
M A N N I N G

Dane Hillard

Practices of the Python Pro

Practices of the Python Pro

DANE HILLARD

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Toni ArritolaManning Publications Co.
20 Baldwin Road Technical development editor: Nick Watts

Review editor: Aleks DragosavljePO Box 761 vić
Production editor: Lori WeidertShelter Island, NY 11964

Copy editor: Andy Carroll
Proofreader: Carl Quesnel

Technical proofreader: Jens Christian Bredahl Madson
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617296086
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

brief contents

PART 1 WHY IT ALL MATTERS ..1

1 ■ The bigger picture 3

PART 2 FOUNDATIONS OF DESIGN...17

2 ■ Separation of concerns 19

3 ■ Abstraction and encapsulation 41

4 ■ Designing for high performance 58

5 ■ Testing your software 77

PART 3 NAILING DOWN LARGE SYSTEMS 101

6 ■ Separation of concerns in practice 103

7 ■ Extensibility and flexibility 127

8 ■ The rules (and exceptions) of inheritance 143

9 ■ Keeping things lightweight 160

10 ■ Achieving loose coupling 177

PART 4 WHAT’S NEXT? ... 197

11 ■ Onward and upward 199

v

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xxi
about the cover illustration xxii

PART 1 WHY IT ALL MATTERS...1

1 The bigger picture 3
1.1 Python is an enterprise language 4

The times they are a-changin’ 5 ■ What I like about Python 5

1.2 Python is a teaching language 5

1.3 Design is a process 6
The user experience 7 ■ You’ve been here before 8

1.4 Design enables better software 8
Considerations in software design 9 ■ Organically grown
software 10

1.5 When to invest in design 11

1.6 New beginnings 12

vii

CONTENTSviii

1.7 Design is democratic 12
Presence of mind 13

1.8 How to use this book 15

PART 2 FOUNDATIONS OF DESIGN17

2 Separation of concerns 19
2.1 Namespacing 20

Namespaces and the import statement 20 ■ The many masks of
importing 23 ■ Namespaces prevent collisions 24

2.2 The hierarchy of separation in Python 25
Functions 26 ■ Classes 32 ■ Modules 37 ■ Packages 37

3 Abstraction and encapsulation 41
3.1 What is abstraction? 42

The “black box” 42 ■ Abstraction is like an onion 43
Abstraction is a simplifier 45 ■ Decomposition enables
abstraction 46

3.2 Encapsulation 47
Encapsulation constructs in Python 47 ■ Expectations of privacy
in Python 48

3.3 Try it out 48
Refactoring 50

3.4 Programming styles are an abstraction too 51
Procedural programming 51 ■ Functional programming 51
Declarative programming 53

3.5 Typing, inheritance, and polymorphism 54

3.6 Recognizing the wrong abstraction 56
Square pegs in round holes 56 ■ Clever gets the cleaver 57

4 Designing for high performance 58
4.1 Hurtling through time and space 59

Complexity is a little . . . complex 59 ■ Time complexity 60
Space complexity 63

4.2 Performance and data types 64
Data types for constant time 64 ■ Data types for linear time 65
Space complexity of operations on data types 65

CONTENTS ix

4.3 Make it work, make it right, make it fast 68
Making it work 68 ■ Making it right 68 ■ Making it fast 71

4.4 Tools 72
timeit 72 ■ CPU profiling 73

4.5 Try it out 75

5 Testing your software 77
5.1 What is software testing? 78

Does it do what it says on the tin? 78 ■ The anatomy of a
functional test 78

5.2 Functional testing approaches 79
Manual testing 80 ■ Automated testing 80 ■ Acceptance
testing 80 ■ Unit testing 82 ■ Integration testing 83
The testing pyramid 84 ■ Regression testing 85

5.3 Statements of fact 86

5.4 Unit testing with unittest 86
Test organization with unittest 86 ■ Running tests with
unittest 87 ■ Writing your first test with unittest 87
Writing your first integration test with unittest 90 ■ Test
doubles 92 ■ Try it out 93 ■ Writing interesting tests 96

5.5 Testing with pytest 96
Test organization with pytest 97 ■ Converting unittest tests to
pytest 97

5.6 Beyond functional testing 98
Performance testing 98 ■ Load testing 99

5.7 Test-driven development: A primer 99
It’s a mindset 100 ■ It’s a philosophy 100

PART 3 NAILING DOWN LARGE SYSTEMS101

6 Separation of concerns in practice 103
6.1 A command-line bookmarking application 104

6.2 A tour of Bark 105
The benefits of separation: Reprise 105

6.3 An initial code structure, by concern 106
The persistence layer 107 ■ The business logic layer 115
The presentation layer 119

CONTENTSx

7 Extensibility and flexibility 127
7.1 What is extensible code? 127

Adding new behaviors 128 ■ Modifying existing behaviors 130
Loose coupling 131

7.2 Solutions for rigidity 133
Letting go: Inversion of control 133 ■ The devil’s in the details:
Relying on interfaces 136 ■ Fighting entropy: The robustness
principle 137

7.3 An exercise in extension 138

8 The rules (and exceptions) of inheritance 143
8.1 The inheritance of programming past 143

The silver bullet 144 ■ The challenges of hierarchies 144

8.2 The inheritance of programming present 146
What is inheritance for, really? 146 ■ Substitutability 147
The ideal use case for inheritance 148

8.3 Inheritance in Python 150
Type inspection 150 ■ Superclass access 151 ■ Multiple
inheritance and method resolution order 152 ■ Abstract base
classes 155

8.4 Inheritance and composition in Bark 157
Refactoring to use an abstract base class 157 ■ A final check on
your inheritance work 159

9 Keeping things lightweight 160
9.1 How big should my class/function/module be? 161

Physical size 161 ■ Single responsibility 161 ■ Code
complexity 162

9.2 Breaking down complexity 166
Extracting configuration 166 ■ Extracting functions 168

9.3 Decomposing classes 170
Initialization complexity 171 ■ Extracting classes and forwarding
calls 173

10 Achieving loose coupling 177
10.1 Defining coupling 177

The connective tissue 178 ■ Tight coupling 178 ■ Loose
coupling 181

CONTENTS xi

10.2 Recognizing coupling 184
Feature envy 184 ■ Shotgun surgery 184 ■ Leaky
abstractions 185

10.3 Coupling in Bark 186

10.4 Addressing coupling 188
User messaging 189 ■ Bookmark persistence 191 ■ Try it
out 192

PART 4 WHAT’S NEXT? ...197

11 Onward and upward 199
11.1 What now? 199

Develop a plan 200 ■ Execute the plan 201 ■ Track your
progress 203

11.2 Design patterns 204
Ups and downs of design patterns in Python 206 ■ Terms to start
with 206

11.3 Distributed systems 206
Modes of failure in distributed systems 207 ■ Addressing
application state 208 ■ Terms to start with 208

11.4 Take a Python deep dive 208
Python code style 208 ■ Language features are patterns 209
Terms to start with 210

11.5 Where you’ve been 210
There and back again: A developer’s tale 210 ■ Signing off 212

appendix Installing Python 213

index 217

preface
Python, like me, was born in December of 1989. Although I’ve accomplished a great
deal in the subsequent three decades, Python’s success is prolific. More people than
ever before are picking it up to accomplish fascinating things in data science, machine
learning, and more. Since I learned Python, this “second-best language for every-
thing” has in reality been my first choice for many endeavors.

 I had a rather traditional path into programming through the Electrical Engineer-
ing and Computer Science Department at the University of Michigan. At that time,
the coursework focused mainly on C++ and MATLAB—languages I continued to use
in my first job out of school. I developed some shell scripting and SQL chops in my
next position, processing big data for bioinformatics. I also started using PHP to work
on a personal WordPress site from scratch.

 Although I was getting results (and cool ones, in some cases), none of the lan-
guages I was using resonated with me. But I was oblivious. I assumed that programming
languages were purely means to an end, and they had little chance of being fun to
work with. Around this time, a friend invited me to join him in a hackathon project to
build a Ruby library.

 The world exploded with color, fruits tasted sweeter, and all that. The ease of using
an interpreted language and the human-friendly syntax of Ruby really made me think
about the tools I’d been using. Although I didn’t stick with Ruby for too long, I
decided to give Python and the Django web framework a try for the next iteration of
my personal site. It gave me the same joy and shallow learning curve I’d seen with
Ruby, and I haven’t looked back since!

xiii

PREFACExiv

 Now that Python is recognized widely as a language of choice for many tasks, folks
coming into software development don’t need to go through the trial and error pro-
cess I did. New and interesting pathways into a career in software are opening up all
around too. Despite these differences, I hope we can all share in the common experi-
ence of finding joy in programming with Python. I also hope this book can contribute
to that joy.

 Come along on the wonderful Python journey I fell into somewhat haphazardly. I
want to see you build a website, a data pipeline, or an automated plant-watering sys-
tem. Whatever you fancy. Python’s got your back. Send photos and code samples of
your projects to python-pro-projects@danehillard.com.

mailto:python-pro-projects@danehillard.com

acknowledgments
I didn’t write this book alone. My appreciation runs deep for everyone who helped me
along the way, at every stage and in every capacity. You are loved.

 Most anyone who’s been involved in the production of a book can tell you that it’s
always more work than you think. I heard this many times throughout the process,
and it certainly was a lot of work. What’s not always clear is that the real struggle is bal-
ancing all that extra work with your existing life.

 To my partner, Stefanie: your support, encouragement, and tolerance of my rant-
ing and raving were paramount in making this book a reality. Thank you for judging
my neglect lightly and extricating me from this project during the roughest times. I
could not have done this without you.

 Thank you to my parents, Kim and Donna, for always funneling my energy toward
curiosity, creativity, and compassion.

 Thanks to my dear friend Vincent Zhang for spending countless nights at the cof-
fee shop coding by my side. You were there when the concept for this book was born,
and your validation helped spur me to take on this endeavor.

 Thank you to James Nguyen for persevering as you changed paths to become a
developer. You embody the audience for this book, and your input has been invalu-
able. I’m proud of your accomplishments.

 My gratitude goes to all my colleagues at ITHAKA and beyond for your input and
support. I thank you for enduring what has undoubtedly been a flighty period for me.

xv

ACKNOWLEDGMENTSxvi

 To Toni Arritola, my editor: thank you for your determination in pushing me ever
toward higher-quality teaching. The writing process is fraught with many unexpected
snags, but you provided me consistency and stability. Thank you.

 To Nick Watts, my technical editor: your feedback has pushed the content of this
book from frantic ramblings to plausible software teachings. Your candor and insight
are much appreciated.

 Thank you to Mike Stephens and Marjan Bace at Manning for believing in this
idea and trusting me as its shepherd. Thank you to everyone at Manning for working
tirelessly to bring authors’ ideas to life.

 To all the reviewers—Al Krinker, Bonnie Bailey, Burkhard Nestmann, Chris Way-
man, David Kerns, Davide Cadamuro, Eriks Zelenka, Graham Wheeler, Gregory
Matuszek, Jean-François Morin, Jens Christian Bredahl Madsen, Joseph Perenia, Mark
Thomas, Markus Maucher, Mike Stevens, Patrick Regan, Phil Sorensen, Rafael Cas-
semiro Freire, Richard Fieldsend, Robert Walsh, Steven Parr, Sven Stumpf, and Willis
Hampton—your suggestions helped make this a better book.

 A final thank you to anyone and everyone else who has had a positive influence—
directly, intentionally, or otherwise—on my journey in programming and this book. I
cannot hope to produce an exhaustive list; names not appearing here are due
expressly to the limitations of my own mind. Thank you to Mark Brehob, Dr. Andrew
DeOrio, Jesse Sielaff, Trek Glowacki, everyone at SAIC (in our little Ann Arbor office),
everyone at Compendia Bioscience (and friends), Brandon Rhodes, Kenneth Love,
Trey Hunner, Jeff Triplett, Mariatta Wijaya, Ali Spittel, Chris Coyier, Sarah Drasner,
David Beazley, Dror Ayalon, Tim Allen, Sandi Metz, and Martin Fowler.

about this book
Practices of the Python Pro introduces several concepts that software developers in almost
any language can use to improve their work. This would be a great book to read after
learning the fundamentals of the Python language.

Who should read this book
Practices of the Python Pro is for anyone in the early stages of their programming jour-
ney. In fact, people outside the software industry altogether who use software to sup-
plement their work can find value in this book. The concepts contained in these pages
will help readers build software that’s more maintainable, which in turn makes their
software easier to collaborate on.

 In the sciences, reproducibility and provenance are important aspects of the
research process. As more research comes to rely on software, code that people can
understand, update, and improve is a major consideration. But college curricula are
still catching up to this intersection of software with other disciplines. For those with
limited experience in formal software development, this book provides a set of princi-
ples for producing shareable, reusable software.

 If you’re seasoned in object-oriented programming and domain-driven design, you
may find this book too introductory for your benefit. On the other hand, if you’re rel-
atively new to Python, software, or software design, give this book a try. There’s some-
thing in here for you.

xvii

ABOUT THIS BOOKxviii

How this book is organized: A roadmap
Practices of the Python Pro consists of 11 chapters in 4 parts. Parts 1 and 2 provide discus-
sion along with short examples and an occasional exercise. Part 3 builds on what
you’ve learned in earlier chapters and contains a variety of exercises. Part 4 provides
strategies for learning more, along with recommendations about what to try after
reading this book.

 Part 1, “Why it all matters,” sets the stage for Python’s rise to fame and why software
design is valuable.

■ Chapter 1 covers some recent history of Python and why I enjoy developing
Python programs. It goes on to explain software design, why it’s important, and
how it manifests in your day-to-day work.

Part 2, “Foundations of design,” covers the high-level concepts that underpin software
design and development.

■ Chapter 2 covers separation of concerns, a fundamental activity that provides a
basis for several others in the book.

■ Chapter 3 explains abstraction and encapsulation, showing you how hiding
information and providing simpler interfaces to more complex logic helps you
keep a handle on your code.

■ Chapter 4 prompts you to think about performance, covering different data
structures, approaches, and tools to help you build speedy programs.

■ Chapter 5 teaches you about testing your software, using a variety of approaches,
from unit testing to end-to-end testing.

Part 3, “Nailing down large systems,” walks you through building a real application
using the principles you’ve learned.

■ Chapter 6 introduces the application you’ll build in the book and provides
exercises for creating a program’s foundation.

■ Chapter 7 covers the concepts of extensibility and flexibility and includes exer-
cises that add extensibility to the application.

■ Chapter 8 helps you understand class inheritance, providing recommendations
about where and when it should be used. It continues on with exercises that
examine inheritance in the application you’re building.

■ Chapter 9 steps back a bit, introducing tools and an approach for keeping code
from growing too large as you go along.

■ Chapter 10 explains loose coupling, providing some final exercises to reduce
the coupling in the application you’re building.

Part 4, “What’s next?” gives you some recommendations for how and what to learn next.

■ Chapter 11 shows you how I map out new learning material and gives you a few
areas of study to try if you’re interested in going deeper into software
development.

ABOUT THIS BOOK xix

I recommend reading Practices of the Python Pro from cover to cover, though you may
choose to skip chapters in parts 1 and 2 if you’re familiar with the material. Part 3 is
best read in order so you can go through the exercises in a linear fashion.

There’s an appendix that will help you install Python, should you need it:

■ The appendix covers which version of Python you should install, along with the
most common approaches folks use to install it on their systems.

About the code
You can get the full source code for the book’s examples and exercises in the book’s
repository on GitHub (https://github.com/daneah/practices-of-the-python-pro).
Alternatively, you can visit the book’s homepage (www.manning.com/books/prac-
tices-of-the-python-pro) and click Source Code to download the code.

 This book contains many examples of source code, both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 For each chapter, the code is organized into Python modules that are referenced
in the text. In general, you’re expected to write your own version of the code and use
the provided source only to check your work. In part 3, the projects in each chapter
build on the code from previous chapters, but each chapter provides a full working
copy of the source.

 All code in this book is written in Python 3, and more specifically is intended to
work with Python 3.7+. Most of the code could be made to work on earlier versions
without much fuss, but consider installing a relatively new version of Python for use
with this book.

liveBook discussion forum
Purchase of Practices of the Python Pro includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to https://livebook.manning.com/#!/book/practices-of-the-python-pro/
discussion. You can also learn more about Manning’s forums and the rules of conduct
at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We

https://github.com/daneah/practices-of-the-python-pro
https://livebook.manning.com/#!/book/practices-of-the-python-pro/discussion
https://livebook.manning.com/#!/book/practices-of-the-python-pro/discussion
https://livebook.manning.com/#!/discussion
http://www.manning.com/books/practices-of-the-python-pro
http://www.manning.com/books/practices-of-the-python-pro

ABOUT THIS BOOKxx

suggest you try asking the author some challenging questions lest his interest stray!
The forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.

about the author
Dane Hillard is currently a lead web application developer at ITHAKA, a nonprofit in
higher education. His prior experience includes building inference engines for telem-
etry data and ETL pipelines for bioinformatics applications.

 Dane’s first forays into programming included creating custom styling for his
MySpace page, scripting for the Rhinoceros 3D modeling application, and making
custom skins and weapons for the MS-DOS game Liero. He enjoys creative coding and
is actively seeking ways to combine his loves of music, photography, food, and software.

 Dane has spoken at Python and Django conferences internationally and plans to
continue until someone asks him to stop.

xxi

about the cover illustration
Saint-Sauver

The figure on the cover of Practices of the Python Pro is captioned “Homme Finnois,” or
“Finnish Man.” The illustration is taken from a collection of dress costumes from vari-
ous countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Dif-
férents Pays, published in France in 1797. Each illustration is finely drawn and colored
by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify where they lived and what their trade or station
in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

xxii

Part 1

Why it all matters

When you set out to learn new topics, it’s important to consider the big
picture, to frame and focus your thinking. The first part of this book will famil-
iarize you with Python’s importance in modern software development, and it will
provide a framework for understanding the value of software design principles
and practices in furthering your career in programming.

 Whether you’re new to programming, looking for the next language you’d
like to learn, or trying to advance your skills to tackle bigger projects, this part of
the book should convince you that Python is a great choice.

The bigger picture

I’m glad you picked up this book; it means you’d like to take the next step with soft-
ware development. Maybe you’re looking to enter the software industry, or maybe
you’re looking to use software to supplement your work. Maybe you’ve even been
paid to write software before. Congratulations—you’re already a pro! Coding like a
pro just means learning the concepts and strategies that will help you build and
maintain big software for the long term.

 By reading on, you’re committing yourself to learning how Python can help you
think big and go from writing utility scripts to writing complex software. I’ll help
you lay a foundation on which you can construct your software development skills.

 Throughout your career, you will likely be exposed to ever-increasing software
complexity. That software could be something you build over time, or it could very
well be an existing heap of code thrust upon you at the most inopportune moment.

This chapter covers
 Using Python in complex software projects

 Getting familiar with the high-level process of
software design

 Recognizing when you should invest in design

3

4 CHAPTER 1 The bigger picture

Whatever the case, you’ll want to have a suite of utilities at your disposal so you can be
prepared to make sense of it.

 By reading this book, you’ll gain experience and familiarity with how complex
software systems work so that you can use that expertise to improve upon them. You’ll
be learning how to envision these kinds of systems before building them to minimize
surprises and risks. Once you’re through with this book, you should be able to dive
headlong into things that you’re confused or anxious about now with a newfound
enthusiasm.

 You’ll learn about putting the complexities of your code into easy-to-understand,
reusable wrappers. You’ll make sure your code is neatly organized by its purpose so
you can remember what’s what. These tools will help you help yourself and become
more productive in your projects, both new and old!

 I’m going to use Python as the vehicle for the examples in this book. Python has
been my favorite programming language for some time now, and I hope it’s one of
yours too. If you haven’t had a chance to get to know Python much yet, take the time
to do that first. The Quick Python Book, third edition, by Naomi Ceder (Manning, 2018),
is a great place to get started.

 All examples in this book are written with a recent version of Python 3 in mind. I
strongly recommend you install Python 3 before proceeding. See the appendix if you
need some guidance on the installation process.

If you need a bit of convincing about why Python is a good choice of language, read
on a bit further.

1.1 Python is an enterprise language
The Python programming language has been treated historically as a scripting lan-
guage. Developers perceived its performance and applicability negatively, choosing
other languages for their enterprise software needs. Python was used for small data-
processing jobs or personal tools, but enterprise software was still a job for languages
like Java, C, or SAS.

The great divide
Are you using Python 2 or Python 3? A sizable number of people are still using Python
2, even though Python 3 came onto the scene a while ago—quite a while ago, in
2008. To put that in perspective, Flo Rida’s “Low” and Alicia Keys’ “No One” were at
the top of the charts that year.

Python 3 brought with it several backward-incompatible changes whose effects are
still being felt today. Many of these changes have been backported to later versions
of Python 2 to ease the transition. Developers on large projects using Python 2 have
some hurdles to overcome, but some people seem to be taking their Python 2 soft-
ware to the grave with them.

5Python is a teaching language

The times they are a-changin’1.1.1

Over the last few years, the notion that Python couldn’t stand up to enterprise use has
shifted dramatically. Python is now being applied to nearly every discipline out there,
from robotics to machine learning to chemistry. Python has powered some of the most
successful internet companies of the last decade and doesn’t show any signs of slowing.

What I like about Python1.1.2

Python is a breath of fresh air. Like many of my friends and colleagues, I learned a
great deal of C++ in school, along with a bit of MATLAB, Perl, and PHP. I built my first
website in PHP and even tried a Java Spring version at one point. PHP and Java are, as
many successful companies will attest, perfectly capable languages in this arena, but
they didn’t click with me for some reason.

 I found that Python excelled in its syntax; this is often cited as one reason for its
accelerating popularity. The syntax comes closer to written English than other lan-
guages, and as a result it can be more approachable for those new to programming, as
well as for people who don’t like the verbosity of other languages. I’ve seen people
light up with joy when asking Python to print('Hello world!') and seeing it do
exactly that. Even now I will occasionally have one of those moments when I uncover a
standard library module I didn’t know about before.

 Python is readable. This translates to faster development even for fairly seasoned
developers. Hui Ding, an engineer at Instagram, astutely points out that “Perfor-
mance speed is no longer the primary worry. Time to market speed is.”1 Python
enables rapid prototyping and, as you’ll see later on, the ability to solidify software
into a robust, maintainable codebase. This is what I like about Python.

Python is a teaching language1.2
In 2017, Stack Overflow revealed that, in high-income countries, questions related to Python
made up more than 10% of all questions on the platform, surpassing all other major pro-
gramming languages.2 Python is the fastest growing programming language today, which is
why it’s a handy teaching tool. The thriving developer community and wealth of information
available online mean that it will be a safe choice for the next several years.

 Throughout this book, I’ll assume you have a foundational knowledge of Python
syntax, data types, and classes. You’ve seen it and played with it, but you don’t need to
have won awards with it. (Do they have those?). Anyone with a bit of programming
under their belt and a few hours of learning and using Python on their own should
have no problem with the code in this book. You’re going to go through this book
with Python as the conduit for designing bigger, better software. That being said, what
you learn here will, with any luck, be applicable to any language you choose to use.
You’ll find that many software design concepts transcend any particular technology.

1Michelle Gienow, “Instagram Makes a Smooth Move to Python 3,” The New Stack, http://mng.bz/Ze0j. This is
a great write-up on Instagram’s transition from Python 2 to Python 3.

2See David Robinson, “The Incredible Growth of Python,” Stack Overflow Blog, http://mng.bz/m48n.

http://mng.bz/Ze0j
http://mng.bz/m48n

6 CHAPTER 1 The bigger picture

Design is a process1.3
Although the word design often describes a tangible outcome, the value of design is in
the process of arriving at that outcome. Consider fashion designers. Their goal is ulti-
mately to create pieces that will end up in the hands of the people wearing them. For
the designer to reach customers with the next great trend, though, a lot of steps—and
people—are involved (see figure 1.1).

Designers usually work with a fabric supplier to source the right materials for the look,
fit, and texture they want. Once they’ve designed a piece, they work with a patterner to
get different sizes made. Once they produce the pieces, they’re sent through fulfillment
to retail stores where customers can finally buy the clothing. This can take months!

 As in fashion, art, and architecture, design in software is the process of sketching
out the plans for a system so that it can be executed for maximum effect. In software,
these plans help us understand the flow of data and the pieces of the system operating
on that data. Figure 1.2 shows a high-level diagram of an e-commerce workflow, out-
lining how a user would progress through the steps.

Fabric supplier

FulfillmentDesigner Retailer Customer

Pattern maker

Each interaction the designer has
requires passing information about
the fabric, pattern, cost, etc.

Each person needs specific information to perform
a specific task. They’re fairly independent, but it
takes them all to get the job done.

Figure 1.1 The workflow for a fashion designer. The designer works with a number of other people to get the job
done.

Customer

Authentication Shipping Payment

Each interaction the customer has
requires passing information about
who they are, where they live, their
credit card information, etc.

Each step involves a specific set of
tasks based on the information
provided by the customer.

Order

Figure 1.2 The workflow for an e-commerce website. The system performs a number of activities to
get the job done.

7Design is a process

A customer looking to buy something online usually logs in, enters their shipping
information, and pays for the item. This creates an order for the company to process
and ship. Workflows like these require a great deal of design to nail down. The soft-
ware that runs these systems tackles complex rules, error-state checking, and more.
And it has to do it all without missing a beat, because users are sensitive to errors.
They might abandon or even actively speak out against a product that isn’t working
well for them.

1.3.1 The user experience

Workflows that appear concise and clear often take a lot of work to create. Creating
software that works smoothly for all use cases requires market research, user testing,
and robust design. Some products work well for the intended use case, but companies
may find after release that users are doing something totally unexpected with the
product. The software may work for that use case, but it wasn’t optimized for it. There
may be gaps in the design that need to be considered.

 When software works well, we hardly notice. People using software products like to
have a frictionless experience, and developers working on software like it too. Working
with code that hasn’t been maintained can lead to frustration, and not knowing how
to fix it can lead to anger! Take a deep breath.

Say you’ve been tasked with updating the reporting software at your company. It’s cur-
rently using comma-separated values (CSV) in its export files, but users have been
talking about how much they like tab-separated values (TSV). You think, “I’ll just go
update the delimiter in the output function to a tab instead of a comma!” Now imag-
ine opening up the code to find that the lines of output are all being built up like so:

print(col1_name + ',' + col2_name + ',' + col3_name + ',' + col4_name)
print(first_val + ',' + second_val + ',' + third_val + ',' + fourth_val)

To change the output from CSV to TSV, you’d have to make sure you changed the
comma to a tab in six places. This leaves some room for human error; maybe you saw

Friction
Imagine ice skating at the local hockey rink. When you get on the ice right after the
Zamboni finishes smoothing it out, skating requires little effort. You can lean into
each step just a little, letting the skate do the work. After some time, everyone’s
skates start to cut up the ice. It gets more difficult to glide; you have to push hard
into each step.

Friction in a user experience is a lot like the rough ice. The user may still be able to
accomplish what they’re trying to do, but that doesn’t mean it’s fun. A frictionless
experience is one that guides users along lightly, to the point that they hardly notice
they’re doing work.

8 CHAPTER 1 The bigger picture

the first line printing the header but missed the line printing the data rows. To make
this more friendly to the next developer who uses the code, you can store the delim-
iter value in a constant and make use of it where needed. You could also use a Python
function to make building the string easier on yourself. Then, when users decide they
like the commas better after all, the change could be made in just one place:

DELIMITER = '\t'
print(DELIMITER.join([col1_name, col2_name, col3_name, col4_name]))
print(DELIMITER.join([first_val, second_val, third_val, fourth_val]))

By sitting down and thinking through the system at a high level, you’ll start to notice
rough areas you didn’t see before, or realize that certain assumptions you had aren’t
accurate. You’ll surprise yourself more than once, and this kind of enlightenment can
motivate you to keep at it. Once you start seeing repeated patterns and common
mistakes, you can start recognizing which thorns can be pulled out. It can be quite
therapeutic.

You’ve been here before1.3.2

Whether you realize it or not, you’ve almost certainly gone through a design process
in the past. Think of a time when you stopped writing code for a moment to revisit the
goal you were trying to achieve. Did you notice something that made you change
direction? Did you see a more efficient way of doing things?

 These little moments are design processes in themselves. You take stock of the goal
and current state of your software and use them together to inform what you do next.
Generating these moments intentionally and early on in your software process will
have both short- and long-term benefits.

Design enables better software1.4
I’ll level with you: good design requires time and effort. It’s not something you get for
free. Although embedding design thinking into the development work you do
everyday is ideal, an independent design step before writing (or rewriting) your code
is crucial.

 Planning out a software system will help you uncover areas that present risk. You
can identify where sensitive user information might be exposed to a vulnerability. You
can also see which pieces of the system might be performance bottlenecks or single
points of failure.

 You can save time and money by simplifying, combining, or splitting up pieces of
the system. Gains like this are difficult to identify when looking at a component in iso-
lation because it isn’t clear whether other components are doing similar jobs. Viewing
the system as a whole allows you to regroup and make informed decisions about the
path forward.

9Design enables better software

Considerations in software design1.4.1

We often think about writing software for “the user,” but software can often serve mul-
tiple audiences. Sometimes “the user” is a person using the product the software is a
part of, whereas other times “the user” is a person trying to develop additional fea-
tures of the software. Often, you’re the only user of your software! By looking at soft-
ware from these different points of view, you can better identify the qualities of the
software you want to build.

 The following are some common aspects consumers use to assess software for their
use cases:

 Speed—The software does its job as quickly as it can.
 Integrity—Data used or created by the software is protected from corruption.
 Resources—The software uses disk space and network bandwidth efficiently.
 Security—Users of the software can read and write only data for which they’re

authorized.

In addition, these are some common outcomes you as a developer might want:

 Loose coupling—Components of the software are not intricately dependent on
one another.

 Intuitability—Developers can discover the nature of the software and how it
works by reading it.

 Flexibility—Developers can adapt the software to related or similar tasks.
 Extensibility—Developers can add or change one aspect of the software without

affecting other aspects.

The pursuit of these outcomes often involves real-world costs. As an example, commit-
ting to increasing security in your software likely means you’ll have to spend more
time in development. Because that development time may increase your expenses,
you may choose to sell your software at a higher price. Effective planning and an
understanding of the trade-offs between these outcomes will help you minimize the
costs to you and your consumers.

 Programming languages don’t typically address most of these considerations head
on; they simply provide tools that will enable developers to cater to them. For exam-
ple, high-level languages like Python, which allow developers to write in something simi-
lar to human language instead of machine language, provide some protections in
terms of memory corruption. Python also encourages the use of efficient data types
through its syntax; you’ll learn more about this in chapter 4.

 That being said, there’s still a lot of work we can do on our own, because even
Python can’t predict all the ways developers might screw things up. This is where care-
ful design and thinking about the system as a whole will help.

10 CHAPTER 1 The bigger picture

Organically grown software1.4.2

Unlike the produce at your local farmers’ market, organically grown software is not
good for your health. In the context of software, a system that has grown organically
over time is likely a system ripe for refactoring. Refactoring code is the process of updat-
ing code so it’s better designed and reflects your latest best practices. It might involve
improving the performance, maintainability, or readability of code.

 As the term suggests, organically grown software has become an organism, com-
plete with a nervous system and a mind of its own. Bits of other software may have
been plastered onto it (usually more than once), methods that haven’t been used in
years are in there somewhere, rotting, and maybe there’s one function that does
about 150% of the work. Choosing when to refactor a system like this can be difficult,
but it’s sometime before the moment that makes you yell, “It’s alive!”

 An example of this phenomenon is shown in figure 1.3, which depicts the check-
out process for an e-commerce site. It involves several important steps:

1 Determine that the product is available in the inventory.
2 Based on the price of the product, calculate the subtotal.
3 Based on the region of purchase, calculate:

a Tax
b Shipping and handling

4 Based on the current promotions, calculate any discounts.
5 Calculate the final total.
6 Process the payment.
7 Fulfill the order.

In this system, some of the steps are separated clearly. Not bad! But there is a rough
patch in the middle. It looks like all of the price-related logic happens in one big chunk.
If there’s a bug in that process, it might be difficult to understand exactly which step con-
tains the bug. You may see that the price is wrong, but there will be a lot of code to sift
through to figure out why. The payment processing and fulfillment are also lumped

Check inventory

Calculate
cart subtotal,
tax, shipping,

discounts,
final total

Process payment
and send to
fulfillment

Customer

Checkout
This area handles a lot of logic!

What happens when the payment
succeeds but fulfillment fails?

Figure 1.3 An e-commerce system that grew organically

11When to invest in design

together, so with an ill-timed error it’s possible you could process the payment success-
fully but never fulfill the order. That would make for a disgruntled customer.

 A good start on the path to making this workflow more robust is to split its logical
steps up (figure 1.4). If each step is handled by its own service, the service for a partic-
ular step only needs to concern itself with one job. The inventory service keeps track of
how many items are in stock. The pricing service knows the cost and tax for each item.
This isolates each step from the others, making each one less likely to suffer from bugs.

Design often allows you to see where a system’s existing pieces can be broken down
into simpler ones. This idea of decomposition is just one of the tools we’ll explore more
thoroughly in the chapters to come. Keep in mind that this work is almost never done;
refactoring and redesigning code will happen constantly. By internalizing some of the
techniques you’ll learn in this book, though, you’ll find these tasks get easier and
quicker in a given project over time. Stay sharp and recognize opportunities for
improving your existing code!

1.5 When to invest in design
We tend to focus our efforts on creating new software to complete tasks. But as proj-
ects grow, we forget about the implementation of working code until it gets in our way.
Some code gets in the way so often that it creates more trouble than value. At this
point the project incurs technical debt, because additional work must be done to
remain productive.

 The more frequently a gnarly piece of code gets in the way, and the more difficult
it is to deal with it when it gets in the way, the more time you should allot to getting in
there and sweeping up the mess. This is often based on a gut feeling after a system is
already built, but sometimes you can catch things early.

Checkout
Purchase
complete

Customer

Trigger order

Pricing
service

Payment
service

Fulfillment
service

Fulfillment
service

Shipping
service

Inventory
service

Purchase Send to fulfillment

Purchase info can be persisted here
so fulfillment can retry as needed.

Purchase info can be persisted here
so fulfillment can retry as needed.

What a thoughtfully planned e-commerce system might look likeFigure 1.4

12 CHAPTER 1 The bigger picture

 Intentional software design up front can save time and headaches down the road.
When software is flexible enough to be extended to new use cases, it can be a pleasure
to work with, so putting thought into the system before writing a line of code is a good
way to keep productivity up. I like to think of this as a technical investment because it’s
putting work in up front for a later return.

 One place you may have encountered this is in a framework. Frameworks are large
libraries of code that act as guides to some goal. A framework might help you make your
website look wonderful, or it may help you build a neural network for detecting faces
in video. Regardless of its function, a framework seeks to provide the building blocks
that you can use to make something all your own. For a framework to be useful, it must
be flexible enough to handle a variety of use cases and extensible enough that you can
write new functionality that the original developers didn’t think of. Python developers
have created numerous frameworks: Requests, for making HTTP calls; Flask and
Django, for web development; and Pandas, for data analysis, to name a few. In a way,
much of the code you write is a framework. It provides some useful functionality that
you may need to use again and again or for different purposes along the way. Writing
your code with these facts in mind will keep you from putting hurdles in your own way.

 The process of designing software, whether revisiting a project or starting a new
one, is an investment. The hope is that the return on this investment will be code that
adapts to the needs of developers and consumers without incurring a great deal of
overhead or frustration. There will be times when some code is in poor shape but may
not warrant the time and effort good design can require. How often the code is used
or updated is an important consideration, because spending weeks improving a script
that’s used once or twice in its lifetime isn’t economical.

New beginnings1.6
When you set out to be more mindful of design, the opportunities for improvement
can become overwhelming. There is so much to learn and do that trying to manage it
all at once won’t be fun. Taking on design concepts little by little, until they become a
part of your mindset, is a more sustainable approach to success. In this book, I’ll intro-
duce small sets of concepts in each chapter, and you can revisit particular chapters at
any time to reinforce what you learned there.

Design is democratic1.7
Up to now, it’s quite possible that you’ve worked on projects mostly by yourself. If you
did any coding as part of a class, you may have been required to write all the code your-
self. In the real world, this doesn’t happen often for large projects. In companies writ-
ing software for business uses, there may be tens of developers working on a single
product. Each developer has a unique set of experiences that can affect how they
choose to work. This diversity of viewpoints can lead to a more robust system because
experiences with previous bugs, failures, and successes all inform directions to take in
upcoming work.

13Design is democratic

 It’s to your benefit to get input from other developers, especially at the early stages.
There’s rarely one way of doing something, so learning many approaches, along with
their pros and cons, will empower you to make educated choices, or at least to choose
what feels best if all other things are equal. Some approaches will make sense for one
use case but not for another, so knowing several will increase your productivity.

 If you don’t have the privilege of working with an active team of developers,
examining some open source projects is another way to get some exposure to the
collaborative nature of software. Look for discussions where developers disagreed
(constructively!) about how to achieve some task, and see what kinds of considerations
came into play on the way to a resolution. The thought process that leads to a solution
is often more important than the specific solution the developers choose. This kind of
reasoning and discussion capability will get you through more difficulties than knowing
a specific algorithm.

1.7.1 Presence of mind

It’s easy to get carried away when writing software. Think about a time when you were
excited to get something done. You were probably anxious to see your code work, and
it’s often difficult in that situation to sit still and be deliberate about writing perfect
code.

 When working with a small script or doing some exploratory work, a quick feed-
back cycle can be valuable in staying productive. I often do this kind of work in
Python’s read-eval-print loop (REPL).

The example in listing 1.1 shows how you might work through transforming a dictio-
nary of data. Given a dictionary that maps states in the United States to their capital
cities, you want to produce a list of all capital cities in alphabetical order. The
approach is something like this:

1 Get the city values from the dictionary.
2 Sort the city values.

The REPL
The REPL—pronounced REH-pull—is what’s hiding behind the >>> when you type
python at the terminal. It reads what you type, evaluates it, prints the result, and
waits for it all to happen again (the loop). Many languages provide a REPL so devel-
opers can interactively test a few lines of code.

But beware: at some point, the back and forth of writing a quick line of code and see-
ing how it changes the program’s output becomes tedious. You’ll want to write length-
ier or longer-lived code in a file and run it with the interpreter. Each person has a
different threshold; I usually hit mine when I want to reuse a line of code I previously
wrote, and it’s 15 lines back in my history.

14 CHAPTER 1 The bigger picture

>>> us_capitals_by_state = {
'Alabama': 'Montgomery',
'Alaska': 'Juneau',
...

}
>>> capitals = us_capitals_by_state.values()
dict_values(['Montgomery', 'Juneau'])
>>> capitals.sort()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'dict_values' object has no attribute 'sort'
>>> sorted(capitals)
['Albany', 'Annapolis', ...]

This task wasn’t too bad; there was only one fumble along the way. But as a project
grows and the scope of the change you’re making increases, taking a step back and
planning your actions in advance is helpful.

 Some thoughtful planning will often save you time in the long run because you
won’t be going two steps forward and one step back as you develop. If you do this up
front, you can also get into a good habit of recognizing opportunities to refactor as
they happen, rather than when you’re further down the road. When I’m in this mode,
I typically shift to writing my code in a real Python module, even if I’m still writing a
pretty short script. This encourages me to slow down a bit and keep the bigger goal in
mind during development.

 In the case of the state capitals code, imagine you’ll need the list of state capitals in
many contexts. You might need it on a registration form, a shipping form, or a billing
form. To avoid doing the same calculation over and over, you could wrap that calcula-
tion in a function and call it whenever you need it, as shown in the following listing.

def get_united_states_capitals():
us_capitals_by_state = {'Alabama': ...}
capitals = us_capitals_by_state.values()
return sorted(capitals)

Now you have a reusable function. But looking at this function, you can see that it
operates on constant data but does a bit of calculation each time it’s called. If this
function is called frequently in the program, it can be refactored further to improve
its performance.

 In fact, it turns out a function isn’t necessary at all. You can achieve the reusability
while still making only one set of calculations by storing the result in a constant for
later use, as shown in the following listing.

Getting the United States capitals in alphabetical orderListing 1.1

Wrapping the state capital logic in a functionListing 1.2

A dictionary that maps state
names to capital names

Only the capital names

Whoops! This isn’t a “list”, so
no “sort” method is available.

New (sorted) list using “sorted”,
which accepts any iterable

Same code as listing
1.1, in a function

15How to use this book

US_CAPITALS_BY_STATE = {'Alabama': 'Montgomery', ...}
US_CAPITALS = sorted(US_CAPITALS_BY_STATE.values())

This has the added benefit of cutting the number of lines of code in half without sacri-
ficing readability.

 The process we just went through from initial problem statement to a final solu-
tion is a design process. As you progress, you may find that you can identify areas for
improvement earlier and earlier. Eventually, you may even decide to start drawing
high-level diagrams that represent several complex pieces of software, using your dia-
grams to assess opportunities and risk before writing any code. Not everyone works
this way, of course, so you’ll need to use what you learn in this book where it gives you
the most value.

 You might be feeling the urge to scrap everything and start your project anew at
this point, but hold on! As you go through this book, you’ll see that the processes of
designing and refactoring software are not only interrelated, but in fact are two sides
of the same coin. Doing one often means doing the other, and they’re both continu-
ous processes throughout the life of a project. Nothing and no one is perfect either, so
it’s valuable to revisit code early and often, especially when you start to feel friction.

 With that in mind, take a deep breath and relax. There’s plenty more to cover.

1.8 How to use this book
Generally speaking, this book is best experienced from cover to cover. I’ve laid out the
parts of the book so they build on one another; later parts use concepts from earlier
parts. In part 3, each chapter builds upon a software project you’ll start in chapter 6.
But feel free to skim or skip chapters that cover things you already know, with the
caveat that you may need to thumb back to an earlier chapter from time to time.

 Most chapters will leave you in a good place to incorporate a new concept or prac-
tice into your software development routine. If there’s a chapter whose concepts you
find particularly valuable, you might want to work on applying those concepts to your
projects until you’ve got the hang of them. Once you feel comfortable, you can come
back and read the next chapter.

 Remember that the code for the examples and exercises is in this book’s GitHub
repository (https://github.com/daneah/practices-of-the-python-pro), and also remem-
ber that most of the source code is meant as a way to check your own work after complet-
ing an exercise. Use the provided code if you’re stuck or you want to compare solutions,
but give each exercise your own effort first.

 Happy coding!

Refactored code reveals a more concise solutionListing 1.3

Constant data,
defined once

Also constant, no need for a function;
just reference “US_CAPITALS”.

https://github.com/daneah/practices-of-the-python-pro

16 CHAPTER 1 The bigger picture

Summary
 Python pulls as much weight in complex, enterprise projects as other major

programming languages.
 Python has one of the fastest growing user bases of any programming language.
 Design isn’t only a thing you draw on paper; it’s the process you follow to get

there.
 Design up front is an investment that will reward you with clean and flexible code

later on.
 You need to build software with a diverse audience in mind.

Part 2

Foundations of design

The basis for effective software is intentional design, and in the process of
designing software, you’ll find that the same few concepts pop up again and
again. Part 2 of this book will prepare you for the intricacies of large software
projects by covering these fundamentals of software design. You’ll learn how to
organize code, make it more efficient, and test that it works as you expect.

 As you read the rest of this book, you’ll see these concepts explicitly reiterated
from time to time. See if you can also tie the new things you learn back to these
concepts on your own. Frequent repetition of software design fundamentals will
help you make them part of your day-to-day work, where they’ll be most effective.

Separation of concerns

A cornerstone of clear code is the division of its various behaviors into small, manage-
able pieces. Clear code requires you to keep less knowledge in your head at any
given time, making the code simpler to reason about. Short segments of code with
clear intent are a big step in this direction, but bits of code should not be broken
up along arbitrary boundaries. Separating them by concern is an effective approach.

DEFINITION A concern is a distinct behavior or piece of knowledge your soft-
ware deals with. Concerns can range in granularity from how to calculate a
square root to how payments are managed in an e-commerce system.

In this chapter, I’ll discuss the tools built into Python for separating the concerns in
your code, as well as the philosophy that goes into deciding how and when to use
them.

This chapter covers
 Using Python’s features for code organization and

separation

 Choosing how and when to separate code into
distinct pieces

 The levels of granularity in separating code

19

20 CHAPTER 2 Separation of concerns

NOTE If you haven’t yet, you’ll want to set up Python on your computer so
you can follow along with the code in this book. The installation and best
practices are all covered in the appendix, so before you go too much further,
you should head there and get set up. I’ll be right here when you’re ready.
Remember that you can get the full source code for the book’s examples and
exercises in the book’s repository on GitHub (https://github.com/daneah/
practices-of-the-python-pro).

2.1 Namespacing
Like many programming languages, Python isolates code through the concept of
namespaces. As a program runs, it keeps track of all the known namespaces and the
information available in those namespaces.

 Namespaces are helpful in a few ways:

 As software grows, multiple concepts will need similar or identical names.
Namespaces help minimize collisions so it remains clear to which concept a
name refers.

 As software grows, it becomes exponentially more difficult to know what code is
already present in the codebase. Namespaces help you make educated guesses
about where code might live, if it does exist.

 When adding new code to a large codebase, the existing namespaces can guide
where the new code should live. If no obvious choice exists, a new namespace
might be appropriate.

Namespaces are so important, in fact, that they are included as the last statement in
“The Zen of Python” (if you’re unfamiliar with “The Zen of Python,” try firing up the
Python interpreter and typing import this).

Namespaces are one honking great idea—let’s do more of those!
—The Zen of Python

The names for all the variables, functions, and classes you’ve ever used in Python were
names in one namespace or another. Names, like x or total or EssentialBusiness-
DomainObject, are references to something. When your Python code says x = 3, it
means “assign the value 3 to the name x,” and you can then refer to x in your code. A
“variable” is a name that refers to a value, though names can refer to functions,
classes, and more in Python.

2.1.1 Namespaces and the import statement

When you first open the Python interpreter, the built-in namespace is populated with
all the stuff built into Python. This namespace contains built-in functions like print()
and open(). These built-ins have no prefix, and you don’t need to do anything special
to use them. Python makes them available to you anywhere in your code. That’s why
the famously easy print('Hello world!') Just Works™ in Python.

https://github.com/daneah/practices-of-the-python-pro
https://github.com/daneah/practices-of-the-python-pro
https://github.com/daneah/practices-of-the-python-pro

21Namespacing

 Unlike in some languages, you won’t explicitly create namespaces in your Python
code, but your code structure will affect what namespaces are created and how they
interact. As an example, creating a Python module automatically creates an additional
namespace for that module. At its simplest, a Python module is a .py file that contains
some code. A file named sales_tax.py, for example, is “the sales_tax module”:

sales_tax.py

def add_sales_tax(total, tax_rate):
return total * tax_rate

Each module has a global namespace, which code in the module can access freely.
Functions, classes, and variables that aren’t nested inside anything are in the module’s
global namespace:

sales_tax.py

TAX_RATES_BY_STATE = {
'MI': 1.06,
...

}

def add_sales_tax(total, state):
return total * TAX_RATES_BY_STATE[state]

Functions and classes in a module also have a local namespace that only they can
access:

sales_tax.py

TAX_RATES_BY_STATE = {
'MI': 1.06,
...

}

def add_sales_tax(total, state):
tax_rate = TAX_RATES_BY_STATE[state]
return total * tax_rate

A module that wants to use a variable, function, or class from another module must
import it into its global namespace. Importing is a way of pulling a name from some-
where else into the desired namespace.

receipt.py

from sales_tax import add_sales_tax

def print_receipt():
total = ...

TAX_RATES_BY_STATE is in the
module’s global namespace.

Code in the module can
use TAX_RATES_BY_STATE
without any fuss.

tax_rate is only in the local
scope for add_sales_tax().

Code in add_sales_tax()
can use tax_rate without
any fuss.

The add_sales_tax function is
added to the receipt global
namespace.

22 CHAPTER 2 Separation of concerns

state = ...
print(f'TOTAL: {total}')
print(f'AFTER TAX: {add_sales_tax(total, state)}')

So, to refer to a variable, function, or class in Python, one of the following must be
true:

 The name is in the Python built-in namespace.
 The name is the current module’s global namespace.
 The name is in the current line of code’s local namespace.

The precedence for conflicting names works in the opposite order: a local name will
override a global name, which will override a built-in name. You can remember this
because generally the definition most specific to the current code is the one that gets
used. This is shown in figure 2.1.

You might have seen a NameError: name 'my_var' is not defined error sometime
in your adventures with Python. That means the name my_var wasn’t found in any of
the namespaces known to that code. This usually means you never assigned my_var a
value, or you assigned it somewhere else and need to import it.

 Modules are a great way to begin splitting up code. If you have one long script.py
file with a bunch of unrelated functions in it, consider breaking those functions out
into modules.

add_sales_tax
still knows about
TAX_RATES_BY_STATE
and tax_rate from its
own namespace.

Each namespace can
access names from the
namespaces above it.

Names in lower-level
namespaces override
higher-level names.

Class namespace

Module global namespace

Python built-in namespace

Method namespace

x x

x

x

x

The specificity of namespacesFigure 2.1

23Namespacing

2.1.2

The many masks of importing

The syntax for importing in Python seems straightforward at first, but there are a few
ways to go about it, and each results in subtle differences in the information brought
into the namespace. Earlier, you imported the add_sales_tax() function from the
sales_tax module into the receipt module:

receipt.py

from sales_tax import add_sales_tax

This adds the add_sales_tax() function to the global namespace of the receipt mod-
ule. That’s all well and good, but suppose you add ten more functions to the sales_tax
module and want to use them all in receipt. If you continue down the same path,
you’ll end up with something like this:

receipt.py

from sales_tax import add_sales_tax, add_state_tax, add_city_tax,

➥ add_local_millage_tax, ...

There’s an alternative syntax that improves on this a bit:

receipt.py

from sales_tax import (
add_sales_tax,
add_state_tax,
add_city_tax,
add_local_millage_tax,
...

)

Still not great. When you need a host of functionality from another module, you can
import that module in full instead:

receipt.py

import sales_tax

This adds the whole sales_tax module to the current namespace, and its functions can
be referenced with a sales_tax. prefix:

receipt.py

import sales_tax

def print_receipt():
total = ...
locale = ...
...
print(f'AFTER MILLAGE: {sales_tax.add_local_millage_tax(total, locale)}')

24 CHAPTER 2 Separation of concerns

This has the benefit of avoiding long import statements, and, as you’ll see in the next
section, the prefix helps avoid namespace collisions.

WARNING Python allows you to import all the names from a module in short-
hand using from themodule import *. It’s tempting to use this form instead
of prefixing those names with themodule. throughout your code, but please
don’t! These wildcard imports can cause name collisions and make problems
hard to debug because you can’t see the specific names being imported. Stick
to explicit imports!

Namespaces prevent collisions2.1.3

If you want to get the current time in a Python program, you can do so by importing
the time() function from the time module:

from time import time
print(time())

You should see output like this:

1546021709.3412101

time() returns the current Unix time.1 The datetime module also contains something
with the name time, but it does something different:

from datetime import time
print(time())

This time you should see this output:

00:00:00

This time is actually a class, and calling it returns a datetime.time instance that
defaults to midnight (0 hours, 0 minutes, and so on). What happens when you import
them both?

from time import time
from datetime import time
print(time())

In cases of ambiguity, Python uses the most recent definition it knows about. If you
import time from one place and then import another time from another place, it will
only know about the latter. If you don’t make use of namespaces, it will be difficult to
tell which time() is being referenced in the code, and you might use the wrong one
by mistake. This is a compelling reason to import modules as a whole; it forces you to
prefix names from the module so that it’s clear where the names come from.

Which time is this?

1See the Wikipedia article for an explanation of Unix time: https://en.wikipedia.org/wiki/Unix_time.

https://en.wikipedia.org/wiki/Unix_time

25The hierarchy of separation in Python

import time
import datetime
now = time.time()
midnight = datetime.time()

Sometimes name collisions are difficult to avoid, even with the tools you’ve seen so far.
If you create a module with the same name as a module built into Python or from a
third-party library, and you need them both in one module, you’ll need more fire-
power. Fortunately, it’s one Python keyword away. You can alias a name to another
name when you import it, using the as keyword:

import datetime
from mycoollibrary import datetime as cooldatetime

Now datetime is available as expected, and the third-party datetime is available as
cooldatetime.

 You shouldn’t override Python’s built-in functionality unless you have a compelling
reason to, so it’s best to avoid using the same names as built-ins unless you intend to
replace them. But if you don’t know the whole standard library (I sure don’t!) it might
still happen by accident on occasion. You could alias your module to a new name
wherever you import it on other modules, but I recommend renaming the module
and updating any references to it throughout your code so your imports stay consis-
tent with the module’s filename.

NOTE Most integrated development environments (IDEs) will give you a
warning when you override the name of a Python built-in so you don’t go too
far down that road by accident.

With these importing practices, you should be able to import everything you need
without issue. Remember that module name prefixes (like time. and datetime.) are
helpful in the long run because namespace collisions can and do happen. When you
run into a collision, take a deep breath and confidently rework your import state-
ments or create an alias and be on your way!

2.2 The hierarchy of separation in Python
One way to distinguish separate concerns is to follow the Unix philosophy of “do
one thing and do it well.”2 When a particular function or class in your code is con-
cerned with a single behavior, you can improve it independent of the code that uses
it. In contrast, if behaviors are duplicated and mixed together throughout your
code, it may be difficult to update a particular behavior without thinking about—
and in the worst case, breaking—several other behaviors. Many functions on a web-
site, for example, might rely on information from the currently authenticated user.

It’s clear which
time this means.

This time is referenced
uniquely as well.

2See the Wikipedia article on Unix philosophy: https://en.wikipedia.org/wiki/Unix_philosophy.

https://en.wikipedia.org/wiki/Unix_philosophy

26 CHAPTER 2 Separation of concerns

If they all check authentication and fetch information about that user themselves,
they’ll all need to be updated when the details about authentication change. That’s a
lot of work, and if one function is missed, it may start doing unexpected things or
stop working altogether.

 Just as namespacing has a hierarchy of granularity in Python, so too does the wider
approach to separation of concerns. There are no steadfast rules about how deep or
shallow to make this hierarchy; sometimes it makes sense to call a function that calls a
function that calls a function. Remember that the goal of separating concerns is to
group like activities together and keep dissimilar activities isolated.

 The next sections cover the structural tools Python programs use to organize and
keep concerns separate. If you feel good about functions and classes, you can skip
ahead to section 2.2.3.

Functions2.2.1

If you’re not too comfortable with functions, think back to math class. Mathematical
functions are formulas, notated (in non-Python syntax) like f(x) = x^2 + 3, that
map inputs to outputs. Inputting x = 5 returns f(5) = 5^2 + 3 = 25 + 3 = 28. In
software, functions play the same role. Given a set of input variables, a function per-
forms some calculation or transformation and returns a result.

 This way of thinking about functions leads naturally to the idea that functions in
software should generally be short. If a function becomes too long or does too many
things, it can be difficult to characterize and therefore difficult to name. f(x) = x^2
+ 3 is a quadratic function of x, whereas f(x) = x^5 + 17x ^ 9 - 2x + 7 is more dif-
ficult to name. In software, mixing too many concepts leads to a nebulous mass of
code that can’t be named easily.

 Small functions are one of the first tools to reach for when trying to break up your
code. A function wraps a few lines of code and gives them a clear name for later refer-
ence. Creating a function not only makes it clearer what’s happening, but lets you
reuse the code as needed. Python itself does this: if you’ve used open() to read a file
or len() to get the length of a list, you’ve made use of functionality Python deemed
important enough to wrap and give a name.

 The process of breaking a problem into small, manageable pieces is called decom-
position. Imagine a mushroom breaking down a fallen tree. It turns the wood, made
of complex molecules, into more fundamental materials like nitrogen and carbon
dioxide. These then get recycled back into the ecosystem. Your code can be decom-
posed into functions that get recycled back into your software’s ecosystem, as shown
in figure 2.2.

 Suppose you’re creating a fan site for the Three Stooges (an American comedy
troupe3). To build the home page, you need to introduce the stooges: Larry, Curly,
and Moe. Given the list of names and the title of the act, the code should produce the

3https://en.wikipedia.org/wiki/The_Three_Stooges

https://en.wikipedia.org/wiki/The_Three_Stooges

27The hierarchy of separation in Python

A long stretch of code can be
difficult to understand. Nested

conditionals and tasks spread out
over many lines make

it hard to follow.

Identify the unique tasks being
executed in the code. Group
together lines that calculate
intermediate values with the

lines that calculate the
final result.

Wrap each task in a function
with a name that clearly indicates

what it does. Give each input
argument a name that conveys

its intent and, ideally,
its data type.

The value of decompositionFigure 2.2

string 'The Three Stooges: Larry, Curly, and Moe'. An initial implementation
could look like this:

names = ['Larry', 'Curly', 'Moe']
message = 'The Three Stooges: '
for index, name in enumerate(names):

if index > 0:
message += ', '

if index == len(names) - 1:
message += 'and '

message += name
print(message)

After doing some research, you realize the original lineup of the stooges was different,
and you want an accurate page for each lineup. Your initial temptation is to add code
to do the same work for the original lineup:

names = ['Moe', 'Larry', 'Shemp']
message = 'The Three Stooges: '
for index, name in enumerate(names):

if index > 0:
message += ', '

if index == len(names) - 1:
message += 'and '

message += name
print(message)

names = ['Larry', 'Curly', 'Moe']
message = 'The Three Stooges: '
for index, name in enumerate(names):

if index > 0:
message += ', '

if index == len(names) - 1:

28 CHAPTER 2 Separation of concerns

message += 'and '
message += name

print(message)

This works, but the original code wasn’t terribly clear to begin with, and now there are
two of them! Extracting the introduction logic into a function reduces the duplication
and gives the code a name to clarify what it does:

def introduce_stooges(names):
message = 'The Three Stooges: '
for index, name in enumerate(names):

if index > 0:
message += ', '

if index == len(names) - 1:
message += 'and '

message += name
print(message)

introduce_stooges(['Moe', 'Larry', 'Shemp'])
introduce_stooges(['Larry', 'Curly', 'Moe'])

Now the behavior has a clear name, and if you want to spend some time making the
code even clearer, you can focus on the introduce_stooges function body alone. As
long as the function continues accepting a list of names and continues printing the
introduction you want, you can be confident your code still works.4

 Pleased with your Three Stooges fan page, you decide to expand to other famous
groups. As you start working on the Teenage Mutant Ninja Turtles,5 though, you
notice an issue: the introduce_stooges function only introduces stooges (as you
might guess). As it turns out, the function has two concerns:

 Knowing the introduction is for the Three Stooges
 Introducing a list of names as the stooges

How do you move past this? You can generalize the function and separate the first
concern by extracting the group title (“The Three Stooges”, “Teenage Mutant Ninja
Turtles”, and so on) as another argument to the function.

def introduce(title, names):
message = f'{title}: '
for index, name in enumerate(names):

if index > 0:
message += ', '

if index == len(names) - 1:
message += 'and '

The extracted function takes
character names as a parameter.

Multiple sets of names can be
used with the same function.

_stooges is dropped from the
function name, and title is passed in.

4For a detailed discussion on extracting functions (and other valuable exercises), I highly recommend Martin
Fowler and Kent Beck, Refactoring, second edition (Addison-Wesley Professional, 2018), https://martin-
fowler.com/books/refactoring.html.

5http://mng.bz/RPan

http://mng.bz/RPan
https://martinfowler.com/books/refactoring.html
https://martinfowler.com/books/refactoring.html

29The hierarchy of separation in Python

message += name
print(message)

introduce('The Three Stooges', ['Moe', 'Larry', 'Shemp'])
introduce('The Three Stooges', ['Larry', 'Curly', 'Moe'])

introduce('Teenage Mutant Ninja Turtles',
['Donatello', 'Raphael', 'Michelangelo', 'Leonardo']

)

introduce('The Chipmunks', ['Alvin', 'Simon', 'Theodore'])

The function accommodates the requirements of your fan site now: it knows only that
groups have a title and several named members, and it uses that information to per-
form the introduction. It can accept new groups easily as you expand your site. If at
some point you need to change how you introduce the groups, you’ll know to head
over to the introduce() function.

 After decomposing code into functions, it’s likely you’ll end up with code that’s
longer than the original. But if you carefully decompose code by its concerns, drawing
out and explicitly naming the different things going on, you should see an improve-
ment in the readability of that code. Overall code length isn’t so important; it’s the
length of individual functions and methods that makes a difference.

 To that end, there’s still some work to be done on the introduce function. Its duty
is to form an introduction string from the group title and names. It shouldn’t neces-
sarily know how that list of names should be joined together, using commas and an
Oxford comma and so on. We can extract that bit into its own function as well.

def join_names(names):
name_string = ''

for index, name in enumerate(names):
if index > 0:

name_string += ', '
if index == len(names) - 1:

name_string += 'and '
name_string += name

return name_string

def introduce(title, names):
print(f'{title}: {join_names(names)}')

This will look like overkill to some—the introduce function doesn’t do much any-
more. The value in this kind of decomposition, where each concern is separated into
a function, pays dividends later when you’re trying to fix bugs, add features, and test
your code. If you notice a bug in the way names are joined, it’s easier to find the lines
to change in join_names than if it were all a single introduce function.

The group title gets
passed in when the
function is called.

Different groups
can be introduced
with one function.

This function handles only
how names are joined.

This function now knows only
that introductions are titles
followed by joined names.

30 CHAPTER 2 Separation of concerns

 In general, decomposition into functions that separate concerns allows for more
surgical changes; that is, you can be more precise with a change and have minimal
impact on the surrounding code. Over the course of a project, this can save you a sig-
nificant amount of time.

 I’ve mentioned that design, refactoring, and now decomposition and separation of
concerns are practices you should incorporate into a healthy iterative development
process. It might start to feel like you’re spinning plates instead of shipping code, but
as you progress into bigger software, you’ll find that you draw on these practices regu-
larly. The longevity and success of many projects is influenced by the quality of the
code, which is in turn influenced by the care taken in creating it. Try to sprinkle these
approaches into your development process as a seasoning to start with, and eventually
you’ll find that they become the staple ingredients.

TRY IT OUT

Now that you’ve got some experience extracting functions, see what functions are hid-
ing within listing 2.1, a (probably shoddy) implementation of Rock, Paper, Scissors. I
suggest running the code frequently as you work, to make sure the behavior remains
consistent. I’ve extracted an example set of functions in listing 2.2. As a hint, I decom-
posed the original code into six functions. Your mileage may vary, but remember that
you’re shooting for functions that have only one concern.

import random

options = ['rock', 'paper', 'scissors']
print('(1) Rock\n(2) Paper\n(3) Scissors')
human_choice = options[int(input('Enter the number of your choice: ')) - 1]
print(f'You chose {human_choice}')
computer_choice = random.choice(options)
print(f'The computer chose {computer_choice}')
if human_choice == 'rock':

if computer_choice == 'paper':
print('Sorry, paper beat rock')

elif computer_choice == 'scissors':
print('Yes, rock beat scissors!')

else:
print('Draw!')

elif human_choice == 'paper':
if computer_choice == 'scissors':

print('Sorry, scissors beat paper')
elif computer_choice == 'rock':

print('Yes, paper beat rock!')
else:

print('Draw!')
elif human_choice == 'scissors':

if computer_choice == 'rock':
print('Sorry, rock beat scissors')

elif computer_choice == 'paper':

Shoddy procedural codeListing 2.1

31The hierarchy of separation in Python

print('Yes, scissors beat paper!')
else:

print('Draw!')

import random

OPTIONS = ['rock', 'paper', 'scissors']

def get_computer_choice():
return random.choice(OPTIONS)

def get_human_choice():
'))choice:of yourthe numberint(input('Enter=choice_number

1]-OPTIONS[choice_numberreturn

def print_options():
print('\n'.join(f'({i}) {option.title()}' for i,

➥ option in enumerate(OPTIONS)))

def print_choices(human_choice, computer_choice):
print(f'You chose {human_choice}')
print(f'The computer chose {computer_choice}')

def print_win_lose(human_choice, computer_choice, human_beats,

➥ human_loses_to):
if computer_choice == human_loses_to:

print(f'Sorry, {computer_choice} beats {human_choice}')
elif computer_choice == human_beats:

print(f'Yes, {human_choice} beats {computer_choice}!')

Code with extracted functionsListing 2.2

def print_result(human_choice, computer_choice):
if human_choice == computer_choice:

print('Draw!')

if human_choice == 'rock':
 print_win_lose('rock', computer_choice, 'scissors', 'paper')

elif human_choice == 'paper':
 print_win_lose('paper', computer_choice, 'rock', 'scissors')

elif human_choice == 'scissors':
print_win_lose('scissors', computer_choice, 'paper', 'rock')

print_options()
human_choice = get_human_choice()
computer_choice = get_computer_choice()
print_choices(human_choice, computer_choice)
print_result(human_choice, computer_choice)

32 CHAPTER 2 Separation of concerns

Classes2.2.2

Code is made up of behaviors and data that accumulate over time. You’ve seen how to
extract behaviors into functions that accept input data and return a result. Over time,
you might start to notice that several functions work in tandem frequently. If you’re
passing the result of one function to another to another often, or if several of your
functions require the same input data, it’s possible a class is waiting to be extracted
from your code.

 Classes are templates of closely related behaviors and data. You can use classes to
create objects, or instances of the class that have the data and behaviors defined in the
class. The data becomes the state of the object; in Python, the data composes the attri-
butes of the object because the data is attributed to the object in question. The behav-
iors become methods, which are special functions that receive the object instance as an
additional argument (ubiquitously named self by Python developers). This allows
the methods to access or change the instance’s state. Together, the attributes and
methods are the members of a class.

 Classes in many languages contain a constructor, which is a special method used to cre-
ate an instance of the class. In Python, the __init__ method (an initializer) is more com-
monly used. The class instance has already been constructed when __init__ is called,
and the method sets up the initial state of the instance. __init__ accepts at least one
argument, which most Python developers call self, that is a reference to the instance
that’s been created. The method commonly accepts additional arbitrary arguments that
are used to set the initial state. The syntax for creating a class instance in Python looks
a lot like using a function: you use the class name instead of the function name, and the
arguments are the arguments (excluding self) to __init__.

 Have another look at the functions you decomposed from Rock, Paper, Scissors (list-
ing 2.3). What do you notice? All of the behavior and data are based on the three options
and which one each player chooses. Some of the functions use the same data; these
things seem closely related. Maybe a class for playing this game is waiting to be born.

import random

OPTIONS = ['rock', 'paper', 'scissors']

def get_computer_choice():
return random.choice(OPTIONS)

def get_human_choice():
'))choice:of yourthe numberint(input('Enter=choice_number

1]-OPTIONS[choice_numberreturn

Revisiting the Rock, Paper, Scissors codeListing 2.3

Functions use OPTIONS
to determine the choices
of the players.

def print_options():

33The hierarchy of separation in Python

print('\n'.join(f'({i}) {option.title()}' for i,

➥ option in enumerate(OPTIONS)))

def print_choices(human_choice, computer_choice):
print(f'You chose {human_choice}')
print(f'The computer chose {computer_choice}')

def print_win_lose(human_choice, computer_choice, human_beats,

➥ human_loses_to):
if computer_choice == human_loses_to:

print(f'Sorry, {computer_choice} beats {human_choice}')
elif computer_choice == human_beats:

print(f'Yes, {human_choice} beats {computer_choice}!')

def print_result(human_choice, computer_choice):
if human_choice == computer_choice:

print('Draw!')

if human_choice == 'rock':
print_win_lose('rock', computer_choice, 'scissors', 'paper')

elif human_choice == 'paper':
print_win_lose('paper', computer_choice, 'rock', 'scissors')

elif human_choice == 'scissors':
print_win_lose('scissors', computer_choice, 'paper', 'rock')

Given that the concerns of gathering and printing different pieces of the simulation
are nicely separated into functions, you’re now free to consider the separation of
higher-level concerns. Separating Rock, Paper, Scissors from other areas of your code
(maybe you’re making a whole arcade!) can be done with a class like the one shown in
figure 2.3. Notice the new simulate() method, which will hold the code that calls all
the other methods.

Several functions
use the human and
computer choices
for the simulation.

The human and computer
choices get passed around
frequently.

RockPaperScissorsSimulator

OPTIONS

human_choice

computer_choice

print_options()

print_choices()

print_win_lose()

print_result()

get_human_choice()

get_computer_choice()

Methods act on options, choices,
and the result of the simulation.

Attributes are all related to the
“rock”, “paper”, and “scissors” options.

simulate()

Figure 2.3 Wrapping related
behaviors and data in a class

34 CHAPTER 2 Separation of concerns

You can start by creating the class definition and moving the functions into it as meth-
ods, as shown in the following listing. Remember that methods take self as their first
argument.

import random

OPTIONS = ['rock', 'paper', 'scissors']

class RockPaperScissorsSimulator:
def get_computer_choice(self):

return random.choice(OPTIONS)

def get_human_choice(self):
'))choice:of yourthe numberint(input('Enter=choice_number

1]-OPTIONS[choice_numberreturn

def print_options(self):
print('\n'.join(f'({i}) {option.title()}' for i,

➥ option in enumerate(OPTIONS)))

def print_choices(self, human_choice, computer_choice):
print(f'You chose {human_choice}')
print(f'The computer chose {computer_choice}')

def print_win_lose(self, human_choice, computer_choice,

➥ human_beats, human_loses_to):
if computer_choice == human_loses_to:

print(f'Sorry, {computer_choice} beats {human_choice}')
elif computer_choice == human_beats:

print(f'Yes, {human_choice} beats {computer_choice}!')

def print_result(self, human_choice, computer_choice):
if human_choice == computer_choice:

print('Draw!')

if human_choice == 'rock':
self.print_win_lose('rock', computer_choice, 'scissors', 'paper')

elif human_choice == 'paper':
self.print_win_lose('paper', computer_choice, 'rock', 'scissors')

elif human_choice == 'scissors':
self.print_win_lose('scissors', computer_choice, 'paper', 'rock')

Once you’ve moved the functions, you can create a new simulate method for calling
them all. Within a class, you need to write self.some_method() to indicate you want
to call the some_method method on the class (as opposed to some other function in
the namespace). Note that even though some_method takes a self argument in its
definition, you do not pass it to the method when you call it. Python passes self to
methods automatically. simulate calls the functions to make the simulation run:

Moving functions into a class as methodsListing 2.4

Methods need a
“self” argument.

Methods with
existing arguments
still need “self”.

35The hierarchy of separation in Python

...

def simulate(self):
self.print_options()
human_choice = self.get_human_choice()
computer_choice = self.get_computer_choice()
self.print_choices(human_choice, computer_choice)
self.print_result(human_choice, computer_choice)

You might have noticed that even though everything’s contained in a class now, the
data is still being passed all over. But now that things are contained, it’s easier to make
some additional changes. You can create an initializer that sets up the attributes you
need for the class, namely human_choice and computer_choice, with a default value
of None:

...

def __init__(self):
self.computer_choice = None
self.human_choice = None

Now methods can access these attributes using the self argument instead of passing
them around. As a result, you can update the method bodies to use self.human_
choice in place of human_choice and remove the human_choice argument altogether.
computer_choice gets the same treatment.

 The code boils down to what you see in the following listing.

import random

OPTIONS = ['rock', 'paper', 'scissors']

class RockPaperScissorsSimulator:
def __init__(self):

self.computer_choice = None
self.human_choice = None

def get_computer_choice(self):
self.computer_choice = random.choice(OPTIONS)

def get_human_choice(self):
'))choice:of yourthe numberint(input('Enter=choice_number

1]-OPTIONS[choice_number=self.human_choice

def print_options(self):
print('\n'.join(f'({i}) {option.title()}' for i,

➥ option in enumerate(OPTIONS)))

def print_choices(self):

UsingListing 2.5 self to access attributes

Methods can set
attributes on self.

Methods don’t need to take
attributes as parameters.

36 CHAPTER 2 Separation of concerns

print(f'You chose {self.human_choice}')
print(f'The computer chose {self.computer_choice}')

def print_win_lose(self, human_beats, human_loses_to):
if self.computer_choice == human_loses_to:

print(f'Sorry, {self.computer_choice} beats {self.human_choice}')
elif self.computer_choice == human_beats:

print(f'Yes, {self.human_choice} beats {self.computer_choice}!')

def print_result(self):
if self.human_choice == self.computer_choice:

print('Draw!')

if self.human_choice == 'rock':
self.print_win_lose('scissors', 'paper')

elif self.human_choice == 'paper':
self.print_win_lose('rock', 'scissors')

elif self.human_choice == 'scissors':
self.print_win_lose('paper', 'rock')

def simulate(self):
self.print_options()
self.get_human_choice()
self.get_computer_choice()
self.print_choices()
self.print_result()

It took some work to add self. to the attribute references throughout the class, but
much of it is simplified. In particular, the methods take fewer arguments, and the
simulate method does little more than glue the other methods together. Another
great outcome is that the code to simulate a game of Rock, Paper, Scissors now looks
like this:

RPS = RockPaperScissorsSimulator()
RPS.simulate()

Pretty concise, huh? You first decomposed a bunch of code into functions to separate
some concerns. You then grouped them into a class to separate a higher-level con-
cern. Now it’s easy to call on all the hard behind-the-scenes work with a short expres-
sion. This is thanks to carefully selecting and grouping related data and behaviors.

 When a class’s methods and attributes are closely related, it is said to have high
cohesion. A class is cohesive if its contents make sense together as a whole. We want our
classes to have high cohesion because if everything in a class is closely related, our
concerns are likely to be well separated. A class with too many concerns has low cohe-
sion because those concerns muddy the intent of the class. Usually I end up creating a
class only when this cohesion is already clear to me; some code already exhibits relat-
edness through the data and behaviors it contains.

 When a class depends on another class, those classes are said to be coupled. If a class
depends on many details of another class, such that changing one requires changing

Methods can
read attributes
from self.

37The hierarchy of separation in Python

the other, those classes are tightly coupled. Tight coupling is expensive because it can
lead to spending more time managing the ripple effects of a change. Loose coupling is
the desired end state. You’ll learn more strategies for achieving loose coupling in
chapter 10.

 A set of highly cohesive classes serves much the same purpose as a set of clear func-
tions. It clarifies intent, helps us navigate existing code, and guides us in adding new
code. This all helps us produce the features we want faster, instead of requiring us to
spend time spelunking in the caverns of our software.

2.2.3 Modules

You’ve already learned the basics of creating modules in Python: a .py file that con-
tains valid Python code is already a module! I touched on the question of when to cre-
ate one, but let’s circle back to that.

 You might have started this chapter knowing that most of your code lived in one
giant procedural blob in script.py. And if you’ve got a short attention span like me,
you might have gone and extracted a number of functions and classes from it already.
Welcome back.

 Although your code is now nicely separated into well-named functions, classes, and
methods, it all still lives in script.py. Eventually, the minimal structure provided by a
single file will be insufficient for holding all your code in a sensible way. You won’t
remember if the function you’re looking for is on line 5 or line 205. Breaking it down
into memorable categories of behavior is the path forward.

 The concerns you identify will map well to the modules you should create. Be con-
servative with the effort you spend guessing what these categories should be up front.
They’ll change frequently at the start anyway, as your mental model of the system
evolves and improves. But spend a little time sketching out what you think you’ll need,
and remain open to the possibility that a different structure will make more sense
later. The clearest code is the code you don’t write: every line adds additional cogni-
tive load. The next best thing after no code is well-organized code.

 Modules create additional structure around the code in them, exclaiming, “The
code contained here is all about statistics!” If you need to do statistics things, you
know to import statistics and use what’s there. If what you need isn’t there already,
at least you have a good idea where to put it. Can you say the same for a 500-line
script.py file? Perhaps, but not for long.

2.2.4 Packages

I’ve been praising the use of modules for their ability to neatly break code up. Why do
we need anything else?

 Remember that separation of concerns is a hierarchy and that name collisions can
still happen. Suppose your fan site has gotten popular, and now you need a database
and a search page to keep track of it all. You’ve written record.py, a module for creat-
ing database records, and query.py, a module for querying the database:

38 CHAPTER 2 Separation of concerns

.
query.py
record.py

Now you need to write a module for creating search queries. What do you call it?
search_query.py might be an okay name, but then it would make sense to rename
query.py to database_query.py for clarity:

.
database_query.py
record.py
search_query.py

When two modules are conflicting in name or concept like this, you’ve outgrown the
structure you have in place. Packages add further structure by splitting modules up
into related groups. In Python, a package is nothing more than a directory that con-
tains modules (.py files) and a special file that tells Python to treat the directory as a
package (__init__.py). This file is often empty, but it can be used for more complex
management of imports. Like a sales_tax.py file becomes “the sales_tax module,” an
ecommerce/ directory becomes “the ecommerce package.”

WARNING The term “packages” also refers to third-party Python libraries you
can install from the Python Package Index (PyPI). I will do my best to disam-
biguate where needed in this book, but be warned that some resources won’t
make the distinction.

For the database and search modules, a database package and a search package would
make good sense. Then the database_ and search_ prefixes for the modules will be
redundant and can be removed.

 You can expand your code hierarchy into a package, which ultimately creates a
nice structure that you can read and navigate. Each package addresses a high-level
area of concern, and each module in a package manages a smaller concern. Within
each module, classes, methods, and functions further clarify the different pieces of
the application.

.
database

__init__.py
query.py
record.py

search
__init__.py
query.py

Where you previously would have written import query to use the database query
module, you’ll now need to import it from the database package instead. You can write
import database.query, which will require you to prefix names from the module

39The hierarchy of separation in Python

with database.query., or you can write from database import query. If you’re only
using the database code in a particular module, the latter might be fine. But if you
need to use the new search query code and the database code in a module, you must
disambiguate the names, and it helps to maintain the prefixes:

import database.query
import search.query

You could also use the from syntax and alias each module:

from database import query as db_query
from search import query as search_query

Aliases can be too verbose, though, and sometimes downright confusing if they’re
poorly named. Use them sparingly to avoid naming collisions.

 You can nest packages in a process similar to creating an initial package. Create a
directory with an __init__.py file, and put modules or packages inside:

.
math

__init__.py
statistics

__init__.py
std.py
cdf.py

calculus
__init__.py
integral.py

...

In this example, all the math code is in the math package, and each subfield of math-
ematics has its own subpackage that contains modules. If you want to look at the code
for calculating an integral, you can make a guess that it’s in math/calculus/integral.py.
This aspect of packages—being able to navigate to where code is likely to live—becomes
invaluable as a project grows in size.

 Importing the integral module works like before, with additional prefixes to get to
the module of interest:

from math.calculus import integral
import math.calculus.integral

Note that from math import calculus.integral won’t work; you can only import a full
dotted path using import ... or a single name using from ... import

40 CHAPTER 2 Separation of concerns

Summary
 Separation of concerns is a major key to understandable code; many design

concepts arise directly from this principle.
 Functions extract named concepts from procedural code. Clarity and separa-

tion are the primary objectives of extraction; reuse is a secondary benefit.
 Classes group closely related behaviors and data together into an object.
 Modules group related classes, functions, and data while keeping independent

concerns separate. Explicitly importing code from other modules makes it clear
what’s being used where.

 Packages help create a hierarchy of modules that helps with naming and code
discovery.

Abstraction
 and encapsulation

You’ve already seen that organizing your code into functions, classes, and modules
is a great way to separate concerns, but you can also use these techniques to separate
complexity in your code. Because it’s difficult to remember every detail about your
software at all times, in this chapter you’ll learn to use abstraction and encapsula-
tion to create levels of granularity in your code so you can worry about the details
only when you need to.

This chapter covers
 Understanding the value of abstraction in large

systems

 Encapsulating related code into classes

 Using encapsulation, inheritance, and
composition in Python

 Recognizing programming styles in Python

41

42 CHAPTER 3 Abstraction and encapsulation

What is abstraction?3.1
When you hear the word abstract, what do you think of? Usually a Jackson Pollock
painting or a Calder sculpture runs through my mind. Abstract art is marked by a free-
dom from concrete form, often only suggestive of a specific subject. Abstraction, then,
would be the process of taking something concrete and stripping it of specifics. When
speaking about abstraction in software, this is exactly right!

The “black box”3.1.1

As you develop software, pieces of it will come to represent concepts in full. Once
you’ve finished developing a particular function, for example, it can be used for its
intended purpose over and over again without you having to think too hard about
how it works. At this point, the function has become a black box. A black box is a calcu-
lation or behavior that “just works”—it doesn’t need to be opened up and examined
each time you need it (see figure 3.1).

Suppose you’re building a natural-language processing system that determines if a
product review is positive, negative, or neutral. Such a system has many steps along the
way, as shown in figure 3.2:

1 Break up the review into sentences.
2 Break each sentence into words or phrases, generally called tokens.
3 Simplify word variations to their root words, called lemmatization.
4 Determine the grammatical structure of the sentence.
5 Calculate the polarity of the content by comparing it to manually labeled train-

ing data.
6 Calculate the overall magnitude of polarity.
7 Choose a final positive, negative, or neutral determination for the product review.

Each step in the sentiment analysis workflow is composed of many lines of code. By
rolling that code up into concepts like “break into sentences” and “determine gram-
matical structure,” the whole workflow becomes easier to follow than if you were try-
ing to comprehend all the code at once. If someone wants to know the specifics of a
particular step in the workflow, they can choose to take a deeper look. This idea of
abstracting an implementation is useful for human comprehension, but it’s also some-
thing that can be formalized in code to produce more stable results.

Input data Output dataMagical black box

 happens in this box,
but you don’t need to know what,
as long as it works as expected.

Something Figure 3.1 Treating
working software as
a black box

43What is abstraction?

In chapter 2, you learned how to identify the concerns of your code and extract them
into functions. Abstracting a behavior into a function allows you to freely change how
that function calculates a result, as long as the inputs and return data type stay the
same. This means if you find a bug or a faster or more accurate way of performing the
calculation, you can swap that behavior in without other code needing to change as a
result. This gives you flexibility as you iterate on software.

3.1.2 Abstraction is like an onion

You saw in figure 3.2 that each step in a workflow generally represents some lower-level
code. Some of those steps, though, such as determining the grammatical structure of a sen-
tence, are quite involved. Complex code like this will often benefit from layers of abstrac-
tion; low-level utilities support small behaviors, which in turn support more involved
behaviors. Because of this, writing and reading code in large systems is often like peeling
an onion, revealing smaller, more tightly packed pieces of code underneath (figure 3.3).

Split
sentences

I’ve been
using it
a lot.

I’ve
been
using

it
lot.

I
use

it
lot

I: subj.
use: v.
it: obj.

lot: mod.
+0.23+0.5

Split
words

Lemmatize
words

Each step further breaks down and analyzes the product review text.
The whole workflow has one input and one output, but a lot goes on in

between. Breaking it up into distinct functions that have their own
 intermediate inputs and outputs helps keep things manageable.

Identify parts
of speech

Calculate
polarity

Calculate
magnitude

Positive

Neutral

Negative

Product
review

Determining whether a product review is positive, negative, or neutralFigure 3.2

From the center out, functionality
grows increasingly complex
and decreasingly reusable.

Credit card
processing

HTTP calls

String
manipulation,

database
operations

E-commerce
system

Figure 3.3 Abstraction
works in layers of complexity.

44 CHAPTER 3 Abstraction and encapsulation

Small, focused behaviors that get used again and again sit in the lower layers and need
to change infrequently. The big concepts, business logic, and complex moving parts
show up as you go further out; they change more frequently because of changing
requirements, but they still make use of the smaller behaviors.

 When you’re starting out, it’s common to write one long, procedural program that
gets a job done. This works fine when prototyping, but it reveals its poor maintainabil-
ity when someone needs to read all 100 lines of code to figure out where they need to
make a change or fix a bug. Introducing abstraction with features of the language
makes it easier to pinpoint the relevant code. In Python, features like functions,
classes, and modules help abstract behavior. Let’s see how using functions in Python
helps with the first two steps of the sentiment-analysis workflow.

 When working through the code in listing 3.1, you might notice that it does some
similar work twice—the work of splitting a string up by sentence and by individual
words in each sentence is quite similar. Each step performs the same operation, with
different inputs. This is usually an opportunity to factor a behavior into its
own function.

import re

product_review = '''This is a fine milk, but the product
line appears to be limited in available colors. I
could only find white.'''

sentence_pattern = re.compile(r'(.*?\.)(\s|$)', re.DOTALL)
matches = sentence_pattern.findall(product_review)
sentences = [match[0] for match in matches]

word_pattern = re.compile(r"([\w\-']+)([\s,.])?")
for sentence in sentences:

matches = word_pattern.findall(sentence)
words = [match[0] for match in matches]
print(words)

Listing 3.1 A procedure for splitting a paragraph into sentences and tokens

The product review as a string

Matches full
sentences ending
with a period

Finds all sentences
in the review

findall returns list of
(sentence, white space) pairs

Matches single words

For each sentence,
gets all the words

You can see that the work to find the sentences and words is similar, with the pattern
to match against being the distinguishing feature. Some logistics also have to be taken
care of, like dealing with the output of findall, that clutter up the code. At a quick
glance, the intent of this code might not be obvious.

NOTE In real natural-language processing, splitting sentences and words is
difficult, so difficult, in fact, that the software to parse them generally uses
probabilistic modeling to determine the result. Probabilistic modeling uses a
large body of input testing data to determine the likely correctness of a partic-
ular result. The result might not always be the same! Natural languages are
complex, and it shows when we try to make computers understand them.

45What is abstraction?

How can abstraction help improve the sentence parsing? With a little help from
Python functions, you can simplify this a bit. In the following listing, the pattern-
matching is abstracted into a get_matches_for_pattern function.

import re

def get_matches_for_pattern(pattern, string):
matches = pattern.findall(string)
return [match[0] for match in matches]

product_review = '...'

sentence_pattern = re.compile(r'(.*?\.)(\s|$)', re.DOTALL)
sentences = get_matches_for_pattern(

sentence_pattern,
product_review,

)

word_pattern = re.compile(r"([\w\-']+)([\s,.])?")
for sentence in sentences:

words = get_matches_for_pattern(
word_pattern,
sentence

)
print(words)

In the updated parsing code, it’s more clear that the review is being broken into pieces.
With well-named variables and a clear, short for loop, the two-stage structure of the pro-
cess is also clear. Someone looking at this code later will be able to read the main code,
only digging into how get_matches_for_pattern works if they’re curious or want to
change it. Abstraction has introduced clarity and code reuse into this program.

3.1.3 Abstraction is a simplifier

I want to emphasize that abstraction is useful for making code easier to understand; it
achieves this by keeping the intricacies of some functionality hidden away until you
want to know more. This is a technique used in writing technical documentation as
well as designing the interfaces used to interact with code libraries.

 Understanding code is much like understanding a passage from a book. A passage
has many sentences, which are like the lines of code. In any given sentence, you may
find a word with which you’re unfamiliar. In software, this might be a line of code that
does something new or different than you’re used to. When you find such words in
books, you might look them up in the dictionary. The only equivalent when dealing
with lengthy procedures is diligent code commenting.

Refactored sentence parsingListing 3.2

A new function to do
the pattern-matching

Now you can ask the function
to do the hard work.

You can reuse the function
whenever you need to.

46 CHAPTER 3 Abstraction and encapsulation

 One way you can tackle this is by abstracting related bits of your code into func-
tions that clearly state what they do. You saw this in listings 3.1 and 3.2. The function
get_matches_for_pattern gets the matches for a given pattern from a string. Before
it was updated, though, the intent of that code was not so clear.

TIP In Python, you can add additional context to a module, class, method, or
function using docstrings. Docstrings are special lines near the beginning of
these constructs that can tell the reader (as well as some automated software)
how the code behaves. You can read more about docstrings on Wikipedia
(https://en.wikipedia.org/wiki/Docstring).

Abstraction reduces cognitive load, the amount of effort required by your brain to think
about or remember something, so that you can spend your time making sure your
software does what it needs to do!

Decomposition enables abstraction3.1.4

As I mentioned in chapter 2, decomposition is the separation of something into its
constituent components. In software, that means doing the kinds of things you saw
earlier: separating sections of code that do a single thing into functions. In fact, it also
relates to the discussion on design and workflow from chapter 1. The common theme
here is that software written in small parts that work in tandem often leads to more
maintainable code than software written in one large blob. You’ve seen that this can
help reduce cognitive load and make code easier to understand. Figure 3.4 shows how
a huge system can be decomposed all the way down to achievable tasks.

This e-commerce system
is all-encompassing and

difficult to understand in full.

Breaking the system into
its constituent phases helps

give some shape to everything
that’s happening.

Breaking each phase into
tasks results in actionable

pieces of functionality.

E-commerce
system

Catalog

Calculate
tax

Calculate
shipping

Subtract
discount

Payment
processing

Shopping
cart

Figure 3.4 Decomposition into granular components eases understanding.

https://en.wikipedia.org/wiki/Docstring

47Encapsulation

See how the pieces get smaller from left to right? Trying to build something big in one
piece like the left side is like packing your whole house in a shipping container. Build-
ing things like the right side is like organizing each room of your house into small
boxes you can carry. Decomposition helps you handle big ideas in small increments.

3.2 Encapsulation
Encapsulation is the basis for object-oriented programming. It takes decomposition
one step further: whereas decomposition groups related code into functions, encapsu-
lation groups related functions and data into a larger construct. This construct acts as
a barrier (or capsule) to the outside world. What constructs are available in Python?

3.2.1 Encapsulation constructs in Python

Most often, encapsulation in Python is done with a class. In classes, functions become
methods; methods are similar to functions, but they are contained in a class and often
receive an input that is either an instance of the class or the class itself.

 In Python, modules are also a form of encapsulation. Modules are even higher-level
than classes; they group multiple related classes and functions together. For example,
a module dealing with HTTP interactions could contain classes for requests and
responses, as well as utility functions for parsing URLs. Most *.py files you encounter
would be considered modules.

 The largest encapsulation available
in Python is a package. Packages encap-
sulate related modules into a directory
structure. Packages are often distrib-
uted on the Python Package Index
(PyPI) for others to install and reuse.

 Take a look at figure 3.5 and notice
that the pieces of the shopping cart
are decomposed into distinct activi-
ties. They’re also isolated; they don’t
depend on each other to perform a
task. Any cooperation between activi-
ties is coordinated at the higher shop-
ping-cart level. The shopping cart
itself is isolated inside the e-commerce
application; any information it needs
will be passed into it. You can think of
encapsulated code as having a castle
wall around it, where the functions
and methods are the drawbridge for
getting in or out.

E-commerce
system

Calculate
tax

Calculate
shipping

Subtract
discount

Shopping cart

Figure 3.5 By decomposing a system into small
parts, you can encapsulate behaviors and data into
isolated pieces. Encapsulation encourages you to
reduce the responsibilities of any given portion of
code, helping you avoid complicated dependencies.

48 CHAPTER 3 Abstraction and encapsulation

 Which of these pieces do you think would be a

 Method?
 Class?
 Module?
 Package?

The three smallest pieces—calculating tax, calculating shipping, and subtracting a dis-
count—would likely be methods inside a class that represents the shopping cart. The
e-commerce system seems like it could have enough functionality to be a package
because the shopping cart is just one part of that system. Different modules within the
package could arise depending on how closely related they are to each other. But how
do they work together if they’re each surrounded by a castle wall?

Expectations of privacy in Python3.2.2

Many languages formalize the “castle wall” aspect of encapsulation by introducing the
concept of privacy. Classes can have private methods and data that can’t be accessed by
anyone but instances of the class. This is in contrast to public methods and data, which
are often referred to as the interface of the class because this is how other classes inter-
face with it.

 Python has no true support for private methods or data. Instead, it follows a philos-
ophy of trusting developers to do the right thing. A common convention does help in
this arena, though. Methods and variables intended for use within a class but not from
outside the class are often prefixed with an underscore. This provides a hint to future
developers that a particular method or variable isn’t intended as part of the public
interface of the class. Third-party packages often state loudly in their documentation
that such methods are likely to change from version to version and should not be
explicitly relied on.

 In chapter 2, you learned about coupling between classes, and that loose coupling
is the desired state. The more methods and data a particular class depends on from
another class, the more coupled they become. This is magnified when a class depends
on the internals of another class because that means most of the class can’t be
improved in isolation without the risk of breaking other code.

 Abstraction and encapsulation work together by grouping related functionality
together and hiding the parts of it that don’t matter to anyone else. This is sometimes
called “information hiding,” and it allows the internals of a class (or system in gen-
eral) to change rapidly without other code having to change at the same rate.

Try it out3.3
I’d like you to get some practice with encapsulation now. Suppose you’re writing code
to greet new customers to an online store. The greeting makes customers feel wel-
come and offers them an incentive to stick around. Write a greeter module that con-
tains a single class, Greeter, that has three methods:

49Try it out

1 _day(self)—Returns the current day (Sunday, for example)
2 _part_of_day(self)—Returns “morning” if the current hour is before 12 P.M.,

“afternoon” if the current hour is 12 P.M. or later but before 5 P.M., and “eve-
ning” from 5 P.M. onward

3 greet(self, store)—Given the name of a store, store, and the output of the
previous two methods, prints a message of the form

Hi, welcome to <store>!
How’s your <day> <part of day> going?
Here’s a coupon for 20% off!

The _day and _part_of_day methods can be signified as private (named with a lead-
ing underscore) because the only functionality the Greeter class needs to expose is
greet. This helps encapsulate the internals of the Greeter class so that its only public
concern is performing the greeting itself.

TIP You can use datetime.datetime.now() to get the current datetime
object, using the .hour attribute for the time of day and .strftime('%A') to
get the current day of the week.

How did it go? Your solution should look something like the following example.

from datetime import datetime

class Greeter:
def __init__(self, name):

self.name = name

def _day(self):
return datetime.now().strftime('%A')

def _part_of_day(self):
current_hour = datetime.now().hour

if current_hour < 12:
part_of_day = 'morning'

elif 12 <= current_hour < 17:
part_of_day = 'afternoon'

else:
part_of_day = 'evening'

return part_of_day

def greet(self, store):

A module to generate greetings for an online storeListing 3.3

Formats the datetime to
get the current day name

Determines the part of day
based on the current hour

Prints the greeting using
all the calculated bits

print(f'Hi, my name is {self.name}, and welcome to {store}!')
print(f'How\'s your {self._day()} {self._part_of_day()} going?')
print('Here\'s a coupon for 20% off!')

...

50 CHAPTER 3 Abstraction and encapsulation

The Greeter prints the desired message, so everything’s great, right? If you look care-
fully, though, the Greeter knows how to do too much. The Greeter should only greet
people; it shouldn’t be responsible for determining the day of the week and what part
of the day it is! The encapsulation isn’t ideal. What are you to do?

Refactoring3.3.1

Encapsulation and abstraction are often iterative processes. As you write more code,
constructs that made sense before may seem awkward or forced. I assure you that this
is totally natural. The feeling that your code is working against you might mean it’s
time to refactor. Refactoring code means updating how it’s structured to serve your
needs more effectively. When you refactor, you will often need to change the ways you
represent behaviors and concepts. Moving data and implementations around is a nec-
essary part of improving the code. It’s kind of like rearranging the living room every
few years to fit your current mood.

 Refactor your Greeter code now by moving the methods for getting information
about the day and time out of the Greeter class and making them standalone func-
tions within the module.

 The functions never used the self argument when they were methods, so they’ll
look pretty much the same but without that argument:

def day():
return datetime.now().strftime('%A')

def part_of_day():
current_hour = datetime.now().hour

if current_hour < 12:
part_of_day = 'morning'

elif 12 <= current_hour < 17:
part_of_day = 'afternoon'

else:
part_of_day = 'evening'

return part_of_day

The Greeter class can then call these functions by referencing them directly instead
of with the self. prefix:

class Greeter:
...

def greet(self, store):
print(f'Hi, my name is {self.name}, and welcome to {store}!')
print(f'How\'s your {day()} {part_of_day()} going?')
print('Here\'s a coupon for 20% off!')

51Programming styles are an abstraction too

Now the Greeter only knows the information it needs to make a greeting, without
worrying about the details of how to get that information. What’s also nice is that the
day and part_of_day functions can be used elsewhere if needed, without having to
reference the Greeter class. That’s two benefits in one!

 Eventually, you might develop more datetime-related features, at which point it
could make sense to refactor all those features into their own module or class. I often
wait to do this until several functions or classes present a clear relationship, but some
developers like to do this from the start to be strict about keeping things separate.

3.4 Programming styles are an abstraction too
A number of programming styles (or paradigms) have become popular over the years,
often sprouting out of a particular business domain or user base. Python supports sev-
eral styles, and they are abstractions in their own ways. Remember that abstraction is
the act of storing concepts away so they can be digested easily. Each programming
style stores information and behavior a bit differently. No one style is “right,” but some
are better than others at tackling specific problems.

3.4.1 Procedural programming

I’ve discussed and shown some examples of procedural programming in this and previous
chapters. Procedural software prefers to operate using procedure calls, which we tend to
call “functions.” These functions aren’t encapsulated into classes, so they often rely
only on their inputs and occasionally on some global state.

NAMES = ['Abby', 'Dave', 'Keira']

def print_greetings():
greeting_pattern = 'Say hi to {name}!'
nice_person_pattern = '{name} is a nice person!'
for name in NAMES:

print(greeting_pattern.format(name=name))
print(nice_person_pattern.format(name=name))

If you’re fairly new to programming, this style will likely feel familiar because it’s a
common jumping-off place. Going from one long procedure to a procedure that calls
a few functions tends to feel natural, so it’s a good approach to teach first. The bene-
fits of procedural programming strongly overlap with those discussed in section 3.1.4
because procedural programming focuses heavily on functions.

3.4.2 Functional programming

Functional programming sounds like it would be the same as procedural program-
ming—function is right there in the name! But although it’s true that functional pro-
gramming relies heavily on functions as the form of abstraction, the mental model is
quite different.

A standalone function that
relies only on NAMES

52 CHAPTER 3 Abstraction and encapsulation

 Functional languages require you to think about programs as compositions of
functions. for loops are replaced by functions that operate on lists, for example. In
Python, you might write the following:

numbers = [1, 2, 3, 4, 5]
for i in numbers:

print(i * i)

In a functional language, you might write it like this:

print(map((i) => i * i, [1, 2, 3, 4, 5]))

In functional programming, functions sometimes accept other functions as argu-
ments or return them as results. This is seen in the previous snippet; map accepts an
anonymous function that takes one argument and multiplies it by itself.

 Python has a number of functional programming tools; many of these are available
using built-in keywords, and others are imported from built-in modules like functools
and itertools. Though Python supports functional programming, it isn’t often a pre-
ferred approach. Some common features of functional languages, like the reduce
function, have been moved to functools.

 Many feel that the imperative Python way of performing some of these operations
is more clear. Using functional Python features would look like this:

from functools import reduce

squares = map(lambda x: x * x, [1, 2, 3, 4, 5])
should = reduce(lambda x, y: x and y, [True, True, False])
evens = filter(lambda x: x % 2 == 0, [1, 2, 3, 4, 5])

The preference in Python would be the following:

squares = [x * x for x in [1, 2, 3, 4, 5]]
should = all([True, True, False])
evens = [x for x in [1, 2, 3, 4, 5] if x % 2 == 0]

Try each approach and print the variables afterward. You’ll see that they produce
identical results; it’s up to you to use the style you find most understandable.

 One functional feature of Python I enjoy is functools.partial. This function
allows you to create a new function from an existing function with some of the origi-
nal function’s arguments set. This is sometimes clearer than writing a new function
that calls the original function, especially in cases where a general-use function
behaves like a more specifically named function. In the case of raising numbers to a
power, x to the power of 2 is commonly called the square of x, and x to the power of 3
is commonly called the cube of x. You can see how this works in Python with the par-
tial helper:

53Programming styles are an abstraction too

from functools import partial

def pow(x, power=1):
return x ** power

square = partial(pow, power=2)
cube = partial(pow, power=3)

Using familiar names for behaviors can help a great deal for those reading your code
later down the line.

 Functional programming used carefully can offer a number of performance bene-
fits compared to procedural programming, making it useful in computationally
expensive areas like mathematics and data simulation.

3.4.3 Declarative programming

Declarative programming focuses on declaring the parameters of a task without specifying
how to accomplish it. The details of accomplishing the task are mostly or fully abstracted
from the developer. This is useful when you need to repeat a highly parametric task with
only slight variations to the parameters. Often this style of programming is realized via
domain-specific languages (DSLs). DSLs are languages (or language-like markup) that are
highly specialized for a specific set of tasks. HTML is one such example; developers can
describe the structure of the page they want to create without saying anything about how
a browser should convert a <table> to lines and characters on a screen. Python, on the
other hand, is a general-purpose language that can be used for many purposes and requires
direction from a developer.

 Consider exploring declarative programming when your software lets users do
something highly repetitive, like translating code to another system (SQL, HTML,
and so on) or creating multiple similar objects for repeated use.

 A widely used example of declarative programming in Python is the plotly pack-
age. Plotly lets you create graphs from data by describing the type of graph you’d like.
An example from the plotly documentation (https://plot.ly/python/) looks like this:

import plotly.graph_objects as go

trace1 = go.Scatter(
x=[1, 2, 3],
y=[4, 5, 6],
marker={'color': 'red', 'symbol': 104},
mode='markers+lines',
text=['one', 'two', 'three'],
name='1st Trace',

)

A new function, square, that
acts like pow(x, power=2)

A new function, cube, that
acts like pow(x, power=3)

Declares the intent to
build a scatter plot

Declares the shape
of the x-axis data

Declares the shape of the y-axis
data; easy to compare to x

Declares the line
marker appearance

Declares that markers and
lines will be used in the plot

Declares the tooltip text for each marker

https://plot.ly/python/

54 CHAPTER 3 Abstraction and encapsulation

This sets the data for the plot, as well as the visual characteristics. Each desired out-
come is declared instead of being added procedurally.

 For comparison, imagine a procedural approach. Instead of supplying several
pieces of configuration data to a single function or class, you would instead perform
each configuration step as an independent line of a longer procedure:

trace1 = go.Scatter()
trace1.set_x_data([1, 2, 3])
trace1.set_y_data([4, 5, 6])

3.5

Each piece of information is
set explicitly with methods.

trace1.set_marker_config({'color': 'red', 'symbol': 104, 'size': '10'})
trace1.set_mode('markers+lines')
...

Declarative style can provide a more succinct interface when a lot of configuration is
to be done by the user.

Typing, inheritance, and polymorphism
When I talk about typing here, I don’t mean typing on a keyboard. A language’s typ-
ing, or type system, is how it chooses to manage data types of variables. Some lan-
guages are compiled and check data types at compilation time. Some check types at
runtime. Some languages infer the data type of x = 3 to be an integer, whereas others
require int x = 3 explicitly.

 Python is a dynamically typed language, meaning that it determines its data types at
runtime. It also uses a system called duck typing, whose name comes from the idiom, “If
it walks like a duck and it quacks like a duck, then it must be a duck.” Whereas many
languages will fail to compile your program if it references an unknown method on a
class instance, Python will always attempt to make the method call during execution,
raising an AttributeError if the method doesn’t exist on the instance’s class.
Through this mechanism, Python can achieve a degree of polymorphism, which is a
programming language feature where objects of different types provide specialized
behavior via a consistent method name.

 At the advent of object-oriented programming, there was a race to model full sys-
tems as cascades of inherited classes. ConsolePrinter inherited from Printer, which
inherited from Buffer, which inherited from BytesHandler, and so on. Some of these
hierarchies made sense, but many resulted in rigid code that was difficult to update.
Trying to make one change could lead to a massive ripple of changes all the way up or
down the tree.

Today, the preference has shifted to composing behaviors into an object. Composition
is the converse to decomposition; pieces of functionality are brought together to real-
ize a complete concept. Figure 3.6 contrasts a more rigid inheritance structure with
one where objects are composed of many traits. A dog is a quadruped, a mammal, and
a canine. With inheritance, you would be forced to create a hierarchy from these. All
canines are mammals, so that seems fine, but not all mammals are quadrupeds. Com-
position frees you from the limitations of a hierarchy while still providing the concept
of relatedness between two things.

55Typing, inheritance, and polymorphism

Composition is often done through a language feature called an interface. Interfaces
are formal definitions of methods and data that a particular class must implement. A
class can implement multiple interfaces to broadcast that it has the union of those
interfaces’ behaviors.

 Python lacks interfaces. Oh no! How can you avoid a deep inheritance hierarchy?
Fortunately, Python makes this possible through the duck typing system as well as mul-
tiple inheritance. Whereas many statically typed languages allow a class to inherit from
only one other class, Python can support inheritance from an arbitrary number of
classes. Something like an interface can be built using this mechanism, and in Python
it’s often referred to as a mixin.

 Suppose you want to create a model for a dog that can speak and roll over. You
know you’ll eventually want to model other animals that can also do tricks, so to make
these behaviors into something like an interface, you can name them with a Mixin suf-
fix to be clear about your intent. With those behavior mixins in place, you’ll be able to
make a Dog class that can speak and roll_over, as shown in the following listing, with
the freedom to let your future animals speak or roll_over using the same approach.

class SpeakMixin:
def speak(self):

name = self.__class__.__name__.lower()

Multiple inheritance providing interface-like behaviorListing 3.4

Mammal
?

Quadruped

Canine

Inheritance can present challenges.
Not all quadrupeds are mammals,
so this hierarchy isn’t perfect. Not
all mammals are quadrupeds, either!

Keeping traits independent allows them to
be composed as before with the ability to
compose them in new ways for future objects.

Dog

Biped Mammal Quadruped Canine

Kangaroo Human Cat Dog

Inheritance versus compositionFigure 3.6

Speaking behavior is
encapsulated in SpeakMixin
to show it’s composable.

56 CHAPTER 3 Abstraction and encapsulation

print(f'The {name} says, "Hello!"')

class RollOverMixin:
def roll_over(self):

print('Did a barrel roll!')

class Dog(SpeakMixin, RollOverMixin):
pass

Now that Dog has inherited from some mixins, you can check that your dog knows a
couple of tricks:

dog = Dog()
dog.speak()
dog.roll_over()

You should see this output:

The dog says, "Hello!"
Did a barrel roll!

The fact that the dog knows English is suspect, but otherwise this checks out. We’ll
take a deeper dive into inheritance and some other related concepts in chapters 7 and
8, so sit tight!

3.6 Recognizing the wrong abstraction
Almost as useful as applying abstraction to new code is recognizing when abstractions
in existing code aren’t working. This could be because new code has proven that the
abstraction doesn’t fit all use cases, or it could be that you see a way to make the code
clearer with a different paradigm. Whatever the case, taking the time to care for the
code is a task others will appreciate, even if they don’t realize it explicitly.

3.6.1 Square pegs in round holes

As I’ve said, abstraction should be leveraged to make sure things are clearer and easier.
If an abstraction causes you to bend over backward just to make something work, con-
sider updating it to remove the friction or replace it with a new approach altogether.
I’ve gotten pretty far into new code trying to make it work with what was in place, only
to realize it would be easier to change the environment than adapt to it. The trade-offs
here are time and effort, both in rewriting the code and making sure it still works. That
up-front time you spend might save everyone time in the long run, though.

 If the interface to a third-party package causes friction, and you’re not in a posi-
tion to spend time or effort updating their code, you can always consider creating an
abstraction around that interface for your own code to use. This is often called an
adapter in software, and I liken it to using one of those airport travel plugs in another

The roll-over behavior
in RollOverMixin is
composable too.

Your Dog can speak,
roll_over, and whatever
else you teach it.

57Recognizing the wrong abstraction

country. You certainly can’t change the electrical plugs in France (without someone
getting angry, anyway) and you don’t have a French plug for your devices on-hand. So
even though the travel plug costs €48 and your first-born, it’s less expensive than find-
ing and buying French power supplies for three or four different devices. In software,
you can create your own adapter class that has the interface your program expects,
with code in each of its methods that makes calls to the incompatible third-party
object behind the scenes.

3.6.2 Clever gets the cleaver

I’ve gone on about writing code that’s slick, but overly clever solutions can be painful
too. If such solutions provide too much magic and not enough granularity, you might
find that other developers create their own solutions to get their jobs done, defeating
your effort to provide a single working implementation. Robust software must weigh
the frequency and impact of use cases to determine which to accommodate; common
use cases should be as smooth as possible, whereas rare use cases can be clunky or
explicitly unsupported if needed. Your solution should be just clever enough, which is
an admittedly hard target to hit.

 That being said, if something feels awkward or cumbersome, give it some time. If it
still feels awkward or cumbersome after a while, ask others if they agree. If they say no
but it still feels awkward or cumbersome, it’s probably awkward or cumbersome. Go
forth and make the world a little better with abstraction!

Summary
 Abstraction is a tool for deferring obligatory comprehension of code.
 Abstraction takes many forms: decomposition, encapsulation, programming

style, and inheritance versus composition.
 Each approach to abstraction is useful, but context and extent of use are

important considerations.
 Refactoring is an iterative process; abstraction that once worked may need to be

revisited later.

Designing
 for high performance

This chapter covers
 Understanding time and space complexity

 Measuring the complexity of your code

 Choosing data types for different activities in
Python

Once you’ve written working code, there’s usually additional work to do. You need
your code to not only accomplish its task, but also to accomplish it quickly. The per-
formance of your code is how well it utilizes resources like memory and time. Software
that performs at an acceptable level, meaning that it utilizes resources efficiently and
responds to tasks within a desirable time frame, is said to be performant.

 Software performance affects real-world people every day, whether they’re try-
ing to upload their latest selfies to Instagram or doing real-time market analysis to
pick stocks. How performant software should be often comes down to user percep-
tion. If something feels instantaneous, it might be fast enough.

 Software performance can also affect the bottom line. If your software requires
you to store something on a disk or in a database, minimizing the amount of storage

58

59Hurtling through time and space

required will save you money. Software that informs money-making decisions can net
you more money if it runs faster. Performance has real-world impact.

4.1

4.1.1

Human perception
Humans generally perceive changes faster than 100 ms as instantaneous. If they
click a button and the screen responds in 50 ms, they’re happy. As responsiveness
slows beyond 100 ms, people begin to notice the lag.

For long-running activities like downloading large files, lag can’t always be helped. In
these cases, accurate progress updates are important because they change the per-
ception of progress so it feels faster.

Hurtling through time and space
If you read around about high-performing software, you’re likely to encounter the
phrases time complexity and space complexity. These terms sound like they’re straight out
of quantum mechanics or astrophysics, but they have a place in software as well.

 Time and space complexity are measurements of how much more execution time,
memory, or disk storage your software needs as its inputs grow. The faster your soft-
ware consumes time or space, the higher its complexity.

 Complexity isn’t meant to be an exact quantitative measurement; rather, it helps
you understand qualitatively how fast and big your software will be in the worst case.
In this section, I’ll help you build an intuition for complexity measurements so that
you can eke out performance in your work. There is a formal process for determining
the complexity of your software, though, and I’ll get to that in a bit.

Complexity is a little . . . complex

I won’t mince any words about this: measuring complexity can be difficult and is
sometimes confusing. It didn’t make a whole lot of sense to me in school—I’ve
learned what I know now through repeated practical application. Be ready to do the
same yourself.

 Complexity determinations are made through a process called asymptotic analysis,
which involves observing the code and determining the bounds of its worst-case
performance.

NOTE Keep in mind that complexity measurements are used to contrast ways
of achieving a particular task; they aren’t so useful for comparing unrelated
tasks. It’s useful to compare two algorithms for sorting a list of numbers, for
example, but you can’t compare a list-sorting algorithm to a search tree.
Make sure you compare apples to apples.

The notation used in asymptotic analysis can seem cryptic at first, but it has a plain-
English translation. You’ll commonly see complexity written in big O notation, which
signifies the worst-case performance for the code being analyzed. Big O notation
looks something like O(n2)—often read as “order n-squared”—where n is the number

60 CHAPTER 4 Designing for high performance

of inputs and n2 is the complexity. This is shorthand for “the amount of time the
code takes to run increases proportional to the square of the number of inputs,” as
shown in figure 4.1. O(n2) is a lot faster to write. I’ll use big O notation more in the
rest of the chapter.

4.1.2 Time complexity

Time complexity is a measure of how quickly your code can perform a task in relation to
its inputs. As the number of inputs increases, time complexity tells you at what rate
your code will slow down. This can help you reason about how long a task should take
as the scale of your inputs grows.

LINEARITY

Linear complexity is one of the most common complexities to arise from code. This
complexity is so named because graphing the number of inputs versus time produces
a straight line. If you think back to the equation for a line in mathematics, y = mx + b,
you can think of x as the number of inputs and y as the time it takes your program to
execute. There may be some overhead for your program regardless of input (the b, or
intercept, in the equation), and each additional input adds some amount of execu-
tion time (m, or the slope). This is illustrated in figure 4.2.

 Linear complexity is frequent in software because many operations need to do some
task for each item in a list: printing a list of names, summing a list of integers, and so on.

Ti
m

e
to

 p
ro

ce
ss

Number of inputs to process

The amount of time the
code takes to run increases
proportional to the square
of the number of inputs.

Figure 4.1 O(n2) is big O notation
shorthand for a y � x2 relationship.

Ti
m

e
to

 p
ro

ce
ss

Number of inputs to process

The overhead of the
task is the intercept.

The additional
processing time
for each input is
the slope.

Figure 4.2 Visualizing a
task with linear complexity

61Hurtling through time and space

As the list grows, the amount of time the computer has to spend grows proportionally.
Summing 1,000 integers takes about half as long as summing 2,000 integers. For some
number of items, n, these kinds of activities are linear with n or, in big O notation, O(n).

 You can spot code that’s likely to be O(n) in Python by finding for loops. A single
loop over a list, set, or other sequence is likely to be linear:

names = ['Aliya', 'Beth', 'David', 'Kareem']
for name in names:

print(name)

This remains true even if you perform multiple steps inside the loop:

names = ['Aliya', 'Beth', 'David', 'Kareem']
for name in names:

greeting = 'Hi, my name is'
print(f'{greeting} {name}')

It even remains true if you loop over the same list a set number of times:

names = ['Aliya', 'Beth', 'David', 'Kareem']
for name in names:

print(f'This is {name}!')

message = 'Let\'s welcome '
for name in names:

message += f'{name} '
print(message)

Although you’re looping over the list of names twice, think about it in terms of the
equation for a line again. The first loop takes some time, f, per item, and the second
loop takes some time, g, per item. The line equation would be something like y = fx +
gx + b, which is equivalent to y = (f + g)x + b. It’s still a line, even if it’s a steeper one.

 This is where the “asymptotic” part of asymptotic analysis comes in. Even though a
particular activity may be steeply linear, other, more complex operations can still out-
pace it if the inputs are sufficiently many, as shown in figure 4.3.

Ti
m

e
to

 p
ro

ce
ss

Number of inputs to process

An 0(n) task with some overhead might
be slower than an 0(n2) task with few
inputs, but given enough inputs, the 0(n2)
task eventually gets even slower—always!

Higher-order complexity at large scalesFigure 4.3

62 CHAPTER 4 Designing for high performance

PROPORTIONAL TO THE SQUARE

Another type of time complexity is proportional to the square of the inputs (O(n2)).
This crops up in cases where, for each item in a list, you need to look at every other
item in the list. As you add more inputs, your code has to iterate over the additional
items, but it also needs to iterate over those additional items on each of those itera-
tions. The increase in execution time is compounded.

 You can spot this in Python code by the presence of nested loops. The following
code checks if a list has any duplicate items:

def has_duplicates(sequence):
for index1, item1 in enumerate(sequence):

for index2, item2 in enumerate(sequence):
if item1 == item2 and index1 != index2:

return True
return False

O(n2) is the worst case for this code because even if only the last items are duplicates, or
if no duplicates exist, the code still has to iterate over all the inputs before it finishes.
If the first two items are duplicates, the code will be much faster because it can stop
immediately, but it’s useful to examine the worst case to get a better sense for what the
code is capable of. Big O notation always measures the worst-case complexity of code
for this reason.

The outer loop iterates over
every element in the sequence.

The inner loop iterates over
every element again, for each
element in the outer loop.

Checks if two elements are
the same value, but not
the same specific element
from the sequence

Additional notations
It’s sometimes useful to calculate not only the worst case but also the average case
and the best case. Big Ω (big omega) notation is used for best-case analysis, and big
θ (big theta) notation is used to express that the upper and lower bounds are of the
specified complexity. Usually these can help you choose the approach best suited to
what you are trying to accomplish from a number of choices. The complexity of many
algorithms can be found by searching online, such as for “complexity of quicksort”.
You can also find the time complexity of some common operations in the Python docs
(https://wiki.python.org/moin/TimeComplexity).

CONSTANT TIME

The ideal complexity is constant time (O(1)), which doesn’t depend on the size of the
inputs. Nothing can be better than constant time because that would require the soft-
ware to speed up as its input grow! Constant time is realized in some of the data types in
Python, which I’ll talk more about later.

 Some problems that would normally be linear (or worse) can be made constant
after up-front computation. That initial computation may itself be nonconstant, but if
it allows many subsequent steps to become constant, it can be a great trade-off.

https://wiki.python.org/moin/TimeComplexity

63Hurtling through time and space

Space complexity4.1.3

Just like time complexity, space complexity is a measure of how your code uses disk space
or memory as its inputs grow. Space complexity is easy to overlook, though, because
it’s not always something you observe directly. Sometimes inefficient use of disk space
rears its ugly head only when you get a pop up saying you have no disk space left on
your computer. It’s good to think about space as you write your code so you don’t eat
up your resources.

MEMORY

A common way programs use too much memory is by reading large data files fully into
memory when they don’t have to. Suppose you have a text file containing a row for
each person alive today and their favorite color. You’d like to know the number of
people who like each color the most. You might consider reading the whole file in as a
list of rows and operating on the list:

color_counts = {}

with open('all-favorite-colors.txt') as favorite_colors_file:
favorite_colors = favorite_colors_file.read().splitlines()

for color in favorite_colors:
color_counts:incolorif

1+=color_counts[color]
else:

color_counts[color] = 1

There are a lot of people on planet Earth. Even if the file only contained one column
of favorite colors and each row used 1 byte of data, the file would still be just over 7 GB
in size. You might have that much memory on your machine, but the task doesn’t
require you to have all the row information available at once.

 In Python, you can read a file line-by-line in a for loop, and on each iteration of
the loop, the next line will replace the current line in memory. Try updating the code
to read one line from the file at a time, and come back when you’ve got it.

color_counts = {}

The garbage man
Another thing that makes space complexity more difficult in Python is that you don’t
often manage memory yourself. In some languages, you must explicitly allocate and
free up memory, which forces you to manage how your code uses resources. Python
uses automatic garbage collection, which frees the memory that holds objects that
are no longer in use by a running program.

Reads the whole file
into a list of lines

Reads only one
line at a time

with open('all-favorite-colors.txt') as favorite_colors_file:
for color in favorite_colors_file:

64 CHAPTER 4 Designing for high performance

color = color.strip()

color_counts:incolorif
1+=color_counts[color]

else:
color_counts[color] = 1

4.2

4.2.1

Removes the trailing
newline character
from each line

By reading one line at a time and throwing them out after you get what you need, your
memory usage will go only as high as the largest line in the file. Much better! The
space complexity has gone from O(n) to O(1).

DISK SPACE

I’ve run into disk space issues on long-lived applications in the past. These are some-
times hard to see because they don’t always cause an issue immediately. It could be
weeks or months before you run out of disk space, either because your program writes
small amounts of data at a time or simply because you have large storage available.

 Many big web applications emit logs of their activity so they can be debugged or
analyzed. If you introduce a log statement in your code that gets called 1,000 times
per minute in production, this could start eating up disk space quickly. You might
want to remove that line, move it somewhere that gets called less frequently, or
improve your strategy for storing logs.

 Finding opportunities to shift an approach from a higher-order complexity to a
lower-order one will almost always yield better performance gains than trying to eke
performance out of a particular line of code. Use complexity analysis to understand
where these opportunities lie in your software. Read on to see how you can address
these opportunities using some of the features built into Python.

Performance and data types
Although your code should be designed with time and space complexity in mind, it
will ultimately be built on Python’s existing data types. The following sections cover a
number of use cases, as well as which data types are best suited for them.

Data types for constant time

Remember that the ideal performance is one of constant time, which does not
increase as the number of inputs increases. Python’s dict (dictionary) and set (set)
types exhibit this behavior when adding, removing, and accessing items. They’re quite
similar under the hood, with a main difference being that dictionaries map keys to values,
whereas sets represent a set of unique, individual items. Iterating through the items in
either of these data types is still O(n) time because it depends on the number of items
contained in the object. But fetching specific items or checking if a specific item exists
is speedy regardless of the total number of items.

 Suppose that instead of counting the world’s favorite colors, you’re now interested
in getting the unique set of all favorite colors so you can check if any colors aren’t rep-
resented. You can still read the file line-by-line as before, but how might you represent
the data and check it for specific colors?

65Performance and data types

 Have a go at representing the data and checking it for specific colors. Then come
back here and compare your work to the following listing to see how you did.

all_colors = set()

with open('all-favorite-colors.txt') as favorite_colors_file:
for line in favorite_colors_file:

all_colors.add(line.strip())

print('Amber Waves of Grain' in all_colors)

By using a set to hold a list of the unique colors encountered in the file, you can check
for specific colors in the set in constant (O(1)) time after the loop.

4.2.2 Data types for linear time
The list data type in Python exhibits mainly O(n) operations; determining member-
ship in a list or adding a new item to an arbitrary location in a list is slower for lists
with more elements. Adding or removing from the end of a list takes O(1) time. Lists
are useful when the items being stored aren’t uniquely identifiable.

 The tuple type is similar to list in terms of performance, with the key difference
being that tuples can’t be changed after they’re created.

4.2.3 Space complexity of operations on data types
Now that you’re familiar with the time complexity of some of Python’s built-in data
structures, I’ll teach you a couple of tricks for using them. The data types we’ve seen
so far are all iterables—objects that support iteration over their contents (in a for loop,
for example). Iteration over a set of elements is nearly always going to be O(n) in time
complexity; going through every element takes more time if there are more elements.
But what about space complexity?

 For the data types we’ve seen so far, all their contents are stored in memory
together. If a list has 10 elements, it takes roughly 10 times more space in memory
than a list with a single element, as shown in figure 4.4. This means their space com-
plexity is also O(n). This can be problematic, the same way reading 7.6 billion records
into memory is problematic. If we don’t need all that data at once, we might be able to
find a more efficient approach.

Listing 4.1 Using Python's features to minimize space

Iterating over the file is still O(n) time.

Adding to a set is O(1)
time, but O(n) space.

Membership of the set is an O(1) question.

1

1 2 3 4 5

6 7 8 9 10

A list of one item needs only
enough space to store that item.

A list of 10 items needs about
10 times the space–one item’s
worth for each of the 10 items.

Figure 4.4 The memory
footprint of lists

66 CHAPTER 4 Designing for high performance

Enter generators. Generators are constructs in Python that produce a single value at a
time, pausing until the next value is requested (figure 4.5). This acts a lot like the
approach you used earlier to read a file line-by-line. By yielding one value at a time, a
generator avoids storing all values it produces in memory at once.

If you’ve used the range function in Python before, you’ve already used a generator.
range accepts arguments that specify the bounds of the range you’d like. If range
stored all the numbers of the range in memory, code like range(100_000_000) would
eat up your available memory in short order. Instead, range stores only the bounds of
the range and produces values from it one at a time. But how?

 To use space efficiently, generators make use of the yield Python keyword. After
producing a value, they yield execution back to the calling code. So yield yields a
value and then yields execution.

 yield works a lot like Python’s return statement, except that you can perform
operations after you yield a value. This can be used to set up for the next value you
want to produce. The following listing shows approximately how range behaves under
the hood. Note the use of the yield keyword and the increment of the current value
after yield is used.

def range(*args):
if len(args) == 1:

start = 0
stop = args[0]

else:
start = args[0]
stop = args[1]

current = start

while current < stop:
currentyield

1+=current

UsingListing 4.2 yield to pause and prepare

1 2 3 4 5
A list stores all its contents
in memory at one time.

A generator produces a single item
in memory at a time and knows how
to produce the subsequent items.

1 2 3 4 5

3 4 5

...

2 3 4 5

Figure 4.5 Saving space with generators

Parses arguments to determine
bounds of the range

yields each value
(one at a time)

Performs the necessary
setup for the next value

67Performance and data types

There’s a pattern in this implementation you’ll see repeated often in generators:

1 Perform the main setup required for producing all values.
2 Create a loop.
3 Yield a value on each iteration of the loop.
4 Update the state for the next iteration of the loop.

Try inspecting the values from your range generator now. You can turn it into a list using
list(range(5, 10)), for example. You can also move forward one value at a time by
saving range(5, 10) to a variable and making successive calls to next(my_range).

 Now that you’ve got this pattern handy, I’d like you to write your very own generator.
Your generator function, squares, will take in a list of integers and produce the square
of each of them. Give it a shot, and come back to the following listing to see how you did.

def squares(items):
for item in items:

yield item ** 2

The squares function ends up being fairly compact because there’s no setup or state
management to do. I also said that this function accepts a list, but what’s kind of cool
about it is that you can pass in another generator instead. squares(range

(100_000_000)) works just as well. It will only store one item from the range and one
squared result at a time, saving even more space (as shown in figure 4.6).

A short generator that yields squared numbersListing 4.3

Range produces a
single value at a time.

Square takes one value
produced from range at
a time, and produces one
new value at a time.

The previous value is
thrown out when each
new value is computed.

...

3 42 5

3 4 5 6

1Range 2 3 4

1Squares 4

Time

9 16

4 9 16

Memory usage of chained generatorsFigure 4.6

68 CHAPTER 4 Designing for high performance

I recommend making use of generators over lists wherever you can, because you can
always build a full list in memory from a generator if needed by writing
list(range(10000)) or list(squares([1, 2, 3, 4])). Using generators will save
memory, but it can also save time because the code consuming the values from the
generator may not need them all anyway.

Make it work, make it right, make it fast4.3
The adage “make it work, make it right, make it fast” comes from Kent Beck, the cre-
ator of extreme programming. On its face, this could mean that you should first write
working code, then rework it to be clear and concise, and only then make it perfor-
mant. But I like to think of these three rules as being the steps you take on each small
iteration as you write code. Remember that design, implementation, and refactoring
all happen in tight cycles as you code.

Making it work4.3.1
This, frankly, is what developers spend a great deal of their time on. You try to turn a
problem statement or idea into code that achieves the goal. Developers (myself
included) often work all the way through a problem before moving on to refactoring
or performance. It can feel like a chicken and egg problem: How can I make “it” fast if
“it” isn’t even done yet?

 Just as decomposition is useful for software itself, it is also useful as a tool in break-
ing down goals into manageable chunks. Each of those smaller goals can be imple-
mented and examined incrementally along the way to achieving the larger goal. It’s
also much easier in this approach to “make it work,” because “it” is a more granular
goal. You can sketch some ideas for “calculate the velocity of a falling object” more
readily than “make a physics engine.”

Making it right4.3.2
Making it work is all about trying to get from point A to point B. If you’re clear on the
goal of the task, “Does it work?” is a binary answer.

 Making it right is all about refactoring. Refactoring seeks to re-implement existing
code in a clearer or more well adapted way, while providing the same consistent outcome.1

Lazy evaluation
The idea of producing one value at a time, and that consuming code may not need
all the values you can produce, is often referred to as lazy evaluation. It’s lazy
because you’d like to do as little work as possible, and only once you’ve been asked
explicitly to do so. Picture your generators letting out an exaggerated sigh each time
they’re asked to yield a value.

1There is a school of thought that says you can create tests for the code you write and, if the tests are sufficient
and passing, you can lean on them while making changes to ensure you haven’t broken anything. There are a
number of fantastic texts on this subject. See Harry Percival, Test-Driven Development with Python, second edition
(O’Reilly, 2017).

69Make it work, make it right, make it fast

 Refactoring has no clear “done” moment. You will find yourself iterating while you
implement, as well as when you revisit the code to add new functionality. For one met-
ric about when you definitely should refactor, Martin Fowler’s rule of three says that
around the time you’ve implemented a similar thing three times, you should refactor
your code to provide an abstraction for that behavior. I like this premise because it
suggests a balance around refactoring: don’t abstract something immediately, or even
after you’ve duplicated it twice, because it might be premature. Wait to see what use
cases arise. They will allow you to generalize the solution more effectively and be sure
that it’s necessary.

 Another aspect to making something right is to use the strengths of the language
to your advantage. Take a look at the following code, which determines the most fre-
quent integer in a list:

def get_number_with_highest_count(counts):
max_count = 0
for number, count in counts.items():

if count > max_count:
max_count = count
number_with_highest_count = number

return number_with_highest_count

def most_frequent(numbers):
counts = {}
for number in numbers:

counts:inif number
1+=counts[number]

else:
1=counts[number]

return get_number_with_highest_count(counts)

I’ve made this work, but Python has a few tools for making this easier. The first tool
helps with the code that increments the count. For each number in the list, it has to
check if we’ve already seen it to know if it can increment the count or if it has to ini-
tialize the count. Python has a built-in data type to avoid this extra leg work: the
defaultdict. You can tell a defaultdict the type of the values it stores, and it will
default to a sensible value of that type if a new key is accessed:

from collections import defaultdict

def get_number_with_highest_count(counts):
max_count = 0
for number, count in counts.items():

if count > max_count:
max_count = count
number_with_highest_count = number

return number_with_highest_count

Determines the number with the
highest count in a dict that maps
numbers to counts

Tallies up the occurrence of
numbers to see which has
the highest count

Imports defaultdict from
the collections module

70 CHAPTER 4 Designing for high performance

def most_frequent(numbers):
counts = defaultdict(int)

in numbers:for number
1+=counts[number]

return get_number_with_highest_count(counts)

Not bad—you saved yourself one line of code, and the spirit of the function is a little
more clear. But you can do even better. Python also has a helper for counting things
in a sequence:

from collections import Counter

def get_number_with_highest_count(counts):
max_count = 0
for number, count in counts.items():

if count > max_count:
max_count = count
number_with_highest_count = number

return number_with_highest_count

def most_frequent(numbers):
counts = Counter(numbers)
return get_number_with_highest_count(counts)

You’ve saved a few more lines, and now the spirit of most_frequent is quite clear:
count the unique numbers, and return the one with the highest count. But what
about get_number_with_highest_count? It’s finding the maximum value in a dictio-
nary that maps numbers to their counts. Python provides two tools that can simplify
this function too.

 The first is max. max accepts an iterable (lists, sets, dictionaries, and so on) and
returns the maximum value from that iterable. In the case of a dictionary, max returns
the maximum value of the keys by default. The keys of the counts dictionary are the
numbers themselves, not the counts. max accepts a second argument, key, which is a
function that tells max what part of the iterable to use.

 Python will only pass one argument to key: the value from the iterable. In the case
of dictionaries, Python iterates over their keys, so the function passed to the key argu-
ment for max will only get the numbers but not their counts. You need to tell key that,
when given a number, it should index the counts dictionary at that number to get the
count value. Writing a separate function in the module won’t work because counts
won’t be available at all in its namespace. How can you get around this?

 In functional programming, it’s common to pass functions as arguments to other
functions, and sometimes those passed functions are short and clear enough that they
don’t need names. Unlike most of the functions you’ve probably written in Python,

The counts are integers, so the
default type of each value in the
defaultdict should be int.

The default value for int is 0, so
the first time we see a number,
its count will be 0 + 1 = 1.

Counter is also in the
collections module.

Acts nearly identically to the dict
of counts you made manually

71Make it work, make it right, make it fast

they’re anonymous functions and are called lambdas. Lambdas are indeed functions;
they accept arguments and return values. They don’t have names, and you can’t call
them directly, but you can use them as inline arguments to other functions to get
things done.

 In the case of the get_number_with_highest_count function, you can pass a
lambda to max that accepts a number and returns counts[number]. This solves the
namespace issue and provides the behavior you want to give to max. Let’s see how suc-
cinct this will make the code:

from collections import Counter

def get_number_with_highest_count(counts):
return max(

counts,
key=lambda number: counts[number]

)

4.3.3

When iterating over the numbers
in counts, uses counts[number]
(that number’s count) as the
comparison value

def most_frequent(numbers):
counts = Counter(numbers)
return get_number_with_highest_count(counts)

That’s concise, and still clear. Understanding what tools a language has for which
activities will often help you produce shorter code.

Shorter isn’t always better, of course. You could go further and move the max

directly into the most_frequent function, but when I’m using functions like max that
aren’t always perfectly clear about their behavior, I like having the separate function
with a clearer name.

 Once you reach a point where the code you’ve written is working, and it’s clear
enough about how it works that someone else could pick it up and use it, you’ve made
it right.

Making it fast

Tuning the performance of your code can often take as long as writing the code in the
first place. Complexity analysis and subsequent improvements require care and a
good long look at the data types and operations in your code. You’ll need to weigh the
time lost to performance tuning against the need to bring your work to market. As
mentioned at the beginning of this chapter, you’ll also need to decide when the code
is performant enough. Perfection is the enemy of good enough, as they say, so it’s often
better to ship something valuable but slow than not to ship anything at all.

 If your priority is getting something to market, consider setting some performance
milestones for yourself that you can reach iteratively after your initial release. This
way, you can focus on making something work, making it work right for ease of future
improvement, and shipping your product. You’ll likely find new and unexpected bot-
tlenecks by running your code in production.

72 CHAPTER 4 Designing for high performance

 Your acceptable level of performance will also vary based on your goals. If you are
displaying a modal to log in to a site after clicking Log In, it needs to happen instanta-
neously, or your users will leave. If you’re trying to build an annual reporting system so
customers can see their sales, they will likely expect to wait a bit.

 The architecture of the system—all the different services, pages, interactions, and so
on—will inform and affect performance too. Bigger systems require more network
communication between APIs, databases, and caches. They may also have some pro-
cesses that happen outside of the user’s workflow, like nightly accumulation of metrics
for analysis. You can examine other services within this architecture that perform tasks
similar to yours to get an idea of the baseline. From there, you can create an informed
expectation of your software’s performance and strive toward it. The performance of
large systems transcends code.

 As you write more code, bring what you’ve learned about the performance of data
types and techniques to bear on your software. You can begin to develop a sense for
lines of code that might cause performance issues. Nested loops and huge in-memory
lists will start to jump out at you.

Tools4.4
Performance testing in the real world needs to follow an evidence-based approach. This
is a direct result of the fact that systems with real users will inevitably experience different
behavior; the combination of unexpected inputs, timing, hardware, network latency,
and more contribute to a system’s performance. As such, poking around your code hop-
ing to stumble on huge performance wins may not be the best use of your time.

timeit4.4.1

The timeit module in Python is a tool for testing the execution time of code snippets.
It can be used from the command line or directly in your code for more control. The
timeit module is handy for sanity-checking the performance changes you intend to
make.

 Imagine you’d like to see how much time it takes to sum the integers from 0 to
999. To time this activity from the command line, you can invoke the timeit module
with Python:

python -m timeit "total = sum(range(1000))"

This will cause timeit to run the summation code many times, ultimately printing
some statistics about the execution time:

20000 loops, best of 5: 18.9 usec per loop

You can conclude from this output that the summation of 0–999 generally takes less
than 20 microseconds.

73Tools

 To see how summing 0–4999 affects the outcome, you can change your command
and rerun it:

python -m timeit "total = sum(range(5000))"
2000 loops, best of 5: 105 usec per loop

From this, you can conclude that summing the integers 0–4999 takes a little over five
times longer than 0–999.

 Keep in mind that timeit is really running your code, and real-world execution has
small variations due to many variables. In addition to the code, things like your battery
level and CPU clock speed can affect the timing. As such, it’s good to run your timing
commands a few times to see how stable the measurement is, and to look for significant
improvements from that baseline when making changes. So although timeit gives you
quantitative measurements, it’s best to use it to compare two different implementations
qualitatively, focusing on the trend. This is where you’ll notice those order-of-
magnitude improvements that noticeably speed up your code.

 The command-line interface for timeit is great, but it can be cumbersome when
you want to test larger or more complex pieces of code. If you need more control over
what’s being timed, you can use timeit from within your code. If you’d like to time a
specific portion of code without timing all of the setup code it requires, you can sepa-
rate the setup step so its execution time isn’t included:

from timeit import timeit

setup = 'from datetime import datetime'
statement = 'datetime.now()'
result = timeit(setup=setup, stmt=statement)
print(f'Took an average of {result}ms')

4.4.2

This code sets the stage
for the timing test.

This code executes
within the timer.

timeit produces a timing
result, in milliseconds.

This will end up timing only the datetime.now() call without timing the import

needed to make the call.
 Suppose you’d like to prove that checking whether an item is in a set is faster than

checking if it’s in a list. How would you do that using the timeit module? Build your
inputs using set(range(10000)) and list(range(10000)), and time the task of find-
ing out if 300 is in them. How much faster is the set?

 The timeit module has saved me from going down a rabbit hole a number of times
by telling me my hypothesis about speeding up some code was wrong. It’s a real time-
saver (pun absolutely intended).

CPU profiling

When you were using timeit, the module was profiling your code. Profiling means ana-
lyzing your code as it runs to gather some metrics about its behavior. The timeit mod-
ule measured how long your code took to run in total, but another insightful way to

74 CHAPTER 4 Designing for high performance

measure the performance of your code is through CPU profiling. CPU profiling lets
you see which parts of your code perform expensive calculations, as well as how often
they’re called. This kind of output is useful because it helps you understand where
you might want to look first when trying to speed up your code.

 Suppose you’ve written a function that isn’t too expensive but is called many times
in your application. You’ve also written a function that is expensive but is only called
once. If you only have time to fix one, which will it be? Without profiling the code, it’s
hard to know which will speed up your code the most. You can figure it out using
Python’s cProfile module.

NOTE If you try to import the cProfile module but get an error, you can use
the profile module instead.

The cProfile module prints a few pieces of information about each method or func-
tion called while executing your program. For each call, it will show you

 The number of times the call occurred (ncalls)
 The time spent in that call alone, not including things it calls in turn (tottime)
 The average time spent in that call alone, across the ncalls times it was called

(percall)
 The cumulative time spent in that call, including any time spent in subcalls

(cumtime)

This information is helpful because it will expose things that are slow—that have a
large cumtime—but will also expose things that are fast but called many times. The fol-
lowing listing shows a toy program that calls a function 1000 times. The function call
takes a random amount of time, up to 10 milliseconds, to execute.

import random
import time

an_expensive_function():def
100/random.random()=execution_time

time.sleep(execution_time)

if __name__ == '__main__':
for _ in range(1000):

an_expensive_function()

Save this program in a cpu_profiling.py module. Then you can profile it from the
command line using cProfile:

python -m cProfile --sort cumtime cpu_profiling.py

Profiling the CPU performance of a Python programListing 4.4

Takes a random amount of
time (up to 10 milliseconds)
to execute

Runs the function
1000 times

75Try it out

Over a large number of calls, you can expect a function that takes 0–10 milliseconds
to take about 5 milliseconds on average (percall). Calling it 1000 times (ncalls),
you can expect it to take about 5 seconds overall (cumtime). Run cProfile on the pro-
gram to see if it meets your expectations. You will see a lot of output, but sorting by
cumulative time means an_expensive_function calls will be near the top:

$ python -m cProfile --sort cumtime cpu_profiling.py
5138 function calls (5095 primitive calls) in 5.644 seconds

Ordered by: cumulative time

percall filename:lineno(function)cumtimepercalltottimencalls
5.644 {built-in method builtins.exec}5.6440.0000.0004/1
5.644 cpu_profiling.py:1(<module>)5.6440.0020.0021

1000 0.003 0.000 5.625 0.006 cpu_profiling.py:5

➥ (an_expensive_function)
0.006 {built-in method time.sleep}5.6220.0065.6221000

...

In this run, an_expensive_function took an average of about 6 milliseconds per call
over the span of 1000 calls, leading to a cumulative 5.625 seconds spent inside that
function.

 When looking at the output of cProfile, you’ll want to search for calls with a high
percall value or a big jump in cumtime. These characteristics mean the call takes up a
good chunk of your program’s execution time. Speeding up a slow function can
improve the program speed a fair amount, and cutting the execution time of a func-
tion that’s called thousands of times can be a really big win.

4.5 Try it out
Consider the following code. It contains a function, sort_expensive, that has to sort a
list of 1000 integers in the range 0–999,999. It also contains a function, sort_cheap,
that only has to sort a list of 10 integers in the range 0–999.

 Sorting algorithms are generally more expensive than O(1), so the sort_expensive
function will take longer than sort_cheap. If you only ran each function once,
sort_cheap would surely win. But if you need to run sort_cheap 1,000 times, it’s less
clear which operation will be fastest.

import random

def sort_expensive():
the_list = random.sample(range(1_000_000), 1_000)
the_list.sort()

sort_cheap():def
10)random.sample(range(1_000),=the_list

the_list.sort()

76 CHAPTER 4 Designing for high performance

if __name__ == '__main__':
sort_expensive()
for i in range(1000):

sort_cheap()

You need to profile the code to understand the performance. See how each task fares
using the timeit and cProfile modules.

Summary
 Design for performance both up front and iteratively throughout your

development.
 Think carefully about the right data type for the task.
 Prefer generators over lists when you don’t need all the values at once, to save

on memory usage.
 Use the timeit and cProfile/profile Python modules to test your hypotheses

about complexity and performance.

Testing your software

This chapter covers
 Understanding the anatomy of a test

 Using different testing approaches for your
application

 Writing tests with the unittest framework

 Writing tests with the pytest framework

 Adopting test-driven development

I’ve talked in previous chapters about writing clear code using well-named functions
for maintainability, but that’s only part of the picture. As you add feature after fea-
ture, can you be sure the application still does what you meant it to? Any application
you hope will live on long into the future needs some assurances of its longevity. Tests
can help you make sure new features are built correctly, and you can run these tests
again each time you update your code to make sure it stays correct.

 Testing can be a strict, formal process for applications that must not fail, like
launching shuttles and keeping planes in flight. Such tests are rigorous and often
mathematically provable. That’s pretty cool, but it goes way beyond what’s neces-
sary or practical for most Python applications. In this chapter, you’ll learn about
the methodology and tools Python developers use to test their code, and you’ll get
a chance to write some tests yourself.

77

78

5.1

5.1.1

5.1.2

CHAPTER 5 Testing your software

What is software testing?
Loosely speaking, software testing is the practice of verifying that software behaves the
way you expect. This can range from making sure a function produces the expected
output when given a specific input to making sure your application can handle the
stress of 100 users at once. As developers, we constantly do some form of this subcon-
sciously. If you’re developing a website, you probably run the server locally and check
your changes in the browser as you code. This is a form of testing.

 You might think that spending more time validating that your code works means
less time shipping software. In the immediate term, this is true, especially as you get
acquainted with the tools and processes related to testing. The idea in the long term,
though, is that testing will save you time by limiting the recurrence of behavior and
performance bugs and by providing a scaffolding you can use to confidently refactor
code in the future. The more critical a piece of code is to your business, the more time
you’ll want to spend testing it thoroughly.

Does it do what it says on the tin?

One reason to test a piece of software is to determine whether it really does what it
claims. A well-named function describes its intent to the reader, but, as they say, the
road to hell is paved with good intentions. I can’t count the number of times I wrote a
function, fully believing it was faithfully carrying out its intended purpose, only to find
out later that I’d made a mistake.

 Sometimes these mistakes are easy to catch—a typo or exception in an area of code
you’re familiar with might be easy to track down. The trickier bugs to find are those
that don’t cause immediate issues but cascade as the application progresses. With
good testing, problems can be found early, and you can guard your application from
similar issues in the future. A number of categories of testing exist, each focused on
identifying particular kinds of problems. I’ll cover a few here, but you can be sure this
is not an exhaustive list.

The anatomy of a functional test

You saw earlier that testing can make sure software produces the right output for a
given input. This type of testing is called functional testing because it makes sure that a
piece of code functions correctly. This is in contrast to other types of testing, such as
performance testing, which I’ll cover in section 5.6.

 Although functional testing strategies vary in scale and approach, the basic anat-
omy of a functional test remains consistent. Because they check that software gives the
right output based on a given input, all functional tests need to perform a few specific
tasks, including the following:

1 Prepare the inputs to the software.
2 Identify the expected output of the software.
3 Obtain the actual output of the software.
4 Compare the actual and the expected outputs to see if they match.

79Functional testing approaches

The preparation of inputs and identification of expected outputs are where most of
your work as a developer will be when creating tests, whereas obtaining and compar-
ing the actual output is a matter of executing your code, as shown in figure 5.1.

 Structuring your tests this way has another beneficial effect: you can read your tests
as a specification of how the code works. This pays off when you revisit code you wrote
long ago (or last week, for me). A good test for a calculate_mean function might read
like this:

Given the list of integers [1, 2, 3, 4], the expected output of calculate_mean is
2.5. Verify that the actual output of calculate_mean matches this expectation.

This format scales to larger functional workflows. In an e-commerce system, the
“input” might be clicking a product and then clicking Add to Cart. The expected “out-
put” is the item being added to the cart. A functional test for that workflow would read
like this:

Given I visit the page for product 53-DE-232 and click Add to Cart, I expect to see
53-DE-232 in my cart.

Ultimately, it’s nice when your tests not only verify that your code works, but also act as
documentation on how to use it. In the next section, you’ll see how this recipe for
writing a functional test applies to some different testing approaches.

5.2 Functional testing approaches
Functional testing takes on many forms in practice. From the constant little checks we
do as developers to fully automated tests that get kicked off before every production
deployment, there is a spectrum of practices and capabilities. You’ll recognize some of
the following types of testing, but I recommend reading about each of them to under-
stand the similarities and differences between them.

Prepare inputs

Identify expected output

Obtain actual output

Compare actual and
expected output

Determined by you,
the software author

Determined by executing
the real code

If they’re the same, the test passes.
If they’re different, the test fails.

Figure 5.1 The basic
flow of a functional test

80 CHAPTER 5 Testing your software

Manual testing5.2.1

Manual testing is the practice of running your application, giving it some inputs, and
checking whether it does what you expect. For example, if you’re writing a registra-
tion workflow for a website, you would enter a username and password and make sure
a new user is created. If you have password requirements, you would want to check
that using an invalid password does not create a new user. Similarly, you’d test for the
case where a user with the username you choose already exists.

 Registering on a website is generally a small (and one-time) part of the product
experience for most users, but, as you can see, you already have to verify several cases.
If any of these things go wrong, your users either can’t register or might have their
account information overwritten. With this code being so important, relying on man-
ual testing for too long will eventually cause you to miss something. Manually explor-
ing the application for new bugs or new things to test is still a valuable activity, but it
should be viewed as a supplement to other types of testing.

Automated testing5.2.2

In contrast to manual testing, automated testing allows you to write a great number of
tests that can then be executed as many times as you like, without the risk that you’ll
miss a check when you’re trying to leave the office the Friday of a long weekend. If this
hypothetical situation seems overly specific, that’s because it’s not hypothetical. I’ve
lived it.

 Automated testing tightens the feedback loop so that you can see quickly whether
a change you’ve made has broken an expected behavior. The time you’ll save com-
pared to manual testing will free you up to do more creative exploratory testing of the
application. As you uncover things to fix, you should incorporate them into your auto-
mated tests. You can think of this as locking in a verification that will make sure the
particular bug doesn’t happen again. Most of the testing you’ll see in the rest of this
chapter can be, and often is, automated.

Acceptance testing5.2.3

Closest in nature to the Add to Cart workflow test, acceptance testing verifies the high-
level requirements of a system. Software that passes these tests is acceptable based on
the specified requirements. As shown in figure 5.2, acceptance tests answer questions
like, “Can the user successfully go through the purchase workflow and buy the prod-
uct they want?” These are the mission-critical checks for the business—things that
keep the lights on.

 Acceptance tests are often carried out manually by a business stakeholder, but they
can also be automated to a degree with end-to-end testing. End-to-end testing makes
sure a set of actions can be carried out (from one end to the other) with the appropri-
ate data flowing through where needed. If the workflow is expressed from the view-
point of the user, it begins to look almost exactly like the Add to Cart workflow.

81Functional testing approaches

End-to-end tests commonly verify areas of high value for the business—if the cart
doesn’t work, no one can buy products, and you lose revenue—but they are also the
most susceptible to breaking because they span such a wide swathe of functionality. If
any one step in the workflow doesn’t work, the whole end-to-end test fails. Creating a
set of tests that vary in granularity will help indicate not only whether the whole work-
flow is healthy, but also which steps are failing specifically. This allows you to pinpoint
problems faster.

 End-to-end tests are some of the least granular, so what’s on the other end of the
spectrum?

An acceptance test for an
e-commerce website might
check that a user can visit a

product page and successfully
add the product to their cart.

This could be implemented
as an automated end-to-end

test that makes sure the pages
each show and pass along

the correct information.

(0)

Add to cart

(0)

(1) (1)

Remove

Cart

Add to cart

Acceptance tests verify workflows from a user’s perspective.Figure 5.2

Testing is for everyone
Libraries like Cucumber (https://cucumber.io) enable you to describe end-to-end
tests in natural language as high-level actions, like “click the Submit button.” These
tests are often much easier to understand than a big mess of code. Writing steps in
natural language documents the system in a way most anyone in the organization can
understand.

This idea of behavior-driven development (BDD) allows you to collaborate with others
on end-to-end testing, even if they don’t have experience with software development
in a coding capacity. BDD is used in many organizations as a way to define the desired
outcomes first, only implementing the code to make the tests pass afterward.

https://cucumber.io

82 CHAPTER 5 Testing your software

Unit testing5.2.4

Unit testing is perhaps the most important thing you can take away from this chapter.
Unit tests make sure all the little bits of your software are working, and they lay a
strong foundation for larger testing efforts like end-to-end testing. I’ll show you how
to get started with unit testing in Python in section 5.4.

DEFINITION A unit is a small, fundamental piece of software—like the “unit”
in “unit circle.” What constitutes a unit is the source of much philosophical
waxing, but a good working definition is that it’s a piece of code that can be
isolated for testing. Functions are generally considered units—they can be
executed in isolation by calling them with the appropriate inputs. Lines of
code within those functions can’t be isolated, so they’re smaller than a unit.
Classes contain many pieces that can be isolated further, so they’re generally
bigger than a unit, but they are occasionally treated as units.

Unit testing seeks to verify that all the individual units of code in your application
work correctly, that each small piece of the software does what it says it does. These are
the most fundamental tests you can write and are therefore a great place to get started
with testing.

 Functions are the most common target of functional unit tests. “Function” is right
there in the name, after all. This is because of functions’ input-output nature. If
you’ve separated the concerns of your code into small functions, testing them will be a
straightforward application of the functional testing recipe.

 It turns out that one of the great benefits of structuring your code using separation
of concerns, encapsulation, and loose coupling is that it makes code easier to test.
Testing can feel tedious, so any opportunity to reduce friction is welcome. The easier
the code is to test, the more likely it is that you’ll write those tests in the first place, so
you can reap the reward of confidence in your software. Units are the small, separated
pieces you naturally arrive at by sticking with the practices you’ve learned so far.

 Most unit tests in Python compare expected and actual outputs using a simple
equality comparison. You can do one of these yourself right now. Open the Python
REPL and create this calculate_mean function:

>>> def calculate_mean(numbers):
... return sum(numbers) / len(numbers)

Now you can test your expectations of this function with a few different inputs, com-
paring the output to your expected results:

>>> 2.5 == calculate_mean([1, 2, 3, 4])
True
>>> 5.5 == calculate_mean([5, 5, 5, 6, 6, 6])
True

83Functional testing approaches

Try a few other lists of numbers in the REPL now to verify that calculate_mean is giv-
ing the right results. Think of useful sets of inputs that might change the behavior of
the function:

 Does it work correctly with negative numbers?
 Does it work when the list of numbers contains 0?
 Does it work when the list is empty?

These kinds of curiosities are worth writing tests for. They occasionally uncover ques-
tions you haven’t accounted for in your code, which gives you an opportunity to
address those questions before someone finds out the hard way that a particular use
case wasn’t considered.

>>> 0.0 == calculate_mean([-1, 0, 1])
True
>>> 0.0 == calculate_mean([])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in calculate_mean

ZeroDivisionError: division by zero

You can fix calculate_mean by returning 0 if the list is empty:

>>> def calculate_mean(numbers):
... if not numbers:
... return 0
... return sum(numbers) / len(numbers)
>>> 0.0 == calculate_mean([])
True

Great—calculate_mean has passed all the cases we’ve thrown at it. Remember that
unit tests are the foundation that enables success in larger testing efforts, like end-to-
end testing. To understand that relationship better, we’ll look at two other testing cat-
egories in the following sections.

5.2.5 Integration testing

Whereas unit tests are all about making sure the individual pieces of your code work
as expected, integration testing focuses on making sure those units all work in tandem
to produce the right behavior (see figure 5.3). You may have 10 fully functional units
of software, but if they can’t be put together to do what you want, they aren’t too use-
ful. Whereas end-to-end workflow tests are usually framed from the perspective of a
user, integration tests focus more on the behavior of the code. They’re at different lev-
els of abstraction.

 Integration testing carries several caveats, though. Because integration tests need
to thread multiple pieces of code together, it’s common to build tests that are struc-
tured much like the code they’re testing. This introduces tight coupling between the
tests and the code—changes in the code that produce the same outcome might still

Raises an exception for a case
you haven’t considered yet

84 CHAPTER 5 Testing your software

cause the tests to break, because the tests are too concerned with how the outcome is
achieved.

 Integration tests may take significantly longer to execute than unit tests. They gen-
erally do more than execute some functions and check the output; they might use a
database to create and manipulate records, as an example. The interaction being
tested is more complex, so the time required to carry it out can grow. For these rea-
sons, integration tests are usually fewer in number than unit tests.

5.2.6 The testing pyramid

Now that you’ve seen manual, unit, and integration testing, let’s recap the interplay
between them. The idea of a testing pyramid like that in figure 5.4 indicates that you
should liberally apply functional tests like unit and integration tests, but be more con-
servative with long, brittle, and manual tests.1 Each has merit, and your mileage will

Database client
Integration tests check
the result of interactions
between many moving parts. Create record

Read record

Update record

Delete record
Figure 5.3 Integration tests focus
on how operations work together.

Manual
testing

Integration testing

Unit testing

Manual testing takes a long time and is
sensitive to temporary outages, slowness,
and so on. It has value but should not be
the basis of a testing strategy.

Integration tests run quickly by comparison
but can still be sensitive to changes in code
structure and aren’t as fast as unit tests.
Use plenty of them, but make sure the
units work first.

Your software is made up of many units,
and well-written code is generally conducive
to functional testing. Aim to have most of
your code unit tested.

The testing pyramidFigure 5.4

1Testing pyramids were first described by Mike Cohn in Succeeding with Agile (Addison-Wesley Professional, 2009).

85Functional testing approaches

depend on the application and the resources at your disposal, but it’s a decent rule of
thumb about where to invest time.

 You’ll get the most bang for your buck by making sure the little pieces of software
are all working, then making sure they all work together. Again, automating this pro-
cess will empower you to use the time you’ve freed up to think of new ways your soft-
ware might break. You can then incorporate those ideas as new tests and slowly build
confidence that will carry you forward.

5.2.7 Regression testing

Regression testing is less an approach to testing per se, and more a process to follow as
you develop your applications. When you write a test, the assumption is that you’re
saying, “I want to make sure the code keeps working this way.” If you change your code
in a way that changes the behavior you tested, that would be a regression. A regression is
a shift to an undesirable (or at least unexpected) state and is usually A Bad Thing.

 Regression testing is the practice of running your existing suite of tests after each
code change before shipping your code to production. A test suite is the collection of
tests you’ve built up over time, either written to verify code as unit/integration tests or
to fix things found in exploratory manual testing. Many development teams run these
test suites in a continuous integration (CI) environment, where changes to an application
are frequently combined and tested before being released. A full discussion of CI is
beyond the scope of this book, but the idea is to set yourself up for success by running
all your tests against all your changes. I highly recommend checking out Travis CI
(https://docs.travis-ci.com/user/for-beginners/) or CircleCI (https://circleci.com/
docs/2.0/about-circleci/) to learn more.

As new features are added, new tests get added to the test suite. These get locked in as
regression tests for future changes. Similarly, it’s common to add tests for bugs that
you find, so that you can build confidence that a particular bug won’t reoccur. Like
code, test suites won’t always be perfect. But leaning on a robust suite to tell you when
things go awry can help you focus on other areas, like innovation and performance.

 With that, let’s see how you can start writing tests in Python.

Version control hooks
One practice for automating unit tests in source control systems is using a precommit
hook. Each time you commit your code, the hook triggers the tests to run. If any fail-
ures occur, the commit fails, and you’re reminded to fix them before committing your
code. Most unit-testing tools should integrate with this approach pretty well. Running
the tests again in a continuous integration environment makes sure that they pass
just before the code is deployed.

https://docs.travis-ci.com/user/for-beginners/
https://circleci.com/docs/2.0/about-circleci/
https://circleci.com/docs/2.0/about-circleci/
https://circleci.com/docs/2.0/about-circleci/

86 CHAPTER 5 Testing your software

Statements of fact5.3
The next step toward creating real tests is to assert that a particular comparison holds
true. Assertions are statements of fact; if you make an assertion that doesn’t hold true,
either some assumption you’ve made is incorrect or the assertion itself is incorrect. If
you assert that “you can see the sun on the horizon every morning,” it holds true most
of the time. But when there are clouds on the horizon, your assertion doesn’t hold
true. If you update your assumptions to include that the sky is clear, your assertion
becomes true again.

 Assertions in software are similar. They assert that some expression must hold true,
and they fail loudly if that assertion fails. In Python, assertions can be written using the
assert keyword. When assertions fail, they raise an AssertionError.

 You can test calculate_mean with assertions by adding assert in front of your
comparisons. A passing assertion will have no output; a failing one will show you the
traceback for the AssertionError:

>>> assert 10.0 == calculate_mean([0, 10, 20])
>>> assert 1.0 == calculate_mean([1000, 3500, 7_000_000])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AssertionError

This behavior is what many Python testing tools are built on. Using the recipe for a
functional test (set up input, identify expected output, obtain actual output, and com-
pare), these tools help you do the comparison and provide valuable context when
your assertions fail. Read on to see how two of the most widely used testing tools in
Python handle making assertions about your code.

Unit testing with unittest5.4
Unittest is Python’s built-in testing framework. Although it’s called unittest, it can also
be used for integration testing. Unittest provides features for making assertions about
your code, and also the tool for running the tests. In this section, you’ll see how tests
are organized and how to run them, and you’ll finally get some practice writing real
tests. Let’s get to it!

Test organization with unittest5.4.1

Unittest provides a set of features for performing assertions. You previously saw how to
write raw assert statements to test code, but unittest provides a TestCase class with
custom assertion methods for more understandable testing output. Your tests will
inherit from this class and use methods to make assertions.

 I encourage you to use these test classes as a strategy for grouping your tests. The
classes are flexible—you can use them to group any tests you like. If you have many
tests for a class, putting them in their own TestCase is a good idea. If you have many
tests for a single method within a class, you could even create a TestCase only for

87Unit testing with unittest

those. You learned to use cohesion, namespacing, and separation of concerns for
code, and you can apply the same ideas to tests.

5.4.2 Running tests with unittest

Unittest provides a test runner that you can use by typing python -m unittest in your
terminal. When you run the unittest test runner, it will look for tests by

1 Looking in the current directory (and any subdirectories) for modules named
test_* or *_test

2 Looking in those modules for classes that inherit from unittest.TestCase
3 Looking in those classes for methods that start with test_

Some people like to put their tests as close to the relevant code as possible, making it
easier to find tests for a particular module of interest. Others like to put all their tests
in a tests/ directory that lives at the root of their project to keep them separate from
the code. I’ve done it both ways and don’t have a strong preference myself. Do what
works for you, your team, or the community you’re writing software with.

5.4.3 Writing your first test with unittest

Now that you’ve got an idea of how unittest does things, you need something to test.
The following listing lays out a class you’ll use to get some testing practice.

class Product:
def __init__(self, name, size, color):

self.name = name
self.size = size
self.color = color

def transform_name_for_sku(self):
return self.name.upper()

def transform_color_for_sku(self):
return self.color.upper()

def generate_sku(self):
"""
Generates a SKU for this product.

Example:
>>> small_black_shoes = Product('shoes', 'S', 'black')
>>> small_black_shoes.generate_sku()
'SHOES-S-BLACK'

"""
name = self.transform_name_for_sku()
color = self.transform_color_for_sku()
return f'{name}-{self.size}-{color}'

A product class for an e-commerce systemListing 5.1

The product attributes are
specified when a Product
instance is created.

A SKU uniquely identifies
the product attributes.

88 CHAPTER 5 Testing your software

This class represents a product for purchase in an e-commerce system. A product has
a name and options for size and color, and each combination of these attributes pro-
duces a stock keeping unit (SKU). A SKU is a unique, internal ID used by companies for
pricing and inventory that often uses an all-uppercase format. Place this class defini-
tion in a product.py module.

 After you’ve created your product module, you’re ready to start writing your first
test. Create a test_product.py module in the same directory as product.py. Start by
importing unittest and creating an empty ProductTestCase class that inherits from
the base TestCase class:

import unittest

class ProductTestCase(unittest.TestCase):
pass

If you run python -m unittest at this point, with only product.py and your empty test
case in test_product.py, it will say that it ran no tests:

$ python -m unittest

--
Ran 0 tests in 0.000s

OK

It likely found the test_product module and the ProductTestCase class, but you
haven’t written any tests there yet. You can check this by adding an empty test method
to the class:

import unittest

class ProductTestCase(unittest.TestCase):
def test_working(self):

pass

Try running the test runner again; you should see that it ran one test this time:

$ python -m unittest
.
--
Ran 1 test in 0.000s

OK

Now you’re ready for the real magic. Remember the anatomy of a functional test:

1 Set up the inputs.
2 Identify the expected output.
3 Obtain the actual output.
4 Compare the expected and actual outputs.

89Unit testing with unittest

If you want to test the transform_name_for_sku method from the Product class, this
recipe becomes

1 Create an instance of Product with a name, size, and color.
2 Observe that transform_name_for_sku returns name.upper(); the expected

result is the name in uppercase.
3 Call the Product instance’s transform_name_for_sku method and save it in a

variable.
4 Compare the expected result to the saved actual result.

You can write the first three steps using regular code for creating a Product instance
and getting the value of transform_name_for_sku. Using an assert statement for the
fourth step would work, but AssertionError doesn’t provide much information in its
traceback by default. This is where the custom assertion methods in unittest come into
play. The most common one to use for comparing two values is assertEqual, which
accepts expected and actual values as arguments. It raises an AssertionError and
provides additional information showing the difference between the two values if they
aren’t equal. This added context can help you find issues more easily.

 Here’s what the test might look like on a first pass:

import unittest

from product import Product

class ProductTestCase(unittest.TestCase):
def test_transform_name_for_sku(self):

small_black_shoes = Product('shoes', 'S', 'black')
expected_value = 'SHOES'
actual_value = small_black_shoes.transform_name_for_sku()
self.assertEqual(expected_value, actual_value)

Prepares the setup for
transform_name_for_sku: the

product with its attributes

States the
expected
result for

generate_sku
with the

given inputs

Obtains
 the actual

 result of
generate_

sku for
comparison

Uses the special equality assertion
method to compare two values

Running the test runner now should still show Ran 1 test, and if the test passes (it
should), you won’t see much additional output.

 It’s a good idea to see your tests fail to verify that they’ll actually catch a problem
with your code if one arises. Change the expected value 'SHOES' to 'SHOEZ' and run
the test again. Now, unittest will raise an AssertionError stating that 'SHOEZ' !=

'SHOES':

$ python -m unittest
F
==
FAIL: test_transform_name_for_sku (test_product.ProductTestCase)
--
Traceback (most recent call last):

File "/Users/dhillard/test/test_product.py", line 11, in

➥ test_transform_name_for_sku

90 CHAPTER 5 Testing your software

self.assertEqual(expected_value, actual_value)
AssertionError: 'SHOEZ' != 'SHOES'
- SHOEZ
? ^
+ SHOES
? ^

--
Ran 1 test in 0.001s

FAILED (failures=1)

Confident that the test is keeping an eye over your code, you can change it back to the
appropriate value and move on to another test.

Writing your first integration test with unittest5.4.4

Now that you’ve seen what units are and how they can be tested, it’s time to look at
how the integration of multiple units can be tested. Unit tests are meant to examine
the behavior of small pieces of software in isolation, so without integration tests it’s dif-
ficult to say if these small pieces work together to produce something useful as a whole
(see figure 5.5).

Now that you can manage products in your inventory with a SKU system, people
should be able to start buying them. A new ShoppingCart class with the ability to add
and remove products would be a good first step. The cart stores products as a dictio-
nary that looks like this:

{
'SHOES-S-BLACK': {

'quantity': 2,
...

Create record

Database client

Read record
Unit tests are the
detail-oriented checks.

Integration tests are
the big picture checks.

Update record

Delete record

Unit tests and integration testsFigure 5.5

The keys are the product SKUs.

A nested dictionary of metadata
about the cart item, like quantity

91Unit testing with unittest

},
'SHOES-M-BLUE': {

'quantity': 1,
...

},
}

The ShoppingCart class contains methods to add and remove a product by managing
the data in this dictionary.

from collections import defaultdict

class ShoppingCart:
def __init__(self):

self.products = defaultdict(lambda: defaultdict(int))

def add_product(self, product, quantity=1):
self.products[product.generate_sku()]['quantity'] += quantity

def remove_product(self, product, quantity=1):
sku = product.generate_sku()
self.products[sku]['quantity'] -= quantity
if self.products[sku]['quantity'] == 0:

del self.products[sku]

The ShoppingCart behavior now presents a couple of integration points that should
be tested:

 The cart relies on (integrates with) the Product instance’s generate_sku method.
 Adding and removing products must work in tandem; a product that’s been

added must also be able to be removed.

Testing these integrations will look a lot like unit testing; the difference is in how much
of your software is executed during the test. Where a unit test generally only executes
the code in one method and asserts that the output is as expected, an integration test
may run many methods and make assertions about a few things along the way.

 In the case of ShoppingCart, a useful test would be to initialize the cart, add a
product, remove it, and make sure the cart is empty, as shown in the following listing.

import unittest

from cart import ShoppingCart
from product import Product

class ShoppingCartTestCase(unittest.TestCase):
def test_add_and_remove_product(self):

cart = ShoppingCart()

An integration test for aListing 5.2 ShoppingCart class

Using defaultdict simplifies the logic
for checking if a product is already

in the cart dictionary.

Adds quantity
of a product

to the cart
Removes quantity of a
product from the cart

The test setup is comparable
to the earlier unit test.

Creates a cart to add products to

92 CHAPTER 5 Testing your software

product = Product('shoes', 'S', 'blue')

cart.add_product(product)
cart.remove_product(product)

self.assertDictEqual({}, cart.products)

This test calls the cart’s __init__ method, the product’s generate_sku method, and
the cart’s add_product and remove_product methods. There’s a lot going on. As you
might expect, integration tests are often quite a bit longer as a result.

5.4.5 Test doubles

You’ll often have to write tests for code that interacts with another system, whether it’s
a database or an API call. These calls might do destructive things to real data, so call-
ing them for real when you run your tests might have bad consequences. They may
also be slow, with the effect being magnified if your test suite executes that area of
code multiple times. These other systems may not even be under your control. It often
makes sense to imitate them instead of using the real thing.

 There are several subtly different ways to imitate these systems with test doubles:

 Faking—Using a system that behaves a lot like the real one, but avoids expensive
or destructive actions

 Stubbing—Using a predetermined value as a response instead of getting one
from a live system

 Mocking—Using a system with the same interface as the real one, but that also
records interactions for later inspection and assertions

Faking and stubbing in Python involve writing up your own imitations as functions or
classes and telling your code to use them during test execution. Mocking, on the
other hand, is most commonly done using the unittest.mock module.

 Suppose your code calls an API endpoint to get some tax information for your
product sales. You don’t want to really use this endpoint in your test because you’ve
seen it take a few seconds to respond. On top of that, it returns dynamic data, so you
can’t be sure what value you should make assertions about in the test. If the code looks
like this:

from urllib.request import urlopen

def add_sales_tax(original_amount, country, region):
sales_tax_rate =

➥ urlopen(f'https://tax-api.com/{country}/{region}').read().decode()
return original_amount * float(sales_tax_rate)

Creates some small blue shoes

Adds shoes to the cart
Removes

shoes from
the cart The cart should be empty!

93Unit testing with unittest

a unit test with mocking could look like this:

import io
import unittest
from unittest import mock

from tax import add_sales_tax

class SalesTaxTestCase(unittest.TestCase):
 @mock.patch('tax.urlopen')
 def test_get_sales_tax_returns_proper_value_from_api(
 self,
 mock_urlopen
):
 test_tax_rate = 1.06
 mock_urlopen.return_value = io.BytesIO(
 str(test_tax_rate).encode('utf-8')
)

 self.assertEqual(
 5 * test_tax_rate,
 add_sales_tax(5, 'USA', 'MI')
)

Testing in this way allows you to declare, “The code I control behaves in this way given
these assumptions,” where the assumptions are created using test doubles. If you have
fair confidence that the requests library works as it says it does, you can use test dou-
bles to avoid coupling yourself to it. If you need to use a different HTTP client library
in the future, or need to change which API you get your tax information from, the test
will not have to change.

 It’s possible to overuse test doubles. I’m most certainly guilty of this from time to
time. Usually you’ll want to use test doubles to avoid the slow, expensive, or destructive
behaviors mentioned before, but sometimes it’s tempting to mock your own code to per-
fectly isolate the unit you’re trying to test. This can lead to brittle tests that break often
when you change your code, in part because they mirror the structure of the implemen-
tation too closely. Change the implementation, and you have to change your tests.

 Try to write tests that verify what you need but are flexible regarding changes in
the underlying implementation. This is loose coupling, once again. Loose coupling
applies to test code as much as implementation code.

5.4.6 Try it out
How would you test the other methods in the Product and ShoppingCart classes?
Keeping in mind the recipe for functional tests, try adding additional tests for the
remaining methods. A thorough test suite will contain assertions for each method and
for each different outcome you might expect from the method. You might even find a
subtle bug! As a hint, try testing what happens when you remove more things from the
cart than it contains.

The mock.patch
decorator mocks
the object or
method specified.

The test function receives the
mocked object or method.

The mocked urlopen call will
now return the mocked
response with the expected
test tax rate.

Asserts that the add_sales_tax method
calculates the new value from the tax
rate returned by the API

94 CHAPTER 5 Testing your software

 Some of the values you need to test are dictionaries. Unittest has a special method,
assertDictEqual, that provides useful output specific to dictionaries when the test
fails.

 For short tests like the one you wrote already, you can skip saving the expected and
actual values as variables. Enter the expressions directly as arguments to assertEqual:

def test_transform_name_for_sku(self):
small_black_shoes = Product('shoes', 'S', 'black')
self.assertEqual(

'SHOES',
small_black_shoes.transform_name_for_sku(),

)

When you’ve given it a try, come back and check the following listing to see how you
did. Remember to use the unittest test runner after writing or changing a test to see if
the test continues to pass.

class ProductTestCase(unittest.TestCase):
def test_transform_name_for_sku(self):

small_black_shoes = Product('shoes', 'S', 'black')
self.assertEqual(

'SHOES',
small_black_shoes.transform_name_for_sku(),

)

def test_transform_color_for_sku(self):
small_black_shoes = Product('shoes', 'S', 'black')
self.assertEqual(

'BLACK',
small_black_shoes.transform_color_for_sku(),

)

def test_generate_sku(self):
small_black_shoes = Product('shoes', 'S', 'black')
self.assertEqual(

'SHOES-S-BLACK',
small_black_shoes.generate_sku(),

)

A test suite forListing 5.3 Product and ShoppingCart

class ShoppingCartTestCase(unittest.TestCase):
def test_cart_initially_empty(self):

cart = ShoppingCart()
self.assertDictEqual({}, cart.products)

def test_add_product(self):
cart = ShoppingCart()
product = Product('shoes', 'S', 'blue')

cart.add_product(product)

95Unit testing with unittest

self.assertDictEqual({'SHOES-S-BLUE': {'quantity': 1}},

➥ cart.products)

def test_add_two_of_a_product(self):
cart = ShoppingCart()
product = Product('shoes', 'S', 'blue')

cart.add_product(product, quantity=2)

self.assertDictEqual({'SHOES-S-BLUE': {'quantity': 2}},

➥ cart.products)

def test_add_two_different_products(self):
cart = ShoppingCart()
product_one = Product('shoes', 'S', 'blue')
product_two = Product('shirt', 'M', 'gray')

cart.add_product(product_one)
cart.add_product(product_two)

self.assertDictEqual(
{

'SHOES-S-BLUE': {'quantity': 1},
'SHIRT-M-GRAY': {'quantity': 1}

},
cart.products

)

def test_add_and_remove_product(self):
cart = ShoppingCart()
product = Product('shoes', 'S', 'blue')

cart.add_product(product)
cart.remove_product(product)

self.assertDictEqual({}, cart.products)

def test_remove_too_many_products(self):
cart = ShoppingCart()
product = Product('shoes', 'S', 'blue')

cart.add_product(product)
cart.remove_product(product, quantity=2)

self.assertDictEqual({}, cart.products)

You can fix the bug in the shopping cart by updating remove_product to delete a
product from the cart if its quantity is less than or equal to 0:

if self.products[sku]['quantity'] <= 0:
del self.products[sku]

96 CHAPTER 5 Testing your software

Writing interesting tests5.4.7

Good tests will use inputs that affect the behavior of the method being tested. SKUs
are typically all uppercase, and they usually don’t contain spaces either—only letters,
numbers, and dashes. But what if the product name contains a space? You’ll want to
remove the spaces before the name gets put in the SKU. A tank top SKU should start
with 'TANKTOP', for example.

 This is a new requirement, so you can write a new test that describes how the code
should behave.

def test_transform_name_for_sku(self):
medium_pink_tank_top = Product('tank top', 'M', 'pink')
self.assertEqual(

'TANKTOP',
medium_pink_tank_top.transform_name_for_sku(),

)

This test fails because the current code returns 'TANK TOP'. That’s okay because you
haven’t built support for products with spaces in the name yet. Seeing this test fail for
the expected reason means that when you write the code to correctly handle spaces,
the test should pass.

 Thinking of interesting tests like this yourself is valuable because it can surface
questions like this earlier in the development process. Then you can survey other
stakeholders and ask, “What are all the possible product name formats we might need
to support?” If their answer gives you new information, you can incorporate it into the
code and the tests to deliver better software.

 Now that you understand the benefits of unittest, it’s time to learn about pytest.

Testing with pytest5.5
Although unittest is a full-featured and mature framework built into Python, it has a
few drawbacks. For some, it feels “un-Pythonic” because it uses camelCase instead of
snake_case for method names (a relic of its JUnit history). Unittest also requires a
fair amount of boilerplate that makes the underlying tests a bit more difficult to com-
prehend.

Pythonic code
Code is often said to be Pythonic if it uses the features and common style guidelines
for the Python language. Pythonic code uses snake_case for variable and method
names, list comprehensions instead of simple for loops, and so on.

For those who like succinct, straight-to-the-point tests, pytest is an answer (https://
docs.pytest.org/en/latest/getting-started.html). Once you’ve installed pytest, you can
get back to the raw assert statements you saw earlier. Pytest performs a bit of hidden
magic under the hood to make this work, but it produces a smooth experience.

https://docs.pytest.org/en/latest/getting-started.html
https://docs.pytest.org/en/latest/getting-started.html
https://docs.pytest.org/en/latest/getting-started.html

97Testing with pytest

 Pytest produces more readable output by default, telling you about the system, the
number of tests it finds, the result of individual tests, and a summary of the overall test
results:

$ pytest
========== test session starts ==========
platform darwin -- Python 3.7.3, pytest-5.0.1, py-1.8.0,

➥ pluggy-0.12.0
rootdir: /path/to/ecommerce/project
collected 15 items

test_cart.py [80%]
[93%]test_product.py ..
[100%]test_tax.py .

======= 15 passed in 0.12 seconds =======

5.5.1 Test organization with pytest

Pytest does automatic discovery of your tests like unittest does. It will even discover any
unittest tests you have lying around. One key difference is that proper pytest test classes
are named Test* and don’t need to inherit from a base class (like unittest.TestCase)
to work.

 The command for running tests with pytest is simpler:

pytest

Because pytest doesn’t require you to inherit from a base class or use any special meth-
ods, you don’t strictly need to organize your tests into classes. I still recommend it,
though, because it remains a good organizational tool. Pytest will include the test class
name in failure output and the like, which can help you understand where the tests
live and what they’re about. On the whole, pytest tests can be organized similarly to
those for unittest.

Converting unittest tests to pytest5.5.2

Because pytest will discover your existing unittest tests, you can incrementally convert
your tests to pytest as you wish (and if you wish, I suppose). For the test suite you’ve
written so far, the conversion looks like this:

 Remove the unittest import from test_product.py.
 Rename the ProductTestCase class to TestProduct and remove the inheri-

tance from unittest.TestCase.
 Replace any self.assertEqual(expected, actual) with assert actual ==

expected.

Information about the system

The number of tests
pytest discovered

The status of each test
from each module, with an
overall progress indicator

A summary of the full
test suite results

98 CHAPTER 5 Testing your software

The test case from earlier looks more like the following under pytest.

class TestProduct:
def test_transform_name_for_sku(self):

small_black_shoes = Product('shoes', 'S', 'black')
assert small_black_shoes.transform_name_for_sku() == 'SHOES'

def test_transform_color_for_sku(self):
small_black_shoes = Product('shoes', 'S', 'black')
assert small_black_shoes.transform_color_for_sku() == 'BLACK'

def test_generate_sku(self):
small_black_shoes = Product('shoes', 'S', 'black')
assert small_black_shoes.generate_sku() == 'SHOES-S-BLACK'

5.6

5.6.1

A test case in pytestListing 5.4

No need to inherit from any base class

self.assertEqual goes away; uses
raw assert statements instead

As you can see, pytest leads to shorter and arguably more readable test code. It also
provides its own framework of features that make setting up the environment and
dependencies for your tests easier. For a great in-depth look at all pytest has to offer, I
highly recommend Brian Okken’s book, Python Testing with pytest: Simple, Rapid, Effec-
tive, and Scalable (Pragmatic Bookshelf, 2017).

You now have some unit and integration testing under your belt; read on to learn
briefly about non-functional testing.

Beyond functional testing
You spent the majority of this chapter learning about functional tests. Making code
work and making it right both come before making it fast, so functional testing pre-
cedes testing the speed of your code. Once you’ve made sure the code is working,
making sure it’s performant is a good next step.

Performance testing

Performance testing tells you how the changes you make affect things like memory,
CPU, and disk usage. In chapter 4, you learned about some of the tools available for
performance testing the units of your code. You used the timeit module, and that’s
what I use to see what my options are for specific lines of code and functions. These
aren’t measurements you’ll usually do in an automated way; they’re meant for ad hoc
comparison of two approaches, and they’re quick to write when you’re trying to see
which of two implementations is faster.

 As you develop larger applications with a number of critical operations that need
to remain efficient, it may behoove you to integrate some automated performance
testing into your process. Automated performance testing looks quite like regression
testing in practice; if you deploy a change and notice that the application begins con-
suming 20% more memory, it’s a good sign that you should investigate the change. It’s

99Test-driven development: A primer

also great for celebrating the moments when you fix a slow piece of code and can
watch your app speed up.

 Unlike unit testing, which produces binary pass/fail results, performance testing is
more qualitative. If you see your application trending slower over time (or a sudden
jump after a deployment), that’s something to look into. The nature of this kind of test-
ing makes it a bit more difficult to automate and monitor, but solutions are out there.

5.6.2 Load testing

Load testing is a type of performance testing, but it gives you information about how
far you can push your application until it falls over. Maybe it consumes too much CPU,
memory, or network bandwidth, or it gets too slow for users to use it reliably. Whatever
the case, load testing provides metrics you can use to fine-tune the resources you give
your application. In more substantial cases, it may motivate you to change the design
of part of the system so it’s more efficient.

 Load testing entails more infrastructure and strategy than something like unit test-
ing. To get a clear picture of performance under load, you need to mimic your pro-
duction environment closely in both architecture and user behavior. Due to the
complexity of application-level load testing, in my mind it sits somewhere above inte-
gration testing in the testing pyramid (figure 5.6).

Load testing helps you performance-test your applications in scenarios that more
closely mimic real-world user behavior.

5.7 Test-driven development: A primer
A whole school of thought exists around driving development using unit and integra-
tion testing in software. The general name for these practices is test-driven development
(TDD). TDD can help you commit to testing up front, so you reap the benefits of test-
ing that we’ve discussed so far.

Man
ua

l

tes
tin

g

Integration testing

Load
testing

Unit testing

Do load testing in places where it’s
mission critical. If you have the
resources after making sure the
code actually works, you can
do more.

Figure 5.6 Load testing
in the testing pyramid

100 CHAPTER 5 Testing your software

It’s a mindset5.7.1
For me, the real benefit of TDD is the mindset it puts me in. The stereotype of a qual-
ity assurance engineer is that they can always find something in your code to break.
This is generally said with some disdain, but I think it’s remarkable. Enumerating all
the ways a system can blow up is both useful and impressive.

 Netflix takes this to an extreme with the idea of chaos engineering. They actively
think about the ways systems can fail, but they also introduce some amount of unpre-
dictable failure.2 This leads to innovative ways of responding to failure.

 As you write tests, try to be a chaos engineer. Deliberately try to think of the
extremes that your code can endure, and throw them at it. There’s a limit, of course—
it doesn’t make sense for all code to respond predictably to all inputs. But in Python,
the exception system allows your code to respond in a predictable way to rare or unex-
pected situations.

It’s a philosophy5.7.2
TDD has a subculture around it, and the only opinions stronger than how to do it cor-
rectly are how not to do it correctly. It’s an art form that produces as many styles and
critics as any other movement. I’ve found it useful to learn how different teams handle
the testing aspects of their process; once you do this, you can identify the pieces you
like and incorporate them into your own work.

 Some TDD literature advocates making sure every line of your code is covered by
tests. Although it’s good to have strong coverage of the different cases your code can
handle, increasing the coverage beyond a certain point can have diminishing returns.
Sometimes covering those last few lines with your tests means introducing tighter cou-
pling between the tests and the implementation with an integration test.

 If you find that testing some aspect of a function’s behavior is awkward or difficult,
try to determine if it’s because the code’s concerns aren’t well separated or if it’s
inherently awkward to test. If awkwardness must be incorporated, it’s better for it to be
in the tests than the real code. Don’t refactor code only to make testing easier or cover-
age stronger—do it to make testing easier and to make the code more coherent.

Summary
 Functional tests make sure code produces the expected output from a given input.
 Testing saves you time in the long run by catching bugs and making refactoring

code easier.
 Manual testing isn’t scalable and should be used to supplement automated testing.
 Unittest and pytest are two popular unit and integration testing frameworks for

Python.
 Test-driven development puts the tests first, guiding you to a working imple-

mentation based on the requirements.

2To learn more about Netflix’s advances in the area of chaos engineering, check out their collection of blog
posts on the subject: https://medium.com/netflix-techblog/tagged/chaos-engineering.

https://medium.com/netflix-techblog/tagged/chaos-engineering

Part 3

Nailing down large systems

In part 2, you learned the concepts that form a large part of software design,
and in part 3, you’ll start to apply them. By building an application from scratch,
you’ll see how software design concepts can be applied at various points in the
development life cycle.

 Although designing software that works—and works quickly—may be part of
your goal, another part of the goal must be software that you and other develop-
ers can understand and maintain. This part of the book will show you that
design is an iterative process with some wiggle room; there isn’t always a right or
wrong answer, and there’s rarely a point at which you’re “done.” You’ll learn how
to identify pain points in your code so that you can use what you’ve learned to
minimize effort and maximize understanding.

Separation
 of concerns in practice

In chapter 2, I showed you some of the best practices around separation of concerns
in Python. Separating concerns means creating boundaries between code that deals
with distinct activities to make the code more understandable. You learned how func-
tions, classes, modules, and packages are useful in decomposing code into pieces that
are easier to reason about. Although chapter 2 covered several of the tools available
for separating concerns, it’s helpful to get some experience applying them.

 As is true for many, I learn best by doing. As I work through a real project, I
often discover connections I didn’t see before or find new questions to explore. In
this chapter, you’ll work through a real application that exhibits a good use case for

This chapter covers
 Developing an application with separate high-level

concerns

 Using specific types of encapsulation to loosen
the coupling of different concerns

 Creating a well-separated foundation to enable
future extension

103

104 CHAPTER 6 Separation of concerns in practice

separating concerns. You’ll improve upon it in the chapters to come, and you’ll end
up with something you can extend for your own personal use.

NOTE This and future chapters make light use of structured query language
(SQL), a domain-specific language for manipulating and retrieving data from
databases. If you haven’t used SQL before, or need a refresher, you might
want to run through a tutorial before continuing. Ben Brumm’s SQL in
Motion course (www.manning.com/livevideo/sql-in-motion) is a good primer.

A command-line bookmarking application6.1
In this chapter, you’ll develop an application for saving and organizing bookmarks
(more specifics on that in a minute).

 I’m not a great notetaker. Throughout school and my career, I’ve struggled to find
a way of writing things down for myself that helps me learn and retain information.
When I find a great resource that goes through a concept in a novel way or with
insightful examples, I’ve struck gold, but I usually need to dedicate time to read and
practice the information in that resource. As a result, I’ve amassed a great number of
bookmarks over the last few years. Maybe I’ll have the time to read through them
someday!

 The default bookmark feature in most browsers is lacking. Although things can be
nested in folders and given a title, it’s often pretty difficult to recall why you saved
something in the first place. A bunch of my bookmarks are code-related articles about
testing, performance, new programming languages, and the like. When I find an
interesting repository on GitHub, I also use GitHub’s “star” feature to save it for later.
But GitHub stars are limited too; at the time of writing, they’re one big flat list that
you can filter only by programming language. Whatever bookmark implementations
you might use, they’re mostly built on the same foundational principles.

 Bookmarks are an example of a small CRUD workflow: create, read, update, and
delete (figure 6.1). These four operations make up a lot of data-driven tools in the
world. You can create a bookmark to save for later, and then read its information to get
the URL. You may want to update a book-
mark’s title if the one you gave it originally
was confusing, and you usually delete them
when you’re done with them. This is a
pretty good place to start your application.

 Because a long description is one of the
features missing from some existing book-
mark tools, your application will include
that off the bat. You’ll add a few more fea-
tures in the following chapters, and do so
in a way that will enable you to keep adding
features you want.

Create: Add a new bookmark.

Read: Get the information of an existing
bookmark, a list of all the bookmarks, or
specific bookmarks that meet some criteria.

Update: Edit the information in a
bookmark, like the title or description.

Delete: Remove a bookmark.

Figure 6.1 CRUD operations are the basis of
many applications that manage user data.

https://www.manning.com/livevideo/sql-in-motion

105A tour of Bark

A tour of Bark6.2
You’re going to develop Bark, a command-line bookmarking application. Bark allows
you to create bookmarks that, for now, will be made up of a few pieces of information:

 ID—A unique, numerical identifier for each bookmark
 Title—A short text title for the bookmark, like “GitHub”
 URL—A link to the article or website being saved
 Notes—An optional, long description or explanation about the bookmark
 Date added—A timestamp so you can see how old the bookmark is (in a bid to

stave off that pesky procrastination)

Bark will also let you list all bookmarks that have been added and then delete a spe-
cific bookmark by its ID. This is all managed through a command-line interface (CLI)—
an application you interact with in your terminal. On startup, Bark’s CLI will present
you with a menu of options. Each option, when selected, will trigger an action that will
read or modify a database.

NOTE You won’t develop a feature to cover the update portion of CRUD for
bookmarking in this chapter; you’ll get to that in chapter 7.

The benefits of separation: Reprise6.2.1

Even though the CRUD-like operations Bark supports are fairly common for this kind
of application, there’s a sizable amount of stuff happening. For an application this
big, it’s important to remember what benefits separation of concerns will offer:

 Reduced duplication—If each piece of your software does one thing, it will be eas-
ier to see when two of them do the same thing. You can analyze similar pieces of
code to see if it makes sense to combine them into a single source of truth for
that behavior.

 Improved maintainability—Code is read much more often than it’s written. Code
that can be understood incrementally because each piece has a clear responsi-
bility allows developers to jump into areas of interest, understand what they
need, and jump back out.

 Ease of generalization and extension—Code with one responsibility can be general-
ized to cover that responsibility for a number of use cases, or it can be broken
up further to support more varied behavior. Code that does numerous things
will have a hard time supporting such flexibility because it’s hard to see where
changes may have an effect.

Keep these ideas in mind as you work through the exercise in this chapter. My goal is
for you to come out of this chapter with something you can continue developing and
adding features to. To do this, you’ll first think about and then implement a high-level
architecture that will support that outcome.

106 CHAPTER 6 Separation of concerns in practice

An initial code st6.3 ructure, by concern
I try to start developing applications like Bark with a concise explanation of how it
does what it does. This tends to lead me toward an initial architecture.

 For example, how does Bark work? What is its concise description? Perhaps the fol-
lowing statement comprises the answers to these questions: Using a command-line inter-
face, a user chooses options for adding, removing, and listing bookmarks stored in a database.

 Now let’s break that down a bit:

 Command-line interface—This is a way to present options to a user and under-
stand which options they choose.

 Choosing options—Once an option is chosen, some action or business logic hap-
pens as a result.

 Stored in a database—Data needs to be persisted for later use.

These points represent the high-level layers of abstraction for Bark. The CLI is the pre-
sentation layer of the application. The database is the persistence layer. The actions and
business logic are kind of like the glue that connects the presentation and persistence
layers. Each is a fairly separate concern, as shown in figure 6.2. This kind of multitier
architecture, where each layer (tier) of an application has freedom to evolve, is used by
many organizations. Teams can assemble around each tier based on areas of expertise,
and each layer can potentially be reused with other applications if desired.

You’ll develop each of these layers of Bark as you work through the chapter. Because
each is a separate concern, it makes sense to think of them as separate Python modules:

 A database module
 A commands module
 A bark module, which contains the code that actually runs the Bark application

We’ll start from the persistence layer and work our way up.

User sees and
chooses options.Presentation layer

Business logic layer
Options trigger
commands.

Commands fetch and
manipulate data.Persistence layer

Figure 6.2 A multitier architecture is
frequently used in web and desktop
applications.

107An initial code structure, by concern

The persistence layer6.3.1

The persistence layer is the lowest level of Bark (figure 6.3).
This layer will be concerned with taking information it
receives and communicating it to the database.

 You’ll be using SQLite, a portable database that stores
data in a single file by default (www.sqlite.org/index.html).
This is convenient, compared to more complex database
systems, because you can start from scratch by deleting the
file if something goes wrong.

NOTE Despite being one of the most widely used
databases, SQLite is installed on only some operat-
ing systems by default. I recommend downloading
a precompiled binary for your operating system
from the official download page (https://sqlite
.org/download.html).

Starting in the database module, you’ll create a Database-
Manager class for manipulating data in the database. Python provides a built-in sqlite3
module, which you can use to get a connection to the database, make queries, and iter-
ate over results. SQLite databases are usually a single file with a .db extension; if you
make a sqlite3 connection to a file that doesn’t exist, the module will create it for you.

 The database module provides most of what you need to manage bookmark data,
including the following:

 Creating a table (for initializing the database)
 Adding or deleting a record
 Listing the records in a table
 Selecting and sorting records from a table based on some criteria
 Counting the number of records in a table

How can these tasks be broken down further? Each seems somewhat separate, from
the business logic perspective described earlier, but what about at the persistence
layer? Most of the activities described can be achieved by constructing an appropriate

Application architecture patterns
Separating applications into layers of presentation, persistence, and actions or rules
is a common pattern. Some variations on this approach are so common, they’ve been
given names. Model-view-controller (MVC) is a way of modeling data for persistence,
providing users with a view into that data, and allowing them to control changes to
that data with some set of actions. Model-view-viewmodel (MVVM) puts an emphasis
on allowing the view and data model to communicate freely. These and other multitier
architectures are great examples of separation of concerns.

Presentation layer

Business logic layer

Persistence layer

Figure 6.3 The persistence
layer deals with data
storage—it’s the lowest
level of the application.

https://sqlite.org/download.html
https://sqlite.org/download.html
https://www.sqlite.org/index.html

108 CHAPTER 6 Separation of concerns in practice

SQL statement and executing it. Executing it requires a connection to the database,
which requires the path to the database file.

 Whereas managing the persistence is a high-level concern, these individual con-
cerns are what you get when you peel open the persistence layer. They should each be
separate as well. First things first, though—you need a connection to the database.

CREATING AND CLOSING THE DATABASE CONNECTION

While Bark is running, it needs only one connection to the database—it can reuse this
connection for all its operations. To make this connection, you can use sqlite3
.connect, which accepts the path of the database file to which it should connect.
Again, if the file does not exist, it will be created.

 The __init__ for DatabaseManager should

1 Accept an argument containing the path to the database file (Don’t hardcode
it; separate your concerns!)

2 Use the database file path to create a SQLite connection using sqlite3
.connect(path) and store it as an instance attribute

It’s good practice to close the connection to the SQLite database when the program
finishes, to limit the possibility of data corruption. For symmetry, the __del__ for
DatabaseManager should close the connection with the connection’s .close() method.

 This will serve as the foundation for executing statements.

import sqlite3

class DatabaseManager:
def __init__(self, database_filename):

self.connection = sqlite3.connect(database_filename)

def __del__(self):
self.connection.close()

Working with databases
Many smart people have produced wonderful and robust packages that make working
with databases in Python easier. SQLAlchemy (www.sqlalchemy.org) is a widely used
tool for not only interacting with databases, but abstracting data models via an object-
relational mapping (ORM). An ORM allows you to treat database records as objects
in languages like Python, without worrying much about the details of a database at
all. The Django web framework also provides an ORM for writing data models.

In the spirit of learning by doing, you’ll write the database interaction code yourself
in this chapter. It’s limited to the scope of Bark, but it can be added to or replaced if
you’d like to do more with the rest of the application. If you need to use a database
in future projects, consider whether you want to write your database code from scratch
or use one of these third-party packages instead.

Creates and stores
a connection to the
database for later
use

Cleans up the connection
when done, to be safe

https://www.sqlalchemy.org/

109An initial code structure, by concern

EXECUTING STATEMENTS

Your DatabaseManager will need a way to execute statements. These statements have a
couple of things in common, so encapsulating those aspects into a reusable method
will reduce the likelihood of errors from rewriting the same code each time you want
to execute a new kind of statement.

 Some SQL statements return data; these statements are called queries. Sqlite3 man-
ages query results with a concept called a cursor. Using a cursor to execute a statement
lets you iterate over the results it returns. Statements that aren’t queries (INSERT,
DELETE, and so on) don’t return any results, but the cursor manages this by returning
an empty list.

 Write an _execute method on DatabaseManager that you can use to execute all
statements using a cursor, returning a result that you can choose to use where you
need to. The _execute method should

1 Accept a statement as a string argument
2 Get a cursor from the database connection
3 Execute a statement using the cursor (more on this shortly)
4 Return the cursor, which has stored the result of the executed statement

(if any)

def _execute(self, statement):
cursor = self.connection.cursor()
cursor.execute(statement)
return cursor

Statements that aren’t queries usually manipulate data, and if anything bad happens
while they’re executing, the data could become corrupted. Databases guard against
this with a feature called a transaction. If a statement executing within a transaction
fails or is otherwise interrupted, the database will roll back to its last known working
state. Sqlite3 lets you use the connection object to create a transaction via a context
manager, a Python block using the with keyword that provides some special behavior
when the code enters and exits the block.

 Update _execute to put the cursor creation, execution, and return inside a trans-
action, like the following:

def _execute(self, statement):
with self.connection:

cursor = self.connection.cursor()
cursor.execute(statement)
return cursor

Using .execute inside a transaction will get you where you need to go, functionally
speaking. But it’s a good security practice to use placeholders for real values in SQL

Creates the cursor Uses the cursor to execute
the SQL statement

Returns the cursor, which
has stored the results

This creates a database
transaction context.

This happens within the
database transaction.

110 CHAPTER 6 Separation of concerns in practice

statements to prevent users from doing malicious things with specially crafted que-
ries.1 Update _execute to accept two things:

 A SQL statement as a string, possibly containing placeholders
 A list of values to fill in the placeholders in the statement

The method should then execute the statement by passing both arguments to the cur-
sor’s execute, which accepts the same arguments. It should look something like the
following snippet:

def _execute(self, statement, values=None):
with self.connection:

cursor = self.connection.cursor()
cursor.execute(statement, values or [])
return cursor

Now you have a database connection and the ability to execute arbitrary statements
on that connection. Remember that the connection is managed for you automatically
when you create a DatabaseManager instance, so you don’t need to think about how
it’s opened and closed, unless you want to change it. Now, statement execution is man-
aged within the _execute method, so you also don’t need to think about how a state-
ment is executed; you only need to tell it what statement to execute. This is the power
of separating your concerns.

 Now that you’ve got these building blocks, it’s time to develop some database
interactions.

CREATING TABLES

One of the first things you’ll need is a database table in which to store your bookmark
data. You’ll have to create this table using a SQL statement. Because the concerns of
connecting to the database and executing statements are now abstracted, the work of
creating a table includes the following:

1 Determine the column names for the table.
2 Determine the data type of each column.
3 Construct the right SQL statement to create a table with those columns.

Remember that each bookmark has an ID, title, URL, optional notes, and the date it
was added. The data type and constraints for each column follow:

 ID—The ID is the primary key of the table, or the main identifier of each record.
It should automatically increment each time a new record is added, using the
AUTOINCREMENT keyword. This column is an INTEGER type; the rest are TEXT.

 Title—The title is required because it’s hard to skim your existing bookmarks if
they’re only URLs. You can tell SQLite the column can’t be empty by using the
NOT NULL keyword.

values is optional; some statements
don’t have placeholders to fill in.

Executes the statement,
providing any passed-in
values to the placeholders

1See the Wikipedia article on SQL injection: https://en.wikipedia.org/wiki/SQL_injection.

https://en.wikipedia.org/wiki/SQL_injection

111An initial code structure, by concern

 URL—The URL is required, so it gets NOT NULL as well.
 Notes—Notes for a bookmark are optional, so only the TEXT specifier is necessary.
 Date—The date the bookmark was added is required, so it gets NOT NULL.

A table creation statement in SQLite uses the CREATE TABLE keywords, followed by the
table name, the list of columns, and their data type information in parentheses.
Because you’ll want Bark to create the table on startup if it doesn’t already exist, you
can use CREATE TABLE IF NOT EXISTS.

 Based on the previous descriptions of the bookmark columns, what would the SQL
statement look like for creating a bookmarks table? See if you can write it out, then
come back to check your work against the following listing.

CREATE TABLE IF NOT EXISTS bookmarks
(

id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT NOT NULL,
url TEXT NOT NULL,
notes TEXT,
date_added TEXT NOT NULL

);

You can now write your method for creating tables. Each column is identified by a
name, like title, that maps to a data type and constraints, like TEXT NOT NULL, so a
dictionary seems like an appropriate Python type for representing columns. The
method needs to

1 Accept two arguments: the name of the table to create, and a dictionary of col-
umn names mapped to their data types and constraints

2 Construct a CREATE TABLE SQL statement like the one shown earlier
3 Execute the statement using DatabaseManager._execute

Try writing the create_table method now, and then check back to see how it com-
pares to the following listing.

def create_table(self, table_name, columns):
columns_with_types = [

f'{column_name} {data_type}'
for column_name, data_type in columns.items()

]
self._execute(

f'''
CREATE TABLE IF NOT EXISTS {table_name}
({', '.join(columns_with_types)});
'''

)

The creation statement for a bookmarks tableListing 6.1

Creating a SQLite tableListing 6.2

The main ID of each record,
which increments automatically
as records are added

NOT NULL requires a column
to be populated with a value.

Constructs the column definitions,
with their data types and constraints

Constructs
 the full

 create table
statement and

 executes it

112 CHAPTER 6 Separation of concerns in practice

You’ll use this method later on to create a bookmarks table, which is what Bark will
interact with to manage bookmarks as you develop the application.

ADDING RECORDS

Now that you can create a table, you need
to be able to add bookmark records to it.
This is the “C” in CRUD (figure 6.4).

 SQLite expects the INSERT INTO key-
word, followed by the table name, to indi-
cate the intent to add a new record to the
table. This is followed by the list of columns
you’re supplying values for in parentheses,
the VALUES keyword, and then the values
you’re supplying in parentheses. A record
insert statement in SQLite looks like this:

INSERT INTO bookmarks
(title, url, notes, date_added)
VALUES ('GitHub', 'https://github.com',

➥ 'A place to store repositories of code', '2019-02-01T18:46:32.125467');

Remember that it’s a good practice to use placeholders instead, as in the _execute
method earlier. What parts of the preceding query should use placeholders?

1 bookmarks

2 title, url, and so on
3 'GitHub', 'https://github.com', and so on
4 All of the above

Only places where literal values go can use placeholders in statements, so 3 is the cor-
rect answer. An INSERT statement for the bookmarks table, with placeholders, looks
like this:

INSERT INTO bookmarks
(title, url, notes, date_added)
VALUES (?, ?, ?, ?);

A note on generalization
Right now, you need only the bookmarks table for Bark. I’ve already argued in this
book that early optimization is a no-no, and the same is true for generalization. So
why make a general-use create_table method?

When I start building a method with hardcoded values, I check to see if it’s much work
to parameterize those values with arguments to the method. For example, replacing
the string 'bookmarks' with a table_name string argument isn’t much work. The col-
umns and their data types follow similarly. Using this approach, the create_table
method can be made general enough to create most any table you’ll need.

Create: Add a new bookmark.

Read: Get the information of an existing
bookmark, a list of all the bookmarks, or
specific bookmarks that meet some criteria.

Update: Edit the information in a
bookmark, like the title or description.

Delete: Remove a bookmark.

Figure 6.4 Creation is the most basic
operation necessary for CRUD, so it’s the
crux of many systems.

113An initial code structure, by concern

To construct this statement, you’ll need to write an add method in DatabaseManager
that

1 Accepts two arguments: the name of the table, and a dictionary that maps col-
umn names to column values

2 Constructs a placeholder string (a ? for each column specified)
3 Constructs the string of the column names
4 Gets the column values as a tuple (A dictionary’s .values() returns a dict_

values object, which happens not to work with sqlite3’s execute method.)
5 Executes the statement with _execute, passing the SQL statement with place-

holders and the column values as separate arguments

Write the add method now, and check back with the following listing to see how it
compares.

def add(self, table_name, data):
placeholders = ', '.join('?' * len(data))
column_names = ', '.join(data.keys())
column_values = tuple(data.values())

self._execute(
f'''
INSERT INTO {table_name}
({column_names})
VALUES ({placeholders});
''',
column_values,

)

USING CLAUSES TO LIMIT ACTION SCOPE

To insert records into a database, all you need is the info to be inserted, but some
database statements are used in tandem with one or more additional clauses. Clauses
affect which records the statement will operate on. Using a DELETE statement without
a clause, for example, could end up deleting all the records in the table. You don’t
want that.

 WHERE clauses can be appended to several kinds of statements to limit the
statement’s effect to records matching that criteria. You can combine multiple WHERE
criteria using AND or OR. In Bark, for example, each bookmark record has an ID, so
you can limit a statement to acting on a particular record by its ID with a clause like
WHERE id = 3.

 This kind of limiting is useful both for queries (to search for specific records) and
for regular statements. Clauses will be useful when you need to delete specific records.

Adding a record to a SQLite tableListing 6.3

The keys of the data are
the names of the columns.

.values() returns a dict_values
object, but execute needs a list
or tuple.

Passes the optional values
argument to _execute

114 CHAPTER 6 Separation of concerns in practice

DELETING RECORDS

After a bookmark has outlived its usefulness,
you need a way to delete it (figure 6.5). To
delete a bookmark, you can issue a DELETE
statement to the database, using a WHERE
clause to specify a bookmark by its ID.

 In SQLite, the statement to delete the
bookmark with an ID of 3 looks like this:

DELETE FROM bookmarks
WHERE ID = 3;

As in the create_table and add methods,
you can represent the criteria as a dictio-
nary that maps column names to the values you want to match. Write a delete
method that

1 Accepts two arguments: the table name to delete records from, and a dictionary
mapping column names to the value to match on. The criteria should be a
required argument, because you don’t want to delete all your records.

2 Constructs a string of placeholders for the WHERE clause.
3 Constructs the full DELETE FROM query and executes it with _execute.

Check your results against the following listing.

def delete(self, table_name, criteria):
placeholders = [f'{column} = ?' for column in criteria.keys()]
delete_criteria = ' AND '.join(placeholders)
self._execute(

f'''
DELETE FROM {table_name}
WHERE {delete_criteria};
''',
tuple(criteria.values()),

)

SELECTING AND SORTING RECORDS

You can add and remove records from a
table now, but how can you retrieve them?
Aside from creating and deleting informa-
tion, you’ll want to be able to read what
you’ve already stored (figure 6.6).

 You can create a query statement in
SQLite using SELECT * FROM bookmarks (the
* means “all columns”) and some criteria:

SELECT * FROM bookmarks
WHERE ID = 3;

Deleting records in SQLiteListing 6.4

The criteria
argument isn’t
optional here; all
records would be
deleted without
any criteria.

Uses the values argument of _execute
as the values to match against

Figure 6.5 Delete is the counterpart of create,
so most systems cover this operation as well.

Create: Add a new bookmark.

Read: Get the information of an existing
bookmark, a list of all the bookmarks, or
specific bookmarks that meet some criteria.

Update: Edit the information in a
bookmark, like the title or description.

Delete: Remove a bookmark.

Figure 6.6 Reading existing data is usually
a necessary part of a CRUD application.

Create: Add a new bookmark.

Read: Get the information of an existing
bookmark, a list of all the bookmarks, or
specific bookmarks that meet some criteria.

Update: Edit the information in a
bookmark, like the title or description.

Delete: Remove a bookmark.

115An initial code structure, by concern

Additionally, you can sort these results by a specific column using an ORDER BY clause:

FROM bookmarks*SELECT
3=IDWHERE

ORDER BY title;

Again, you should use placeholders where there are literal values in the query:

SELECT * FROM bookmarks
WHERE ID = ?
ORDER BY title;

Your select method will look somewhat similar to the delete method, except that
criteria can be optional. (It will fetch all records by default.) It should also accept an
optional order_by argument that specifies a column to sort the results by (the default
is the primary key of the table). Using delete as a guide, write select now and come
back to compare with the following listing when you’re done.

def select(self, table_name, criteria=None, order_by=None):
criteria = criteria or {}

query = f'SELECT * FROM {table_name}'

if criteria:
placeholders = [f'{column} = ?' for column in criteria.keys()]
select_criteria = ' AND '.join(placeholders)
query += f' WHERE {select_criteria}'

if order_by:
query += f' ORDER BY {order_by}'

return self._execute(
query,
tuple(criteria.values()),

)

You’ve now created a database connection; written an _execute method for executing
arbitrary SQL statements with placeholders in a transaction; and written methods to
add, query, and delete records. This is about all you’ll need for manipulating a SQLite
database for the moment. You just finished a database manager in fewer than 100
lines of code. Nice work.

 Next, you’ll develop the business logic that interacts with the persistence layer.

6.3.2 The business logic layer
Now that the persistence layer for Bark is in place, you can work on the layer that fig-
ures out what to put in and get out of the persistence layer (figure 6.7).

 When a user interacts with something in the presentation layer of Bark, Bark needs
to trigger something to happen in the business logic and ultimately in the persistence

A method for selecting SQL table dataListing 6.5

This orders the results by the title
column in ascending order.

Criteria can be empty by default,
because selecting all records in
the table is all right.Constructs

the WHERE
clause to
limit the

results

Constructs
the ORDER

BY clause to
sort the
results

This time, you want the return value from
_execute to iterate over the results.

116 CHAPTER 6 Separation of concerns in practice

layer. It might be tempting to do something like the
following:

if user_input == 'add bookmark':
add bookmark

elif user_input == 'delete bookmark #4':
delete bookmark

But this would couple the text presented to the user
with the actions that need to be triggered. You would
have new conditions for each menu option, and if you
wanted multiple options to trigger the same command,
or you wanted to change the text, you would have to
refactor some code. It would be nice if the presentation
layer were the only place that knows about the menu
option text displayed to the user.

 Each action is kind of like a command that needs to
be executed in response to a user’s menu choice. By encapsulating the logic of each
action as a command object, and providing a consistent way to trigger them via an
execute method, these actions can be decoupled from the presentation layer. The
presentation layer can then point menu options to commands without worrying about
how those commands work. This is called the command pattern.2

 You’ll develop each of the CRUD actions and some peripheral functionality as
commands in the business logic layer.

CREATING THE BOOKMARKS TABLE

Now that you’re working in the business logic layer, create a new “commands” module
to house all the commands you’re going to write. Because most of the commands will
need to make use of the DatabaseManager, import it from the database module and
create an instance of it (called db) to be used throughout the commands module.
Remember that its __init__ method requires the file path to a SQLite database; I sug-
gest calling it bookmarks.db. Leaving out any leading path will create the database file
in the same directory as the Bark code.

 Because you’ll need to initialize the bookmarks database table if it doesn’t already
exist, start by writing a CreateBookmarksTableCommand class whose execute method
creates the table for your bookmarks. You can make use of the db.create_table
method you wrote earlier to create your bookmarks table. Later in the chapter, you’ll
trigger this command to run when Bark starts up. Check your work against the follow-
ing listing.

Presentation layer

Business logic layer

Persistence layer

Figure 6.7 The business logic
layer determines when and how
data is read from or written to
the persistence layer.

2See Wikipedia’s “Command pattern” article for more on this pattern: https://en.wikipedia.org/wiki/Command
_pattern.

https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Command_pattern

117An initial code structure, by concern

db = DatabaseManager('bookmarks.db')

class CreateBookmarksTableCommand:
def execute(self):

db.create_table('bookmarks', {
'id': 'integer primary key autoincrement',
'title': 'text not null',
'url': 'text not null',
'notes': 'text',
'date_added': 'text not null',

})

Notice that the command is only aware of its duties (calling persistence layer logic)
and the interface of its dependency (DatabaseManager.create_table). This is loose
coupling, thanks in part to separating the persistence logic and (eventually) the pre-
sentation logic. You should be seeing the benefits of separation of concerns more and
more clearly as you work through these exercises.

ADDING BOOKMARKS

To add a bookmark, you’ll need to pass data received from the presentation layer on
to the persistence layer. The data will be passed as a dictionary mapping column
names to values. This is a great example of code relying on a shared interface rather
than the specifics of an implementation. If the persistence layer and the business logic
layer agree on a data format, they can each do what they need to, as long as the data
format stays consistent.

 Write an AddBookmarkCommand class that will perform this operation. This class will

1 Expect a dictionary containing the title, URL, and (optional) notes information
for a bookmark.

2 Add the current datetime to the dictionary as date_added. To get the current
time in UTC, in a standardized format with wide compatibility, use datetime
.datetime.utcnow().isoformat().3

3 Insert the data into the bookmarks table using the DatabaseManager.add method.
4 Return a success message that will eventually be displayed by the presentation

layer.

Check your work against the following listing.

from datetime import datetime

...

A command for creating a tableListing 6.6

A command for adding a bookmarkListing 6.7

Remember, sqlite3 will
automatically create this
database file if it doesn’t exist.

This will
eventually be
called when
Bark starts
up.

Creates the bookmarks
table with the necessary
columns and constraints

3See Wikipedia’s article on “ISO 8601” for more information on this time format: https://en.wikipedia.org/
wiki/ISO_8601.

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

118 CHAPTER 6 Separation of concerns in practice

class AddBookmarkCommand:
def execute(self, data):

data['date_added'] = datetime.utcnow().isoformat()
db.add('bookmarks', data)
return 'Bookmark added!'

You’ve now written all the business logic needed for creating bookmarks. Next, you’ll
want to be able to list the bookmarks you’ve added.

LISTING BOOKMARKS

Bark needs to be able to show you the bookmarks you’ve saved—without that, Bark
wouldn’t be of much use. You’re going to write a ListBookmarksCommand that will pro-
vide the logic for displaying the bookmarks in the database.

 You’ll want to make use of the DatabaseManager.select method to get the book-
marks from the database. By default, SQLite sorts records by their order of creation
(that is, by the primary key of the table), but it might also be useful to sort bookmarks
by date or title. In Bark, bookmarks’ IDs and dates sort identically because they both
strictly increase as you add bookmarks, but it’s good practice to sort explicitly by the
column of interest in case that changes.

 ListBookmarksCommand should do the following:

 Accept the column to order by, and save it as an instance attribute. You can set
the default value to date_added if you like.

 Pass this information along to db.select in its execute method.
 Return the result (using the cursor’s .fetchall() method) because select is a

query.

Write the command to list bookmarks, and come back to check your work against the
following listing.

class ListBookmarksCommand:
def __init__(self, order_by='date_added'):

self.order_by = order_by

def execute(self):
return db.select('bookmarks', order_by=self.order_by).fetchall()

Now you’ve got enough functionality to add bookmarks and view existing ones. The
last step for managing bookmarks is a command for deleting them.

DELETING BOOKMARKS

Similar to adding a new bookmark, the deletion of a bookmark requires some data to
be passed from the presentation layer. This time, though, the data is simply an integer
value representing the ID of the bookmark to delete.

A command to list existing bookmarksListing 6.8

Adds the current
datetime as the
record is added

Using the DatabaseManager.add method
makes short work of adding a record.

You’ll use this message in
the presentation layer later.

You can create a version of this
command for sorting by date or by title.

db.select returns a
cursor you can

iterate over to get
the records.

119An initial code structure, by concern

 Write a DeleteBookmarkCommand command that accepts this information in its
execute method and passes it to the DatabaseManager.delete method. Remember
that delete accepts a dictionary mapping column names to values to match against;
here, you’ll want to match the given value in the id column. Once the record is
deleted, return a success message for use in the presentation layer.

 Come back and check your work against the following listing.

class DeleteBookmarkCommand
:

def execute(self, data):
db.delete('bookmarks', {'id': data})
return 'Bookmark deleted!'

QUITTING BARK

There’s one piece of polish left: a command for exiting Bark. A user could use the usual
Ctrl-C method of stopping the Python program, but an option to exit is a little nicer.

 Python provides the sys.exit function for stopping program execution. Write a
QuitCommand whose execute method exits the program using this approach, then
come back and check your work against the following listing.

import sys

...

class QuitCommand
:

def execute(self):
sys.exit()

Now you can wipe the sweat from your brow . . . not
because you’re done, but because you’ll be developing the
presentation layer next.

6.3.3 The presentation layer

Bark uses a command-line interface (CLI). Its presentation
layer (the part the user sees, as shown in figure 6.8) is text
in a terminal. Depending on the application, a CLI
can run until the completion of a specific task, or it can
keep running until the user explicitly exits. Because you
wrote QuitCommand, you might guess that you’ll be doing
the latter.

A command to delete bookmarksListing 6.9

A command to exit the programListing 6.10

delete accepts a dictionary
of column name, match
value pairs.

This should
immediately
exit Bark.

Presentation layer

Business logic layer

Persistence layer

Figure 6.8 The presentation
layer shows users what
actions can be taken and a
way to trigger them.

120 CHAPTER 6 Separation of concerns in practice

The presentation layer of Bark contains an infinite loop:

1 Clears the screen
2 Prints the menu options
3 Gets the user’s choice
4 Clears the screen and executes the command corresponding to the user’s

choice
5 Waits for the user to review the result, pressing Enter when they’re done

Now that you’re working on the presentation layer, you’ll need to create a new bark
module. It’s a good practice to put code for command-line applications into an if name
== 'main': block; this will make sure you don’t unintentionally execute the code in the
module by importing the bark module somewhere. If you start with a Hello, World! type
of program, you can do a quick check to make sure things are set up properly.

 Start with the following in your bark module:

if __name__ == '__main__':
print('Welcome to Bark!')

Try running python bark.py in your terminal; you should see Welcome to Bark! as a
result. Now you can start hooking up the presentation layer to some business logic.

DATABASE INITIALIZATION

Remember that Bark needs to initialize the database, creating the bookmarks table if
it doesn’t already exist. Import the commands module and update your code to exe-
cute the CreateBookmarksTableCommand, as shown in the following snippet. After
making this update and running python bark.py, you won’t see any text output, but
you should see that a bookmarks.db file is created.

import commands

if __name__ == '__main__':
commands.CreateBookmarksTableCommand().execute()

It may seem small, but you’ve just accomplished something pretty remarkable. This
represents a full pass through all the layers of your multitier architecture. The presenta-
tion layer (the act of running bark.py, so far) has triggered a command in the business
logic, which, in turn, set up a table in the persistence layer fit for storing bookmarks.
Each layer knows just enough about its surroundings to do its job; things are well sep-
arated and loosely coupled. You’ll experience this a few more times as you start add-
ing menu options to Bark that trigger more commands.

MENU OPTIONS

When you start Bark, it should present you with a menu of options that looks some-
thing like this:

121An initial code structure, by concern

(A) Add a bookmark
(B) List bookmarks by date
(T) List bookmarks by title
(D) Delete a bookmark
(Q) Quit

Each option has a keyboard shortcut and a descriptive title. If you look carefully, each
of these options corresponds to one of the commands you wrote earlier. Because you
wrote the commands using the command pattern, each command can be triggered
the same way as the others—using its execute method. Commands differ only in what
setup and input they require, and then from the presentation layer’s perspective they
do whatever they do.

 Based on what you’ve learned about encapsulation, how would you go about hook-
ing up the items in the presentation layer to the business logic they control?

1 Use conditional logic to call the right Command class’s execute method based on
the user input.

2 Make a class that pairs the text to be displayed to the user and the command it
triggers.

I recommend choice 2. To hook each menu option up to the command it should trig-
ger, you can create an Option class. The class’s __init__ method can accept the name
to display to the user in the menu, an instance of the command to execute when cho-
sen by the user, and an optional preparation step (to get additional input from the
user, for example). All of these can be stored as instance attributes.

 When chosen, an Option instance needs to

1 Run the specified preparation step, if any.
2 Pass the return value from the preparation step, if any, to the specified com-

mand’s execute method.
3 Print the result of the execution. These are the success messages or bookmark

results returned from the business logic.

An Option instance should be represented as its text description when shown to the
user; you can use __str__ to override the default behavior. Abstracting this work from
the rest of the code that gets and validates user input allows you to keep your concerns
separate.

 Try writing the Option class, then check the following listing to see how you’ve done.

class Option:
def __init__(self, name, command, prep_call=None):

self.name = name
self.command = command
self.prep_call = prep_call

Listing 6.11 Connecting menu text to business logic commands

The name displayed
in the menu

An instance of the
command to execute

The optional
preparation step to
call before executing
the command

122 CHAPTER 6 Separation of concerns in practice

def choose(self):
data = self.prep_call() if self.prep_call else None
message = self.command.execute(data) if data

➥ else self.command.execute()
print(message)

def __str__(self):
return self.name

With the Option class in place, now is a good time to start hooking up more of the
business logic you created earlier. Remember that you need to do a few things with
each option:

1 Print the keyboard key for the user to enter to choose the option.
2 Print the option text.
3 Check if the user’s input matches an option and, if so, choose it.

What Python data structure would work well to hold all your options?

1 list

2 set

3 dict

Each keyboard key maps to a menu option, and you need to check the user’s input
against the available options, so you need to keep those pairings stored somehow.
Choice 3 is a good one because a dict can provide keyboard key and option pairs that
you can also iterate over, with the dictionary’s .items() method, for printing the
option text. I also recommend using collections.OrderedDict specifically, to ensure
that your menu options will always be printed in the order you specify.

 Add your options dictionary after CreateBookmarksTableCommand now, adding an
item for each menu option. Once the dictionary is in place, create a print_options
function that iterates over the options and prints them in the format you saw earlier:

(A) Add a bookmark
(B) List bookmarks by date
(T) List bookmarks by title
(D) Delete a bookmark
(Q) Quit

Check your work with the following listing.

Specifying and printing menu optionsListing 6.12

choose will be called when the
option is chosen by the user.

Calls the preparation
step if specified

Executes the command, passing in
the data from the preparation, if any

Represents the option as its name
instead of the default Python behavior

def print_options(options):
for shortcut, option in options.items():

print(f'({shortcut}) {option}')
print()

123An initial code structure, by concern

...

if __name__ == '__main__':
...

options = {
'A': Option('Add a bookmark', commands.AddBookmarkCommand()),
'B': Option('List bookmarks by date',

➥ commands.ListBookmarksCommand()),
'T': Option('List bookmarks by title',

➥ commands.ListBookmarksCommand(order_by='title')),
'D': Option('Delete a bookmark', commands.DeleteBookmarkCommand()),
'Q': Option('Quit', commands.QuitCommand()),

}
print_options(options)

After you’ve added the menu options, running Bark should print all of the options
you added. You can’t yet trigger them; for that, you’ll need to get some user input.

USER INPUT

With our overall goal of threading presentation to business logic to persistence, what
remains to be added is a bit of interactivity with Bark users. The approach for getting
the user’s desired option goes like this:

1 Prompt the user to enter a choice, using Python’s built-in input function.
2 If the user’s choice matches one of those listed, call that option’s choose

method.
3 Otherwise, repeat.

What approach might you use in Python to get this repeating behavior?

1 A while loop
2 A for loop
3 A recursive function call

Because there isn’t a definitive end state for getting the user’s input (they might enter
an invalid choice four billion times), a while loop (option 1) makes the most sense.
While the user’s choice is invalid, keep prompting them. You can take it easy on them
by accepting the upper- and lowercase versions of each option if you like.

 Write a get_option_choice function, and use it after printing the options to get
the user’s choice. Then call that option’s choose method. Try it out, then compare
your work with the following listing.

def option_choice_is_valid(choice, options):
return choice in options or choice.upper() in options

def get_option_choice(options):

Getting a user’s choice of menu optionListing 6.13

The choice is valid if
the letter matches
one of the keys in the
options dictionary.

124 CHAPTER 6 Separation of concerns in practice

choice = input('Choose an option: ')
while not option_choice_is_valid(choice, options):

print('Invalid choice')
choice = input('Choose an option: ')

return options[choice.upper()]

if __name__ == '__main__':
...

chosen_option = get_option_choice(options)
chosen_option.choose()

At this point, you can run Bark, and some of the commands, like listing bookmarks
and quitting, will respond to your input. But a couple of options require some addi-
tional preparation, as I alluded to earlier. You need to supply a title, description, and
so on to add a bookmark, and you need to specify the ID of a bookmark to delete it.
Much like you got user input for the menu option to choose, you’ll need to prompt
the user for this bookmark data.

 Here’s another opportunity to encapsulate some behavior. For each piece of infor-
mation you need, you should

1 Prompt the user with a label—“Title” or “Description”, for example
2 If the information is required and the user presses Enter without entering any

info, keep prompting them

Write three functions—one to provide the repeating prompt behavior, and two that use
it to get information for adding or deleting a bookmark. Then add each information-
fetching function as the prep_call to the appropriate Option instance. Check your
results against the following listing to see how you did, or if you get stuck.

def get_user_input(label, required=True):
value = input(f'{label}: ') or None
while required and not value:

value = input(f'{label}: ') or None
return value

def get_new_bookmark_data():
return {

'title': get_user_input('Title'),
'url': get_user_input('URL'),
'notes': get_user_input('Notes', required=False),

}

def get_bookmark_id_for_deletion():
return get_user_input('Enter a bookmark ID to delete')

if __name__ == '__main__':

Gathering bookmark information from the userListing 6.14

Gets an
initial
choice

from the
user

While the user’s
choice is invalid, keep
prompting them.

Returns the matching
option once they’ve
made a valid choice

A general function for
prompting users for input

Gets
initial
user
input

Continues prompting while
the input is empty, if required

Function to get the necessary
data for adding a new bookmark

The notes for a
bookmark are
optional, so don’t
keep prompting.

Gets the necessary
information for
deleting a bookmark

125An initial code structure, by concern

...
'A': Option('Add a bookmark', commands.AddBookmarkCommand(),

➥ prep_call=get_new_bookmark_data),
...
'D': Option('Delete a bookmark', commands.DeleteBookmarkCommand(),

➥ prep_call=get_bookmark_id_for_deletion),

If all is well, you should now be able to run Bark and add, list, or delete bookmarks!
Congratulations on a job well done.

Before finishing up this chapter, there are a couple of remaining pieces of polish to
attend to.

CLEARING THE SCREEN

Clearing the screen just before printing the menu or executing a command will make
it easier to see the current context the user is in. To clear the screen, you can defer to
your operating system’s command-line program for clearing the terminal text. The
command for clearing the screen is clear on many operating systems, but it’s cls on
Windows. You can figure out if you’re on Windows by checking os.name—on Win-
dows this is 'nt'. (Windows NT is to Windows 10 as macOS is to Mojave.)

 Write a clear_screen function that makes the appropriate call using os.system,
as in the following code:

import os

def clear_screen():
clear = 'cls' if os.name == 'nt' else 'clear'
os.system(clear)

Call this just before calling print_options, and just before calling the .choose()
method of the user’s selected option:

Nerding out
We just covered a heck of a lot of stuff, but I want to point out something I find excit-
ing. Because of the way you’ve built Bark, if you want to add new functionality, there’s
a clear roadmap:

1 Add any new database manipulation methods you may need to database.py.
2 Add a command class that performs the business logic you need in com-

mands.py.
3 Hook up the new command to a new menu option in bark.py.

How cool is that? Separating concerns allows you to clearly see which areas of code
you need to augment when adding new functionality.

126 CHAPTER 6 Separation of concerns in practice

if __name__ == '__main__':
...

clear_screen()
print_options(options)
chosen_option = get_option_choice(options)
clear_screen()
chosen_option.choose()

This will be most helpful when the menu and command results get printed over and
over again, which is the final piece of this puzzle.

APPLICATION LOOP

The last step is to run Bark in a loop so that users can perform several actions in a row.
To do this, create a loop method and move everything but the database initialization
from the if __name__ == '__main__' block into it. Back in the if __name__ ==
'__main__' block, call loop inside a while True: block. At the end of loop, add a line
to pause and wait for the user to press Enter before proceeding.

def loop():
All the steps for showing/selecting options
...
_ = input('Press ENTER to return to menu')

if __name__ == '__main__':
commands.CreateBookmarksTableCommand().execute()

while True:
loop()

Now Bark will give the user a way to return to the menu after each interaction, and the
menu gives them an option to exit. This covers all the bases. What do you think? I
think it’s about time to start using Bark.

Summary
 Separation of concerns is a tool for achieving more readable, maintainable

code.
 End-user applications are often separated into persistence, business logic, and

presentation layers.
 Separation of concerns works closely with encapsulation, abstraction, and loose

coupling.
 Applying effective separation of concerns allows you to add, change, and delete

functionality without affecting the surrounding code.

Everything that happens for
each menu > option > result
loop goes here. Prompts the user to press

Enter and reviews the
result before proceeding
(_ means “unused value”)

Loops forever (until the user chooses the
option corresponding to QuitCommand)

Extensibility
 and flexibility

At many established organizations, your day-to-day work as a developer involves not
only writing new applications, but updating existing ones. When you’re tasked with
adding a new feature to an existing application, your goal is to extend the function-
ality of that application, introducing new behavior by adding code.

 Some applications are flexible to this kind of change and can adapt to shifting
requirements. Others may fight you tooth and nail. In this chapter, you’ll learn
strategies for writing software that’s flexible and extensible by adding an “Import
GitHub stars” feature to Bark.

7.1 What is extensible code?
Code is said to be extensible if adding new behaviors to it has little or no impact on
existing behaviors. Said another way, software is extensible if you can add new
behavior without changing existing code.

This chapter covers
 Using inversion of control to make code flexible

 Using interfaces to make code extensible

 Adding new features to your existing code

127

128 CHAPTER 7 Extensibility and flexibility

 Think about a web browser like Google Chrome or Mozilla Firefox. You’ve proba-
bly installed something in one of these browsers to block advertisements or to easily
save the article you’re reading to a notes tool like Evernote. Firefox calls these install-
able pieces of software add-ons, whereas Chrome calls them extensions, and both are
examples of a plugin system. Plugin systems are implementations of extensibility.
Chrome and Firefox weren’t built with ad blockers or Evernote in mind specifically, but
they were designed to allow for such extensions to be built.

 Massive projects like web browsers succeed when they can cater to the needs of
hundreds of thousands of users. It would be a massive feat to predict all those needs in
advance, so an extensible system allows for solutions to those needs to be built after
the product is brought to market. You won’t always need to be so forward-looking, but
drawing on some of the same concepts will help you build better software.

 As with many facets of software development, extensibility is a spectrum and some-
thing you’ll iterate on. By practicing concepts like separation of concerns and loose
coupling, you can improve your code’s extensibility over time. As the extensibility of
your code improves, you’ll find that adding new features becomes faster because you
can focus almost entirely on that new behavior without worrying about how it will
affect the features around it. This also means you’ll have an easier time maintaining
and testing your code, because features are more isolated and therefore less likely to
introduce tricky bugs because of intermingled behavior.

Adding new behaviors7.1.1

In the last chapter, you wrote the beginnings of the Bark application. You used a mul-
titier architecture to separate the concerns of persisting, manipulating, and displaying
bookmark data. You then built a small set of features on top of those layers of abstraction
to make something useful. What happens when you’re ready to add new functionality?

 In an ideal extensible system, adding new behavior involves adding new classes,
methods, functions, or data that encapsulate the new behavior without changing exist-
ing code (figure 7.1).

Extensible code allows you to add
a new feature by adding new code.

Extensible code doesn’t require
the editing of existing code.

Figure 7.1 Adding new
behavior to extensible code

129What is extensible code?

Compare this with a less extensible system, where new functionality may require add-
ing conditional statements to a function here, a method there, and so on (figure 7.2).
That breadth of changes and their granularity is sometimes referred to as shotgun sur-
gery, because adding a feature requires peppering changes throughout your code like
the pellets from a shotgun round.1 This often points to a mixing of concerns or an
opportunity to abstract or encapsulate in a different way. Code that requires these
kinds of changes is not extensible; creating new behavior is not a straightforward
endeavor. You need to go searching through the code for exactly the right lines
to update.

 Toward the end of the last chapter, I noted that adding a new feature to Bark is a
relatively simple matter:

 Adding new data persistence logic in the database module, if needed
 Adding new business logic to the command module for the underlying func-

tionality
 Adding a new option in the bark module to handle user interaction

TIP Duplicating some code and updating that new copy to do what you need
is a perfectly valid approach to extension. I use this approach occasionally on my
way to making the original code more extensible. By creating a duplicate ver-
sion, altering it, and seeing how the two versions differ, I can more easily refactor
that duplicated code back into a single, multipurpose version later. If you try to
deduplicate code without a thorough understanding of all the ways it’s being
used, you risk assuming too much and making your code inflexible to future
changes. So remember, duplication is better than the wrong abstraction.

Often, additions are made to conditional expressions
or by adding new else cases, making the code harder
to understand over time.

Code that isn’t extensible requires many edits
throughout the code to add a new feature.

Figure 7.2 Adding new behavior
to code that isn’t extensible

1Read more about shotgun surgery and other code smells in “An Investigation of Bad Smells in Object-Oriented
Design,” Third International Conference on Information Technology: New Generations (2006), https://ieeexplore.ieee
.org/document/1611587.

https://ieeexplore.ieee.org/document/1611587
https://ieeexplore.ieee.org/document/1611587
https://ieeexplore.ieee.org/document/1611587

130 CHAPTER 7 Extensibility and flexibility

 If Bark is close to ideal in doing the three activities, you should only need to add
code, without affecting code that’s already present. You’ll discover whether this is the
case when you start writing the GitHub stars importer a bit later in this chapter. But
because real systems are rarely ideal, you’ll still find yourself needing to make changes
to existing code regularly (figure 7.3). How does flexibility apply in these situations?

Modifying existing behaviors7.1.2

There are a number of reasons you might need to change code you or someone else
has already written. You might need to change the code’s behavior, such as when
you’re fixing a bug or addressing a change in requirements. You might need to refac-
tor to make the code easier to work with, keeping the behavior consistent. In these
cases, you aren’t necessarily looking to extend the code with new behavior, but the flexi-
bility of the code still plays a big role.

 Flexibility is a measure of code’s resistance to change. Ideal flexibility means that
any piece of your code can be easily swapped out for another implementation. Code
that requires shotgun surgery in order to change is rigid; it fights against changes by
making you work hard. Kent Beck wittily said, “For each desired change, make the
change easy (warning: this may be hard), then make the easy change.”2 Breaking
down the code’s resistance first—through practices like decomposition, encapsula-
tion, and so on—paves the way to enabling you to make the specific change you origi-
nally intended.

 In my own work, I make little, continuous refactorings in the area of code I’m
working in. For example, the code you work in may contain a complicated set of
if/else statements, as in listing 7.1. If you need to change a behavior in this set of
conditionals, it’s likely you’ll need to read most of it to understand where the change

Shoot for extending your code as often as
is feasible given your time constraints.

You’ll still have to edit existing code every now and
then; software is a continuous, iterative process.

Figure 7.3 How extensibility
looks in practice

2Kent Beck on Twitter (September 25, 2012), https://twitter.com/kentbeck/status/250733358307500032.

https://twitter.com/kentbeck/status/250733358307500032

131What is extensible code?

should be made. And if the change you want to make applies to the body of each con-
ditional, you’ll need to apply the change many times over.

if choice == 'A':
print('A is for apples')

elif choice == 'B':
print('B is for bats')

...

How could this be improved?

1 Extract information from the conditional checks and bodies into a dict.
2 Use a for loop to check against each available choice.

Because each choice maps to a specific outcome, extracting the mapping of behaviors
into a dictionary (option 1) would be the right approach. By mapping the letter for
the choice to the word that goes in the message, a new version of the code can retrieve
the right word from the mapping regardless of the choice picked. You no longer need
to keep adding elif statements to a conditional and defining the behavior for the
new case. You can instead add a single new mapping from the chosen letter to the
word you’ll use in the message, printing only at the end, as in listing 7.2. The mapping
of choices to messages acts like configuration—information a program uses to
determine how to execute. Configuration is often easier to understand than
conditional logic.

choices = {
'A': 'apples',
'B': 'bats',
...

}

print(f'{choice} is for {choices[choice]}')

This version of the code is more readable. Whereas the example in listing 7.1 required
you to understand the conditions and what each condition does, the version here is
more clearly structured as a set of choices and a line that prints information about a
specific choice. Adding more choices and changing the message that gets printed is
also easier, because they’ve been separated. This is all in the pursuit of loose coupling.

7.1.3 Loose coupling

Above all, extensibility arises from loosely coupled systems. Without loose coupling,
most changes in a system will require the shotgun surgery variety of development.
Suppose you’d written Bark without the layers of abstraction around the database and

A rigid mapping of conditions to outcomesListing 7.1

A more flexible way to map conditions to outcomesListing 7.2

This conditional needs to be
updated properly for each choice.

The concerns of mapping an option to a
message and printing the message are mixed.

Extracting the mapping of choices to messages
makes adding a new option simpler.

The outcome is centralized, and printing
behavior is separated somewhat.

132 CHAPTER 7 Extensibility and flexibility

the business logic—something like the following listing. This version is difficult to
read, in part because of its physical layout (note the deep nesting) and also because so
much is happening in one glob of code.

if __name__ == '__main__':
options = [...]

while True:
for option in options:

print(option)

choice = input('Choose an option: ')

if choice == 'A':
...
sqlite3.connect(...).execute(...)

elif choice == 'D':
...
sqlite3.connect(...).execute(...)

This code would work, but consider trying to implement a change that affects how you
connect to the database, or a change to the underlying database altogether. It would
be a major pain. This code has many interdependent pieces all talking to each other,
so adding new behavior would mean figuring out the right place to add another elif,
writing some raw SQL, and so on. Because you would incur these costs each time you
wanted to add new behavior, this system would not scale well.

 Imagine the atoms in a solid piece of iron—they’re tightly packed, firmly holding
onto each other. That makes iron rigid, and it resists being bent or reshaped. But
blacksmiths figured out how to overcome this by melting the iron, which loosens up
the atoms so they can flow around each other freely. Even as it cools, the iron is mallea-
ble, or able to move and flex without breaking.

 This is what you want from your code, as shown in figure 7.4. If each piece is only
loosely coupled to any other piece, those pieces can move around more freely without
breaking something unexpectedly. Letting the code get too tightly packed together,
and permitting it to rely heavily on the code around it, will allow your code to settle
into a solid form that’s hard to reshape.

 The loose coupling you’ve used writing Bark means that new database functional-
ity can be added with new methods on the DatabaseManager class or with focused
changes to an existing (centralized) method. New business logic can be encapsulated
in new Command classes, and adding to the menu is a matter of creating a new option
in the options dictionary in the bark module and hooking it up to a command. This
sounds a bit like the browser plugin systems I described earlier. Bark doesn’t expect to
handle any specific new features, but they can be added with a known quantity of effort.

A procedural approach to BarkListing 7.3

Deep nesting is a strong hint that
concerns need further separation.

if/elif/else are difficult to reason about.

Database behavior is repetitive
and mixed with user interaction.

133Solutions for rigidity

This recap of loose coupling shows how what you’ve learned so far can help you
design flexible code. Now I’ll teach you a few new techniques for getting even deeper
flexibility.

7.2 Solutions for rigidity
Rigidity in code is a lot like stiff joints. As software gets older, the code that gets used
the least tends to be the most rigid, and it requires some care to loosen it up again.
Specific kinds of rigid code require specific kinds of care, and you should regularly
examine code for opportunities to keep it flexible through refactoring.

 In the next few sections, you’ll learn some specific ways to reduce rigidity.

7.2.1 Letting go: Inversion of control

You learned earlier that composition provides benefits over inheritance by allowing
objects to reuse behaviors without confining them to a particular inheritance hierar-
chy. When you separate your concerns into many smaller classes and want to compose
those behaviors back together, you can write a class that uses instances of those smaller
classes. This is a common practice in object-oriented codebases.

 Imagine you’re working in a module that deals with bicycles and their parts. You
open up the bicycle module and see the code in the following listing. As you read to
understand what the code is doing, try to assess how well it follows practices like
encapsulation and abstraction.

class Tire:
def __repr__(self):

return 'A rubber tire'

A composite class that depends on other, smaller classesListing 7.4

Loosely coupled pieces of
code can move around and change

their shape freely, just like the
molecules in a liquid.

Tightly coupled pieces of code rely on the
code around them. Changing one piece is

difficult because the other pieces must
move to accommodate it.

Figure 7.4 Flexibility
contrasted with rigidity

Small classes to be
used for composition

134 CHAPTER 7 Extensibility and flexibility

class Frame:
def __repr__(self):

return 'An aluminum frame'

class Bicycle:
def __init__(self):

self.front_tire = Tire()
self.back_tire = Tire()
self.frame = Frame()

def print_specs(self):
print(f'Frame: {self.frame}')
print(f'Front tire: {self.front_tire}, back tire: {self.back_tire}')

if __name__ == '__main__':
bike = Bicycle()
bike.print_specs()

Running this code will print out the specs of your bicycle:

Frame: An aluminum frame
Front tire: A rubber tire, back tire: A rubber tire

This will certainly get you a bicycle. The encapsulation looks good; each part of the
bicycle lives in its own class. The levels of abstraction make sense too; there’s a Bicy-
cle at the top level, and each of its parts is accessible a level down from that. So what’s
wrong? Can you see anything that might be difficult to do with this code structure?

1 Adding new parts to a bicycle
2 Upgrading parts of a bicycle

Adding new parts to a bicycle (option 1) turns out not to be very difficult. You can cre-
ate an instance of a new part and store it on the Bicycle instance in the __init__
method, the same as the others. Upgrading (changing) the parts of a Bicycle
instance dynamically (option 2) turns out to be hard in this structure because the
classes for those parts are hardcoded into the initialization.

 You could say that the Bicycle depends on the Tire, Frame, and other parts it needs.
Without them, the bicycle can’t function. But if you want a CarbonFiberFrame, you
have to crack open the Bicycle class’s code to update it. Because of this, Tire is cur-
rently a rigid dependency of Bicycle.

 Inversion of control says that instead of creating instances of dependencies in your
class, you can pass in existing instances for the class to make use of (figure 7.5). The
control of dependency creation is inverted by giving the control to whatever code is cre-
ating a Bicycle. This is powerful.

Bicycle creates the
parts it needs.

A method to print all
of the bicycle’s parts

Creates the bicycle
and prints its specs

135Solutions for rigidity

Try updating the Bicycle.__init__ method to accept an argument for each of its
dependencies, and pass them into the method. Come back to the following listing to
see how you did.

class Tire:
def __repr__(self):

return 'A rubber tire'

class Frame:
def __repr__(self):

return 'An aluminum frame'

class Bicycle:
def __init__(self, front_tire, back_tire, frame):

self.front_tire = front_tire
self.back_tire = back_tire
self.frame = frame

def print_specs(self):
print(f'Frame: {self.frame}')

Using inversion of controlListing 7.5

Bicycle

Bicycle

TestFrameAluminumFrame

AluminumFrame

TestFrame

Frame

A bicycle can create the parts
it needs in its initialization, but
it needs to know all the types
of parts it might ever need.

If the bicycle is being
tested, it might need
to create different
types of parts.

Inverting control and passing
dependencies to the bicycle
instead lets you swap in
whichever type of part
you like.

Using inversion of control to gain flexibilityFigure 7.5

The dependencies are
passed into the class
upon initialization.

136 CHAPTER 7 Extensibility and flexibility

print(f'Front tire: {self.front_tire}, back tire: {self.back_tire}')

if __name__ == '__main__':
bike = Bicycle(Tire(), Tire(), Frame())
bike.print_specs()

This should give you the same result as before. It may seem like all you did was shift
the issue around, but it has enabled a degree of freedom in your bicycles. Now you
can create any fancy tire or frame you wish and use it in place of the basic versions.
As long as your FancyTire has the same methods and attributes as any other tire,
Bicycle won’t care.

 Try creating a new CarbonFiberFrame and upgrading your bicycle to use it. Come
back to the following listing to see how you did.

class CarbonFiberFrame:
def __repr__(self):

return 'A carbon fiber frame'

...

if __name__ == '__main__':
bike = Bicycle(Tire(), Tire(), CarbonFiberFrame())
bike.print_specs()

7.2.2

Using a new kind of frame for a bikeListing 7.6

The code that creates a
Bicycle supplies it with the
appropriate instances.

A carbon fiber frame
can be used as easily
as a regular frame.

You should now see a carbon
fiber frame in the printed specs.

This ability to swap out dependencies with minimal effort is valuable in testing your
code; to truly isolate behavior in your classes, you will occasionally want to replace a real
implementation of a dependency with a test double. Having a rigid dependency on
Tire forces you to mock the Tire class for each of your Bicycle tests to achieve
isolation. Inversion of control frees you from this constraint, letting you pass in a
MockTire instance, for example. This way, you won’t forget to mock something, because
you must pass some kind of tire to the Bicycle instances you create.

 Making testing easier is one of the big reasons to follow the principles you’ve learned
in this book. If your code is hard to test, it may be hard to understand as well. If it’s easy
to test, it may be easy to understand. Neither is certain, but they’re correlated.

The devil’s in the details: Relying on interfaces

You saw that Bicycle depends on Tire and other parts, and much of your code will
inevitably have dependencies like this. But another way rigidity manifests is when your
high-level code relies too strongly on the details of lower-level dependencies. I men-
tioned that a FancyTire could be put on a bicycle as long as it has the same methods
and attributes as any other tire. More formally, any object can be swapped in if it has a
tire interface.

137Solutions for rigidity

 The Bicycle class doesn’t have much knowledge about (or interest in) the details
of a specific tire. It only cares that a tire has a particular set of information and behav-
ior; otherwise, tires are free to do what they like.

 This practice of sharing agreed-upon interfaces (in contrast with class-specific
details) between high- and low-level code will give you the freedom to swap implemen-
tations in and out. Remember that in Python the presence of duck typing means that
strict interfaces aren’t required. You decide which methods and attributes comprise a
particular interface. It’s up to you as a developer to make sure your classes adhere to
the interfaces their consumers expect.

 In Bark, Command classes in the business logic provide an execute method as part
of their interface. The presentation layer uses this interface when a user selects an
option. The implementation of a particular command can change as much as it needs
to, and no change is required in the presentation layer as long as the interface stays
the same. You would only need to change the presentation layer if, for example, the
Command classes’ execute methods required an additional argument.

 This gets back to cohesion as well. Code that is closely related will not need to rely
on interfaces; it’s close enough together that inserting an interface will feel forced.
On the other hand, code that’s already in different classes or modules has already
been separated, so using shared interfaces instead of directly reaching into other
classes is most likely the way to go.

7.2.3 Fighting entropy: The robustness principle

Entropy is the tendency for organization to dissolve into disorganization over time.
Code often starts out small, neat, and understandable, but it tends toward complexity
over time. One reason this happens is because code often grows to accommodate dif-
ferent kinds of inputs.

 The robustness principle, also known as Postel’s Law, states: “Be conservative in what you
do, be liberal in what you accept from others.” The spirit of this statement is that you
should provide only the behavior necessary to achieve the desired outcome, while being
open to imperfect or unexpected input. This isn’t to say you should accept any input
under the sun, but being flexible can ease development for consumers of your code. By
mapping a possibly large range of inputs to a known, smaller range of outputs, you can
direct the flow of information toward a more limited, expected range (figure 7.6).

int str bytes

int()

int

float

int() acts as a
funnel, channeling
a number of input
types into a single
output type. Figure 7.6 Reducing entropy

when mapping inputs to outputs

138 CHAPTER 7 Extensibility and flexibility

Consider the built-in int() function, which converts its input to an integer. This func-
tion works for inputs that are already integers:

>>> int(3)
3

It also works for strings:

>>> int('3')
3

And it even works for floating-point numbers, returning just the whole number part:

>>> int(6.5)
6

int accepts multiple data types and funnels them all to an integer return type, raising
an exception only if it’s truly unclear how to proceed:

>>> int('Dane')
ValueError: invalid literal for int() with base 10: 'Dane'

Spend some time understanding the range of inputs that consumers of your code
might reasonably expect to supply, and then rein in that input so that you return only
what the rest of your system expects. This will provide flexibility for those consumers
at the entry points of the system, while keeping the number of situations the underly-
ing code must handle manageable.

An exercise in extension7.3
Now that you understand what goes into an extensible and flexible design, you can
apply those concepts by adding functionality to Bark. Right now, Bark is a rather man-
ual tool—you can add bookmarks, but it’s a one-at-a-time thing, and users have to
enter all the URLs and descriptions themselves. It’s tedious work, especially if they
already have a pile of bookmarks saved in a different tool.

 You’re going to build a GitHub stars importer for Bark (figure 7.7). This new
import option in the presentation layer must do the following:

1 Prompt the Bark user for the GitHub username to import stars from.
2 Ask the user whether to preserve the timestamps of the original stars.
3 Trigger a corresponding command.

Bookmarks

1. Request a page of
 starred repository data.

2. Parse the starred
 repository data.

3. Store each parsed
 repository’s information
 as a bookmark.

Bark

GitHub API

Figure 7.7 The flow for a
GitHub stars importer for
Bark

139An exercise in extension

The command that gets triggered must use the GitHub API to fetch the star data.3 I rec-
ommend installing and using the requests package (https://github.com/psf/requests).

 The star data is paginated, so the process will look something like the following:

1 Get the initial page of star results. (The endpoint is https://api.github.com/
users/{github_username}/starred.)

2 Parse the data from the response, using it to execute an AddBookmarkCommand
for each starred repository.

3 Get the Link: <…>; rel=next header, if present.
4 Repeat for the next page if there is one; otherwise, stop.

NOTE To get the timestamps for GitHub stars, you have to pass an Accept:
application/vnd.github.v3.star+json header in your API requests.

From the user’s perspective, the interaction should look something like the following:

$./bark.py
(A) Add a bookmark
(B) List bookmarks by date
(T) List bookmarks by title
(D) Delete a bookmark
(G) Import GitHub stars
(Q) Quit

Choose an option: G
GitHub username: daneah
Preserve timestamps [Y/n]: Y
Imported 205 bookmarks from starred repos!

It turns out that Bark, as written, isn’t perfectly extensible, particularly regarding book-
mark timestamps. Currently, Bark forces the timestamp to be the time the bookmark
is created (using datetime.datetime.utcnow().isoformat()), but you want the
option to preserve the timestamps of GitHub stars. You can improve this by using
inversion of control.

 Try updating the AddBookmarkCommand to accept an optional timestamp, using its
original behavior as the fallback. Check the following listing to see how you did.

class AddBookmarkCommand:

def execute(self, data, timestamp=None):
data['date_added'] = timestamp or datetime.utcnow().isoformat()
db.add('bookmarks', data)
return 'Bookmark added!'

Listing 7.7 Inverting control of the timestamp for a bookmark

Adds an optional timestamp
argument to execute

Uses the passed-in timestamp if provided,
using the current time as a fallback

3Learn about GitHub’s starred repositories API at http://mng.bz/lony.

http://mng.bz/lony
https://github.com/psf/requests

140 CHAPTER 7 Extensibility and flexibility

You’ve now improved the flexibility of AddBookmarkCommand, and it’s extensible
enough to handle what you need for the GitHub stars importer. You won’t need any
new functionality at the persistence layer, so you can focus on the presentation and
business logic for this new feature. Give it a shot and come back to check your work
against the following two listings.

class ImportGitHubStarsCommand:
def _extract_bookmark_info(self, repo):

return {
'title': repo['name'],
'url': repo['html_url'],
'notes': repo['description'],

}

def execute(self, data):
bookmarks_imported = 0

github_username = data['github_username']
next_page_of_results =

➥ f'https://api.github.com/users/{github_username}/starred'

while next_page_of_results:
stars_response = requests.get(

next_page_of_results,
headers={'Accept': 'application/vnd.github.v3.star+json'},

)
next_page_of_results =

➥ stars_response.links.get('next', {}).get('url')

for repo_info in stars_response.json():
repo = repo_info['repo']

if data['preserve_timestamps']:
timestamp = datetime.strptime(

repo_info['starred_at'],
'%Y-%m-%dT%H:%M:%SZ'

)
else:

timestamp = None

bookmarks_imported += 1
AddBookmarkCommand().execute(

self._extract_bookmark_info(repo),
timestamp=timestamp,

)

return f'Imported {bookmarks_imported} bookmarks from starred repos!'

A GitHub stars import commandListing 7.8

Given a repository dictionary,
extract the needed pieces to
create a bookmark.

The URL for the
first page of star
results

Continues
getting star

results while
more pages

of results
exist

Gets the next page of results,
using the right header to tell
the API to return timestamps

The Link header with
rel=next contains the
link to the next page,
if available.The info about the

starred repository

The timestamp
when the star

was created
Formats the timestamp
in the same format that
existing Bark bookmarks
use

Executes an
AddBookmarkCommand,
populating with the
repository data

Returns a message indicating
how many stars were imported

141An exercise in extension

...

def get_github_import_options():
return {

'github_username': get_user_input('GitHub username'),
'preserve_timestamps':

get_user_input(
'Preserve timestamps [Y/n]',
required=False

) in {'Y', 'y', None},
}

def loop():
...

options = OrderedDict({
...
'G': Option(

'Import GitHub stars',
commands.ImportGitHubStarsCommand(),
prep_call=get_github_import_options

),
})

You should be seeing how adding behavior to an extensible system is a low-friction
activity. It’s a joy to be able to focus almost entirely on accomplishing the desired
behavior, composing pieces of the existing infrastructure to hook up the rest of the
plumbing. There’s a rare moment as a developer when you might feel like the con-
ductor of an orchestra, slowly layering the strings, woodwinds, and percussion

A GitHub stars import optionListing 7.9

A function to get the GitHub
username to import stars from

Whether or not to retain the time
when the star was originally created

Accepts “Y”, “y”, or just pressing
Enter as the user saying “yes”

Adds the GitHub import option
to the menu with the right
command class and function

More practice
If you’d like some more experience extending Bark, try implementing the ability to edit
an existing bookmark.

You’ll need to add a new method to DatabaseManager for updating records. Updating
a record requires the user to specify which record to update (similar to delete) as well
as the column name and the new value to use. You can use what you’ve already writ-
ten in add, select, and delete as a guide.

The presentation layer must prompt the user for the ID of the bookmark to update,
the column to update, and the new value to use. This will hook up to a new Edit-
BookmarkCommand in the business logic layer.

This is all stuff you’re a pro at now, so give it a shot! My version is in the source code
for this chapter (see https://github.com/daneah/practices-of-the-python-pro).

https://github.com/daneah/practices-of-the-python-pro

142 CHAPTER 7 Extensibility and flexibility

together into a wonderful harmony. If your orchestra produces more of a cacophony
from time to time, don’t get disheartened. Find the points of rigidity causing disso-
nance, and see how you can free yourself up, using what you’ve learned.

 In the next chapter, you’ll learn more about inheritance and the occasions where
it’s an appropriate solution.

Summary
 Build code so that adding new features means adding new functions, methods,

or classes without editing existing ones.
 Inversion of control allows other code to customize behavior to its needs with-

out changing the low-level implementation.
 Sharing agreed-upon interfaces between classes instead of giving them detailed

knowledge about each other reduces coupling.
 Be deliberate about what input types you want to handle, and be strict about

your output types.

The rules (and exceptions)
 of inheritance

If you’ve written your own classes or used a class-based framework in Python, you’ve
almost certainly encountered inheritance. Classes can inherit from other classes, end-
ing up with their parent class’s data and behavior. In this chapter, you’ll learn the
details of inheritance in Python, where it works well, and where it should be avoided.

8.1 The inheritance of programming past
Inheritance was conceived of in the early days of computer programming, but
although it has existed for a long time, folks still have spirited debates about when
and how it should be used. For much of the history of object-oriented program-
ming, inheritance was the name of the game. Many applications sought to model
the real world as a carefully curated hierarchy of objects, in the hopes that it would
lead to some kind of obvious, neat structure. This paradigm was so embedded into

This chapter covers
 Using inheritance and composition together to

model systems

 Using Python built-ins to inspect object types

 Making interfaces more strict with abstract base
classes

143

144 CHAPTER 8 The rules (and exceptions) of inheritance

object-oriented programming practices that the two concepts—object-oriented pro-
gramming and inheritance—were nearly inseparable.

The silver bullet8.1.1
Though inheritance is sometimes the right tool to reach for, it has been used on occa-
sion as the hammer for every nail—the elusive “silver bullet.” Much like a silver bullet,
however, a paradigm that meets every need is a work of fiction.

 The ubiquity of class inheritance in object-oriented programming quietly sowed
frustration for many developers, and over time more and more people renounced
object-oriented programming altogether. This is an unfortunate outcome. Object
orientation has a number of benefits for mental modeling of problems. Inheritance
even has its place when modeling the right hierarchies. Although inheritance isn’t the
solution to every data modeling problem you’ll encounter, it is the right solution for a
specific set of use cases, which you’ll learn more about later in this chapter.

 Before we get to that, though, it’s important for you to understand how class inher-
itance led to so much frustration.

The challenges of hierarchies8.1.2
Object-oriented programming is all about the separation, encapsulation, and classifi-
cation of information and behaviors. I work with a number of librarians who have for-
gotten more than I’ll ever know about classification—these folks work to identify
relationships between things, creating taxonomies or even ontologies to categorize
things.1 This works well for organizing raw information, but it can introduce pain once
software behavior is involved. As software grows, it becomes difficult to keep parent-
child relationships between classes straight.

NOTE _Parent_ classes are referred to as superclasses in Python (and in many
other languages). Child classes are referred to as subclasses. I’ll use this nomen-
clature throughout the rest of the chapter.

A class inherits all of its superclass’s information and behavior, and it can then over-
ride them to do something different (figure 8.1). This is probably the tightest cou-

Shape defines a set of attributes and methods.

Polygon inherits all the attributes and methods
from Shape and can override them as needed.

class Shape

shape.py

class Polygon(Shape)

polygon.py

Inheritance with one superclass and one subclassFigure 8.1

1For more on ontology in the context of information science, see the Wikipedia article: https://en.wikipedia
.org/wiki/Ontology_(information_science).

https://en.wikipedia.org/wiki/Ontology_(information_science)
https://en.wikipedia.org/wiki/Ontology_(information_science)
https://en.wikipedia.org/wiki/Ontology_(information_science)

145The inheritance of programming past

pling that exists in programming. A class is fully coupled to its superclass because
everything it knows and does by default is tied to that superclass.

 Seeing this coupling is very difficult when class hierarchies grow, because if you’re
looking at a particular class, it isn’t obvious whether another class is inheriting from it
or not. This leads to bugs because of unintended changes in behavior, as depicted in
figure 8.2.

 To analogize, in quantum physics it’s possible for two particles to be entangled in
such a way that changes to one will effect the same change in the other, regardless of
how far apart they are in space. This “spooky action at a distance,” as Einstein called it,
means that you can’t reliably determine the state of a particle, because that state could
change at any moment because of a change in its twin particle’s state. This is exciting
for physics, but in software it’s a big danger. By changing one class, you may inadver-
tently end up changing—or worse, breaking—the functionality in another subclass
you were unaware of. It’s like the movie Butterfly Effect. (Spoiler alert: It doesn’t go well
for Ashton Kutcher’s character.)

 Developers frequently use inheritance to reuse code, but this presents challenges
later on. With a deep hierarchy, classes at different levels may override or supplement
their superclasses’ behavior. Before too long, you’ll find yourself traversing up and
down your classes trying to follow the flow of information. I’ve said before that what

class Shape

shape.py

class Quadrilateral(Polygon)

quadrilateral.py

class Rectangle(Quadrilateral)

rectangle.py

A change to the Shape class could
affect Square, four levels away. You might
not even know about Square when you’re

working on Shape’s behavior. class Square(Rectangle)

square.py

class Polygon(Shape)

polygon.py

This is a correct taxonomy of shapes,
but using it as a class hierarchy

becomes challenging.

Changes to any class along
the way could affect the
subclasses beneath it.

Developers commonly create
this kind of hierarchy to reuse the

code from superclasses.

How deep inheritance hierarchies can lead to more bugsFigure 8.2

146 CHAPTER 8 The rules (and exceptions) of inheritance

we do as developers should increase our understanding and reduce cognitive load;
deep hierarchies work against this goal. So why are we still using inheritance?

The inheritance of8.2 programming present
Because of the pains caused by complicated hierarchies, inheritance has gotten a bad
reputation. It isn’t innately evil, though. It’s simply been used too often and for the
wrong reasons.

What is inheri8.2.1 tance for, really?

Though many still reach for inheritance to reuse code in some class, that’s not what
it’s for. Inheritance is for specialization of behavior. Put another way, you should fight the
urge to subclass only to reuse code. Create subclasses to make a method return a dif-
ferent value or work differently under the hood.

 In this sense, subclasses should be treated as special cases of their superclass. They
will reuse code from the superclass, but only as a natural result of the idea that an
instance of the subclass is an instance of the superclass.

 When a class B inherits from a class A, we often say B “is-an” A. This is to stress that
instances of B are in fact instances of A, and as such should look like an A (more on
this in a bit). Contrast this with composition, where if an instance of class C uses an
instance of a class D, we say that C “has-a” D to emphasize that C is composed of D
(among other things, potentially).

 Think back to the Bicycle example in the last chapter. You introduced multiple
types of bicycle frames, upgrading the AluminumFrame to a CarbonFiberFrame and the
Tire to a FancyTire. Suppose that CarbonFiberFrame and FancyTire inherited from
Frame and Tire, respectively. Which of the following could be said about the way you
modeled bicycles using inheritance and composition?

1 A Tire has-a Bicycle.
2 A Bicycle has-a Tire.
3 A CarbonFiberFrame is-a Frame.
4 A CarbonFiberFrame has-a Frame.

Because a tire isn’t composed of a bike (it’s the other way around), 1 is incorrect,
whereas 2 makes sense—that’s composition. And because a carbon fiber frame is a
frame (it doesn’t have a frame), 4 is also incorrect, whereas 3 makes sense—that’s
inheritance. Again, inheritance is for specialization, whereas composition is for reus-
able behaviors (figure 8.3).

 Using inheritance to specialize behavior is only the first step. Think about how
you’re able to swap in a carbon fiber frame to replace the aluminum frame on your
bike. You can do this because each frame has the same connection points. Without all
the right connections, your bike could fall apart. The same can be said of your
software.

147The inheritance of programming present

Substitutability8.2.2

Barbara Liskov, Institute Professor at MIT, developed a principle outlining the con-
cept of substitutability as it relates to inheritance. The Liskov substitution principle
states that in a program, any instance of a class must be replaceable by an instance of
one of its subclasses without affecting the correctness of the program.2 Correctness in
this context means the program remains error-free and achieves the same basic out-
comes, though the precise result may be different or achieved in a different manner.
Substitutability arises from subclasses strictly adhering to their superclasses’ interface.

 It’s not difficult to stray from this principle in Python. Consider the following list-
ing, which is perfectly valid Python code that models slugs and snails (two types of gas-
tropod). The Snail inherits from Slug (snails and slugs are the same, aside from the
shell), and you might even say the Snail is specializing the Slug by adding informa-
tion about its shell. But the Snail is breaking substitutability, because a program that
is using a Slug can’t replace it with a Snail without adding the shell_size argument
to the __init__ method, as shown in the following listing.

class Slug:
def __init__(self, name):

self.name = name

def crawl(self):
print('slime trail!')

class Snail(Slug):
def __init__(self, name, shell_size):

A subclass that breaks substitutabilityListing 8.1

Bicycle

Tire

Frame

AluminumFrame

CarbonFiberFrame

FancyTire

A bicycle
has-a frame.

A bicycle
has-a tire.

An aluminum frame
is-a frame.

A carbon fiber frame
is-a frame.

A fancy tire
is-a tire.

Inheritance
Composition

How inheritance and composition work togetherFigure 8.3

Snail inherits from Slug.

Using a different instance
creation signature is a common
way to violate substitutability.

2For more on the Liskov substitution principle, see the Wikipedia article: https://en.wikipedia.org/wiki/Liskov
_substitution_principle.

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle

148 CHAPTER 8 The rules (and exceptions) of inheritance

super().__init__(name)
self.name = name
self.shell_size = shell_size

def race(gastropod_one, gastropod_two):
gastropod_one.crawl()
gastropod_two.crawl()

race(Slug('Geoffrey'), Slug('Ramona'))
race(Snail('Geoffrey'), Snail('Ramona'))

You could pull more tricks out of your sleeve to make this work, but consider that this
might be a better case for composition. A snail has-a shell, after all.

 I like to think about substitutability by examining the role a particular set of classes
fills. If each class in a hierarchy can fulfill the role in question, they’re likely substitut-
able. If a subclass changes any of its method signatures or raises an exception as part
of its specialization, it may not fulfill that role, and this might be a hint that the class
hierarchy should be arranged differently.

8.2.3 The ideal use case for inheritance

Sandi Metz, a Ruby programmer who originally came from the Smalltalk community
(Smalltalk being a programming language written in part by Alan Kay, one of the
pioneers of object-oriented programming), laid out a great set of ground rules about
when to use inheritance:3

 The problem you’re solving has a shallow, narrow hierarchy.
 Subclasses are at the leaves of the object graph; they don’t make use of other

objects.
 Subclasses use (or specialize) all the behavior of their superclass.

I’ll talk through each of these in a little more detail.

SHALLOW, NARROW HIERARCHY

The shallow part of this rule addresses the problem with deep inheritance hierarchies
you learned earlier: deeply nested class hierarchies can lead to difficult management
and the introduction of bugs. Keeping the hierarchy small and contained makes it
easier to reason about when necessary (figure 8.4).

 The narrow part of this rule means that no class in the hierarchy should have too
many subclasses. As the number of subclasses grows, it becomes difficult to know
which ones provide which specialization, and other developers may duplicate sub-
classes if they can’t find the one they’re looking for.

You can create two Slug
instances and race them.

Trying to use Snail without a shell_size
argument raises an exception.

3See Sandi Metz, “All the Little Things,” RailsConf 2014, www.youtube.com/watch?v=8bZh5LMaSmE for more.

https://www.youtube.com/watch?v=8bZh5LMaSmE

149The inheritance of programming present

Shape

Polygon

Quadrilateral

Ellipse

Circle

...... Iterable

DictString SetList

Parallelogram Rectangle

SquareRhombus

This hierarchy is both wide and deep, which
runs the risk that changes to Shape could break
subclasses far away in the graph in subtle ways.

This hierarchy is narrow and shallow, so
any change to Iterable is only one level
away from the subclasses it affects.

Narrow, shallow inheritance hierarFigure 8.4 chies can be reasoned about more effectively.

SUBCLASSES AT THE LEAVES OF THE OBJECT GRAPH

You can think of all the objects in your software as nodes in a graph, with each object
pointing to other objects it inherits from or makes use of through composition. When
using inheritance, a class may point to other objects, but its subclasses generally
shouldn’t have any further dependencies. Subclasses are for specializing behavior, but
if a subclass has a unique dependency that the superclass or any other subclasses don’t
have, composition might be a better way to accomplish that portion of the task. This is
a good check to make sure that your subclasses are specializing behavior without add-
ing much new coupling.

SUBCLASSES USE ALL THE BEHAVIOR OF THEIR SUPERCLASS

This is an outcome of the “is-a” relationship you learned about earlier. If a subclass
doesn’t use all of its superclass’s behavior, is it really an instance of the superclass? Con-
sider a class that represents a bird:

class Bird:
def fly(self):

print('flying!')

You might subclass this so that fly does something different for certain kinds of birds:

class Hummingbird(Bird):
def fly(self):

print('zzzzzooommm!')

150 CHAPTER 8 The rules (and exceptions) of inheritance

What happens when you get to a penguin, or a kiwi, or an ostrich? None of these birds
fly at all. One possible solution is to override fly in this way:

class Penguin(Bird):
def fly(self):

print('no can do.')

You could also override fly to do nothing (pass) or raise an exception of some kind.
This goes against the substitutability principle, though. Any code that knows it’s dealing
with a Penguin will be unlikely to call fly at all, so that behavior isn’t being used. Again,
composition of the flying behavior into classes that need it might be a better choice here.

EXERCISE

Now that you know some of the things to look for, try applying the rules for inheritance
and composition to the Bicycle example. The bicycle module can be found in the source
code for this chapter(see https://github.com/daneah/practices-of-the-python-pro).

 How well does the Bicycle example follow the rules for inheritance that Metz
describes? See if you can tell whether the objects in the bicycle module do or do not
follow each of the rules.

 Come back here to see how you did:

 Frame and Tire both have a narrow, shallow hierarchy; they each have one level
below them, with at most two subclasses.

 The different types of tires and frames don’t depend on any other objects.
 The different types of tires and frames use or specialize all the behavior of their

superclasses.

Success! The model you created uses inheritance properly where needed, and uses
composition to bring different pieces together into a whole. Read on to see what tools
Python provides for inspecting and using inheritance.

Inheritance in Python8.3
Python provides a set of tools for examining classes and their inheritance structure,
along with a number of ways to approach inheritance and composition. This section
will cover each of them so that when you do use inheritance, you’ll have the know-how
to debug and test your code.

Type inspection8.3.1
One of the most common things you’ll want to know when debugging your code is
what type of object you’re dealing with on a particular line. Python’s dynamic typing
means this isn’t always immediately obvious, so it’s a good thing to inspect.

Type checking
The latest versions of Python support type hinting, which is a way to tell developers and
automated tooling what types of objects a function or method expects. Tools can check
for calls that might violate these types, without executing your code. Note that Python
doesn’t enforce the types during execution; this feature is strictly a development aid.

https://github.com/daneah/practices-of-the-python-pro

151Inheritance in Python

The basic way to check the type of an object is to use the built-in type() function.
type(some_object) will tell you which class that object is an instance of:

>>> type(42)
<class 'int'>
>>> type({'dessert': 'cookie', 'flavor': 'chocolate chip'})
<class 'dict'>

Although this is useful, you’ll also frequently want to know if an object is an instance
of a particular class or any of its subclasses. Python provides the isinstance() func-
tion for this purpose:

>>> isinstance(42, int)
True
>>> isinstance(FancyTire(), Tire)
True

Lastly, if you only need to know whether a class is a subclass of another, Python gives
you the issubclass function:

>>> issubclass(int, int)
True
>>> issubclass(FancyTire, Tire)
True
>>> issubclass(dict, float)
False

NOTE issubclass is somewhat confusingly named. Because it considers a
class to be a subclass of itself, it will return True even if the two classes you pro-
vide are in fact the same class.

These tools can come in handy in real code occasionally, but their presence is often
a red flag, because changing behavior based on the data type is precisely what sub-
classes of behavior are for. These built-in functions are good for inspecting objects
from the outside, but Python also provides useful features for handling inheritance
within classes.

8.3.2 Superclass access

Suppose you’re creating a subclass and you need to specialize its behavior in a way
that depends on its superclass’s original behavior. How can you do that in Python? You
can use the built-in super() function, as shown in the following listing, which for-
wards any method or attribute accesses to the superclass.

class Teller:
def deposit(self, amount, account):

account.deposit(amount)

UsingListing 8.2 super() to access superclass behavior

Any classes you reference
will need to be imported
into the namespace.

152 CHAPTER 8 The rules (and exceptions) of inheritance

class CorruptTeller(Teller):
def __init__(self):

self.coffers = 0

def deposit(self, amount, account):
self.coffers += amount * 0.01
super().deposit(amount * 0.99, account)

Code that uses super() can become particularly confusing if substitutability is broken.
Overriding methods to take different numbers of arguments, and passing only some
of them along using super(), can lead to confusion and poor maintainability. Substi-
tutability becomes particularly important in the case of multiple inheritance in Python.

8.3.3 Multiple inheritance and method resolution order

Up to now, I’ve mostly been discussing single inheritance, where a subclass has pre-
cisely one superclass. But Python also supports the idea of multiple inheritance, where a
subclass may have two or more direct superclasses, as shown in figure 8.5.

 Multiple inheritance has uses within plugin architectures or when you want to
implement multiple interfaces in one class. For example, an aquatic vehicle has the
interfaces of both a boat and a car.

 You can inherit from multiple classes in a subclass by providing more than one in
the class definition, as shown in listing 8.3. Place this code in a “cats” module to give it

A corrupt teller is-a teller.

The corrupt teller overrides
the default deposit behavior.

The corrupt teller skims a
little off the top for himself.

He deposits the rest the way any teller
does, but using a different amount.

Frame

WoodFrame

SyntheticFrame CarbonFiberFrame

BigCat Liger

Lion

Tiger

In single inheritance, there’s a single
common ancestor for all subclasses.

Each subclass inherits from
exactly one superclass.

In multiple inheritance, a subclass
may inherit from multiple classes,
which may themselves inherit from
multiple classes (or a single class).

Single and multiple inheritanceFigure 8.5

153Inheritance in Python

a try for yourself. Can you guess what print(liger.eats()) does before running
this code?

class BigCat:
def eats(self):

return ['rodents']

class Lion(BigCat):
def eats(self):

return ['wildebeest']

class Tiger(BigCat):
def eats(self):

return ['water buffalo']

class Liger(Lion, Tiger):
def eats(self):

Multiple inheritance in PythonListing 8.3

Lion is-a BigCat through
single inheritance.

Tiger also is-a BigCat
through single inheritance.

Liger uses multiple inheritance;
it is-a Lion and it is-a Tiger.

return super().eats() + ['rabbit', 'cow', 'pig', 'chicken']

if __name__ == '__main__':
lion = Lion()
print('The lion eats', lion.eats())
tiger = Tiger()
print('The tiger eats', tiger.eats())
liger = Liger()
print('The liger eats', liger.eats())

Does the liger eat the prey you expected?

The liger eats ['wildebeest', 'rabbit', 'cow', 'pig', 'chicken']

Because Liger inherits both from Lion and Tiger, you might have expected it would
eat the same prey they eat, at a minimum. super() works a bit differently under multi-
ple inheritance. When super().eats() is called, Python starts searching for the defi-
nition of eats() that it should use. Python does this through a process called method
resolution order, which determines the list of classes Python will search, in order.

These are the steps for method resolution order:

1 Generate a depth-first ordering of the superclasses, from left to right. For Liger

this is Lion (leftmost parent), BigCat (the only parent of Lion), object (the
implicit parent of BigCat), Tiger (the next parent of Liger), BigCat, and
object (see figure 8.6).

2 Remove any duplicates. The list becomes Liger, Lion, BigCat, object, and Tiger.
3 Move each class so that it appears after all of its subclasses. The final list is

Liger, Lion, Tiger, BigCat, object.

154 CHAPTER 8 The rules (and exceptions) of inheritance

How does this look for Liger? The full process is shown in figure 8.7.
 When you ask for super().eats(), Python will work its way through the method res-

olution order until it finds an eats() method on one of the classes (other than the one you
called super() from). As you can see, it finds Lion first, which returns ['wildebeest'].
Liger then adds its own list of prey animals, resulting in the list you saw in the output.

object

BigCat

A depth-first ordering explores
the full ancestry of the leftmost
superclass of Liger (Lion) first.

After finishing with the leftmost
superclass, the next superclass
(Tiger) is explored.

Lion

object

BigCat

Tiger

Liger

Figure 8.6 The depth-
first ordering for a class
inheritance hierarchy

1. First, a depth-first ordering
 of the superclasses is
 created. (Remember that
object is the default

 superclass in Python.)

Liger

Lion

BigCat

object

Tiger

BigCat

object

Liger

Lion

BigCat

object

Tiger

BigCat

object

Liger

Lion

BigCat

object

Tiger

Liger

Lion

Tiger

BigCat

object

2. Then the duplicates
 are removed.

3. Lastly, each class is
 moved so that it’s after
 all of its subclasses.

How Python determines the method resolution order for a classFigure 8.7

155Inheritance in Python

8.3.4

Inspecting the method resolution order
You can see the method resolution order for any class by using its __mro__ attribute:

>>> Liger.__mro__
(<class '__main__.Liger'>, <class '__main__.Lion'>,

➥ <class '__main__.Tiger'>, <class '__main__.BigCat'>, <class 'object'>)

You can make multiple inheritance work as you expected by practicing cooperative mul-
tiple inheritance. In cooperative multiple inheritance, each class commits to having the
same method signatures (substitutability) and to calling super().some_method() from
within its own some_method(). The presence of super() in each method means Python
will keep going through the method resolution order even after it finds a method. This
ensures that no class blocks execution or breaks things with an unexpected interface.
The classes play nicely together.

Try updating the Lion and Tiger classes to call super().eats(), the same way the
Liger.eats() method does. Rerun the code and come back here to check if it
matches the following output.

The liger eats ['rodents', 'water buffalo', 'wildebeest', 'rabbit', 'cow',

➥ 'pig', 'chicken']

Although multiple inheritance isn’t something you’re likely to use every day, it’s import-
ant to know how to tackle it when you see it. As your software grows, the likelihood that
you’ll need to make use of different paradigms increases, so come prepared.

Abstract base classes

Up to now, I’ve fibbed to you a bit about interfaces being unavailable in Python. You
first needed to get a handle on when and how to use inheritance and composition
effectively, but now is a good time to delve a bit deeper.

 Abstract base classes in Python are a way of using something that looks like inheri-
tance to achieve something that’s effectively an interface. An abstract base class, like a
formal interface in other languages, outlines which methods and attributes its sub-
classes must implement. This gets back to the idea of fulfilling roles mentioned earlier,
in section 8.2.2. You can’t create an instance of an abstract base class directly; it acts as
a template for how other classes behave.

 Python provides the abc module for easing the creation of abstract base classes.
The abc module provides a couple of helpful constructs:

 You can inherit from the ABC class to indicate that your class is an abstract base class.
 You can mark methods defined in your abstract base class as abstract using the

@abstractmethod decorator. (Decorators are outside the scope of this book,
but you can think of abstractmethod as a label for a method you define.) This
enforces the rule that these methods must be defined in any subclass of your
abstract class.

156 CHAPTER 8 The rules (and exceptions) of inheritance

Suppose you’re modeling a food chain, and you want to make sure all the predator
classes adhere to an interface that includes an eat method for eating prey. You can cre-
ate an abstract base class, Predator, that defines this method and its signature. Then you
can subclass Predator, and any subclass that doesn’t define eat will raise an exception,
as noted in the following listing.

from abc import ABC, abstractmethod

class Predator(ABC):
@abstractmethod
def eat(self, prey):

pass

class Bear(Predator):
def eat(self, prey):

print(f'Mauling {prey}!')

class Owl(Predator):
def eat(self, prey):

print(f'Swooping in on {prey}!')

class Chameleon(Predator):
def eat(self, prey):

print(f'Shooting tongue at {prey}!')

if __name__ == '__main__':
bear = Bear()
bear.eat('deer')
owl = Owl()
owl.eat('mouse')
chameleon = Chameleon()
chameleon.eat('fly')

TIP If you’re using an IDE, it can warn you if you have the wrong method sig-
nature. Python won’t check this at runtime, but it may still raise an error for
the usual mistakes, like too many or too few arguments.

Try creating a new Predator without the eat method, and then try creating an
instance of it at the end of the module. You should see a TypeError mentioning that
the instance couldn’t be created because it didn’t define an implementation for the
abstract method eat().

Listing 8.4 Using abstract base classes to enforce an interface

Inheriting from ABC makes this
class an abstract base class.

This indicates that the method
must be defined on any subclasses.

This method signature can be
checked by IDEs in any subclasses.

Abstract methods have no default implementation.

States your intent to implement the interface
by subclassing the abstract base class

This method must be defined,
or an exception will be raised.

157Inheritance and composition in Bark

8.4

8.4.1

 Now try adding a method to the Bear class that makes it roar. What do you expect
to happen?

1 A TypeError is raised when the instance is created because Predator doesn’t
define roar as an abstract method.

2 A RuntimeError is raised when roar() is called because Predator doesn’t
define roar as an abstract method.

3 It works like any normal class method.

Defining additional methods on a subclass of an abstract base class works just fine
(option 3). An abstract base class enforces that its subclasses minimally implement the
methods it defines, but additional behavior is fine because the subclass still imple-
ments the desired interface. It’s also possible to put additional behavior into the base
class itself and receive it in subclasses like normal inheritance. Steer away from that
practice, though, because putting real behavior in a class that claims to be abstract
could confuse whoever reads the code.

 Abstract base classes are a nice supplement to Python’s duck typing; if you need
additional protections and guarantees around the interfaces to which your classes
must adhere, they’re there for you. I don’t find myself reaching for them often,
though. Composition via inversion of control is usually enough for me. Try using both
and see which makes more sense to you and your code.

Now that you’ve got a good handle on the different aspects of inheritance, let’s
take a look at Bark to see what opportunities it holds for inheritance and composition.

Inheritance and composition in Bark
Bark hasn’t made use of inheritance so far. See how far you can get without it? But as
you’ve learned, inheritance can help you out when used correctly. In this last section,
you’ll see how you can use it to make Bark more robust.

Refactoring to use an abstract base class

Interfaces are a way to declare that a class implements a specific set of methods and
attributes, and you just learned that abstract base classes can be used to augment the
idea of interfaces in Python. Which of the following adhere to an interface in Bark?

1 Commands in the commands module
2 Database statement execution in the database module
3 Options in the bark module

Options in the bark module all behave similarly, but there isn’t a distinct class for each
option, only distinct instances of Option. This doesn’t look like an interface. Database
statement execution is similarly contained within a single class. Commands (option 1)
make use of interfaces; each command class implements an execute() method that is
called when the command is triggered.

To make sure all your future commands remember to implement the execute()

method, I’d like you to refactor the commands module to use an abstract base class.

158 CHAPTER 8 The rules (and exceptions) of inheritance

You can call this base class Command, and it should define the execute() method as an
abstractmethod that raises NotImplementedError by default. Each of the existing
command classes should then inherit from Command.

 Note that the existing command classes all implement execute() already, so they’re
covered on that front. But there are a few different signatures for the execute()
method, which you learned isn’t good for substitutability or when dealing with abstract
base classes. Some are called with a data argument, whereas others take no arguments.
Think about how you could normalize the methods so they have the same signature.
Which of the following would work?

1 Remove the data argument from the execute() methods that accept it.
2 Add data as an optional keyword argument to the execute() methods that

don’t already accept it.
3 Make all execute() methods accept a variable number of positional arguments

(*args).

Removing the data argument (option 1) would stop you from being able to act on the
data inside the commands, which would remove a fair amount of functionality from
Bark. Although option 3 would work, it’s often best to be explicit about the arguments
you accept until you need flexibility to handle widely differing numbers of arguments.
Right now, execute() always needs one or zero arguments, so I’d choose to go the
route of adding data as an argument to each of them (option 2).

 Try creating the Command abstract base class and inheriting from it for your com-
mands. As you go along, try renaming execute() methods temporarily or changing
their signatures to see how your IDE (or Bark) reacts to the broken interface. Come
back to the following listing to see how you did.

from abc import ABC, abstractmethod

class Command(ABC):
@abstractmethod
def execute(self, data):

class CreateBookmarksTableCommand(Command):
def execute(self, data=None):

...

class AddBookmarkCommand(Command):
...

Listing 8.5 An abstract base class for the command pattern

Imports the tools needed from abc

Defines the Command
base class

Defines execute as an abstract
method that accepts a data argument

Each command inherits from Command.

Adds the data argument (None by
default, so callers can omit it)

Commands that already accept a data
argument need only inherit from Command.

159Inheritance and composition in Bark

Because execute() has a consistent signature, you can also simplify a line in the bark
module where an option triggers a command in the choose() method:

class Option:
...

def choose(self):
...

message = self.command.execute(data)

Bark should continue to work exactly as it did before. Adding the abstract base class
here just makes it a little safer when creating future commands. If you decide that
your commands need to implement additional methods or accept additional argu-
ments in the future, you can start by adding them to Command, and your IDE can help
you find the places that need to be updated. It’s a handy way to develop.

8.4.2 A final check on your inheritance work

You’ve successfully used inheritance to make your use of composition a bit more robust.
Check one more time if your code passes Metz’s tests for good use of inheritance:

 Commands have a shallow, narrow hierarchy. Seven command classes wide, each
one level of hierarchy deep.

 Commands don’t know about other objects. They do make use of the database
connection object, but that’s a piece of global state that adheres to a database
interface.

 Commands use or specialize all of the functionality from their superclass. Command is an
abstract class with no behavior itself.

Excellent. You’re using inheritance where it makes sense and adds value, without forc-
ing that structure onto things that don’t need it. This kind of critical examination is
valuable as you continue to write and refactor code.

 Continue on to the next chapter to learn how to keep classes maintainable by
keeping them small.

Summary
 Use inheritance to represent true is-a relationships (good for specialization of

behavior).
 Use composition for has-a relationships (good for reuse of code).
 Method resolution order is key to keeping multiple inheritance straight.
 Abstract base classes provide interface-like control and safety in Python.

Always passes
data to execute

Keeping
 things lightweight

This chapter covers
 Using complexity measurements to identify code

to refactor

 Python language features for breaking up code

 Using Python language features to support
backward compatibility

In your software development, you’ll remain vigilant about separating concerns,
but you’ll generally wait until a sensible organization presents itself in order to
avoid creating the wrong abstractions. This means your classes will generally grow
bit by bit until they become unruly.

 This is quite like the art of training a bonsai tree; you need to give the tree time
to grow, and only after it tells you where it’s headed can you encourage it down that
path. Trimming the tree too often can stress it, and forcing it into an unnatural
shape may stunt its ability to thrive.

 In this chapter, you’ll learn how to prune your code to keep it healthy and
thriving.

160

161How big should my class/function/module be?

How big should my class/function/module be?9.1
Many an online forum on software maintenance contains questions of this nature. I
sometimes wonder if we keep asking because we think eventually we can transcend to
some new plane of understanding, where the answer was obvious all along. Each ensuing
discussion thread contains a mix of opinions, anecdotes, and occasional data points.

 The desire to find a final answer to this question isn’t inherently bad; it’s useful to
have guidelines and waypoints so you can recognize when you should invest time in
your code. But it’s also important to understand the strengths and weaknesses of the
metrics that we use to approach this question.

Physical size9.1.1
Some folks attempt to prescribe a line limit for functions, methods, and classes. This
metric seems nice because it’s readily measurable: “My function is 17 lines long.” I
take issue with this approach because it can force a developer to break up a function
that is otherwise perfectly understandable, increasing cognitive load.

 If you draw a line in the sand at five lines, a six-line function is suddenly out of the
question. This encourages developers to play “code golf,” trying to fit the same
amount of logic into fewer lines. Python enables this kind of game too:

def valuable_customers(customers):
return [customer for customer in customers if customer.active and

➥ sum(account.value for account in customer.accounts) > 1_000_000]

Were you able to make sense of that code immediately? It’s not awful, but does mash-
ing it into one line add value?

 Take a look at a rewritten version, where each clause is given its own line:

def valuable_customers(customers):
return [

customer
for customer in customers
if customer.active
and sum(account.value for account in customer.accounts) > 1_000_000

]

Breaking things up logically gives someone reading your code a chance to digest each
clause, forming a mental model of what’s happening as they go.

 Another form of the line-limit rule I’ve seen is that “a class should fit on one
screen.” This shares some of the pain points with its stricter version, while at the same
time being less measurable due to different screen sizes and resolutions.

 The spirit of these metrics is to “keep it simple,” with which I agree. But there are
other ways to define “simple.”

Single responsibility9.1.2
A more open-ended measurement of the size of a class, method, or function is how
many different things it does. As you’ve learned from separation of concerns, the
ideal number is one. For functions and methods, this means performing a single

162 CHAPTER 9 Keeping things lightweight

calculation or task. For classes, it means dealing with a single, focused facet of some
larger business problem.

 If you spot a function performing two tasks or a class that contains two distinct
areas of focus, that’s a strong signal of an opportunity to separate them. But there may
be times when what feels like a single task is still complex enough to warrant breaking
down further.

Code complexity9.1.3
One of the more robust ways of understanding the cognitive and maintenance impact
of code is through its complexity. Like time and space complexity, code complexity is a
quantitative measurement of the characteristics of your code, not just a subjective
measure of how confused you get by reading it.

 Complexity measurement tools are a great thing to have in your tool belt. I find
that they often accurately point out code I would have trouble reading and under-
standing as a human. In the next few sections, I’ll show you what code complexity
looks like, along with some tools for measuring it.

MEASURING CODE COMPLEXITY

A common measure of complexity is cyclomatic complexity. Although the name sounds
scarily scientific, measuring cyclomatic complexity involves determining the number
of execution paths through a function or method. The structure (and therefore,
complexity) of a function is affected by the number of conditional expressions and
loops it contains.

 The higher the complexity score is for a function or method, the more condition-
als and loops you should expect it to contain. The specific score isn’t always terribly
useful; its trend over time, and how it changes in response to alterations you make in
the code, is what will help you write more maintainable software. Seek to drive your
complexity scores down over time, and consider pieces of code with high complexity
when determining where to invest refactoring time.

 You can measure the complexity of a function yourself. By creating a graph of the
control flow, or the path the code takes as it executes, you can count the number of
nodes and edges in the graph and calculate the cyclomatic complexity. The following
are represented as nodes in the control flow graph of a program:

 The “start” of the function (where the control flow enters)
 if/elif/else conditions (each one is its own node)
 for loops
 while loops
 The “end” of a loop (where you draw the execution path back to the start of the loop)
 return statements

Consider the function in the following listing, which accepts a sentence as either a
string or a list of words and determines whether the sentence has any long words in it.
It contains a loop and multiple conditional expressions.

163How big should my class/function/module be?

def has_long_words(sentence):
if isinstance(sentence, str):

sentence = sentence.split(' ')

for word in sentence:
if len(word) > 10:

return True

return False

The edges are arrows that follow the different execution paths your code can take.
Cyclomatic complexity, M, for a function or method is equal to the number of edges
minus the number of nodes, plus two. You can add nodes and edges for the lines of
code that aren’t inside a conditional block or a loop if it helps you diagram a function,
but they won’t affect the overall complexity—they each add one node and one edge,
which cancel out in the math.

 The has_long_words function has one conditional to check if the input is a string,
a loop for each word in the sentence, and a conditional inside the loop to check if a word
is long. Its diagram is shown in figure 9.1. By diagramming the control flow and simpli-
fying the graph as plain nodes and edges, you can count them up and plug the results
into the cyclomatic complexity equation. In this case, the graph of has_long_words has
8 nodes with 10 edges, so its complexity is M = E - N + 2 = 10 - 8 + 2 = 4.

Listing 9.1 A function with conditionals and a loop

Splits words in sentence if
it’s a string (conditional)

Does work for each word (loop)

Returns True if a long word
is found (conditional)

Returns
False if
no words
were long

StartStart

words = sentence.split(' ')

for word in wordsfor word in words

Repeat/end forRepeat/end for Return TrueReturn True

return Falsereturn False

if isinstance(sentence, str)if isinstance(sentence, str)

if len(word) > 10if len(word) > 10

If sentence is
already a list, use
it as the value
for words.

If sentence is
already a list, use
it as the value
for words.

If sentence is a
string, split it up
by the spaces
between words.

If sentence is a
string, split it up
by the spaces
between words.

Each loop, if a word
has length 10 or more,
returns immediately.
Otherwise, continue
looping.

Each loop, if a word
has length 10 or more,
returns immediately.
Otherwise, continue
looping.

If the end of the
loop is reached
(there aren’t any
words left), return
False.

If the end of the
loop is reached
(there aren’t any
words left), return
False.

Visualizing the control
flow as nodes and edges
of a graph

Visualizing the control
flow as nodes and edges
of a graph

There are 8 nodes and 10 edges
between them. The cyclomatic complexity,
 + 2, is = 10 – 8 + 2 = 4.

There are 8 nodes and 10 edges
between them. The cyclomatic complexity,
 + 2, is = 10 – 8 + 2 = 4.M = E – NM = E – N MM

Figure 9.1 Diagramming control flow to measure cyclomatic complexity

164 CHAPTER 9 Keeping things lightweight

Most sources recommend shooting for a complexity of 10 or lower for a given func-
tion or method. This corresponds roughly to how much developers can reasonably
understand at once.

 In addition to helping you understand the health of your code, cyclomatic com-
plexity is useful in testing. Recall that cyclomatic complexity measures the number of
execution paths a function or method has. Consequently, this is also the minimum
number of distinct test cases you would need to write to cover each execution path.
This follows from the fact that each if, while, and so on requires you to prepare a dif-
ferent set of preconditions to test what happens in one case or the other.

 Remember that perfect test coverage doesn’t guarantee that your code actually
works; it only means your tests caused that part of the code to run. But making sure
you cover the execution paths of interest is usually a good idea. Untested branches of
execution are usually what people are referring to when they talk about “edge cases,”
a term with negative connotations that usually means “a thing we didn’t think of.” The
excellent Coverage package by Ned Batchelder (https://coverage.readthedocs.io)
can print branch coverage metrics for your tests.

Recall the code you wrote to import GitHub stars in Bark (reproduced in the follow-
ing listing). Try to diagram the control flow and calculate the cyclomatic complexity.

def execute(self, data):
bookmarks_imported = 0

github_username = data['github_username']
next_page_of_results =

➥ f'https://api.github.com/users/{github_username}/starred'

while next_page_of_results:
stars_response = requests.get(

The code for importing GitHub stars in BarkListing 9.2

Halstead complexity
For some applications, reducing the risk of shipping defective software is as big a priority
as maintainability. Although reducing branches in your code tends to make it more read-
able and understandable, it hasn’t been proven to reduce the number of bugs in soft-
ware. Cyclomatic complexity predicts the number of defects about as well as the number
of lines of code does. But there’s at least one set of metrics out there that tries to
address the defect rate.

Halstead complexity attempts to measure quantitatively the ideas of level of abstraction,
maintainability, and defect rate. Measuring Halstead complexity involves inspecting a
program’s use of the programming language’s built-in operators and how many variables
and expressions it contains. It’s beyond the scope of this book, but I recommend reading
more about it. (The Wikipedia article is a good place to start: https://en.wikipedia.org/
wiki/Halstead_complexity_measures.) Radon (https://radon.readthedocs.io) can mea-
sure the Halstead complexity of your Python programs if you’re interested in exploring.

A loop that code further
down will come back to

https://coverage.readthedocs.io
https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://en.wikipedia.org/wiki/Halstead_complexity_measures
https://radon.readthedocs.io

165How big should my class/function/module be?

next_page_of_results,
headers={'Accept': 'application/vnd.github.v3.star+json'},

)
next_page_of_results = stars_response.links.get('next', {}).get('url')

for repo_info in stars_response.json():
repo = repo_info['repo']

if data['preserve_timestamps']:
timestamp = datetime.strptime(

repo_info['starred_at'],
'%Y-%m-%dT%H:%M:%SZ'

)
else:

timestamp = None

bookmarks_imported += 1
AddBookmarkCommand().execute(

self._extract_bookmark_info(repo),
timestamp=timestamp,

)

return f'Imported {bookmarks_imported} bookmarks from starred repos!'

When you’re done, come back and check your work against the solution in figure 9.2.

Another loop that code further
down will come back to

One branch
of execution

Another branch
of execution

The point
that returns

to the for, or,
if complete,
to the while

Start

Use default timestamp

Repeat/end for

return

Use original timestamp

while next_page_of_results

for repo_info in
stars_response.json()

if data['preserve_timestamps']

There are 9 nodes and 11 edges
between them. The cyclomatic complexity,
M = E - N + 2, is M = 11 - 9 + 2 = 4. Repeat/end while

Create a
bookmark
using whichever
timestamp is
chosen.

Get the first
page of stars.

Return after looping over
all the pages of stars.

Figure 9.2 The cyclomatic complexity of a function from the Bark application

166 CHAPTER 9 Keeping things lightweight

Fortunately, you won’t need to diagram each function and method you write. A num-
ber of tools out there, like SonarQube (www.sonarqube.org) and Radon (https://
radon.readthedocs.io), can measure these for you. These tools can even be integrated
into your code editors so that you can break up complex code as you develop.

 Now that you’ve learned some of the ways to discover when code has grown com-
plex, you can get some practice breaking down that complexity.

Breaking down complexity9.2
I have some mildly bad news: recognizing that code is complex is the easy part. The
next challenge is understanding how to deal with specific kinds of complexity.
Throughout the rest of this chapter, I’ll point out some common patterns of complex-
ity I’ve seen during my travels with Python, and I’ll show you the options you have for
tackling them.

Extracting configuration9.2.1

I’ll start with an example you’ve already seen in this book: as your software grows, cer-
tain areas of the code need to continue adapting to new requirements.

 Imagine you’re building a web service that indecisive users can query to see what
they should eat for lunch. If a user goes to your service’s /random endpoint, they
should get a random food, like pizza, in return. Your initial handler function accepts
the user’s request as an argument, and it might look something like this:

import random

FOODS = [
'pizza',
'burgers',
'salad',
'soup',

]

def random_food(request):
return random.choice(FOODS)

A list of foods (This could go
in a database eventually.)

The function accepts the user’s
HTTP request (unused currently).

Returns a random food
from the list, as a string

When your service gets popular (people are all indecisive), some users want to build a
full-fledged app around it. They tell you they want to get the response from you in
JSON format because it’s easy to work with. You don’t want to change the default
behavior for the rest of your users, so you tell them you’ll return a JSON response if
they send an Accept: application/json header in their request. (Don’t worry much
about how HTTP headers work if you’re not already familiar with them; assume that
request.headers is a dictionary of header names to header values.) You could update
your function to account for this:

import json
import random

...

https://radon.readthedocs.io
https://www.sonarqube.org

167Breaking down complexity

def random_food(request):
food = random.choice(FOODS)

if request.headers.get('Accept') == 'application/json':
return json.dumps({'food': food})

else:
return food

Think about this change in terms of cyclomatic complexity; what is the complexity
before and after the change?

1 1 before, 2 after
2 2 before, 2 after
3 1 before, 3 after
4 2 before, 1 after

Your initial function had no conditionals or loops, so the complexity was 1. Because
you’ve added only one new condition (the case when the user requests JSON), the
complexity has gone from 1 to 2 (option 1).

 An increase of complexity by 1 to handle a new requirement isn’t terrible to start
with. But if you continue on that trajectory for long, increasing complexity linearly
with each requirement, you’ll soon be dealing with hairy code:

...

def random_food(request):
food = random.choice(FOODS)

if request.headers.get('Accept') == 'application/json':
return json.dumps({'food': food})

elif request.headers.get('Accept') == 'application/xml':
return f'<response><food>{food}</food></response>'

else:
return food

Do you remember how to solve this? As a hint, observe that the conditionals are map-
ping a value (the value of the Accept header) to another value (the response to
return). What data structure makes sense?

1 list

2 tuple

3 dict

4 set

A Python dictionary (option 3) maps values to other values, so it’s a good fit for refac-
toring this code. Remodeling the execution flow as a configuration of header values

Chooses the food at random and
stores it for use momentarily

Returns {"food": "pizza"}, for
example, if the request has the
Accept: application/json header

Continues returning “pizza”,
for example, by default

Each additional requirement is a new
condition, increasing complexity.

168 CHAPTER 9 Keeping things lightweight

to response formats, and then choosing the right one based on the user’s request, will
simplify things.

 Try extracting the different header values and response types into a dictionary,
using the default behavior as the fallback if the user doesn’t request a response format
(or requests an unknown format). Check your work against the following listing when
you’re done.

...

def random_food(request):
food = random.choice(FOODS)

formats = {
'application/json': json.dumps({'food': food}),
'application/xml': f'<response><food>{food}</food></response>',

}

return formats.get(request.headers.get('Accept'), food)

Believe it or not, this new solution is reduced back to a cyclomatic complexity of 1.
And even if you continue adding entries to the formats dictionary, no additional com-
plexity is added. This is the kind of gain I talked about in chapter 4; you’ve gone from
a linear algorithm to a constant one.

 Extracting configuration into a map also makes code much more readable, in my
experience. Trying to sift through a number of if/elif conditions is tiresome, even
when they’re all fairly similar. In contrast, a dictionary’s keys are generally scannable.
If you know the key you’re looking for, it’s quick to spot.

 Can we do even better?

9.2.2 Extracting functions

With the growing cyclomatic complexity defeated, two other things are still growing in
tandem within the random_food function:

 The code that knows what to do (format the response as JSON, XML, and so on)
 The code that knows how to decide what to do (based on the Accept header values)

This is an opportunity to separate concerns. As I’ve advocated a few times in this book,
extracting some functions here could be helpful. If you look at each item in the
formats dictionary, you’ll notice that the value is a function of the food variable. Each
of these values could be a function that accepts a food argument and returns the
formatted response that will go back to the user, as shown in figure 9.3.

 Try changing your random_food function to use these separated response-format
functions. The dictionary will now map formats to the function that can return the
response for that format, and random_food will call that function with the food value.

Listing 9.3 An endpoint with extracted configuration

Extracted from the previous if/elif conditions

Gets the requested response
format if available; otherwise, falls
back to returning the plain string

169Breaking down complexity

If no function is available after calling formats.get(…), you should fall back to a func-
tion that returns the food value unchanged; this can be done using a lambda. Check
the following listing when you’re done.

def to_json(food):
return json.dumps({'food': food})

def to_xml(food):
return f'<response><food>{food}</food></response>'

def random_food(request):
food = random.choice(FOODS)

formats = {
'application/json': to_json,
'application/xml': to_xml,

}

format_function = formats.get(
request.headers.get('Accept'),
lambda val: val

)
return format_function(food)

To fully separate the concerns, you can now extract formats and the business of
getting the right function from it into its own function, get_format_function. This
function accepts the user’s Accept header value and returns the right formatting

A service endpoint with response-formatting functionsListing 9.4

formats = {
 'application/json': json.dumps({'food': food}),
 'application/xml': f'<response><food>{food}</food></response>',
}

def to_json(food):
 return json.dumps({'food': food})

def to_xml(food):
 return f'<response><food>{food}</food></response>'

The format becomes part
of the function name.

The food value becomes an
argument to the function.

The function returns the
same formatted response.

Extracting inline expressions as functionsFigure 9.3

The extracted formatting functions

Maps data formats
to their respective
formatting functions now

Gets the appropriate formatting
function if available

Uses a lambda as the fallback to
return the unchanged food value

Calls the formatting function
and returns its response

170 CHAPTER 9 Keeping things lightweight

function. Try that out now and refer to the following listing when you’re done to
check your work.

def get_format_function(accept=None):
formats = {

'application/json': to_json,
'application/xml': to_xml,

}

return formats.get(accept, lambda val: val)

def random_food(request):
food = random.choice(FOODS)
format_function = get_format_function(request.headers.get('Accept'))
return format_function(food)

You may be thinking this code is more complex; you now have four functions compared
to your initial one. But you’ve achieved something here: each of these functions has a
cyclomatic complexity of 1, is quite readable, and has a nice separation of concerns.

 You’ve also got something extensible on your hands, because when you need to han-
dle new response formats, the process is as follows:

1 Add a new function to format the response as desired.
2 Add the mapping of the required Accept header value to the new formatting

function.
3 Profit.

You can create new business value just by adding new code and updating configura-
tion. This is the ideal.

 Now that you know some tricks for functions, I want to show you a few for classes.

9.3 Decomposing classes
Classes can grow unruly like functions, and perhaps at a faster rate. But it feels some-
how more scary to break down a class than it does a function. Functions feel like build-
ing blocks, but classes feel like completed products. This is a mental barrier I often
struggle to suppress.

 You should have the confidence to decompose classes as frequently as functions.
Classes are just another tool at your disposal. When you find that a class starts growing
in complexity, it’s usually due to a mixing of concerns. Once you identify a concern
that feels like its own object, you’ve got enough to start breaking it down.

Separating concerns into two functionsListing 9.5

Determines which formatting
function to use

random_food is three
short steps now.

Previously mixed concerns are
abstracted to function calls now.

171Decomposing classes

Initialization complexity9.3.1

I often see classes that have complex initialization procedures. For better or worse,
these classes are usually complex because they deal with complex data structures.
Have you ever seen a class like the following?

class Book:
def __init__(self, data):

self.title = data['title']
self.subtitle = data['subtitle']

if self.title and self.subtitle:
self.display_title = f'{self.title}: {self.subtitle}'

elif self.title:
self.display_title = self.title

else:
self.display_title = 'Untitled'

When the domain logic you’re dealing with is complex, your code is more likely to
reflect that. In these cases, it’s more important than ever for developers to rely on use-
ful abstractions to make sense of it all.

 I’ve talked about extracting functions and methods as a useful way to break down
code. One approach you could take here is to extract the logic for display_title
into a set_display_title method that you could call from the __init__ method, as
shown in the following listing. Try creating a book module and adding the Book class
to it, extracting a setter method for display_title.

class Book:
def __init__(self, data):

self.title = data['title']
self.subtitle = data['subtitle']
self.set_display_title()

def set_display_title(self):
if self.title and self.subtitle:

self.display_title = f'{self.title}: {self.subtitle}'
elif self.title:

self.display_title = self.title
else:

self.display_title = 'Untitled'

This has cleaned up the __init__ method, but a couple of issues arise from this
approach:

 Getters and setters are generally discouraged in Python because they can clutter
up a class.

A class with complex domain logic in its constructionListing 9.6

Using a setter to simplify class constructionListing 9.7

Extracts some fields from
the passed-in data

Complexity
arising from
the domain

logic of your
business

Calls the extracted function

Extracted function
sets display_title.

172 CHAPTER 9 Keeping things lightweight

 It’s good practice to set all necessary attributes to some initial value directly
inside __init__, but display_title is set in a different method.

You could fix the latter by setting display_title to 'Untitled' by default, but this
can be misleading. A reader might conclude the display title is typically (or even
always) 'Untitled', if they don’t read carefully.

 There is one approach that can give you the readability benefit of extracting a
method, without suffering these drawbacks. It involves creating a function that returns
the value for display_title.

 But wait! If you think about how you use Book, it might be something like this:

...

book = Book(data)
return book.display_title

How can you make the display_title logic a function without having to update the
second line to return book.display_title() instead? Fortunately, Python provides a
tool for this occasion. The @property decorator can be used to signify that a method
on a class should be accessible as an attribute.

 Create a display_title method now, decorated with @property, that uses the exist-
ing logic to return the proper display title. Compare your changes with the following
listing when you’re done.

NOTE Methods can be used as properties only if self is their only argument,
because when you access the attribute, you can’t pass any arguments to it.

class Book:
def __init__(self, data):

self.title = data['title']
self.subtitle = data['subtitle']

@property
def display_title(self):

if self.title and self.subtitle:
return f'{self.title}: {self.subtitle}'

elif self.title:
return self.title

else:
return 'Untitled'

Using @property, you can still reference book.display_title as an attribute, but all
its complexity is abstracted into its own function. This reduces the complexity of the
__init__ method, making it more readable at the same time. I make frequent use of
@property in my own code.

UsingListing 9.8 @property to simplify class construction

A property is a function that can
be referenced as an attribute.

173Decomposing classes

NOTE Because properties are methods, repeatedly accessing them means that
the methods are called each time. This is often okay, but it can have perfor-
mance impacts for properties that are expensive to calculate.

What should you do when there’s enough functionality to abstract a whole class worth
of methods?

9.3.2 Extracting classes and forwarding calls

When you extracted get_format_function from random_food in section 9.2.2, you
still called the extracted function from its original location. When dealing with classes,
something similar will need to happen if you want to maintain backward compatibility.
Backward compatibility is the practice of evolving your software without breaking the
implementation consumers previously relied on. If you change the arguments of a
function, the name of a class, and so on, consumers will need to update their code if
they want it to continue working. To avoid these problems, you could take a hint from
the post office’s mail forwarding system.

 When you move to a new address, you can tell the post office to forward your mail
(figure 9.4). People who send you mail at your old address don’t need to know your
new address immediately because the post office will intercept the mail and direct it to
you automatically. Each time you receive a piece of mail addressed to your old resi-
dence, you can notify the sender of your new address so they can update their records.
Once you’re confident you aren’t receiving mail made out to the old address any lon-
ger, you can stop the post office forwarding.

 When you extract one class from another, you’ll want to continue providing the
previously existing functionality for a while, despite changing things under the hood,
so that consumers don’t need to immediately worry about upgrading their software.
As with your mail, you can continue accepting calls in one class and pass them along
to another class under the hood. This is known as forwarding.

123 South Street123 South Street Mail normally goes through the post office
straight to the address on the envelope.

456 North Street456 North Street Once your contacts have updated their
records, you can stop the forwarding.

456 North Street123 South Street 456 North Street

“My new place is at
456 North Street!”

When you move, the post
office can automatically forward

mail from the old address
to your new address.

Figure 9.4 Mail can be forwarded by the post office when you move to a new location.

174 CHAPTER 9 Keeping things lightweight

Suppose your Book class has grown to keep track of the author information. This feels
natural at the start; what is a book without its author? But as the class takes on more
functionality, the author starts to feel like a separate concern. As shown in the follow-
ing listing, methods soon exist for the author’s name as it should be displayed on a
website, as well as how it should be displayed in a research paper citation.

class Book:
def __init__(self, data):

...

self.author_data = data['author']

@property
def author_for_display(self):

return f'{self.author_data["first_name"]}

➥ {self.author_data["last_name"]}'

@property
def author_for_citation(self):

return f'{self.author_data["last_name"]},

➥ {self.author_data["first_name"][0]}.'

Suppose you’d been using this Book class like so:

book = Book({
'title': 'Brillo-iant',
'subtitle': 'The pad that changed everything',
'author': {

'first_name': 'Rusty',
'last_name': 'Potts',

}
})

print(book.author_for_display)
print(book.author_for_citation)

Being able to reference book.author_for_display and book.author_for_citation
has been great, and you’d like to keep that. But referencing the author dictionary in
those properties is starting to feel clumsy, and you know that you’ll want to do a lot
more with authors soon. How do you proceed?

1 Extract an AuthorFormatter class for formatting author names in different
ways.

2 Extract an Author class to encapsulate author behaviors and information.

Although a class for formatting author names (option 1) might provide value, extract-
ing an Author class (option 2) provides a better separation of concerns. When several

AListing 9.9 Book class too concerned with author details

Stores the author as a
dictionary from the data

Displays the author,
such as “Dane Hillard”

Gets the citation-suitable author
name, such as “Hillard, D”

175Decomposing classes

methods in a class share a common prefix or suffix, especially one that doesn’t match
the name of the class, there might be a new class waiting to be extracted. Here,
author_ is a sign that an Author class might make sense. It’s time to try your hand at
extracting a class.

 Create an Author class (either in the same module or imported from a new mod-
ule). This Author class should contain all the same information as before, but in a
more structured manner. The class should

 Accept author_data as a dictionary in __init__, storing each relevant value
(first name, last name, and so on) from the dictionary as an attribute

 Have two properties, for_display and for_citation, that return the properly
formatted author string

Remember that you also want Book to keep working for users, so you want to keep the
existing author_data, author_for_display, and author_for_citation behaviors on
Book for now. By initializing an Author instance with author_data, you can forward
calls from Book.author_for_display to Author.for_display, and so on. This way,
Book will let Author do most of the work, keeping only a temporary system in place to
make sure calls keep working. Give it a try now, and come back to the following listing
to see how you did.

class Author:
def __init__(self, author_data):

self.first_name = author_data['first_name']
self.last_name = author_data['last_name']

@property
def for_display(self):

return f'{self.first_name} {self.last_name}'

@property
def for_citation(self):

return f'{self.last_name}, {self.first_name[0]}.'

class Book:
def __init__(self, data):

...

self.author_data = data['author']
self.author = Author(self.author_data)

@property
def author_for_display(self):

return self.author.for_display

Listing 9.10 Extracting an Author class from the Book class

What was previously stored
only as a dictionary is now
structured attributes.

The Author-level properties are
simpler than the originals.

Continues storing author_data until
consumers don’t need it anymore

Stores an instance of Author
for forwarding calls

Replaces previous logic with
forwarding to the Author instance

@property
def author_for_citation(self):

return self.author.for_citation

176 CHAPTER 9 Keeping things lightweight

Do you notice that even though the code now has more lines, each line has been sim-
plified? And looking at the classes, it’s a bit easier to tell what kind of information they
contain. Eventually, much of the code still in Book will also be removed, at which point
Book will be leveraging composition of the Author class to provide information about
its authors.

 If you want to be really nice to your consumers as you decompose a class, you can
also leave them hints so they know they should switch to the new code. For example,
you want the consumers of Book to move from book.author_for_display to
book.author.for_display so that you can remove the forwarding. Python has a built-
in system for this kind of messaging, called warnings.

 One type of warning is specifically a DeprecationWarning, which you can use to let
people know that something should no longer be used. This warning generally prints
a message in a program’s output telling the user they should make a change. A depre-
cation warning can be produced as follows:

import warnings

warnings.warn('Do not use this anymore!', DeprecationWarning)

You can help consumers upgrade their code smoothly by adding a DeprecationWarning
to each method you eventually want to remove.1 Try adding them to the author-related
properties in the Book class now. You can say something useful like 'Use book.author
.for_display instead'. If you run the code now, you should see warning messages in
the output that look like the following:

/path/to/book.py:24: DeprecationWarning: Use book.author.for_display instead

Congratulations! You’ve extracted a new class, breaking down the complexity of a class
that outgrew itself. You did it in a backward-compatible way, leaving hints for users so
they know what’s coming and how to fix it. This resulted in more structured, more
readable code with separate concerns and strong cohesion. Well done, you.

Summary
 Code complexity and separate concerns are better metrics than physical size for

breaking up code.
 Cyclomatic complexity measures the number of execution paths through your

code.
 Extract configuration, functions, methods, and classes freely to break down

complexity.
 Use forwarding and deprecation warnings to temporarily support the new and

old ways of doing things.

1See Brett Slatkin, “Refactoring Python: Why and how to restructure your code,” PyCon 2016, www.you-
tube.com/watch?v=D_6ybDcU5gc, for a treasure trove of deprecation and extraction tricks.

https://www.youtube.com/watch?v=D_6ybDcU5gc
https://www.youtube.com/watch?v=D_6ybDcU5gc

Achieving loose coupling

Loose coupling is what allows you to make changes in different areas of your code
without worrying that you’ll break something elsewhere. It allows you to work on
one feature while your coworker tackles another. It’s also the foundation for other
desirable characteristics, like extensibility. Without loose coupling, the job of main-
taining your code can quickly grow out of hand.

 In this chapter, you’ll see some of the pains of tight coupling and learn how to
address them.

10.1 Defining coupling
Because the idea of coupling plays such a big role in effective software develop-
ment, it’s important to get a solid grip on what it means. What is coupling exactly?
You can think of it as the connective tissue between the different areas of your
code.

This chapter covers
 Recognizing the signs of tightly coupled code

 Strategies for reducing coupling

 Message-oriented programming

177

178 CHAPTER 10 Achieving loose coupling

10.1.1 The connective tissue
Coupling can be a tricky concept at first because it’s not necessarily tangible. It’s a
kind of mesh that runs throughout your code (figure 10.1). Where two pieces of code
have high interdependency, that mesh is tightly woven and taut. Moving either piece
of code around requires the other to move around too. The mesh between areas with
little or no interdependence is flexible—maybe it’s made of rubber bands. You’d have
to change the code in this looser part of the mesh much more drastically for it to
impact the code around it.

Class A

Class D

Class C Class B

Class A

Class D

Class C Class B

Having many interconnections between
classes makes it difficult to change one
without requiring changes to the others.

Loose, flexible connections give you more
leeway to make changes that are less likely

to affect the surrounding code.

Coupling is a measure of the interconnectedness of distinct pieces of software.Figure 10.1

I like this analogy because it doesn’t say that tight coupling is inherently bad in all
cases. Rather, it focuses on the ways tight and loose coupling differ and helps you get a
sense of the resulting outcomes for your code—tight coupling usually means more
work when you want to shuffle things around. It also implies that coupling is a contin-
uum rather than a binary, all-or-nothing thing.

 Although coupling is measured along a continuum, there are common ways it mani-
fests. You can learn to recognize these and reduce coupling in your software as you see fit.
First, though, I want to give you a more fine-grained definition of tight and loose coupling.

10.1.2 Tight coupling
Coupling between two pieces of code (modules, classes, and so on) is considered tight
when those pieces of code are interconnected. But what does interconnectedness
look like? In your code, several things create interconnections:

 A class that stores another object as an attribute
 A class whose methods call functions from another module
 A function or method that does a lot of procedural work using methods from

another object

Anytime a class, method, or function needs to carry a lot of knowledge about another
module or class, that’s tight coupling. Consider the code in the following listing. The

179Defining coupling

display_book_info function needs to know all the different pieces of information
that a Book instance contains.

class Book:
def __init__(self, title, subtitle, author):

self.title = title
self.subtitle = subtitle
self.author = author

def display_book_info(book):
print(f'{book.title}: {book.subtitle} by {book.author}')

If the Book class and the display_book_info function live in the same module, this code
might be tolerable. It operates on related information, and it’s together in one place.
But as your codebase grows, you may eventually find functions like display_book_info
in one module operating on classes from other modules.

 Tight coupling isn’t inherently bad. Occasionally, it’s just trying to tell you some-
thing. Because display_book_info operates only on info from Book and does
something book-related, the function and the class have high cohesion. It’s so tightly
coupled to Book that it makes sense for you to move it inside the Book class as a
method, as shown in the following listing.

class Book:
def __init__(self, title, subtitle, author):

self.title = title
self.subtitle = subtitle
self.author = author

def display_info(self):
print(f'{self.title}: {self.subtitle} by {self.author}')

In general, tight coupling is problematic when it exists between two separate con-
cerns. Some tight coupling is a sign of high cohesion that isn’t structured well.

 You may have seen or written code similar to listing 10.3. Imagine you’ve got a
search index to which your users can submit queries. The search module provides
functionality for cleaning up those queries to make sure they produce consistent
results from the index. You write a main procedure that gets a query from the user,
cleans it up, and prints the cleaned-up version.

import re

def remove_spaces(query):

A function tightly coupled to an objectListing 10.1

Reducing coupling by increasing cohesionListing 10.2

A procedure tightly coupled to the details of a classListing 10.3

A book stores several pieces
of info as attributes.

This function has
knowledge of all the
book’s attributes.

Function moved to a method whose only
necessary argument is self (still a Book)

All references to book change to self.

Turns ' George Washington '
into 'George Washington'

180 CHAPTER 10 Achieving loose coupling

query = query.strip()
query = re.sub(r'\s+', ' ', query)
return query

def normalize(query):
query = query.casefold()
return query

if __name__ == '__main__':
search_query = input('Enter your search query: ')
search_query = remove_spaces(search_query)
search_query = normalize(search_query)
print(f'Running a search for "{search_query}"')

Is the main procedure tightly coupled to the search module?

1 No, because it could easily do that work itself.
2 Yes, because it calls some of the functions inside the search module.
3 Yes, because it would likely have to change if you changed the way cleaning que-

ries works.

You can effectively identify coupling by assessing the likelihood that any given change
to a module will require a change to the code that uses it (option 3). Although the
main procedure could do the work the cleaning functions do, it’s important to discuss
coupling as it currently exists in your code. Option 1 is hypothetical and doesn’t help
you achieve this. Calling a few functions from a module (option 2) is sometimes a sign
of coupling, but the more important metric is how likely a change to the search mod-
ule will require changes to the main procedure.

 Suppose your users report that they’re still getting inconsistent results from minor
changes to their queries. You do some investigation and realize it’s because some users
like to put quotes around their queries, thinking it will make them more specific, but
your search index treats quotes literally, matching only records that contain the
quotes as written. You decide to discard the quotes before running the query.

 The way things are currently written, this would involve adding a new function to
the search module and updating all the places where you clean queries to ensure they
call the new function, as shown in the following listing. Those points in the code are
all tightly coupled to the search module.

def remove_quotes(query):
query = re.sub(r'"', '', query)
return query

Tight coupling causing changes to ripple outwardListing 10.4

Turns 'Universitätsstraße' (“University
Street”) into 'universitätsstrasse'

Gets a query
from the user

Removes spaces and
normalizes casing

Prints the
cleaned-up query

A new function for
removing quotes

if __name__ == '__main__':

181Defining coupling

...
search_query = remove_quotes(search_query)
...

Read on to understand what loose coupling is and how it can help you in situations like this.

10.1.3 Loose coupling

Loose coupling is the ability of two pieces of code to interact to accomplish a task with-
out either relying heavily on the details of the other. This is often achieved through
the use of shared abstractions. You learned about interfaces in earlier chapters, and
you used a shared abstraction in Bark to achieve the command pattern.

 Loosely coupled code implements and uses interfaces; at the extreme end, it uses
only interfaces for intercommunication. Python’s dynamic typing allows us to relax
this a bit, but there’s a philosophy here I’d really like to emphasize to you.

 If you begin to think about the intercommunication between pieces of your code
in terms of the messages that objects send to each other (figure 10.2), rather than
focusing on the objects themselves, you’ll begin to identify cleaner abstractions and
stronger cohesion. What are messages? Messages are the questions you ask of an
object or the things you tell it to do.

Calls the new function
anywhere you normalize
queries

ProductA

User

Cart

Logger

“What’s in
my cart?”

“What’s the current price?”

1. Some messages are queries to get a
 value from an object. In Python, these
 are attribute accesses or methods that
 return a value but don’t affect any data.

2. Other messages are commands
 that typically pass some data and
 cause a change or action to occur.

“Add product A,
please.”

"Log this message, please!"

{
 "event_type": “purchase",
 "user_id": "15478"
}

3. Thinking about interconnections
 between classes as messages helps
 you understand whether the queries
 and commands make sense for a
 given object. Telling the cart to add
 a product feels natural, but telling
 a product to add itself to the cart
 might feel awkward.

"Log this message, please!"

{
 "event_type": "new_user",
 "user_id": "15478"
}

“What’s the current price?”

Imagining interconnections between clFigure 10.2 asses as the messages they send and receive

182 CHAPTER 10 Achieving loose coupling

Take another look at the main procedure of your query cleaner in the following list-
ing. You achieve each transform on the query by calling a function to get a new query.
Each of these is a message you’re sending.

if __name__ == '__main__':
search_query = input('Enter your search query: ')
search_query = remove_spaces(search_query)
search_query = remove_quotes(search_query)
search_query = normalize(search_query)
print(f'Running a search for "{search_query}"')

What you’ve written achieves the task—cleaning the query—but how do the messages
feel to you? Does calling the various functions from the search module feel like a lot
of hoops to jump through? If I saw this code, I might say to myself, “I just want the
cleaned-up query. I don’t care how!” Going through the paces of calling each function
is tedious, especially if you’re cleaning queries throughout your code.

 Think about this in terms of the message or messages you’d like to send. A cleaner
approach might be to send a single message: “Here’s my query; clean it please.” What
approach might you take to achieve this?

1 Combine the query-cleaning functions into a single function to remove spaces
and quotes and normalize casing.

2 Wrap the existing function calls in another function you can call anywhere.
3 Use a class to encapsulate the query-cleaning logic.

Any of these could work. Because separation of concerns is generally a good idea,
option 1 might not be the best choice because it combines several concerns into a sin-
gle function. Wrapping the existing functions into another (option 2) would keep the
concerns separate while providing a single entry point for the cleaning behavior,
which is good. Encapsulating that logic further into a class (option 3) could make
sense later on, if you need the cleaning logic to maintain information between steps.

 Try refactoring the search module to make each transform function private, pro-
viding a clean_query(query) function that performs all the cleaning and returns the
cleaned query. Come back here and check your work against the following listing.

import re

def _remove_spaces(query):
query = query.strip()
query = re.sub(r'\s+', ' ', query)
return query

Calling functions from a moduleListing 10.5

Simplifying a shared interfaceListing 10.6

Tells the search module to remove spaces

Tells the search module
to remove quotes

Tells the search module
to normalize the casing

Transforms are made private
because they’re underlying
details of cleaning.

183Defining coupling

def _normalize(query):
query = query.casefold()
return query

def _remove_quotes(query):
query = re.sub(r'"', '', query)
return query

def clean_query(query):
query = _remove_spaces(query)
query = _remove_quotes(query)
query = _normalize(query)
return query

if __name__ == '__main__':
search_query = input('Enter your search query: ')
search_query = clean_query(search_query)
print(f'Running a search for "{search_query}"')

Now when you think of another technique to clean your queries, you’ll be able to do
the following (shown in figure 10.3):

1 Create a function to perform the new transform on a query.
2 Call the new function inside clean_query.
3 Call it a day, confident that consumers are all cleaning queries properly.

A single entry point receives
the original query, cleans it,
and returns it.

The consuming code needs to
call only a single function now,
reducing coupling.

remove_spaces remove_quotes

main

normalize

“Clean this
query,

please.”

“Clean this
query,

please.”

“Clean this
query,

please.”

The main procedure is tightly coupled
to the process of cleaning queries because
it knows all the details about how to do it.

The main procedure fully entrusts the
cleaning of queries to the clean_query
function, loosening its coupling to the
now-encapsulated query-cleaning process.

_remove_quotes _fix_typos_remove_spaces

clean_query

run_query

main

_normalize

“Clean this query,
please.”

“Run this
query, please.”

If the code needs to do
new things later on, the
main process can keep
query cleaning and the
new tasks separated
using this approach.

Using encapsulation and separation of concerns to maintain loose couplingFigure 10.3

184 CHAPTER 10 Achieving loose coupling

You can see that loose coupling, separation of concerns, and encapsulation all work
together. The separation and encapsulation of behavior with a carefully thought out
interface to the outside world helps achieve the loose coupling you desire.

10.2 Recognizing coupling
You’ve seen examples of tight and loose coupling now, but coupling can take on a few
specific forms in practice. Giving a name to these forms, and recognizing the signs of
each form, will help you mitigate tight coupling early on, keeping you more produc-
tive in the long term.

10.2.1 Feature envy

In the early version of your query-cleaning
code, the consumer needed to call sev-
eral functions from the search module.
When code performs several tasks using
mainly features from another area, that
code is said to have feature envy. Your main
procedure feels like it wants to be the
search module because it uses all of its
features explicitly. This is also common in
classes, as shown in figure 10.4.

 Feature envy can be solved the same
way you fixed your query-cleaning
logic: roll it up into a single entry point
back at the source. In the previous
example, you created a clean_query
function in the search module. The
search module is where query-cleaning logic goes, so a clean_query function is per-
fectly at home there. Other code can continue using clean_query, blissfully unaware
of what happens underneath and trusting that it will receive a properly cleaned query
in return. That code no longer has feature envy; it’s happy letting the search module
be in charge of search-related things.

 As you refactor to remove feature envy, it will feel like you’re giving up a certain
amount of control. Before refactoring, you can see exactly how the information flows
through the code, but afterward, that flow is often hidden under a layer of abstrac-
tion. This requires putting a certain amount of trust in the code you interact with to
do what it says. It will feel uncomfortable occasionally, but a thorough test suite can
help you remain confident in the functionality.

10.2.2 Shotgun surgery

You learned about shotgun surgery in chapter 7, and it often happens as a result of
tight coupling. You make one change to a class or module, and you need to make

Class A
 attr_a
 attr_b

 method_a
 method_b

Class B
 attr_c
 attr_d

 method_c

Class A depends heavily on Class B to
get most of its work done, so Class A
has feature envy of Class B.

Feature envy points out an opportunity to
reduce coupling by moving some methods
from Class A to Class B, or to combine
the two classes altogether if they’re cohesive.

Feature envy from one class to anotherFigure 10.4

185Recognizing coupling

changes far and wide to keep other code working. Peppering changes throughout
your code each time you need to update behavior is tiresome!

 By addressing feature envy, separating concerns, and practicing good encapsula-
tion and abstraction, you’ll minimize the amount of shotgun surgery you’ll have to do.
Anytime you find yourself jumping around to different functions, methods, or mod-
ules to realize the change you’re trying to make, ask yourself if you’re experiencing
tight coupling between those areas of code. Then see what opportunities there are to
move a method to a better-suited class, a function to a better-suited module, and so
on—a place for everything, and everything in its place.

10.2.3 Leaky abstractions

The goal of abstraction, as you’ve learned, is to hide the details of a particular task
from the consumer. The consumer triggers the behavior and receives the result but
doesn’t care about what happens under the hood. If you start to notice feature envy, it
might be because of a leaky abstraction.

 A leaky abstraction is one that doesn’t sufficiently hide its details. The abstraction
claims to provide a simple way to get something done, but it ultimately requires you to
have some knowledge about what lies beneath when using it. This sometimes mani-
fests as feature envy, but it can also be subtle, as you’ll see in a moment.

 Picture a Python package for making HTTP requests (requests, maybe). If your
goal is purely to make a GET request to some URL and get the response back, you’d be
best served by an abstraction on the GET behavior, such as requests.get('https://
www.google.com').

 This abstraction works well most of the time, but what happens when you lose your
internet connection? When Google is unavailable? When things are “just weird” for a
moment and your GET request doesn’t make it anywhere? In these cases, requests
generally raises an exception indicating the problem (figure 10.5). This is useful for
error handling, but it requires the calling code to know a bit about the possible errors
so it knows which are likely to occur and how to handle them. Once you start handling
errors from requests in many places, you’re coupled to it, because your code expects
a certain set of possible outcomes, which are specific to the requests package.

 Leaks happen because there’s a trade-off to consider with abstractions—generally
speaking, the further you abstract a concept in code, the less customization you can
provide. This is because abstraction is inherently meant to remove access to detail; the
fewer details you can access, the fewer ways you have to change the details. As develop-
ers, we often want to tweak things to better suit our needs, though, so we sometimes
provide lower-level access to the very details we tried to hide.

 When you find yourself providing access to a low-level detail from a high-level layer
of abstraction, you’re likely introducing coupling. Remember that loose coupling
relies on interfaces—shared abstractions—rather than specific low-level details. Read
on to see some of the specific strategies you can use to achieve loose coupling in your
code.

186 CHAPTER 10 Achieving loose coupling

Coupling in Bark10.3
You can separate concerns and encapsulate behaviors all you like, but those concerns
inevitably need to interact with each other. Coupling is a necessary part of software
development, but it doesn’t have to be tight coupling. Now that you’re familiar with
some of the signs of tight coupling, it’s time to look at techniques for reducing it while
keeping your code in working order. Some of these will be familiar to you, and you’ll
see how they can be further applied to the Bark application.

 Remember the multitier architecture you used for Bark, shown again in figure
10.6. Each tier has a distinct set of concerns:

 The presentation layer shows information to, and gets information from, the
user.

 The business logic layer contains the “smarts” of the application—the logic
related to the task at hand.

 The persistence layer stores data for the application, to be reused later on.

You hooked the presentation layer to the business logic layer using the command pat-
tern. Each option in the menu triggers a corresponding command in the business
logic, through that command’s execute method. The set of commands with their
shared execute abstraction are a great example of loose coupling.

requests.get(
 'https://www.google.com'
)

1. You can use requests
 as an abstraction for
 making HTTP requests.

2. Usually, requests
 handles all the details
 of making an HTTP GET
 request and returns the
 response to you.

<!DOCTYPE html>
<html>
...
</html>

requests.get(
 'https://www.google.com'
)

ConnectionTimeout

Requests

Google

Requests

Google

3. Sometimes the request
 fails, which could be
 because of a variety of
 network issues.

4. requests leaks the details
 of HTTP networking failures
 in the form of specific types
 of exceptions to handle.

Abstractions occasionally leakFigure 10.5 the details they’re trying to hide.

187Coupling in Bark

The presentation layer knows very little about the commands it’s hooked up to, and the
commands don’t care why they were triggered, as long as they receive the data they
expect. This allows each layer to change independently to adapt to new requirements.

 Now think about how the business logic layer interacts with the persistence layer.
Remember the AddBookmarkCommand you created, shown in listing 10.7. This com-
mand does the following:

1 Receives the data for a bookmark along with an optional timestamp
2 Generates a timestamp if needed
3 Tells the persistence layer to store the bookmark
4 Returns a message stating that the addition was a success

class AddBookmarkCommand(Command):
def execute(self, data, timestamp=None):

data['date_added'] = timestamp or datetime.utcnow().isoformat()
db.add('bookmarks', data)
return 'Bookmark added!'

Command for adding a new bookmarkListing 10.7

Presentation layer

Business logic layer

Persistence layer

User sees and
chooses options.

Options trigger
commands.

Commands fetch
and manipulate data. Figure 10.6 Separating concerns

into a multitier architecture

Receives bookmark data

Generates a
timestamp if needed

Persists the
bookmark

data Returns a success
message

What if I told you there’s some tight coupling in here? The whole class is five lines
long—you might ask yourself, “How much coupling can there be in five lines?” As it
turns out, the last two lines of the execute method show signs of tight coupling.

 The first offending line, which calls db.add, demonstrates a tight coupling with not
just the persistence layer, but the database itself. Put another way, if you decide in the
future that you’d like to store your bookmarks in something other than a database—
like a JSON file, for example—db.add doesn’t fit well any longer. There’s also some
feature envy going on; most of the commands make direct use of one of the opera-
tions from DatabaseManager.

The second line that presents coupling is the return statement. What is its current
purpose? It returns a message stating the addition was a success. Who is the message

188 CHAPTER 10 Achieving loose coupling

intended for? The user. You’re handling a piece of presentation-level information in
the business logic layer, which is an example of a leaky abstraction. The presentation
layer should be in charge of what’s shown to users. Some of the other commands you
wrote have this same structure, which you’ll fix shortly.

 Another command, the CreateBookmarksTableCommand, introduces even tighter
coupling. The Table in its name implies the presence of a database, a persistence
layer feature, and then the command is referenced when the application starts, in the
presentation layer. This command spans all the layers of abstraction you so carefully
built! Don’t worry, you’ll be able to clean that up soon as well.

 Read on to see how this coupling can cause problems in a real-life situation and
how you should think about tackling it.

Addressing coupling10.4
Imagine now that you’re tasked with taking Bark mobile. (Also imagine phones that
run Python!) You’d like to reuse as much of Bark’s code as possible to optimize the
experience for users on their phones while maintaining the existing command-line
interface, as shown in figure 10.7.

 Addressing new requirements often exposes tightly coupled areas of code. New use
cases require you to swap out behavior and inevitably uncover the points in your code
without flexibility. What will you find in Bark?

Different users need different presentations.
Command-line interfaces work well on
computers, but graphical applications
often work better on phones.

Command-line
interface

Mobile
application

Database
backend

HTTP API
backend

Business
logic

SQLite

Loosely coupled business logic is often
the most reusable portion of code because
it can support a variety of use cases,
regardless of the technology involved.

Data persistence varies widely with use
cases too. Aside from relational databases,
in-memory caches can be used for data
access performance, queues can be used
for better reliability, and so on.

Cloud storage
service

How core business logic supports a variety of use casesFigure 10.7

189Addressing coupling

10.4.1 User messaging

Because mobile apps tend to focus on visual and tactile elements, you’ll want to use
icons in addition to your messages to indicate success. A moment ago, you saw that the
messaging in Bark is coupled to the business logic layer. To fix this limitation, you
need to release control of the messaging fully to the presentation layer. How can you
keep the interaction between commands and the presentation layer without each
command having explicit knowledge of the message it shows?

 Note that the outcome of some commands is a success message, whereas for others
it’s a result of some kind (a list of bookmarks, for example). You can handle this in the
presentation layer by splitting up the concept of “success” and “result,” with each com-
mand returning a tuple representing both the status and the result.

 The commands you’ve built should all execute successfully, so for the moment the
status for each command can be True. Eventually, you could have commands return
False if they can fail. The commands that currently return a result can continue using
the same result as before, and commands without a result can use None.

 Update each of your commands to return a status, result tuple. You’ll also need
to update the Option class in the presentation layer to account for the new return
behavior. What approach fits with how you’ve built the presentation layer so far?

1 Make Option print different success messages depending on the command
executed.

2 Configure each Option instance with a specific message to use when a com-
mand succeeds.

3 Subclass Option for each kind of message you want to display.

Option 1 could work, but each new command would add to the conditional logic that
determines which message to show. Option 3 might also work, but remember that
inheritance should be used sparingly; it’s unclear that there’s enough specialized
behavior present to justify creating all those subclasses. Option 2 gives you just the
right amount of customization without a lot of extra effort. Remember that Bark
should continue to function identically as you refactor the messaging—you’re refac-
toring only to make development easier on yourself.

 Try it yourself, and come back to the following two listings for help, or look at the
full source code for this chapter (see https://github.com/daneah/practices-of-the
-python-pro).

class AddBookmarkCommand(Command):
def execute(self, data, timestamp=None):

data['date_added'] = timestamp or datetime.utcnow().isoformat()
db.add('bookmarks', data)
return True, None

Listing 10.8 Decoupling layers of abstraction with interfaces

The AddBookmarkCommand
succeeds but doesn’t return
a result.

The return value is a True
status and a None result.

https://github.com/daneah/practices-of-the-python-pro
https://github.com/daneah/practices-of-the-python-pro
https://github.com/daneah/practices-of-the-python-pro

190 CHAPTER 10 Achieving loose coupling

class ListBookmarksCommand(Command):
def __init__(self, order_by='date_added'):

self.order_by = order_by

def execute(self, data=None):
return True, db.select('bookmarks', order_by=self.order_by).fetchall()

def format_bookmark(bookmark):
return '\t'.join(

str(field) if field else ''
for field in bookmark

)

class Option:
def __init__(self, name, command, prep_call=None,

➥ success_message='{result}'):
self.name = name
self.command = command
self.prep_call = prep_call
self.success_message = success_message

def choose(self):
data = self.prep_call() if self.prep_call else None
success, result = self.command.execute(data)

formatted_result = ''

if isinstance(result, list):
for bookmark in result:

formatted_result += '\n' + format_bookmark(bookmark)
else:

formatted_result = result

if success:
print(self.success_message.format(result=formatted_result))

def __str__(self):
return self.name

def loop():
...

options = OrderedDict({
'A': Option(

'Add a bookmark',
commands.AddBookmarkCommand(),
prep_call=get_new_bookmark_data,
success_message='Bookmark added!',

Using statuses and results in the presentation layerListing 10.9

The ListBookmarksCommand
succeeds and returns a list of
bookmarks.

The return value is a True status
and the bookmark list.

The default message for
commands that return a
result is the result itself.

Stores the configured
success message for this
option for later use

Receives the
status and result
from the executed
commandFormats

the result
for display

if needed

Prints the success message, inserting
the formatted result if needed

Options without a result
can specify a static
success message.

191Addressing coupling

),
'B': Option(

'List bookmarks by date',
commands.ListBookmarksCommand(),

),
'T': Option(

'List bookmarks by title',
commands.ListBookmarksCommand(order_by='title'),

),
'E': Option(

'Edit a bookmark',
commands.EditBookmarkCommand(),
prep_call=get_new_bookmark_info,
success_message='Bookmark updated!'

),
'D': Option(

'Delete a bookmark',
commands.DeleteBookmarkCommand(),
prep_call=get_bookmark_id_for_deletion,
success_message='Bookmark deleted!',

),
'G': Option(

'Import GitHub stars',
commands.ImportGitHubStarsCommand(),
prep_call=get_github_import_options,
success_message='Imported {result} bookmarks from starred repos!',

),
'Q': Option(

'Quit',
commands.QuitCommand()

),

Options that should print
only the result don’t need
to specify a message.

Options that have a result and a custom
message can put both together.

})

Congratulations! You’ve decoupled the business logic and presentation layer. They
now interact using the idea of a status and a result instead of a specific hardcoded
message. In the future, when you’ve built a new mobile frontend for Bark, it can use
the statuses and results to determine the icons and messaging to show on phones.

10.4.2 Bookmark persistence

Your mobile users are always on the go, so you want them to have access to their book-
marks from anywhere. The database has to live in the cloud behind an API so they can
see bookmarks on any of their devices.

 As you saw, some areas of your command code are specific to local database opera-
tions. You need to swap out the database module for a new persistence layer that inter-
acts with the new API. By this point, you should remember that shared abstractions
are a good way to reduce coupling. Although it may sound like a big task, thinking
about how the local database and the API are similar and different will help you con-
ceptualize the abstraction to handle both (figure 10.8).

Both the database and API persistence layers need to deal with a similar set of
concerns, despite the differences in some of the details. This is where abstraction

192 CHAPTER 10 Achieving loose coupling

shines. Just as you reduced each of your commands to an execute interface that
returns a status and result to decouple them from the presentation layer, you can
reduce your persistence layer to a more general set of CRUD operations to decouple
it from the commands. Then, any new persistence layer you want to build can use the
same abstraction.

10.4.3 Try it out

You’ve got the tools and knowledge you need to decouple your commands from Data-
baseManager.

 Using an abstract base class, PersistenceLayer, to define the interface, create a
BookmarkDatabase persistence layer that will sit between your commands and the
DatabaseManager class, as shown in figure 10.9.

Database

Data represented as record objects

CRUD operations with SQL
(INSERT, SELECT, UPDATE,
DELETE)

Configuration needed for the
database’s files and tables

Data represented as record objects

CRUD operations with HTTP
(POST, GET, PUT, DELETE)

Configuration needed for the
API’s domain and URLs

API

Figure 10.8 A database
and an API share several
commonalities.

Command PersistenceLayer

BookmarkDatabase DatabaseManager

Commands use the interface of a persistence
layer to store bookmark data.

A BookmarkDatabase
is a specific implementation
of a PersistenceLayer.

The bookmark database depends
on a general set of CRUD behaviors
for a database, provided by
DatabaseManager.

Figure 10.9 Decoupling commands from database specifics with an interface and specific
implementation

Create these classes in a new persistence module; you’ll refactor your commands to
use this instead of DatabaseManager directly. Instead of database- or API-specific
method names, the interface should provide methods that would apply to most any
persistence layer:

193Addressing coupling

 __init__ for initial configuration
 create(data) to create a new bookmark
 list(order_by) to list all bookmarks
 edit(bookmark_id, data) to update a bookmark
 delete(bookmark_id) to remove a bookmark

The logic in CreateBookmarksTableCommand is really the initial configuration for a
bookmark database persistence layer, so you can move it into BookmarksData-
base.__init__. The instantiation of the DatabaseManager fits well there too. You can
then write the implementation for each method of the PersistenceLayer abstraction
in BookmarksDatabase. Each database-centric method call (db.add, for example)
from your original commands can be moved into the appropriate method, freeing up
the commands to call the methods from BookmarksDatabase. Give this a go, referenc-
ing the following listing and the full source code for this chapter as you go along.

from abc import ABC, abstractmethod

from database import DatabaseManager

class PersistenceLayer(ABC):
@abstractmethod
def create(self, data):

raise NotImplementedError('Persistence layers must implement a

➥ create method')

@abstractmethod
def list(self, order_by=None):

raise NotImplementedError('Persistence layers must implement a

➥ list method')

@abstractmethod
def edit(self, bookmark_id, bookmark_data):

raise NotImplementedError('Persistence layers must implement an

➥ edit method')

@abstractmethod
def delete(self, bookmark_id):

raise NotImplementedError('Persistence layers must implement a

➥ delete method')

class BookmarkDatabase(PersistenceLayer):
def __init__(self):

self.table_name = 'bookmarks'
self.db = DatabaseManager('bookmarks.db')

Listing 10.10 A persistence interface and implementation

The abstract base class that defines
the persistence layer interface

Each method corresponds
to a CRUD-like operation
for persistence.

A specific persistence layer
implementation that uses a database

Handles database creation
with DatabaseManager

self.db.create_table(self.table_name, {
'id': 'integer primary key autoincrement',

194 CHAPTER 10 Achieving loose coupling

'title': 'text not null',
'url': 'text not null',
'notes': 'text',
'date_added': 'text not null',

})

def create(self, bookmark_data):
self.db.add(self.table_name, bookmark_data)

def list(self, order_by=None):
return self.db.select(self.table_name, order_by=order_by).fetchall()

def edit(self, bookmark_id, bookmark_data):
self.db.update(self.table_name, {'id': bookmark_id}, bookmark_data)

def delete(self, bookmark_id):
self.db.delete(self.table_name, {'id': bookmark_id})

Now that you have the interface for a persistence layer and a specific implementation
of that interface that knows how to use DatabaseManager to persist bookmarks, you’re
ready to update your commands to depend on the PersistenceLayer interface
instead of DatabaseManager. In the commands module, replace the db instance of
DatabaseManager with persistence, an instance of BookmarkDatabase. Then go
through the rest of the module, replacing calls to DatabaseManager methods (like
db.select) with those from PersistenceLayer (like persistence.list). Refer to
the following listing to check your work.

from persistence import BookmarkDatabase

persistence = BookmarkDatabase()

class AddBookmarkCommand(Command):
def execute(self, data, timestamp=None):

data['date_added'] = timestamp or datetime.utcnow().isoformat()
persistence.create(data)
return True, None

class ListBookmarksCommand(Command):
def __init__(self, order_by='date_added'):

self.order_by = order_by

def execute(self, data=None):
return True, persistence.list(order_by=self.order_by)

class DeleteBookmarkCommand(Command):
def execute(self, data):

persistence.delete(data)
return True, None

Updating business logic to use abstractionListing 10.11

Database-specific
implementation for
each of the behaviors
of the interface

Imports BookmarksDatabase in
place of DatabaseManager

Sets up the persistence layer (This
can be swapped in the future.)

persistence.create takes
the place of db.add.

persistence.list takes
the place of db.select.

persistence.delete takes
the place of db.delete.

195Addressing coupling

class EditBookmarkCommand(Command):
def execute(self, data):

persistence.edit(data['id'], data['update'])
return True, None

Bark is now extensible to new use cases like importing stars from GitHub. Its concerns
are well-separated so that you can reason about the presentation, business logic, and
persistence in isolation. It’s now feasible to swap any of those layers out to realize dis-
tinct new use cases.

 You could swap BookmarksDatabase for, say, a BookmarksStorageService that
sends bookmark data via an HTTP API to the cloud. You could also swap in a
DummyBookmarksDatabase for testing that only persists bookmarks in memory for the
duration of the tests. Loose coupling is rife with opportunities! I strongly encourage
you to explore a few of these on your own.

 The principles you’ve applied to Bark carry over readily to many real-world proj-
ects. By applying what you’ve learned here to your own projects, you’ll be able to
increase maintainability as well as help others pick up your code and make sense of it.
I can’t express just how much value this holds as you continue building software.

 In the last part of this book, we’ll recap the breadth of what you’ve learned and
look at some recommendations for what to explore next. See you there!

Summary
 Separate concerns, encapsulate data and behaviors, and then create shared

abstractions to loosen coupling.
 Classes that know and use many details of another class may need to be sub-

sumed by that class.
 Tight coupling can be addressed by re-encapsulation with stronger cohesion,

but it can often be well-served by the introduction of a new abstraction shared
by both parties. (For example, a menu and a command may rely on the com-
mand returning a status and a result instead of specific messaging.)

persistence.edit takes
the place of db.update.

Part 4

What’s next?

Although it’s been great teaching you, an author can cover only so much
in a finite number of pages. This part of the book provides a strategy for tracking
what you want to learn next. You’ll also get a light introduction to several more
concepts that may help you further your path to writing top-notch software.
These learning suggestions are organized by topic, so you can learn about each
topic at a high level or jump into one and explore it in depth.

Onward and upward

Believe it or not, you’ve reached the last chapter of this book. Wasn’t that fun?
You’ve learned many of the facets of thoughtful software design in this book, but
there’s a whole world out there still to discover. It can be difficult to figure out what
comes next. If you’re feeling unsure about which trajectories to explore, read this
chapter for some strategies and topic ideas.

11.1 What now?
As you gain experience, you’ll continue learning a great deal. You’ll also encounter
things you want to learn but don’t have the time or experience to cover just yet.
There will also be an ever-present and near-infinite set of things you aren’t aware of
at all. These are concepts that either haven't occurred to you yet or you don't have
the words to express.

This chapter covers
 Choosing which avenues to explore next in your

software development career

 Developing a plan of action for continued learning

199

200 CHAPTER 11 Onward and upward

 Donald Rumsfeld succinctly (and humorously) put it like this:

There are known knowns—there are things we know we know. We also know there are
known unknowns—that is to say, we know there are some things we do not know. But
there are also unknown unknowns—the ones we don’t know we don’t know.

—Donald Rumsfeld

Being an effective engineer rarely amounts to being exhaustively knowledgeable on a
subject. More often, you can work effectively by knowing the right thing to look up
and which resources are available to you. In short, resourcefulness is more valuable
than experience.

 As you grow, you’ll probably amass a list of blog posts, tools, and topics you’re
interested in. You’ll also learn new things out of necessity as you build software. Even-
tually, when you decide it’s time to dig into some of these new topics, it can help to set
yourself up for success with a learning plan.

11.1.1 Develop a plan

Have you ever gone down the Wikipedia rabbit hole? You start reading about a topic,
and suddenly it’s 2:37 A.M., and you have 37 tabs open in your browser. You click
through to links of interest, sometimes going several layers deep down a particular
path. Although you might feel like you’ve wasted your evening, this turns out to be an
effective strategy for uncovering information.

A mind map organizes information in a hierarchical structure you can explore visually.
A mind map starts from a central node—an overall concept you’re interested in learn-
ing. It then branches out, with each node representing subtopics or related concepts
to explore—like when you couldn’t help but click the link to “Cosmic latte” from the
page about “Beige.” By using a mind map to enumerate things you want to learn
about, you can build up a pretty good picture of different areas you’ll need to cover.

 If you want to learn about natural language processing, you might draw a mind map
like the one shown in figure 11.1. A few high-level categories of activities eventually

The philosophy game
You can also go the opposite direction—up—in Wikipedia. Starting with almost any
article, clicking the first (or, occasionally, second) link in the first full paragraph on
each subsequent article is likely to lead you to the “Philosophy” page. This is due to
the fact that the first link is usually one of the most broad or general links. Give it a try:

 Beige > French > Romance language > Vulgar Latin > non-standard > language
variety > sociolinguistics > society > group > social sciences > academic
disciplines > knowledge > facts > reality > imaginary > object > philosophy

 Python (programming language) > interpreted > programming language > formal
language > mathematics > quantity > multitude > number > mathematical
object > abstract object > philosophy

201What now?

branch into specific and involved topics like lemmatization and Markov chains. Some
of these may be things you’ve heard of but know little about, but you should still write
them down. Even if you don’t know what branch a topic falls under, you’ll eventually
figure out a path to it as you learn more about the topics around it.

 This visual representation helps emphasize relationships between topics, which can
help you retain the information you learn. It also acts as a kind of map in the traditional
sense; concepts become regions of the map, and you can see which areas are charted
well or remain unexplored. This comes in handy as you work on learning more.

 If you don’t have enough experience with a topic to draw a full map, don’t worry.
Writing down a short list of things can still be effective. The key is to have something
you can refer to that reminds you what you’ve already done and what’s left.

 Once you’ve got your next steps mapped out, you’re ready to do some learning.

11.1.2 Execute the plan

With your learning topics mapped out (or listed), you can start exploring the
resources available to you. These may be books, online courses, or a friend or col-
league with experience in the topic. Figure out your learning style too. Some people
can learn just by reading, whereas others need to write some real code and see some
real output for things to click. Be creative.

 A mind map can work well because you can explore it nonlinearly. If you’re still
familiarizing yourself with the terminology and concepts, you might first explore the
things one level out from the center, as shown in figure 11.2. This can help you get the
lay of the land, which will help you build some footing as you choose what to learn next.

Natural language
processing

Input
processing

Part of
speech

?

?

Semantic
analysis

Sentiment
analysis

Entity
recognition

Prediction/
generation

Markov
chains

Neural
networks

StemmingNormalization

Analysis

Parsing

Tokenization

Lemmatization

A mind map for learning about natural language processingFigure 11.1

202 CHAPTER 11 Onward and upward

After you’ve got your bearings, you can choose a topic you find particularly riveting to
explore more deeply, as shown in figure 11.3. The influx of new information about
something that excites you is invigorating.

TIP A common pitfall is to do a deep dive into one topic without enough
context about the rest of the bigger picture, so make sure you maintain a bal-
ance. Too much focus in one spot too soon can lead you to solidify an inaccu-
rate or incomplete understanding that can inhibit future learning.

Natural language
processing

Input
processing

Part of
speech

?

?

Semantic
analysis

Sentiment
analysis

Entity
recognition

Prediction/
generation

Markov
chains

Neural
networks

StemmingNormalization

Analysis

Parsing

Tokenization

Lemmatization

Exploring the breadth of a topic firstFigure 11.2

Natural language
processing

Input
processing

Part of
speech

?

?

Semantic
analysis

Sentiment
analysis

Entity
recognition

Prediction/
generation

Markov
chains

Neural
networks

StemmingNormalization

Analysis

Parsing

Tokenization

Lemmatization

Exploring a single topic in depthFigure 11.3

203What now?

Successful learning requires an iterative approach—as you gain more experience with
a topic, you’ll naturally find more things to add to your mind map (or list). Adding
things as you go along is perfectly fine, but make sure you feel comfortable with the
topics you’re already learning before expanding into new ones. It’s easy to spread
yourself too thin!

 Keep it all sorted by tracking your progress.

11.1.3 Track your progress

Learning is subjective, so don’t expect that you’ll be able to say you’re “done” with
most things. There are a few distinct states in learning about a particular topic:

1 Want or need to learn—It’s on your list of topics to cover, but you haven’t started
on it yet.

2 Actively learning—You’ve explored and read some resources on the topic, and
you’re looking for more.

3 Familiar—You understand the topic generally, and you have some idea how you
might apply it.

4 Comfortable—You’ve applied the concepts from this topic a few times and have a
handle on it.

5 Proficient—You’ve applied the concepts enough to know some of the nuances,
and you know which resources to reach for when you encounter new kinds of
problems.

Many expertise categorizations break these states down further, but each of these lev-
els represents an observable shift in your behavior. It’s good to recognize which level
you’re at so you can better understand which topics you want to invest your time in.
You might not even want to reach “proficient” for topics you encounter only rarely or
that don’t align with the tasks you want to accomplish. Explicitly writing this down will
help you keep your plan up to date, as shown in figure 11.4.

 You’ll probably learn several pertinent points about a topic at each level of your
learning. They may not be large enough to justify adding more nodes to your mind
map (although mind-mapping software makes this a low-cost activity), but it helps to
write them down. You can use these notes to gauge what level of learning you’re at on
a topic, and they may prompt you to revisit ideas that need more work.

Mind-mapping software
Mind-mapping software helps you create visual representations of your thoughts and
the relationships between them. The simplest mind maps are nodes with some text
connected by lines. There are several commercial tools, like Lucidchart (www.lucidchart
.com) and MindMup (www.mindmup.com), that have more advanced features, but any
diagramming software, like draw.io (https://draw.io), can provide what you need to
get started. Try something simple and free until you get comfortable with mapping.

https://draw.io
http://www.mindmup.com
http://www.lucidchart.com
http://www.lucidchart.com
http://www.lucidchart.com

204 CHAPTER 11 Onward and upward

11.2

Natural language
processing

Input
processing

Part of
speech

?

?

Semantic
analysis

Sentiment
analysis

Entity
recognition

Prediction/
generation

Markov
chains

Neural
networks

StemmingNormalization

Analysis

Parsing

Tokenization

Lemmatization

Keep track of which learning level you’ve reached for each topic
so you can see which areas need more of your time.

1

44 3

3

2

2

5

Keeping track of yourFigure 11.4 learning progress for each topic

I struggled for a long time in school and my career, retaining information only after
significant repetition. Mapping things out and tracking my progress proved to be an
effective aid in learning many of the ideas expressed in this book and beyond. If you
haven’t tracked your learning like this before, give it a try.

 With a framework for exploring and learning new ideas fresh in your mind, read
on for some suggestions about where to go after you’re finished with this book.

Design patterns
Over the last several decades, developers have solved the same problems many times
over. Looking across all these solutions, certain patterns have emerged. Some of these
patterns provide loose coupling and extensibility, but others don’t.

 These software design patterns are tried-and-true solutions, and naming them allows
us to talk about them more concretely. A ubiquitous language, or shared vocabulary for
the concepts a team needs to understand, goes a long way toward achieving the out-
comes a team seeks.

 You used a design pattern when you created the commands for Bark. The command
pattern, as it’s known, is used frequently in applications like Bark to decouple the code
that requests an action from the action itself. The command pattern always has a few
common pieces, regardless of the situation in which it’s used:

1 Receiver—The entity that takes an action, like persisting data in a database or
making an API call

2 Command—The entity that contains the info needed for the receiver to take its
action

205Design patterns

3 Invoker—The entity that triggers the command to alert the receiver
4 Client—The entity that assembles the invokers, commands, and receivers to

achieve a task

In Bark, these pieces are as follows:

1 The PersistenceLayer classes are the receivers. They receive enough information to
store or retrieve data (from a database, in the case of the BookmarkDatabase).

2 The Command classes are the commands. They store the information needed to com-
municate with the persistence layer.

3 The Option instances are the invokers. They trigger a command to take place when
a user chooses an option in the menu.

4 The client module is the client. It hooks up options to commands properly so that
users’ menu choices ultimately result in the desired action.

A unified modeling language (UML) diagram of these classes is shown in figure 11.5.1

UML diagrams are a common way of depicting the relationships between entities in a
program. This book has been intentionally light on UML because it can add to the
learning curve for the untrained eye. As you learn about design patterns, though,
you’ll see UML diagrams come up frequently. Remember that the patterns themselves
are what’s important to understand—if UML diagrams don’t work well for you, read
about them instead.

Option

Command

AddBookmarkCommand PersistenceLayer

BookmarkDatabase

The client composes options (invokers)
with their corresponding commands.

Commands interact with the persistence
layer (receiver) to manipulate bookmark
data in the database.

Client

Figure 11.5 The command pattern as used in the Bark application

1For more on UML, see Wikipedia’s “Unified Modeling Language” article: https://en.wikipedia.org/wiki/Unified
_Modeling_Language.

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language

206 CHAPTER 11 Onward and upward

11.2.1 Ups and downs of design patterns in Python
You’ve seen some of the benefits of using a specific design pattern in Python. The
command pattern helped you decouple layers of abstraction in Bark, leading to flexi-
ble persistence, business logic, and presentation. Many of the other patterns you will
learn may provide value as well.

 To understand which design patterns you should learn and apply in Python, it’s
important to understand the context in which many design patterns were developed
and used. One significant driver for some design patterns is the language or lan-
guages from which they emerged. A number of design patterns come from Java, a stat-
ically typed language. Because of static typing, languages like Java are intentionally
limited in how they can create instances of classes and so on. As a result, a number of
design patterns are creational ones. Python’s dynamic typing frees it from many of
these limitations, so many creational patterns simply aren’t necessary in Python.

 Ultimately, as with many topics in this book, design patterns are a tool to help you
get your work done. If you’re trying to use a design pattern to approach a problem,
and it feels forced, it’s okay to move ahead without a specific pattern. A better pattern
might jump out at you in the meantime.

 The canonical reference for learning more about design patterns is Design Patterns:
Elements of Reusable Object-Oriented Software.2 The online software development commu-
nity also has many discussions on the topic, often with useful case studies that can help
you further understand if and when to use a particular pattern.

11.2.2 Terms to start with
You can start your research into design patterns with the following terms:

 Design patterns
– Creational design patterns
– Factories
– Behavioral design patterns
– Command pattern
– Structural design patterns
– Adapter pattern

11.3 Distributed systems
In modern web-application development, you may need a server that handles HTTP
traffic, a database to persist data, a cache to store frequently accessed data, and so on.
These elements form a system—a group of interconnected pieces that make up a
whole. The pieces of this system are frequently located on distinct machines, in sepa-
rate data centers, and sometimes even on different continents, as shown in figure
11.6. These distributed systems add layers of value, complexity, and risk for developers
to understand and address.

2Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley Professional, 1995).

207Distributed systems

Some of the more interesting complexities that distributed systems exhibit are the
ways in which they fail.

11.3.1 Modes of failure in distributed systems

Even on a single machine, a program may crash unexpectedly. Other programs that
expect that program to be running may also crash if they haven’t accounted for the
situation.

 Chipping off pieces of an application to put them in new locations introduces new,
exotic modes of failure. All applications may be running properly, but the network
connection between them may fail. Most applications may be able to access a data-
base, but one may not. Distributed systems techniques seek to withstand and recover
from these modes of failure.

 I’ve found that thinking about the ways a distributed system can fail is similar to
thinking about functional testing. In chapter 5, you learned about creative exploratory
testing as a way to enumerate as many facets of vulnerability as possible. Distributed sys-
tems require this same mindset on a larger scale because there are more moving parts.

San Francisco

Product database

Seattle

Order service

Cache server HTTP server

Detroit

E-commerce site

HTTP server

Listing service

HTTP server

Distributed systems span many machines and even many
geographies because of not only intentional design but also team
history, budget decisions, and infrastructure provider offerings.

Each network connection, process
communication, and so on, presents
a potential point of failure.

Figure 11.6 A system
distributed across several
locations

208 CHAPTER 11 Onward and upward

11.3.2 Addressing application state

A big question in distributed systems is how to handle a part of the system crashing.
You may be able to live without some pieces of the system, carrying on without the
data they provide. Other pieces of the system may be necessary but not time-sensitive,
so requests to them while they’re down can be stored and deferred until they’re back
up. Remaining pieces of the system are critical to operations—the system comes to a
halt without them. These are single points of failure.

 Distributed systems are designed to minimize the single points of failure, favoring
graceful degradation—carrying on without a particular action or information. Tools like
Kubernetes (https://kubernetes.io/) augment the approach to processing failure
through eventual consistency, which enables you to define the state you want for your
system, providing a guarantee that the system will eventually reach the defined state.
Pairing graceful degradation with eventual consistency leads to malleable systems that
go down less often.

 Although distributed systems aren’t new, there have been many recent develop-
ments in tooling and philosophy. Kubernetes and the ecosystem around it can cer-
tainly be applied to small systems as you learn, but it shines on larger, complex
systems. You may want to start with the principles and techniques and then get some
practice building a few distributed systems before moving into specialized tools.

11.3.3 Terms to start with

You can begin your research into distributed systems with the following terms:

 Distributed systems
– Fault tolerance
– Eventual consistency
– Desired state
– Concurrency
– Message queueing

11.4 Take a Python deep dive
This may seem obvious, but another area you can keep growing in is Python. Although
this book used Python in its examples to convey ideas about software design, there’s
much to learn about the features, syntax, and power of the Python language.

11.4.1 Python code style

As you work more in Python, you’ll eventually get a sense for the code formatting you
like. You’ll write your code in that style because it will be easier for you to read later
on. But when someone else who’s been following their own style reads your code, they
might have a hard time understanding it. PEP 8, the Python Enhancement Proposal
for a Python style guide, suggests a standard style for Python code formatting so that

https://kubernetes.io/

209Take a Python deep dive

you don’t have to spend time agonizing over it.3 Tools like Black (https://
github.com/psf/black) take these suggestions a step further, imposing a determinis-
tic, opinionated formatting to all your code. This frees you up to think about bigger
problems, like the larger design of the software and the business needs you’re trying
to address.

11.4.2 Language features are patterns

Design patterns are traditionally discussed in terms of objects and the interactions
between them. But there are also common patterns in the way certain ideas are
expressed in Python syntax. Things that are frequently done a certain way in Python
because they’re elegant, short, clear, or readable are called “Pythonic.” These patterns
can be just as important as design patterns to someone trying to understand your code.

 Some patterns in Python involve using data types inherent to the situation, like
using a dict to map keys to values. Some patterns involve using list comprehensions
or ternary operators to reduce multiline statements when something is short and clear
enough to do so. Knowing what’s available to you and when to reach for each pattern
is important. Knowing when not to reach for them is important too.

 The Zen of Python provides a good set of general principles for writing Python
code.

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one--and preferably only one--obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea--let’s do more of those!

If you view these guidelines as a light rubric, you can turn a critical eye to areas of your
code that rub you the wrong way or feel funny. Seeing a bit of ugly syntax, understand-
ing what it’s trying to do, and searching the web for “best way to do X in Python” can

3You can find “PEP 8—Style Guide for Python Code” on the Python website: www.python.org/dev/peps/pep-0008/.

https://www.python.org/dev/peps/pep-0008/
https://github.com/psf/black
https://github.com/psf/black
https://github.com/psf/black

210 CHAPTER 11 Onward and upward

generate some alternative ideas. Another tactic I’ve used to learn tips and tricks is fol-
lowing prominent users of Python—such as Python core developers—on Twitter. You
can often find information this way that you didn’t know you needed.

 For a comprehensive guide to the language, books like The Quick Python Book, by
Daryl Harms and Kenneth McDonald (Manning, 1999); The Hitchhiker’s Guide to Python,
by Kenneth Reitz and Tanya Schlusser (O’Reilly, 2016; https://docs.python-guide
.org/); and Python Cookbook, by David Ascher and Alex Martelli (O’Reilly, 2002), can
help immerse you in the language.

11.4.3 Terms to start with

You can start with the following terms as you begin your research into examples, pat-
terns, and guidelines for Pythonic code:

 Pythonic code
– Pythonic way to do X

 Idiomatic Python
 Python anti-patterns
 Python linters

11.5 Where you’ve been
As an author, I can’t predict what motivated you to pick up this book or how much
experience you had when you did. If you’re still reading this, though, I do have a bet-
ter picture of where you are now. You’re your own worst critic, so here at the end, it’s
important to recapitulate everything you’ve learned. As you see it all laid out before
you, keep a couple of things in mind:

 Software development isn’t any one thing, but a myriad of practices that
coalesce into software in the end.

 Balancing all these practices will be an ongoing challenge, and some practices
will ebb and flow as you focus on improving others.

 None of this is an exact science. Take statements claiming that something is
“the one true way” with a big grain of salt.

 You can apply the principles you’ve learned in this book to most any language,
framework, or problem. Python is great, but don’t box yourself in.

11.5.1 There and back again: A developer’s tale

You jumped right into the idea of software design in chapter 1. Understanding that
software can be an intentional, thoughtful process laid the foundation for all the
following chapters. You will occasionally be hard-pressed to find time for up-front
design because of deadlines and the like, but try to find your center as often as
possible so that you can be deliberate about the software you build. The outcomes
remain the most important goal, but design will help you continue achieving
outcomes as smoothly as possible.

https://docs.python-guide.org/
https://docs.python-guide.org/
https://docs.python-guide.org/

211Where you’ve been

 Chapter 2 introduced the foundational practice of separating concerns. Most mod-
ern programming languages encourage the use of functions, methods, classes, and
modules, and for good reason. Breaking your software down into its constituent parts
helps reduce cognitive load as well as improve the maintainability of code. Concerns
can be separated at the lowest levels of code, all the way up to the broader architec-
ture of the software.

 Building on Python’s structures for separation of concerns, you learned to use them
for abstraction and encapsulation in chapter 3. Freeing yourself and other developers
from the minutiae of a particular task unless they’re interested in knowing more pro-
vides welcome relief. Exposing only critical details to other areas of software also
reduces integration points and the likelihood of breaking code for your consumers.

 Moving into more concrete territory, you learned about designing for perfor-
mance in chapter 4. You saw some of the data structures Python provides and in what
situations they’re useful. You also learned about some of the tools for quantitatively
measuring the performance of your software. Metrics measured trump speculation
about what’s fastest.

 Where chapter 4 showed you how to test whether programs are efficient, chapter 5
focused on testing whether programs are correct. Functional testing helps you verify
that you’re building what you mean to build. You learned how functional tests are
structured and how to write tests using Python tools. Functional testing patterns are
quite similar across languages and frameworks, so you can take this information with
you most anywhere.

 Armed with some of the underpinnings of design, the next part of the book took
you on a practical journey by building the Bark application. Through the course of
this journey, you reached a number of milestones:

 You built a multitier architecture to support separate presentation, business
logic, and persistence layers.

 You opened Bark up to extension to more easily add new functionality, and
then added a new feature to import stars from GitHub as bookmarks.

 You used interfaces and the command pattern to further reduce the work
needed to add or change features.

 You loosened the coupling between different areas of Bark, opening it up to
new possibilities, like making a mobile or web app.

A bookmarking tool isn’t flashy, but you learned some flashy techniques in building it.
Applying the body of knowledge you’ve gained to your future projects for real tasks is
bound to give you similarly effective results. You can get practice with any new con-
cepts you learn by applying them to Bark as well. You may choose to add features,
improve the existing code, or write tests for it. The sky’s the limit!

212 CHAPTER 11 Onward and upward

11.5.2 Signing off

You’ve graduated from this book. It’s been a pleasure teaching you, and I hope to
hear tales of your journey as you go on to bigger and better things with software. Cele-
brate the wins, learn from the hurdles, and develop with heart.

 Happy coding!

Summary
 Learning is not a passive process. Make a plan that works for you, write it down

or map it out, and track your progress. This can generate more ideas or next
steps to help keep you motivated and curious.

 Try to identify common patterns and approaches to problems. As you encoun-
ter those same problems, try a few different approaches early on to see which
work most smoothly. Patterns are tools, and they should enhance your work
rather than hinder it.

 Feel at home in your language. You don’t need to pick it up all at once, but
keep a curious mindset and ask often if there’s a more idiomatic way to express
a thought in code.

 You’ve come a long way from the start of this book, so use this time to reflect
and take a break.

appendix
Installing Python

Python is fairly portable software that can be compiled from source on most systems.
Fortunately for you, Python is probably also available prebuilt for your system. This
appendix will help you get set up with Python so you can run any of the code in this
book from the command line.

TIP If you’ve already installed a version of Python 3 on your computer,
you’re in luck. There’s not much more to do here. Feel free to get back to
reading, and follow along with the code in this book.

NOTE If you install a version of Python 3, you will almost certainly need to
use the python3 command when running code. python is reserved for a
different Python installation on many operating systems (see section A.2).

This appendix covers
 Which versions of Python are available, and

which to use

 Installing Python on your computer

213

214 APPENDIX Installing Python

A.1 What version of Python should I use?
The first version of Python 2.7 came out in 2010, and at the time of writing, macOS
ships with Python 2.7.10, which is a few versions behind the latest Python 2.7 release.
Python 2.7 will no longer be officially supported as of January 1, 2020.

 If you’re already familiar with Python 2 and worry about upgrading to Python 3,
know that most code changes you’ll need to make are small. When starting new proj-
ects, I recommend you use Python 3. This will set you up to write code that can last
longer into the future.

TIP There are tools to help you with a Python 2 to Python 3 upgrade. Python
provides the __future__ module, which allows you to use newer Python 3 fea-
tures that have been backported to Python 2. This way, when you upgrade,
your syntax is already correct, and you can just remove the future import.
The Six package (two times three, get it?) (https://six.readthedocs.io/) also
helps straddle the two versions.

A.2 The “system” Python
On many operating systems, Python may already be installed because the system needs
it for some of its own tasks. This Python installation is often referred to as the “system”
Python. On macOS, for example, Python 2.7 is installed and available for you to use.

 Using the system Python gets tricky when you need to install packages, because
they will all get installed under this global version of Python. If you install a package
that overrides something the operating system needs, or you have multiple projects
that need different versions of a package, bad things can start to happen. I strongly
recommend avoiding the system Python.

A.3 Installing other versions of Python
If you haven’t installed your own Python version before, there are a couple of options
available. Each one should be functionally equivalent, so which one you choose
should depend on what fits your workflow best or makes sense to you.

 The only important thing is making sure you have a relatively recent version of
Python. I recommend Python 3.6+ for strong compatibility with most libraries out
there, but as of this writing, Python 3.8 is already available. If you don’t have any spe-
cific requirements, aim to install the latest version.

Download the official PythonA.3.1
You can download Python directly from Python’s official website (www.python.org/
downloads). The website should detect your operating system type and show you a big
Download Python button, as shown in figure A.1. If it can’t detect your operating system,
or it gets it wrong, there are direct links underneath for various operating systems.

 This download should act like most other applications you would install on your
system. On macOS, opening the downloaded file will take you through an installation
wizard, as shown in figure A.2. Which options you choose in the wizard are up to you,
but the defaults are usually sane.

https://www.python.org/downloads
https://www.python.org/downloads
https://six.readthedocs.io/

215Installing other versions of Python

A.3.2

Figure A.1 The big yellow button gets you the latest Python, and you can find older versions or versions for other
operating systems in the links below it.

I usually just click Continue with reckless abandon.Figure A.2

Download using Anaconda
If you’re in the scientific computing community, you may be familiar with Anaconda
(www.anaconda.com). Anaconda is a suite of tools that includes Python. As of this
writing, Anaconda can be installed with either Python 2 or Python 3. Check which you
have, and make sure you’ve got the Python 3 version.

https://www.anaconda.com

216 APPENDIX Installing Python

 Using Anaconda’s conda command, you can install most versions of Python using
conda install python=3.7.3, as an example. Read the official documentation to
understand the installation process for your system.

Verifying the installationA.4
Once you’ve gone through the installation process, open a terminal (the Terminal
app on macOS). From anywhere, try running the python command (or python3,
potentially). If Python is installed successfully, you should be greeted with the Python
REPL prompt, which should say Python 3 somewhere:

$ python3
Python 3.7.3 (default, Jun 17 2019, 14:09:05)
[Clang 10.0.1 (clang-1001.0.46.4)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Try typing your favorite code snippet and see what happens:

>>> print('Hello, world!')
Hello, world!

Now you’re ready for world domination!

index

A

ABC class 155–156, 158
abstract base classes 155–159
abstractions

as simplifiers 45–46
enabling through decomposition 46–47
layers of 43–45
leaky 185
overview of 42–47
programming styles as 51–54

declarative programming 53–54
functional programming 51–53
procedural programming 51

recognizing when ineffective 56–57
@abstractmethod decorator 155
acceptance testing 80–81
action scope 113
adapters 56–57
add_product method 92
add_sales_tax function 21, 23, 93
AddBookmarkCommand class 117, 139–140, 187
an_expensive_function 75
Anaconda 215–216
anonymous functions 70. See lambdas
application loops 126
as keyword 25
assert keyword 86
assert statements 86, 96
assertDictEqual method 94
assertEqual method 89, 94
AssertionError 86, 89
assertions 86
asymptotic analysis 59
AttributeError 54
attributes 32

Author class 174
author_data dictionary 175
AuthorFormatter class 174
AUTOINCREMENT keyword 110
automated performance testing 98
automated testing 80

B

backward compatibility 173
Bark 115–117, 120, 128–129, 132, 138, 164, 211
BDD (behavior-driven development) 81
Bear class 157
behaviors

adding 128–130
modifying 130–131

Bicycle class 134, 136–137, 146, 150
big O notation 59–62
big θ (big theta) notation 62
big Ω (big omega) notation 62
BigCat class 153
black box 42–43
Black tool 209
Book class 174, 179
book.author_for_citation 174
book.author_for_display 174, 176
book.display_title method 172
bookmark date 111
bookmarks

adding 117–118
applications for 104
creating bookmarks tables 116–117
deleting 118–119
listing 118
persistence of 191–192

217

INDEX218

bookmarks table 112
BookmarksDatabase 193–194
BookmarksStorageService 195
brittle tests 93
built-in namespace 20
business logic layer 106, 115–119

adding bookmarks 117–118
creating bookmarks tables 116–117
deleting bookmarks 118–119
exiting applications 119
listing bookmarks 118

C

calculate_mean function 79, 82–83, 86
calls, forwarding 173–176
camelCase 96
CarbonFiberFrame class 136, 146
chained generators 67
child classes 144
choose method 125, 159
CI (continuous integration) 85
CircleCI 85
classes 32–37

complexity of 162–166
decomposing 170–176

extracting classes 173–176
forwarding calls 173–176
initialization complexity 171–173

extracting 173–176
responsibilities of 161–162
size of 161–166

clean_query function 182–184
clear code 19
clear command 125
clear_screen function 125
CLI (command-line interface) 73, 105–106, 119
client 205
close method 108
code

formatting 208–209
performance of 58
planning 13–15
profiling 73
structure of 106–126

business logic layer 115–119
persistence layer 107–115
presentation layer 119–126

writing in teams 12–15
cognitive load 46
cohesion 36, 137
collections.OrderedDict 122
collisions, preventing 24–25
comma-separated values (CSV) 7
Command class 121, 137, 158–159

command pattern 116, 204
command-line bookmarking applications 104
command-line interface (CLI) 73, 105–106, 119
commands, hierarchy of 159
complexity 59–60

breaking down 166–170
extracting configuration 166–168
extracting functions 168–170

linear 60–61
measuring 162–166
of classes 162–166
of code 162–166
of functions 162–166
of initialization 171–173
of modules 162–166
See also space complexity; time complexity

composition, inheritance and 147, 157–159
concerns. See separation of concerns
conda command 216
configuration, extracting 166–168
connections between databases

closing 108
creating 108

ConsolePrinter 54
constant time 62, 64–65
constructors 32
context managers 109
continuous integration (CI) 85
correctness 147
coupled classes 36
coupling

bookmark persistence 191–192
defining 177–184
loose coupling 131–133, 181–184
messaging 189–191
recognizing 184–185

feature envy 184
leaky abstractions 185
shotgun surgery 184–185

tight coupling 178–181
Coverage package 164
cProfile module 74
CPU profiling 73–75
create method 193
create_table method 111–112
CreateBookmarksTableCommand class 116, 120,

122, 188, 193
creational patterns 206
CRUD (create, read, update, and delete)

104–105, 116, 192–193
CSV (comma-separated values) 7
Cucumber library 81
cumtime 74–75
cursor 109
cyclomatic complexity 162–163, 165, 167

INDEX 219

D

data types
for constant time 64–65
for linear time 65
performance and 64–68
space complexity of operations on 65–68

database query module 38
DatabaseManager class 107–110, 116, 132,

141, 194
DatabaseManager.create_table method 117
DatabaseManager.delete method 119
DatabaseManager.select method 118
databases

connections between
closing 108
creating 108

initializing 120
datetime.datetime.now function 49, 73
day function 51
_day method 49
db.create_table method 116
db.select method 194
declarative programming 53–54
decomposition 11, 26, 68

abstraction extractions through 46–47
classes 170–176

extracting classes 173–176
forwarding calls 173–176
initialization complexity 171–173

default bookmark feature 104
defaultdict data type 69
DELETE FROM query 114
delete method, BookmarkDatabase class 193
delete method, DatabaseManager class 114–115
DELETE statement 113
DeleteBookmarkCommand class 119
deleting

bookmarks 118–119
records 114

DeprecationWarning 176
design 8–11

common considerations in 9
investing in 11–12
patterns of 204–206
pitfalls of organically developed software 10–11
workflows in 6–8

dict data type 64
dict_values object 113
disk space 64
display_book_info function 179
display_title method 171–172
distributed systems 206–208

application states 208
failure in 207

Django web framework 12, 108
docstrings 46
domain-specific languages (DSLs) 53
downloading

Python 214
with Anaconda 215–216

draw.io 203
DSLs (domain-specific languages) 53
duck typing 54–55
DummyBookmarksDatabase 195
duplication 105
dynamic typing 54, 181

E

eats method 154–155
edit(bookmark_id, data) method 193
EditBookmarkCommand 141
elif statements 131–132
encapsulation 50, 184

constructs 47–48
expectations of privacy in Python 48

end-to-end testing 80–82
entangled particles 145
entropy 137–138
eventual consistency 208
_execute method 109–110, 112, 115
execute method 116, 119, 121, 137, 157, 159
executing statements 109–110
exiting applications 119
explicit imports 24
extensibility 9, 127–133

adding behaviors 128–130
loose coupling 131–133
modifying behaviors 130–131

extensions 105, 128
extracting

classes 173–176
configuration 166–168
functions 168–170

F

faking 92
FancyTire class 136
feature envy 184
fetchall method 118
Flask 12
flexibility 9, 130, 133–138

entropy 137–138
interfaces 136–137
inversion of control 133–136
robustness principle 137–138

for loops 52, 63, 123, 131, 162

INDEX220

formats dictionary 168
formatting code 208–209
forwarding calls 173–176
Frame class 150
frameworks 12
friction 7, 56
from database import query 39
functional programming 51–53
functional testing 79–85, 211

acceptance testing 80–81
anatomy of 78–79
automated testing 80
integration testing 83–84
manual testing 80
regression testing 85
testing pyramid 84–85
unit testing 82–83

functions 26–30, 82
complexity of 162–166
extracting 168–170
responsibilities of 161–162
size of 161–166

functools 52
functools.partial function 52
__future__ module 214

G

garbage collection 63
general-purpose language 53
generalization 105, 112
generate_sku method 91–92
generators 66
GET request 185
get_format_function function 169, 173
get_matches_for_pattern function 45–46
get_number_with_highest_count 70
get_number_with_highest_count function 71
get_option_choice function 123
getters 171
GitHub 20, 104, 130, 138, 140–141, 164, 211
global namespace 21
graceful degradation 208
greet method 49
Greeter class 48–50

H

Halstead complexity 164
has_long_words function 163
hierarchies 148

challenges of 144–146
of separation of concerns 25–39

classes 32–37

functions 26–30
modules 37
packages 37–39

high cohesion 179
high-level languages 9
hour attribute 49

I

IDEs (integrated development environments) 25
if/else statements 130
import statements 20–22, 24
import this command 20
importing, syntax for 23–24
in-memory lists 72
inheritance 54–56, 150–157

abstract base classes 155–157
accessing superclasses 151–152
challenges of hierarchies 144–146
composition and 157–159
inspecting types 150–151
method resolution order 152–155
multiple inheritance 152–155
overview of 143–150
substitutability and 147–148
use cases 146, 148–150

hierarchy 148
subclasses in object graphs 149
subclasses using behavior of

superclasses 149–150
__init__ method 32, 116, 134, 171, 193
__init__.py file 39
initializing

complexity of 171–173
databases 120

input variables 26
INSERT INTO keyword 112
INSERT statement 112
inspecting types 150–151
installing Python 214–216

download with Anaconda 215–216
verification of 216

int function 138
INTEGER type 110
integrated development environments (IDEs) 25
integration testing 83–84, 90–92
integrity 9
intercommunication 181
interfaces 55, 136–137, 185
introduce function 29
introduce_stooges function 28
intuitability 9
inversion of control 133–136
invoker 205
isinstance function 151

INDEX 221

issubclass function 151
items method 122
iterables 65
itertools 52

K

Kubernetes 208

L

lambdas 71
lazy evaluation 68
leaky abstractions 185
lemmatization 42, 201–202, 204
len() function 26
Liger class 153
linear complexity 60–61
linear time 65
Lion class 153, 155
list data type 65
list method 193
ListBookmarksCommand 118, 190
listing bookmarks 118
load testing 99
local namespace 21
loose coupling 9, 37, 93, 131–133, 181–185
Lucidchart 203

M

maintainability 105
malleable code 132
manual testing 80
mathematical functions 26
measuring complexity 162–166
memory 63–64
menu options 120–123
messaging 189–191
method resolution order 152–155
methods 32, 47–48
mind maps 200–201, 203
MindMup 203
mixin 55
mock.patch decorator 93
mocking 92
MockTire class 136
Model-view-controller (MVC) 107
Model-view-viewmodel (MVVM) 107
modules 37, 47

complexity of 162–166
responsibilities of 161–162
size of 161–166

most_frequent function 71

multiple inheritance 55, 152–155
multitier architectures 106–107, 120
MVC (Model-view-controller) 107
MVVM (Model-view-viewmodel) 107

N

namespacing 20–25
import statement and 20–22
preventing collisions with 24–25
syntax for importing 23–24

nested loops 72
notes 111
NotImplementedError 158

O

O(n) operations 65
O(n2) (order n-squared) 59
object graphs 149
object orientation 144
object-relational mapping (ORM) 108
open function 20, 26
operations on data types 65–68
Option class 121–122, 189
options dictionary 132
ORDER BY clause 115
order_by argument 115
ORM (object-relational mapping) 108

P

packages 37–39, 47
Pandas 12
part_of_day function 51
_part_of_day method 49
partial helper 52
Penguin class 150
PEP 8 (Python Enhancement Proposal) 208
performance testing 78, 98–99
performant software 58
persistence layer 106–115

adding records 112–113
clauses to limit action scope 113
closing database connections 108
creating database connections 108
creating tables 110–112
deleting records 114
executing statements 109–110
selecting records 114–115
sorting records 114–115

persistence layers 107
persistence of bookmarks 191–192
persistence.create 194

INDEX222

persistence.delete 194
persistence.edit 195
persistence.list 194
PersistenceLayer class 192, 205
PersistenceLayer interface 194
physical size

of classes 161
of functions 161
of modules 161

plotly package 53
plugin systems 128
polymorphism 54–56
Postel’s Law 137
precommit hooks 85
Predator class 156
prep_call function 124
presentation layer 106, 119–126

application loops 126
clearing screens 125–126
initializing databases 120
menu options 120–123
user input 123–125

print function 20
print_options function 122
privacy 48
private methods 48
probabilistic modeling 44
procedure calls 51
Product class 89, 93–94
ProductTestCase class 88, 97
programming

declarative 53–54
functional 51–53
procedural 51
styles as abstractions 51–54

@property decorator 172
proportional to square of inputs 62
public methods 48
.py file 21, 37
PyPI (Python Package Index) 38, 47
pytest 96–98

converting unittest to 97–98
test organization with 97

Python
as enterprise language 4–5
as teaching language 5
benefits of 5
downloading 214
examining 208–210
expectations of privacy in 48
installing 214–216

download with Anaconda 215–216
verification of 216

selecting version of 214

syntax for 209–210
system Python 214

python -m unittest command 87–88
python bark.py 120
python command 216
Python Enhancement Proposal (PEP 8) 208
Python REPL prompt 216
python3 command 213
Pythonic code 96

Q

QuitCommand class 119, 126

R

Radon 164, 166
random_food function 168
range function 66
receiver 204
records 107, 114

adding 112–113
deleting 114
selecting 114–115
sorting 114–115

reduce function 52
refactoring 10, 50–51, 68–71, 157–159
regression testing 85
remove_product method 92
REPL (read-eval-print loop) 13, 82
request.headers dictionary 166
resources 9
response-formatting functions 169
return statement 66, 187
rigid code 130, 132
rigidity, solutions for 133–138

entropy 137–138
interfaces 136–137
inversion of control 133–136
robustness principle 137–138

roar method 157
robustness principle 137–138
roles, filled by classes 148
RollOverMixin 56
rule of three, Fowler's 69
RuntimeError 157

S

sales_tax module 23
sales_tax.py file 38
screens, clearing 125–126
script.py file 22, 37
search_query.py 38

INDEX 223

security 9
select method 115
selecting records 114–115
self argument 34–35, 50, 172
separation of concerns 170, 184

benefits of 105
code structure 106–126

business logic layer 115–119
persistence layer 107–115
presentation layer 119–126

command-line bookmarking applications 104
hierarchy of 25–39

classes 32–37
functions 26–30
modules 37
packages 37–39

namespacing 20–25
import statement and 20–22
preventing collisions with 24–25
syntax for importing 23–24

service endpoint 169
set data type 64
setters 171
shell_size argument 147
ShoppingCart class 90–91, 93–94
shotgun surgery 129–130, 184–185
simulate method 33–34, 36
single points of failure 208
Six package 214
size

of classes 161–166
of functions 161–166
of modules 161–166

SKU (stock keeping unit) 88, 96
Slug class 147
Snail class 147
snake_case 96
software add-ons 128
software, organically developed 10–11
some_method method 34, 155
SonarQube 166
sort_cheap function 75
sort_expensive function 75
sorting records 114–115
space complexity 59–65

disk space 64
memory 63–64
of operations on data types 65–68

SpeakMixin 55
specialization of behavior 146
speed, of code 9, 71–75
SQL (structured query language) 104
SQLAlchemy 108
SQLite 107–118

sqlite3 107–109, 113, 117
sqlite3.connect 108

square of inputs 62
squares function 67
statements, executing 109–110
stock keeping unit (SKU) 88, 96
structured query language (SQL) 104
stubbing 92
subclasses 144

in object graphs 149
using behavior of superclasses 149–150

substitutability 147–148
super function 151–152, 154
superclasses 144, 146

accessing 151–152
subclasses using behavior of 149–150

sys.exit function 119
system Python 214

T

tab-separated values (TSV) 7
tables

bookmarks tables 116–117
creating 110–112

TDD (test-driven development) 99–100
mindset of 100
overview of 99–100
philosophy of 100

Terminal app 216
test doubles 92–93
test suites 85
test_product module 88
test-driven development. See TDD
TestCase class 86, 88
testing

assertions 86
functional testing 79–85

acceptance testing 80–81
anatomy of 78–79
automated testing 80
integration testing 83–84
manual testing 80
regression testing 85
testing pyramid 84–85
unit testing 82–83

load testing 99
overview of 78–79
performance testing 98–99
reasons for 78
test-driven development

mindset of 100
overview of 99–100
philosophy of 100

unit testing with unittest 86–96

INDEX224

testing (continued)
with pytest 96–98

converting unittest to 97–98
test organization 97

testing pyramid 84–85
TestProduct 97
third-party packages 48, 56
Tiger class 153, 155
tight coupling 37, 178–181, 186–187
time complexity 59–62

constant time 62
linearity 60–61
proportional to square of inputs 62

time function 24
timeit module 72–73
timestamps 105, 187
Tire class 136, 146
tottime 74
transaction feature 109
transform_name_for_sku method 89
Travis CI 85
TSV (tab-separated values) 7
tuple type 65
type checking 150
type function 151
type hinting 150
TypeError 157
types 54–56, 150–151

U

ubiquitous language 204
UML (unified modeling language) 205
unit testing 82–84, 99

running tests 87
test doubles 92–93
test organization 86–87

with unittest 86–96
writing integration tests 90–92
writing tests 87–90, 96

units, defined 82
unittest 86–96

converting to pytest 97–98
running tests with 87
test doubles 92–93
test organization with 86–87
writing integration tests with 90–92
writing tests with 87–90, 96

unittest test runner 94
unittest.TestCase 87, 97
user experience 7–8
user input 123–125

V

VALUES keyword 112
variables 20, 48
version control hooks 85

W

WHERE clauses 113, 115
wildcard imports 24
with keyword 109
workflows in design 6–8

Y

yield keyword 66

Z

Zen of Python 20

Practices of the
Python Pro

Programming
paradigms

Software
architecture

Multitier
architecture

Space
complexity

Time
complexity

Object-oriented
programming

Composition

Maintainability

Testing

Extensibility

Inheritance

Code structure

Performance

Namespacing

Encapsulation

Load testing

Abstraction

Refactoring

Unit testing

Test doubles

Separation
of concerns

Functional
testing

Performance
testing

Dane Hillard

P
rofessional-quality code does more than just run without
bugs. It’s clean, readable, and easy to maintain. To step
up from a capable Python coder to a professional devel-

oper, you need to learn industry standards for coding style,
application design, and development process. That’s where
this book is indispensable.

Practices of the Python Pro teaches you to design and write
professional-quality software that’s understandable,
maintainable, and extensible. Dane Hillard is a Python pro
who has helped many dozens of developers make this step,
and he knows what it takes. With helpful examples and exer-
cises, he teaches you when, why, and how to modularize your
code, how to improve quality by reducing complexity, and
much more. Embrace these core principles, and your code will
become easier for you and others to read, maintain, and reuse.

What’s Inside
● Organizing large Python projects
● Achieving the right levels of abstraction
● Writing clean, reusable code
● Inheritance and composition
● Considerations for testing and performance

For readers familiar with the basics of Python, or another OO
language.

Dane Hillard has spent the majority of his development career
using Python to build web applications.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/practices-of-the-python-pro

$49.99 / Can $65.99 [INCLUDING eBOOK]

Practices of the Python Pro

PYTHON

M A N N I N G

“A wealth of information
on general software

architecture and truths that are
applicable to any language.”

—David T. Kerns
Rincon Research Corporation

“Get this book, and begin
to write Python code
 like a professional.”

—Davide Cadamuro, BMW Group

“Easy-to-follow book with
great information on how to
design your software for easy

scaling and readability.”—Mike Stevens
Silver Hammer Associates

“This will take a Python
developer down a path
 to becoming a pro.”

—Joseph Perenia
Sony Interactive Entertainment

See first page

ISBN-13: 978-1-61729-608-6
ISBN-10: 1-61729-608-2

	Practices of the Python Pro
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1: Why it all matters
	Chapter 1: The bigger picture
	1.1 Python is an enterprise language
	1.1.1 The times they are a-changin’
	1.1.2 What I like about Python

	1.2 Python is a teaching language
	1.3 Design is a process
	1.3.1 The user experience
	1.3.2 You’ve been here before

	1.4 Design enables better software
	1.4.1 Considerations in software design
	1.4.2 Organically grown software

	1.5 When to invest in design
	1.6 New beginnings
	1.7 Design is democratic
	1.7.1 Presence of mind

	1.8 How to use this book

	Part 2: Foundations of design
	Chapter 2: Separation of concerns
	2.1 Namespacing
	2.1.1 Namespaces and the import statement
	2.1.2 The many masks of importing
	2.1.3 Namespaces prevent collisions

	2.2 The hierarchy of separation in Python
	2.2.1 Functions
	2.2.2 Classes
	2.2.3 Modules
	2.2.4 Packages

	Chapter 3: Abstraction and encapsulation
	3.1 What is abstraction?
	3.1.1 The “black box”
	3.1.2 Abstraction is like an onion
	3.1.3 Abstraction is a simplifier
	3.1.4 Decomposition enables abstraction

	3.2 Encapsulation
	3.2.1 Encapsulation constructs in Python
	3.2.2 Expectations of privacy in Python

	3.3 Try it out
	3.3.1 Refactoring

	3.4 Programming styles are an abstraction too
	3.4.1 Procedural programming
	3.4.2 Functional programming
	3.4.3 Declarative programming

	3.5 Typing, inheritance, and polymorphism
	3.6 Recognizing the wrong abstraction
	3.6.1 Square pegs in round holes
	3.6.2 Clever gets the cleaver

	Chapter 4: Designing for high performance
	4.1 Hurtling through time and space
	4.1.1 Complexity is a little . . . complex
	4.1.2 Time complexity
	4.1.3 Space complexity

	4.2 Performance and data types
	4.2.1 Data types for constant time
	4.2.2 Data types for linear time
	4.2.3 Space complexity of operations on data types

	4.3 Make it work, make it right, make it fast
	4.3.1 Making it work
	4.3.2 Making it right
	4.3.3 Making it fast

	4.4 Tools
	4.4.1 timeit
	4.4.2 CPU profiling

	4.5 Try it out

	Chapter 5: Testing your software
	5.1 What is software testing?
	5.1.1 Does it do what it says on the tin?
	5.1.2 The anatomy of a functional test

	5.2 Functional testing approaches
	5.2.1 Manual testing
	5.2.2 Automated testing
	5.2.3 Acceptance testing
	5.2.4 Unit testing
	5.2.5 Integration testing
	5.2.6 The testing pyramid
	5.2.7 Regression testing

	5.3 Statements of fact
	5.4 Unit testing with unittest
	5.4.1 Test organization with unittest
	5.4.2 Running tests with unittest
	5.4.3 Writing your first test with unittest
	5.4.4 Writing your first integration test with unittest
	5.4.5 Test doubles
	5.4.6 Try it out
	5.4.7 Writing interesting tests

	5.5 Testing with pytest
	5.5.1 Test organization with pytest
	5.5.2 Converting unittest tests to pytest

	5.6 Beyond functional testing
	5.6.1 Performance testing
	5.6.2 Load testing

	5.7 Test-driven development: A primer
	5.7.1 It’s a mindset
	5.7.2 It’s a philosophy

	Part 3: Nailing down large systems
	Chapter 6: Separation of concerns in practice
	6.1 A command-line bookmarking application
	6.2 A tour of Bark
	6.2.1 The benefits of separation: Reprise

	6.3 An initial code structure, by concern
	6.3.1 The persistence layer
	6.3.2 The business logic layer
	6.3.3 The presentation layer

	Chapter 7: Extensibility and f lexibility
	7.1 What is extensible code?
	7.1.1 Adding new behaviors
	7.1.2 Modifying existing behaviors
	7.1.3 Loose coupling

	7.2 Solutions for rigidity
	7.2.1 Letting go: Inversion of control
	7.2.2 The devil’s in the details: Relying on interfaces
	7.2.3 Fighting entropy: The robustness principle

	7.3 An exercise in extension

	Chapter 8: The rules (and exceptions) of inheritance
	8.1 The inheritance of programming past
	8.1.1 The silver bullet
	8.1.2 The challenges of hierarchies

	8.2 The inheritance of programming present
	8.2.1 What is inheritance for, really?
	8.2.2 Substitutability
	8.2.3 The ideal use case for inheritance

	8.3 Inheritance in Python
	8.3.1 Type inspection
	8.3.2 Superclass access
	8.3.3 Multiple inheritance and method resolution order
	8.3.4 Abstract base classes

	8.4 Inheritance and composition in Bark
	8.4.1 Refactoring to use an abstract base class
	8.4.2 A final check on your inheritance work

	Chapter 9: Keeping things lightweight
	9.1 How big should my class/function/module be?
	9.1.1 Physical size
	9.1.2 Single responsibility
	9.1.3 Code complexity

	9.2 Breaking down complexity
	9.2.1 Extracting configuration
	9.2.2 Extracting functions

	9.3 Decomposing classes
	9.3.1 Initialization complexity
	9.3.2 Extracting classes and forwarding calls

	Chapter 10: Achieving loose coupling
	10.1 Defining coupling
	10.1.1 The connective tissue
	10.1.2 Tight coupling
	10.1.3 Loose coupling

	10.2 Recognizing coupling
	10.2.1 Feature envy
	10.2.2 Shotgun surgery
	10.2.3 Leaky abstractions

	10.3 Coupling in Bark
	10.4 Addressing coupling
	10.4.1 User messaging
	10.4.2 Bookmark persistence
	10.4.3 Try it out

	Part 4: What’s next?
	Chapter 11: Onward and upward
	11.1 What now?
	11.1.1 Develop a plan
	11.1.2 Execute the plan
	11.1.3 Track your progress

	11.2 Design patterns
	11.2.1 Ups and downs of design patterns in Python
	11.2.2 Terms to start with

	11.3 Distributed systems
	11.3.1 Modes of failure in distributed systems
	11.3.2 Addressing application state
	11.3.3 Terms to start with

	11.4 Take a Python deep dive
	11.4.1 Python code style
	11.4.2 Language features are patterns
	11.4.3 Terms to start with

	11.5 Where you’ve been
	11.5.1 There and back again: A developer’s tale
	11.5.2 Signing off

	Appendix: Installing Python
	A.1 What version of Python should I use?
	A.2 The “system” Python
	A.3 Installing other versions of Python
	A.3.1 Download the official Python
	A.3.2 Download using Anaconda

	A.4 Verifying the installation

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

