAX to make API calls.

We need to add the following code snippet in main.js to pull our entire tweet list:

componentDidMount () {
var self=this;
$.ajax({url: “/api/v2/tweets/",
success: function(data) {
self.setState({tweets: data['tweets_list']});
alert(self.state.tweets);
return console.log("success");
iy
error: function() {
return console.log("Failed");
}
1)

Similarly, we need to modify our addtweet function in our main. js as follows:

addTweet (tweet){
var self = this;
$.ajax({

url: '/api/v2/tweets/',
contentType: 'application/json',
type: 'POST',
data: JSON.stringify({
'username': "Agnsur",
'body': tweet,
1),
success: function(data) {
return console.log("success");
iy
error: function() {
return console.log("Failed");
3
1)
3

Since there will be multiple tweets which need to be iterated with a similar template of tweet, let's create
another component called tempiatetweet. js with the following code:

export default class Tweettemplate extends React.Component {

render (props){

return(

<1li className="collection-item avatar">
<i className="material-icons circle red">play_arrow</i>
<span className="title">{this.props.tweetedby}</span>
<p>{this.props.body}</p>
<p>{this.props.timestamp}</p>

</1i>

);
}
}

Remember, we have changed the field of props based on our database collection keys.

Also, we need to update our TweetList.js to use the preceding template by adding it as follows:

import Tweettemplate from './templatetweet'



export default class TweetlList extends React.Component {
render(){
let tweetlist = this.props.tweets.map(tweet => <Tweettemplate key=
{tweet.id} {...tweet} />);
return(
<div>
<ul className="collection">
{tweetlist}
</ul>
</div>
)i
}
}

Great! Your home page should look like this now:

How vou doing?

TWEET NOW =

Camain

o Trust is the glue of life. It's the feundational principle that holds all relationships. - Stephen B, Covey
Fhlativation
2017-03-29 08:05:36




User authentication

All our tweets are protected, and should react only to the audience which we want to showcase them to.
Also, anonymous users should not be allowed to tweet. For that, we will create a database and web pages
to enable new users to sign in and log in to the tweet webView as well. Remember, we will use Flask to
authenticate users, and also to post data to the backend user.



Login user

Let's create our login page template, where the existing users need to fill in their username and password
to authenticate. The following is the code snippet:

<form action="/login" method="POST">
<div class="login">

<div class="login-screen'">

<div class="app-title">
<h1>Login</h1>

</div>

<div class="login-form">
<div class="control-group">

<input type="text" class="login-field" value=""
placeholder="username" name="username'>

<label class="login-field-icon fui-user" for="login-name">

</label>

</div>

<div class="control-group">

<input type="password" class="login-field" value=""
placeholder="password" name="password">

<label class="login-field-icon fui-lock" for="login-pass'">
</label>

</div>
<input type="submit" value="Log in" class="btn btn-primary btn-
large btn-block" ><br>
Don't have an account? <a href="{{ url for('signup') }}">Sign up
here</a>.

</div>

We will post the data to the login page, which we will define in the app.py file.

But first, check if the session is present or not. If not, then you will be redirected to the login page. Add
the following code to app.py, which will validate session details for the user:

@app.route('/")
def home():
if not session.get('logged_in'):
return render_template('login.html")
else:
return render_template('index.html', session =
session['username'])

Let's create the route for login, and validate the credentials to authenticate users to tweet.

Here is the code snippet:

@app.route('/login', methods=['POST'])
def do_admin_login():
users = mongo.db.users
api_list=[]
login_user = users.find({'username': request.form['username']})
for i in login_user:
api_list.append(1i)
print (api_list)
if api_list != []:
if api_list[@]['password'].decode('utf-8') ==
bcrypt.hashpw(request.form['password'].encode('utf-8'),
api_list[0]['password']).decode('utf-8"'):
session['logged_in'] = api_list[@]['username']
return redirect(url_for('index'))




return 'Invalid username/password!'
else:
flash("Invalid Authentication")

return 'Invalid User!'

Once you are done with this, your login page will appear at the root URL, and it should look something
like this:

Login

USETriame

e 3R WOG

S Lp e Loonsg e vour gucounl

As you can see, we have provided a link, Sign up now, to create an account for the new user.

Remember, we are using APIs to authenticate the user from the user collection in our database.



Sign up user

Let's move on to create our sign up page to help register new users so that they can tweet as well.

Let's create signup.htm1, which will ask for user details. Check the following code snippet for this:

<div class="container">
<div class="row">
<center><h2>Sign up</h2></center>
<div class="col-md-4 col-md-offset-4">
<form method=POST action="{{ url _for('signup') }}">
<div class="form-group">
<label >Username</label>
<input type="text" class="form-control"
name="username" placeholder="Username">
</div>
<div class="form-group">
<label >Password</label>
<input type="password" class="form-control"
name="pass" placeholder="Password">
</div>
<div class="form-group">
<label >Email</label>
<input type="email" class="form-control"
name="email" placeholder="email">
</div>
<div class="form-group">
<label >Full Name</label>
<input type="text" class="form-control"
name="name" placeholder="name">
</div>
<button type="submit" class="btn btn-primary btn-
block">Signup</button>
</form>
<br>
</div>
</div>
</div>

The preceding code is, basically, the template which needs the backend API to submit the data to the user.

Let's create a signup route, which will take the cet and rost methods to read the page, and submit the data to
the backend database. The following is the code snippet which needs to be added to app.py:

@app.route('/signup', methods=['GET', 'POST'])
def signup():
if request.method=='POST"':
users = mongo.db.users
api_list=[]
existing_user = users.find({'$or"':
[{"username":request.form[ 'username']} ,
{"email":request.form['email']}]})
for i in existing_user:
api_list.append(str(i))
if api_list == []:
users.insert({
"email": request.form['email'],
"id": random.randint(1,1000),
"name": request.form['name'],
"password": bcrypt.hashpw(request.form['pass'].
encode('utf-8'), bcrypt.gensalt()),
"username": request.form['username']
i)
session['username'] = request.form['username']
return redirect(url_for('home'))




return 'That user already exists'
else :
return render_template('signup.html")

Once the user has signed up, it will set the session, and redirect it to your home page.

Your Sign up page should look something like this:

Sign up

Lisamanms

Ervll

ol Hame

We have authenticated the user, but what if he wants to update his/her personal information? Let's create a
profile page, which will help them do so.



User profile

Let's create a profile page (profile.ntm1), which will be accessible by the user already logged in at the
home page in the navigation panel.

Add the fOHOWiDg code tO profile.html:

<div class="container">
<div class="row">
<center><h2>Profile</h2></center>
<div class="col-md-4 col-md-offset-4">
<form method=POST action="{{ url _for('profile') }}">
<div class="form-group">
<label >Username</label>
<input type="text" class="form-control"
name="username" value='{{username}}'>
</div>
<div class="form-group">
<label >Password</label>
<input type="password" class="form-control"
name="pass" value='{{password}}'>
</div>
<div class="form-group">
<label >Email</label>
<input type="email" class="form-control"
name="email" value={{email}}>
</div>
<div class="form-group">
<label >Full Name</label>
<input type="text" class="form-control"
name="name" value={{name}}>
</div>
<button type="submit" class="btn btn-primary btn-
block">Update</button>
</form>
<br>
</div>
</div>
</div>

Since we have created the profile, we need to create a route for the profile, which will read the database
to get user details and POST back to the database as well.

The following is the code snippet from app.py:

def profile():
if request.method=='POST"':

users = mongo.db.users

api_list=[]

existing_users = users.find({"username":session['username']})

for i in existing_users:
api_list.append(str(i))

user = {}

print (api_list)

if api_list != []:
print (request.form['email'])
user['email']=request.form['email']
user[ 'name']= request.form[ 'name']
user[ 'password']=request.form[ 'pass']
users.update({'username':session['username']}, {'$set':

user} )

else:
return 'User not found!'

return redirect(url_for('index'))

if request.method=='GET':
users = mongo.db.users




user=[]
print (session['username'])
existing_user = users.find({"username":session['username']})
for i in existing_user:

user.append(i)
return render_template('profile.html', name=user[0]['name'],
username=user[0]['username'], password=user[0]['password'],
email=user[0]['email'])

Once this last bit of code is added, your profile page should look something like this:

Profile
Llssannarrs
Lirzary
Password
Emall

T laadl an Seay aps G

Full Mams

Salenn

Lipxiata

Also, we should add the profile link in tweet.js in the navigation template by adding the following lines:

<li><a href="/profile">Profile</a></1i>
<li><a href="/logout">Logout</a></1i>

Now your home page will look something like this:



e coeme Cennn

Prafle Ll

Haw st

SWEC | MOk e

Canmn
[oastia v plowel Tie 10s U Mo thrd oo cones pla el Deida eff ndfoticosdipae - Shaphea 1 Coaay 3t olrea Lo
2103 RcECREG




L.og out users

As you can see, in the preceding section, we provided the route to log out, which, basically, removes the
user session, and redirects the user to the login page. The following is the code snippet from app.py:
@app.route("/logout")
def logout():

session['logged_in'] = False
return redirect(url_for('home'))

Now our application is fully built-up, starting from the users logging in, to submitting their tweets, and
then logging out.



Testing the React webViews

Since we are building webViews, we need to test them to catch some of the bugs before they happen.
Also, testing will help you build better code.

There are a number of Ul-testing frameworks which could help you test your web apps. Two of them are
discussed in the following section.



Jest

Jest is a unit testing framework, which is provided by Facebook to test JavaScript. It is used to test
individual components. It is simple, standard, and standalone.

It tests your components based on fake DOM implementations, and runs different tests to check the
functionalities. It automatically resolves dependencies. Also, you can run all the tests in parallel.

You can refer to the following link, which could help you write test cases for your React application:

https://facebook.github.io/jest/docs/tutorial-react.html


https://facebook.github.io/jest/docs/tutorial-react.html

Selenium

Selenium is an open source and portable automated software testing tool for testing web applications. It
provides end-to-end testing, which means that it is a process of executing test scenarios against a real
browser to test the entire stack of a multi-tiered application.

It has the following different components:

IDE: This helps you describe the testing workflow.

Selenium WebDriver: This automates browser testing. It sends commands directly to the browser
and receives the results.

Selenium RC: This remote control helps you to create test cases.

Grid: This runs test cases across different browsers, and in parallel.

This is one of the best tools you can use to test our web application, which I would recommend.

You can gather more about Selenium at http://www.seleniumhg.org/docs/.


http://www.seleniumhq.org/docs/

Summary

In this chapter, our focus was on creating frontend user webViews and how to improve them to attract
consumers. You also learnt how React can help us to build these webViews and implement interactions
with backend services. In the upcoming chapter, things will get more interesting, as we will play around
with our frontend application, and will explain how we scale it using Flux to handle a large number of

incoming requests from the internet.



Creating UlIs to Scale with Flux

In the last chapter, we created webViews for our application and also saw the integration between our
frontend and backend application, which was very important to understand.

In this chapter, we will focus on structuring our frontend. Ideally, each module should be responsible for a
single thing. As in our main components, we are running too many operations within single modules.
Besides rendering the different views, we have code to make an API request to endpoints and receive,
handle, and format the response.

In this chapter, we will cover the following topics:

¢ Understanding Flux
e Implementing Flux on React



Understanding Flux

Flux is a pattern that Facebook created to build consistent and stable webapps with React. React doesn't
give you the ability to manage data; rather, it simply accepts data through props and components, and
further, the components process the data.

The React library doesn't really tell you how to get the components, or where to store the data, that's why
it's called the view layer. In React, we don't have a framework as we have in the case of Angular or
Backbone. That's where Flux comes in. Flux is not really a framework, but it's a pattern that will have you
building your own views.

What is a Flux pattern? We have your React components, such as a Tweet component and so on, and these
components do two things in the Flux pattern--they either perform actions or they listen to stores. In our
use case, if a user wants to post a tweet, the components need to perform actions and actions then interact
with stores, update the pattern to the API, and give a response to the components. The following diagram
will give you more clarity on Flux:

Actions ‘

‘ Components ‘ — |




Flux concepts

The following are the Flux concepts that you need to understood before moving ahead:

e Actions: This is the way components interact with API endpoints and update them. In our case, we
post new tweets using it. Actions pipe the action to the dispatcher. It might create multiple actions.

¢ Dispatcher: This dispatches every single event that comes in and sends it across to every single
subscriber, which are basically stores.

e Stores: This is an important part of Flux. Components always listen to stores for any changes. Say, if
you wrote a new tweet, that's an action, and wherever the tweet is updated in the store, an event is
fired and the component is made aware that it has to be updated with the latest data. If you come
from the AngularJS world, store is a service, or if you are of Backbone.js, stores are nothing but a
collection.

e Components: This is used to store the action names.

We will be using the ssx file instead of s, as there is not much difference--ss is a standard
o Javascript and ssx is an HTML-like syntax that you can use with React to create React
components easily and perceptively.




Adding dates to Ul

Before we deep dive into Flux, a little thing we need to add to our views is the date feature. Earlier, you
were seeing the timing of the tweets that are stored in the database as the TZ format; however, ideally, it
should be compared with current timings and should be shown in reference to it.

In order to do that, we will need to update our main.jsx file so that it will format our tweets. Add the
following code to main.jsx:

updatetweets(tweets){
let updatelist = tweets.map(tweet => {
tweet.updatedate = moment(tweet.timestamp).fromNow();
return tweet;
1)
b

Our work is done here. Now, our tweet should look something like this:

"Welnama Tanlainm

Profld Ligeir

Hew podosrg?

TWEET HO'W

Mardizrn
o IF s base bell ek indd wenr faeges dant eooerny, Flust menns: gol base moes eaemgy fo achizex e & qa0ie emrechadlan
d fow nocores 300




Building user interfaces with Flux

In Flux, we will be defining the responsibility of every module, and it should also be single. The React
responsibility is to re-render the view when that data changes, which is good for us. All we need to do is
listen to these data events using something like Flux, which will manage our data.

With Flux, you not only separate the responsibility of modules, but also get to do a unidirectional flow
within your app, and that's why Flux is so popular.

In the Flux loop, for every module, there's always one direction to go through. This intentional constraint
on the flow is what makes the Flux applications easy to design, easy to grow, and easy to manage and
maintain.

The following diagram will give you more clarity on the Flux architecture:

P " v Callbacka
e = =
Actions Dispatcher ‘
llcroservices r:‘ :
Weh API
Backend Action o—
Service Lraatar
— U - d
Usgr
g Intgriaces | h 4 © changes

For the diagram, I have taken reference from the Flux repository (https/github.com/facebook/flux).



https://github.com/facebook/flux

Actions and dispatcher

To begin with Flux, we have to pick a starting point. It could be anything. I find it good to start with the
actions. You'll also have to pick a direction of flow. You could go clockwise or counterclockwise.
Clockwise is probably good for you as a starting point, so we'll do that.

Don't forget to install the Flux library directly using the following command:

| $ npm install flux --save

Note that the preceding command should be executed from our application directory, or you can add it in
package.json and execute npm install tO install the packages.

Now, let's begin with action as our starting point, where we will be following a single responsibility
principle. We'll be creating an actions library to communicate with the API, and another action to
communicate with the dispatcher.

Let's begin by creating the actions folder in the static directory. We will be saving all our actions in this
directory.

Since we have two actions that need to be performed--it could be listing the tweets or adding new tweets-
-we'll start with listing the tweets. Create a Tactions file with the geta11mweets function, which should be
calling REST API's to get all the tweets, as follows:

export default{

getAllTweets(){
//API calls to get tweets.

b
b

I mentioned that Flux-based applications are easy to design, right? Here's why. Because we know this
actions module has a single responsibility with a single flow--either we provide the API call here or it's
better to invoke a module that will make all API calls for the application.

Update the Tactions. jsx file as follows:

import API from "../API"
export default{
getAllTweets(){
console.log(1, "Tactions for tweets");
API.getAllTweets();
iy
}

As you can see, we imported the API module, which will invoke the API's to get the tweets.

So, let's create ap1.jsx in the static directory with the following code snippet to get tweets from the
backend server:

export default{
getAllTweets(){



console.log(2, "API get tweets");
$.9etJISON('/api/v2/tweets', function(tweetModels) {
var t = tweetModels
// We need to push the tweets to Server actions to dispatch
further to stores.
1)
}

Create the sactions file in the actions directory, which will call the dispatcher and define the actiontype:

export default{
receivedTweets(rawTweets) {
console.log(3, "received tweets");
//define dispatcher.

b
b

As you can see, we still need to define the dispatcher. Luckily, Facebook created a dispatcher that comes
along with the Flux packages.

As mentioned earlier, Dispatcher is the central hub for your application, which dispatched the Actions
and data for registered callbacks. You can refer to the following diagram for a better understanding of the
data flow:

Bl
—_—
‘ Hepalcher
- | -
N
[ stors | | s | [ stm

Create a new file named dispatcher.jsx, which will create an instance of dispatcher with the following
lines of code:

import Flux from 'flux';

export default new Flux.Dispatcher();
That's it. Now you can import this dispatcher anywhere in your application.

So, let's update our sactions.jsx file, in which you will find the receivedtweets function, as shown in the
following code snippet:

import AppDispatcher from '../dispatcher';
receivedTweets(rawTweets) {

console.log(3, "received tweets");

AppDispatcher.dispatch({

actionType: "RECEIVED_TWEETS",
rawTweets
1)
3




In the receivedtweets function , there are three things to be described. Firstly, rawtweets will be received from
the getal1tweets function in ap1.jsx, which we need to update as follows:

import SActions from './actions/SActions';

getAllTweets(){
console.log(2, "API get tweets");
$.9etJISON('/api/v2/tweets', function(tweetModels) {
var t = tweetModels
SActions.receivedTweets(t)

13K




Stores

Stores manage the application state by taking control of the data within your application, which means
stores manage the data, data retrieval methods, dispatcher callbacks, and so on.

For a better understanding, refer to the following diagram:

Diapalcher

. -

Dats  Actions
—_—

Siore

Charegi Curremnt
Exde] LPR

Now that we have defined our dispatcher, next, we need to identify the subscriber's for the change
provided by the dispatcher.

Create a separate directory in stores in the static directory, which will contain all the store definitions.

Let's create a Tstore file that will subscribe to any changes emitted by the dispatcher. Add the following
code to the Tstore file which does so:

import AppDispatcher from "../dispatcher";

AppDispatcher.register(action =>{
switch (action.actionType) {
Case "RECEIVED_TWEETS" :
console.log(4, "Tstore for tweets");
break;
default:

}
13K

At this point, we have started the tweet action, which sent the API module a message to get all the tweets.
The API did that and then invoked the server actions to pass on the data to the dispatcher. The dispatcher
then labeled the data and dispatched it. We also created stores that basically manage the data and request
data from the dispatcher.

Currently, your stores are not connected with our app. The stores are supposed to emit changes whenever
they occur and, based on that, views will be changed as well.



So, our main component is interested in changes emitted events by the store. For now, let's import our
store.

Before we move forward, let's see if our complete flow of application is working fine. It should be
something like this:

[ i_ Carare Erovpils’ | By 6 Lom
“Wekeme Pord stun & b * | e k= ¥
I "Tarrdnas far teepts” Ta~rimae. ] mesh
- 2 "ORL pam cesEist Loy - R
AFP d "mohecas sanka” wrafdpeng 1qnch
#A "Tebkc=m “ric Fapakst b Pl T LR He

4

Haw por dolG T

Fardistum
H v Biver Al B el o = 0 Anni wne Ty i1 ST MAENA Yoi hossa Mama e gy 10T ren 1L 20 e
Aizlianlias

ER HEETE

It's good practice to keep on checking the user interfaces after you have reached a
certain stable state of your application creation.

Let's move on. Currently, we are just dispatching the tweets, next, we need to decide what we need to do
with these tweets. So, let's first receive the tweets and then emit changes to the views accordingly. We
will be using emitter to do that.

Emitter is a part of the events library that we previously installed using npm. So, we can import it from
there. Note how it is not the default export, but rather the destructed property on it. Then, our store will be
an instance of this tweet eventemitter class.

Let's update our Ttstore.jsx file as follows:

import { EventEmitter } from "events";

let _tweets = []
const CHANGE_EVENT = "CHANGE";

class TweetEventEmitter extends EventEmitter{
getAll(){
let updatelist = _tweets.map(tweet => {
tweet.updatedate = moment(tweet.timestamp).fromNow();
return tweet;

13K

return _tweets;
3
emitChange(){
this.emit (CHANGE_EVENT);

}

addChangelListener (callback){
this.on(CHANGE_EVENT, callback);

}




removeChangeListener (callback){
this.removelListener (CHANGE_EVENT, callback);
}

let TStore = new TweetEventEmitter();

AppDispatcher.register(action =>{
switch (action.actionType) {
case ActionTypes.RECEIVED_TWEETS:
console.log(4, "Tstore for tweets");
_tweets = action.rawTweets;
TStore.emitChange();
break;
}

});
export default TStore;

Wow, that's a lot of code to understand at one time! Let's understand it part by part, and the flow of the
code as well.

Firstly, we will import the eventemitter library from the events packages by using the following import
utility:

| import { EventEmitter } from "events";

Next, we will store the received tweets in _tweets and update the tweets in the geta11() function so that, in
views, it will show the tweet's timing with reference to the current system time:

getAl1(){
let updatelist = _tweets.map(tweet => {
tweet.updatedate = moment(tweet.timestamp).fromNow();
return tweet;

1

return _tweets;

}

We have also created functions for the views to add and remove the change event listener. These two
functions will also be just a wrap around the eventenitter Syntax.

These functions take cal1back arguments that will be sent by views. These functions are basically to add or
remove listener for the views to start or stop listening to these changes in the store. Add the following
code to Tstore.jsx to do so:

addChangelListener (callback){
this.on(CHANGE_EVENT, callback);

}

removeChangelListener(callback) {
this.removelListener (CHANGE_EVENT, callback);
}

Make sure you have no errors in the console with all the updated code.

Let's move on to views, that is, the main component where we will create a function to pull data from the
store and prepare an object for the state of component.

Let's write getappstate() function in main.jsx, which maintains the state of the app, as shown in the following
code:

let getAppState = () =>{
return { tweetslist: TStore.getAll()};



As mentioned earlier, the file extension doesn't really matter, whether it is .js or .jsx.

Now, we will be calling this function from the vain class, and we will also call the add and remove
listener functions that we created in main.jsx, using the following code block:

import TStore from "./stores/TStore";

class Main extends React.Component{
constructor(props){
super (props);
this.state= getAppState();
this._onChange = this._onChange.bind(this);
//defining the state of component.
3
// function to pull tweets
componentDidMount () {
TStore.addChangeListener(this._onChange);
}
componentWillUnMount () {
TStore.removeChangeListener(this._onChange);

}

_onChange(){
this.setState(getAppState());
}

Also, we have to update the render function to get the tweets1ist state to show in view, and it is done using
the following code snippet:

render(){
return (
<div>
<Tweet sendTweet={this.addTweet.bind(this)}/>
<TweetlList tweet={this.state.tweetslist}/>
</div>
);
3

Great, we have done pretty much everything now; our tweet should be shown without any problems, as
follows:



Walpsame Pasaisiam

Priofile Logout

Haowd you doing?

Pardisiuin
if wou Aave fall behind wour target don't worry, it just means you 7ave mora energy to achiess it #t #Fguote smoativaticn
3 houts age

Pasdisluin
Only | can change my life. Mo one can do it for me. - Cancl Bumett #gucte #motivation
14 minutes ggo

Awesome! Our application is working fine.

If you look at the architecture diagram of Flux, we have completed the flow of Flux once, but we still
need to complete the cycle by creating the API's to add new tweets.

Let's implement it by sending a new tweet feature using Flux. We will be making a couple of changes in
main.jsx. In the render function, the tweetcall to addtweet function into following line:

| <Tweet sendTweet={this.addTweet.bind(this)}/>

Instead, we will call the tweet component without a parameter, as follows:

| <Tweet />

Moreover, in the tweet component, we will call the tactions module to add new tweets. Update the code in
the tweet component as follows:

import TActions from "../actions/Tactions"

export default class Tweet extends React.Component {
sendTweet (event){
event.preventDefault();
// this.props.sendTweet(this.refs.tweetTextArea.value);
TActions.sendTweet(this.refs.tweetTextArea.value);
this.refs.tweetTextArea.value = '';

3
3

The render function in the tweet component remains the same.

Let's add a new sendtweet function that will invoke an API call to the endpoint URL of the backend



application and add it to the backend database.

Now, our Taction.jsx file should look like this:

import API from "../API"

export default{
getAllTweets(){
console.log(1, "Tactions for tweets");
API.getAllTweets();
iy
sendTweet (body) {
API.addTweet (body);
3
3

Now, add the ap1.addtweet function in arz.jsx, which will make an API call and also update the state of
tweetlists as well. Add the following addtweet function to the arz.jsx file:

addTweet (body){
$.ajax({
url: '/api/v2/tweets',
contentType: 'application/json',
type: 'POST',
data: JSON.stringify({

'username': "Pardisturn",
"body': body,
IOk

success: function() {
rawTweet => SActions.receivedTweet({ tweetedby:
"Pardisturn",body: tweet, timestamp: Date.now})
iy
error: function() {
return console.log("Failed");
b

1
}

Also, we are passing the newly added tweets to the server actions to get them dispatched and available
for stores.

Let's add a new function, receivedtweet, which will dispatch them. Use the following code snippet to do so:

receivedTweet (rawTweet) {
AppDispatcher.dispatch({
actionType: ActionTypes.RECEIVED_TWEET,
rawTweet
1)
3

ActionTypes dlI'€ constantly defined in constants.jsx in the static directory.

Now, let's define the recezven_tweeTactiontype case in the tweet store to emit changes for the view to take
further action. The fOHOWiDg is the updated Appdispatcher.register function defined in TStore.jsx.

AppDispatcher.register(action =>{
switch (action.actionType) {
case ActionTypes.RECEIVED_TWEETS:
console.log(4, "Tstore for tweets");
_tweets = action.rawTweets;
TStore.emitChange();
break;
case ActionTypes.RECEIVED_TWEET:
_tweets.unshift(action.rawTweet);
TStore.emitChange();
break;




}

‘ default:
)i

Now, we are pretty much done with adding a new tweet module using Flux and it should work totally fine,
as shown in the following screenshot:

weleomea Farcisturm

i FI FI Prifile Ly it

Hovas yalndnlng?

Yo can bage vour life on olher people's expectalions -Slevie Wonder

TWEET MOW &=

Now, if we click on the Tweet Now button, the tweet should be added and it should project in the
following panel, as shown here:



‘Welcoma Pardistum

Pt Logeid

How you going?

TWEET KOW =

Pardistum
Wi Rt base youn Fla o athar panples depies Tabinns. - Wimnsar
i 12 roinl s




Summary

In this chapter, you learned how to structure our application by using the Flux pattern, and we also got an
understanding of the different concepts of Flux, such as dispatcher, stores, and so on. Flux gives you good
patterns to distribute responsibility between modules, which really needs to be understood, as we are
developing an application for the cloud platform, such as AWS, Azure, and so on, so our application
should be highly responsive. That's all we have from the building user interfaces side, but in the coming
chapter, we will understand a few important concepts, such as event sourcing, and how we can make the
application more secure by using different authentication methods.



Learning Event Sourcing and CQRS

In the last chapter, we looked into the drawbacks of our current business model, and now, in this chapter,
we'll look at how Event Sourcing (ES) and CQRS (Command Query Responsibility Segregation)
would be helpful to overcome those.

In this chapter, we will talk about some architectural designs that deal with massive scalability. We will
also look at two patterns, Event Sourcing and CQRS, which are all about solving the problem response
behavior for such an enormous number of requests.

Many of us think that compliance with twelve-factor apps will make our application a cloud native
application with higher scalability, but there are other strategies, such as ES and CQRS, which can make
our application more reliable.

Since cloud native applications are internet facing, we expect thousands or millions of requests from
different sources. Implementing infrastructure architecture to handle the requests by scaling up or down
aren't enough. You need to make your application support such enormous scaling. That's when these
patterns come into the picture.

The topics that we will cover in this chapter are listed as follows:

Introduction to Event Sourcing

Introduction to Command Query Responsibility Segregation
Example code to implement ES and CQRS

Event Sourcing with Apache Kafka



Introduction

Let's start with reviewing the n-tier architecture, where we have some clients, a network, a business
model, some business logic, some data storage, and so on. This is a basic model, which you will find as
part of any architectural design. It looks something like the following diagram:

/ ! Yy
Wiaw
| CLIENT Model
!
Hadworking Data Transfar
Objact Modal
| REST End Point
- Business
Busbness Serdoe Model
DAD[Data Access Object)
E-R
Mk g Modal
REDMS/NDMS
pN J

As you can see in this architecture, we have these different models that come into action:

¢ View Model: This is basically for client-side interaction

e DTO Model: This is for communication between the client and the REST Endpoints

¢ Business Model: This is a combination of DAO (Data Access Object) and business service, which
interprets the user requests, and communicates with the storage service

e E-R Model: This defines the relationship between entities (that is, DTO and RDMS/NDMS)

Now that you have some idea about the architecture, let's understand its characteristics, which are listed
as follows:

o Identical stack for application: In this model, we use the same stack of elements for all read and
write operations, starting from REST API to business service, and then we access the storage
services, and so on, as all the different component codes are deployed together as a single entity.

The following diagram shows the Read/Write operation flow through different models:



III_.-'"' 7 : \ -
' CLIENT . i
Modal
i [
Metworking Data Transfar
— — Cbject Model
REST End Podnt I
il Business
Foad Business Service  Write 7 Madal
L= | ¥
s —
DAC |
U )
E-R
MEwarking Modol
] — ¥ '8
o o o
'..I\ﬁ““‘-v-"r’ RDMS/HNDNE \"H.-"'J /_-/JI.'

¢ Identical Data Model: In this scenario, you will find that most of the times, we use the same or a
similar data model for business logic processing, or for reading and writing data.
¢ Deployment Units: We use coarse-grained deployment units, which consist of the following:
e A build (an executable collection of components)
e Documents (end-user support material and release notes)
¢ Installation artifacts, which combine both the read and write code together
e Accessing data directly: If we want to change data, we usually go ahead. Especially, in the case of
RDBMS, we change the data directly, as in the following case--if we want to update the row with
User ID 1 with another dataset, we usually do it directly. Also, once we have updated this value, the
old value will be void from the application as well as the storage side, and cannot be retrieved:

l

REST End Faint

J

Businoss Service

Eweni

]

[ DO Dala Accaes Object) |

e

ke

ddnT

ok

o

S

e

s
U LANEE

So far, we have been making use of the preceding approach, and I would say that it is pretty much proven
and successful in terms of the response from user requests. However, there are other alternate approaches
which can perform much better than this when compared.

Let's discuss the drawbacks of the aforementioned business architecture approach, which are as follows:



¢ Inability to scale independently: Since our code for the read and write operations reside at the
same location, we cannot scale our read or write for the application independently. Say you have
90% read and 10% write from the application side at a particular point in time, we can't scale our
read independently. In order to scale reads, we need to scale out the complete architecture, which is
of no use, and increases the waste of resources.

¢ No data history: Since we are dealing with the scenario where we update the data directly, once the
data is updated, the application will start showing the latest dataset after some period of time. Also,
once the dataset is updated, old data values are not tracked, and hence, are lost. Even if we want to
implement such kinds of features, we need to write lots of code to enable it.

e Monolithic approach: This approach tends to be a monolithic approach, as we try to merge things
together. Moreover, we have coarse-grained deployment units, and we try to keep the code of the
different components together. So, this kind of approach will ultimately result in a mess, which will
be difficult to resolve.

One kind of approach which addresses these challenges is Event Sourcing.



Understanding Event Sourcing

By simple definition, Event Sourcing is an architectural pattern which determines the state of an
application by a sequence of events.

The best way to understand Event Sourcing is by using an analogy. One of the best examples would be
online shopping, which is an event processing system. Somebody places an order, which gets registered
in an order queue for a vendor ordering system. Then, this status is notified to the customer at different
stages of the order being delivered.

All these events, which occur one after the other, form a sequence of events called an event stream, which
should look something like the following diagram:

So, Event Sourcing takes consideration of events which happened in the past, and are recorded for
processing based on certain transactions.

An ideal Event Sourcing system is based on the building blocks shown in the following diagram:

:E

.ﬂl.-

ALIS

|".-:I||| F1|

Event Qu=zus

..-' —
3 - S
3 . AT )
- L]

Cur= ,.-""' .
hanzier II Reaitarng snd i
1 Lo Priessing ol evnls
| o L
et
=

[ Stors
Pt

Ewant
SLrEAIE

The preceding diagram depicts an ideal event processing system, starting from the application to the
creation of Events related to a certain incident, and then putting them in an Event Queue for further
processing, which is performed by an Event Handler. Based on the description of the Events, the Event



Handler processes them accordingly, and registers them in the Store.

Event Sourcing follows certain laws/tenets, which make application development a structured and
disciplined process. Most people usually feel that Event Sourcing is hard or they think it is outright
because of these tenets, which must not be broken, as doing so will create a huge chaos in the application.



Laws of Event Sourcing

Listed next are some of the Event Sourcing laws which need to be maintained while implementing ES on
any system (that is, application design):

e Idempotency: An ideal event-sourced business logic must be idempotent. This means that when you
execute a business logic against an input stream of data, the resultant state of the application will
always remain the same. Yes, that's true, it will remain the same irrespective of the number of times
you execute the business logic.

¢ Isolation: Event Sourcing must not depend on the external event streams. This is one of the most
important tenets of Event Sourcing. Generally, business logic is rarely ever executed in a vacuum.
Applications usually interact with external entities for reference. Moreover, applications make use
of cached information from external sources, even if developers don't consider that point. Now, the
question that arises is what happens if your business logic uses the external input to compute results?
Let's take the example of a stock exchange, where stock prices keep on changing, which means that
the stock price at the time of state computation won't be the same on multiple evaluations, which
violates the idempotent rule.

As per the developer's understanding, this is a very difficult condition to satisfy.
However, the solution to deal with this is to inject notifications into the main event
stream from external events. Since these notifications are now part of the main
events stream, you will get the expected result every time.

¢ Quality assurance: An event-sourced application, after being developed completely, should be a
well-tested application. Writing test cases for the event-sourced application is easy--it usually takes
a list of inputs and returns some state, considering that you are writing test cases following the
previously defined principles.

e Recoverable: Event-sourced applications should support recovery and replay. If you have a cloud
native application which adheres to all the guidelines of the twelve-factor apps to create an
application suitable for the cloud platform, Event Sourcing plays a vital role in disaster recovery.
Assuming that the event stream is durable, an event-sourced application's initial advantage is to
compute the state of the application. Usually, in a cloud environment, it is possible that the
application crashes because of numerous reasons; Event Sourcing can help us identify the last state
of the application, and recover it quickly to reduce the downtime. Moreover, Event Sourcing's replay
functionality gives you the ability to look at the past state at the time of auditing, as well as
troubleshooting.

¢ Big Data: Event Sourcing applications often generate huge amounts of data. Since an event-sourced
application keeps track of every event, it is possible that it will generate huge amounts of data. It
depends on how many events you have, how often they arrive, and how huge the data payload is for
the events.

e Consistency: Event-sourced applications often maintain consistency for the registering of events.
Think of banking transactions--every event happening during a bank transaction is very crucial. It
should be noted that consistency should be maintained while recording it.

It is very important to understand that these events are something that happened in the past, because when



we name these events, they should be understandable. Examples of a few valid names for events could be
as follows:

® PpackageDeliveredEvent
® UserVerifiedEvent

® paymentVerifiedEvent
Invalid events would be named as follows:

® (CreateUserEvent

® AddtoCartEvent

The following is some example code for an event:

class ExampleApplication(ApplicationwWithPersistencePolicies):
def __init  (self, **kwargs):
super (ExampleApplication, self).__init_ (**kwargs)
self.snapshot_strategy = None
if self.snapshot_event_store:
self.snapshot_strategy = EventSourcedStrategy(
event_store=self.snapshot_event_store,
)

assert self.integer_sequenced_event_store is not None

self.example_repository = ExampleRepository(
event_store=self.integer_sequenced_event_store,
snapshot_strategy=self.snapshot_strategy,

There are a few points that you should know:
e Every event is immutable, which means that an event, once fired, cannot be reverted.
e You never delete an event. Even if we try to delete an event, we consider deletion also as an event.

e Event streams are driven by message-broker architecture. Some of the message brokers are
RabbitMQ, ActiveMQ), and so on.

Now, let's discuss some of the pros of Event Sourcing, which are as follows:
e Event Sourcing gives the capability to rebuild the system very quickly

e Event Sourcing gives you command over the data, which means that the data we require for our
processing is easy to acquire by looking at the event stream for your processing purpose, say by
audit, analysis, and so it should be audit, analysis, and so on

¢ By looking at the events, it is easy to understand what went wrong during a period of time,
considering a set of data

e Event replay would be advantageous during troubleshooting or bug fixing

Now, the question arises that since we are generating such a huge amount of events, does this affect the
performance of the application? I would say, YES!



As our application is generating events for every transaction which needs to be processed by the event
handler, the response time of the application is reduced. The solution to this problem is CQRS.



Introduction to CQRS

Command Query Responsibility Segregation is a fancy pattern name, which means decoupling the input
and the output of your system. In CQRS, we mainly talk about the read and write characteristics of our
application; so, the commands in the context of CQRS are mainly write operations, while the queries are
read operations, and responsibility means that we separate our read and write operations.

If we look at the architecture described in the first section, Introduction, and apply CQRS, the architecture

will be divided into half, and would look something like this:

et

-'.-l-. 3

| Cilant

l uery Endpoirt J Iﬂ-urnrnand Endpoirtt

Yl

' [
I Quary Buninaes Sarvics Fﬁlmnﬁld B N i 15 o

Nebwarh

=

ROMS

Now we will look at some code examples.

A traditional interface module would look something like this:

Class managementservice(interface):

Saveuser(userdata);
Updateuser (userid);
listuserbyusername(username);
listuserbyid(userid);

Split-up, or as I prefer to call them, CQRS-ified interfaces, would look something like this:

Class managementcommandservice(interface):

Saveuser (userdata);
Updateuser (userid);

Class managementqueryservice(interface):

listuserbyusername(username);
listuserbyid(userid);

So, the overall architecture, after the implementation of CQRS and Event Sourcing, would be something

like the one shown in the following diagram:




Cllent

"

Guery Endpaint | | Command Endpaint

Quary Buginaas Sarnlea ] Commard Buslness Bord o

i

Read Cammand praccksor ] Wrils

| ] ] |

Storage \| | Everi 54 orm

This is the complete architecture after the implementation of Event Sourcing and CQRS.

In a classic monolithic application, you have endpoints that write to a database, and endpoints that read
from it. The same database is used for both read and write operations, and you don't reply to the endpoints
until an acknowledgement or commit is received from the database.

On a massive scale, with a high inbound event throughput and complex event processing requirements,
you can't afford to run slow queries for reads, nor can you afford to sit and wait for processing to take
place every time you get a new inbound event.

The flow for both read and write operations works as follows:

e Write model: In this case, when a command is fired from the endpoint and received at the
Command Business Service, it first issues the events for every incident to the Event Store. In the
Event Store, you also have a Command processor, or, in other words, event handler, and this
Command processor is able to derive the application state into a separate Storage, which could be
a relational storage.

¢ Read model: In the case of the Read model, we simply use the Query Endpoints to query the data
which we want to Read or retrieve for the application usage by the client.

The biggest advantage is that we don't need to go through the Write model (which is on the right-hand
side of the preceding image). When it comes to querying the database, this process makes our query
execution faster, and reduces the response time which, in turn, increases the application's performance.



Advantages of the CQRS-ified architecture

This architecture has the following advantages:

¢ Independent scalability and deployment: We can now scale and deploy an individual component
based on its usage. As in the case of microservices, we can now have separate microservices for
each of the tasks, say a read microservice and a write microservice, in this architecture stack.

e Choice of technologies: Freedom with regards to the choice of technologies for the different
sections of the business model. For instance, for the command functionality, we could choose Scala
or similar (assuming that we have a complex business model, and we have a lot of data to write). In
the case of a query, we can choose, for example, ROR (Ruby on Rails) or Python (which we are
already using).

This type of architecture is best suited for bounded context from DDD (Domain-Driven design), because
we can define the business context for the microservices.



Challenges related to ES and CQRS

Every architecture design model has its own challenges for implementation. Let's discuss the challenges
of ES and CQRS:

¢ Inconsistency: Systems developed using ES and CQRS are mostly consistent. However, as we store
the events issued by the Command Business Service at the Event Store, and store the state of the
application in the main Storage as well, I would say this kind of system is not fully consistent. If we
really want to make our system fully consistent using ES and CQRS, we need to keep our Event
Store and main Storage on a single Relational Database, and our Command processor should
handle all our incoming events, and store them in both storages at the same time, as depicted in the
following diagram:

_,-"'" "
' Clisnt
Query Endpaint Commend Endpaint
Cuery Business Service Comrreen] Hunirse: Sarvics
L ; ] - :
GCommand processar
', Read S
: ..-'""'-'I-l'rrl:d"-_
- T o “r- -
4 = L'l '

Storaga Everd Stare

Relational Database . .

[ would say that the consistency level should be defined by understanding the business domain.
How much consistency you would need in events, and how much these consistencies would cost,
needs to be understood. After inspecting your business domain, you will be able to make these
decisions considering the aforementioned factors.

e Validation: It is very easy when we talk in terms of validating the customer registration form, where
we need to validate the individual field, and so on. But actual validation comes when we have to do
validation based on uniqueness--say we have a customer with certain user credentials
(username/password). So, to make sure that the username is unique is a crucial validation when we
have more than 2 million customers who need to be registered. A few questions that need to be asked
in terms of validation are as follows:

e What is the data requirement for validation?

e Where to retrieve the data for validation from?

e What is the probability of validation?

e What is the impact of validation failure on the business?



e Parallel data updates: This is very crucial in terms of data consistency. Say, you have a user who
wants to update certain records at the same time, or within a difference of nanoseconds. In this case,
the possibility of consistency as well as validation checks is challenging, as there is a possibility
that one user might end up overwriting the other user information which could create chaos.



Overcoming challenges

One way to solve such a problem in Event Sourcing is to add versions in events, which will act as a
handle for making changes to the data and make sure it is validated fully.



Problem solving

Let's take the use case shown in the following diagram for Event Sourcing and CQRS to understand it in
terms of writing code for it:

ﬂ.- User ﬁ:“\"

Details

Liaer 1D
LI FiTE
paEswond

o ermaliid L

Commands

UearRegiaterComemand
UpdatePasswordCommand

|
L Events

UserRaglsterEvents
UpdatePasawordEvenls

v




Explanation of the problem

In this case, we are provided with User Details such as User ID (which should be unique), username,
password, email ID, and so on, and we have to create two write Commands to be fired--
UserRegistrationCommand and UpdatePasswordCommand, which trigger two Events:
UserRegisterEvents and UpdatePasswordEvents. The idea is that a user, once registered, should be
able to reset the password as per their needs.



The solution

In order to solve this problem, we will need to write functions related to write commands to receive the
inputs and update the event store.

Now, let's add the following code to the commands.py file, which will have code related to the write
commands that need to be performed as described:

class userregister(object):
def __init_ (self, user_id, user_name, password, emailid):
self.user_id = user_id
self.user_name = user_name
self.password = password
self.emailid = emaild

class updatepassword(object):
def _ _init  (self, user_id, new_password, original version):
self.item_id = item_id
self.new_password = new__password
self.original_version = original_version

So, we have added the functions related to the commands, but it should be called from somewhere with
the user details.

Let's add a new file called main.py from where the preceding command's function will be called.

In the following code, we call the preceding code by triggering events:

from aggregate import Aggregate
from errors import InvalidOperationError
from events import *

class userdetails(Aggregate):
def __init_ (self, id = None, name = '"", password = "", emailid =
nn ):
Aggregate.__init__ (self)
self._apply_changes(Userdetails(id, name, password, emailid))

def userRegister(self, userdetails):
userdetails = {1, "robin99", "xxxxxx", "robinatkevin@gmail.com"
}

self._apply_changes(UserRegisterevent(userdetails))
def updatePassword(self, count):

password = ""
self._apply_changes(UserPasswordEvent (password))

Let's understand the preceding code, function by function:

def __init_ (self, id = None, name = '"", password = "", emailid =

nn ):
Aggregate.__init__ (self)
self._apply_changes(Userdetails(id, name, password, emailid))

The last code initializes the seir object with some default values; it is similar to the initialize function in
any programming language.



Next, we defined the userregister function, which, basically, collects userdetails, and then creates the event
(UserRegisterevent(userdetails))) as follows:

def userRegister(self, userdetails):
userdetails = {1, "robin99", "xxxxxx", "robinatkevin@gmail.com"

}

self._apply_changes(UserRegisterevent(userdetails))

So, once the user is registered, he/she is authorized to update the profile details, which could be the email
ID, password, username, and others--in our case, it is the password. Please refer to the following code:
def updatePassword(self, count):

password = ""
self._apply_changes(UserPasswordEvent (password))

You can write similar code for updating the email ID, username, or others.

Moving on, we need to add error handling, as in our main.py file, we call a custom module, errors, to handle
operation-related errors. Let's add the following code to errors.py to pass the errors if caught:

class InvalidOperationError (RuntimeError):
pass

As you can see in main.py, we call the aggregate module, and you must be wondering why it is being used.
The aggregate module is very important as it keeps track of the changes that need to be applied. In other
words, it forces the event to commit all its uncommented changes to the event store.

In order to do so, let's add the following code to a new file called aggregate.py:

class Aggregate(object):
def __init_ (self):
self.uncommitted_changes = []

@classmethod
def from_events(cls, events):
aggregate = cls()
for event in events: event.apply_changes(aggregate)
aggregate.uncommitted_changes = []
return aggregate

def changes_committed(self):
self.uncommitted_changes = []

def _apply_changes(self, event):
self.uncommitted_changes.append(event)
event.apply_changes(self)

In aggregate.py, we initialize the seir object, which is called in main.py, and then keep a track of events
which are being triggered. After a period of time, we will make a call to apply the changes from main.py to
update eventstore with the updated values and events.

Let's create a new file, events.py, which contains the definition for the command that needs to be registered
in the backend. The following code snippet needs to be updated in events.py:

class UserRegisterEvent(object):

def apply_changes(self, userdetails):
id = userdetails.id
name = userdetails.name
password = userdetails.password
emailid = userdetails.emailid




class UserPasswordEvent(object):
def __init  (self, password):
self.password = password

def apply_changes(password):
user.password = password

Now we are left with the command handler, which is very important, as it decides which operation needs
to be performed and the respective events that need to be triggered. Let's add the file command_hand1er.py with
the following code:

from commands import *

class UserCommandsHandler (object):
def __init (self, user_repository):
self.user_repository = user_repository

def handle(self, command):
if command.__class__ == UserRegisterEvent:
self.user_repository.save(commands.userRegister(command.1id,
command.name, command.password, command.emailid))

if command.__class__ == UpdatePasswordEvent:
with self._user_(command.password, command.original_version)
as item:

user.update(command.password)
@contextmanager
def _user(self, id, user_version):
user = self.user_repository.find_by_id(id)
yield user
self.user.save(password, user_version)

In command_hand1er.py, we have written a handle function which will make the decision of the flow of event
execution.

As you can see, we called the @contextmanager module, which is very important to understand here.

Let's take a scenario: suppose there are two people, Bob and Alice, and both are using the same user
credentials. Let's say they both are trying to update the profile details field, for example, the password, at
the same time. Now, we need to understand how these commands get requested. In short, whose request
will hit the event store first. Also, if both the users update the password, then it is highly possible that one
user's updated password will be overwritten by another.

One way of solving the problem is to use version along with user schema, as we use it in the context
manager. We take user_version as an argument, which will determine the state of the user data, and once it is
modified, we can increment the version to make the data consistent.

So, in our case, if Bob's modified value is updated first (of course, with the new version), and if Alice's
request version field doesn't match with the version in the database, then Alice's update request will be
rejected.

Once this is updated, we should be able to register and update the password. Though this is an example to
show how to implement CQRS, you can extend this to create microservices on top of it.



Kafka as an eventstore

Although we have already seen the CQRS implementation, I still feel that you may have a few queries
related to eventstore, and how it works. That's why I'll take the use case of Kafka, which can be used as an
eventstore for your application.

Kafka is, typically, a message broker or message queue (similar to RabbitMQ, JMS, and others).

As per the Kafka documentation, Event Sourcing is a style of application design where the state changes
are logged as a time-ordered sequence of records. Kafka's support for very large stored log data makes it
an excellent backend for an application built in this style.

For more information related to implementing Kafka, read its documentation at this link:
0 https://kafka.apache.org/documentation/.

Kafka has the following basic components:

¢ Producers: This sends messages to Kafka
e Consumers: These subscribe to streams of messages in Kafka

Kafka works in the following manner:

e Producers write messages in Kafka topics, which could be users
e Every message that is in a Kafka topic is appended at the end of the partition

0 Kafka only supports write operations.

Partitions represent streams of events, and topics can be categorized into multiple topics
Partitions in topics are independent of each other

To avoid disaster, Kafka partitions are replicated across several machines

To consume Kafka messages, the client reads the message sequentially, starting from the offset,
which is set in Kafka by the consumer


https://kafka.apache.org/documentation/

Applying Event Sourcing with Kafka

Let's take a use case where the client tries to perform a certain operation, and we are using Kafka as an
eventstore to capture all the messages that are being passed. In this case, we have the user management
service, which could be a microservice responsible for managing all user requests. We will start with
identifying the topics for Kafka based on user events, which could be one of the following:

UserCreatedEvent
UserUpdatedEvent
UserDeletionEvent

UserLoggedinEvent

UserRoleUpdatedEvent

These events will, ideally, be published by the User Management Service, and all microservices will
consume these events. The following diagram shows the user request flow:

»
L

\m,

[ AP| Gateway |

ARE Tl
Crexin uann

User Managemenl Serrce

|IJ|:||1-u't:I.i|:=r

Dualaballaas

Croadoliser

Fubillshing
Events

+ Event Handler

. oy s
3%

Kuofla Event Szore




How it works

A user makes a rost request to the API gateway, which is an entry point for the user management service to
register users. The API gateway, in turn, makes an RPC Call (Remote procedure call) to the createuser
method in the management service. The createuser endpoint performs a set of validations on the user input.
If the input is invalid, it will throw an exception, and return the error to the API gateway. Once the user
input is validated, the user is registered, and usercreatedevent is triggered to get published in Kafka. In
Kafka, partitions capture the events. In our example, the users topic has three partitions, so the event will
be published to one of the three partitions based on some defined logic; this logic is defined by us, which
varies based on the use case.

All read operations such as listing user, and more, can be retrieved directly from
o readStore (database such as PostgreSQL).




Summary

This was a complex chapter, but if you understand it fully, it will make your application efficient and high
performance.

We kicked off by understanding the drawbacks of the classic architecture, and then moved on to discuss
the concept and implementation of ES and CQRS. We also looked at the implementation of a sample
problem. We talked about why these patterns are useful, and how they have a particular harmony with
massive-scale, cloud native applications.

In the upcoming chapter, we are going to deep dive into the security of the application. Stay tuned!



Securing the Web Application

In this chapter, we will mainly discuss how to secure your application from external threats that could
cause data loss, which, in turn, affects the overall business.

Web application security is always a concern for any business unit. Therefore, we not only look at the
traditional application logic and data-related security issues, but at the protocol and platform concerns as
well. Developers have become more responsible for ensuring compliance with the best practices
regarding web application security.

Keeping this in mind, this book is intended for application developers, system administrators, as well as
DevOps professionals who want to keep their application secure, whether it is at the application level or
platform.

We will cover the following topics in this chapter:

e Network security versus application security

¢ Implementation of application authorization using different methods, such as OAuth, client
authentication, and others

e Word on developing security-enabled web applications



Network security versus application security

In today's scenario, web application security depends upon two primary surfaces--the web application
itself and the platform on which it is deployed. You can separate these two surfaces, as any web
application cannot be deployed with a platform.



The web application stack

It is very important to understand the distinction between a platform and an application because of the
impact it has on security. A typical web application would have an architecture similar to the one
depicted in the following diagram:

l WabSarvar

| Application
1 |

| WabSarvar | WeabSarver

F.

Most web applications depend on web servers, such as Apache/HTTP server, Rails, nginx, and others,
which actually handle the incoming request based on the type of application. These web servers keep
track of the incoming traffic; they also validate the request and respond to it accordingly, considering all
user authentication is validated. In our case, Flask acts as the web server for our application.




Application - security alternatives in the
platform

As described earlier, every web application needs to be deployed on some kind of a platform before it
can be exposed to the outside world. An application platform provides the protocol support application,
which is needed to communicate over a network. TCP, and, to a large extent, HTTP, are all handled at the
application level.

In the network stack of software architecture, there are two distinct layers, which include protocols ripe
for web application attacks, in the application platform. These layers are as follows:

e Transport
e Application

Let's see these layers in detail.



Transport protocol

In the Open Systems Interconnection model (OSI model), the transport layer is commonly referred to as
layer 4. Web applications use TCP protocols as their transport protocol because of their reliability.

In TCP (Transport Control Protocol), each packet is closely monitored, and error recovery mechanisms
are inbuilt, which is very useful in case of a communication failure. These mechanisms are exploited to
attack web applications.

The most common attack is the SYN flood attack, which is a TCP request for acknowledgment attack. The
SYN flood attack severely affects the application by using an idle session to establish a connection with
the application server, and keeps on requesting until the server runs out of resources, and is no longer able
to handle more requests.

In order to avoid such kinds of attacks, system administrators (developers have no control here) should
set up a configuration related to timeout and idle behaviors after considering the impact on the customers.
Another example of such kinds of attacks is the Smurf attack (please refer to this link for more details: htt
ps://en.wikipedia.org/wiki/ Smurf_attack) .

Secure transport protocols

In the OSI network model, we also have some protocols on layer 5, which can make your network more
secure and reliable--SSL/TLS. However, this layer also has some vulnerabilities (for example,
Heartbleed, 2014 in SSL and man-in-the-middle renegotiation attack, 2009 in TLS).


https://en.wikipedia.org/wiki/Smurf_attack

Application protocol

In layer 7 (the topmost layer) of the OSI network model, the actual application resides in and uses the
HTTP protocol for communication, which is where most of the application attacks occur.

HTTP (Hypertext Transfer Protocol) has mainly these two components:

e Metadata: HTTP headers contain the metadata, which is important for both, the application as well
as the platform. Some examples of headers are cookies, content-type, status, connection, and so on.

e Behavior: This defines the behavior between the client and the server. There is a well-defined flow
of how messages should be exchanged between an HTTP client (such as a browser) and the server.

The main problem here is that an application, generally, doesn't have an inbuilt capability to identify
suspicious behavior.

For example, a client accesses the web application over a network, which may be attacked by
consumption-based denial-of-service (DoS) attacks. In this attack, the client purposefully receives the
data at a slower rate than the normal indicates which they are capable of in an attempt to maintain an open
connection longer. Due to this, the web server's queue starts filling, and consumes more resources. If all
the resources are used up with sufficient open connections, it is highly possible that the server may get
unresponsive.



Application - security threats in application logic

In this section, we look at the different methods that authenticate users, and make sure that our application
is accessed by a genuine entity.



Web application security alternatives

In order to secure our application from outside threats, there are a couple of alternative methods, which
are described here. Usually, our application doesn't have any intelligence to identify suspicious activities.
Hence, some of the important security measures are described as follows:

e HTTP-based Auth
e OAuth/OpenID
e Windows authentication

HTTP-based Auth

A simple username and password are hashed and sent to the web server by the client, like the one we
have set up for our web application, as depicted in the following screenshot:

Login

L anarmg

==t |

Sl U M B2 CREERA YOUP ASenunT

This preceding screenshot image is of the UI that we created in Chapter 6, Creating Uls to Scale with Flux.
It is authenticated by the backend service (microservices) and user database, which is stored in the
MongoDB database server. Also, in case of validating the user to log in to the home page, user data is
read from the MongoDB collections, and then the user is authenticated to proceed further into the
application. The following is the code snippet for the API that is called:

@app.route('/login', methods=['POST'])
def do_admin_login():

users = mongo.db.users

api_list=[]

login_user = users.find({'username': request.form['username']})
for i in login_user:

api_list.append(1i)

print (api_list)

if api_list != []:

#print (api_list[0]['password'].decode('utf-8'),
bcrypt.hashpw(request.form['password'].encode('utf-8'),
api_list[0]['password']).decode('utf-8"))

if api_list[@]['password'].decode('utf-8') ==
bcrypt.hashpw(request.form['password'].encode('utf-8'),
api_list[0]['password']).decode('utf-8"'):
session['logged_in'] = api_list[@]['username']
return redirect(url_for('index'))
return 'Invalide username/password!’'
else:
flash("Invalid Authentication")




return 'Invalid User!'

This is one of the ways of setting up security at the application level so that application data can be made
secure.

OAutl/OpenID

OAuth is an open standard for authorization, and is very common among websites that allow users to
authenticate using third-party credentials, which is, generally, the email ID.

Listed next are the few key features that make OAuth better than other security measures:

e It has nothing related to any OS (operating system) or installation

It's simple and easy to use

It is more reliable and provides high performance

It is designed, specifically, for distributed systems, which need a centralized authentication method
It is a free-to-use, open source-based identity provider server software

It provides support for cloud-based identity providers such as Google, AuthO, LinkedIn, and others
It is also called SSO (single signed-on or token-based authentication)

Setting up admin account

OAuth doesn't work without a service to grant a JWT (JSON Web Token, a URL-safe JSON format for
expressing claims that can be transferred between parties). You can learn more about JWT at https/jwt.io/intr
oduction/.

An identity provider is responsible for authenticating a user for a web application that depends on
authorization provided from a third party.

You can use any identity provider based on your preference, as features would be similar between them,
but they will be variant in terms of functionality. For the scope of this chapter, I will show you how to
authenticate using Google web apps (which is a developer API from Google) and AuthO third-party
applications.

Setting up using an Auth0 account

In this section, we will set up an account in the Google developer tools for authentication, and in a third-
party free application called Auth0 (autho.com).

Let's kickstart the account setup in AuthQ (autho.com), where the only requirement is an email ID to get
registered or to sign up. Refer to the following screenshot:


https://jwt.io/introduction/
http://auth0.com
http://auth0.com

Auth(

LL’?E Iri slan U

(G oGmwiTHGooGLE

or

[

yoursifayample.oom
Ll

your password

Cran't remamber your password 7

LOG IN 2

Once you are registered/signed up for the AuthO account, you will see the following screen:



u i i .
r‘! futhd A tgmoech for clients or rectures G Hap & Suppmd Cosumaebatian Tk b Raes m manizhsetas -

= Tk o for chovrsireg the Free Sobpd gl Yoo bFaes 12 clsgs ol jir s trisl b ssgecinenb ek femrss Bys sew ol in (ks

Free plon. IF pou wantta comtinue us mg thess Seatures then provide sour gifira irfoatian.,

- e Dashboard + e SLIENT

Langirs dazliuiiy

LTRSS Inbegrabices

=i Lerrechors

:_.:'-'. Llesine

2 Hoew 5, . iz
, wEE Loy Bounoanes
ok ks

E ki lbackar &b [LEE RN G O SITSHLIES

28 Healed Pages D D O
"~ Frraile

F- Logs

. .. : Latest Logine e Signups
= -".'I.lIIIIJ :.l Meeraan

Terare wte e kaies Tan o cesraslices eel Thern ara e o gins e e sieres 2 kane pal

: Extensonz

L Bt Suppet

This preceding screen is the dashboard where we can see the login activity as the user who logged in to
the application. It also showcases the login attempts by the user, and keeps a log of the user's activity. In
short, the dashboard gives you an insight into your application's user activity.

Now we need to add a new client for our application, so click on the +NEW CLIENT button to create it.
The following screen will appear once you click on the +NEW CLIENT button:



Craate Cliont
Mame

el A

Youcan changs the client fame later in the client settnos.

Choose aclient type

L ) 8 A

Mative Single Page Web RegularWeh Man Interactive
Applications Applications Clignts
Mokeile ar Deskiop,
spoEthet run netivaly A JevaScriot fromt-2nd Traditiansl web-app CLIL Dserons or
in a device. apg vl uses an ABIL fwdth iefrask. Services (Unming cn

vour backand,

The preceding screenshot is self explanatory--you need to provide a user-defined name for the client
(generally, the name should be related to the app). Also, you need to select the category of your
application. Coming back to our case, I have given the name as my app, and selected the second option, that
is, Single Page Web Applications, as we are using the technologies mentioned under it. Alternatively, you
can also select Regular Web Applications--it works just fine. These categories are used for distinction
between the kinds of applications we are writing, because it is highly possible we might be developing
hundreds of applications under one account.

Click on the CREATE button to proceed with the creation of the client. Once it is created, you will see the
following screen:



b i P g e o ol e b b

G e

T e u1.|,'|:|_|-||-|

o Ll

el -

In the section seen in the preceding screenshot, we have a lot of settings that are auto-generated, and we
need them to be integrated with our web application. A few of the sections are defined as follows:

Client ID: This is a unique ID assigned to a particular application

Domain: This is similar to the authentication server, which will be called at application login
Client Secret: This is a secret key, which should be kept safe and not be shared with anyone, as it
could cause a security breach

Client Type: This defines the type of the application

Allowed Callback URLs: This specifies the allowed callback URLs after user authentication, such
dS http://localhost:5000/callback

Allowed Logout URLs: This defines the URLs that will be allowed to be hit at the time of user
lOgOllt, such as http://localhost :5000/1logout

Token Endpoint Authentication Method: This defines the method of authentication, which could be
none, or post, or basic

Other features of an AuthO account that could be useful to manage your application are as follows:

SSO Integrations: In this section, you can set up an SSO login with a couple of other third-party



applications such as Slack, Salesforce, Zoom, and so on:

‘:-' Authl Sumdd low zHaikaeci wad s ok [ bedp & Sneper Dossres v -ﬂ —nnafasths
1 Thatk g bnd Sheisede g 150 Frie oD L foeow 57 e IrH - ciear e 2l nerg idd et o St B sen fie m b
i =lar b poweaan e o e uareg taes hedbucan By Ereescepear o b c-lomes e,
%3 Damhzzard = L 5
: Mew Single Sign On Integration
= Ceeria
B SR LHL AT oA i AT TN SR e ER b e A uas b emcle meene o S T B EIDAKIE TD NEG R BB T O o
AL e A AT
1 | m .-d'-"ﬂ-- SOOI
.y = CloudBees =
= Felax
2 ek
= Rhurrasas Suth
L W MoGEE e - ¢
b ER = Drophaox Al "“l,w---*-. T E" ._r_lﬁ?w,'u EGMY.TE
M1 Feoals
CALE
oF Ay Usdlases g .
) Mew Relic T Ollive 355 ' *~fDI‘CE: | FETRP YD
[} Exizram-a x
I G Repe e
% e [EETTETFTER T IRy g PTE | L
-~ slack I :] LA randask EDDH"!

e Connections: This defines the type of authentication you want to define for your application, such as
Database (username-password database), Social (integration with the existing account from social
media websites such as Google, LinkedIn, and so on), Enterprise (for enterprise apps such as AD,
Google Apps, and others), or Passwordless (by sms, email, and so on). By default, the username-

password authentication is enabled.

e APIs: In this section, you can manage the Auth0) Management API for your application, and test it,
as described in the following screenshot:



FZi

-3
—t

Thank i 1ar checaing the Fron dutho plan. ¥ hase 12 Do st i tial B csaeiment wish trotines that ane a4t i thn

Froe glan. IFyod o b oaalinue daing Wese focbancs thien proads podr Bdlbeg il maton

Ianmh brimm

AuthO Management API

Clenks
iy
i Saart SaHings Coopes Her Inbarszztem Cfapte mek AN Explarar
EE20 Imegrabans
Lannschiors
A AR reprerpnhe s Aot erkny ane soinat be moci Fed o dsistsd, o s st Aok e

L¥sera

Rules

Pl

Id=riliFer

Tizkun Faprnlive: [ Sedamniia)

Token Lepiraten For Droyeser

Flirsma [Sucumia)

Sigrang Algarittim

SALEG Db bakilii e fadinnst]

Iz G on pue spchom, Lizedus = vou prebastowr:
diecote vath Giithd s Bdand oo AR -nzszed

Arh b araoermsad 2=

G liemcerls i T b G T Tl Roteendy o bidivaae b i i

[l B T, L

hitpeySnnisbeaibie st b cme S piessd

i wamrsr inrthe sl e amum il bacead sethe

sdEEnTg Saramster an auhoemrban ool

Hizq Ll

Espimton waldzin seconds) 2o Goiec ceced
Tovs thow &2 e sl Tamnd |':||::: rl

TEEr
Erpi-ad it valued v amiends! tor usiuxs ke i

oo 0 s D ek e

it Flaeees,
the Tokéh LEChms soue

AT B T b

RESFes

algasiihom e e used s ha
Tarhes &A1 Vigu a:

ARITRIN] L8 HEoa s

Tl ML MR an

el
SRR )

.I' -'\:

=iAnhe mennEL s e AR

e Logs: This section keeps a track of your activity on the AuthO account, which is very useful to debug
as well as to identify suspicious activity at the time of threats. Refer to the following screenshot to
find out more about Logs:



Tree e, B oo vwand s ceed mow cing theee Tnsturas han peovids pour Billeg edamrnsiin

T8 Tashbnnet

=1 oents

B AP

TOEED Miayraloes
o SanfieclieE
e

=t Hules

2 Hooks

T sdulifasiar Aak-
il =astod Pross

1 Emais

Logs

Thank pun Tai cb i L Fran SUAhG glan, o Favs T2 aype Bl incpanr Uial 1 sepsiifnand salo sl ares thal mre pet i Ve

| BiLns

Storage of log data of Both cctioms tzkien o thz deshboond by the adminissrabors, 25 weli as authemioations made by your users

Lagrs man: &

3 Lmsrgh forloos

(RN}

AF Digeration

L=

fnstaea Eahang

AF genzkaon

M LipEraban

e Saclmge

Suppzis Eschange

Supnres Sachangs

AR Opaiaban

AF Operskam

Suzsees Dighapgs

Suifrrmdn Eschargs

AF Opercbon

AR Ciperation

AR Charatam

AP DpEratan

AR Ciperatom

AP Mhersiam

suepzishul Uzor DEkctan

N LAk

Dmacrimlice

Creats g climnt grand

Gl Concksrvinca o fdira Tek..,

Dzt a ricnt gant

Create pclionl grad

Cilwrd Comdervisia T Bt Tek..

Clicrk Srodorvialadar Aceess Tek...

Clert Crederiay Tor Sceess Tok...

Cieala acdiant graal

Create a clisnt

iclert Cradeerise for Access Tok.,

il Qomckerntiad Tor ecaea Tek..

Creats acliznt gram
Cireabe a clisnd
Liada s adraatisn

Dmichma Zient

el clivnt

Tl B

uzer_oh BEOL P LG bOhn g ..

Tmee ey

Frales =

A rirytes ago
LRI R TH
4 mirLies ago
A mirgtus ago
5 [ 1 i s Y H:_ll?
L mirusesage
£ mirses age
Erirites age
EmirLses age
Eoriruies age
Emiri:tas age
Emircies ago
Emiryses ago
HER TSR T e
an hinur g0
un NEur

LELRE S B

an nour 2gd

AN NGEE A

Cornsstian

P,

Cler

LR Eapiknn Clinred

L L ke dagunn.,

Lthl Manogeme..

P Cuplorer Chept

fshl Karnageme,.

AithD Kraragama..

These are the most important features of an AuthO account that could help you manage your web
application security in an efficient way.

Now, our AuthO admin account is set up, and is ready to get integrated with our web application.



Setting up a Google API account

Google APIs use the OAuth 2.0 protocol for authentication and authorization. Google supports common
OAuth 2.0 scenarios, such as those for web server, installed, and client-side applications.

To kickstart, log in to the Google API Console (https:/console.developers.google.com) with your Google account to
get the OAuth client credentials such as Client ID, Client Secret, and others. You will need these
credentials to integrate with your application. You will see the following screen once you have logged in:


https://console.developers.google.com

= [=0ds P AT S AV - 0

BEOT  AF Marager Lihrary

Papadad AR
Eongin Tived AFn Fogin Flous Warking | aeeeg W Cooge Mam Ay 5 Babe AP
i TP - = P TP 9
x W .- g B g A o u

.........

5
=
LN R

The preceding screen showcases the Google library API offerings for their different Google products.
Now, click on Credentials in the panel on the left-hand side to navigate to the next screen, as seen in this
screenshot:



= {5 ’-'lh sz szl = o
RFT - APl Marager Cradenlials

£ ndizzaad . i
T Dizdeisdn Uhrlyzzasalsatrsny Josersmbizassd

e 1T

o Cedenah

P
Lrndeials

You ress credorian ks psosan AL Do e et vse plin s
vaz e bz oadalze sk bebe Iy Sopm e Lagsyaari a1 11e
el Ao 0 R R e R0 0 I e
17 Swtarre hie 55 freomananter ferdn b

AR L
R R T TSl & R S R PR e T

ek clane i
SR EEIL LA S T KNSR orowe I waivdwa

Ce~kmpzmari b
DashleEr apowizAEEY L B METETESI T L e IS AT

sl Tk eres
Pt Yooy e s o T el e e &5 T o e e

Now, click on Create credentials, and then on the OAuth client ID option to initiate the generation of
client credentials from the API manager.



o gle AF clandnativepgihon - a,
API API Manager € Createclient 1D

s Dasnooam
Apzlizalion Tp=R
it Librars & Vi apalicaien
dndrod _Eam e
Chimeime Apd Laa mias
108 L e
Flzrsation £

T Cpscrjipals

Far
chudnaibse-2pps
Fogsniiztl ans
Etiertrwe Dok o inpre, mead rec LRI, oF Do

diatfoiicdd JaspSorpl G

Firmume aih re) crsde o & feoreeerr, T=02 Ik e moin LD ot ihe e mcpd i on b ren™ soeriain = saedoemd

T 2RI e COeTa] ) e P 20k it e 0o ™ el b P P00 T L5 2 omasd nd 57 Sy, Soos mvasn [ de 1l
LIESR s LR

mipalocakorT il

Aunbatized nesines URls

I nse wrh e crede Diram @ s ga-esr Thie (e e pelh in sooe speod reeon thee e g%e e vesas o oatier ep haee
o ErviConed with Cozplz, TA0 Zoch sl B2 a2qee Ood with the pinovizzeka iz o2 fer a2z oss, Masthase g pholoecd
Lk corviam LEL wgrme e g slies palee Cannr B e oulzhs 1 s drias

trpe cealhoes]: SE0 e s s

o [

Now we need to feed some information about our application; you must remember these details that we
have provided at the time of OAuth account as well. Once you are ready, and have filled the mandatory
fields, click on Create to generate the credentials.

Once the client ID is created, you will see the following screen, which will have the information related
to the client ID (Credentials):



=n 'JIE: | clnudnatveoytoon = ]
APTI AFI Manager & Client 10 for Web anplication & DOWNLOAR JSON (¥ HEEET HECHE] i DELETE

i-F Ligsrsay

i Libirar Ehaal 13 A A 12 g Rl etk TaihdeghaSuRelsdime spp e gaoclmssie e csnlaim
[} I ; S
Shear searer YHIgE s i b ssab AL
S LCiedwitiale Lorssaticn dais i 2, 3017, 8.3 05 PR
Meme=

Awsdaleanps
mesidcTions
sl et sl crging res asl LRl o hsth
Auitbeziizind dira BEiiot of it
Ferarradi- mamss o abezsza The £ d-rongin LREm The e sppl rofiom Foosn® coerisin g s kesd

o ez b oonnfoor 2 acth (e s rope . Cofme sz i . 1D vol Teusing 2 nonnanadarnd Dorn s misst nee ez L
therrapnllE

b e Al oAt SEAN

Auilleznaed radoszl Uk

Foruceahs ragmesis mora web eeever Tris b5 the pns 'neeodr spcFoadon ther users 3o red insciar 4o aHer frecchrar
w il ez o B oy Ul pal o | b opea izl sk s eudonie alid ez zaks Do woceme M oal dewe @ pedioc ol
Carnmi el DRL liegmenee o relrihow oche Cennnk oe 8 coh ks IR sedsinees

http sy i host 00 ral Cack

m [RSTTEES

Remember, NEVER share the client ID details with anyone. In case you do, then reset it immediately.
Now our Google API account is ready to be integrated with our web application.

Integration of a web application with an Auth0 account

In order to integrate the AuthO account with our application, we need to create a new route for our
callback. This route will set up the session after user authentication from the AuthO account. So, let's add
the following code to the app.py file:

@app.route('/callback')
def callback_handling():
code = request.args.get('code')
get_token = GetToken('manishsethis.auth@.com')
auth@_users = Users('manishsethis.auth@.com')
token = get_token.authorization_code(os.environ['CLIENT_ID'],
os.environ['CLIENT_SECRET'],
code, 'http://localhost:5000/callback')
user_info = auth@_users.userinfo(token['access_token'])
session['profile'] = json.loads(user_info)
return redirect('/dashboard")

As you can see in the preceding code, I have used client credentials that we got from the AuthO account
console. These are the credentials we generated at the time of client creation.

Now let's add the route/dashboard to which the user is redirected after being authenticated:

@app.route("/dashboard")
def dashboard():
return render_template('index.html', user=session['profile'])



This preceding route simply calls index.ntm1, and passes the session details to index.htm1 as parameters.

Now we have to modify our index.htm1 to trigger authentication via AuthO. There are two ways of
triggering. The first one is to make the AuthO domain as the landing page, which means that as soon as
they hit the URL (http://10calhost:5000), the users will be redirected to the landing page for the AuthO
account. The other way is to trigger it manually by providing a button to trigger it.

For the scope of this chapter, we will be using a manual trigger, where the AuthO account can be used as
an alternative to log in to the application.

Let's add the following code to 1ogin.ntm1. This code will make a button appear on the login page, and if
you click on that button, it will trigger the AuthO user signup page:

<center><button onclick="1lock.show();">Login using Auth@</button>
</center>
<script src="https://cdn.auth@.com/js/lock/10.14/1lock.min.js">
</script>
<script>
var lock = new Auth@Lock(os.environ['CLIENT_ID'],
'manishsethis.auth@.com', {
auth: {
redirectUrl: 'http://localhost:5000/callback"',
responseType: 'code',
params: {
scope: 'openid email' // Learn about scopes:
https://auth@.com/docs/scopes
b
}
1)

</script>

There is one more thing we need to take care of before we test our application--how to make our
application aware of the session details.

As our index.htm1 takes the session values and showcases them on our home page as well, it is used to
manage the tweets from the user.

So, update the body tag of index.htm1 as follows:

<h1></h1>

<div align="right"> Welcome {{ user['given_name'] }}</div>
<br>

<div id="react"></div>

The previous code is needed to show the user's full name on the user interface. Next, you need to update
the 1ocalstorage session details as follows:

<script>
// Check browser support
if (typeof(Storage) !== "undefined") {
// Store
localStorage.setItem("sessionid","{{ user['emailid'] }3}" );
// Retrieve
document.getElementById("react").innerHTML =
localstorage.getItem("sessionid");
} else {
document.getElementById("react").innerHTML = "Sorry, your
browser does not support Web Storage...";

}

</script>



http://localhost:5000

We are almost done now. I hope you remember that we have set up authentication checks when you tweet
for a particular user in our microservices APIs. We need to remove those checks, because in this case, we
are using AuthO for authentication purposes.

Awesome! Run your application, and see if you can see a screen like the following one at nttp://1ocalhost:5
000/.

Logiry usirg Authl |

Login

LS ngme

pasamoed

Sign up now to create your accourt.

Next, click on the Login using AuthO button to get the AuthO login/signup panel as shown in the next
screenshot.

Provide the required details, and click on Sign up now, and it will get registered in the AuthO account.
Remember, in this case, you don't see any way to log in via email directly, because we are using
username-password authentication. If you want to sign up via email directly, then you need to enable the
google-OAuth?2 way extension in the social connection section. Once you enable it, you will be able to
see your sign up page as follows:


http://localhost:5000/

AuthO

Log In Stcn Up

G LG I W H GO LE

(S]]

A yoursiearmplo.com

Wl RAsEWONG

Deer't rerneme bos yeus passeeares ?

Once you have signed up successfully, you will be redirected to the home page, where you can tweet. If
you see the following screen, that means it works:

T T aE i e A

APP

An important thing to notice here is that for each signup, a user is created in your AuthO account with User
Details, as shown in this screenshot:



e

Awesome! Now your application is integrated with the AuthO account, and you can keep track of a user
who makes use of your application.

Integrating your Google API with the web application

Integrating your Google API with your web application is quite similar to what we have seen in AuthQ
integration. You need to follow the steps listed next for the integration of the Google API:

1. Gathering OAuth credentials: As discussed in the Google API client setup, we have already
generated client credentials. We need to capture details such as Client ID, Client Secret, and others.

2. Obtaining an access token from the Google authorization server: Before your application user
can log in and access private data, it needs to generate an authentication token provided by Google,
which acts as an authenticator for the user. A single access token can grant varying degrees of access
to multiple APIs. A scope parameter contains the information about the extent to which the user will
have access, that is, from which of the APIs the user can view data. Requesting of token depends on
the way your application has been developed.

3. Saving a token to the API: Once a token is received by the application, it sends that token across to
the Google API HTTP authorization headers. As mentioned earlier, this token is authorized to
perform actions on a certain set of APIs based on the scope parameter defined.

4. Refreshing a token: It is best practice to refresh a token after a certain period of time to avoid any
security breach.

5. Token Expiration: It is good practice to write for token expiration after a certain period of time,
which makes the application secure; it is highly recommended.

Since we are developing an application based on Python, you can follow the docs URL, which has
information about the implementation of Google-API-token-based authentication at the following link:



https://developers.google.com/api-client-library/python/guide/aaa_oauth.

Once the user is authenticated, and starts using the application, you can monitor the user login activities on
the API Manager (httpS'//console.developers.google.com/apis/), as shown here:

FL *H danege Lasthoarnd + N R

by s g b Tha Kloms Trm Tey Pk g TRNE [ R R

Tt Frioer Rilins Insyy

2
oy L e Py Lk i IS

Setting up authentication using Google is slightly difficult, and needs supervision. That's why, developers
go with tools like AuthO, which can provide integration with Google directly.

Windows authentication

Historically, this option has been preferred for applications being used for intranet and enterprise sites
even if they are deployed on internal or private clouds. However, this is not suitable for the cloud native
security option for a number of reasons.

egrated_Windows_Authentication. We have showcased these security methods for your

o For more information on Windows authentication, go to the link https://en.wikipedia.org/wiki/Int
understanding, but our authentication method remains the same.


https://developers.google.com/api-client-library/python/guide/aaa_oauth
https://console.developers.google.com/apis/
https://en.wikipedia.org/wiki/Integrated_Windows_Authentication

A word on developing security-enabled web
applications

With an increase in web applications on the World Wide Web (WWW), the concerns over application
security have increased as well. Now, the first question that arises in our mind is why we need security-
enabled applications--the answer to this is quite obvious. But what are its essential principles? Following
are the principles that we should keep in mind:

e A hacker can easily exploit your application if he gets familiar with the language in which the
application got created. That's why, we enable techniques such as CORS to secure our code.

e Access to the application and its data should be given to very limited people in your organization.

e A way of authentication, authorization secures your application from both, the WWW as well as
within your private network.

All these factors, or as I would say, principles, drive us to create security-enabled applications.



Summary

In this chapter, we kickstarted by defining security on different application stacks, and how we can
implement or integrate different application security measures with our application, based on your
preference and application requirement.

So far we've talked about application building. But from now on, we will focus entirely on building a
platform for moving our application from the development stage to production using DevOps tools. So,
things are going to get more interesting. Stay tuned for further chapters.



Continuous Delivery

In the previous chapters, we worked towards building our application and preparing it for the cloud
environment. Since our application is stable now and ready for its first release, we need to start thinking
about the platform (that is, the cloud platform) as well as the tools that can help us move our application

to production.
This chapter discusses the following topics:

¢ Introduction to continuous integration and continuous delivery
¢ Understanding continuous integration with Jenkins



Evolution of continuous integration and
continuous delivery

Nowadays, lots of people are talking about CI (continuous integration) and CD (continuous delivery),
and after examining the perspectives of different technologists, I believe all have different understandings
of CI and CD, and there is still some confusion about them. Let's dive deeply into these and understand
them.

In order to understand continuous integration, you need to first understand the background to SDL.C
(system development life cycle) and the Agile software development process, which can help during
your build and release processes.



Understanding SDL.C

SDLC is the process of planning, developing, testing, and deploying your software. This process consists
of a sequence of phases, and each phase takes the outcome from the previous phase to proceed further.
The following diagram depicts SDLC:

s
i

Requirement W

. Analysis |
g I - .
[ Evolution ( Design
LN T o b l ey
Deployment/ | (
Helease Implementation
A : \ ¥

Requirement |
Analysis

Iy Ty

Let's understand each phase in detail:

e Requirement Analysis: This is the initial phase for problem analysis, where business analysts
perform requirement analysis, and understand the business needs. The requirements can be internal
to the organization or external from a customer. Requirements include the scope of the problem,
which could either be for improving the system or building a new one, cost analysis, and project
goals.

e Design: In this phase, the design for the implementation of the features of the software solution is
prepared and approved. This includes process diagrams, documentations, layouts, and so on.

¢ Implementation: In this phase, actual implementation, based on the design, is carried out. Usually,
developers develop the code depending on the goals defined in the design phase.

e Testing: In this phase, the developed code is tested by the QA (quality assurance) team under
different scenarios. Each and every module is tested using unit testing as well as integration testing.
In case of test failure, the developers are informed about the bug, and then they are required to fix it.

¢ Deployment/Release: In this phase, the tested feature is moved to production for customer review.



e Evolution: This phase gets the customer's review of the developed, tested, and published upgrades.



The Agile software development process

The Agile software development process is an alternative to the traditional software development one. It
is more like a process which helps frequent and efficient release of production with minimal bugs.

The Agile process is based on the following principles:

Continuous delivery of software upgrades and customer feedback at each stage
Additional improvements are welcome at any stage of the development cycle
Stable releases should be frequent (in weeks)

Continuous communication between the business team and the developers
Continuous improvement towards technical excellence and good design
Working software is the principal measure of progress

Continuous adaptation towards changing circumstances



How does the Agile software development
process work?

In the Agile software development process, the complete system is divided into different phases, all
modules or features are delivered in iterations, and cross-functional teams from various areas such as
planning, unit testing, design, requirement analysis, coding, and so on work simultaneously. As a result,
every team member is involved in the process, and there is no single person sitting idle, whereas, in the
traditional SDLC, when the software is in the development phase, the remaining teams either sit idle or
underutilized. All this makes the Agile process more advantageous over the traditional mode. The
following diagram shows information about the workflow of the Agile development process:



Signafl

Crenl Approva

Gllent Testing

o {e

A
ity CorporEie
r?' Ehanges

Development d
Implementatian
AGILE
;T DEVELOPMENT
| METHODOLOHSY
initizl Testing Stan
Intial |-_'|:54I'I:'|i"|ﬁ
Dafing
\ Requirements
Deneloprrinl & . e
Implementation Higher Lewel
¥-—=  Plannire

In the preceding diagram, you won't find any requirement analysis or design phases, as those are
accumulated in high-level planning.

The following is the sequence of events in an Agile process:

1. We start with initial planning, which gives us the details about the software features, and then, the
goals are defined in high-level planning.

2. Once the goals are set, the developer starts coding for the required feature. Once the software
upgrade is ready, the testing team (QA) starts executing both unit and integration testing.

3. If any bugs are found, they are fixed immediately, and then the code is delivered for client testing
(that is, on stage or the pre-production environment). At this stage, the code is not released yet.

4. If the code passes all client-based testing, which could be Ul-based testing, then the code is pushed
to production; otherwise, it iterates through the same cycle again.

Now that we have understood the Agile work process, let's get to know its advantages over the traditional
SDLC, which are listed as follows:

e In Agile, each functionality can be developed and demonstrated frequently and quickly. The idea
here is to develop features without bugs until its deployment in a week or so. This ensures that the



customer is happy with the additional features.

There is no separate team for development, testing, or otherwise. There is a single team, which
consists of 8-10 members (based on the requirements), and each member is capable of doing
everything.

Agile promotes teamwork.

It requires minimal documentation.

Agile is best suited for parallel features development.

Looking at the preceding advantages, now companies have started adopting the Agile SDLC in their
software development.

So far, we have been looking at the methodologies which are adopted as part of software development.
Let's now look at a very crucial aspect of the Agile process, that is, continuous integration, which makes
our development job easier.



Continuous integration

Continuous integration is a process of collaborating the code into the mainline code base. In simple
words, continuous integration helps developers to test their new code at the initial stage by creating
frequent builds while they are developing and generating test results, and if everything works, then
merging the code to the mainline code.

This can be understood by the following diagram, which depicts the issues that occur during SDLC:

Funlure &

v Contirmaus
Oadlugey
" & H  Dweslop

i1 "
il im Fals
I
—
Fingrala
3

b ]

Bulld &
Fackopc

—

w

Lepiay in Teet)
BN

I Testing

| R wana

There are, basically, the following types of issues that occur during continuous integration:

e Build failure before integration
¢ Integration failures
e Build failure (after integration)

In order to solve those issues, the developer needs to modify the code to fix it, and the complete
integration process is repeated again until the feature is successfully deployed.



Jenkins - a continuous integration tool

Jenkins is an open-source tool to perform continuous integration and build automation. It has the same
purpose as any other continuous integration tool, such as Bamboo (CirclCI), which tests the code as early
as possible in the development stage.

In Jenkins, you define the set of instructions to deploy your application over different application
environments (development, pre-production stage, and so on).

Before going forward to set up a job (basically, a project) in Jenkins, and learn about the Jenkins plugins,
let's first set up Jenkins and configure it as per our requirements.



Installing Jenkins

Installation for Jenkins is straightforward in every environment whether it is Linux (Debian, Red Hat, and
the like), Windows, or macOS.



Prerequisite

Make sure you have Java 8 installed on your Ubuntu system. If it is not installed, you can follow the
instructions given at the following link:

https://medium.convappliedcode/how-to-install-java-8-jdk-8u45-on-ubuntu-linuxmint-via-ppa-1115d64ae325.


https://medium.com/appliedcode/how-to-install-java-8-jdk-8u45-on-ubuntu-linuxmint-via-ppa-1115d64ae325

Installation on a Debian (Ubuntu)-based system

Follow the steps listed next to install Jenkins on a Debian-based system:

1. We begin our Jenkins installation by adding the Jenkins key to the APT package list by executing this
command:

| $ wget -q -0 - https://pkg.jenkins.io/debian/jenkins-ci.org.key | sudo apt-key add -

2. Next, update the source file with the server that needs to be communicated to validate the key, as
follows:

$ sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ > /etc/apt/sources.list.d/jenkins.list'

3. Once the source list file is updated, update the APT repository by executing the following command
at the terminal:

| $ sudo apt-get update -y

4. Now we are ready to install Jenkins over Ubuntu; use the following command to do so:

| $ sudo apt-get install jenkins -y

5. Now that the installation is completed, remember that Jenkins runs on port sese by default. But if you
want to run it over a different port, then you need to update the following line in the Jenkins
Conﬁguration file (/etc/default/jenkins)I

| HTTP_PORT=8080
6. Next, check the Jenkins GUI by using this URL:

o [f the installation is local, then g0 (0 http://localhost:8080/
e If the installation is on a remote machine, go to http://ip-address:8080

Remember, in this case, we have installed the Jenkins version (2.61); the previous as well as upcoming
steps are valid for Jenkins version 2.x.x.

If you see the following screen, it means your installation is successful:


http://localhost:8080/
http://ip-address:8080

Getting Started

Unlock Jenkins

Taenzsure Jenking s securaly set up by e aoministraton 3 passwoere has heern wiitien
to the log (ror sure whorz o ond it7) and this file on the 2erver;

SvarSLibsjenkinsssecrets/inlt laladninPassword
Flease capy The passward from either loeahion and paste it below,

Addminketrator pasawond

Coplinue

As you can see in the preceding image, there is a path where your default password is stored inside the
system where Jenkins is installed.

This proves that Jenkins is installed successfully.

Installation on Windows
Jenkins installation on Windows is pretty simple. Usually, on a Windows machine,
AW, Jenkins is not run as a service. But if you want to enable it as a service (which is



“ optional), you can follow the complete installation Jenkins docs for Windows at the

following URL:
https://wiki.Jenkins-ci.org/display/JENKINS/Installing +Jenkins+as+a+Windows+service#InstallingJenkinsasaWind

owsservice-InstallJenkinsasaWindowsservice.


https://wiki.Jenkins-ci.org/display/JENKINS/Installing+Jenkins+as+a+Windows+service#InstallingJenkinsasaWindowsservice-InstallJenkinsasaWindowsservice

Configuring Jenkins

It's time to configure Jenkins, So, let's get the password from the path specified (that is,
/var/lib/Jenkins/secrets/initialAdminPassword) from your system, paste it into the Spdace prOVidEd in the
installation wizard, and click on Continue. You should see a screen similar to the following one after
hitting Continue:

i e

Customize Jenkins

T TR T T T LE TR DA |

Irekall £pgoosied Sabrst sligine 5
pughis nstall

pald e dokRaikae LT | IR R R Y | 5
R TP RE [ LS N PR HEE T 1

In the next screen, you will see the screen where you can install the plugins which we will need for the
integration. We will go with the Install suggested plugins option for now. Note that we can install
additional plugins after the initial configuration as well. So, no need to worry!

Once you click on Install suggested plugins, you will see the following screen, which shows the progress
of the plugin installation:



Getting Started

Getting Started
L e S S W% ]

W Fold=r=Pugin W CDNASP Markap o build timeol plagin w* - Credentials Binding
Forrnatter Pugin Plign
W |imestampor «F Workspace Cleanup wF _Ant Flugin W Lrodle Flugin
Flugn
« Fipeling ¢ EitHUR Branch Sourca Fipalne Arbub Groovy | of Poelice Stage View
Plugn Liranes Phign
* G plugin SuCveraiem Fug-n *  35H Slaves plugin o MalTly Aushonzation
Serateqy Fugin
W  Pal acthenleslion w LDAP Plugin * Email Extension Plugn w* bailer Plugin
plugn
=]

Plugin
&t Plugin
Gradle Plu=in

" Pipelics: Hildebome St
3 rdbE I LibE fOuer
pandles (iluery and FQuery UL)
Pl UgLn
v Plpel pat Ste
Fekascrist GUI°L1B: ATE Editce
L R A
vE - Plgel {nie: S Stap
uE Oghe |
Plpslire: Stage Stap
" Fipel Tea
'_C.'

o Faesterdoe QUL Lin:

-

Pipelise: Shape Wies @ ]amin

" Bipeline

v Plpaline: Fodel AP
we O | D

i R TP TR R

| il

Extension Polnts AFL
{ =y

* Jenicdng Git cli=at plugin

ragulred: depsndsncy

It might take a while for the plugin installation. All these plugins are suggested by Jenkins, as you might

require them during your project-related jobs.

Once the plugin installation is complete, it will ask you to create an admin user to access the Jenkins

console. Note that for setting up Jenkins, we used temporary credentials.




arng ered

Create First Admin User

LLRF o

Corall szdmi:

iy e ttba i bt m

Once you have entered the user details, click on Save and Finish to complete the setup.

Laallieay =duni:d

Jenkins is ready!

roe=# :--'||:‘:|II-I'|IIiII| Azrmiarer T kg b i DT s AR e BT amE b R Flak
[TERE & 0 PR LY ISP R IR BB TRI ERF CRTRE ST |

b A S T o T il PR e S ol o

-k =l




Your Jenkins setup is successfully completed.



Automating Jenkins

In this section, we will cover the different parts of the Jenkins configuration, and will take a look at how
we can successfully create our first job and build our application.

Ideally, our Jenkins home page, after successful login, should look something like this:

o o i

Ik
FwvizT il
& s Welcome 1o Jenkins!
Hosh = Y
T S0t R T (RS
& b v
& o
=ulis Cumaa
whiocpite s
TS RS L |
[ 2
2 M




Securing Jenkins

It is highly recommended to set up the Jenkins security to make your console secure, because we are
exposing our application to Jenkins.

From the Jenkins home page, click on Manage Jenkins to navigate to the settings section of Jenkins, then
click on Configure Global Security in the right pane to open the security panel.

In the Configure Global Security section, we can manage user authorization as shown in the following
screenshot:



" Y Configure Glokal Security

0 Drat ok ik

fHpe e M FLad - S50 Ma ke @ wad o i

Syl o -

b N e Ll i
RETAN BT facrfefaer
De s i Mo m W ;!
[-BCR R TR A r E T Li!
" ona hap ir
Pl b
AR TR RN L i
YRR | R
LR R, ] 'L
...... B [
TR N A | i
B iuimahinns
e Ty Lo 2 O] L E - e ot b |
R R B dow § = d e OO E i BT S n e Towss ot ol ap b ba
LEL]

=M EE D

Tt i o e oz lier ST e Lid

As you can see in the preceding screenshot, here, you can define an access list for the users based on their
role. Generally, in large organizations, user access is provided to different people based on their usage so
that Jenkins security can be maintained. Usually, we go with either a Unix-based user/group database or
Jenkins, own user database.



Plugins management

Plugins management is very important, as these plugins give us the capability to integrate different
environments (which could be cloud platform) or on-premises resources with Jenkins, and also give us
the capability to manage data on our resources like app servers, database servers, and so on.



£ Jenkins

hh

o e By

i e

o (B
- i Bz

Manage Jenkins

I Cort Do

|"H-I.J-i|1 1

= il s el b

G e e -,

i Cadardm M = i Sam ik
i nimta

Bl f Oamp ad o v pawnd
il 20 g " it S
N k. - 1
Fadd Fasa b Eonhy T - ] 4 o o
s o b TR T
o : kv
= P

From the Manage Jenkins Panel, select the Manage Plugins option to open the Manage Plugins panel,
which would look something like this:



L ] L I

B CemIvikars
M U bl

UpdrrCerm

- g

LD 3

g i

Fa=

SMTEA L NEE B SHLET TR

(=]

Py

AR TR m =™ T

:n'h.'\-cﬂl.m'-.ll:
(L SR PO ]
(¥ F ]

L 21 TR S —
Comeriml Fag
iy LA A

[P Rl )
Lol
[TEEE R TE G o

[T R e L POl
[ B SR B

bl Flom

sl S

In this panel, you will able to install, uninstall, and upgrade any specific plugins from the system. From

the same panel, you can upgrade Jenkins as well.



Version control systems

Jenkins can be used mainly to either build a particular application code, or to deploy code over any
infrastructure platform (that is, for continuous deployment).

Nowadays, organizations store their application code over any version control system, such as Git, where
the administrator has central control, and can provide the required access based on the user role. Also,
since we are talking of continuous integration, then it is recommended to store the application code at a
centralized location with version control to maintain the integrity of the code.

So, in order to maintain the version code, make sure you install the Git plugin from the Manage plugin
panel.

To clone a Git repository via Jenkins, you need to enter the email and username for your Jenkins system.
For this, switch to your job directory, and run the Git config command as follows:

# Need to configure the Git email and user for the Jenkins job

# switch to the job directory
cd /var/1lib/Jenkins/jobs/myjob/workspace

# setup name and email
sudo git config user.name "Jenkins"
sudo git config user.email "test@gmail.com"

This needs to be set up in order to download the code from the repository, or at the time of merging the
branches in Git, and other cases.



Setting up a Jenkins job

Now we are ready to set up our first Jenkins job. As discussed earlier, each job is created to perform
certain specific tasks, which could be individual or could be in a pipeline.

According to Andrew Phillips, ideally, a pipeline breaks down the software delivery process into stages.
Each stage is aimed at verifying the quality of the new features from a different angle to validate the new
functionality, and to prevent errors from affecting your users. If any error is encountered, a feedback is
returned in the form of reports, and it is ensured that the required quality of the software is achieved.

In order to initiate job creation, on the Jenkins home page, click on either New item on the left-hand side,
or click on the create new jobs link in the right-hand side pane:

LR Walcome to Jamking!
2o |- i e
R hrom J{

Job crcaticn

Once you click on it, it will open a wizard which will ask for your project/job name as well as the type of
job you want to create, as shown in the following screenshot:



Erder an item name

packpui-ct

Pt TR LT R S

Froeate projoet

|

Tt e e candend laglons o e-eaps Jarking s il viae poad, cevdeesgg 40w SGUE s a-p Bode apdlan 27 e zanon eown asas b s o disr Danccadbsore fanid

FPieslines
Cishagdralze oy e g Robue =Rt cas me i ok e Sl v s Sobal pobo- bolld g plood s (el Erpee s sen pcioar anadior gk o soe ke ackade s e dooner e o8 i ko eecky ook Bog

Extarnal Job

Dhira o oA poo il pon b rwos s T snacudamy i connnrs tonn e eac s - darbing e aosnrck nerd imr fira s daaggoesd oo Teal v oann ide ke s bacs s s chediccasd o sou werdaeg aokoriel sl

o S

Fultcenliguralion przjecl

| ™
(eSS

Saptatia Ior srofase el need & Byge cumhas of cEatenk an sl peaticne, |yt anbeel i oo min kol A mmmatle plaframeeremc B hikie WS

Foider
E-:.. DRI A T e R W00 oS ke b L sonid han s L s nogeahicn Lnd b s oee, v il B jat SRR £ N 0y Conninl & 0N A0 A DS RN, SO w v el e 1 plo thi e ol thi SO0 RRATE: 45
[ AN QT T o e o

ZiHub Drgankation

[ x ) = O Oy g o A0 s S B | ol e i g da e o kel nan b

Mubliisroesh FMpidine

Lirasiam g ol Chepkem ey eels meemed i i o e beats e i U e dene

The description is already provided along with the project type to give us an overview of the different
options available in Jenkins. These types need to selected, as they have different configurations based on

the type.

Note that since we are working on the latest Jenkins version, it is possible that some of the project types
might not be there in the older versions, so make sure you have the latest Jenkins installed.

For now, we will select the Freestyle project, specify a unique job name, and then click on OK to
continue to configure our job. Once you click on OK, you will see the following page:

farra | "okt HEA I Fa AT Fd=F 2

Uit “eire | pupdgas ple

L o Bl
FLy © woor] Froeders

Piaain = =i e o)
IEHE B ol

Tra i n parrsioraid 3]
T =tk byl i
i - = -F
Fa-vii= o Lt raell ol il PR "1

LA SL .

In the preceding page, you can define your job details such as Project name, Description, GitHub project,
and so on.

Next, click on the Source Code Management tab; you will see the following screen:



Source Coda Managemeant

4=ra
8 =i
(LR R ' v
Paoadaay LEL g pBsgn e coen Fooba®, ol 2 =2 ol ko = de g0 -
iz rdlan ETEE 2l e
[ il
I Hxpss i'l
Boil =y 4
Fea===r. =k k= n
EBrsipdi bqHz T (o2 v Wl ‘e jl'l
Bl =rarad
Ar iy hnrirer | h =
Asbzilirmsl Nelors -ars dgd -
i Tlath ) il L

In this preceding section, you will define your source code details. You also need to set up the Jenkins
user credentials if you haven't done so previously in the configuration section. Click on the Add button
near credentials if it is not set up. It will open a popup, which will look something like this:



:__'#_ Jdemkins Credentials Provider: Jonkins

= A Cradenhalu

iy T TS BT ST PRI PRt PR Y
4 ral Lapnnmrie o 10 pesarasd

- Shohol Chomang, noey Iteee o Sk e S

o 1
daanmnin ki ks
Saaahod ] o
P W
Jocoipdat T

ASE Zarcul

The user you define here (that is, the admin) needs to have permission in the code
repository to access it.

There are ways by which you can set up authentication for the mentioned user on the repository, which are
defined in Kind (the drop-down menu):

= 0 dd Crodeilals

Inemad Lkwim e nd o Cucceoid
Loz ke Heeal Conalosadz Scllee bicolizin
Kae:
Suaul ik
Sl el o ]
L liizum

Fria ke Euds cunclp

Fortao ondonki s i
[ttt poapder -+ aeh

It is important to note that Jenkins will immediately test the credentials against the repository URL
mentioned. If it fails, it will show you the error as seen in this screenshot:



Source Code Managemeni
[
S Ca
Pz raamnee
Amprinkesy UL gl pinte i 50 PopietPrubi s fes gD b i PLwad - Ppifadii gl
Frimd ic conosc] 1o repasiiory | Command “gH i-refose -h il B gifab coscPFecsiMehishisgTroud- el -Pyibon g 8 FEAL” rizmed aldlus code
1am:
LIS
ullﬂdﬂ' Permisglan denbss |pobicksp]
irlal: Could mof reesl from mams repeatinTy.
Pty i P S058 O Pl wie 1Tl Dfmip0l BOCERS FRT
a1 vpesaliney sulnin
o v | ki e i ke
SERn
Nrteres
Ahdd Hupamdmg
Binncras i beskd R
Sroreachi Seerfian (liark k= ary ]
il Wi Eain
Racoaimry terremss [t
STl Bamasrron LT
Sulrémmem

o

]

i

(1]

Assuming that the credentials match against the repository URL, let's move on to clicking the Build

Trigger tab to scroll on it. The following screen shows the Build Trigger options which can be imposed

on a job for continuous deployment:

Build Triggers

Trigger builds rarrctaly (a.0.. from scrois]
~ Buikd after ciher prossata are built

Buic penodicay

¥ Buldd when a change 5 pashed 10 8iBucket

¥ Bubd when a change = pashed 10 GHBUcet

Pass-trouglh Gt commit

Buld wnen a change = gashed o GiiHUE

I Pl B0 I

Sl

& "No sCRcdulos 5o Wil navar

Igrone post-codmmi hocks

L i

This Build Trigger section is very important, as it determines how often your build should run, and also
the parameters which trigger your build. For example, if you want to build your application after every

Git commit, you can select the option Build when a change is pushed to GitBucket.



So, as soon as the developer commits any changes in the repository in a certain branch (generally,
master), then this job gets triggered automatically. It's like a hook on top of your repository, and it keeps a
track of the activities on it. Alternatively, if you want to build your application or run this job
periodically, then you can specify the condition like this-- 1/15 * * » »--in Poll SCM to schedule, which
means that this job will run every 15 minutes. It is similar to a cron job, which we, usually, set up in
Linux-based systems.

The next two sections, Build environment and Build, are defined for workspace-related tasks. Since we
are dealing with a Python-based application, and we have already built our application, we can skip these
sections for now. But if you have an application written in Java or a .NET application, you can go with
the ANT and Maven build tools, and branch to build. Alternatively, if you want to build a Python-based
application, then go for tools such as pyBuilder (https/pybuilder.github.io/). The following screen shows the
build option:

Build

Add Bnalel gl -
Cxeculy Wrdows brich commare
Exnruln sl
Frravdhs Ani
Fiaibin Giracla morpd
ek p-eeel Maver argels
Fun with s

S ald maos o peromgt on Gill ok commil

Once you are done, you can click on the next tab, which is Post-build Actions. This is used to define what
needs to be done once the build is successful. Because of this section, Jenkins can also be used as a
continuous deployment tool. So, in this post-build action, you can specify the platform where your
application needs to be deployed, such as on an AWS EC2 machine, Code deploy, Azure VM, or others.

In the post-build section, in the context of continuous integration, we can also perform operations such as
Git merge after a successful build, publish results on Git, and so on. Also, you can set up email
notifications for your stakeholders to give them updates about the build results over email. See the
following screenshot for more details:


http://pybuilder.github.io/

FPost-build Actions

Gil Publisher [ 7]
Fush Cnly 1T Baild Seccaeds o
Merge Fasilts L 7]

I ere-Duild mearging s confguied, push tha sesult back @0 the ariga

Force Pusk
Add feree cpbian B gl push

Tisss Add Tag L1
Iags to push 1o remsle repesionss

Branzhes Aidd Branch ¥
Hranches bo sush 10 remale repostorss

Motes Ldd Mote L1
Motes b push 0 remola repositories

E-mall Maolificalion u &l

Resipants  manigh @ eathis in

Whitesprsze-seearslod list ol sedpicod addresses My reforence sl carsmeen like Soarem E-mail will be senl ahes
& buid ks, Decomeas pnslabie of raiums 1o slabe

2 S il for eniesy presdabilks Baild
Sead segarale e-mails b icdividusks who broke tre ouild h
. :
Sat bulld status an GitHul commit [depracatad] h

Advaned...

Add post-build #Adion =

That's all. Once you have filled the required details, click on Save to save the configuration. Now you are
ready to build your application--click on the Build Now link in the left panel, as seen in the following
screenshot:

£ Jenkins L shis B e Ve

™ Lt Ldmumn

F LS L e

Project packpub-job

] B

'_-:: My i mary
i

o Do s
.
S Carfn e 2 Rl iy mma
[T T rrrm Peamnialinkes

FoP e Al T e




Note: For first time build execution, you need to trigger it manually if you haven't set the
o poll SCM or the Build Triggers section.

That's all we have from Jenkins at this point of time in terms of job creation. However, we will be using
Jenkins as a continuous delivery and continuous integration tool in the upcoming chapters, where we
deploy our React application that we created in the previous chapters on different platforms such as AWS,
Azure, or Docker. We will also see the integration of the AWS service with Jenkins to automate
application delivery to the GitHub repository by a single commit.



Understanding continuous delivery

Continuous delivery is a software engineering practice where production-ready features are produced and
deployed to production.

The primary objective of continuous delivery is to perform successful application deployments
irrespective of the platform, which could be a large-scale distributed system or a complex production
environment.

In multinational companies, we always ensure that the application code is in a stable as well as
deployable state even if there are many developers working on the different application components at the
same time. In continuous delivery, we also ensure that unit testing and integration testing are successfully
performed, making it production ready.



Need for continuous delivery

It has been assumed that if we try to deploy software more frequently, we should expect lower levels of
stability and reliability in our systems, but that's not entirely correct. Continuous delivery provides
practices which provide incredible competitive advantages for organizations that are willing to release
stable and reliable software in a competitive market.

The practices in continuous delivery give us the following important benefits:

¢ Risk free releases: The primary requirement of any application in a software release is to have a
minimal or zero downtime. After all, it's always about business, and the user should not be affected
because of frequent releases. By using patterns such as BlueGreenDeployment (https:/martinfowler.com/bliki
/BlueGreenDeployment.html), we can achieve zero downtime during deployments.

e Competitive market: In continuous delivery, all the teams, such as the build and deployment team,
testing team, developers, and others, work together, which makes different activities such as testing,
integration, and so on, happen on a daily basis. This makes the feature release process faster (a week
or two), and we will have frequent releases to the production environment for customer usage.

¢ Quality improvement: In continuous delivery, developers don't need to worry about the testing
process, as it is taken care of by the pipeline, and showcases the result to the QA team as well. This
enables the QA team and the developers to take a closer look at exploratory testing, usability testing,
and performance and security testing, which can improve the customer experience.

¢ Better products: By using continuous delivery in build, test, deployment, and environment setups,
we reduce the cost of making and delivering incremental changes in software, which makes the
product much better over the course of time.


https://martinfowler.com/bliki/BlueGreenDeployment.html

Continuous delivery versus continuous
deployment

Continuous delivery and continuous deployment are similar in terms of the stages they have to build, tests,
and the software release cycles they have to deploy, but they are slightly different in terms of the process,
which you can understand from the following diagram:

Dovalop Stage Application | Production  Post Deploy
Application ] ‘I e [ h|"“"""':'"'" s I *| ooployment | %7 Tosting [ Doplaymant | 17 test ﬁ:.ﬂ;ﬂf
LTI Auria Buin iria A Pain
Dewalop ! Sy : Applicathn Praduction Poat Depley | Continuous
b pplication ‘I ,I UInSE Tost ‘ )Innmrm 1ot T * Deployment | * 7 Testing I * Oeployment [ " icst Delivery
| | i il ; |
Aule Aurta Kuln Auta Wi gl rl,._ng.

In continuous deployment, production-ready code is directly deployed to the production environment once
it passes all the testing checks, which makes the software release frequent. But in the case of continuous
delivery, the production-ready application code is not deployed unless manually triggered or approved by
the concerned authority.



Summary

Throughout the chapter, we discussed the CI and CD tools such as Jenkins, and also looked at the different
functionalities of the same. It is very crucial to understand these tools at this stage, as most companies
which deal with cloud platforms use these processes for their software development as well as
deployment. So, now that you have understood the deployment pipeline, you are ready to understand the
platform where we will deploy our application.

In the next chapter, we will talk about Docker (based on the container technology). I'm sure most of you
have heard of Docker before, so stay tuned for a deep exposure to Docker. See you in the next chapter!



Dockerizing Your Services

Now that we have an understanding of continuous integration and continuous delivery/deployment from
the previous chapter, it is the right time to dive deeply into container-based technologies, such as Docker,
where we will deploy our application. In this chapter, we will take a look at Docker and its features, and
we will deploy our cloud native application on Docker.

This chapter will cover the following topics:

Understanding Docker and how it is different from virtualization
Installing Docker and Docker Swarm on a different OS
Deploying a cloud native app on Docker

Using Docker Compose



Understanding Docker

Docker is a Container Management System (CMS) that enables you to separate your application from
your infrastructure, which makes it easier to develop, ship, and run your application. It is useful for
managing Linux Containers (LXC). This let's you create images, and also perform actions on the
containers as well as run commands or operations against containers.

In simple words, Docker provides a platform to package and run your application in an isolated
environment called a container, and then ship it across different of software release environments, such
as stage, pre-production, production, and so on.

Docker is lightweight in comparison to any Traditional VM, as depicted in the following image:

Appillin | AppiLib
App/Librarias
Guest 0.5 Gueat 0US
Hy parvisor Docker Engine
Host L& Host 0.5
Infrasiruciune Infrasireching

Traditional VWis Docker Machilme




Few facts about Docker versus virtualization

There are a lot of organizations that are still working successfully on traditional VMs. Having said that,
there are organizations that have either moved their application to Docker or are ready to do so. Here are
a few reasons why Docker has more potential than virtual machines:

When it comes to comparing Docker and virtual machines, Docker presents a lower system overhead
than the virtual machine.

Secondly, applications in the Docker environment have a generally higher performance than the
virtual machines.

While the VM software technology named Hypervisor, which acts as an agent between the VM
environment and the underlying hardware, providing the necessary layer of abstraction; in Docker,
we have the Docker engine that gives us more control than the Docker machine.

Also, as you can see in the preceding image, Docker shares the Host O.S. across the Docker
environment, whereas, the virtual machine needs its own OS for application deployment. This makes
Docker lightweight and spin up and destroy them much faster, as compared to the virtual machine.
Docker is similar to any other processes running on top of the host OS.

In the case of a cloud native application, where we need to test our microservices quickly after
every stage of development, Docker would be a good platform option to test our application, which
is highly recommended.



Docker Engine - The backbone of Docker

Docker Engine is a client-server application that has the following components:

e Dockerd: This is a daemon process that keeps running in the background of the host OS to keep a
track of the Docker container attributes, such as status (up/running/stopped)

¢ Rest API: This provides the interface to interact with daemon and perform actions on containers

e Docker command line: This provides the command-line interface to create and manage Docker
objects, such as images, containers, networks, and volumes



Setting up the Docker environment

In this section, we will take a look at the installation procedure for Docker on different operating systems,
such as Debian and Windows, among others.



Installing Docker on Ubuntu

Setting up Docker is pretty straightforward. There are mainly two editions of Docker in the marketplace.

Docker Inc., which owns the containerization Docker product, renamed the Docker Commercially
Supported (CS) edition to Docker Enterprises Edition (EE), and also converted the Docker Engine to
Docker Community Edition (CE).

There are a couple of changes from EE and CE; obviously, the commercial support being one of them.
However, in the Docker Enterprise Edition, they have built a couple of certifications around the container
content, platform plugins, and many more.

In this book, we will use the Docker Community Edition, so we will begin by updating the APT
repository:

| $ apt-get update -y
Now, let's add the GPG key from the Docker official system as follows:

| $ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-keys 58118E89F3A912897C070ADBF76221572C52

Then let's add the Docker repository to the APT source list of Ubuntu:

| $ sudo apt-add-repository 'deb https://apt.dockerproject.org/repo ubuntu-xenial main'

install the mentioned utility, use the following command to install the software-properties-

o Sometimes, in Ubuntu 14.04/16.04, the apt-add-repository utility is not found. In order to
common package: $ sudo apt-get install software-properties-common -y.

Next, update your APT package manager to download the latest Docker list as follows:

| $ apt-get update -y

instead of the default 14.04 repository, use the following command to do so:

9 If you want to download and install the Docker Engine from the Docker repository
$ apt-cache policy docker-engine.

You will see the following output on the terminal:



ub =¥ apL-cache policy docker-sagine

~ce-0-ubuntu-rerial

! ubErti-
ubntu=wenial

r odbentii-

¢ ubuntu-xenialfmai di4 Packages

! uburtu-xardalsmai &4 Packages
¢ ubintu-xenial, Packages
ihnti-ue

Joubinti-senial anlEsd Packages
o Ubuntu-xeni s in amdE4 Packages
rpreject.org/repod ubuntu-remiat/mai dé4 Fackages
t.dockerproject.oorgfrapo/ ubuntu-xania’ rdE4 Packages

t.dockerpreiect corgrepa) ubuptu-wenial
Lodockerprofect, g ubuntu-xenlal aidfs Packages
apt.dockerproject.org/repsy ubuntu-xenial/main amdéd Packages

t.dockerproject . orgSrepsd uburntu-xerialsmain ardft Packages

t.dockerproject. raps! usbunto-xermialsrain ardE4d Packages
Now, we are ready to install our Docker Engine, so let's fire the following command to install it:

| $ sudo apt-get install -y docker-engine -y

Since Docker depends on a couple of system libraries, it might face an error similar to the one shown in
the following screenshot:

Tal lowing pat

LS T e g

oe instal led

. o be 1nstalled

E: Undble to ¢

If you catch this kind of error, then make sure that you have these libraries installed with the defined
version as well.

After the Docker Engine installation is successful, it's time to validate it by executing the following
command:

$ docker -v
Docker version 17.05.0-ce, build 89658he

If you see a version similar to the one shown in the preceding terminal, then we are good to go.



To get help on Docker, you can execute the following command:

| $ docker help

installation steps shown on the official Docker website (https://docs.docker.com/engine/installation/

9 If you really want to go with the Docker Enterprise Edition, you can go ahead with the
linux/ubuntu/).



https://docs.docker.com/engine/installation/linux/ubuntu/

Installation on Windows

Ideally, Windows is not suitable for Docker, and that's why you don't see the container technology around
on the Windows system. Having said that, we have a couple of workarounds for it. One of them is using
Chocolatey.

In order to install Docker on the Windows system using Chocolatey, follow these steps:
1. Install Chocolatey from their official website (httpsz/chocolatey.org/install).
There are couple of ways shown in the preceding link to install Chocolatey.

2. Once Chocolatey is installed, you simply have to execute the following command in cmd or
PowerShell:

| $ choco install docker

This will install Docker on Windows 7 and 8 operating systems.

Similarly, if you want to go with the Docker Enterprise edition, you can follow the steps shown in this
link:

https://docs.docker.com/docker-ee-for-windows/install/#install-docker-ee.


https://chocolatey.org/install
https://docs.docker.com/docker-ee-for-windows/install/#install-docker-ee

Setting up Docker Swarm

Docker Swarm is a popular term for a pool of Docker machines. Docker Swarm is very useful for hosting
your website as it can be used to scale your infrastructure up or down very quickly.

In the Docker Swarm, we can club together a couple of Docker machines that work as one unit and share
their resources, such as CPU, memory, and so on, where one machine becomes the master that we call

leader, and the remaining nodes work as a worker.

{ Dvirdinr lnmc s
Onrkmr

F u 4
Do W ode Crochwr Hoos | Docher Hzze ' ‘
i i




Setting up the Docker environment

In this section, we will be setting up the Docker Swarm by selecting the leader from the Docker machine
and connecting the remaining machines with the leader.



Assumption

The following are a few assumptions for the Docker environment:

e We are taking two machines, which could be VM's or instances from the cloud platform, for the
demo purpose named master and nodel. Also, we have installed Docker on both the machines by
following the procedure described in the Docker installation section.

e Port 2377 must be opened for communication between the master and node1.

e Make sure the required port for application access should be opened; we will need port se for nginx,
just like in our example.

e The master Docker machine could be based on any kind of OS, such as Ubuntu, Windows, and so on.

Now, let's begin with our Docker Swarm setup.



Initializing the Docker manager

At this point, we need to decide which node should be the leader. Let's select the master node as our
Docker manager. So, login into the master machine and execute the following command to initialize this
machine to be a leader for the Docker Swarm:

| $ docker swarm init --advertise-addr master_ip_address

This command will set the provided host to be the master (leader) and generate a token for the node to
connect to. See the following output for your reference:

er swarm init --adves

To odd o worker Lo this sagem, run bthe following comeond:

vy Jdslxaluklalmvi Slbeftvxdoldulek3dl - 1drSgdmbmn i ShanSy3ohIntxp

To add o0 monoger o this swarm, run "docker swarm join-token ecnoger” ond Follow the instruckions,

A few important points to keep in mind:

¢ Don't share your token and IP address with anyone
e Secondly, it is possible to have multiple masters in case of failovers



Add nodel to master

Now that we selected the leader, we will need to add a new node to the cluster to complete the setup. Log
in to nodel and execute the following command, which is specified in the previous command output:
$ docker swarm join --token SWMTKN-1-

1le69e43pafovxyvjdslxaluklaimvi5lb6ftvxdoldulék3dl-
1dr9qdmbmni5hnn9y3ohinfxp master-ip-address:2377

You can refer to the following screenshot for an output:

dslxaluklolewiSlbortvadaldulikIdl - 1drIgaibeniShrnSyIohinfxp

A p-10-0-0-64  ~F

This means our setup is successful. Let's check if it is added in the master Docker machine or not.

Execute the following command to verify it:

| $ docker node 1s

MANAGER STATUS

| &0 :'.|-.:—r"




Testing the Docker Swarm

Now that we have set up the Docker Swarm, it's time to run some services on top of it, say, the nginx
service. Execute the following command on the master Docker machine to start your nginx service on port
80.

$ docker service create --detach=false -p 80:80 --name webserver
nginx

The output of the preceding command should be similar to the following screenshot:

root@ip-16-8-8-217:~% docker service create --detach=false -p 8@:80 --nome webserver nginx

FLURALAG
verify: Waiting 1 seconds to
rootEip-10-0-0-217 ;¢ l

Let's use the following Docker command to see if our service is running or not:

| $ docker service ps webserver

The output of preceding command should be similar to the following screenshot:

roatEig- 1AW 8- 21 e dackar sors
10 H00E JESTRED STATE CURRENT STATE
FORTS

EradlEcifpe welncerear, 1 glaxllazesk . Rurming Ruerbng abok o pinugke G0

A few other commands to validate are as follows:

To validate which services are running and on which port, use the following command:

| $ docker service 1s

If you are seeing output similar to the following screenshot, then we are good:

roobEp- 1A-B-0-217 - docker service s
[E1 s L TFM&1E PURTS

wipmahicngfilB el are g | rap] 1 cated raglni s Toatest B B T R ]

To scale up the Docker instances for the service, use the following command:

|$ docker service scale webserver=3



ker =ervice scale webserve

OESIRED STATE [LIRRENT STAT ERROR

Fumning Runnirg &
o Lp- 18- RLaning Farmlig 3
nod me; Tatost in 18-8 ] Ruaning

Let's check if our nginx is up or not by accessing its default page. Try to hit http://master-ip-address:8e/ On
your browser. If you see the following output, then your service is deployed successfully:

Welcome to nginx!

1F sy spes nis mage, the negme s seproes 15 soooses g e ikl ed s
wakng. Father saventinn b wgdne.

S e dikomea e lign a0 s gidl poeara ceTee G nine G,
Camimerc dl saopaers 15 Fes babde 2t epns oo

THAY 1R AN LG .

Awesome! In the upcoming section, we will deploy our cloud native application on Docker machines.



Deploying an application on Docker

In this section, we will deploy our cloud native application, which we developed in the previous
chapters. However, before we begin with the creation of our application architecture, there are a few
concepts of Docker one should be aware of, some of which are as follows:

¢ Docker images: These are basically a combination of library and the applications deployed on top
of it. These images can be downloaded from the Docker Hub public repository, or you can create
your customized images as well.

e Dockerfile: This is a configuration file to build your images that can be used to run your Docker
machine later on.

e Docker Hub: This is a centralized repository where you can keep your images, which can be shared
across the team.

We will use all these concepts during our application deployment. Also, we will keep using our Docker
Swarm setup to deploy our application as we don't want to run out of resources.

We will follow this architecture to deploy our application, where we are deploying our application and
MongoDB (basically, application data) in separate Docker instances as it is recommended to always keep
your application and data separate:

Daeker
Comainers

o l
; R b

A7 " ATy,
; b 3 ]

T \ 4
[ Llpnnilinni | —— —+ Applicaban :—l{ Daabase |
[ i '

* g "
ST -
Himl
ltar; hi e




Building and running our MongoDB Docker
service

In this section, we will be creating the Dockerfile to build mongoos, which will have all the information,
such as base image, port to be exposed, how to install the mongoos service, and so on.

Now, let's log in to your Docker master (leader) account and create a Dockerfile with the name pockerfile
using the following contents:

# MongoDB Dockerfile

# Pull base image.

FROM ubuntu

MAINTAINER Manish Sethi<manish@sethis.in>

# Install MongoDB.

RUN \

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
7FOCEB10 && \

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart
dist 10gen' > /etc/apt/sources.list.d/mongodb.list && \
apt-get update && \

apt-get install -y mongodb-org && \

rm -rf /var/lib/apt/lists/*

# Define mountable directories.
VOLUME ["/data/db"]

# Define working directory.
WORKDIR /data

# Define default command.
CMD ["mongod"]

# EXpose ports.
EXPOSE 27017
EXPOSE 28017

Save it, and, before we move ahead, let's understand its different sections as follows:

# Pull base image.
FROM ubuntu

The preceding code will tell you to pull the Ubuntu public image from the Docker Hub and make it the
base image on which the following command needs to be run:

# Install MongoDB

RUN \

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
7FOCEB10 && \

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart
dist 10gen' > /etc/apt/sources.list.d/mongodb.list && \

apt-get update && \

apt-get install -y mongodb-org && \

rm -rf /var/lib/apt/lists/*

The preceding section of code is similar to the one where we execute these commands manually for
mongobs; however, in this case, it is automatically taken care of by Docker.

Next is the volume section, which is kind of optional. It is creating mountable directories where we can



store the data to keep it safe in an external volume.

# Define mountable directories.
VOLUME ["/data/db"]

The next section is to expose the ports by which users/clients will be able to communicate with the
MongoDB server:

EXPOSE 27017
EXPOSE 28017

Once you have saved the file, execute the following command to build the image:
| $ docker build --tag mongodb:ms-packtpub-mongodb

Building an image can take around 4-5 minutes, depending on the internet bandwidth and
system performance.

The following screen shows the output of the Docker build command:

tag wengodbins - packtpus -nangoda .

In the preceding screenshot, as it's showing a successful build, you can now see the images list to
validate, whether the image with the mentioned tag name (ms-packtpub-mongodb) is present or not.

Use the following command to list the images:

| $ docker images

The following screen lists the Docker images available:



roct@ip-1@8-8-0-217:~/workspace/mongodb# docker images
REPOSITORY TAG IMAGE ID CREATED S51IZE

f24a8

mongodb ms-packtpub-mongodb ZdaBabes8bb About a g0 411MB

uhuntu latest b i 12 days agc 118ME
httpd =NOne: Aed5af 13ade / WEEKS ago 177ME

nginx <nones FA48F27c273 : ago THSME

Awesome! Our image is present. Now let's run the mongodb service on the master Docker machine using the
following command:

| $ docker run -d -p 27017:27017 -p 28017:28017 --name mongodb mongodb:ms-packtpub-mongodb mongod --rest --httpinterfa

In the output, you will get a random Docker ID, as shown in the following screenshot:

nave Mo nargoda ns - aecktaus nongedh n

Let's check the state of the Docker container by executing the docker ps command. It should have an output
similar to the following screenshot:

roosl i p-10-8-8-Z17 ;- poteSopod By docker pe

TONTAIR=ER IR CCPMMANT (RFEATED
nargudh "mongod --mes ~h. . 6 mimctes oo

4 hours ago

3 hours ayoe

A very few developers as well as sysadmins know that there is an HTTP interface for the mongoos service,
which we exposed using port 2se17.

So, if we try to access http://your-master-ip-address:28017/ in the browser, we will see a screen similar to the
following screenshot:



mongesd feddbibraadi

Lol ol GO ¢ ety S AT
L Tvae ikl 73 carmrkeka ReLeE feginin skl e e p el 0 A TR N

e vwender =Iod 0
L el S s Al el ™

WE LS T Ll DR Il Ok =B L B S RL AT P FTL R 0 BLLTRIEY NTEORRS GPS_RT T LIN ETEITE- | 4
by f e

cyars A kol resarkad o ecrrha =er oo gucidd

bl aa s am b dmn

el
i “‘Iq:l'nr.n:c fadan | ] b B
|l me Uikie | 5 L
|“‘I1||'nr.m-:ﬂl|- D | ol swriup_iog paIf
Pl g Lk | ’] n;
{wabrploroc ki | ] xnei?
I L] Illl.h.ll Jmk Hl:ll R | bl S W | T B | Bk i | OGS E
{ wnbrplce oc.c helim | L ETT
| i e el kb | H Ly
[wmdnglzr oce lahe | ] BT T EyTETAGET T

:H.n-pl:un'l.'rln:ll"mrl R

- d_'\-'. LT - — T E—
:Iﬂ.ﬂ‘!-.:l-il."""-l:lﬂﬁ--'- L 1 FLA T B R R
: .

%
v paam ol 0w [ TR T 7

il R = e ik Ty R A
L ECEVEs JocB o e gy R L v Bl 8 o bl v BBl o e T el G B Belf ff e s BB o T Jff of LB Bl O OB B O Bl f Vo B o F BB G v T B o CFv e Rl of LB Befl ol B Bl o 0 T o B
min ke d e b

Leg

HET R PR i THH B i kel miem | g ey o piid e BT e it G iy bl i S
L] I Lakkew] si vmambies B0k

RS I I, SO LA T A L
R dge s Bl 0l 0 amilorld B B Bl b e 8 T M 3T I JET el e R AR e i

Slbamiddiry b slil s,

T  CL e T T e PP R e TR e

PRI o Ty e vt

[ P S P PR AR W PR PO P A

Ll arabid L8 LA e g L Laal f wi Ay SRy & k) e e e i, ket )

b k| wdida | ekl o e
VT | L TR R
.l e reem
e P |
e ]

i
e R LR TR T R ]
waanl vieeridl

Allaere arrin | mer ] Tl v

I oraleise e | sapprd el merswl ieeidd
bk ki s i | s vt 1 €

Awesome! Our MongoDB is up and running now!!

Before we move ahead with launching containers for the application, let's understand how the Docker
Hub is useful for us.



Docker Hub - what is it all about?

As per the Docker Hub official documentation, Docker Hub is a cloud-based registry service that allows
you to link to code repositories, build your images and test them, and store manually pushed images, and
links to Docker Cloud so you can deploy images to your hosts.

In simpler words, Docker Hub is a centralized store for images which anyone around the globe can
access, provided they have the required privileges and can perform operations around images to deploy
and run their application on their hosts.

Advantages of Docker Hub are as follows:

e Docker Hub provides the functionality for automated create builds if any change in the source code
repository is reported

e It provides WebHook to trigger for application deployment after a successful push to the repository

e It provides functionality to create a private work space to store images and is accessible only within
your organization or team

e Docker Hub has an integration with your version control system, such as GitHub, BitBucket, and so
on, which is useful with continuous integration and delivery

Now, let's see how we can push our custom mongoos images to a private repository that we created recently.

First, you need to create an account at https:/hub.docker.com and activate it. Once you are logged in, you need
to create a private/public repository based on your preference, as shown in the following screenshot:


https://hub.docker.com

Omhiamd Coplam Crgmnbediorm Gmabs .n'nr-lll'luﬂ'll

# 0 Sodmh

Gzt Hopostory

1. poss o raures i aue egunesd
[ Hom b Daokcr poadpod

2 ficd arsacs by Ao dReoured)
Sobrhd s shon eescriodinn
A B ek b e Dol elaar o ekl

Cicaniam 1 ansppes B e swl v el ouine

S St i bo b A pvats or public eoos nony

Visbllby
pobhz= -

Click on the Create button to set up the repository and you will be redirected to the following screen:

ODmshbosd . Explom  Ogunicelom Grests .11lrll|‘lﬂ||‘ll

PRANETE FE PSSOy

NalSSENISHAR00

ez Ik e izmizm ] o wlb=m

Shar Dessddadion I et Pl Saminia s n

Cepvlania imagas e o naties aapliution toeihus sull deiclalhaswbhisSdochaz skl
ull Do 3 wrer

ull d=zenohan & sty "o 1hiE repo. manshssthis

Cormmente (3

Docker Hub provides only one private repository on a free account.

Now that we have created the repository, let's come back to our master Docker machine and execute the



following command:

| $ docker login

This will ask for your credentials for the Docker Hub account, as shown in the following screenshot:

17 waw don'l havae a Dacker 10, head over bo Allps:Sfhua.decker, can (o

Once the login is successful, it's time to tag the image you want to push to the repository using the
following command:

| $ docker tag mongodb:ms-packtpub-mongodb manishsethis/docker-packtpub

If we don't specify the tag, then it will take the latest tag by default.

Once the tag is created, it's time to push the tag to the repository. Use the following command to do so:

| $ docker push manishsethis/docker-packtpub

The Following screen shows the Docker push command output:

sSdocker-packtpub

cer-packtpub |

Mounted
Mounled

Mounted

Deshtoard  Exploss  Orpaeleaikinn Lrodis .mm'::mm:

Tz Mume Grpra==wl 5oa Laal Ll

Al 1ER KA 15 manulea S




This means that your image is pushed successfully.

In order to pull this image, you will simply have to use the following command:

| $ docker pull manishsethis/docker-packtpub
Oh, wow! It's too simple and you can access it from anywhere, provided you have credentials.

There are other Docker registry providers such as AWS (EC2 container registry), Azure (Azure container
registry), and so on.

For now, this is all we have from the Docker Hub side. We will keep on using Docker Hub during this
chapter to push the images.

Moving ahead now, we are ready to deploy our cloud native application to another container, but, before
that, we need to build an image for it using the Dockerfile. So, let's create a directory called app and also
create an empty Dockerfile with the following contents:

FROM ubuntu:14.04
MAINTAINER Manish Sethi<manish@sethis.in>

# no tty
ENV DEBIAN_FRONTEND noninteractive

# get up to date
RUN apt-get -qq update --fix-missing

# Bootstrap the image so that it includes all of our dependencies
RUN apt-get -qq install python3 python-dev python-virtualenv
python3-pip --assume-yes

RUN sudo apt-get install build-essential autoconf libtool libssl-
dev libffi-dev --assume-yes

# Setup locale

RUN export LC_ALL=en_US.UTF-8

RUN export LANG=en_US.UTF-8

RUN export LANGUAGE=en_US.UTF-8

# copy the contents of the cloud-native-app(i.e. complete
application) folder into the container at build time
COPY cloud-native-app/ /app/

# Create Virtual environment
RUN mkdir -p /venv/
RUN virtualenv /venv/ --python=python3

# Python dependencies inside the virtualenv
RUN /venv/bin/pip3 install -r /app/requirements.txt

# expose a port for the flask development server
EXPOSE 5000

# Running our flask application
CMD cd /app/ && /venv/bin/python app.py

I believe I have explained most of the section inside the Dockerfile earlier, although, there are a few
sections that still need to be explained.

| COPY cloud-native-app/ /app/

In the preceding section of the Dockerfile, we copied the contents of the application, that is, the code,
from a local machine to the Docker container. Alternatively, we can also use ADD to do the same.



The cvp is short for the command that we want to execute inside the Docker container, which is defined as
follows in the Dockerfile:

# Running our flask application
CMD cd /app/ && /venv/bin/python app.py

Now, save the file and run the following command to build the image:

| $ docker build --tag cloud-native-app:latest .

This might take a while as there are lot of libraries that need to be installed and compiled as well. It is
good practice to build an image after every change to make sure images are updated with the current
config. The output will be similar to one shown here:

tag cloud-mative-app:latest

t ‘mehoAttp s SSdamn Loacs-dis
pot-get usdate L& cps-get instoll -y no

Make sure every section of the build process is successful.
Now that we are ready with our image, it's time to spin our container with the latest image.

Execute the following command to spin the container, and always remember to expose port seee to access
our application:

| $ docker run -d -p 5000:5000 --name=myapp cloud-native-app:latest

Now, run the docker ps command to check the container status:

FoosEip-10-B-8-217 - =.=|.-:|l.-.--'11-.l|'-;|'.=-.r.l-I' decker ps

TOMTAIKER. ID THALE TR ND CREATER STATUS

Aoaekdefiqud rizie “Mindsh -c "ed Fa..” 3% minutes ogo Up 15 ainutes

Abaut @ haer agqo Jp aboul an bggr i B B Tl e

As you can see, there are two containers running in the myapp container: we will have our application
running and on the mongodb container, you will have your mongodb service running,



Next, check the application URL (http://your-master-ip-address:5se00/). If you see the following screen, it
means that our application is deployed successfully and we are live on Docker:

Login

LESG IR

Q&S0
Log In
Sige upr oo 1o sl YaLr accanl.

Now we can test out our application by creating new users and logging in, and then posting tweets. I will
not do it again as we have already done it at the time of application creation.

From experience, I know there may be some challenges to the communication between your application
and database, that is, MongoDB, as both, the app and the database are on separate containers and might be
in a separate network. In order to deal with this kind of problem, you can create a network and connect
both the containers to that network.

For instance, if we have to do so for our container (myapp and mongodb), we will follow these steps:

1. Use the following command to create a separate network:

$ docker network create -d bridge --subnet 172.25.0.0/16
mynetwork

2. Now that our network is created, we can add both containers to this network using the following
commands:

$ docker network connect mynetwork myapp
$ docker network connect mynetwork mongodb

3. Inorder to find the IP that is assigned to these containers, we can use the following commands:

$ docker inspect --format '{{ .NetworkSettings.IPAddress }}'
$(docker ps -q)

This network creation is an alternative way to set up the communication between
9 application and database.

Alright, we have deployed our application on Docker and learned its different concepts. The only concept
that is left is Docker Compose. Let's understand what it is and how different it is from the others.



Docker Compose

As per the official Docker Compose website (httpsz/docs.docker.com/compose/overview/), Compose is a tool for
defining and running multicontainer Docker applications. With Compose, you use a Compose file to
configure your application's services.

In simpler terms, it helps us build and run our application in a much simpler and faster way.

In the previous section, where we were deploying our application and building the images, we first
created a Dockerfile and then executed the pocker build command to build it. Once it is built, we usually
use the docker run command to spin up the container, but, instead of that, in Docker Compose, we will
define a .ym1 file with config details, such as ports, command to execute, and so on.

Firstly, Docker Compose is a separate utility from Docker Engine and can be installed using the following
link, based on the type of OS you are working on:

https://docs.docker.com/compose/install/.

Once you have installed it, let's see how we can use Docker Compose to run our containers. Let's assume
we have to run the cloud native application container using Docker Compose. We already have the
Dockerfile generated for it, and we also have the application at the same location (path).

Next, using the following content, we will need to create a pocker-compose.yn1 file in the same location
where the Dockerfile is present:

#Compose.yml
version: '2'
services:
web:
build: .
ports:
- "5000:5000"
volumes:
- /app/
flask:
image: "cloud-native-app:latest"

Once you have added the config in docker-compose.ym1, save it and execute the docker-compose up command.
After building the image, we will see the following output:


https://docs.docker.com/compose/overview/

e L e I P TP e BFCOTERER UL
MERNLMG:  The Dockar Engin ol 5 running in searn mads.

Compose dess npot gss =vorn mode o deploy services to nultiple nedes 1o oa swarn. &A11 cortriners will be scheduled oo the currers nede .

< the smdarn; pse Cdocker sbock dealoy”

“GET & HTTEAL.1" 260 -

Also, if you see the container's state, you will find multiple containers (in our case, app_web-1 and
app_flask_1) spin by compose, which is why it is useful for mutlicontainer applications that need large-
scale infrastructure, as it creates a cluster of Docker machines similar to the Docker Swarm. The
following screen shows the status of the Docker machine:

CiMelG R CREATED STATUS LTS

"“hindsh <c 'ed fa. .. 1 minielas aga Ip Abail g moauke  O0H, B8t~ t0R Lo

“YEinfsh -¢ 'ed Aol. " B minubes ogo Jdp Abauk o minte  S2O8Stcp

wargcok "wongod --rest -=ho LT 2 HoUrs s dp 15 mirukes 8.8 8. 5 27aly--2701Ts

Awesome! We have deployed our application through Docker-compose as well. Now you can try to
access the public URL for the application (http:/your-ip-address:5000) to confirm the successful application
deployment.

Finally, make sure you push your images to the Docker Hub to keep it in a centralized repository. Since
we have already pushed the MongoDB images, use the following command to push the cioud-native-app
image as well:

$ docker tag cloud-native-app:latest manishsethis/docker-packtpub:cloud-native-app
$ docker push manishsethis/docker-packtpub:cloud-native-app

We should see similar output for, Docker push command as shown:


http://your-ip-address:5000




Summary

In this chapter, we first looked at one of the most interesting technologies--Docker--, which is based on
containers. We looked at the different concepts around Docker, and we already deployed our application
and looked at the way we can manage it over Docker. We also explored multiple ways to deploy our
application using Docker Compose and Dockerfile.

In the upcoming chapter, things will be a lot more interesting as we will finally reach a stage where we
will be exposed to the cloud platform, build our infrastructure over the platform based on our application,
and also try to deploy it as well. So, stay tuned for the next chapter! See you there.



Deploying on the AWS Platform

In the previous chapter, we saw one of the platforms for our application, which is called Docker. It can
isolate your application, and can be used to respond to your application request from the customer. During
the course of this chapter, we will introduce you to the cloud platform, especially AWS (Amazon Cloud
Services), which mainly deals with the IaaS (Infrastructure) and PaaS (Platform as a Service) Services.
We will also look at how we can build up infrastructure, and deploy our application.

This chapter includes the following topics:

¢ Introducing AWS and its services
e Building application infrastructure using Terraform/CloudFormation
e Continuous Deployment using Jenkins



Getting started with Amazon Web Services
(AWS)

Amazon Web Services (AWS) is a secure cloud platform. It has various offerings in IaaS as well as
PaaS, including computing power, database storage, and content delivery, which help in scaling
applications, and also grows our business across the globe. AWS is a public cloud, and as per the cloud
computing concepts, it provides all its resources in an on-demand delivery with a pay-as-you-go plan.

You can read more about AWS and its services at https:/aws.amazon.com.

As specified previously in Chapter 1, Introducing Cloud Native Architecture and Microservices, you need
to create an AWS account to start using the services. You can use the following link to create an account:

https://medium.convappliedcode/setup-aws-account-1727ce89353e

Once you are logged in, you will see the following screen, which showcases the AWS and its categories.
A few of the services are in the beta stage. We will be using some of the services related to compute and
networking to build an infrastructure for our application:


https://aws.amazon.com/
https://medium.com/appliedcode/setup-aws-account-1727ce89353e

BWE sardces

LS DLstgins. 2 iy
I.I_.": =0 Elep Furnctons it ﬂ dmaaon Coneaed
& BE i "--"-_“" Cresmz an arganeahian
B '\"'I:[:.'J 1 s S0 Cmpareraisrs e pninetoeel
e e mamagema al mulipFn AW acocums. Bt nos
1731 8 B T bt et i THing
BCZ ¥ L WS T
ECF Containar Barvica CadeComme Explorg AWS
[RE T ks nid ﬁn F e
kst Beorar itk Cadelmpioy 3 ot T Merey Podut Arneoricamonts
Lambda CodoPipsline Arazon Sanren Wt m Biies ] armce e e Do s S5 B - S
Ealen = 1] Frardscn. Leom moee
..:.
|': I ul EE Arazon Eamali Peprale fFoe Dracks 10 Az ion Ao
a3 Dl Wl L Promd o rod et S0 v e B Adiazon Saadra Wl mesamil
- Fo i P T PR T R T -| TR F [rmary
Gader Cioud Tral Mobia Hub
Hlorage Ganshyay g b | i Wtrakising Mirdann & e T
DpaPioras Dihos Eiiat ol AP EEon Riness Anakhss
r_ I I THT"HEHH:H-: Mot Anchyics :J_I:tp“x:-\-\.: ferr, Shvmm ey S, A B <t @
MU PRINIET Finnaint T
Marapod Serdoes
CrmamaDE
Eousti i 5 A Makemiama
Hegjebit I 4 Srep FUncsons Déscoese; rocune, ond Copioy pocsor £ oftsarn prod os e s
e o S Lo monm
& Mg ao o Gy
Elzsiic Transcooer
Ay werthzzhe M arane:
L Direoiary Sorvice Hava aachack
ClinlFinm ViAE & afaid Lﬁ nacrEd = o L ; A e ey
o =t e ork A @ e port poir moomEncs wif e AT
it Connec Sewmpinos Feoerie simple Qusas Bordice harog omc L Denson
Hule 5 Eimpi Holificaton Sandog
. =5
= Y M
- Gjlmrs
Applcation Discovery Senice EMH I"'_:' !
o T e gy WnrkToes
b T et Elstcranoh Berdon Wirkhgad|

Serw il

Ritresi

Amamon Shmo

Heniul fips

B Maregayaur costs

&

T e Hime: bling amenn basec on your oosd ano

Some of the commonly used AWS services for applications are as follows:

e EC2 (Elastic compute cloud): This is a compute offering from AWS, which, in simply put, offers a
server.

e ECS (Elastic Container Services): This is similar to the Docker services on top of a public cloud,
that is, Amazon. It manages Docker on top of an EC2 machine only. Instead of creating a Docker
cluster on-premises, you can easily set it up in the Amazon cloud within a few minutes, and with less
overhead.

e EBS (Elasticbeanstalk): This is a PaaS offering where you just need to upload your code, and
specify how much infrastructure (basically, app server (EC2)) is required. EBS will take care of
creating the machines, and deploy the code on it as well.

e S3 (Simple storage service): This is a storage service offered by AWS where we usually keep our
application data or static content, which could be used for static website hosting. We will be using it
for Continuous Deployment.



e Glacier: This is another storage service, which is mainly used for backup, as it is less costly, and
hence, has a slow data storing and retrieving capability as compared to S3.

e VPC (Virtual Private Network): This is a networking service which gives you control over your
resources' accessibility. We will be using this service to keep our infrastructure. This service is very
useful for securing our application service and database services, and exposes only selective
resources, which are required, to the outside world.

e CloudFront: This is a content delivery service which distributes your content in S3 across the globe,
and makes sure it is quickly retrievable irrespective of the location of the request source.

¢ CloudFormation: This gives developers and system administrators an easy way to create and
manage a collection of related AWS resources, such as provisioning, and updating them in the form
of code. We will be using this service to build our infrastructure.

e CloudWatch: This service keeps track of the activity of your resources. It also keeps track of any
activity on your AWS account in the form of logs, which is useful for identifying any suspicious
activity or account compromise.

e JAM (Identity and Access Management): This service, as the name suggests, is very useful for
managing users on the AWS account, and to provide them roles/privileges as per their usage and
requirement.

e Route 53: This is a highly available and scalable cloud DNS Cloud service. We can either migrate
our Domain from any other Registrar such as GoDaddy, and others to Route 53, or purchase the
Domain AWS.

There are many more services offered by AWS that can't be covered in this chapter. If you are interested
and would like to explore other services, you can go through the AWS product list (https:/aws.amazon.com/produ
cts/).

We will be using most of the aforementioned AWS services. Let's begin by building our infrastructure on
AWS as per our application.


https://aws.amazon.com/products/

Building application infrastructure on AWS

At this stage of our application, the system architect or a DevOps guy comes into the picture, and suggests
different infrastructure plans which are secure and efficient enough to handle application requests, and are
cost effective as well.

As far as our application is concerned, we will build its infrastructure the same as shown in the following
image:

.............................................................................................

EC2

N ey .

== E I l I e L A |
| -
: -
: h . .
: H
: H

Route53 ;

Elastic loadbalancer
E App Servers Database Server

We will follow the preceding architecture diagram for our application, which includes a few of AWS
services such as EC2, VPC, Route 53, and so on.

There are three different ways by which you can provision your resources on the AWS cloud, which are
as follows:

e Management console: This is the user interface which we have already logged into, and can be
used to launch resources on the cloud. (Check this link for your reference: httpsz/console.aws.amazon.com/co
nsole/)

¢ Programmatically: We may use a couple of programming languages such as Python, Ruby, and the
like to create resources, for which different development tools have been created by AWS, like
Codecom. Also, you can use SDK to create your resources based on your preferred choice of
language. You can check https:/aws.amazon.com/tools/ for more information.


https://console.aws.amazon.com/console/home?region=us-east-1
https://aws.amazon.com/tools/

e AWS CLI (Command-line interface): It is an open source tool built on top of SDK for Python
which offers commands to interact with the AWS resources. You can check the link at: httpz/docs.aws.am

azon.com/cli/latest/userguide/cli-chap-welcome.html to understand its working, and the steps to set this up on your
system.

Creating resources is pretty easy and straightforward, so we won't be covering that, but you can check the
AWS documentation (https:/aws.amazon.com/documentation/) to do so.

I will show you how to build your infrastructure using Terraform and an AWS-based service called
CloudFormation.


http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://aws.amazon.com/documentation/

Generating authentication keys

Authentication is an important feature for any product or platform to check the authenticity of a user who
is trying to access and perform operations on the product, and also to keep the system secure. Since here
we are going to access the AWS account using APIs, we need authorization keys to validate our request.
Now, an important AWS service enters the picture called IAM (Identity and Access Management).

In IAM, we define the users and generate access/secret keys, and also assign roles based on the
resources which we want to access using it.

It is highly recommended NEVER to generate access/secrets keys as the root user,
9 because it will have, by default, full access over your account.

The following are the steps to create a user, and to generate access/secret keys:

1. Go to httpsv/console.aws.amazon.com/iam/home?region=us-east-1#/home; you should see the fOHOWiIlg screen:

fewd L i Yescome 3 Henbty and Assoos Managemert P iprag
fsiis i imtac ke im0
T R - & v i o s ke omr T % -
[LERCT S
i [ P TAETP] I u
Tt e o !
[ A OB LB T [ |
sl iy Ve by e Rt Bada Bumn:di € S
CrREd TES & [ oot owd T - AfdHnn anemale
3 VA Tl ] i

i EcEL e B R R R B ~
- lAth w1 wa

& HRETT IS T T Rt BT o - - e b By P e Pl e

[+ T 3R v e =T ke Al G

u [TRETS W
v fpna e W e oo 2

2. Now, click on the third option, named Users, in the left pane. If your account is new, you will see no
users. Now, let's create a new user--for that, click on the Add user button in the right pane:

[} gl o] o e

“rd wm [aR o PR T g S A Ml Ewnilln

Vhrrrpes Gram Teriaed  Lpviveade B ben el e T

msoar s gl

L PR

3. Once you click on the Add user button, a new page will load and ask for the username and the way
you want your user to access the account. If you are going to use this user, for example, manish, only


https://console.aws.amazon.com/iam/home?region=us-east-1#/home

for programmatic purposes, in that case, I recommend that you uncheck the AWS Management
Console access box so that the user doesn't need to log in using the AWS management console. Check
the following screenshot for reference:



N e o BET Lah
S R TR S

TYenmekrs EomagFrprs i Fempa s aa - s n Lopr 13

RLIRY . i

&5 Lol r it 1wy

2y wad BVES i dd L

Wa I r ] W B R B A et e B G e LAY e § Bl e

Ammawe’ ¥ Preprresbores
O oo peema o Dasd yporstnmomoy bom feecmp oG 0% UL DTED gmad clme ol plermgom b
< Al UermgarweiSemc s KoEn
IRTERFRTSTFERF & SERRE ST S oy R e TR S e s R

CoMNIIaMIATT & Srpmrvnlmomoms
Il eeiral
Merdsperreed apt o~ Dhoma m v dis mom o e 0 1 m orap §E T'-II
||I
L
“ T g e .u.l-n:-rh-.l.:r_-

4. Once you are done, click on the Next: Permissions button on the bottom-right side of the screen.
Next, you need to select the permission you want to give to this user, which we call the IAM
Policies. That means now, the user should be able to access the resources as per the policy defined,
and also the kind of operations allowed for the user on the resources. For now, we add the Power
User Access policy to this user.

5. Internally, Power User Access will have a policy in the JSON format, something like this:

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"NotAction": [
"jam: *n,
"organizations:*"

1,

"Resource": "*"

3
{

"Effect": "Allow",
"Action": "organizations:DescribeOrganization",
llResourcell: nmxn

b
]
b

For more information about the IAM policy, read the documentation at the following link: httpz/docs.aws.amaz
on.com/IAM/latest/UserGuide/access_policies.html

Readers who have been using Microsoft Active Directory can integrate AD with IAM

easily using the AD connector. For more info, read the article given at this link: https:/aws.
amazon.convblogs/security/how-to-connect-your-on-premises-active-directory-to-aws-using-ad-connector/

Consider the following screenshot:


http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://aws.amazon.com/blogs/security/how-to-connect-your-on-premises-active-directory-to-aws-using-ad-connector/

2ot parmilzsion s 1or manksn

: -""h. T
Spie, O | ]
I_l_‘\-f '-al'_"'-\. "':.I_l-'l =
0 I 1

ade FEELT i

-

AP - R Al

W OO I R O OO Y KT A - URDR T EE LT T

Crrm ooy G S

P nidicy T 0a o fat =

1 0 i el wniem
1 0 e gy e ek 1

e A LT W R TR

e s e e ™ i —y
' [ L T UL SR FrTe

b e D e e s e

A T L TR T I R

SAE wm
SR
BoTh
SEH wa
SAE
SN .
S
S
AT

-

-

'

-

P

= | R I LE L

T A

[= SR Y

Sl S bl s g s e L

Sndes Sl s Ao P T e A ey e v

b T mermm e e m AT e e S

¥ "l el e e S e ol - vl

L ek ol

E Tyl e

ponh S 8 g e e i g ol e g g o i e

Tpacde Cllmiar b # o P ow &b

e e it b R e Rl B ST

T T L LT T [ R P R O

T Ay T e e R T T e e e e P e ST e A e T e e s T e

e e i i o - e i 8 i

== ﬁ*-m

1. Once you have added the policies to the user, click on the Next: Review button on the bottom-right

side of the screen to move forward.

2. The next screen will ask you to review it, and once you are sure, you can click on the Create user

button to create the user:



x-

i
f
¥
3
k

R R S LEERE P RTU TRV S S e PRy e I P ERE AL T

Uharibda a

AR prram e g e e oo LR P

P mip 7w @ TR

LR S bR R R R E T S TN s F RS

- 4

s

3. Once you click on the Create user button, the user will be created, and the policy will be attached to
it. You will now see the following screen which has auto-generated the access key as well as the
secret key, which you need to keep safe and NEVER ever share with anyone:



Miw 5 e L = rm TR =

L =T e
Vou et g b ey Sk, e soe e § donninon L ey om o T e sha ol ne ireirsciom bon sl g 1S B e AT Ve o Dol Th s bod closl few Bemsomsemien ol o ool ot dennka o,

sanFasraaimme e pr hw

et g d ek w acsudogp e 8 cr v v s

& Driricad o
L Feonen ke D ST Rsonm by
- & i = Ry L

B T rmgdy
B dawmwd win Pradlheassin xoer rech
B v He oL et el

4. Now that our access/secret key has been generated, it's time to build our application infrastructure on
AWS. We will use the following tools to do so:

e Terraform: This is an open-source tool for building infrastructure on different cloud platforms
¢ CloudFormation: These are AWS services to build application infrastructure using the AWS
resources



Terraform - a tool to build infrastructure as code

Terraform is a tool for building, managing, and versioning infrastructure over different cloud platforms
such as AWS, Azure, and so on. It can manage the low-level components of the infrastructure such as
compute, storage, networking, and others.

In Terraform, we specify the configuration files which describe the resources specification for the
infrastructure of the application. Terraform describes the execution plan, and the desired state to be
achieved. Then it starts building the resources as per specification, and keeps track of the current state of
infrastructure after build up, always performing incremental execution if the configuration changes.

The following are a few features of Terraform:

e Terraform describes your data center onto a blueprint, which can be versioned and can be managed
into code.

e Terraform provides you the execution plan before actual implementation, which helps you to match
the execution plan with the desired result.

e Terraform helps you architect all your resources and parallelize your resources creation. It gives you
an insight into the dependencies on the resources, and also makes sure that the dependencies are
fulfilled before resources creation.

e With its insight capability, it gives more control to the developer over the revisions to be performed
over the infrastructure with less human errors.

In Terraform, we consider every service in AWS in terms of the resources which need to be created, so
we need to provide its mandatory attributes for its creation. Now, let's begin by creating the resources:

1. Firstly, we need to create VPC (Virtual Private Cloud) in which we will launch all the other
resources.

o Note: We will need to create all the files with the .tr file extension as per convention.

2. So, let's create an empty main.tf file. Add the following code, which will set the access and secret
key of the service provider for authentication:

# Specify the provider and access details
provider "aws" {

region = "${var.aws_region}"
access_key = "${var.aws_access_key}"
secret_key = "${var.aws_secret_key}"

}

3. As you can see in the preceding code, there is a value like s{var.aws_region}. Actually, itis a
convention to keep all your values in a separate file called variables.tf, SO we do this here. Let's
change the variables.tr file with the following content:



variable "aws_access_key" {
description = "AWS access key"
default = "" # Access key
}
variable "aws_secret_key" {
description = "AWS secret access key"
default = "" # Secret key
}
variable "aws_region" {
description = "AWS region to launch servers."
default = "us-east-1"
}

4. Next, we need to create the VPC resource, so let's add this code to main.tf:

# Create a VPC to launch our instances into
resource "aws_vpc" "default" {
cidr_block = "${var.vpc_cidr}"
enable_dns_hostnames = true
tags {
Name = "ms-cloud-native-app"

}

5. We have used one variable, which needs to be defined in variabies.tf as follows:
variable "vpc_cidr"{

default = "10.127.0.0/16" # user defined
}

6. Once the VPC resource is defined, we need to create a subnet which will be associated with the EC2
machine, Elastic Load Balancer, or other resources. So, add the following code to main. tf:

# Create a subnet to launch our instances into
resource "aws_subnet" "default" {

vpc_id = "${aws_vpc.default.id}"
cidr_block = "${var.subnet_cidr}"
map_public_ip_on_launch = true

}

Now, define the variable we have used in above code in
variables.tf
variable "subnet_cidr"{

default = "10.127.0.0/24"

}

7. Since we want our resources to be accessible from the internet, we need to create an internet
gateway, and associate it with our subnet so that the resources created inside it are accessible over
the internet.

Note: We can create multiple subnets to secure the network of our resources.

8. Add this code to main.tf:

# Create an internet gateway to give our subnet access to the
outside world
resource "aws_internet_gateway" "default" {
vpc_id = "${aws_vpc.default.id}"
b

# Grant the VPC internet access on its main route table




resource "aws_route" "internet_access" {

route_table_id "${aws_vpc.default.main_route_table_id}"
destination_cidr_block "0.0.0.0/0"

gateway_id "${aws_internet_gateway.default.id}"

9. Next, we need to make sure that the subnet where you will be launching your EC2 machine provides
a public address to the machines. This can be achieved by adding the code given next to your main. tf:

# Create a subnet to launch our instances into
resource "aws_subnet" "default" {

vpc_id = "${aws_vpc.default.id}"
cidr_block = "${var.subnet_cidr}"
map_public_ip_on_launch = true

}

10. Once this is configured, it's time to begin with the creation of the app server and the MongoDB
server.

11. Initially, we need to create the dependent resources, such as the security group, without which, EC2
cannot be launched.

12. Add the following code to main.tf to create the security group resource:

# the instances over SSH and HTTP
resource "aws_security_group" "default" {
name = "cna-sg-ec2"
description = "Security group of app servers"
vpc_id = "${aws_vpc.default.id}"
# SSH access from anywhere
ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
# HTTP access from the VPC
ingress {
from_port = 5000
to_port = 5000
protocol = "tcp"
cidr_blocks = ["${var.vpc_cidr}"]
3
# outbound internet access
egress {
from_port =0
to_port =0
protocol = """
cidr_blocks = ["0.0.0.0/0"]
3
3

13. In this security group, we open ports 22 and seee only in order to ssh and access our application.

14. Next, we need to add/create ssh key-pairs, which you can generate on your local machine and upload
to AWS, or can get it generated from the AWS console as well. In our case, I have generated an ssh
key on my local machine using the ssh-keygen command. Now to create an ssh-key pairs resource in
AWS, add this code to main.tf:

resource "aws_key_pair" "auth" {

key_name = "${var.key_name}"

public_key = "${file(var.public_key_ path)3}"
}



15. Add the following code snippet to variables.tf to provide parameters to the variables:

variable "public_key_path" {
default = "ms-cna.pub"

}

16. Now that we have created dependent resources, it's time to create the app server (that is, EC2
machine). So, add the following code snippet to main. tf:

resource "aws_instance" "web" {
# The connection block tells our provisioner how to
# communicate with the resource (instance)
connection {
# The default username for our AMI
user = "ubuntu"
key_file = "${var.key_file_path}"
timeout = "5m"
}
# Tags for machine
tags {Name = "cna-web"}
instance_type = "t2.micro"
# Number of EC2 to spin up
count = "1"
ami = "${lookup(var.aws_amis, var.aws_region)}"
jam_instance_profile = "CodeDeploy-Instance-Role"
# The name of our SSH keypair we created above.
key_name = "${aws_key_pair.auth.id}"

# Our Security group to allow HTTP and SSH access
vpc_security_group_ids = ["${aws_security_group.default.id}"]
subnet_id = "${aws_subnet.default.id}"
3

17. We have used a couple of variables in the EC2 configuration as well, so we need to add the variable
values in the variables.tf file:

variable "key_name" {
description = "Desired name of AWS key pair"
default = "ms-cna"

}

variable "key_file path" {
description = "Private Key Location"
default = "~/.ssh/ms-cna"

}

# Ubuntu Precise 12.04 LTS (x64)
variable "aws_amis" {

default = {
eu-west-1 = "ami-blcf19c6"
us-east-1 = "ami-0a92dbid"

#us-east-1 = "ami-e881c6Tf"
us-west-1 = "ami-3f75767a"
us-west-2 = "ami-21f78e11"

Great! Now our app server resource configuration is ready. Now, we have added the app server
configuration, and next, we need to add a similar setting for the MongoDB server, which is needed for
keeping our data. Once both are ready, we will create ELB (which will be the user's point of application
access), and then attach the app servers to ELB.

Let's move on to add the configuration for the MongoDB server.



Configuring the MongoDB server

Add following code to main.tf for the creation of a security group for the MongoDB server:

resource "aws_security_group" "mongodb" {
name = "cna-sg-mongodb"
description = "Security group of mongodb server"
vpc_id = "${aws_vpc.default.id}"
# SSH access from anywhere
ingress {
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
3
# HTTP access from the VPC
ingress {
from_port = 27017
to_port = 27017
protocol = "tcp"
cidr_blocks = ["${var.vpc_cidr}"]
3
# HTTP access from the VPC
ingress {
from_port = 28017
to_port = 28017
protocol = "tcp"
cidr_blocks = ["${var.vpc_cidr}"]
3
# outbound internet access
egress {
from_port =0
to_port =0
protocol = """
cidr_blocks = ["0.0.0.0/0"]
3
}

Next, we need to add the configuration for the MongoDB server. Also notice that in the following
configuration, we provision the server with the MongoDB installation at the time of creation of the EC2
machine:

resource "aws_instance" "mongodb" {

# The connection block tells our provisioner how to
# communicate with the resource (instance)
connection {

# The default username for our AMI

user = "ubuntu"
private_key = "${file(var.key_file_path)}"
timeout = "5m"
# The connection will use the local SSH agent for authentication.
}
# Tags for machine
tags {Name = "cna-web-mongodb"}
instance_type = "t2.micro"
# Number of EC2 to spin up
count = "1"

# Lookup the correct AMI based on the region

# we specified

ami = "${lookup(var.aws_amis, var.aws_region)}"

jam_instance_profile = "CodeDeploy-Instance-Role"

# The name of our SSH keypair we created above.
key_name = "${aws_key_pair.auth.id}"

# Our Security group to allow HTTP and SSH access



vpc_security_group_ids = ["${aws_security_group.mongodb.id}"]

subnet_id = "${aws_subnet.default.id}"
provisioner "remote-exec" {
inline = [
"sudo echo -ne '\n' | apt-key adv --keyserver
hkp://keyserver.ubuntu.com:80 --recv 7FOCEB10",
"echo 'deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-
org/3.2 multiverse' | sudo tee /etc/apt/sources.list.d/mongodb-
org-3.2.1ist",
"sudo apt-get update -y && sudo apt-get install mongodb-org --
force-yes -y",
1
}
}

One last resource which still needs to be configured is the Elastic Load Balancer, which will balance the
customer requests to provide high availability.



Configuring the Elastic Load balancer

Firstly, we need to create a security group resource for our ELB by adding this code to main.tf:

# A security group for the ELB so it is accessible via the web
resource "aws_security_group" "elb" {
name = "cna_sg_elb"
description = "Security_group_elb"
vpc_id = "${aws_vpc.default.id}"

# HTTP access from anywhere

ingress {

from_port = 5000

to_port = 5000
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
3

# outbound internet access

egress {
from_port =0
to_port =0
protocol = """
cidr_blocks = ["0.0.0.0/0"]
}

Now, we need to add the following configuration for creating the ELB resources, and to add the app
server into it as well:

resource "aws_elb" "web" {

name = '"cna-elb"

subnets = ["${aws_subnet.default.id}"]
security_groups = ["${aws_security_group.elb.id}"]
instances = ["${aws_instance.web.*.id}"]

listener {
instance_port = 5000

instance_protocol = "http"
1b_port = 80
1b_protocol = "http"

3

3

Now, we are all set for our first run of the Terraform configuration.

Our infrastructure configuration is ready to be deployed. It is a good practice to use the following
command to understand the execution plan:

| $ terraform plan

The output of the last command should be similar to the following screenshot:



root@packtpub: /vagrant/github/Cloud-Native-Python/chapter 11/terraform-app# terraform plan
Refreshing Terraform stote in-memory prior to plan...

The refreshed stote will be used to calculate this plan, but will not be

persisted to local or remote state storoge.

The Terraform execution plan hos been generated and is shown below.
Resources are shown in alphobetical order £
will be created (or destroyed ond then created if an existing resource

exists), yellow resources are being changed in-place, and red resources

will be destroved. Cyon entries ore dato sources to be read.

or guick scanning. Green resources

You didn't zpecify an "-out" parometer to sove this planm, so when
15 called, Terraform con't guarontee this is what will execute.

ovailability_zones.#:
connection_draining:

connaction_draining_timeout:

cross_zone_load_balancing:
dns_nam= ;

health_check.#:
idle_timeout:

Lnstances . =:

tnternal -

"wcomputed:="
"false"
"3@a"

"trye"

<Computeds"
<computeds"

"Ea"
"scomputeds"
"ooomputeds"

listener . #: =L
listener. 996561874, instance_port: "HRea"
Listener.9965615874 . 1nstance_protocol: “http”
Listener.9965601874. lb_port: "B@"
listener.996561874, 1b_protocol: “http”
Llistener, 996561874, 551 _certificate_id: ™"

Pcime ; "cna-elh"
security_groups. ¥ C=computeds"
source_security_group: <computeds’
source_security_group_id: "wcomputeds"
subnets #: "woomputed:="

If you don't see any errors, you can execute the following command for actual creation of the resource:

| $ terraform apply

The output should look something like this:




11 creating... {18z elop
5till creoting. .. (1485 clap

Currently, we don't have the domain registered with us, but if we have the domain name registered and
configured in Route 53, we need to create an additional resource in main.tf to add an entry for our
application. We can do so by using the following code:

resource "aws_route53_record" "www"
zone_id = "${var.zone_id}"
name = "www.domain.com"
type = IIAII
alias {
name = "${aws_elb.web.dns_name}"
zone_id = "${aws_elb.web.zone_id}"
evaluate_target_health = true
}
}

That's all we need to do. Also, another quick, and the most crucial, way of making your infrastructure high
available is to create an auto scaling service, based on server metric usage (CPU or memory). We
provide conditions which decides whether we need to scale our infrastructure up or down so that our
application performance should see less latency.

In order to do so , you can check the Terraform documentation at https://www.terraform.io/docs/

providers/aws/r/autoscaling_group.html.

Currently, our application is not deployed, we will be using the Code Deploy service to deploy our
application using continuous delivery which we will discuss in a later part of this chapter.

Before that, let's see how we can create the same setup using a Cloud Platform Service called
CloudFormation, provided by AWS.


https://www.terraform.io/docs/providers/aws/r/autoscaling_group.html

CloudFormation - an AWS tool for building
infrastructure using code

CloudFormation is an AWS service, which works in a similar fashion to Terraform. However, in
CloudFormation, we don't need the access/secret keys. Instead, we need to create an IAM role, which
will have the required access to launch all the resources needed to architect our application.

You can write your CloudFormation configuration using the YAML or JSON format.

Let's begin our infrastructure setup using CloudFormation by building the VPC, where we will create a
VPC with, a public and a private subnet.

Let's create a new file, vpc.template, with the VPC and subnet's (public and private) configurations as
follows:

"Resources" : {
IIVPCII : {
"Type" : "AWS::EC2::VPC",
"Properties" : {
"CidrBlock" : "172.31.0.0/16",
llTagSll : [
{"Key" : "Application", "Value" : { "Ref" : "AWS::StackName"} },
{"Key" : "Network", "value" : "Public" }
]
3
3
"PublicSubnet" : {
"Type" : "AWS::EC2::Subnet",
"Properties" : {
IIVpCIdII : { llRefll : "VPC" },
"CidrBlock" : "172.31.16.0/20",
"AvailabilityZone" : { "Fn::Select": [ "0", {"Fn::GetAzs": {"Ref": "AWS::Region"}} 1},
llTagSll : [
{"Key" : "Application", "value" : { "Ref" : "AWS::StackName"} },
{"Key" : "Network", "value" : "Public" }
]
}
iy
"PrivateSubnet" : {
"Type" : "AWS::EC2::Subnet",
"Properties" : {
"VpCId" : { llRefll : "VPC" },
"CidrBlock" : "172.31.0.0/20",
"AvailabilityZone" : { "Fn::Select": [ "0", {"Fn::GetAzs": {"Ref": "AWS::Region"}} 1},
llTagSll : [
{"Key" : "Application", "value" : { "Ref" : "AWS::StackName"} },
{"Key" : "Network", "value" : "Public" }
]
3
I

The preceding configuration is written in the JSON format to give you an understanding of the JSON
configuration. Also, we need to specify the configuration for routing the table and internet gateway as
follows:

"PublicRouteTable" : {

"Type" : "AWS::EC2::RouteTable",
"Properties" : {



IIVpCIdII : {llRefll : "VPC"},
ll'rags n : [
{"Key" : "Application", "value" : { "Ref" : "AWS::StackName"} },
{"Key" : "Network", "value" : "Public" }
1
}
+
"PublicRoute" : {
"Type" : "AWS::EC2::Route",
"Properties" : {
"RouteTableId" : { "Ref" : "PublicRouteTable" },
"DestinationCidrBlock" : "0.0.0.0/0",
"GatewayId" : { "Ref" : "InternetGateway" }
}
+
"PublicSubnetRouteTableAssociation" : {
"Type" : "AWS::EC2::SubnetRouteTableAssociation",
"Properties" : {
"SubnetId" : { "Ref" : "PublicSubnet" },
"RouteTableId" : { "Ref" : "PublicRouteTable" }
}
}
+

Now that we have the configuration available, it's time to create a stack for the VPC from the AWS
console.



The VPC stack on AWS

Perform the following steps to create a stack for the VPC from the AWS console:

1. Go to https/console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new t0 create a new stack using
CloudFormation. You should see a screen as shown in this screenshot:


https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new

@i Beal sl v e Lrmdle Sdurk

agha =t

Lokt Trrle it Swenl Temply s
* oy, Toray
e S O L D W 30 L e D L B ] PR I e T A e e g
P

Peg w by Ll A L0l 7 s (B0 3 YT Ty O B L RO W 1T ML

ok
AT
e bl A R b el B T e s e e e e e

W L

| hemin bl = S n A

PP e ]

A Snad Bk e P

Provide the path for your template file, and click on the Next button.

2. In the next window, we need to specify Stack name, which is the unique identifier for our stack, as
follows:

0O usiFnmeslon. = ek Treckn ek
== =R
B i Sy iy Tl
LT PLEE S
oy S LTICAMLTRAE CELTH WML "TUC8 BH 0o o PRSP I EEE FH L EL A T R CHCE T T e Cosdl i 1w s 1 L e
e
] o I
1
1
Li
3

= | T a m

Provide the stack name, and click on Next.

3. The next screen is optional; in case we want to set up SNS (Notification service), or add IAM roles
for it, we need to add it here:



If you want to enable Notifications and the IAM role, add the details, and click on Next.

4. The next screen is for reviewing the details, and to make sure they are correct for creating the stack:

B Cical-onieluig v Soeda L Hlace

{Temeb e

A Rtwiirm
oy
pgri L Sy
Hmana
Torwhrin IFT d g1 Lk i s s wSomg dvdalbmdira o HILIE#E Cpeine &

Swomild i SELT =R T O WL LEHE T LIRS A R A L arans
L oot ST

Flrormes b @ ue

Ol saee
Tz

e b wmeind

Nailmd m
U
Tarme o ey

Once ready, click on Create to initiate the stack creation. At the time of creation, you can check the
events to know the status of your resource's creation.

You should see a screen similar to this one:



I el Fodrclon = - Sk

[ L e g e
T Haw s rawted Tirm = o] [ ]
[ FAIT W07 [T IR i o VT ) T D e n p b 2 3w, Thes inwnliee corsion e 30 eerme
Germey  Dpew Memeswes Trpde Perress T Flwalelep Charps Siy =]
EEREE 22 £ P Tiwi Loyl IE M
B OIHEST iR A s CEEFTD ook P e s L T L e ] b
=

DRREF RURC LI o DR BT R FEFOFIT Hade Frolsw e

1 T LT AT Todwa i 8 e e M e Do T T s

.

= IHAEGS PO TIEVTE SIS STE COTATS ™l
B OFENAD WCAE] AT DORLITT AT T Pk
LI F S RS TTS Q TR & BN TS LR B TR B A o o i A,
F TRl L el i FARFIT Hud LE Y Hoim ool

AR LATATT T ™ol
LI P bt R | e | A B AT T Tan Pk =aais
LI E =" RTERNT R [ AP P bk Pl ol .
BREECE FEE S B FEERD Fumd R Hein o h am

[ttt Nl | T FELE sl A oy el g

B0 T b [ A8 fo e o ol ST P o4 oardor i S
LI F B & QTEEE . R T PR Jdim ALy Hleim. i St W il

THAR T (17 R & CEEAHLT He diCdde Pl 5wl

(hate R o5 ] BATATE bt e TR

{F I e e 1 AT D T i APE AL AT
BOTLE LS THEM R TR i LRGSR TR [ PR
B OISR SLCCURART IHETE T RN TE PSR A Lt

» VRN TR LA AT e’ iy T Pirpos. 4 e i e
BRSO Aredln nEC W o, o e i
(R MRS ] . FERFD b mmikhrr [T TS
PHART e i AT AR v
TENER NC-059) T AT i o e dwms L dfrind

In the preceding screen, you will be able to see the progress of the stack, and in case some errors
occur, you can identify them using these events.

Once our VPC stack is ready, we need to create the EC2, ELB, and autoscaling resources in our
VPC. We will use the YAML format to give you an overview of how to write the configuration in
the YAML format.

You can find the complete code at <path of repository>. We will use the main.ym1 file, which has the
details about the VPC and the subnet where you need to launch the instance.

5. In order to launch the stack, go to the following link:

https://console.aws.amazon.com/cloudformation/home?region=us-east- 1#/stacks/new

There will be one change in the launch configuration--instead of specifying values in the file, we
will specify it in the AWS console at the time of providing the details as shown:


https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new

M Sdamdtndon - Slaks o Giiolo Sk

JERER Slank

o T Spae by et

ooy Duish

i L e L i R S G S R e Ll L " e A T T O o T ST el T e, LTV
LB

row

TS

arwarhd-
Tmmin bl Awd T T AR (TR T R T ST TR T AT O
[or o R T T LB o Lom
S Eoaw Sioay Badgandun
LR LN oLt ] B Ukimn T -
e i - 2 it = e - i 3 =i
FAR. Tk dFH | s srrmd 58 B B Loy, i Pl 3 ke A e b vy haa

6. Refer to the following screenshot to provide the instance details in which you want to deploy your
application:



Inztance S=ttinga
AMI | ard BOENZEG Erter Baresd A1 D

S Typo i & Badurd 065 Tapea il S S,

ar

i " i -
Instunce Typa 2. mihoro Splard brefrnns Tmn

ECE2 Kpypalr | M=-Cna -

= W Barpomr e Gaa g is B e
Instarsoe HTTF Pord S0 Exter HTT T Lolirrrg; el bor inalanea

Instamca-ta-lnstance 325G Zeamh oy D nameor Morme tag wakss L

finty Grmin e Alosse Clapheen Hieel &cores In o o

R cdin- b= ln b B0 =aamh by L raume Gr PRy ca i hoe T

Farruke Mebwark e | F O o Ao T cedsroz o' YRR o Disaed Craracl

Bletwark Configuralic:s

YPC SRan f 0, o Mam TG velie -
oGt VR
Pl Seartirmesd izarch by D or Hame tag vaiue =
il o Hifznat A H R R R
Privads Bubmed 1 Scareh by 1D, o Manis g wlos -

Sriwabn ok | ey anp Sukera g Geandn

Route 53 OMS Configuraton

E:unrigum OHE s v Linrmesord e 50 A I e LA B aore o reestas ) e cnsan’ sty woel
Fiasied Fome damalirocom g H Mot Caofigunog Paoune 631 Hoobed DS Hamo
ELB O™E &llas WO com P 0 P Dastd ey Dldidtr S0 LOGE Thsrases] B Llswi i i s ELE

Once you have provided all the details in the preceding screen, scroll down to the next section,
where it will ask for the ELB details, as shown in the next screenshot:



Lo Llabsnzzer Lisndicp raher

HTTIPPari =t an HITS miomeg %m b b b
esGal b LR T i B L
HTFFE Pan <=2 Fop AR ey PR Prda s ST e T le®

WAL vl AAW A B DL IDDETE D 0T srear-oar Wl - S e ceg A DR G e ke Ll

LakmenHITRATTRE  biE B mor thd g R B P HTTR e HTTTR e W
Eelaslaggig 2 Iomemeemieeses msiagen s D0 chet pwr L e g g
edzzrman b S T e nEne e ST
Crakda Coploriicr Fereed | S3000 L LS R S e L BT L L ISRt LD D e
MeoTwors MCL Fubc Mombors
HITF I#lsdal 1n kI H i T Puse b Al Moghrsi= ol T Pemiwere w0
HETHE Iplsapl ILELH H L Irac Mool M B R TR s T e T Tram Ve B = DL 502 ik el 20

The remaining steps remain the same for creating the AWS CloudFormation stack. In order to add the
MongoDB server, we need to add the configuration for the EC2 machine in main.ymi.

Creating the configuration in AWS CloudFormation is straightforward, as AWS provides
a couple of templates which we use as a reference to create our template. The following is
the link for the templates:

https://aws.amazon.com/cloudformation/aws-cloudformation-templates/

That's all we have for building the infrastructure; it's time for our application to be deployed on the app
servers.


https://aws.amazon.com/cloudformation/aws-cloudformation-templates/

Continuous Deployment for a cloud native
application

In the previous section, we successfully set up the infrastructure, but we are yet to deploy the application.
Also, we need to make sure that further deployment should be taken care of using Continuous Deployment.
Since we have our development environment in our local machine, we don't need to set up the continuous
integration cycle. However, for large-scale companies where many developers work collaboratively, we
need to set up a separate pipeline for Continuous Integration using Jenkins. In our case, we only need
Continuous Deployment. Our Continuous Deployment pipeline would be something like this:

Ky =nsm e hind
Owralapsar
. L
GitHish Acpasitony
GltHuly Pugin
IF cxila nriogrre
changes - Janking Job
Canle Bunedly
w
EL2 %
|||| Code Deploy
i 3
—
| Deploy Cade b
= apa SCrvYers
t—1
App Sarvara




How it works

It starts with the developer pushing new code to the main branch of its version control system (in our
case, it's GitHub). As soon as the new code is pushed, the Jenkins GitHub plugin detects the change as
per its defined job, and triggers the Jenkins job to deploy the new code to its infrastructure. Jenkins then
communicates with Code Deploy to trigger the code to the Amazon EC2 machine. Since we need to make
sure that our deployment is successful, we can set up a notification section, which will notify us of the
status of deployment so that it can reverted back if needed.



Implementation of the Continuous Deployment
pipeline

Let's first configure our AWS service beginning with Code Deploy, which will help us to deploy the
application on the available app servers.

1. Initially, when you switch to the code deploy service (httpsj/us—west—1.console.aws.amazon.com/codedeploy/),
you should see the following screen:


https://us-west-1.console.aws.amazon.com/codedeploy/

o G mam i g g
e X MRS, .
Sy gy Ty O
=ACARSAran-ararsnr
[T 1 i i
1 g | Jcac oo
Tl i ¥ 1 T 1
— el U e dL e e dL e
NS AL C A TnAar
1 L 1 1 1L it 1
(R O WHEETHR R S SRR 1 S B o N - D A R 2

B ————

B o —
==t I, | =
Trach,

Uipload Deploy
R REE N R R HERE S SR - RS TS B
e i 1 s e L e T o AseeAr e e s LG ey T R e n L T T T e
'
TR e nm | me nn

O el e sy Doanmma e o mge-dal
Gt SuHe rrwaes i lzxa

The preceding screenshot is the introduction page for Code Deploy, which showcases its
capabilities.

2. Click on the Get Started Now button in the middle of the page to move forward.

3. Next, you should see the following screen, which will recommend you to deploy a sample
application, which is fine for the initial stage. But since we have already built up our infrastructure,
in that case, we need to select Custom Deployment-- this will skip the walkthrough. So, select the
option, and click on Next.

Siep 1: Get siarted

Get started with AWS CodeDeploy [ 7]

BE Decdnlaplady balns wan to quindy mepioy apnivalions o dmaros PR32 relansses oF on-pramises instances.

Etat oy omating & denlaymant Snat Lses @ semnks anpleatian sdppled by e GodeDoniay, of Sdp this wkand an
cramhe 1 CLEOM Sep opTTend v wour ot apalcabon

Bamipha dagploymian
Spcommanns dor nee SR Cnce Doy usees

@ Custom doploymont

TrEmmHenia o pirs svenchy o eran e dodan Aopd sl In cankr

G Bhdp Walkthnniag

4. Click on Skip Walkthrough to move forward.
5. Inthe next wizard screen, there are a couple of sections which need to be reviewed.



The first section will ask you to Create application--you need to provide a user-defined
Application name and Deployment group name, which is mandatory, as it becomes the identifier
for your application:

& AWS CodeDeploy ~

Create application £

Craate an spplicetion ene choose a deployiment type. Specity the natances to deploy to. Speclty the condtions far a successiul deployment.
Applicetion name* cloud-native-aop

Deployment group name”  pod

6. Scroll down to the next section, which talks about the type of deployment you want for your
application. There are two methods, which are defined as follows:

¢ Blue/green deployment: In this type, during deployment, new instances are launched and new code
is deployed to it, and if its health check is fine, it is replaced with the old one, and old instances are
then terminated. This is recommended for the production environment, where customers can't afford
downtime.

¢ In-place deployment: In this deployment type, new code is deployed directly into the existing
instances. In this deployment, each instance is taken offline for updates.

We will go with In-place deployment, but the choice changes with the use case and product
owner's decision. Say, for example, applications like Uber or Facebook, which can't afford a
downtime at the time of deployment, will go for the Blue/green deployment, which will give them
high availability.

Deplayment type
Chiscsa ihe cdaploymenl b ese o depfoy your applicaion. Learn moams

@ In-place depdoyment
LExdalan Tha iralancss in Tha daglaesd? gooip i the aleal pgpdicad o regiion, Dodag g dasknmect, sach Pelaocs wil bs
ety 1amen o ina far s aadake.
Bluesgreen deployment

Fepiazes the nsbarces © e dspoymenl groag with new nsiances ol ceplsve b e spohcalon eason @ them, Sher
Instamces N oha FeElecamant aneraerenT T khoned with o oad halannet Insanoes Tror tha adgral awdnnment ane

vl wiaman wind can e bseerealed

7. Let's move on to the next section, which talks about the infrastructure where the application is going
to be deployed. We will specify the instances and ELB details as shown in this screenshot:



Add instances

Idantify the nstancas wou went to ncluds in the deoloyment group. We will deploy the apolication revision to the instancas thet match the
ratance tag keye and valuss o Auto Scaling group narmsa you specify

& Reguirements for each instance in the deploymesnt;
I. Each Amezan ECE Ingtance mus: be launched with the coract 1AM matencs profis sttached. Lescn more
2. Each Arnazon ECE inslance must Pave identifying Arnacen BC2 Sgs Learn micoel o be inoan Aulo Scaling aroon, Lestee, mans
3. Each on-pramises insano: must have an associated 1AM wser, idantifving on-premises instances tags. and a cenfiguraton fils,
Lesrn more
4, The AWS CodeDeploy sgent must b inatalled and running on each instance. Leam mans

Ssarch by taga &
Tag type Key Wallue Instances
1 Amazon EC2 * Nama - cra-wak| - | [ ]
2 Amazon EC2 = - - (3]
Total matching instancaa: 1 < 1te1ofinstances
Instance 1D = | Gtatus = | Instance type b
-ORSECdadoRsae5nid Aunning rdaean BEL2

Load balameer  Seles! a load balaseer ta rsnage incoming ballis during the depdoyrmant
process, The lcad balancer Bocks traffic from sach imstance whis it's beng
cepdovad to and abowa trafic to it again ater the depdoyment succesds.

cnz-olb & -

8. In the next segment, we will define the way to deploy the application. For example, suppose you
have 10 instances. You may want to deploy the application on all these instances at one time, or one
at a time, or half at a time. We will go with the default option, that is, codebeploypefault.oneatATime:



Deployment configuration

Chonse froem alist of delassdl and costom deployment condigurations, & deployment condiguration s a sel of mees Thal aoetermmmes how Tast an

appdication wi¥ ba deployed and the swcoess or fallure conditors for 8 deploymernt.

Deplayment canfiguration®

ik

CodeDeployDefault. dnadtal ims

v Advanced

Service role

delect & service role that grants A LaodeDepley access to the nstancas.

Service role ARN® - £

*Required Cancef Create application

In this section, we also need to specify a Service role, which is needed by Code Deploy to
perform operations on your AWS resources, more specifically, on EC2 and ELB.

In order to understand more about service role creation, go to the AWS documentation at
this link: http://docs.aws.amazon.comVIAM/latest/UserGuide/id_roles_create.html

9. Once you have provided the required information, click on Create Application.

You will see the following screen once your application is ready:


http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

E."-.l.".'E-l'_Z:m:L"«:-n-:rr w. Maplicbtons o 2loud nathee app

!
(-] Ceangrasaty oes) THR annbeallon el siderslwa-adp Pl been Orasnad
Fordrre e cdendey wmir o i, oot need oy andea s e s g et o o oca T imA e A5 T e codaad e an 50 siwdet. (@] inoes s d Peenk casoeEnny T T Loaa s mersi
1. i 41 AenS ool e Al Cape P Thins Fars Dl bara 8 A obo b oo Bs Do pho s Tadds S o vel iy, Lo 5 nimian
Folrardnaciacd redul iFR SVAL UL ad s uma B s usinas wmorAapsiiz o on s pas preramed rismcE o oeevie . Lesm moe
& Pk 2o o eI 300l sal o b R NS DL o soeost T R0t 1l e THE VL Wy ol s B o, ted IR Eun BiS ol Lo gi sz d
ape depl oy et —-acplinsnioo-nmes ceueprnares
==pialotab b WE NI A TR S Sy R e Bp e Pl e
——pierca crnafasnimmdles
W w0 gl Sl ey o Lt R W R e T B o e e i Tl St T e v bt S Rt Bl B ]
Application details: cloud-native-app L2
Aracepasarasndonl on s, ack, oe el o irippgecn For S Episa Tt geries. Ve Aot calinn revirion deta e,
Deployrmant grouos
T, ], wrnl retlaz e e s ke el tasirmET Sroaped Vs s At o op I e e e A ek Beal e wier e wear ek g oo ecend s, L e o
vt dephrament praup Apiunn T —
Caplessrinlgouncbrpige | @ 7 Whaming | 1 o 1 Seplaymam g
Mare = - Dighoe =  Lask sHemgisd redekan = Leori mc eyl reviaon =  TigpEa
b e

whamineg 7 001 of 1 dhogka e e o geolics

Now we are all set for deployment. All we need to create is a job in Jenkins, and add a post-built section
with the CodeDeploy details.

The creation of a job is similar to what we explained in the previous chapter. The following few changes
are needed though:

1. Firstly, we need to make sure we have installed a few Jenkins plugins, namely, AWS CodeDeploy
Plugin for Jenkins, Git plugin, GitHub plugin, and so on.

2. Once you have installed the plugins, you should see new actions in the post-build actions list, as
shown in the following screenshot:

S dusrelragmn el sy i':-i_"
Arecin e adtacis
| SR atten proects
=i Junil lest mesull repant
Hupord rperenris of fles o Ieck usazge

T PubliEre
Japkay an applcaacr b A Codolicpioy <:
als CodzPpeine Fublishe:

Srpeeee gunnreil gr Bilkvukal

L7

Ze il il
l =clitebhis Emwl Helbeas on
“ditebier Crmix| Mudiliza: on Term aes
IpShak Malfcalians
=ar il gy soenni 2ha e liirivasaal)

| San auie #lahs co iR coend [lasnacsnacl]

Mbd poat-baild aclion =

3. Next, you need to select the Deploy an application to AWS CodeDeploy action. A new section will



be added, and we need to provide the details of the CodeDeploy application we created in the AWS
console, as shown in this screenshot:



Beploy an application to AWS Codeleploy

AWE CodeDegloy Apolication My cloudnalive-app 'ﬂi
AWE CodaDesloy Depleymaint Sroup Prod 7]

AWE GodeDesloy Dapleymant Conlig CodeDeployDetault CnedtATima

AWS Regian LIS EAST ¢ v
53 Bucket oode-ouik L
53 Praf #
Subsdirectony L1
Il Files Ll L1
Exciude Flles L1
Prozey Hest "':]"
Frosy Fon a L7
Werminn File
Appzpacceml per Deploymenl Broug  (# L1
Ragistar Fevisicn

= Dapky Bevision

Regisier the new revision and doploy it 1o the specilicd Codeleploy deglovment group

< Wait Tor dopleyment 1o finish? 7]
Palig Timesaul 15 aon
Pollng Freguency (s 15

= s AccessiSecrol keys

li these kimps are el Blank, e plagin will altempl o oese aedentials froen be cefaul provider
chein. [Rat is; Emdrcnment varables. Java Systam propsartias, credentiale profile hle, and
firaly, EC2 Estanse prodiie

Ao o = °
ﬂ'."n'E- EI"_.Err‘:l '-':.'r:':,' Bk ol b sdddaan el ._'I

U \miparary credenials

4. We also need to provide access/secret keys which we created at the beginning of this chapter in the
section, Generating authentication keys. This is needed, as Jenkins, after packaging the application,
needs to upload it to S3 and instruct CodeDeploy to deploy the latest build from the specified bucket.

That's all we need to do. Now our Jenkins job is ready to deploy the application. Try it out, and it should
work as smooth as butter.



Summary

This chapter is very interesting in various ways. Firstly, you got the basic understanding about AWS
services, and how to make the most out of them. Next, we explored the architecture of our application on
the AWS cloud, which will shape your views on architecture designing for different application/products
that you might plan to create in the future. We also made use of Terraform, which is a third-party tool used
to build infrastructure on AWS as code. Finally, we deployed our application, and created a continuous
pipeline for deployment using Jenkins. In the next chapter, we will explore another cloud platform owned
by Microsoft--Microsoft Azure. Stay alive, and get ready to explore Azure in the coming chapter. See you
there!



Implementing on the Azure Platform

In the previous chapter, we saw one of the cloud computing platforms for hosting our application--AWS--
which contains all the features to make an application with high availability, and with no downtime. In
this chapter, we will have a discussion about another cloud platform called Microsoft Azure.

This chapter includes the following topics:

¢ Introducing Microsoft Azure
¢ Building application infrastructure Azure services
e CI/CD using Jenkins with Azure



Getting started with Microsoft Azure

As the name suggests, Microsoft Azure is a public cloud platform owned by Microsoft, which provides
different PaaS and IaaS services for their customers. Some of the popular services are virtual machine,
app service, SQL database, Resource Manager, and so on.

The Azure services fall mainly into these two categories:

¢ Platform services: These are the services where customers are provided with an environment to
build, manage, and execute their applications while taking care of the infrastructure themselves. The
following are some of the Azure services by its various categories:

Management services: These provide a management portal and marketplace services, which
provide galleries and tools for automation in Azure.

Compute: These are services such as fabric, functions, and so on, which help the developer to
develop and deploy highly scalable applications.

CDN and media: These provides secure and reliable content delivery around the globe and
real-time streaming respectively.

Web + Mobile: These are services related to apps such as web apps and API apps, mostly for
web and mobile applications.

Analytics: These are big-data-related services, which can help a machine learning developer to
perform real-time data processing, and give you insights into data such as HDInsight, Machine
learning, Stream Analytics, Bot service, and so on.

Development tools: These services are used for version control, collaboration, and others. It
includes SDKs as well.

Al and Cognitive Service: These are artificial-intelligence-based services, such as for speech,
vision, and so on. A few of the services which do so are Text Analytics API, Cognitive, and
others.

¢ Infrastructure Services: These are services where the service provider is responsible for the
hardware failures. Customization of the servers is the customer's responsibility. Also, the customer
manages its specifications as well:

Server compute and containers: These are services such as virtual machine and containers,
which provide computing power to the customer application with variants.

Storage: These are of two types--BLOB and file storage. It has varying storage capabilities
available based on latency and speed.

Networking: These provide a couple of network-related services such as load balancer and
virtual network, which help you to secure your network, and make it efficient for customer
response.

The following diagram will give more understanding about the Azure platform:



Data and Tools

- I -,
= E Identit d
& 2 Sasuty Integration
B =
[~}
= = A —
[ E .
= ® IAAS & PAAS |

Microsoft Azure platform |

You can review all the Microsoft Azure product offerings in detail at the following link:
https://azure.microsoft.com/en-in/services/

To get started with Microsoft Azure, you are required to have an account. Since this chapter is concerned
with implementing our application on Azure, we won't get into how to create an account. If you do need
help, you could read the article given at the following link, which will definitely help you out:

https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b

Azure provides some SaaS-based services, which you can review at https:/azuremarketplace.microsoft.com/en-us.


https://azure.microsoft.com/en-in/services/
https://medium.com/appliedcode/setup-microsoft-azure-account-cbd635ebf14b
https://azuremarketplace.microsoft.com/en-us

A few points on Microsoft Azure basics

Once you are ready and logged into your Azure account, you will be redirected to the Azure portal (https/p
ortal.azure.com), which will showcase the Azure service. Initially, Azure provides a free account, and gives
you a credit value of $200 for your usage for 30 days. Microsoft Azure also believes in the pay-as-you-go
model, and when you have finished all your free credit, you can switch to a paid account.

The following are some of the basic concepts of Azure that you should know before moving forward:

e Azure Resource Manager: Initially, Azure was based on a deployment model called ASM (Azure
Service Manager). In the latest version of Azure, ARM (Azure Resource Manager) is adopted,
which provides high availability and more flexibility.

e Azure Regions: There are around 34 regions distributed around the globe.

e The list of Azure regions is available at https://azure.microsoft.com/en-us/regions/.

e A list of all the services in SpECifiC regions is available at https://azure.microsoft.com/en-us/regions/services/.

¢ Azure automation: Azure provides a number of templates in the different Windows-based tools,
such as Azure-PowerShell, Azure-CLlI, and so on. You can find these templates at https:/github.com/Azure.

Since Azure is owned by Microsoft, we will mostly work on the Azure console (UI), and create resources
through it. The Azure environment is very friendly for the developers or DevOps professionals who love
to deploy their applications on the Windows system, and their applications are written in .NET or VB. It
also supports the latest programming languages such as Python, ROR, and so on.

Microsoft Azure is the ideal choice for people who love to work on Microsoft-based products such as
Visual Studio.


https://portal.azure.com
https://azure.microsoft.com/en-us/regions/
https://azure.microsoft.com/en-us/regions/services/
https://github.com/Azure

Architecturing our application infrastructure
using Azure

Once you are on the Azure portal, you should see the following default dashboard on your screen:



= S oo R

Diashbhionrd » — vsscmdmd S ifdeded Do oCNopme Ty W e

Moo A kkan e ik

(TRErRry R TE

Sl e
L Wk R G FTIRE 8 % 2T
Rt - B i ek S, YD s Ll o b
e g R :
Mg s 1
S e el T e
U’y 2l et rm 2
Tomrkewm gy Bk el e Bl e B e T SRS
L = e g P BT L
B i AT

w SpFfordkEl
T She el oo ey e M e Bplla

ik o O

Al vadh R
L [EITEIRR
o e
Seigh AT At - mak s ;
e -1 L Ll LY - (RN TH o
ﬂ iod u iy i bl e el e S

It's time to architect our application infrastructure on MS Azure. We will follow the architecture diagram
given next to create our production environment on Azure:

Wirtuesd Distaorh,

Cuatamar i p
Alser oNS : Mangodb Server
Laad Balanedr

In this architecture, we will use a couple of Azure services, which are as follows:

e Virtual Machine: This is similar to our EC2 machine in AWS. We will deploy our application and
the MongoDB server in a Virtual Machine.

¢ Virtual Network: Virtual Network is synonymous with the VPC in AWS, and needs to be created in
order to keep our communication network secure.



e Storage: Each VM is backed by a storage account that we don't create explicitly, as it is created
along with the VM to store your data.

¢ Load Balancer: This Load Balancer has the same usage as the Load Balancer in AWS, but they have
a slight variation in the algorithm, as Azure mainly follows either hash-based balancing or source IP
algorithm, whereas, AWS follows the Round-Robin Algorithm or the sticky session algorithm.

e DNS: DNS is useful when we have a domain register, and we need to manage our DNS from Azure.
In the cloud platform, we call it the Zone.

e Subnet: We will create a Subnet inside the Virtual Network to distinguish our resources, which need
to be internet facing or not.

¢ Auto scaling: We haven't mentioned this in the diagram, as it depends on your application need and
customer response.

So, let's begin by creating our app server (that is, the virtual machine) where our application resides.

As I mentioned earlier, Azure has a very user friendly Ul, which creates a programmatic code in the
background as per your defined resources, and gives it to you using the Resource Manager, which makes
the DevOps guy's job easier.



Creating a virtual machine in Azure

Follow the steps listed next to create a VM in Microsoft Azure:

1. Go to the Azure dashboard, and select New in the left panel to launch the VM Wizard, as shown in
the following screenshot:



S - - 1 e - N R

Diashbhionrd » — vsscmdmd S ifdeded Do oCNopme Ty W e

Moo A kkan e ik

(TRErRry R TE

DI R L FTIR A BT

'F‘ b LT SRR S SR P SR
Hunsa w1
U’y 2l et rm 2
B B e b L TR Bl o B B e kT AT ST
P
w SpFfordkEl
T She el oo ey e M e Bplla
Fun =
P ana maan -
o e
SegE KT P PR T m
e o0 e S T (RN
T ﬂ sl ﬂ iy i bl e el e S

= Vil wrera
# Aoum da v Tiea
B rdor vor

el

W gy

T rameg

2. Now we need to select the OS that needs to be launched. We will select the Ubuntu Server 16.04
LTS server option (we select this option, since our application is developed on the Ubuntu OS) in

the list.

In the following screen, we need to select the deployment model. There are two deployment
models available. They are classic (it is a standard VM) and Resource Manager (high availability
VM). Select Resource manager model, as shown in the next screenshot, and click on the Create
button to proceed further:



[t Spure Hew 2 Sarpas

Hew

CorpLn
Fenakeg

H S T

Wb Roma
INdde =
[ P ]

o L B
[ [

L porica lemarardon
LR T PRREE T LS
ol oo
Moz my 4 YaEgmwrl
Cabinn

o Idra e

Bhebt sy

AdHI

“rywatiaxstenieg =il

Ereray |

Sl Lo A4S
W

it 1 e mm i
] .1 i

S et Wria
e

WA e GOF Trawyl s
I = 1 LSRR T

g ramma Ay

amapred

i, v

| ety
ol R
e

" N g ==
e L




Micromodt Srpre Bes S Sompine b Ubaem Seiver S508 LTE

@ Ubunibu Server 1604 LTS

we

-4 Ubidis Sy T2 A L1 ppalest S0 dUELE PRl i, danan, A0 o020 fage 7 e 002 Ao

Lo s d TS donro o L Bavs @ b skl e nan, pagea 2 D-ag b e
- prarzrrrera Lpakles el peides ke Uzorls TR w | by wap pzboars gl D187 errn

Lerariede covws Acnad mbem O C eboar o d veklaabh horersoapp ke m R EL0L
mi chln-wim s fledoop T mecow nboirurds T s by SroBous el o g b o s ek
L aretmace
] Lmged Tepme
‘ Fo' Wl o e S St Ao TR I D S s shan s sl i Dt 2] el rRan

v Lo ve e o et 4 o o ppey o i Sl e s 1 s o prriredie gl B nbad et e
e PRSP NEE LR TN RTRTS BT [

¥

 DODCEmE

w FIRL S IR Camarizal

it LS R B HIT

LiEEHIL LiME: =R
Tk thaliib

0 & b @

| -4 ;

T pepdenaer T piceld

R isw Paager ~

3. On the next screen, we need to provide the User name and method of authentication for the VM, as
shown in the following screenshot; click on OK to proceed further:



risof LS hew 5 Carper S Uhanis Serec (EZA LTS 5 Srmars o riod mochl e

Cregle wirjpg iravhing 8 X

LV
Lt -
3
1) £ L] T
& | Fain
q3 = ) Fagha i sn
ki ! ::‘L'pl:-\.-\.q.'é'-uﬂ-\.lr
TRl AR bR
| " | b cn TR e e S BT
L Earafurowr o AR He bty e R
T2 WD TP L L ETE T oA
m
-u .
& [T -
T Rmamgeaz B
= Fip o
TR (TR
LE ]
wier
e -

4. Next, we need to select the VM size based on our requirement. We will go with
the DS1_V2 Standard type. Select it, and click on the Select button at the bottom of the page as
follows:



licrosolt Azure Mew > Compute > Ubury Sereer 1604 LTS 3 Create virtwal machineg > Choose a §5z5

Create virtual machine

Pk i dvad libde Sine. and i Teateras

Pross grescmten are sstimabes inyour focal currercy that inclode ony Azure infrastracbune costs and

1 Basics - =Ty d scourtts far the subsoiption anc (ccaticn, The prices dan't irclade any 2pplicable softeare oosts.
m L= Rerammended sizes arp deteririrec iy the puiblisher of tie spected imsge based on hardsae and
sflwdre recLITEINERD
2 Slre " Supported disk typa WARlFIT cores rinimium mamany [Gikk
] Chacss yirual mackine sxe &30 wl 1 | a
ﬁ W Becommenced | Wiow all
L] ﬂ fisire el D51 V2 Swandard 52 W2 Standard SN V2 Standand
= 1 Com 2 Coms 2 Comes
=5
A 3.5 ca 7 GH 14 8
L b 2 4 4
) ‘::. Cirte dmis ‘:I-'.-.. Oalm dels I:Ejl Maiw dick=
& 3 o 3200 o e o 400
.. Mpx IDES M IDES px IG5
T B 14 G0 . MG
1!_.. fin Lincal 5RO i Lzl 550 i |l'--:;-|1‘i"-|'l
ws' Load balancng %» Load balancing ¥¥ Load balancing
= ~ " Prernium disk suppart ~ . Premiumdisk suppart . Premium disk support
3,589.82 7.179.64 9,097.49

& b O &

Ex

5. Inthe next screen, we will define a couple of the optional details such as Network, Subnet, Public IP
address, security group, Monitoring, and others:



CoB | T V= R oty T B

| = Lztings

3 lali + RETEaL 3
0 hp s PR FELVEL 10, 1) -
e T CIEPN I LT
an
= R "z oz Tk
A ;
- o - 17raq 2
= Nrruk o g guas o i
Pred wpgeoralreg
E-larsiaa
™
Cwuzel 5
B Cmi s
4 Hougln e i iy
‘ s ansk e ol 5
bz
o
kdn-ilirizg
L B ol el
'El Dkl Iraahs
4 e e A TR ]
. et v [
fLexcmiarzugneenrik %
Poalcpporpd 525

Instead of creating a virtual network everytime, it's recommended to create a virtual network, and
choose it by clicking on virtual network. When it comes to managed and unmanaged disks, I prefer
the managed ones. This is because in unmanaged disks, we choose to create a storage account, and
since we are creating it for a multiple app server, each app server will have its separate storage
account. It is highly possible that all the storage accounts may fall into a single storage unit, which
could cause a single point of failure. On the other hand, in the case of a managed disk, Azure
manages our disk by every storage account in a separate storage unit, which makes it highly
available.

If you don't provide these details, it will be set automatically.

6. Inthe next screen, we need to review all the details that we have defined in the wizard, as seen in
this screenshot:



Al Py Hee . Tk %

gz s sl indma n.x

H % % & m 8 =N
P
-]
i
1
1 ]

b= D #

7. At the bottom of the page, you will find a link that will give you the facility to download the
complete configuration in the form of a template, or in the form of code in different languages. See
the following screenshot that shows the code that got generated as part of the configuration we
provided:



Temp ks

—-— i:r.ﬁ'il.c: H.i::';'tu_l |I|I.':::,J

ﬂ AL rrE oy 8 e e b h A Bena vr o s ke e T e Ay o e ed oy Do s pserie s i moeviopam 8 ndnd poamemvan o depbe sl g pn e s e e abrad 1aw e danl e

wrzww Mewmwinn O CU LUEZ Lrmadl NIl Eiis

k¥
v W Faorr 1]
i, b o L B e CHRRA L SO u b I 1 LT Lt Lt i (it I ST 1 o ot ] P PR LA i
LR oL |
; 1 "rzrcenmharedent s CLLELBLEY,
I = iff P 1] 1 ‘garemkeras |
G [zoraratione”s roa i m i M 3 Flaabagn®s |
frpppt e Y
= & oewsipea ey A1 Wl ; Tre y
o e U e 1 R AL T T T
¥ ¢ |- an iy s v i ot } LPRETS TALLEET

| e sk e =¥
F "wirtun Fechinatziets |

S P TLLLE AT L Er o T -1 ‘gz Fatringt

7 |z rwime resaTe s LA

i Exgminieerramty o
*tyen®s Vatrdag®

N 4+ &

bt | i
L ray et et
e o H ] o ] 14

i g
) “rizbaalie lasdiony |
4 TeleSd TS1r
‘ 1 Prarbvarkiecursbsirepla™: |
P i1 "ERER": “ubridg”
L
bt T B SE e L
¥ a7y "pen": Fwbrizgt
'} .
] Sr Lyl an s mar i pl Cngi iRt |
12 “pge": Vekraieg”
| i
1 RN TP TEC LTI ETR TRE T8 |
11 g paRy FLrr P
" i
15 *cimpaaticStaragrdiat st [
1 riEett Matrieg®
1
1 "ackdransFrefia’;
1 "erma®: Vabring®
4 L
i Sephrw iR | |
il "Epea"z “kriag”
3 g
i suly

8. Click on Ok to begin with the deployment of your virtual machine.

Now our dashboard should have one VM running after some time, as shown in this screenshot:



Dashb[}ard wr o= Pndmicbeand 07 podestbeeand G ke " Plbecnen [ Cure [ Jekes

:- Llan |
ety All rasziameEs Chacksian aisdas s
W [T TE TR
Al o B senicorandadbeds-.  ape Szice st )
windoms vimsal Maorines 15
S s e - . - A Windoow Saoet D0L Seres, Lhere o W E
=0 ROl PO gincd fea
Ao Sendoes - = i 3 irEng =
e Liv: Vinal Macknes 14
- g Lok, Fes sk DerdD5 SUELL Commld v

surchoe fpps

S0 datsbss A it
: : 2 Craa e Sppe e U, cwan Bonade o Sebe PP
¢ Beore Comarees LS

WL sl s Fumebnre

A B riestg eweg ey p st s wo R dr i
2oad balancers
ot ATJE -2akn S, k
Qe 3000UMS 3 L Lakabase 04
7 ] 7 NES LR ) n: Pdartsipinza
7o ‘g vz g o 3L i o v

Wirtusl nerhaorcs

Brare Brires Dirsc.,

Wit

" dedisne

Soaurtty Cerrter

{3 Hlirg

i':. Iep + mppart

o w3

Now that you have access to the VM, you need to download your application and deploy it as you were
doing in your local machine.

Similarly, we can create multiple VM instances for your application that act as app servers.

Also, we can create a VM with the MongoDB server installation on top of it. The installation steps you
need to follow will be similar to the ones we defined in Chapter 4, Interacting Data Service.

We can see the performance of the VM by clicking on the VM (that is, appprod) icon on the dashboard,
which should be as shown in the following screenshot:



- Tmamhy F s e Birs Blmgsr Fve @ i B)rmes
L Coradhik
s
§i v v T
B =r.rkg H 3 sz
- Soralgnad
- [T R i -
. H
B 1 P 1P A bl 37 e, 4% B Sy
™ C o
il s ool I
E b R R P T ] T S FA R
a2 L
= - BT e g T D T 2 LI [ 2= HR RN
TR
= W el AL
" —— T Tar Him= |1 B IRk T
& ¥ ferrimn
P - " b tn i | - ek e [ad [ T oo -
B ook L - #
L
A
& ek
s L LH ]
< |
< — =K R U T IR TN o wwtil TRy o] ([0 SO I (N et = ) (AT B TR, b el b
_ " i - e mer e - ~ . wima o
hhhhh i
Brmeew | B | ir-=0s -l
L]
Bt Carch w o el B mak
o
= o A
P
[
j e
Sl
Bt
L apw
[l BER TR &)
T TR S

Next, we need to add the app servers created earlier to the load balancer. So, we need to create a load
balancer using the following steps:

e (GO to httpsy/portal.azure.com/?

whr=live.com#blade/HubsExtension/Resources/resource Type/Microsoft. Network%2FLoadBalancers, and click on the button
Create Load balancers in the middle of the screen, as shown in the following screenshot:

¢ In the next screen, we need to specify the LB Name, and provide the type of LB purpose. We can
launch the ELB in the same group as your app server, as seen here:


https://portal.azure.com/?whr=live.com#blade/HubsExtension/Resources/resourceType/Microsoft.Network%2FLoadBalancers

roancft Borare leod sagensrs 5 Crecte ki bl

Lune bduners
[E EEE FYE BLaF e IFT ]

e idd  EECz.men D) waedh " g
oA
m Badrs igiliera =i
Hor iy s
1] Viem | ria
1
L]
LLE'H I =
' LT i
4 b e
TR | e
=
"
= Saenaos g gl
E Dz roe t:"l.l.:'_-:l.l'.
# LR bk
LT S VP T ERLLRT P ¥ 1 " Ll
* Fronagrs 2emi lawl rzazztfime akl Cerae Lﬂ =
P TR T

EETT=TT

Sl cmirzzas

EETE -

Click on the Create button to initiate LB creation.

9. Once the load balancer is ready for our usage, we should be able to see the following screen, which
shows its details:



w18 e Tl

[ AL
LF A b
iz [ e meonnd el
= = BT LR qroT
b= a L apdn
L2 1E wosraT Llh Falapl S W el HEF @
[ T TR bl g
-] F ™ i Tr =ri-lrrens T B s T
o L] N M
i b L e ehe g e
ST IR
- WCTENFE
- T
& doebe B oo
L. R ST T Y
& Pomelipn e
B — b L ema ks
W kEad e
. 1
L
[~ T
© PR |
i
e g,
]
B radainn
()}
et . "
"
-}

cna-glb - Backend pools > Add backend pool

Add backend pool

cha-alb
* MName
appsarnver
{
IP varsion
an Pyl IPvE
| Associated to O
Single virtual machine b

Target virtual machine @

¥ appprod
cize: Standard DS1 w2, network interfaces: 1

SOL
Target network IP configurations
- Only network IP configurations related to the current standalone VM can be choosen.

[&] + Add :m,rg-tmuﬂ:l?m sration




11. Now we need to add health probe, which is the health status of your application, as follows:

L Azure cna-elb - Health probes > Add health probe

Add health probe

cna=-aib

: * Name
health
n
Protocol
AEE = —
Ll HTTP | TCP
T * Part
a0
* Interval @
¥ 5
seconds
o, * Unhealthy threshold @
2
< consecutive failures

Next we add the frontend pools for our application as shown here:



Y oft Arire  ael - Load balandrg nides oad halircing nic

Add load balancing rule

crn-alb
-: - + A
(R | [P |
= 5
* Zrepbend iF 2ddnoss
!! 21718537 Leadzaancor -roreznd) »
1] Frimdow
TCR AOF
* %o
¥ a
‘-" A Garkund paa |
EH L H s
L
Bacinns pocl
agasrer w
# T imaliby oo B
- Fralth Hi T2 w
- Sizshah parsiston oo O
=] [
& Ik hmeouk mines @
a
Funtion 1P Shisad smovwn iehine)

Now we are all set with the load balancer for our application.

You can read more about load balancers in the Azure docs at this link: htps://docs.microsoft.co
m/en-us/azure/load-balancer/load-balancer-overview

We have now created the infrastructure as per our architecture diagram. It's time to configure Jenkins for
our application deployment on our infrastructure in Azure.


https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-overview

CI/CD pipeline using Jenkins with Azure

Firstly, we need to navigate to the active directory service, which you can see in the following
screenshot:



T HorTrRestoo, plriul dreeibony]

manishsrthi®Smitiock (default direciong

of Cuux poisl 4P Swithdim B Cwiows do oy

b s
m
i
= L s prmass ik i
LT H]
L]
T b 0 r
- [p——— :
¥ | B i w I
- gt
Ertmrprre appl eabiom Agere AL Carmect
- Lo L L

EYLL e N L

B + &
-
=
i

Rerormmesnied A RD PRSI

L — @ Sinic wA L WERdws S A0

0 ST TR —_—

O« A B @

MTLETY
] i b D Sl sevwiin paisreied resEt
L1 [ . " LETp
ik iy
_ od | Laingdity il ng
..
= 1 et
=
H sesmian
L Ofri capabdmies
TROLESPRHSETIRNE o BIFRCET
o]

Now we need to register our application, so, select the App registrations link in the left pane. You will
see a screen similar to the next one, where you need to provide your application details:

manishs sthiteinotiook [default disectong - App reqistrations > Create

Craate

* Namre @

clzucrasiveanp

Applizaton type M

Wk s ) AP e

& Bgn-se UL &

b uapin

1. After this, you will be able to generate the key which will be needed to access your Jenkins job.
2. You will see the following screen, which has the secret key's details, and you will also find other
details such as the Object ID and Application ID on the same page:



Tk lietl] Acline T ot Exd ot teltadres s - dps gty - cesdrdrmyp o REED ) e

rkuplrsirgaaps L= LHTITIGE
el i
ey A lrm il D Ty s T H i,
n [ L T LT R T R S S TR T e
i D, o foplada 2
L ol e D M s * [ S ] (5] LEHL ]
- Angh e VAT )
L Mgt e AR L et R L Ll B bl Lk L) Fq s - a1 bei o b e e 2 vl st S DL 0 T I
[ [ET e i ——
'] PEy s nen i g o o T e ER e R L ]
W
‘ IIIII
Por s g ew -
- P
- W EE W, W
L3 & T d ok -
[\l = Faogml omand -
-
]
Lo
-

Now we have the required information to configure the job in Jenkins. So, navigate to the Jenkins console,
go to manage plugins in the Manage Jenkins section, and install the plugin, Azure VM agents.

Once the plugin is installed, go to Manage Jenkins, and click on Configure System, as shown in the next
screenshot:



$# Jenkins

& :L ' Manage Jenkins
i Thsn are deparedsicg amace izazlg earss plaglan:
=] - Areazan TOT phe]im ol ey
2 Lisrsgs Jerddee feroaes Bk Sprckean TOK e 1050w =kee rran reoired Te s, el s 10157 =rinin
.“ W MLns b Fonre aataen of - kine |2E4] In evel ebe Ter 3 pn o ipEereH e
3 e B o
Dalc Jeaum '."" II'_‘ :-I:.IP.J.-.I *:' _:'_

ORI TR TR Dk 1 2 vk 2

HullF Eacvadid Bidid. =
Chved o= Crgl =gy
1 il ? "l o s 1 i
L | il T Cakaad e puiasm aun U as
| =i cads ke cedwlonla r s i ek sesnchi e ke esdaT L M el FEEE S ol 5 B cier g =6
o LR ]
" A 1 Et thmil sl LAl = 1] Tugelaieg peadanky)
e
— v L .
-
T sedanis
TRLAT ' P oL .
& [ERETTE RS
R g, d daa i s
B
3
——— 3
S Cirps e
i Convie - Y .
."1 Witage bhizzza
m— I

In the next screen, scroll to the bottom section called Cloud, click on the button Add cloud, and choose the
new Microsoft Azure VM Agents option. This will generate a section on the same page.

Cleud

Fcsoaoll Axiing VM Agenis

fhoume Froble Configurstinn

Azurg Cracenials H

Blie irdosa dgmrnds Ll

= [T
Dpioymraesd Timsnal (smoonaEn) 130 i
P e i Fame — P

iy rl@rea s

You can read more about the MS Azure VM Agents plugin in its documentation (https://wiki.je
nkins.io/display/JENKINS/Azure+VM+Agents+plugin).

In the last screen, you need to add your Azure credentials that we had generated previously. If you click
on the Add button, which you can see in the following screen, you can add values such as Subscription ID,
and so on:


https://wiki.jenkins.io/display/JENKINS/Azure+VM+Agents+plugin

}_ Jenkina Credentiala Provider: Jenking

= Add Credanbals

Comsin Ghobal o ik dunvowmicizd]

e

LATE Arore Fucdsher a=lince

ol fankR Le-kre nodes Peme s lokid reme mee)

Sizher Erhnge Clizeaslils | veamsne T i Raal Hee H IR 1]

Subronntion

>

3 bk Sor pkon Mae

STHCATH duoHgH e LEL LT FT BN T ETET I8 (0 T i [ FRE R S TN N |

Gerara daraca et Ladhc g

o i
Ceennsan

Ml Sancal

In the next part of the same section, you need to provide the configuration of the VM's details such as the
template, VM type, and others:



Feod A ore vimuc] Mochins Too g

Gertel Conleurauon

WHYTH b S BT il BT B L
St ﬂ
Segent Yok e &
ek R e L
IHzEA Tl e T
v riual ach nz St Stancasd D61 L
Shtiom Socianr Tefs Snread LAE ¥
Shemna Genmor Hame #

L zawe Lhank i ouis @ nc s S0e i e asoa il
Epaeiion Timz ik ekrunes!

e LT
Feurte ram Sk o Mk Debedss Ay Fsbeslicn T e L]
LEHTH wome i nncade i e o poee b ¥ ifl'
Irrans Comfiquratinn
Tuskam Usee mape ¥
# mmgs Relweoncs L]
mags Fud cher Concn ga #F
S HERLY LEu-heszrecr H
e Shai EE W .ﬂ
g Yora e klasd &
G Tipe e N 1]
cironzh ki . 35H R
G Rl e atknm®=i== * - Ao = W

In the preceding screenshot, Labels is the most important attribute, which we will be using in Jenkins jobs
to identify the group.

Now you need to provide the operation you want to perform, that is, if you want to deploy your
application, you can provide the command to download the code and run the application.

YTl First Startup Configuration

e o e
Inilialzeion SEerpl apt-ges update -y

E!_I
Hun Irihalzadian Sorint b Heod (Lnbs Oy ¥ i;:i'-
Dooel Dlesr VB I rsliglizalion Sonipl Tails (oo Cirdyd # T
fygyamoad...
Wil Tainplals

Hidd

Soeama e R Ly b s wnnes e el




Click on Save to apply the settings.

Now, create a new job in Jenkins. Also, in the GitBucket section, where you generally provide the
repository details, you will find a new checkbox saying Restrict where this project can be run and asking
you to provide the Label Expression name. In our case, it iS msubuntu. That's it!

GitBucket

LIRI
Erralile bggerlink To Ui igsne
Gilkuk: projer

Fermigsizn to Cooy Artisast

Tris projoct is parameatsnzsd L2
Thratile builsds [ 7]
Cizsnls thiz pocject &
Crerspizmeacrenl sbds il mspssary f_'.g-
1 Heastrics whare this groject can o2 re a‘-:.'E'
Lkl Saprezssiion | msieanta {:F

% F Advanced...

Now we are all set to run our Jenkins job to deploy our application on the VM (that is, the app server).

Finally, we are able to deploy our application on the Azure platform.



Summary

In this chapter, you were introduced to the Azure platform, which is provided by Microsoft, and you
deployed your cloud native application on it. We took a look at a different approach to build the same
infrastructure on the Azure platform. You also saw the integration of Jenkins with the Azure platform for
CI/CD. In the next and final chapter, we will take a look at the different tools that are very helpful to
manage and troubleshoot your application-related issues, and address them in a much quicker way so that
our application can maintain zero downtime. Stay tuned for the next chapter on Monitoring!



Monitoring the Cloud Application

In the previous chapters, we discussed cloud native application development and deploying into a cloud
platform for customer usage with higher availability. Our work is not finished yet. Infrastructure and
application management is altogether a separate field or stream which monitors the infrastructure, as well
as the application's performance, using tools to achieve minimal or zero downtime. In this chapter, we
will discuss a few of the tools that could help you do so.

This chapter will cover the following topics:

AWS services, such as CloudWatch, Config, and more

Azure services, such as Application Insights, Log Analytics, and more
Introduction to the ELK stack for Log Analysis

Open source monitoring tools, such as Prometheus and more



Monitoring on the cloud platform

So far, we have talked about how to develop the application and deploy it across different platforms in
order to make it useful for the customer business model. However, even after you have developed the
application, you will need personnel with expertize who will make use of tools to manage your
application on the platform, which could be a public cloud or on-premise.

In this section, we will mainly focus on discussing tools or services provided by public cloud providers,
using those with which we can manage our infrastructure, as well as taking care of Application Insights,
that is, performance.

Before we go ahead with discussing tools, here are a few points to consider at the time of infrastructure
allocation for any application:

e Itis good practice to perform load testing regularly against a certain set of requests. This will help
you judge the initial resource requirement for your application. A couple of tools that we can
mention are Locust (http:/locust.io/) and JMeter (https:/jmeter.apache.org/).

e It is recommended to allocate resources with minimal configuration and use tools related to auto-
scaling that manage your resources based on application usage.

e There should be minimal manual interference in terms of resource allocation.

Consider all the preceding points. as it is necessary to make sure a monitoring mechanism is in place to
keep track of resource allocation and application performance. Let's discuss the services that are
provided by cloud platforms.


http://locust.io/
https://jmeter.apache.org/

AWS-based services

The following are the services provided by AWS (Amazon Web Services) and their usage in the context
of application and infrastructure monitoring.



CloudWatch

This AWS service keeps track of your AWS resource's usage and sends you notifications based on the
Alarm configuration defined. Resources such as AWS billing, Route 53, ELB, and so on can be tracked.
The following screenshot shows one of the alarms triggered:

Ll sirsds
AhEN
LAl

Pl wy
Esl'la
Thina
lr=r
Loy

Klahts Huemriane Andiional Ik

HES BT .
oot S0 ched reanarT e 87 B crdorn. Voo oamerho e S22 L R
Herdsing Serri e ce
Lardn ol fakacs

EE e e SR R e s AR PR R

U o sk o el sa b ped sk e g d g Sl gt crea b B R

m % Sewrch WaTiza :-: POl
Rape=ar e

Alann SUmrmeary [

Wb Py bR T LS R I S i T ki

Crara A oF -2 AT o e A A et e aTor AU chorm e e A e s S So i
[l

-]

- i w1 = H
e = 1 s

1
T = L L
o TT T THT |

Serviga | zalh
HEF N =
B e e Teecar

-----

Initially, we have to set up the CloudWatch alarm at https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#al
arm:alarmFilter=ANY.

You should see the following screen, where you need to click on the Create Alarm button to create your
own alarm based on some metrics:

CrudMoch

Dced browards
| Amn
RIEE- 4]

[E BT
ks

Lace
Fdzrize

far i Dowdhanoeno C T o]t L e &
Nk AF s - O Sminc- aiaemre b3 DheTed | e
p=1"ET) = Memm Threasud Do Smlaa
e ALATES | LEFRiEEPRRE. IEIRE el EEEHET (15 e P PTTP E TR 1) B
1 Alarm el ncaxd [ R |

Alaem SR -2 esrene s - N L~ - £ At C =k Stk
T i

Bhowing wll htwkory evicen 4
O Neerrpolen

Avary T 1 o s N L - 1 75 s biiadin ki sal

STEESTLTNS R P PRI FEPRT e 00 RS RREERE

Alarrr u=sabecd o TF oS SRR

Tapat

FL s B R T LSS Lot gl vpele s

ENIT=CZ00 11227 LT 2000 Bgdhm

TS0 RS LTSRN e ig=elke

- ® T w

FAT-0500 A TS R Rl ekt Al i rbnd onnn o SRR o D

Now, click on the Create Alarm button. You will get a pop-up wizard asking about the metrics that need to


https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#alarm:alarmFilter=ANY

be monitored:



Craate Alarm

1. Selecl Metric 2. Deline Alarm

Emavwea Malrics - '& Search Metrics

CloudWatch Metrics by Category

iour CloudWarteh st summisny nas [oades, Todal mistrics: 560

Aulo Scaling Melrics: 2 Billing Melnes: 11 Oryriarmale Melnics: 4

Geroug Medrizs: 2 Totel Estimated Charge: | Tahilz Matrice” 4
By Sarvice 10

EEBS Metnes: 160 ECE Matrics; 252 ELE Metrips: 112
ParAolume Werics- 760 Perdrsmance Metnes ; 297 Prr-LB Mealrics; 75
By Autn Sealing Group: 14 Brr LB, per A2 Malngs: 21
By Imega 1AM io- 7 By Awgtlability Zone: 23
Aggragabad by Inalarcs Type: 7 Acries A1 L& 1

Ao All Inslaroes: 7 Oy Mamespace: 11

Hy Serapa; 11

ElasticBeanstalk Mefrics: 1 Route 53 Metrics: 2 53 Metrics . 6

Emarmament Batics: 1 Haath Chack Matics: 7 Starage Matics G

E:E'-I"-'ﬂl m | = ;—.; = :-'-.— !

The preceding screenshot lists all the metrics available, which can be monitored, and, for which, an alarm
can be set.

In the following screen, we need to check the EC2 metrics. Based on your requirements, you can select
any metrics, for instance, we will select the NetworkIn metric and click on Next:



Craste Alarm x

1. Balect Metric 2. Dwadine &larm

EC2 - |} Search Metrics ® { « 1msmoztimans 3 M

Farinssanca Maimca By o Sceling Group . By Image (2MD I Aggragated by Instance Tvpe  Across A6 Instances

Shmving the finest 200 matching metrics. B2 additioral metrics fat listed for 8C2 (e, Floase refine your search or try Browsing Metrics.

L

EC2 » Per-instance Metrics

Instanceld = InstanceMams *  Melric NMame
b EaFhanislid fadi Disk Rapafytes
i-D0b 5o X ciedTadD D= ribaByhes
| ¥ FObSc2bacte0dT3dD Metvirkln ||
FoOb S Etacteld r3dn MedworkDul
iObscFnacieldrAdn MWetworkFackatsin
i=lhkcFoactslid fadn MrtworkPackatsOut
= B2 T Ea2Td21BI0dN CPUCr=ditBakar:e
Tithe: Metwerkin # Awerage ¥ 5 Minutes ~ Uptate Graph _N =l
= Time Range
Feltive | Absolte | | UTC0MT] *

From: 12.04 hoursaga 5
b= | hoursago =

Zoom:-in | 3h [ Bh | 120 1d |30 ] 1w ] 2w

w Lelt Y-axis

H ; : 1 v Lirmits  Min 4 Max
o [ L o0 Sl o a3 Al30 A oD GERE e Ee
i Metworkin Ao Alto
et m " rodte Alaim |

On the next screen, we need to provide the alarm Name and Description, along with Alarm Preview.
Also, we need to provide the condition, based on which, the alarm will be triggered.

Also, we need to set up the service notification service where notifications need to be sent as an email:



Create Alarm »

|. Sglect Metne 2. Define Alarm

Alarm Threshold Alarm Preview

Frowidas tha aetails snd theashald o eour alarm, Uss sha qresh on tae right 12 nelo set the Thiz algrm @il Mogzar when ska Blus ine goes LD

aproodiate treshakl, 1o or above the red e ter a duration ot 15
imirules

Mame:  nz-alarm K !
Bivark m oo

Descriplion: 5o ai20m

.25

Whenewer: Melwarkin ATE

B =2

for 3 | consecutive penod(s) . = e =

l:i.'::l:l [ 1}i] e n
Mamespace: ANWSEDE
Instanceld: ;_fpbsc2bacfeld73d0

Metric Mame: | jjetwaorkin

Additional settings

Frowide additional cenliguration far seurn elamn.

Treat miseing data as:  phizsing O i |
Pariod: | & pinutes &

Actions Statistic: & Sterderd © Custom
Diefine what actions ang faken when your darn changes stabs A ¥

Medifezadion Jelus

Whenever this alarm:  State is AL4ARR =

Send notification o Salect & notitication list % | e ien Lrzer gz 6B
+ hMotification + AurtoScaling Action + ECZ Action
Cirncal Previous Create Alarm

Once you have added the details, click on the Create Alarm button to set up the alarm.
Now, whenever the NetworkIn metric reaches its threshold, it will send a notification over email.
Similarly, we can set up different metrics to monitor resource utilization.

Another way to create an alarm is by selecting the Create Alarm button on the monitoring section of your
resource, as shown in the following screenshot:



AN . - R > &6
Cuwrin { -

Largu [N 11 o B [ e e Y sz e 15} 491 ot
Fronain

Liris H Ffmm = imexrceld = mdmmze Teze - Amlaililp Zome - imdmica Balke - Bolnn Cwds - At Bain Pz 0N (e

B ITaMCE: W ey LUTREE VR o' B I - A1 CR T & A% ik ' '.\I

Irestaniz e

Yo Fuapmsds Swerirpria fimw e MorHorp ™R

Frearrsd inein-oan

¥ Glouséeich mamee: 3 Ko sbram cariiganed :3:;
Sevad ] Anle-Ea

Lromadil Hoam

Celoria T et v b Bl 1 e Wow wm Bl Do Afumg i Bareaieg dals far  Lind Hour i
= el
il Bezmy o soor LReoc® ek imabros b v swisdes v cud b pvam vemnn sl UL S b g s i ageanced wan M brgg afsam e 0 B 0 Vel Qlosckiks irzkeca
P e ek HL TR ey e | [ abe e Lk P Cwriaas 1 a0 [T e ]
L 3TC OGO ST 1%
e AT Y ,-"'.I -'-." II."-, M L] 1w p
5 i "
Enazaich LTI W '-,'-' LT l."l kY I [ re
X L= = B
MRS LIRS ’ % E - .
EBraun iy dezasd LEH & LLH Ll (S5 anir BT LEH
Marr. Fr fraa 0w P o] PP wi Lies ]
I"acaear Cooa
B P Mok s Dymrebons 1eogrsn Mk I B Mk vl = Hirmanh Fopdods bcane |
S5 AR By plt
el n = 4 1
FFAIIN L Y f ! n o e - y
THE L B L 2o r _.l ry W -_.l Y _.' -" i \ _|" oy o o S
Lrgerd Mnnrzem Lh "I — .y % | -“I' \ §
S M -
Byl Lioana =r= =4 .
T—_— 1 i T
LT Sk LR dai® ! et iE
LuaadrSarbguraliz-a " ] Lo L s el

o B S L

We can go through the AWS documentation (https:/aws.amazon.com/documentation/cloudwatch/) for more information.


https://aws.amazon.com/documentation/cloudwatch/

CloudTrail

This is one of the most important AWS cloud services which, by default, keeps track of any activity on
your AWS account, whether it is via console or programmatic. We don't need to configure anything in this
service. This is needed if your account is compromised, or we need to check the resource operations, and
SO on.

The following screenshot will show a couple of activities related to the account:

APl acintty histony APLaclvily history
Irare

e iy B s oo e el T 2ape ol AR ety formagpss i perecax The Be ot s e BP achy for creabs, Sy, andd dalebe 2F 1 o e For o cr 8P bt goompal
dprance 55 Eorerm SrClz A e e

T rancvr fra bdd s tha sl ol oerhirae, ord oo ron S F oo R o ren T S ol A SRl L sk rhi e, | e Teia

] a

Eliee  Sandson aniedei b Tiaf =arap L irsrenm [

Erzrl e tharname Evenl mams Macsanw lpow Tleszuras maTe
¥ Pl LT B b EE- L 150 g o, CE LS SES ]
F R T) R - Sy B L el Lrada_zgm
2 [RE RS- RS A P [T Lamradeogm
¥ F Bt - B - L 12 Lamrads sagm
.3 [l R - Bt ARt ROvy iud LA m
¥ (L LRET - Bl by 1ol Ekochraeroug bl hraes (Bt =2 2 B
] LAY 0, Dl ) s [EET] Laspad:_ zom
] S 2, Dad ) PR L] Elharlhrsi v EZd biasama (R h b |
k ELEL R R T LR ] Bl B e ELd b o chE11
K Bl Y=L 50, Dhoad 2N 1S 1z Elribraacys [P LFEE LY 109 b1

For more information, you can go thIOllgh the AWS documentation (httpsj/aws.arnazon.corn/documentation/cloudtraﬂ/).


https://aws.amazon.com/documentation/cloudtrail/

AWS Config service

This is another AWS service in which we can check the configuration of the AWS resources based on the
template rules defined.

Note that this service will need a service role created to access the AWS resources.

In this service, we only need to set up rules based on the template provided. The AWS or customer
template is used to create checks on the resources that we have created as part of our application
deployment. In order to add a new rule to the service config, go to https:/console.aws.amazon.com/config/home?region

=us-east-1#/rules/view:

weey b2

[ Pesl F‘L.Ilﬁ.‘ﬁ shhe &
[E Bt N TE T -
¥ B b POl S SOSrs 20 U O e e S 0 g o b s m L i S G SRS L D s e ol D ] e T s 1D DL L 0l D LD
Brlings

Hakzipame ¥ (L] TE N EREE ¥ LU B

LF]

v LR, Dl AR e D ST S L

In the preceding screen, we will need to add a new rule, which will evaluate all the resources or your
specified resource. Click on Add rule to add a new rule, as follows:

LSS, Py Add :I"ulﬂ

| Ruwe
Réasirod St e i ol T i el T s neomar i o e SRS e o Soemnmibn 1t g ot e lmane nolee e e st adc a wicmnids Thrdd mcomemn g mori rmrie an oS
- B Lo b L 4 o B A
Soiiings

3 Add cuminm ks

W YUiwxing 1-8cf IS8 nanaged rulem = =
pom-oert rerin-sl mHor che ok approsed-a=izEy-o 2pporscd-amis-by-1ag
Aprdea il at ALK Sa-readaze ¢ LArecwa ededlen romag el ava e S iy i T dd SR IAT T TR ERALI AT N LAy
mranect are merk e 0 eqreade- A s e oreac e BR'le Tty A el ol mmresenc AR anacled SFfa e i g et iiarddy)
Eprci e namisn oot ooa ot e Qi mwderaad s 0= AR by rir e Hwi W Boredneg e A0 ARSI i i
pormohd b AR w il Ll ek il CRRIT RS AT ISR [ ETTLTREL =01 Do e bacd wnz o B apman pos e
cloucmal ¢ asloe cloudinch do el chak m S dhentich alanT ool n:"nka
LApmta n il Cwe AEVE L3 Callied ooamshal 1 sAwes v ledima G g ady ciienr s Ierow al e s Fre wpman pE scasL e
ar &S eccounk Opdorally, soiica- faar orm o pm mdion. oo =nn & O sEsh el o e mpac e
et hon kbl B b SRS e, mred KSR PRT AT ke y, oe e el T T e P P T W o P
LR FF VBRSSP TG TS o LR T P (LR RN LV ER LT R EL T VR C R T A L ST ] SES wobmrnms, Bl vrdasesss, FLE whrisas,

e

aleudnonch ol om-actings chcﬂ-:m b nalonoe bockin- & otloo doshicd Prssanco Ionon s
s Al wl v o Ol L d A dr s LAvesvi vedioy U 22 weder oo leira) i WA 0 ol e et L
e e naTe fese e e seciel Erccimmanaziml Cpliong & ha e checlin Spect; &M 1L o omece D e e
e e Pewda g b T o nadved e A ek 1crchaad P = rem S0 e oe s red T2

S thnd bR LEL PP IR REET Lk B T R )



https://console.aws.amazon.com/config/home?region=us-east-1#/rules/view

In the preceding screenshot, select the rule to open the configuration for resource monitoring based on

resources that need to be tracked.

[ER ST

PG e b i

Trigier

Triy g Ty

Blooge ol darag:a”

i parameters

Hiy

e

Fooumd

AN Cieibie Add AWS managed rule
I Rt SN ey woshedtes o SO canno aga vel bk nis et b oo e,
Rezcirces
et [m——

G P R W e

iuspE rrebkriwn e acteecenree B Rl cRas I ORI

(B[ T LR R ETLER T TR U A FEEFFE L LR PR RN T T TS (VA TECRT T1N ) Lk

Ozl orndly, vodn2n - ety ha OS50 D pescsinle w07 i relanzan

IMSTHEE Tk oWs

AR DT oA RO POSO A i) el TG P O

g B T el Rt Y Freowds %

S ETCTELEH STV R DRSO O - )

Sads s ei e e e arvl clan b wiis s crar s cve, vw par ek S oariempl s n raepl ae By o S0 nirdmd

LU T

The preceding screenshot is for AWS ec2-instance-in-vpc template config, which will help you validate
whether or not EC2 is in VPC with the correct config. Here, you can specify which VPC needs to be

evaluated.

Click on Save to add a new rule. Once it is evaluated, we will see the following screen:

Ik Rulas

Al e

- red (IR

e pegaie s peam Segdreed moelnaesion eominse AU Dl oreod ornnt e bl TR O E R0 B0 RS R FoaT od s Adh e A ET ¢

- o dipdsna e

T

et ol I T R S R e ER R R R e R

4]

L3 Fiir nids

The following resource report is shown like this:



Fues = Aule details

S ec2-instances-in-vpc
Resiuioes
Eamings Cupeipriion Checs wheissr vour BT el Bohry) b a sebus prresie s [§90, Opfaewly e con oapeccdy Fm W0 Ui pescowis oh poer indlpreee:

Trigiee s Configurston changss
Scopw ol checgss A6 crmnges
G rue |
PHmET=as opris sl

Dwversl ruls slawmen. a0 SRl BTanctaas 8 JLEa 9, T o 1 ok Add o
Last mecsmby svnlastnon m Jeew 4T BT e 1150500

::b:r-lh-ﬂﬂ o 1A e conbpuehon Snads for e mecere wien § e i sssumins wein b noee.

Fossauzina Ipjus - Gy mmalim 4l = [E LT PR - Lan) msggesatl it maa i Plamian i
o - rephpaine -
Els ke Fifadiad s Carrifas b 1 SR s S A F, M F i =
oy el
ELT raleran NSl T TR el Clwrpdis Jaria 1T, O%F TN Sufm A, PO T1ALTN o
[T %)
Fis-ircihanls fuds

o Gl il P ureid ik O vjar el airSE] e L rube il s vy Wil i vy TR

Mgy cale

You can go through the AWS documentation (https:/aws.amazon.com/documentation/config/) for more information.


https://aws.amazon.com/documentation/config/

Microsoft Azure services

The following are the services that are offered by Microsoft Azure, which can help you manage your
application performance.



Application Insights

This service, offered by Azure, helps you manage application performance, which is useful for web
developers, helping them detect, triage, and diagnose application issues.

In order to set up Application Insights, all you need to know is the application and group name in which
your infrastructure lies. Now, if you click on the + Sign on the left pane, you should see a screen similar to
the following screenshot:

(= Fonnzrrg + Marsgrmam
=R donitonng + Management 0O X
m
4 LT e all FLATLINID APFS. !
|
i Ap ik t
i
P P T
St
¥ Lo Aradmic
‘Wub + Wobia
=
- -
nPEF ]
= S
s+ Amakiien B LA
L Al = Cogaitiee Serape: E
& il 1 Thing
[ Bk died S5 Baniraiy
- i 1Lt ey [T
¢ 3
T e Y .
vyl gt ol
e wil App Paslia1 i
Moryionen + Rarsspereerd %
AdZ-nra
-3
Comiginam, ik b
¥ Tiichetwir.
Qo
= Ttk Ma~dger peolds
] FRCENT
e Phrc, A PRY Lovosorad
Sarwm masagrene ol
n izplesicn neghms =) o T
e Server TL04 LTS
Fow Hafic AP [ormoerad
.l.-
T

Here, we can select Application Insights service, where we need to provide an Application Insight name,
a group name that needs to be monitored, and the region where it needs to be launched.

Once it is launched, you will see the following screen, where it will show you how to configure your
resources with Application Insights. The following are some of the metrics described:



spprecTi Serear epplaicr movlcrng erd d sgaais _.L! RO SRR T S ey

= Sengsd anhicahbinn monidoring and dagnoeks

St T L etk i Merobooe B aepa Dihmenme L) FEih = i
Femich Server side telemetry
B iwiw
1] A woowm g e g e R we Kt R i e
e ¥ St Dl P B T g P B e e W e g ol ol S e AR
=8 s coadial s o v S0K s mrdosly S rx e I TTT ey w0 s e SR | . e B
- . 'D e D - - Sl i B T o el il B 35 s A e i B ERb il W <0 et A
‘ & T e T INracieng (T8 AT T iCE rma aw e AP ek e mrve voa dobor ar o mrend
& [igal e 2 40 s 7 MlET Al reEorEE BT B2 oW TEThE o B Y3l B
§ amd bl wiee
S HEall E ' vl mea kg teoei. ey dors and srn mesdse s e mawmn
= O B ] B o e B P B T B e R T R e P e Y |
= = dp mEden g Chemnyene Himelice g
Lo ol Ls i frasing
& ] b T
) A mrdan = g IR E Yy
o Py s [
Es sl T, o B PRy 13 sl I PEpTa s s e
[ I EARREIETL. 8
* o = = Guidance
L Y
Pl rarex il
[ e Legrn ey iz olich beoeiee paga bt cen, L s Cdat
| ey AT LS T @
S Aopd canon vegl
: s S S ey o ik ok s e e g S
i Pree 1 K e o f t
@ L I LA AT P dppllc o) g g T ey
3 Gt o b e o el Sl T
& e o i
- - Fed=~vmar s ieehon
- L TRPT [T L-EEE LA 151 ") o s Sl il Wl B 50 B el ] |
Somer Tra aci e doin ' wime 3nordn
T
™ v b b 4
il O e A s i ol e
(o] ey - = £
L i s Totsl inf Bitrass Fas] a0t by Seopeser Pefoammae rae
AREET
&
- £ Lzen
AR PO M ki =
Sl e 1 L Froe 3

Lo bosres pollay m o ri g i

Go through the Complete reference documentation at https://docs.microsoft.com/en-us/azure/application-insights/app-insights-
profiler, which will have complete information on how to configure your Application Insights with
resources.

Now, the question that arises is which metrics Application Insights monitors. Below are some of the
metrics described:

¢ Request rates, response time, and failure rates: This gives you insights on the type of requests and
their response time, which helps with resource management

e Ajax calls: This will keep track of rates, response time, and failure rates for web pages.

e * Users and sessions details: This tracks user and session information, such as username, login,
logout details, and so on

¢ Performance management: This tracks CPU, network, and RAM details

e Host diagnoses: This is to compute the resources of Azure

e Exceptions: This gives you insights on the server and browser exceptions reported

There are a lot of metrics that you can configure for your system. For more information, check out https:/doc

s.microsoft.com/en-us/azure/application-insights/app-insights-metrics-explorer.


https://docs.microsoft.com/en-us/azure/application-insights/app-insights-profiler
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-metrics-explorer

You can go thl‘Ollgh the Azure documentation (httpsj/docs.microsoft.com/en—us/azure/apphcation—insights/) for more
information-related Application Insights.

So far, we have been validating and monitoring the applications and their infrastructures on cloud
platforms. However, a very important question that arises is: What if there is an application issue and we
have to troubleshoot it? The next section, which is about the ELK stack, will help you identify the issue,
which could be system level or application level.


https://docs.microsoft.com/en-us/azure/application-insights/

Introduction to ELK stack

The ELK stack consists of Elasticsearch, Logstash, and Kibana. All these components work together to
collect all types of logs that could be system-level logs (that is, Syslog, RSYSLOG, and so on) or
application-level logs (that is, access logs, error logs, and so on).

For the set up of the ELK stack, you can follow this article, where, along with the ELK stack, the Filebeat
configuration is used to send logs to Elasticsearch:

https://www.digitalocean.com/community/tutorials/how-to-install-elasticsearch-logstash-and-kibana-elk-stack-on-ubuntu- 14-04.


https://www.digitalocean.com/community/tutorials/how-to-install-elasticsearch-logstash-and-kibana-elk-stack-on-ubuntu-14-04

Logstash

Logstash needs to be installed on the server from where the logs need to be collected and are shipped
across to Elasticsearch to create indexes.

Once you have installed Logstash, it is recommended to configure your 1ogstash.conr file, which is located
at /etc/1logstash, with details such as Logstash log's file rotation (that is /var/1og/logstash/*.stdout, *.err, OF
*.1o0g) Or a suffix format, such as data format. The following code block is a template for your reference:

# see "man logrotate" for details

# number of backlogs to keep
rotate 7

# create new (empty) log files after rotating old ones
create

# Define suffix format
dateformat -%Y%m%d-%s

# use date as a suffix of the rotated file
dateext

# uncomment this if you want your log files compressed
compress

# rotate if bigger that size
size 100M

# rotate logstash logs
/var/log/logstash/*.stdout
/var/log/logstash/*.err
/var/log/logstash/*.1log {
rotate 7
size 100M
copytruncate
compress
delaycompress
missingok
notifempty

In order to ship your logs to Elasticsearch, you require three sections in the configuration, named INPUT,
OUTPUT, and FILTER, which helps them create indexes. These sections can either be in a single file or
in separate files.

The Logstash events processing pipeline works as an INPUT-FILTER-OUTPUT section, and, each section
has its own advantages and usages, some of which are as follows:

e Inputs: This event is needed to get the data from logs files. Some of the common inputs are file,
which reads file with taiif; Syslog, which reads from the Syslogs service listening on port s14; beats,
which collects events from Filebeat, and so on.

o Filters: These middle tier devices in Logstash perform certain actions on the data based on the
defined filters and separate data that meets the criteria. Some of them are GROK (structure and parse
text based on the defined patter), clone (copycat the events by adding or removing fields), and so on.

e Outputs: This is the final phase where we pass on the filtered data to defined output. There could be



multiple output locations where we can pass the data for further indexing. Some of the commonly
used outputs are Elasticsearch, which is very reliable; an easier, convenient platform to save your
data, and it is much easier to query on it; and graphite, which is an open source tool for storing and
shows data in the form of graphs.

The following are the examples of logs configuration for Syslog:

¢ Input section for Syslog is written as follows:

input {
file {
type => "syslog"
path => [ "/var/log/messages" ]
}
3

¢ Filter section for Syslog is written like this:

filter {
grok {
match => { "message" => "%{COMBINEDAPACHELOG}" }
}
date {
match => [ "timestamp" , "dd/MMM/yyyy:HH:mm:ss Z" ]
}
}

e QOutput section for Syslog is written as follows:

output {

elasticsearch {
protocol => "http"
host => "es.appliedcode.in"
port => "443"
ssl => "true"
ssl _certificate_verification => "false"
index => "syslog-%{+YYYY.MM.dd}"
flush_size => 100

Configuration files to ship logs are usually stored in /etc/1o0gstash/confd,.

If you are making separate files for each section, then there is a convention for naming files that needs to
be followed; for example, an input file should be named 16-sys10g-input.conf and a filter file should be
named 20-syslog-filter.conf. Slmllarly, for output, it will be 30-syslog-output.conf.

In case you want to validate whether your configurations are correct or not, you can do so by executing the
following command:

| $ sudo service logstash configtest

For more information on the Logstash configuration, refer to the documentation examples at https:/www.elastic
.co/guide/en/logstash/current/config-examples.html.


https://www.elastic.co/guide/en/logstash/current/config-examples.html

Elasticsearch

Elasticsearch (https:/www.elastic.co/products/elasticsearch) is a L.og Analytics tool that helps store and create index
out of the bulk of data streams based on the configuration with timestamp, which solves the problem of
developers trying to identify the log related to their issue. Elasticsearch is a NoSQL database that is
based on the Lucene search engine.

Once you have installed Elasticsearch, you can validate the version and cluster details by clicking on the
following URL:

http://ip-address:9200/.

The output will look like this:

frans® 1 'Klaw',
"rluster_mans® 1 'clasticscarch’
"wlugter waid" 1 'kluslolfsSzgABElZheTU38g",

rphar® = "3 4. 57,
Thoa T _hash® 2 Veietuil 3L MR IRAERAEA TR 3B cumda DR 1 ZTRT,

"hidled_singmcang” @ "201T-N4-24T1E: LRz 17A7,
"boild snopabat! = false,
‘lwocne_wersiont e tH.504°

iy

"raglica2® 1 "Yoa Foow, foo Saasok’

This proves that Elasticsearch is up and running. Now, if you want to see whether logs are being created
or not, you can query Elasticsearch using the following URL:
http://ip-address:9200/_search?pretty.

The output will look like the following screenshot:


https://www.elastic.co/products/elasticsearch
http://ip-address

1

k" e Z,

'eamad out® & tzlao,

' shards" = |
"totalt 3 &,
"mucceesfal” @ G,
"failed" 3 O

T

‘hita™ o 4
Lolal' = 2151,
max sopre' v 1.0,
“hits” v [

" irdex" 1 ".zibanz®,
" type® 1 "eearch",
_id" & "Cavhe-tranesctione” .
Yopegre' 1.0,
RaYeR' ¢ 4
“rarvk' [ “d@Limastams’, “deac’ ],
"Rits® o I
"desoription” 1 ’
"title" | "Cachs transactiLoas’

"yergicn” ¢ 1,
"kibanafavedibjestHdeta”

‘pearchhourceIEIRT 5 '{\'ijdéﬂﬁ‘=2';nuheth&ﬂ:—-l',H"L-uhliﬁL:i':{H'ure_taauk':lH"Ek-hnua—LLuhliﬁt:Eﬂ—
Tlalday " A'pealk cegas' :[Aefkibana-nighlighlsd-Tialdlhy ] v Tlaldan s 8 e o L1 W T bar s o [ ], % guarg s’ s
{vfguary mrvangy e goaeph " ah Y Eypas rediatt V'analyera wildoawd fsbrumliyt

+

"columaz' : [ "type®. "mzthed", ‘pata", ‘resporsetims”, "statest )

:'ll f

In order to see the indexes already created, you can click on the following URL:
http://ip-address:9200/_cat/indices?v.

The output will be similar to the following screenshot:

hedlth status Index pri rep docs.counts docs.delsbted store.aslize gri.sbore.size

yellow oopen Jibana 1 1 103 1 92, Bkhb 9k . Hkh
yellow open filebeabt-2017.06.17% 5 1 2048 0 57a. %k 5969k

If you want to know more about the Elasticsearch queries, index operations, and more, read this article:
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices. html.


https://www.elastic.co/guide/en/elasticsearch/reference/current/indices.html

Kibana

Kibana works on the top layer of Elasticsearch, which visualizes the data that provides insights on the
data received from the environment and helps them make required decisions. In short, Kibana is a GUI
that is used to search for logs from Elasticsearch.

Once you have installed Kibana, the following should appear at http://ip-address:s601/, which will ask you
to create an index and configure your Kibana dashboard:



ke ibilbaa

i v s pp b devwcl e
(R R

rm

Configurs an index patte

S Thirg ape rie o o peEam S smait - wll e p Sory ehricsasrTn Yar £
Furn- lash] vwsre 8 ronedi ) AR

iHTeraTp

T s s rekan g

| T [T C AR TR [T R T IR LT AT afbn Bamm AR ECTIRTRRRET F O [ - ST T L TR T PO T B M P T R T R T e il i
s i 7
Wy
W kvden vovl e Ly lnmedysands
i
byl Uz cozrd Eevea b oveule beden dnmes ] SEPADGATE
e ammes o padhT
Prlogqaes s arne th=ay © ke revad omeg ™ v & zoand Eranopks Ty v
L L
Orc.rex peznw Indax perara whan soechiag oo coT TEzE
O cafmils, samschea my0nl p7ydre-zoes Inidee pais1 el coradne ooeldons ol aroruelize @ o8 Bpances oo ST eioss [k cocisln 2 e vl e sl pabecl e I Ts e

sEart -SSR T il el e e wrd Brd mnas

Once you have configured it, the following screen, which shows the logs in a format with the timestamp,
should appear:

i o Pk o TR T T e T D VR = e R i
1
i 1l 4
=
£ o
]
e
e S e
- =
ralindll & A
4 - .
il ELL EEE B P AR b, T Y oy T PN S B i i LB Bl Sy Pl LB ]y ik | PR ke . e b v, (AU~ L2 Rl
-
ah d ey Uik ol sy CHAIT meerma o lem ey dpen o e b0 mliTRCOO T e o lm mswn Pildeo T3 HAT e
= L R LR R EEE SEr TR Perese AR Pt T FIETEN | 1T MRSy Sresge e T PE o PO S L, I P gl i 1 TS Lmpak apwsr vy mms s GX0-EeI' MRS A7 RALAD |
e Farr =Tl wvymes, Teh. fmmegeed Sy om0 1 dmenml wrrass 1 -y b TP EET P EE g e EE g e L ST P TPE EE O e pge eV PR T PR L SE S S ER |
T i
L
- - FE TR, I g - W T T K R | R e, < B - R AL T~ U0 KB 0V B . T o IR L e o e TR
derowadicg T-re b 30 Skl bk 1500 mmarman oo Loy g hpp s ey b e TIPSR RS ey bl Lm0 R e
R AL [TESTPRR R P, TP DRE DR PR SRS SR F IR RN S RS BT B F, BHC FPRR S R | P T e TR e - - L LA R EE I H T
[ LR TR a8 P TR ERC R | C T Rl | I8 E s SO V] BT SRLT S T ICrat ARy v eRse B LT PR SR PR o P aE LR
i
= o L TR e aarmgs wow B0 S TR H i e e, e A B 1T g sy rp T OB AT e g oagEs e ssmasgar SEIE BT e at et
P PP RS TIFTOT [ B ESLE EERE SOF AT P TR R (RS TE SRR T e FRCT TS FTEEET. L LT R TR P TR [ R L
i7" menras
Je LR G, ALV gy oo N TEIE DT ET e e e 2300 1T masmocsemy 1010 RN mmans 1 fimlams i e e g SEIPED-T BT B o iass w
(1- SR TR L oS IR TR R | PR o TR S R IF LS R e e ot TR PR LR T e TR LA P TR S TR R
- I, damymam [reTre=—n O] AR AL LY A | PSS 3 E 1T mesmosmm cp [0 0 = e YRR L DL R PP A
 PLRTEELEE PR T S AN T § PR S e L L R P P 7 PRI AR B TR TR PR [T POTRIE T Rr T THN SRR,
r E SN [TL-TU. T R— ok T TT- i G e Pl e T — AT o R ST [ T
aderd all—oomnsal! Bl vbomial pllmi 37000 o v iy by b gkl WD T BT e sl ley deless sl i@ B pemenn

Now, out of these, we need to create dashboards that will give us the view of logs to visualize, which

will be in the form of a graph, a pie chart, and so on.

For more information related to the creation of the Kibana dashboard, you can go through the Kibana
documentation (httpsj/www.elastic.Co/guide/en/kibana/current/dashboard—getting—started.htrnl).

As an alternative to Kibana, some of you might be interested in Grafana (httpsz/grafana.conv), which is also


https://www.elastic.co/guide/en/kibana/current/dashboard-getting-started.html
https://grafana.com/

an analytics and monitoring tool.

Now, the question arises: how is Grafana different from Kibana? Here is the answer to that:

Grafana Kibana

The Grafana dashboard focuses on time-series charts based on

i i ifi Log Analytics.
system metrics CPU or RAM. Kibana is specific to Log Analytics

Grafana's built-in RBA (role-based access) decides the access Kibana doesn't have control over dashboard
of dashboard for the users. access.

Grafana supports different data sources other than Kibana has an integration with the ELK stack,
Elasticsearch, such as Graphite, InfluxDB, and so on. which makes it user-friendly.

This is about the ELK stack, which gives us insights on the application and helps us troubleshoot the
application and server issues. In the next section, we will discuss an on-premise open source tool called
Prometheus, which is useful for monitoring the activity of different servers.



Open source monitoring tool

In this section, we will mainly discuss the tools that are owned by a third party and collect the metrics of
the server to troubleshoot application issues.



Prometheus

Prometheus (https/prometheus.io) is an open source monitoring solution that keeps track of your system
activity metrics and alerts you instantly if there are any actions required from your side. This tool is
written in Golang.

This tool is gaining popularity similar to tools such as Nagios. It collects the metrics of the server, but it
also provides you with template metrics, such as http_request_duration_microseconds, based on your
requirement, so that you can generate a graph out of it using UI to understand it much better and monitor it
with efficiency.

0 Note that, by default, Prometheus runs on the go90 port.

To install Prometheus, follow the instructions provided on the official website (https:/prometheus.io/docs/introduct
ion/getting_started/). Once it is installed and the service is up, try opening nttp://ip-address:9e90/status t0 know
the status. The following screen shows the build information, that is, Version, Revision, and so on, for
Prometheus:

Runtime Information

Uptima 2007-08-17 171:34.31, 7426674268 +0000 UTE

Working Directory froot/prometheus-1,7. 1 linus-amded

Build Information

I'u'arsinn 1.7 I
Revison Jafbafffa3ad0e3dedise 1 TR T4044 2000133
Branch master
BuildUser rmot@0aal bT o430
BulldDate 20 DET2-11:24:08
GoVersion got.8.3
Alertmanagers
Endpalmnt

To know the targets configured with it, use the nttp://ip-address:9e90/targets. The output will be something
like this:


https://prometheus.io
https://prometheus.io/docs/introduction/getting_started/

Targsts

ANGMETIUS

[ Ll Faaa Eis

In order to generate the graphs, use http://ip-address:9090/graph and select the metric for which the graph
needs to be implemented. The output should be similar to the following screenshot:

----- .
Lr - S LAl s ey

i
.
e [

Loy R L

+ - Ik # + - (= L

-
i el
i v
-
d s
L

-.
1
2

i

Similarly, we can request a couple of other metrics that are identified by Prometheus, such as a host-up
state. The following screenshot shows the host status over a certain period of time:

Td P




There are a few components of Prometheus that have a different usage, which are as follows:

e AlertManager: This component will help you set up the alerting for your server based on the
metrics and define its threshold values. We will need to add configuration in the server to set up an
alert. Check the documents for AlertManager 0N https:/prometheus.io/docs/alerting/alertmanager;.

¢ Node exporter: This exporter is useful for the hardware and OS metrics. Read more about the
different types of exporters at https:/prometheus.io/docs/instrumenting/exporters/.

e Pushgateway: This Pushgateway allows you to run batch jobs to expose your metrics.

e Grafana: Prometheus has integration with Grafana, which helps dashboards to query metrics on
Prometheus.


https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/instrumenting/exporters/

Summary

This chapter has been very interesting in different ways. Starting with tools, such as Cloudwatch and
Application Insights, which are based on a cloud platforms and help you manage your application on
cloud platform. Then, it moved toward open source tools, which have always been a first choice for
developers, as they can customize it as per their requirements. We looked at the ELK stack, which has
always been popular and is frequently used in many organizations in one way or another.

Now, we have come to the end of this edition of our book, but hopefully, there will be another edition,
where we will talk about advanced application development and have more testing cases that could be
useful for the QA audience as well. Enjoy coding!



	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions


	Introducing Cloud Native Architecture and Microservices
	Introduction to cloud computing
	Software as a Service
	Platform as a Service
	Infrastructure as a Service

	The cloud native concepts
	Cloud native - what it means and why it matters?
	The cloud native runtimes
	Cloud native architecture
	Are microservices a new concept?
	Why is Python the best choice for cloud native microservices development?
	Readability
	Libraries and community
	Interactive mode
	Scalable



	Understanding the twelve-factor app
	Setting up the Python environment
	Installing Git
	Installing Git on Debian-based distribution Linux (such as Ubuntu)
	Seting up Git on a Debian-based distribution
	Installing Git on Windows
	Using Chocolatey

	Installing Git on Mac
	Installing the command-line tools for OS X
	Installing Git for OS X


	Installing and configuring Python
	Installing Python on a Debian-based distribution (such as Ubuntu)
	Using the APT package management tools
	Using source code

	Installing Python on Windows
	Installing Python on Mac
	Installing the command-line tools for OS X
	Installing Python for OS X


	Getting familiar with the GitHub and Git commands

	Summary

	Building Microservices in Python
	Python concepts
	Modules
	Functions

	Modeling microservices
	Building microservices
	Building resource user methods
	GET /api/v1/users
	GET /api/v1/users/[user_id]
	POST /api/v1/users
	DELETE /api/v1/users
	PUT /api/v1/users

	Building resource tweets methods
	GET /api/v2/tweets
	POST /api/v2/tweets
	GET /api/v2/tweets/[id]


	Testing the RESTful API
	Unit testing

	Summary

	Building a Web Application in Python
	Getting started with applications
	Creating application users
	Working with Observables and AJAX
	Binding data for the adduser template

	Creating tweets from users
	Working on Observables with AJAX for the addtweet template
	Data binding for the addtweet template

	CORS - Cross-Origin Resource Sharing
	Session management
	Cookies
	Summary

	Interacting Data Services
	MongoDB - How it is advantageous, and why are we using it?
	MongoDB terminology

	Setting up MongoDB
	Initializing the MongoDB database
	Integrating microservices with MongoDB
	Working with user resources
	GET api/v1/users
	GET api/v1/users/[user_id]
	POST api/v1/users
	PUT api/v1/users/[user_id]
	DELETE api/v1/users

	Working with the tweets resources
	GET api/v2/tweets
	GET api/v2/tweets/[user_id]
	POST api/v2/tweets


	Summary

	Building WebViews with React
	Understanding React
	Setting up the React environment
	Installing node
	Creating package.json

	Building webViews with React
	Integrating webView with microservices

	User authentication
	Login user
	Sign up user
	User profile
	Log out users

	Testing the React webViews
	Jest
	Selenium

	Summary

	Creating UIs to Scale with Flux
	Understanding Flux
	Flux concepts
	Adding dates to UI
	Building user interfaces with Flux
	Actions and dispatcher
	Stores

	Summary

	Learning Event Sourcing and CQRS
	Introduction
	Understanding Event Sourcing
	Laws of Event Sourcing

	Introduction to CQRS
	Advantages of the CQRS-ified architecture
	Challenges related to ES and CQRS
	Overcoming challenges
	Problem solving
	Explanation of the problem
	The solution



	Kafka as an eventstore
	Applying Event Sourcing with Kafka
	How it works

	Summary

	Securing the Web Application
	Network security versus application security
	The web application stack
	Application - security alternatives in the platform
	Transport protocol
	Application protocol

	Application - security threats in application logic
	Web application security alternatives



	A word on developing security-enabled web applications
	Summary

	Continuous Delivery
	Evolution of continuous integration and continuous delivery
	Understanding SDLC
	The Agile software development process
	How does the Agile software development process work?


	Continuous integration
	Jenkins - a continuous integration tool
	Installing Jenkins
	Prerequisite
	Installation on a Debian (Ubuntu)-based system

	Configuring Jenkins
	Automating Jenkins
	Securing Jenkins
	Plugins management
	Version control systems

	Setting up a Jenkins job
	Understanding continuous delivery
	Need for continuous delivery
	Continuous delivery versus continuous deployment

	Summary

	Dockerizing Your Services
	Understanding Docker
	Few facts about Docker versus virtualization
	Docker Engine - The backbone of Docker
	Setting up the Docker environment
	Installing Docker on Ubuntu
	Installation on Windows

	Setting up Docker Swarm
	Setting up the Docker environment
	Assumption
	Initializing the Docker manager
	Add node1 to master
	Testing the Docker Swarm



	Deploying an application on Docker
	Building and running our MongoDB Docker service
	Docker Hub - what is it all about?
	Docker Compose

	Summary

	Deploying on the AWS Platform
	Getting started with Amazon Web Services (AWS)
	Building application infrastructure on AWS
	Generating authentication keys
	Terraform - a tool to build infrastructure as code
	Configuring the MongoDB server
	Configuring the Elastic Load balancer

	CloudFormation - an AWS tool for building infrastructure using code
	The VPC stack on AWS


	Continuous Deployment for a cloud native application
	How it works
	Implementation of the Continuous Deployment pipeline


	Summary

	Implementing on the Azure Platform
	Getting started with Microsoft Azure
	A few points on Microsoft Azure basics
	Architecturing our application infrastructure using Azure

	Creating a virtual machine in Azure

	CI/CD pipeline using Jenkins with Azure
	Summary

	Monitoring the Cloud Application
	Monitoring on the cloud platform
	AWS-based services
	CloudWatch
	CloudTrail
	AWS Config service

	Microsoft Azure services
	Application Insights
	Introduction to ELK stack
	Logstash
	Elasticsearch
	Kibana


	Open source monitoring tool
	Prometheus

	Summary


