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Preface
“Humanity	 is	 on	 the	 verge	of	 digital	 slavery	at	 the	hands	of	AI	and	biometric	 technologies.	One	way	 to
prevent	 that	 is	 to	 develop	 inbuilt	 modules	 of	 deep	 feelings	 of	 love	 and	 compassion	 in	 the	 learning
algorithms.”

―	Amit	Ray,	Compassionate	Artificial	Superintelligence	AI	5.0	-	AI	with	Blockchain,	BMI,	Drone,	IOT,
and	Biometric	Technologies

If	you	are	 looking	 for	a	complete	guide	 to	 the	Python	 language	and	 its	 library
that	will	help	you	to	become	an	effective	data	analyst,	this	book	is	for	you.
This	book	contains	the	Python	programming	you	need	for	Data	Analysis.

Why	the	AI	Sciences	Books	are	different?

The	AI	Sciences	Books	explore	every	aspect	of	Artificial	Intelligence	and	Data
Science	using	computer	Science	programming	language	such	as	Python	and	R.
Our	books	may	be	 the	best	one	 for	beginners;	 it's	a	 step-by-step	guide	 for	any
person	who	wants	to	start	learning	Artificial	Intelligence	and	Data	Science	from
scratch.	It	will	help	you	in	preparing	a	solid	foundation	and	learn	any	other	high-
level	courses	will	be	easy	to	you.

Step	By	Step	Guide	and	Visual	Illustrations	and	Examples

The	 Book	 give	 complete	 instructions	 for	 manipulating,	 processing,	 cleaning,
modeling	 and	 crunching	 datasets	 in	 Python.	 This	 is	 a	 hands-on	 guide	 with
practical	 case	 studies	 of	 data	 analysis	 problems	 effectively.	 You	 will	 learn
pandas,	NumPy,	IPython,	and	Jupiter	in	the	Process.

Who	Should	Read	This?

This	book	is	a	practical	 introduction	 to	data	science	 tools	 in	Python.	 It	 is	 ideal
for	 analyst’s	 beginners	 to	 Python	 and	 for	 Python	 programmers	 new	 to	 data
science	 and	 computer	 science.	 Instead	 of	 tough	 math	 formulas,	 this	 book
contains	several	graphs	and	images.
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Introduction

Why	read	on?	First,	you’ll	learn	how	to	use	Python	in	data	analysis	(which	is	a
bit	cooler	and	a	bit	more	advanced	than	using	Microsoft	Excel).	Second,	you’ll
also	 learn	 how	 to	 gain	 the	 mindset	 of	 a	 real	 data	 analyst	 (computational
thinking).

More	importantly,	you’ll	learn	how	Python	and	machine	learning	applies	to	real
world	problems	(business,	science,	market	research,	technology,	manufacturing,
retail,	 financial).	We’ll	 provide	 several	 examples	 on	 how	modern	 methods	 of
data	analysis	fit	in	with	approaching	and	solving	modern	problems.

This	 is	 important	 because	 the	 massive	 influx	 of	 data	 provides	 us	 with	 more
opportunities	 to	 gain	 insights	 and	 make	 an	 impact	 in	 almost	 any	 field.	 This
recent	phenomenon	also	provides	new	challenges	that	require	new	technologies
and	 approaches.	 In	 addition,	 this	 also	 requires	 new	 skills	 and	 mindsets	 to
successfully	 navigate	 through	 the	 challenges	 and	 successfully	 tap	 the	 fullest
potential	of	the	opportunities	being	presented	to	us.

For	now,	forget	about	getting	the	“sexiest	job	of	the	21st	century”	(data	scientist,
machine	 learning	 engineer,	 etc.).	 Forget	 about	 the	 fears	 about	 artificial
intelligence	eradicating	jobs	and	the	entire	human	race.	This	is	all	about	learning
(in	the	truest	sense	of	the	word)	and	solving	real	world	problems.

We	are	here	to	create	solutions	and	take	advantage	of	new	technologies	to	make
better	decisions	and	hopefully	make	our	lives	easier.	And	this	starts	at	building	a
strong	 foundation	 so	 we	 can	 better	 face	 the	 challenges	 and	 master	 advanced
concepts.



2.	Why	Choose	Python	for	Data	Science	&	Machine	Learning

Python	is	said	to	be	a	simple,	clear	and	intuitive	programming	language.	That’s
why	 many	 engineers	 and	 scientists	 choose	 Python	 for	 many	 scientific	 and
numeric	applications.	Perhaps	they	prefer	getting	into	the	core	task	quickly	(e.g.
finding	 out	 the	 effect	 or	 correlation	 of	 a	 variable	 with	 an	 output)	 instead	 of
spending	hundreds	of	hours	learning	the	nuances	of	a	“complex”	programming
language.

This	allows	scientists,	engineers,	researchers	and	analysts	to	get	into	the	project
more	quickly,	thereby	gaining	valuable	insights	in	the	least	amount	of	time	and
resources.	 It	 doesn’t	 mean	 though	 that	 Python	 is	 perfect	 and	 the	 ideal
programming	 language	 on	 where	 to	 do	 data	 analysis	 and	 machine	 learning.
Other	 languages	 such	 as	R	may	have	 advantages	 and	 features	Python	has	 not.
But	still,	Python	is	a	good	starting	point	and	you	may	get	a	better	understanding
of	data	analysis	if	you	use	it	for	your	study	and	future	projects.

Python	vs	R

You	might	have	already	encountered	this	in	Stack	Overflow,	Reddit,	Quora,	and
other	forums	and	websites.	You	might	have	also	searched	for	other	programming
languages	 because	 after	 all,	 learning	 Python	 or	 R	 (or	 any	 other	 programming
language)	 requires	 several	weeks	 and	months.	 It’s	 a	 huge	 time	 investment	 and
you	don’t	want	to	make	a	mistake.

To	get	this	out	of	the	way,	just	start	with	Python	because	the	general	skills	and
concepts	 are	 easily	 transferable	 to	 other	 languages.	 Well,	 in	 some	 cases	 you
might	have	 to	adopt	an	entirely	new	way	of	 thinking.	But	 in	general,	knowing
how	 to	use	Python	 in	data	analysis	will	bring	you	a	 long	way	 towards	solving
many	interesting	problems.

Many	 say	 that	 R	 is	 specifically	 designed	 for	 statisticians	 (especially	 when	 it
comes	to	easy	and	strong	data	visualization	capabilities).	It’s	also	relatively	easy
to	 learn	 especially	 if	 you’ll	 be	 using	 it	mainly	 for	 data	 analysis.	On	 the	 other
hand,	Python	is	somewhat	flexible	because	it	goes	beyond	data	analysis.	Many
data	 scientists	 and	 machine	 learning	 practitioners	 may	 have	 chosen	 Python
because	 the	 code	 they	 wrote	 can	 be	 integrated	 into	 a	 live	 and	 dynamic	 web
application.

Although	 it’s	 all	 debatable,	 Python	 is	 still	 a	 popular	 choice	 especially	 among



beginners	or	anyone	who	wants	to	get	their	feet	wet	fast	with	data	analysis	and
machine	 learning.	 It’s	 relatively	 easy	 to	 learn	 and	 you	 can	 dive	 into	 full	 time
programming	later	on	if	you	decide	this	suits	you	more.

Widespread	Use	of	Python	in	Data	Analysis

There	 are	 now	many	 packages	 and	 tools	 that	make	 the	 use	 of	 Python	 in	 data
analysis	and	machine	learning	much	easier.	TensorFlow	(from	Google),	Theano,
scikit-learn,	 numpy,	 and	 pandas	 are	 just	 some	 of	 the	 things	 that	 make	 data
science	faster	and	easier.

Also,	 university	 graduates	 can	 quickly	 get	 into	 data	 science	 because	 many
universities	now	teach	introductory	computer	science	using	Python	as	the	main
programming	 language.	 The	 shift	 from	 computer	 programming	 and	 software
development	 can	 occur	 quickly	 because	 many	 people	 already	 have	 the	 right
foundations	 to	 start	 learning	 and	 applying	 programming	 to	 real	 world	 data
challenges.

Another	reason	for	Python’s	widespread	use	is	there	are	countless	resources	that
will	tell	you	how	to	do	almost	anything.	If	you	have	any	question,	it’s	very	likely
that	 someone	 else	 has	 already	 asked	 that	 and	 another	 that	 solved	 it	 for	 you
(Google	 and	Stack	Overflow	 are	 your	 friends).	This	makes	Python	 even	more
popular	because	of	the	availability	of	resources	online.

Clarity

Due	 to	 the	 ease	 of	 learning	 and	 using	 Python	 (partly	 due	 to	 the	 clarity	 of	 its
syntax),	 professionals	 are	 able	 to	 focus	on	 the	more	 important	 aspects	of	 their
projects	and	problems.	For	example,	they	could	just	use	numpy,	scikit-learn,	and
TensorFlow	to	quickly	gain	insights	instead	of	building	everything	from	scratch.

This	provides	another	 level	of	clarity	because	professionals	can	 focus	more	on
the	 nature	 of	 the	 problem	 and	 its	 implications.	They	 could	 also	 come	up	with
more	efficient	ways	of	dealing	with	 the	problem	instead	of	getting	buried	with
the	ton	of	info	a	certain	programming	language	presents.

The	 focus	 should	 always	 be	 on	 the	 problem	 and	 the	 opportunities	 it	 might
introduce.	 It	only	 takes	one	breakthrough	 to	change	our	entire	way	of	 thinking
about	 a	 certain	 challenge	 and	 Python	 might	 be	 able	 to	 help	 accomplish	 that
because	of	its	clarity	and	ease.



3.	Prerequisites	&	Reminders

Python	&	Programming	Knowledge

By	 now	 you	 should	 understand	 the	 Python	 syntax	 including	 things	 about
variables,	 comparison	operators,	Boolean	operators,	 functions,	 loops,	 and	 lists.
You	don’t	have	to	be	an	expert	but	it	really	helps	to	have	the	essential	knowledge
so	the	rest	becomes	smoother.

You	 don’t	 have	 to	 make	 it	 complicated	 because	 programming	 is	 only	 about
telling	the	computer	what	needs	to	be	done.	The	computer	should	then	be	able	to
understand	 and	 successfully	 execute	 your	 instructions.	You	might	 just	 need	 to
write	few	lines	of	code	(or	modify	existing	ones	a	bit)	to	suit	your	application.

Also,	many	of	 the	 things	 that	you’ll	do	 in	Python	for	data	analysis	are	already
routine	 or	 pre-built	 for	 you.	 In	 many	 cases	 you	 might	 just	 have	 to	 copy	 and
execute	 the	 code	 (with	 a	 few	 modifications).	 But	 don’t	 get	 lazy	 because
understanding	Python	and	programming	is	still	essential.	This	way,	you	can	spot
and	troubleshoot	problems	in	case	an	error	message	appears.	This	will	also	give
you	confidence	because	you	know	how	something	works.

Installation	&	Setup

If	 you	 want	 to	 follow	 along	 with	 our	 code	 and	 execution,	 you	 should	 have
Anaconda	downloaded	and	installed	in	your	computer.	It’s	free	and	available	for
Windows,	 macOS,	 and	 Linux.	 To	 download	 and	 install,	 go	 to
https://www.anaconda.com/download/	 and	 follow	 the	 succeeding	 instructions
from	there.

The	 tool	 we’ll	 be	 mostly	 using	 is	 Jupyter	 Notebook	 (already	 comes	 with
Anaconda	 installation).	 It’s	 literally	 a	 notebook	 wherein	 you	 can	 type	 and
execute	 your	 code	 as	 well	 as	 add	 text	 and	 notes	 (which	 is	 why	 many	 online
instructors	use	it).

If	 you’ve	 successfully	 installed	 Anaconda,	 you	 should	 be	 able	 to	 launch
Anaconda	Prompt	 and	 type	 jupyter	 notebook	on	 the	 blinking	 underscore.	This
will	 then	 launch	 Jupyter	 Notebook	 using	 your	 default	 browser.	 You	 can	 then
create	 a	 new	 notebook	 (or	 edit	 it	 later)	 and	 run	 the	 code	 for	 outputs	 and
visualizations	(graphs,	histograms,	etc.).

These	are	convenient	 tools	you	can	use	 to	make	studying	and	analyzing	easier

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/


and	faster.	This	also	makes	it	easier	to	know	which	went	wrong	and	how	to	fix
them	(there	are	easy	to	understand	error	messages	in	case	you	mess	up).

Is	Mathematical	Expertise	Necessary?

Data	 analysis	 often	 means	 working	 with	 numbers	 and	 extracting	 valuable
insights	 from	 them.	 But	 do	 you	 really	 have	 to	 be	 expert	 on	 numbers	 and
mathematics?

Successful	 data	 analysis	 using	 Python	 often	 requires	 having	 decent	 skills	 and
knowledge	 in	 math,	 programming,	 and	 the	 domain	 you’re	 working	 on.	 This
means	you	don’t	have	to	be	an	expert	in	any	of	them	(unless	you’re	planning	to
present	a	paper	at	international	scientific	conferences).

Don’t	let	many	“experts”	fool	you	because	many	of	them	are	fakes	or	just	plain
inexperienced.	What	you	need	to	know	is	what’s	the	next	thing	to	do	so	you	can
successfully	finish	your	projects.	You	won’t	be	an	expert	 in	anything	after	you
read	all	the	chapters	here.	But	this	is	enough	to	give	you	a	better	understanding
about	Python	and	data	analysis.

Back	 to	 mathematical	 expertise.	 It’s	 very	 likely	 you’re	 already	 familiar	 with
mean,	 standard	 deviation,	 and	 other	 common	 terms	 in	 statistics.	While	 going
deeper	into	data	analysis	you	might	encounter	calculus	and	linear	algebra.	If	you
have	 the	 time	 and	 interest	 to	 study	 them,	 you	 can	 always	 do	 anytime	 or	 later.
This	may	 or	may	 not	 give	 you	 an	 edge	 on	 the	 particular	 data	 analysis	 project
you’re	working	on.

Again,	 it’s	 about	 solving	 problems.	 The	 focus	 should	 be	 on	 how	 to	 take	 a
challenge	 and	 successfully	 overcome	 it.	 This	 applies	 to	 all	 fields	 especially	 in
business	and	science.	Don’t	let	the	hype	or	myths	to	distract	you.	Focus	on	the
core	concepts	and	you’ll	do	fine.



4.	Python	Quick	Review

Here’s	a	quick	Python	review	you	can	use	as	reference.	If	you’re	stuck	or	need
help	with	something,	you	can	always	use	Google	or	Stack	Overflow.

To	have	Python	(and	other	data	analysis	tools	and	packages)	in	your	computer,
download	and	install	Anaconda.

Python	 Data	 Types	 are	 strings	 (“You	 are	 awesome.”),	 integers	 (-3,	 0,	 1),	 and
floats	(3.0,	12.5,	7.77).

You	can	do	mathematical	operations	in	Python	such	as:	3	+	3
print(3+3)	7	-1

5	*	2

20	/	5

9	%	2	#modulo	operation,	returns	the	remainder	of	the	division	2	**	3	#exponentiation,	2	to	the	3rd
power	Assigning	values	to	variables:	myName	=	“Thor”

print(myName)	#output	is	“Thor”

x	=	5

y	=	6

print(x	+	y)	#result	is	11

print(x*3)	#result	is	15

Working	on	strings	and	variables:	myName	=	“Thor”
age	=	25

hobby	=	“programming”

print('Hi,	my	name	is	'	+	myname	+	'	and	my	age	is	'	+	str(age)	+	'.	Anyway,	my	hobby	is	'	+	hobby	+
'.')	Result	is	Hi,	my	name	is	Thon	and	my	age	is	25.	Anyway,	my	hobby	is	programming.

Comments	#	Everything	after	the	hashtag	in	this	line	is	a	comment.
#	This	is	to	keep	your	sanity.

#	Make	it	understandable	to	you,	learners,	and	other	programmers.

Comparison	Operators	>>>8	==	8
True
>>>8	>	4



True
>>>8	<	4
False
>>>8	!=	4
True
>>>8	!=	8
False
>>>8	>=	2
True
>>>8	<=	2
False	
>>>’hello’	==	‘hello’
True
>>>’cat’	!=	‘dog’
True

Boolean	Operators	(and,	or,	not)	>>>8	>	3	and	8	>	4
True
>>>8	>	3	and	8	>	9
False
>>>8	>	9	and	8	>	10
False
>>>8	>	3	or	8	>	800
True
>>>’hello’	==	‘hello’	or	‘cat’	==	‘dog’
True

If,	Elif,	and	Else	Statements	(for	Flow	Control)	print(“What’s	your	email?”)
myEmail	=	input()
print(“Type	in	your	password.”)
typedPassword	=	input()
if	typedPassword	==	savedPassword:
print(“Congratulations!	You’re	now	logged	in.”)
else:
print(“Your	password	is	incorrect.	Please	try	again.”)

While	loop	inbox	=	0
while	inbox	<	10:
print(“You	have	a	message.”)
inbox	=	inbox	+	1

Result	is	this:	You	have	a	message.
You	have	a	message.



You	have	a	message.
You	have	a	message.
You	have	a	message.
You	have	a	message.
You	have	a	message.
You	have	a	message.
You	have	a	message.
You	have	a	message.

Loop	doesn’t	exit	until	you	typed	‘Casanova’
name	=	''
while	name	!=	'Casanova':
print('Please	type	your	name.')
name	=	input()
print('Congratulations!')

For	loop	for	i	in	range(10):
print(i	**	2)

Here’s	the	output:	0
1
4
9
16
25
36
49
64
81
#Adding	numbers	from	0	to	100

total	=	0
for	num	in	range(101):
total	=	total	+	num
print(total)

When	you	run	this,	the	sum	will	be	5050.
#Another	example.	Positive	and	negative	reviews.

all_reviews	=	[5,	5,	4,	4,	5,	3,	2,	5,	3,	2,	5,	4,	3,	1,	1,	2,	3,	5,	5]
positive_reviews	=	[]
for	i	in	all_reviews:
if	i	>	3:
print('Pass')



positive_reviews.append(i)
else:
print('Fail')

print(positive_reviews)
print(len(positive_reviews))
ratio_positive	=	len(positive_reviews)	/	len(all_reviews)
print('Percentage	of	positive	reviews:	')
print(ratio_positive	*	100)

When	you	run	this,	you	should	see:	Pass
Pass
Pass
Pass
Pass
Fail
Fail
Pass
Fail
Fail
Pass
Pass
Fail
Fail
Fail
Fail
Fail
Pass
Pass
[5,	5,	4,	4,	5,	5,	5,	4,	5,	5]
10
Percentage	of	positive	reviews:
52.63157894736842

Functions	def	hello():
print('Hello	world!')
hello()

Define	the	function,	tell	what	it	should	do,	and	then	use	or	call	it	later.
def	add_numbers(a,b):



print(a	+	b)

add_numbers(5,10)
add_numbers(35,55)

#Check	if	a	number	is	odd	or	even.

def	even_check(num):
if	num	%	2	==	0:
print('Number	is	even.')
else:
print('Hmm,	it	is	odd.')

even_check(50)
even_check(51)

Lists	my_list	=	[‘eggs’,	‘ham’,	‘bacon’]	#list	with	strings	colours	=	[‘red’,
‘green’,	‘blue’]
cousin_ages	=	[33,	35,	42]	#list	with	integers	mixed_list	=	[3.14,	‘circle’,	‘eggs’,	500]	#list	with	integers
and	strings	#Working	with	lists	colours	=	[‘red’,	‘blue’,	‘green’]

colours[0]	#indexing	starts	at	0,	so	it	returns	first	item	in	the	list	which	is	‘red’

colours[1]	#returns	second	item,	which	is	‘green’

#Slicing	the	list	my_list	=	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]
print(my_list[0:2])	#returns	[0,	1]
print(my_list[1:])	#returns	[1,	2,	3,	4,	5,	6,	7,	8,	9]
print(my_list[3:6])	#returns	[3,	4,	5]

#Length	of	list	my_list	=	[0,1,2,3,4,5,6,7,8,9]

print(len(my_list))	#returns	10

#Assigning	new	values	to	list	items	colours	=	['red',	'green',	'blue']
colours[0]	=	'yellow'
print(colours)	#result	should	be	['yellow',	'green',	'blue']

#Concatenation	and	appending	colours	=	['red',	'green',	'blue']
colours.append('pink')
print(colours)	
The	result	will	be:
['red',	'green',	'blue',	'pink']

fave_series	=	['GOT',	'TWD',	'WW']
fave_movies	=	['HP',	'LOTR',	'SW']
fave_all	=	fave_series	+	fave_movies
print(fave_all)

This	prints	['GOT',	'TWD',	'WW',	'HP',	'LOTR',	'SW']



Those	are	just	 the	basics.	You	might	still	need	to	refer	 to	this	whenever	you’re
doing	anything	related	to	Python.	You	can	also	refer	to	Python	3	Documentation
for	more	 extensive	 information.	 It’s	 recommended	 that	 you	 bookmark	 that	 for
future	 reference.	 For	 quick	 review,	 you	 can	 also	 refer	 to	 Learn	 python3	 in	 Y
Minutes.

Tips	for	Faster	Learning

If	 you	 want	 to	 learn	 faster,	 you	 just	 have	 to	 devote	 more	 hours	 each	 day	 in
learning	Python.	Take	note	 that	programming	and	 learning	how	 to	 think	 like	a
programmer	takes	time.

There	are	also	various	cheat	sheets	online	you	can	always	use.	Even	experienced
programmers	 don’t	 know	 everything.	 Also,	 you	 actually	 don’t	 have	 to	 learn
everything	 if	 you’re	 just	 starting	 out.	 You	 can	 always	 go	 deeper	 anytime	 if
something	 interests	you	or	you	want	 to	stand	out	 in	 job	applications	or	startup
funding.
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5.	Overview	&	Objectives

Let’s	set	some	expectations	here	so	you	know	where	you’re	going.	This	is	also	to
introduce	 about	 the	 limitations	 of	 Python,	 data	 analysis,	 data	 science,	 and
machine	learning	(and	also	the	key	differences).	Let’s	start.

Data	Analysis	vs	Data	Science	vs	Machine	Learning

Data	 Analysis	 and	 Data	 Science	 are	 almost	 the	 same	 because	 they	 share	 the
same	goal,	which	 is	 to	 derive	 insights	 from	data	 and	use	 it	 for	 better	 decision
making.

Often,	data	analysis	is	associated	with	using	Microsoft	Excel	and	other	tools	for
summarizing	data	and	finding	patterns.	On	the	other	hand,	data	science	is	often
associated	with	using	programming	to	deal	with	massive	data	sets.	In	fact,	data
science	became	popular	as	a	result	of	the	generation	of	gigabytes	of	data	coming
from	online	sources	and	activities	(search	engines,	social	media).

Being	a	data	scientist	sounds	way	cooler	than	being	a	data	analyst.	Although	the
job	 functions	 might	 be	 similar	 and	 overlapping,	 it	 all	 deals	 with	 discovering
patterns	 and	 generating	 insights	 from	 data.	 It’s	 also	 about	 asking	 intelligent
questions	about	the	nature	of	the	data	(e.g.	Are	data	points	form	organic	clusters?
Is	there	really	a	connection	between	age	and	cancer?).

What	 about	 machine	 learning?	 Often,	 the	 terms	 data	 science	 and	 machine
learning	 are	 used	 interchangeably.	 That’s	 because	 the	 latter	 is	 about	 “learning
from	data.”	When	applying	machine	 learning	 algorithms,	 the	 computer	 detects
patterns	and	uses	“what	it	learned”	on	new	data.

For	instance,	we	want	to	know	if	a	person	will	pay	his	debts.	Luckily	we	have	a
sizable	dataset	 about	different	people	who	either	paid	his	debt	or	not.	We	also
have	collected	other	data	(creating	customer	profiles)	such	as	age,	income	range,
location,	 and	 occupation.	 When	 we	 apply	 the	 appropriate	 machine	 learning
algorithm,	 the	 computer	will	 learn	 from	 the	 data.	We	 can	 then	 input	 new	data
(new	info	from	a	new	applicant)	and	what	the	computer	learned	will	be	applied
to	that	new	data.

We	might	 then	 create	 a	 simple	 program	 that	 immediately	 evaluates	whether	 a
person	will	 pay	his	 debts	 or	 not	 based	on	his	 information	 (age,	 income	 range,
location,	and	occupation).	This	is	an	example	of	using	data	to	predict	someone’s



likely	behavior.

Possibilities

Learning	 from	 data	 opens	 a	 lot	 of	 possibilities	 especially	 in	 predictions	 and
optimizations.	 This	 has	 become	 a	 reality	 thanks	 to	 availability	 of	 massive
datasets	 and	 superior	 computer	processing	power.	We	can	now	process	data	 in
gigabytes	within	a	day	using	computers	or	cloud	capabilities.

Although	data	science	and	machine	learning	algorithms	are	still	far	from	perfect,
these	are	already	useful	in	many	applications	such	as	image	recognition,	product
recommendations,	 search	 engine	 rankings,	 and	medical	 diagnosis.	 And	 to	 this
moment,	 scientists	 and	 engineers	 around	 the	 globe	 continue	 to	 improve	 the
accuracy	and	performance	of	their	tools,	models,	and	analysis.

Limitations	of	Data	Analysis	&	Machine	Learning

You	might	 have	 read	 from	news	 and	online	 articles	 that	machine	 learning	 and
advanced	data	analysis	can	change	the	fabric	of	society	(automation,	loss	of	jobs,
universal	basic	income,	artificial	intelligence	takeover).

In	 fact,	 the	 society	 is	 being	 changed	 right	 now.	 Behind	 the	 scenes	 machine
learning	and	continuous	data	analysis	are	at	work	especially	 in	search	engines,
social	media,	and	e-commerce.	Machine	learning	now	makes	it	easier	and	faster
to	do	the	following:

●	Are	there	human	faces	in	the	picture?
●	Will	a	user	click	an	ad?	(is	it	personalized	and	appealing	to	him/her?)
●	How	to	create	accurate	captions	on	YouTube	videos?	(recognise	speech

and	translate	into	text)
●	Will	an	engine	or	component	fail?	(preventive	maintenance	in

manufacturing)
●	Is	a	transaction	fraudulent?
●	Is	an	email	spam	or	not?

These	are	made	possible	by	availability	of	massive	datasets	and	great	processing
power.	However,	advanced	data	analysis	using	Python	(and	machine	learning)	is
not	magic.	It’s	not	the	solution	to	all	problem.	That’s	because	the	accuracy	and
performance	of	our	tools	and	models	heavily	depend	on	the	integrity	of	data	and
our	own	skill	and	judgment.



Yes,	computers	and	algorithms	are	great	at	providing	answers.	But	it’s	also	about
asking	 the	 right	 questions.	 Those	 intelligent	 questions	 will	 come	 from	 us
humans.	 It	 also	depends	on	us	 if	we’ll	 use	 the	 answers	being	provided	by	our
computers.

Accuracy	&	Performance

The	most	common	use	of	data	analysis	is	in	successful	predictions	(forecasting)
and	 optimization.	 Will	 the	 demand	 for	 our	 product	 increase	 in	 the	 next	 five
years?	 What	 are	 the	 optimal	 routes	 for	 deliveries	 that	 lead	 to	 the	 lowest
operational	costs?

That’s	why	an	accuracy	improvement	of	even	just	1%	can	translate	into	millions
of	 dollars	 of	 additional	 revenues.	 For	 instance,	 big	 stores	 can	 stock	 up	 certain
products	in	advance	if	the	results	of	the	analysis	predicts	an	increasing	demand.
Shipping	 and	 logistics	 can	 also	 better	 plan	 the	 routes	 and	 schedules	 for	 lower
fuel	usage	and	faster	deliveries.

Aside	 from	 improving	 accuracy,	 another	 priority	 is	 on	 ensuring	 reliable
performance.	 How	 can	 our	 analysis	 perform	 on	 new	 data	 sets?	 Should	 we
consider	 other	 factors	 when	 analyzing	 the	 data	 and	 making	 predictions?	 Our
work	 should	 always	 produce	 consistently	 accurate	 results.	 Otherwise,	 it’s	 not
scientific	at	all	because	the	results	are	not	reproducible.	We	might	as	well	shoot
in	the	dark	instead	of	making	ourselves	exhausted	in	sophisticated	data	analysis.

Apart	 from	 successful	 forecasting	 and	 optimization,	 proper	 data	 analysis	 can
also	help	us	uncover	opportunities.	Later	we	can	realize	that	what	we	did	is	also
applicable	to	other	projects	and	fields.	We	can	also	detect	outliers	and	interesting
patterns	 if	we	dig	deep	enough.	For	example,	perhaps	customers	congregate	 in
clusters	 that	 are	 big	 enough	 for	 us	 to	 explore	 and	 tap	 into.	 Maybe	 there	 are
unusually	 higher	 concentrations	 of	 customers	 that	 fall	 into	 a	 certain	 income
range	or	spending	level.

Those	are	just	typical	examples	of	the	applications	of	proper	data	analysis.	In	the
next	 chapter,	 let’s	 discuss	 one	 of	 the	 most	 used	 examples	 in	 illustrating	 the
promising	potential	of	data	analysis	and	machine	learning.	We’ll	also	discuss	its
implications	and	the	opportunities	it	presents.



6.	A	Quick	Example

Iris	Dataset

Let’s	 quickly	 see	 how	 data	 analysis	 and	machine	 learning	work	 in	 real	 world
data	 sets.	 The	 goal	 here	 is	 to	 quickly	 illustrate	 the	 potential	 of	 Python	 and
machine	learning	on	some	interesting	problems.

In	 this	 particular	 example,	 the	 goal	 is	 to	 predict	 the	 species	 of	 an	 Iris	 flower
based	on	the	length	and	width	of	its	sepals	and	petals.	First,	we	have	to	create	a
model	 based	 on	 a	 dataset	 with	 the	 flowers’	 measurements	 and	 their
corresponding	 species.	 Based	 on	 our	 code,	 our	 computer	will	 “learn	 from	 the
data”	 and	 extract	 patterns	 from	 it.	 It	will	 then	 apply	what	 it	 learned	 to	 a	 new
dataset.	Let’s	look	at	the	code.
#importing	the	necessary	libraries	from	sklearn.datasets	import	load_iris
from	sklearn	import	tree
from	sklearn.metrics	import	accuracy_score
import	numpy	as	np

#loading	the	iris	dataset
iris	=	load_iris()

x	=	iris.data	#array	of	the	data
y	=	iris.target	#array	of	labels	(i.e	answers)	of	each	data	entry

#getting	label	names	i.e	the	three	flower	species
y_names	=	iris.target_names

#taking	random	indices	to	split	the	dataset	into	train	and	test
test_ids	=	np.random.permutation(len(x))

#splitting	data	and	labels	into	train	and	test
#keeping	last	10	entries	for	testing,	rest	for	training

x_train	=	x[test_ids[:-10]]
x_test	=	x[test_ids[-10:]]

y_train	=	y[test_ids[:-10]]
y_test	=	y[test_ids[-10:]]

#classifying	using	decision	tree
clf	=	tree.DecisionTreeClassifier()

#training	(fitting)	the	classifier	with	the	training	set
clf.fit(x_train,	y_train)



#predictions	on	the	test	dataset
pred	=	clf.predict(x_test)

print(pred)	#predicted	labels	i.e	flower	species
print(y_test)	#actual	labels
print((accuracy_score(pred,	y_test)))*100	#prediction	accuracy	#Reference:	http://docs.python-
guide.org/en/latest/scenarios/ml/

If	we	run	the	code,	we’ll	get	something	like	this:	[0	1	1	1	0	2	0	2	2	2]
[0	1	1	1	0	2	0	2	2	2]
100.0

The	first	line	contains	the	predictions	(0	is	Iris	setosa,	1	is	Iris	versicolor,	2	is	Iris
virginica).	The	second	line	contains	the	actual	flower	species	as	indicated	in	the
dataset.	 Notice	 the	 prediction	 accuracy	 is	 100%,	 which	 means	 we	 correctly
predicted	each	flower’s	species.

These	might	all	seem	confusing	at	first.	What	you	need	to	understand	is	that	the
goal	here	is	to	create	a	model	that	predicts	a	flower’s	species.	To	do	that,	we	split
the	data	into	training	and	test	sets.	We	run	the	algorithm	on	the	training	set	and
use	it	against	the	test	set	to	know	the	accuracy.	The	result	is	we’re	able	to	predict
the	flower’s	species	on	the	test	set	based	on	what	the	computer	learned	from	the
training	set.

Potential	&	Implications

It’s	 a	 quick	 and	 simple	 example.	 But	 its	 potential	 and	 implications	 can	 be
enormous.	With	just	a	few	modifications,	you	can	apply	the	workflow	to	a	wide
variety	of	tasks	and	problems.

For	instance,	we	might	be	able	to	apply	the	same	methodology	on	other	flower
species,	 plants,	 and	 animals.	 We	 can	 also	 apply	 this	 in	 other	 Classification
problems	 (more	 on	 this	 later)	 such	 as	 determining	 if	 a	 cancer	 is	 benign	 or
malignant,	if	a	person	is	a	very	likely	customer,	or	if	there’s	a	human	face	in	the
photo.

The	challenge	here	 is	 to	get	enough	quality	data	so	our	computer	can	properly
get	“good	training.”	It’s	a	common	methodology	to	first	learn	from	the	training
set	 and	 then	 apply	 the	 learning	 into	 the	 test	 set	 and	 possibly	 new	 data	 in	 the
future	(this	is	the	essence	of	machine	learning).

It’s	 obvious	 now	why	many	 people	 are	 hyped	 about	 the	 true	 potential	 of	 data
analysis	 and	 machine	 learning.	 With	 enough	 data,	 we	 can	 create	 automated
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systems	on	predicting	events	and	classifying	objects.	With	enough	X-ray	images
with	corrects	labels	(with	lung	cancer	or	not),	our	computers	can	learn	from	the
data	 and	make	 instant	 classification	 of	 a	 new	 unlabeled	X-ray	 image.	We	 can
also	apply	a	similar	approach	to	other	medical	diagnosis	and	related	fields.

Back	 then,	 data	 analysis	 is	 widely	 used	 for	 studying	 the	 past	 and	 preparing
reports.	But	now,	it	can	be	used	instantaneously	to	predict	outcomes	in	real	time.
This	 is	 the	 true	power	of	data,	wherein	we	can	use	 it	 to	make	quick	and	smart
decisions.

Many	experts	 agree	 that	we’re	 just	 still	 scratching	 the	 surface	of	 the	power	of
performing	data	analysis	using	significantly	large	datasets.	In	the	years	to	come,
we’ll	be	able	 to	encounter	 applications	never	been	 thought	before.	Many	 tools
and	approaches	will	also	become	obsolete	as	a	result	of	these	changes.

But	many	 things	will	 remain	 the	same	and	 the	principles	will	always	be	 there.
That’s	 why	 in	 the	 following	 chapters,	 we’ll	 focus	 more	 on	 getting	 into	 the
mindset	of	a	savvy	data	analyst.	We’ll	explore	some	approaches	in	doing	things
but	these	will	only	be	used	to	illustrate	timeless	and	important	points.

For	 example,	 the	 general	workflow	 and	 process	 in	 data	 analysis	 involve	 these
things:	 ●	 Identifying	 the	 problem	 (asking	 the	 right	 questions)	 ●	 Getting	 &
processing	 data	 ●	Visualizing	 data	 ●	 Choosing	 an	 approach	 and	 algorithm	 ●
Evaluating	 the	 output	 ●	 Trying	 other	 approaches	 &	 comparing	 the	 results	 ●
Knowing	 if	 the	 results	 are	 good	 enough	 (knowing	when	 to	 stop)	 It’s	 good	 to
determine	the	objective	of	the	project	first	so	we	can	set	clear	expectations	and
boundaries	on	our	project.	Second,	let’s	then	gather	data	(or	get	access	to	it)	so
we	can	start	the	proper	analysis.	Let’s	do	that	in	the	next	chapter.



7.	Getting	&	Processing	Data

Garbage	In,	Garbage	Out.	This	is	 true	especially	in	data	analysis.	After	all,	 the
accuracy	of	our	analysis	heavily	depends	on	the	quality	of	our	data.	If	we	we	put
in	garbage,	expect	garbage	to	come	out.

That’s	 why	 data	 analysts	 and	machine	 learning	 engineers	 spend	 extra	 time	 in
getting	and	processing	quality	data.	To	accomplish	this,	the	data	should	be	in	the
right	 format	 to	make	 it	 usable	 for	 analysis	 and	 other	 purposes.	Next,	 the	 data
should	 be	 processed	 properly	 so	we	 can	 apply	 algorithms	 to	 it	 and	make	 sure
we’re	doing	proper	analysis.

CSV	Files

CSV	 files	 are	 perhaps	 the	most	 common	 data	 format	 you’ll	 encounter	 in	 data
science	 and	 machine	 learning	 (especially	 when	 using	 Python).	 CSV	 means
comma-separated	 values.	 The	 values	 in	 different	 columns	 are	 separated	 by
commas.	Here’s	an	example:	Product,	Price
cabbage,6.8

lettuce,7.2

tomato,4.2

It’s	a	simple	2-column	example.	In	many	modern	data	analysis	projects,	it	may
look	 something	 like	 this:
RowNumber,CustomerId,Surname,CreditScore,Geography,Gender,Age,Tenure….
1,15634602,Hargrave,619,France,Female,42,2,0,1,1,1,101348.88,1
2,15647311,Hill,608,Spain,Female,41,1,83807.86,1,0,1,112542.58,0
3,15619304,Onio,502,France,Female,42,8,159660.8,3,1,0,113931.57,1
4,15701354,Boni,699,France,Female,39,1,0,2,0,0,93826.63,0
5,15737888,Mitchell,850,Spain,Female,43,2,125510.82,1,1,1,79084.1,0
6,15574012,Chu,645,Spain,Male,44,8,113755.78,2,1,0,149756.71,1
7,15592531,Bartlett,822,France,Male,50,7,0,2,1,1,10062.8,0
8,15656148,Obinna,376,Germany,Female,29,4,115046.74,4,1,0,119346.88,1
9,15792365,He,501,France,Male,44,4,142051.07,2,0,1,74940.5,0
10,15592389,H?,684,France,Male,27,2,134603.88,1,1,1,71725.73,0
11,15767821,Bearce,528,France,Male,31,6,102016.72,2,0,0,80181.12,0
12,15737173,Andrews,497,Spain,Male,24,3,0,2,1,0,76390.01,0
13,15632264,Kay,476,France,Female,34,10,0,2,1,0,26260.98,0
14,15691483,Chin,549,France,Female,25,5,0,2,0,0,190857.79,0
15,15600882,Scott,635,Spain,Female,35,7,0,2,1,1,65951.65,0
16,15643966,Goforth,616,Germany,Male,45,3,143129.41,2,0,1,64327.26,0
17,15737452,Romeo,653,Germany,Male,58,1,132602.88,1,1,0,5097.67,1
18,15788218,Henderson,549,Spain,Female,24,9,0,2,1,1,14406.41,0
19,15661507,Muldrow,587,Spain,Male,45,6,0,1,0,0,158684.81,0
20,15568982,Hao,726,France,Female,24,6,0,2,1,1,54724.03,0
21,15577657,McDonald,732,France,Male,41,8,0,2,1,1,170886.17,0
22,15597945,Dellucci,636,Spain,Female,32,8,0,2,1,0,138555.46,0



23,15699309,Gerasimov,510,Spain,Female,38,4,0,1,1,0,118913.53,1
24,15725737,Mosman,669,France,Male,46,3,0,2,0,1,8487.75,0
25,15625047,Yen,846,France,Female,38,5,0,1,1,1,187616.16,0
26,15738191,Maclean,577,France,Male,25,3,0,2,0,1,124508.29,0
27,15736816,Young,756,Germany,Male,36,2,136815.64,1,1,1,170041.95,0
28,15700772,Nebechi,571,France,Male,44,9,0,2,0,0,38433.35,0
29,15728693,McWilliams,574,Germany,Female,43,3,141349.43,1,1,1,100187.43,0
30,15656300,Lucciano,411,France,Male,29,0,59697.17,2,1,1,53483.21,0
31,15589475,Azikiwe,591,Spain,Female,39,3,0,3,1,0,140469.38,1

….

Real	world	data	(especially	in	e-commerce,	social	media,	and	online	ads)	could
contain	millions	of	rows	and	thousands	of	columns.

CSV	files	are	convenient	to	work	with	and	you	can	easily	find	lots	of	them	from
different	online	sources.	 It’s	structured	and	Python	also	allows	easy	processing
of	it	by	writing	a	few	lines	of	code:	import	pandas	as	pd
dataset	=	pd.read_csv('Data.csv')

This	step	is	often	necessary	before	Python	and	your	computer	can	work	on	the
data.	So	whenever	you’re	working	on	a	CSV	file	and	you’re	using	Python,	 it’s
good	to	immediately	have	those	two	lines	of	code	at	the	top	of	your	project.

Then,	we	set	the	input	values	(X)	and	the	output	values	(y).	Often,	the	y	values
are	 our	 target	 outputs.	 For	 example,	 the	 common	 goal	 is	 to	 learn	 how	 certain
values	 of	 X	 affect	 the	 corresponding	 y	 values.	 Later	 on,	 that	 learning	 can	 be
applied	on	new	X	values	and	see	if	that	learning	is	useful	in	predicting	y	values
(unknown	at	first).

After	the	data	becomes	readable	and	usable,	often	the	next	step	is	to	ensure	that
the	 values	 don’t	 vary	much	 in	 scale	 and	magnitude.	 That’s	 because	 values	 in
certain	columns	might	be	in	a	different	league	than	the	others.	For	instance,	the
ages	 of	 customers	 can	 range	 from	 18	 to	 70.	 But	 the	 income	 range	 are	 in	 the
range	of	100000	to	9000000.	The	gap	 in	 the	ranges	of	 the	 two	columns	would
have	 a	 huge	 effect	 on	 our	 model.	 Perhaps	 the	 income	 range	 will	 contribute
largely	 to	 the	 resulting	 predictions	 instead	 of	 treating	 both	 ages	 and	 income
range	equally.

To	do	feature	scaling	(scaling	values	in	the	same	magnitude),	one	way	to	do	this
is	 by	 using	 the	 following	 lines	 of	 code:	 from	 sklearn.preprocessing	 import
StandardScaler
sc_X	=	StandardScaler()
X_train	=	sc_X.fit_transform(X_train)



X_test	=	sc_X.transform(X_test)
#	sc_y	=	StandardScaler()
#	y_train	=	sc_y.fit_transform(y_train)	The	goal	here	is	to	scale	the	values	in
the	 same	magnitude	 so	 all	 the	 values	 from	 different	 columns	 or	 features	 will
contribute	to	the	predictions	and	outputs.

In	data	analysis	and	machine	learning,	it’s	often	a	general	requirement	to	divide
the	dataset	 into	Training	Set	and	Test	Set.	After	all,	we	need	to	create	a	model
and	test	its	performance	and	accuracy.	We	use	the	Training	Set	so	our	computer
can	learn	from	the	data.	Then,	we	use	that	learning	against	the	Test	Set	and	see	if
its	performance	is	good	enough.

A	 common	 way	 to	 accomplish	 this	 is	 through	 the	 following	 code:	 from
sklearn.model_selection	import	train_test_split
X_train,	 X_test,	 y_train,	 y_test	 =	 train_test_split(X,	 y,	 test_size	 =	 0.2,
random_state	 =	 0)	 Here,	 we	 imported	 something	 from	 scikit-learn	 (free
software	machine	 learning	 library	 for	 the	 Python	 programming	 language)	 and
perform	a	split	on	the	dataset.	The	division	is	often	80%	Training	Set	and	20%
Test	 Set	 (test_size	 =	 0.2).	 The	 random_state	 can	 be	 any	 value	 as	 long	 as	 you
remain	consistent	through	the	succeeding	parts	of	your	project.

You	can	actually	use	different	ratios	on	dividing	your	dataset.	Some	use	a	ratio
of	70-30	or	even	60-40.	Just	keep	in	mind	that	the	Training	Set	should	be	plenty
enough	 for	 any	 meaningful	 to	 learn.	 It’s	 similar	 with	 gaining	 different	 life
experiences	so	we	can	gain	a	more	accurate	representation	of	reality	(e.g.	use	of
several	 mental	 models	 as	 popularized	 by	 Charlie	 Munger,	 long-time	 business
partner	of	Warren	Buffett).

That’s	why	it’s	recommended	to	gather	more	data	to	make	the	“learning”	more
accurate.	 With	 scarce	 data,	 our	 system	 might	 fail	 to	 recognize	 patterns.	 Our
algorithm	 might	 even	 overgeneralize	 on	 limited	 data,	 which	 results	 to	 the
algorithm	failing	to	work	on	new	data.	In	other	words,	it	shows	excellent	results
when	we	use	our	existing	data,	but	it	fails	spectacularly	when	new	data	is	used.

There	 are	 also	 cases	 when	 we	 already	 have	 sufficient	 amount	 of	 data	 for
meaningful	learning	to	occur.	Often	we	won’t	need	to	gather	more	data	because
the	effect	could	be	negligible	(e.g.	0.0000001%	accuracy	improvement)	or	huge
investments	in	time,	effort,	and	money	would	be	required.	In	these	cases	it	might
be	best	to	work	on	what	we	have	already	than	looking	for	something	new.
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Feature	Selection

We	might	 have	 lots	 of	 data.	 But	 are	 all	 of	 them	 useful	 and	 relevant?	Which
columns	and	features	are	likely	to	be	contributing	to	the	result?

Often,	 some	of	our	data	are	 just	 irrelevant	 to	our	analysis.	For	example,	 is	 the
name	of	the	startup	affects	 its	funding	success?	Is	 there	any	relation	between	a
person’s	favorite	color	and	her	intelligence?

Selecting	the	most	relevant	features	is	also	a	crucial	task	in	processing	data.	Why
waste	 precious	 time	 and	 computing	 resources	 on	 including	 irrelevant
features/columns	in	our	analysis?	Worse,	would	the	irrelevant	features	skew	our
analysis?

The	answer	is	yes.	As	mentioned	early	in	the	chapter,	Garbage	In	Garbage	Out.
If	we	include	irrelevant	features	in	our	analysis,	we	might	also	get	inaccurate	and
irrelevant	 results.	 Our	 computer	 and	 algorithm	 would	 be	 “learning	 from	 bad
examples”	which	results	to	erroneous	results.

To	 eliminate	 the	 Garbage	 and	 improve	 the	 accuracy	 and	 relevance	 of	 our
analysis,	 Feature	 Selection	 is	 often	 done.	 As	 the	 term	 implies,	 we	 select
“features”	 that	have	 the	biggest	contribution	and	 immediate	 relevance	with	 the
output.	This	makes	our	predictive	model	simpler	and	easier	to	understand.

For	 example,	 we	 might	 have	 20+	 features	 that	 describe	 customers.	 These
features	include	age,	income	range,	location,	gender,	whether	they	have	kids	or
not,	 spending	 level,	 recent	 purchases,	 highest	 educational	 attainment,	 whether
they	own	a	house	or	not,	and	over	a	dozen	more	attributes.	However,	not	all	of
these	may	have	any	relevance	with	our	analysis	or	predictive	model.	Although
it’s	possible	that	all	these	features	may	have	some	effect,	the	analysis	might	be
too	complex	for	it	to	become	useful.

Feature	Selection	is	a	way	of	simplifying	analysis	by	focusing	on	relevance.	But
how	 do	 we	 know	 if	 a	 certain	 feature	 is	 relevant?	 This	 is	 where	 domain
knowledge	 and	 expertise	 comes	 in.	 For	 example,	 the	 data	 analyst	 or	 the	 team
should	have	knowledge	about	retail	(in	our	example	above).	This	way,	the	team
can	properly	select	the	features	that	have	the	most	impact	to	the	predictive	model
or	analysis.

Different	 fields	 often	 have	 different	 relevant	 features.	 For	 instance,	 analyzing
retail	data	might	be	totally	different	than	studying	wine	quality	data.	In	retail	we



focus	on	 features	 that	 influence	people’s	 purchases	 (and	 in	what	 quantity).	On
the	 other	 hand,	 analyzing	wine	 quality	 data	might	 require	 studying	 the	wine’s
chemical	constituents	and	their	effects	on	people’s	preferences.

In	 addition,	 it	 requires	 some	 domain	 knowledge	 to	 know	 which	 features	 are
interdependent	 with	 one	 another.	 In	 our	 example	 above	 about	 wine	 quality,
substances	 in	 the	 wine	 might	 react	 with	 one	 another	 and	 hence	 affect	 the
amounts	 of	 such	 substances.	When	you	 increase	 the	 amount	 of	 a	 substance,	 it
may	increase	or	decrease	the	amount	of	another.

It’s	also	the	case	with	analyzing	business	data.	More	customers	also	means	more
sales.	People	from	higher	income	groups	might	also	have	higher	spending	levels.
These	 features	are	 interdependent	and	excluding	a	 few	of	 those	could	simplify
our	analysis.

Selecting	 the	 most	 appropriate	 features	 might	 also	 take	 extra	 time	 especially
when	you’re	 dealing	with	 a	 huge	dataset	 (with	hundreds	or	 even	 thousands	of
columns).	 Professionals	 often	 try	 different	 combinations	 and	 see	which	 yields
the	best	results	(or	look	for	something	that	makes	the	most	sense).

In	general,	domain	expertise	could	be	more	important	than	the	data	analysis	skill
itself.	After	all,	we	should	start	with	asking	the	right	questions	than	focusing	on
applying	 the	 most	 elaborate	 algorithm	 to	 the	 data.	 To	 figure	 out	 the	 right
questions	(and	the	most	important	ones),	you	or	someone	from	your	team	should
have	an	expertise	on	the	subject.

Online	Data	Sources

We’ve	discussed	how	to	process	data	and	select	the	most	relevant	features.	But
where	do	we	get	data	in	the	first	place?	How	do	we	ensure	their	credibility?	And
for	beginners,	where	to	get	data	so	they	can	practice	analyzing	data?

You	 can	 start	 with	 the	 UCI	 Machine	 Learning	 Repository
(https://archive.ics.uci.edu/ml/datasets.html)	 wherein	 you	 can	 access	 datasets
about	business,	engineering,	life	sciences,	social	sciences,	and	physical	sciences.
You	 can	 find	 data	 about	 El	 Nino,	 social	 media,	 handwritten	 characters,
sensorless	drive	diagnosis,	bank	marketing,	and	more.	It’s	more	than	enough	to
fill	 your	 time	 for	 months	 and	 years	 if	 you	 get	 serious	 on	 large-scale	 data
analysis.

You	 can	 also	 find	 more	 interesting	 datasets	 in	 Kaggle
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(https://www.kaggle.com/datasets)	 such	as	data	about	Titanic	Survival,	grocery
shopping,	 medical	 diagnosis,	 historical	 air	 quality,	 Amazon	 reviews,	 crime
statistics,	and	housing	prices.

Just	 start	 with	 those	 two	 and	 you’ll	 be	 fine.	 It’s	 good	 to	 browse	 through	 the
datasets	as	early	as	today	so	that	you’ll	get	ideas	and	inspiration	on	what	to	do
with	data.	Take	note	that	data	analysis	is	about	exploring	and	solving	problems,
which	is	why	it’s	always	good	to	explore	out	 there	so	you	can	be	closer	 to	 the
situations	and	challenges.

Internal	Data	Source

If	 you’re	 planning	 to	 work	 in	 a	 company,	 university,	 or	 research	 institution,
there’s	 a	 good	 chance	 you’ll	 work	 with	 internal	 data.	 For	 example,	 if	 you’re
working	in	a	big	ecommerce	company,	expect	that	you’ll	work	on	the	data	your
company	gathers	and	generates.

Big	companies	often	generate	megabytes	of	data	every	second.	These	are	being
stored	and/or	processed	into	a	database.	Your	job	then	is	to	make	sense	of	those
endless	 streams	 of	 data	 and	 use	 the	 derived	 insights	 for	 better	 efficiency	 or
profitability.

First,	 the	 data	 being	 gathered	 should	 be	 relevant	 to	 the	 operations	 of	 the
business.	 Perhaps	 the	 time	 of	 purchase,	 the	 category	 where	 the	 product	 falls
under,	and	 if	 it’s	offered	 in	discount	are	all	 relevant.	These	 information	should
then	be	stored	in	the	database	(with	backups)	so	your	team	can	analyze	it	later.

The	data	can	be	stored	in	different	formats	and	file	types	such	as	CSV,	SQLite,
JSON,	and	BigQuery.	The	file	type	your	company	chose	might	had	depended	on
convenience	and	existing	infrastructure.	It’s	important	to	know	how	to	work	with
these	 file	 types	 (often	 they’re	mentioned	 in	 job	descriptions)	 so	you	can	make
meaningful	analysis.
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8.	Data	Visualization

Data	visualization	makes	it	easier	and	faster	to	make	meaningful	analysis	on	the
data.	 In	many	cases	 it’s	one	of	 the	first	steps	when	performing	a	data	analysis.
You	access	and	process	 the	data	and	 then	start	visualizing	 it	 for	quick	 insights
(e.g.	looking	for	obvious	patterns,	outliers,	etc.)

Goal	of	Visualization

Exploring	and	communicating	data	is	the	main	goal	of	data	visualization.	When
the	data	is	visualized	(in	a	bar	chart,	histogram,	or	other	forms),	patterns	become
immediately	obvious.	You’ll	know	quickly	if	there’s	a	rising	trend	(line	graph)	or
the	relative	magnitude	of	something	in	relation	to	other	factors	(e.g.	using	a	pie
chart).	Instead	of	telling	people	the	long	list	of	numbers,	why	not	just	show	it	to
them	for	better	clarity?

For	 example,	 let’s	 look	 at	 the	 worldwide	 search	 trend	 on	 the	 word	 ‘bitcoin’:	

https://trends.google.com/trends/explore?q=bitcoin

Immediately	you’ll	notice	there’s	a	temporary	massive	increase	in	interest	about
‘bitcoin’	 but	 generally	 it	 steadily	 decreases	 over	 time	 after	 that	 peak.	 Perhaps
during	the	peak	there’s	massive	hype	about	the	technological	and	social	impact
of	bitcoin.	And	then	the	hype	naturally	died	down	because	people	were	already
familiar	with	it	or	it’s	just	a	natural	thing	about	hypes.

Whichever	is	the	case,	data	visualization	allowed	us	to	quickly	see	the	patterns
in	 a	 much	 clearer	 way.	 Remember	 the	 goal	 of	 data	 visualization	 which	 is	 to
explore	 and	 communicate	 data.	 In	 this	 example,	we’re	 able	 to	 quickly	 see	 the
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patterns	and	the	data	communicated	to	us.

This	 is	 also	 important	 when	 presenting	 to	 the	 panel	 or	 public.	 Other	 people
might	just	prefer	a	quick	overview	of	the	data	without	going	too	much	into	the
details.	 You	 don’t	 want	 to	 bother	 them	with	 boring	 texts	 and	 numbers.	What
makes	a	bigger	 impact	 is	how	you	present	 the	data	so	people	will	 immediately
know	its	importance.	This	is	where	data	visualization	can	take	place	wherein	you
allow	 people	 to	 quickly	 explore	 the	 data	 and	 effectively	 communicate	 what
you’re	trying	to	say.

There	are	several	ways	of	visualizing	data.	You	can	immediately	create	plots	and
graphs	 with	 Microsoft	 Excel.	 You	 can	 also	 use	 D3,	 seaborn,	 Bokeh,	 and
matplotlib.	 In	 this	 and	 in	 the	 succeeding	 chapters,	 we’ll	 focus	 on	 using
matplotlib.

Importing	&	Using	Matplotlib

According	 to	 their	 homepage	 (https://matplotlib.org/2.0.2/index.html):
“Matplotlib	 is	a	Python	2D	plotting	 library	which	produces	publication	quality
figures	 in	 a	 variety	 of	 hardcopy	 formats	 and	 interactive	 environments	 across
platforms.	 Matplotlib	 can	 be	 used	 in	 Python	 scripts,	 the	 Python	 and	 IPython
shell,	 the	 jupyter	 notebook,	 web	 application	 servers,	 and	 four	 graphical	 user
interface	toolkits.”

In	other	words,	you	can	easily	generate	plots,	histograms,	bar	charts,	scatterplots,
and	many	more	 using	Python	 and	 a	 few	 lines	 of	 code.	 Instead	of	 spending	 so
much	 time	 figuring	 things	 out,	 you	 can	 focus	 on	 generating	 plots	 for	 faster
analysis	and	data	exploration.

That	 sounds	 a	 mouthful.	 But	 always	 remember	 it’s	 still	 about	 exploring	 and
communicating	data.	Let’s	look	at	an	example	to	make	this	clear.	First,	here’s	a
simple	 horizontal	 bar	 chart
(https://matplotlib.org/2.0.2/examples/lines_bars_and_markers/barh_demo.html):
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To	create	 that,	you	only	need	 this	block	of	code:	 import	matplotlib.pyplot	 as
plt
plt.rcdefaults()
import	numpy	as	np
import	matplotlib.pyplot	as	plt

plt.rcdefaults()
fig,	ax	=	plt.subplots()

#	Example	data
people	=	('Tom',	'Dick',	'Harry',	'Slim',	'Jim')
y_pos	=	np.arange(len(people))
performance	=	3	+	10	*	np.random.rand(len(people))
error	=	np.random.rand(len(people))

ax.barh(y_pos,	performance,	xerr=error,	align='center',
color='green',	ecolor='black')
ax.set_yticks(y_pos)
ax.set_yticklabels(people)
ax.invert_yaxis()	#	labels	read	top-to-bottom
ax.set_xlabel('Performance')
ax.set_title('How	fast	do	you	want	to	go	today?')

plt.show()	It	looks	complex	at	first.	But	what	it	did	was	to	import	the	necessary



libraries,	set	the	data,	and	describe	how	it	should	be	shown.	Writing	it	all	from
scratch	might	be	difficult.	The	good	news	is	we	can	copy	the	code	examples	and
modify	it	according	to	our	purposes	and	new	data.

Aside	 from	 horizontal	 bar	 charts,	 matplotlib	 is	 also	 useful	 for	 creating	 and
displaying	 scatterplots,	 boxplots,	 and	 other	 visual	 representations	 of	 data:	

"""
Simple	demo	of	a	scatter	plot.
"""
import	numpy	as	np
import	matplotlib.pyplot	as	plt

N	=	50
x	=	np.random.rand(N)
y	=	np.random.rand(N)
colors	=	np.random.rand(N)
area	=	np.pi	*	(15	*	np.random.rand(N))**2	#	0	to	15	point	radii

plt.scatter(x,	y,	s=area,	c=colors,	alpha=0.5)



plt.show()	

import	matplotlib.pyplot	as	plt
from	numpy.random	import	rand

fig,	ax	=	plt.subplots()
for	color	in	['red',	'green',	'blue']:
n	=	750
x,	y	=	rand(2,	n)
scale	=	200.0	*	rand(n)
ax.scatter(x,	y,	c=color,	s=scale,	label=color,
alpha=0.3,	edgecolors='none')

ax.legend()
ax.grid(True)



plt.show()	

Source	of	images	and	code:	https://matplotlib.org/2.0.2/gallery.html

These	are	 just	 to	show	you	the	usefulness	and	possibilities	 in	using	matplotlib.
Notice	 that	 you	 can	 make	 publication-quality	 data	 visualizations.	 Also	 notice
that	 you	 can	 modify	 the	 example	 codes	 to	 your	 purpose.	 There’s	 no	 need	 to
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reinvent	 the	 wheel.	 You	 can	 copy	 the	 appropriate	 sections	 and	 adapt	 them	 to
your	data.

Perhaps	 in	 the	 future	 there	 will	 be	 faster	 and	 easier	 ways	 to	 create	 data
visualizations	especially	when	working	with	huge	datasets.	You	can	even	create
animated	presentations	that	can	change	through	time.	Whichever	is	the	case,	the
goal	of	data	visualization	 is	 to	explore	and	communicate	data.	You	can	choose
other	methods	but	the	goal	always	remains	the	same.

In	 this	 chapter	 and	 the	 previous	 ones	 we’ve	 discussed	 general	 things	 about
analyzing	data.	In	the	succeeding	chapters,	let’s	start	discussing	advanced	topics
that	are	specific	to	machine	learning	and	advanced	data	analysis.	The	initial	goal
is	 to	 get	 you	 familiar	with	 the	most	 common	concepts	 and	 terms	used	 in	 data
science	 circles.	 Let’s	 start	 with	 defining	 what	 do	 Supervised	 Learning	 and
Unsupervised	Learning	mean.



9.	Supervised	&	Unsupervised	Learning

In	 many	 introductory	 courses	 and	 books	 about	 machine	 learning	 and	 data
science,	you’ll	likely	encounter	what	Supervised	&	Unsupervised	Learning	mean
and	 what	 are	 their	 differences.	 That’s	 because	 these	 are	 the	 two	 general
categories	of	machine	learning	and	data	science	tasks	many	professionals	do.

What	is	Supervised	Learning?

First,	 Supervised	 Learning	 is	 a	 lot	 similar	 to	 learning	 from	 examples.	 For
instance,	we	have	a	huge	collection	of	images	correctly	labeled	as	either	dogs	or
cats.	Our	computer	will	then	learn	from	those	given	examples	and	correct	labels.
Perhaps	 our	 computer	 will	 find	 patterns	 and	 similarities	 among	 those	 images.
And	 finally	 when	 we	 introduce	 new	 images,	 our	 computer	 and	 model	 will
successfully	identify	an	image	whether	there’s	a	dog	or	cat	in	it.

It’s	a	 lot	 like	 learning	with	supervision.	There	are	correct	answers	 (e.g.	cats	or
dogs)	 and	 it’s	 the	 job	 of	 our	model	 to	 align	 itself	 so	 on	 new	 data	 it	 can	 still
produce	correct	answers	(in	an	acceptable	performance	level	because	it’s	hard	to
reach	100%).

For	 example,	 Linear	 Regression	 is	 considered	 under	 Supervised	 Learning.
Remember	 that	 in	 linear	 regression	we’re	 trying	 to	predict	 the	value	of	y	 for	a
given	x.	But	first,	we	have	to	find	patterns	and	“fit”	a	line	that	best	describes	the
relationship	between	x	and	y	(and	predict	y	values	for	new	x	inputs).

print(__doc__)



#	Code	source:	Jaques	Grobler
#	License:	BSD	3	clause

import	matplotlib.pyplot	as	plt
import	numpy	as	np
from	sklearn	import	datasets,	linear_model
from	sklearn.metrics	import	mean_squared_error,	r2_score

#	Load	the	diabetes	dataset
diabetes	=	datasets.load_diabetes()

#	Use	only	one	feature
diabetes_X	=	diabetes.data[:,	np.newaxis,	2]

#	Split	the	data	into	training/testing	sets
diabetes_X_train	=	diabetes_X[:-20]
diabetes_X_test	=	diabetes_X[-20:]

#	Split	the	targets	into	training/testing	sets
diabetes_y_train	=	diabetes.target[:-20]
diabetes_y_test	=	diabetes.target[-20:]

#	Create	linear	regression	object
regr	=	linear_model.LinearRegression()

#	Train	the	model	using	the	training	sets
regr.fit(diabetes_X_train,	diabetes_y_train)

#	Make	predictions	using	the	testing	set
diabetes_y_pred	=	regr.predict(diabetes_X_test)

#	The	coefficients
print('Coefficients:	\n',	regr.coef_)
#	The	mean	squared	error
print("Mean	squared	error:	%.2f"
%	mean_squared_error(diabetes_y_test,	diabetes_y_pred))
#	Explained	variance	score:	1	is	perfect	prediction
print('Variance	score:	%.2f'	%	r2_score(diabetes_y_test,	diabetes_y_pred))

#	Plot	outputs
plt.scatter(diabetes_X_test,	diabetes_y_test,	color='black')
plt.plot(diabetes_X_test,	diabetes_y_pred,	color='blue',	linewidth=3)

plt.xticks(())
plt.yticks(())



plt.show()	Source:http://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-
examples-linear-model-plot-ols-py

It	 looks	 like	 a	 simple	 example.	 However,	 that	 line	 was	 a	 result	 of	 iteratively
minimising	 the	 residual	 sum	 of	 squares	 between	 the	 true	 values	 and	 the
predictions.	In	other	words,	the	goal	was	to	produce	the	correct	prediction	using
what	the	model	learned	from	previous	examples.

Another	 task	 that	 falls	 under	 Supervised	 Learning	 is	 Classification.	 Here,	 the
goal	 is	 to	 correctly	 classify	 new	 data	 into	 either	 of	 the	 two	 categories.	 For
instance,	 we	 want	 to	 know	 if	 an	 incoming	 email	 is	 spam	 or	 not.	 Again,	 our
model	will	learn	from	examples	(emails	correctly	labeled	as	spam	or	not).	With
that	“supervision”,	we	can	then	create	a	model	that	will	correctly	predict	if	a	new
email	is	spam	or	not.

What	is	Unsupervised	Learning?

In	 contrast,	 Unsupervised	 Learning	means	 there’s	 no	 supervision	 or	 guidance.
It’s	often	thought	of	as	having	no	correct	answers,	just	acceptable	ones.

For	example,	in	Clustering	(this	falls	under	Unsupervised	Learning)	we’re	trying
to	discover	where	data	points	 aggregate	 (e.g.	 are	 there	natural	 clusters?).	Each
data	point	is	not	labeled	anything	so	our	model	and	computer	won’t	be	learning
from	examples.	Instead,	our	computer	is	learning	to	identify	patterns	without	any
external	guidance.

This	seems	to	be	the	essence	of	true	Artificial	Intelligence	wherein	the	computer
can	learn	without	human	intervention.	It’s	about	learning	from	the	data	itself	and
trying	 to	 find	 the	 relationship	 between	 different	 inputs	 (notice	 there’s	 no
expected	 output	 here	 in	 contrast	 to	 Regression	 and	 Classification	 discussed
earlier).	The	focus	is	on	inputs	and	trying	to	find	the	patterns	and	relationships
among	 them.	 Perhaps	 there	 are	 natural	 clusters	 or	 there	 are	 clear	 associations
among	the	inputs.	It’s	also	possible	that	there’s	no	useful	relationship	at	all.

How	to	Approach	a	Problem

Many	 data	 scientists	 approach	 a	 problem	 in	 a	 binary	 way.	 Does	 the	 task	 fall
under	Supervised	or	Unsupervised	Learning?

The	quickest	way	to	figure	it	out	is	by	determining	the	expected	output.	Are	we
trying	 to	 predict	 y	 values	 based	 on	 new	 x	 values	 (Supervised	 Learning,
Regression)?	Is	a	new	input	under	category	A	or	category	B	based	on	previously
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labeled	 data	 (Supervised	 Learning,	 Classification)?	 Are	 we	 trying	 to	 discover
and	 reveal	 how	 data	 points	 aggregate	 and	 if	 there	 are	 natural	 clusters
(Unsupervised	Learning,	Clustering)?	Do	inputs	have	an	interesting	relationship
with	one	another	(do	they	have	a	high	probability	of	co-occurrence)?

Many	advanced	data	analysis	problems	fall	under	those	general	questions.	After
all,	the	objective	is	always	to	predict	something	(based	on	previous	examples)	or
explore	the	data	(find	out	if	there	are	patterns).



10.	Regression

In	 the	 previous	 chapter	 we’ve	 talked	 about	 Unsupervised	 and	 Supervised
Learning,	including	a	bit	about	Linear	Regression.	In	this	chapter	let’s	focus	on
Regression	(predicting	an	output	based	on	a	new	input	and	previous	learning).

Basically,	 Regression	 Analysis	 allows	 us	 to	 discover	 if	 there’s	 a	 relationship
between	 an	 independent	 variable/s	 and	 a	 dependent	 variable	 (the	 target).	 For
example,	 in	 a	 Simple	 Linear	 Regression	 we	 want	 to	 know	 if	 there’s	 a
relationship	between	x	and	y.	This	is	very	useful	in	forecasting	(e.g.	where	is	the
trend	 going)	 and	 time	 series	modelling	 (e.g.	 temperature	 levels	 by	 year	 and	 if
global	warming	is	true).

Simple	Linear	Regression

Here	we’ll	be	dealing	with	one	 independent	variable	and	one	dependent.	Later
on	we’ll	be	dealing	with	multiple	variables	and	show	how	can	 they	be	used	 to
predict	the	target	(similar	to	what	we	talked	about	predicting	something	based	on
several	features/attributes).

For	now,	let’s	see	an	example	of	a	Simple	Linear	Regression	wherein	we	analyze
Salary	Data	(Salary_Data.csv).	Here’s	the	dataset	(comma-separated	values	and
the	columns	are	years,	experience,	and	salary):	YearsExperience,Salary
1.1,39343.00
1.3,46205.00
1.5,37731.00
2.0,43525.00
2.2,39891.00
2.9,56642.00
3.0,60150.00
3.2,54445.00
3.2,64445.00
3.7,57189.00
3.9,63218.00
4.0,55794.00
4.0,56957.00
4.1,57081.00
4.5,61111.00
4.9,67938.00



5.1,66029.00
5.3,83088.00
5.9,81363.00
6.0,93940.00
6.8,91738.00
7.1,98273.00
7.9,101302.00
8.2,113812.00
8.7,109431.00
9.0,105582.00
9.5,116969.00
9.6,112635.00
10.3,122391.00
10.5,121872.00

Here’s	the	Python	code	for	fitting	Simple	Linear	Regression	to	the	Training	Set:
#	Importing	the	libraries
import	matplotlib.pyplot	as	plt
import	pandas	as	pd

#	Importing	the	dataset
dataset	=	pd.read_csv('Salary_Data.csv')
X	=	dataset.iloc[:,	:-1].values
y	=	dataset.iloc[:,	1].values

#	Splitting	the	dataset	into	the	Training	set	and	Test	set
from	sklearn.model_selection	import	train_test_split
X_train,	 X_test,	 y_train,	 y_test	 =	 train_test_split(X,	 y,	 test_size	 =	 1/3,
random_state	=	0)

#	Fitting	Simple	Linear	Regression	to	the	Training	set
from	sklearn.linear_model	import	LinearRegression
regressor	=	LinearRegression()
regressor.fit(X_train,	y_train)

#	Predicting	the	Test	set	results
y_pred	=	regressor.predict(X_test)



#	Visualising	the	Training	set	results
plt.scatter(X_train,	y_train,	color	=	'red')
plt.plot(X_train,	regressor.predict(X_train),	color	=	'blue')
plt.title('Salary	vs	Experience	(Training	set)')
plt.xlabel('Years	of	Experience')
plt.ylabel('Salary')
plt.show()

#	Visualising	the	Test	set	results
plt.scatter(X_test,	y_test,	color	=	'red')
plt.plot(X_train,	regressor.predict(X_train),	color	=	'blue')
plt.title('Salary	vs	Experience	(Test	set)')
plt.xlabel('Years	of	Experience')
plt.ylabel('Salary')
plt.show()	 The	 overall	 goal	 here	 is	 to	 create	 a	model	 that	 will	 predict	 Salary
based	on	Years	of	Experience.	First,	we	create	 a	model	using	 the	Training	Set
(70%	of	the	dataset).	It	will	then	fit	a	line	that	is	close	as	possible	with	most	of
the	data	points.

After	 the	 line	 is	 created,	 we	 then	 apply	 that	 same	 line	 to	 the	 Test	 Set	 (the
remaining	30%	or	1/3	of	the	dataset).



Notice	that	the	line	performed	well	both	on	the	Training	Set	and	the	Test	Set.	As
a	result,	there’s	a	good	chance	that	the	line	or	our	model	will	also	perform	well
on	new	data.

Let’s	have	a	recap	of	what	happened.	First,	we	imported	the	necessary	libraries
(pandas	 for	 processing	 data,	 matplotlib	 for	 data	 visualization).	 Next,	 we
imported	 the	 dataset	 and	 assigned	 X	 (the	 independent	 variable)	 to	 Years	 of
Experience	and	y	 (the	 target)	 to	Salary.	We	 then	split	 the	dataset	 into	Training
Set	(⅔)	and	Test	Set	(⅓).

Then,	we	apply	the	Linear	Regression	model	and	fitted	a	line	(with	the	help	of
scikit-learn,	 which	 is	 a	 free	 software	 machine	 learning	 library	 for	 the	 Python
programming	 language).	 This	 is	 accomplished	 through	 the	 following	 lines	 of
code:	from	sklearn.linear_model	import	LinearRegression
regressor	=	LinearRegression()
regressor.fit(X_train,	 y_train)	 After	 learning	 from	 the	 Training	 Set	 (X_train
and	y_train),	we	then	apply	that	regressor	to	the	Test	Set	(X_test)	and	compare
the	results	using	data	visualization	(matplotlib).

It’s	a	straightforward	approach.	Our	model	learns	from	the	Training	Set	and	then
applies	 that	 to	 the	Test	Set	 (and	 see	 if	 the	model	 is	 good	 enough).	This	 is	 the
essential	principle	of	Simple	Linear	Regression.

Multiple	Linear	Regression

That	also	similarly	applies	to	Multiple	Linear	Regression.	The	goal	is	still	to	fit	a
line	 that	 best	 shows	 the	 relationship	 between	 an	 independent	 variable	 and	 the



target.	The	difference	is	that	in	Multiple	Linear	Regression,	we	have	to	deal	with
at	least	2	features	or	independent	variables.

For	example,	 let’s	 look	at	a	dataset	about	50	startups	((50_Startups.csv):	R&D
Spend,Administration,Marketing	Spend,State,Profit
165349.2,136897.8,471784.1,New	York,192261.83
162597.7,151377.59,443898.53,California,191792.06
153441.51,101145.55,407934.54,Florida,191050.39
144372.41,118671.85,383199.62,New	York,182901.99
142107.34,91391.77,366168.42,Florida,166187.94
131876.9,99814.71,362861.36,New	York,156991.12
134615.46,147198.87,127716.82,California,156122.51
130298.13,145530.06,323876.68,Florida,155752.6
120542.52,148718.95,311613.29,New	York,152211.77
123334.88,108679.17,304981.62,California,149759.96
101913.08,110594.11,229160.95,Florida,146121.95
100671.96,91790.61,249744.55,California,144259.4
93863.75,127320.38,249839.44,Florida,141585.52
91992.39,135495.07,252664.93,California,134307.35
119943.24,156547.42,256512.92,Florida,132602.65
114523.61,122616.84,261776.23,New	York,129917.04
78013.11,121597.55,264346.06,California,126992.93
94657.16,145077.58,282574.31,New	York,125370.37
91749.16,114175.79,294919.57,Florida,124266.9
86419.7,153514.11,0,New	York,122776.86
76253.86,113867.3,298664.47,California,118474.03
78389.47,153773.43,299737.29,New	York,111313.02
73994.56,122782.75,303319.26,Florida,110352.25
67532.53,105751.03,304768.73,Florida,108733.99
77044.01,99281.34,140574.81,New	York,108552.04
64664.71,139553.16,137962.62,California,107404.34
75328.87,144135.98,134050.07,Florida,105733.54
72107.6,127864.55,353183.81,New	York,105008.31
66051.52,182645.56,118148.2,Florida,103282.38
65605.48,153032.06,107138.38,New	York,101004.64
61994.48,115641.28,91131.24,Florida,99937.59
61136.38,152701.92,88218.23,New	York,97483.56



63408.86,129219.61,46085.25,California,97427.84
55493.95,103057.49,214634.81,Florida,96778.92
46426.07,157693.92,210797.67,California,96712.8
46014.02,85047.44,205517.64,New	York,96479.51
28663.76,127056.21,201126.82,Florida,90708.19
44069.95,51283.14,197029.42,California,89949.14
20229.59,65947.93,185265.1,New	York,81229.06
38558.51,82982.09,174999.3,California,81005.76
28754.33,118546.05,172795.67,California,78239.91
27892.92,84710.77,164470.71,Florida,77798.83
23640.93,96189.63,148001.11,California,71498.49
15505.73,127382.3,35534.17,New	York,69758.98
22177.74,154806.14,28334.72,California,65200.33
1000.23,124153.04,1903.93,New	York,64926.08
1315.46,115816.21,297114.46,Florida,49490.75
0,135426.92,0,California,42559.73
542.05,51743.15,0,New	York,35673.41
0,116983.8,45173.06,California,14681.4

Notice	 that	 there	 are	multiple	 features	 or	 independent	 variables	 (R&D	 Spend,
Administration,	Marketing	 Spend,	 State).	 Again,	 the	 goal	 here	 is	 to	 reveal	 or
discover	a	relationship	between	the	independent	variables	and	the	target	(Profit).

Also	 notice	 that	 under	 the	 column	 ‘State’,	 the	 data	 is	 in	 text	 (not	 numbers).
You’ll	see	New	York,	California,	and	Florida	 instead	of	numbers.	How	do	you
deal	with	this	kind	of	data?

One	convenient	way	 to	do	 that	 is	by	 transforming	categorical	data	 (New	York,
California,	Florida)	 into	numerical	 data.	We	can	 accomplish	 this	 if	we	use	 the
following	 lines	 of	 code:	 from	 sklearn.preprocessing	 import	 LabelEncoder,
OneHotEncoder
labelencoder	=	LabelEncoder()
X[:,	3]	=	labelencoder.fit_transform(X[:,	3])	#Note	this
onehotencoder	=	OneHotEncoder(categorical_features	=	[3])
X	 =	 onehotencoder.fit_transform(X).toarray()	 Pay	 attention	 to	 X[:,	 3]	 =
labelencoder.fit_transform(X[:,	3])	What	we	did	there	is	to	transform	the	data
in	the	fourth	column	(State).	It’s	number	3	because	Python	indexing	starts	at	zero
(0).	The	goal	was	to	transform	categorical	variables	data	into	something	we	can



work	on.	To	do	this,	we’ll	create	“dummy	variables”	which	take	the	values	of	0
or	1.	In	other	words,	they	indicate	the	presence	or	absence	of	something.

For	 example,	we	 have	 the	 following	 data	with	 categorical	 variables:	3.5,	New
York	2.0,	California	6.7,	Florida	 If	we	 use	 dummy	 variables,	 the	 above	data
will	be	transformed	into	this:	3.5,	1,	0,	0
2.0,	0,	1,	0

6.7,	0,	0,	1

Notice	that	the	column	for	State	became	equivalent	to	3	columns:

	 New	York California Florida

3.5 1 0 0

2.0 0 1 0

6.7 0 0 1

	

As	 mentioned	 earlier,	 dummy	 variables	 indicate	 the	 presence	 or	 absence	 of
something.	 They	 are	 commonly	 used	 as	 “substitute	 variables”	 so	we	 can	 do	 a
quantitative	 analysis	 on	 qualitative	 data.	 From	 the	 new	 table	 above	 we	 can
quickly	see	that	3.5	is	for	New	York	(1	New	York,	0	California,	and	0	Florida).
It’s	a	convenient	way	of	representing	categories	into	numeric	values.

However,	there’s	this	so-called	“dummy	variable	trap”	wherein	there’s	an	extra
variable	 that	 could	 have	 been	 removed	 because	 it	 can	 be	 predicted	 from	 the
others.	In	our	example	above,	notice	 that	when	the	columns	for	New	York	and
California	are	zero	(0),	automatically	you’ll	know	it’s	Florida.	You	can	already
know	which	State	it	is	even	with	just	the	2	variable.

Continuing	with	our	work	on	50_Startups.csv,	we	can	avoid	the	dummy	variable
trap	by	including	this	in	our	code:	X	=	X[:,	1:]

Let’s	review	our	work	so	far:	import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	pandas	as	pd



#	Importing	the	dataset
dataset	=	pd.read_csv('50_Startups.csv')
X	=	dataset.iloc[:,	:-1].values
y	 =	 dataset.iloc[:,	 4].values	 Let’s	 look	 at	 the	 data:	 dataset.head()	

Then,	we	transform	categorical	variables	into	numeric	ones	(dummy	variables):
#	Encoding	categorical	data
from	sklearn.preprocessing	import	LabelEncoder,	OneHotEncoder
labelencoder	=	LabelEncoder()
X[:,	3]	=	labelencoder.fit_transform(X[:,	3])
onehotencoder	=	OneHotEncoder(categorical_features	=	[3])
X	 =	 onehotencoder.fit_transform(X).toarray()	 #	 Avoiding	 the	 Dummy
Variable	Trap
X	=	X[:,	1:]

After	 those	 data	 preprocessing	 steps,	 the	 data	would	 somehow	 look	 like	 this:	

Notice	 that	 there	 are	 no	 categorical	 variables	 (New	York,	 California,	 Florida)
and	we’ve	removed	the	“redundant	variable”	to	avoid	the	dummy	variable	trap.



Now	we’re	all	set	to	dividing	the	dataset	into	Training	Set	and	Test	Set.	We	can
do	this	with	the	following	lines	of	code:	from	sklearn.model_selection	import
train_test_split
X_train,	 X_test,	 y_train,	 y_test	 =	 train_test_split(X,	 y,	 test_size	 =	 0.2,
random_state	=	0)	80%	Training	Set,	20%	Test	Set.	Next	step	 is	we	can	 then
create	 a	 regressor	 and	 “fit	 the	 line”	 (and	 use	 that	 line	 on	 Test	 Set):	 from
sklearn.linear_model	import	LinearRegression
regressor	=	LinearRegression()
regressor.fit(X_train,	y_train)

#	Predicting	the	Test	set	results
y_pred	 =	 regressor.predict(X_test)	 y_pred	 (predicted	 Profit	 values	 on	 the

X_test)	will	be	like	this:	

However,	is	that	all	there	is?	Are	all	the	variables	(R&D	Spend,	Administration,
Marketing	Spend,	State)	 responsible	 for	 the	 target	 (Profit).	Many	data	analysts
perform	additional	 steps	 to	create	better	models	and	predictors.	They	might	be
doing	Backward	Elimination	(e.g.	eliminating	variables	one	by	one	until	there’s
one	 or	 two	 left)	 so	 we’ll	 know	 which	 of	 the	 variables	 is	 making	 the	 biggest
contribution	to	our	results	(and	therefore	more	accurate	predictions).

There	 are	 other	 ways	 of	 making	 the	 making	 the	 model	 yield	 more	 accurate
predictions.	It	depends	on	your	objectives	(perhaps	you	want	to	use	all	the	data
variables)	and	resources	(not	just	money	and	computational	power,	but	also	time
constraints).

Decision	Tree

The	 Regression	 method	 discussed	 so	 far	 is	 very	 good	 if	 there’s	 a	 linear
relationship	between	the	independent	variables	and	the	target.	But	what	if	there’s
no	linearity	(but	the	dependent	variables	can	still	be	used	to	predict	the	target)?

This	 is	where	other	methods	such	as	Decision	Tree	Regression	comes	 in.	Note
that	 it	 sounds	 different	 from	 Simple	 Linear	 Regression	 and	 Multiple	 Linear
Regression.	 There’s	 no	 linearity	 and	 it	 works	 differently.	 Decision	 Tree
Regression	works	by	breaking	down	the	dataset	into	smaller	and	smaller	subsets.
Here’s	 an	 illustration	 that	 better	 explains	 it:	



http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm

Instead	 of	 plotting	 and	 fitting	 a	 line,	 there	 are	 decision	 nodes	 and	 leaf	 nodes.
Let’s	 quickly	 look	 at	 an	 example	 to	 see	 how	 it	 works	 (using
Position_Salaries.csv):	The	dataset:	Position,Level,Salary
Business	Analyst,1,45000
Junior	Consultant,2,50000
Senior	Consultant,3,60000
Manager,4,80000
Country	Manager,5,110000
Region	Manager,6,150000
Partner,7,200000
Senior	Partner,8,300000
C-level,9,500000
CEO,10,1000000
#	Decision	Tree	Regression

#	Importing	the	libraries
import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	pandas	as	pd

#	Importing	the	dataset
dataset	=	pd.read_csv('Position_Salaries.csv')
X	=	dataset.iloc[:,	1:2].values
y	=	dataset.iloc[:,	2].values

#	Splitting	the	dataset	into	the	Training	set	and	Test	set
"""from	sklearn.cross_validation	import	train_test_split
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size	=	0.2,	random_state	=	0)"""

#	Fitting	Decision	Tree	Regression	to	the	dataset
from	sklearn.tree	import	DecisionTreeRegressor

http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm
http://chem-eng.utoronto.ca/~datamining/dmc/decision_tree_reg.htm


regressor	=	DecisionTreeRegressor(random_state	=	0)
regressor.fit(X,	y)

#	Predicting	a	new	result
y_pred	=	regressor.predict(6.5)

#	Visualising	the	Decision	Tree	Regression	results	(higher	resolution)
X_grid	=	np.arange(min(X),	max(X),	0.01)
X_grid	=	X_grid.reshape((len(X_grid),	1))
plt.scatter(X,	y,	color	=	'red')
plt.plot(X_grid,	regressor.predict(X_grid),	color	=	'blue')
plt.title('Truth	or	Bluff	(Decision	Tree	Regression)')
plt.xlabel('Position	level')
plt.ylabel('Salary')
plt.show()	When	you	run	the	previous	code,	you	should	see	the	following	in	the	Jupyter	Notebook:	

Notice	 that	 there’s	 no	 linear	 relationship	 between	 the	 Position	 Level	 and	 the
Salary.	Instead,	it’s	somewhat	a	step-wise	result.	We	can	still	see	the	relationship
between	 Position	 Level	 and	 Salary,	 but	 it’s	 expressed	 in	 different	 terms
(seemingly	non-straightforward	approach).

Random	Forest

As	discussed	earlier,	Decision	Tree	Regression	can	be	good	to	use	when	there’s
not	much	linearity	between	an	independent	variable	and	a	target.	However,	this
approach	uses	the	dataset	once	to	come	up	with	results.	That’s	because	in	many
cases,	 it’s	 always	 good	 to	 get	 different	 results	 from	 different	 approaches	 (e.g.
many	decision	trees)	and	then	averaging	those	results.

To	solve	this,	many	data	scientists	use	Random	Forest	Regression.	This	is	simply
a	 collection	 or	 ensemble	 of	 different	 decision	 trees	 wherein	 random	 different
subsets	are	used	and	then	the	results	are	averaged.	It’s	like	creating	decision	trees



again	and	again	and	then	getting	the	results	of	each.

In	code,	this	would	look	a	lot	like	this:	#	Random	Forest	Regression

#	Importing	the	libraries
import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	pandas	as	pd
%matplotlib	inline

#	Importing	the	dataset
dataset	=	pd.read_csv('Position_Salaries.csv')
X	=	dataset.iloc[:,	1:2].values
y	=	dataset.iloc[:,	2].values

#	Splitting	the	dataset	into	the	Training	set	and	Test	set
"""from	sklearn.cross_validation	import	train_test_split
X_train,	 X_test,	 y_train,	 y_test	 =	 train_test_split(X,	 y,	 test_size	 =	 0.2,
random_state	=	0)"""

#	Feature	Scaling
"""from	sklearn.preprocessing	import	StandardScaler
sc_X	=	StandardScaler()
X_train	=	sc_X.fit_transform(X_train)
X_test	=	sc_X.transform(X_test)
sc_y	=	StandardScaler()
y_train	=	sc_y.fit_transform(y_train)"""

#	Fitting	Random	Forest	Regression	to	the	dataset
from	sklearn.ensemble	import	RandomForestRegressor
regressor	=	RandomForestRegressor(n_estimators	=	300,	random_state	=	0)
regressor.fit(X,	y)

#	Predicting	a	new	result
y_pred	=	regressor.predict(6.5)

#	Visualising	the	Random	Forest	Regression	results	(higher	resolution)



X_grid	=	np.arange(min(X),	max(X),	0.01)
X_grid	=	X_grid.reshape((len(X_grid),	1))
plt.scatter(X,	y,	color	=	'red')
plt.plot(X_grid,	regressor.predict(X_grid),	color	=	'blue')
plt.title('Truth	or	Bluff	(Random	Forest	Regression)')
plt.xlabel('Position	level')
plt.ylabel('Salary')

plt.show()	

Notice	 that	 it’s	 a	 lot	 similar	 to	 the	Decision	Tree	Regression	 earlier.	After	 all,
Random	 Forest	 (from	 the	 term	 itself)	 is	 a	 collection	 of	 “trees.”	 If	 there’s	 not
much	 deviation	 in	 our	 dataset,	 the	 result	 should	 look	 almost	 the	 same.	 Let’s
compare	 them	 for	 easy	 visualization:	



Many	data	scientists	prefer	Random	Forest	because	it	averages	results	which	can
effectively	 reduce	 errors.	 Looking	 at	 the	 code	 it	 seems	 straightforward	 and
simple.	But	behind	the	scenes	there	are	complex	algorithms	at	play.	It’s	sort	of	a
black	box	wherein	there’s	an	input,	there’s	a	black	box	and	there’s	the	result.	We
have	not	much	idea	about	what	happens	inside	the	black	box	(although	we	can
still	find	out	if	we	dig	through	the	mathematics).	We’ll	encounter	this	again	and
again	as	we	discuss	more	about	data	analysis	and	machine	learning.



11.	Classification

Spam	 or	 not	 spam?	 This	 is	 one	 of	 the	 most	 popular	 uses	 and	 examples	 of
Classification.	 Just	 like	 Regression,	 Classification	 is	 also	 under	 Supervised
Learning.	Our	model	 learns	 from	 labelled	data	 (“with	 supervision”).	Then,	our
system	applies	that	learning	to	new	dataset.

For	example,	we	have	a	dataset	with	different	email	messages	and	each	one	was
labelled	 either	 Spam	 or	 Not	 Spam.	 Our	 model	 might	 then	 find	 patterns	 or
commonalities	among	email	messages	that	are	marked	Spam.	When	performing
a	 prediction,	 our	model	might	 try	 to	 find	 those	 patterns	 and	 commonalities	 in
new	email	messages.

There	are	different	approaches	in	doing	successful	Classification.	Let’s	discuss	a
few	of	them:

Logistic	Regression

In	many	Classification	 tasks,	 the	goal	 is	 to	determine	whether	 it’s	0	or	1	using
two	 independent	 variables.	 For	 example,	 given	 that	 the	 Age	 and	 Estimated
Salary	determine	an	outcome	such	as	when	the	person	purchased	or	not,	how	can
we	 successfully	 create	 a	model	 that	 shows	 their	 relationships	 and	 use	 that	 for
prediction?

This	 sounds	 confusing	 which	 is	 why	 it’s	 always	 best	 to	 look	 at	 an	 example:	

Here	 our	 two	variables	 are	Age	 and	Estimated	Salary.	Each	data	 point	 is	 then
classified	either	as	0	(didn’t	buy)	or	1	(bought).	There’s	a	line	that	separates	the
two	 (with	 color	 legends	 for	 easy	 visualization).	 This	 approach	 (Logistic



Regression)	is	based	on	probability	(e.g.	the	probability	of	a	data	point	if	it’s	a	0
or	1).

As	with	Regression	in	the	previous	chapter	wherein	there’s	this	so-called	black
box,	 the	 behind	 the	 scenes	 of	 Logistic	Regression	 for	Classification	 can	 seem
complex.	 Good	 news	 is	 its	 implementation	 is	 straightforward	 especially	when
we	 use	 Python	 and	 scikit-learn:	 Here’s	 a	 peek	 of	 the	 dataset	 first

(‘Social_Network_Ads.csv’):	
#	Logistic	Regression

#	Importing	the	libraries
import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	pandas	as	pd
%matplotlib	inline

#	Importing	the	dataset
dataset	=	pd.read_csv('Social_Network_Ads.csv')
X	=	dataset.iloc[:,	[2,	3]].values
y	=	dataset.iloc[:,	4].values

#	Splitting	the	dataset	into	the	Training	set	and	Test	set
from	sklearn.model_selection	import	train_test_split
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size	=	0.25,	random_state	=	0)

#	Feature	Scaling
from	sklearn.preprocessing	import	StandardScaler
sc	=	StandardScaler()
X_train	=	sc.fit_transform(X_train)
X_test	=	sc.transform(X_test)



#	Fitting	Logistic	Regression	to	the	Training	set
from	sklearn.linear_model	import	LogisticRegression
classifier	=	LogisticRegression(random_state	=	0)
classifier.fit(X_train,	y_train)

#	Predicting	the	Test	set	results
y_pred	=	classifier.predict(X_test)

#	Making	the	Confusion	Matrix
from	sklearn.metrics	import	confusion_matrix
cm	=	confusion_matrix(y_test,	y_pred)

#	Visualising	the	Training	set	results
from	matplotlib.colors	import	ListedColormap
X_set,	y_set	=	X_train,	y_train
X1,	X2	=	np.meshgrid(np.arange(start	=	X_set[:,	0].min()	-	1,	stop	=	X_set[:,	0].max()	+	1,	step	=
0.01),
np.arange(start	=	X_set[:,	1].min()	-	1,	stop	=	X_set[:,	1].max()	+	1,	step	=	0.01))
plt.contourf(X1,	X2,	classifier.predict(np.array([X1.ravel(),	X2.ravel()]).T).reshape(X1.shape),
alpha	=	0.75,	cmap	=	ListedColormap(('red',	'green')))
plt.xlim(X1.min(),	X1.max())
plt.ylim(X2.min(),	X2.max())
for	i,	j	in	enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set	==	j,	0],	X_set[y_set	==	j,	1],
c	=	ListedColormap(('red',	'green'))(i),	label	=	j)
plt.title('Logistic	Regression	(Training	set)')
plt.xlabel('Age')
plt.ylabel('Estimated	Salary')
plt.legend()
plt.show()

#	Visualising	the	Test	set	results
from	matplotlib.colors	import	ListedColormap
X_set,	y_set	=	X_test,	y_test
X1,	X2	=	np.meshgrid(np.arange(start	=	X_set[:,	0].min()	-	1,	stop	=	X_set[:,	0].max()	+	1,	step	=
0.01),
np.arange(start	=	X_set[:,	1].min()	-	1,	stop	=	X_set[:,	1].max()	+	1,	step	=	0.01))
plt.contourf(X1,	X2,	classifier.predict(np.array([X1.ravel(),	X2.ravel()]).T).reshape(X1.shape),
alpha	=	0.75,	cmap	=	ListedColormap(('red',	'green')))
plt.xlim(X1.min(),	X1.max())
plt.ylim(X2.min(),	X2.max())
for	i,	j	in	enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set	==	j,	0],	X_set[y_set	==	j,	1],
c	=	ListedColormap(('red',	'green'))(i),	label	=	j)
plt.title('Logistic	Regression	(Test	set)')
plt.xlabel('Age')
plt.ylabel('Estimated	Salary')
plt.legend()
plt.show()	When	we	run	this,	you’ll	see	the	following	visualizations	in	your	Jupyter	Notebook:	



It’s	 a	 common	 step	 to	 learn	 first	 from	 the	 Training	 Set	 and	 then	 apply	 that
learning	 to	 the	Test	Set	 (and	see	 if	 the	model	 is	good	enough	 in	predicting	 the
result	for	new	data	points).	After	all	this	is	the	essence	of	Supervised	Learning.
First,	 there’s	 training	 and	 supervision.	Next,	 the	 lesson	will	 be	 applied	 to	 new
situations.

As	you	notice	 in	 the	visualization	 for	 the	Test	Set,	most	of	 the	green	dots	 fall
under	the	green	region	(with	a	few	red	dots	though	because	it’s	hard	to	achieve
100%	 accuracy	 in	 logistic	 regression).	 This	 means	 our	 model	 could	 be	 good
enough	for	predicting	whether	a	person	with	a	certain	Age	and	Estimated	Salary
would	purchase	or	not.

Also	pay	extra	attention	to	the	following	blocks	of	code:	#	Feature	Scaling
from	sklearn.preprocessing	import	StandardScaler
sc	=	StandardScaler()



X_train	=	sc.fit_transform(X_train)
X_test	 =	 sc.transform(X_test)	 We	 first	 transformed	 the	 data	 into	 the	 same
range	or	scale	 to	avoid	skewing	or	heavy	reliance	on	a	certain	variable.	 In	our
dataset,	the	Estimated	Salary	is	expressed	in	thousands	while	age	is	expressed	in
a	smaller	scale.	We	have	to	make	them	in	the	same	range	so	we	can	get	a	more
reasonable	model.

Well,	 aside	 from	 Logistic	 Regression,	 there	 are	 other	 ways	 of	 performing
Classification	tasks.	Let’s	discuss	them	next.

K-Nearest	Neighbors

Notice	that	Logistic	Regression	seems	to	have	a	linear	boundary	between	0s	and
1s.	As	a	result,	 it	misses	a	few	of	 the	data	points	 that	should	have	been	on	the
other	side.

Thankfully,	 there	 are	non-linear	models	 that	 can	capture	more	data	points	 in	 a
more	accurate	manner.	One	of	them	is	through	the	use	of	K-Nearest	Neighbors.
It	works	by	having	a	“new	data	point”	and	then	counting	how	many	neighbors
belong	to	either	category.	If	more	neighbors	belong	to	category	A	than	category
B,	then	the	new	point	should	belong	to	category	A.

Therefore,	 the	 classification	 of	 a	 certain	 point	 is	 based	 on	 the	majority	 of	 its
nearest	 neighbors	 (hence	 the	 name).	 This	 can	 often	 be	 accomplished	 by	 the
following	code:	from	sklearn.neighbors	import	KNeighborsClassifier
classifier	=	KNeighborsClassifier(n_neighbors	=	5,	metric	=	'minkowski',	p
=	2)
classifier.fit(X_train,	 y_train)	 Again,	 instead	 of	 starting	 from	 scratch,	 we’re
importing	“prebuilt	code”	that	makes	our	task	faster	and	easier.	The	behind	the
scenes	could	be	 learned	and	 studied.	But	 for	many	purposes,	 the	prebuilt	 ones
are	good	enough	to	make	reasonably	useful	models.

Let’s	 look	 at	 an	 example	 of	 how	 to	 implement	 this	 using	 again	 the	 data	 set
‘Social_Network_Ads.csv’:	#	K-Nearest	Neighbors	(K-NN)

#	Importing	the	libraries
import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	pandas	as	pd
%matplotlib	inline



#	Importing	the	dataset
dataset	=	pd.read_csv('Social_Network_Ads.csv')
X	=	dataset.iloc[:,	[2,	3]].values
y	=	dataset.iloc[:,	4].values

#	Splitting	the	dataset	into	the	Training	set	and	Test	set
from	sklearn.model_selection	import	train_test_split
X_train,	 X_test,	 y_train,	 y_test	 =	 train_test_split(X,	 y,	 test_size	 =	 0.25,
random_state	=	0)

#	Feature	Scaling
from	sklearn.preprocessing	import	StandardScaler
sc	=	StandardScaler()
X_train	=	sc.fit_transform(X_train)
X_test	=	sc.transform(X_test)

#	Fitting	K-NN	to	the	Training	set
from	sklearn.neighbors	import	KNeighborsClassifier
classifier	=	KNeighborsClassifier(n_neighbors	=	5,	metric	=	'minkowski',	p
=	2)
classifier.fit(X_train,	y_train)

#	Predicting	the	Test	set	results
y_pred	=	classifier.predict(X_test)

#	Making	the	Confusion	Matrix
from	sklearn.metrics	import	confusion_matrix
cm	=	confusion_matrix(y_test,	y_pred)

#	Visualising	the	Training	set	results
from	matplotlib.colors	import	ListedColormap
X_set,	y_set	=	X_train,	y_train
X1,	X2	=	np.meshgrid(np.arange(start	=	X_set[:,	0].min()	-	1,	stop	=	X_set[:,
0].max()	+	1,	step	=	0.01),
np.arange(start	=	X_set[:,	1].min()	 -	1,	 stop	=	X_set[:,	1].max()	+	1,	 step	=
0.01))



plt.contourf(X1,	 X2,	 classifier.predict(np.array([X1.ravel(),
X2.ravel()]).T).reshape(X1.shape),
alpha	=	0.75,	cmap	=	ListedColormap(('red',	'green')))
plt.xlim(X1.min(),	X1.max())
plt.ylim(X2.min(),	X2.max())
for	i,	j	in	enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set	==	j,	0],	X_set[y_set	==	j,	1],
c	=	ListedColormap(('red',	'green'))(i),	label	=	j)
plt.title('K-NN	(Training	set)')
plt.xlabel('Age')
plt.ylabel('Estimated	Salary')
plt.legend()
plt.show()

#	Visualising	the	Test	set	results
from	matplotlib.colors	import	ListedColormap
X_set,	y_set	=	X_test,	y_test
X1,	X2	=	np.meshgrid(np.arange(start	=	X_set[:,	0].min()	-	1,	stop	=	X_set[:,
0].max()	+	1,	step	=	0.01),
np.arange(start	=	X_set[:,	1].min()	 -	1,	 stop	=	X_set[:,	1].max()	+	1,	 step	=
0.01))
plt.contourf(X1,	 X2,	 classifier.predict(np.array([X1.ravel(),
X2.ravel()]).T).reshape(X1.shape),
alpha	=	0.75,	cmap	=	ListedColormap(('red',	'green')))
plt.xlim(X1.min(),	X1.max())
plt.ylim(X2.min(),	X2.max())
for	i,	j	in	enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set	==	j,	0],	X_set[y_set	==	j,	1],
c	=	ListedColormap(('red',	'green'))(i),	label	=	j)
plt.title('K-NN	(Test	set)')
plt.xlabel('Age')
plt.ylabel('Estimated	Salary')
plt.legend()
plt.show()	When	we	run	this	in	Jupyter	Notebook,	we	should	see	the	following



visualizations:	

Notice	that	the	boundary	is	non-linear.	This	is	the	case	because	of	the	different
approach	by	K-Nearest	Neighbors	(K-NN).	Also	notice	that	there	are	still	misses
(e.g.	few	red	dots	are	still	in	the	green	region).	To	capture	them	all	may	require
the	 use	 of	 a	 bigger	 dataset	 or	 another	 method	 (or	 perhaps	 there’s	 no	 way	 to
capture	all	of	them	because	our	data	and	model	will	never	be	perfect).

Decision	Tree	Classification

As	 with	 Regression,	 many	 data	 scientists	 also	 implement	 Decision	 Trees	 in
Classification.	As	mentioned	in	the	previous	chapter,	creating	a	decision	tree	is
about	breaking	down	a	dataset	into	smaller	and	smaller	subsets	while	branching
them	out	(creating	an	associated	decision	tree).

Here’s	 a	 simple	 example	 so	 you	 can	 understand	 it	 better:	



Notice	 that	 branches	 and	 leaves	 result	 from	 breaking	 down	 the	 dataset	 into
smaller	 subsets.	 In	 Classification,	 we	 can	 similarly	 apply	 this	 through	 the
following	 code	 (again	 using	 the	 Social_Network_Ads.csv):	 #	 Decision	 Tree
Classification

#	Importing	the	libraries
import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	pandas	as	pd
%matplotlib	inline

#	Importing	the	dataset
dataset	=	pd.read_csv('Social_Network_Ads.csv')
X	=	dataset.iloc[:,	[2,	3]].values
y	=	dataset.iloc[:,	4].values

#	Splitting	the	dataset	into	the	Training	set	and	Test	set
from	sklearn.model_selection	import	train_test_split
X_train,	 X_test,	 y_train,	 y_test	 =	 train_test_split(X,	 y,	 test_size	 =	 0.25,
random_state	=	0)

#	Feature	Scaling
from	sklearn.preprocessing	import	StandardScaler
sc	=	StandardScaler()
X_train	=	sc.fit_transform(X_train)
X_test	=	sc.transform(X_test)



#	Fitting	Decision	Tree	Classification	to	the	Training	set
from	sklearn.tree	import	DecisionTreeClassifier
classifier	=	DecisionTreeClassifier(criterion	=	'entropy',	random_state	=	0)
classifier.fit(X_train,	y_train)

#	Predicting	the	Test	set	results
y_pred	=	classifier.predict(X_test)

#	Making	the	Confusion	Matrix
from	sklearn.metrics	import	confusion_matrix
cm	=	confusion_matrix(y_test,	y_pred)

#	Visualising	the	Training	set	results
from	matplotlib.colors	import	ListedColormap
X_set,	y_set	=	X_train,	y_train
X1,	X2	=	np.meshgrid(np.arange(start	=	X_set[:,	0].min()	-	1,	stop	=	X_set[:,
0].max()	+	1,	step	=	0.01),
np.arange(start	=	X_set[:,	1].min()	 -	1,	 stop	=	X_set[:,	1].max()	+	1,	 step	=
0.01))
plt.contourf(X1,	 X2,	 classifier.predict(np.array([X1.ravel(),
X2.ravel()]).T).reshape(X1.shape),
alpha	=	0.75,	cmap	=	ListedColormap(('red',	'green')))
plt.xlim(X1.min(),	X1.max())
plt.ylim(X2.min(),	X2.max())
for	i,	j	in	enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set	==	j,	0],	X_set[y_set	==	j,	1],
c	=	ListedColormap(('red',	'green'))(i),	label	=	j)
plt.title('Decision	Tree	Classification	(Training	set)')
plt.xlabel('Age')
plt.ylabel('Estimated	Salary')
plt.legend()
plt.show()

#	Visualising	the	Test	set	results
from	matplotlib.colors	import	ListedColormap
X_set,	y_set	=	X_test,	y_test
X1,	X2	=	np.meshgrid(np.arange(start	=	X_set[:,	0].min()	-	1,	stop	=	X_set[:,



0].max()	+	1,	step	=	0.01),
np.arange(start	=	X_set[:,	1].min()	 -	1,	 stop	=	X_set[:,	1].max()	+	1,	 step	=
0.01))
plt.contourf(X1,	 X2,	 classifier.predict(np.array([X1.ravel(),
X2.ravel()]).T).reshape(X1.shape),
alpha	=	0.75,	cmap	=	ListedColormap(('red',	'green')))
plt.xlim(X1.min(),	X1.max())
plt.ylim(X2.min(),	X2.max())
for	i,	j	in	enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set	==	j,	0],	X_set[y_set	==	j,	1],
c	=	ListedColormap(('red',	'green'))(i),	label	=	j)
plt.title('Decision	Tree	Classification	(Test	set)')
plt.xlabel('Age')
plt.ylabel('Estimated	Salary')
plt.legend()
plt.show()	The	 most	 important	 difference	 is	 in	 this	 block	 of	 code:	 from
sklearn.tree	import	DecisionTreeClassifier
classifier	=	DecisionTreeClassifier(criterion	=	'entropy',	random_state	=	0)
classifier.fit(X_train,	y_train)	When	we	run	the	whole	code	(including	the	data

visualization),	we’ll	see	this:	



Notice	 the	 huge	 difference	 compared	 to	 Logistic	 Regression	 and	 K-Nearest
Neighbors	(K-NN).	In	these	latter	two,	there	are	just	two	boundaries.	But	here	in
our	Decision	 Tree	 Classification,	 there	 are	 points	 outside	 the	main	 red	 region
that	 fall	 inside	 “mini	 red	 regions.”	As	 a	 result,	 our	model	was	 able	 to	 capture
data	 points	 that	 might	 be	 impossible	 otherwise	 (e.g.	 when	 using	 Logistic
Regression).

Random	Forest	Classification

Recall	 from	 the	 previous	 chapter	 about	Regression	 that	 a	Random	Forest	 is	 a
collection	or	ensemble	of	many	decision	trees.	This	also	applies	to	Classification
wherein	many	decision	trees	are	used	and	the	results	are	averaged.
#	Random	Forest	Classification

#	Importing	the	libraries
import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	pandas	as	pd
%matplotlib	inline

#	Importing	the	dataset
dataset	=	pd.read_csv('Social_Network_Ads.csv')
X	=	dataset.iloc[:,	[2,	3]].values
y	=	dataset.iloc[:,	4].values

#	Splitting	the	dataset	into	the	Training	set	and	Test	set
from	sklearn.model_selection	import	train_test_split
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size	=	0.25,	random_state	=	0)

#	Feature	Scaling
from	sklearn.preprocessing	import	StandardScaler



sc	=	StandardScaler()
X_train	=	sc.fit_transform(X_train)
X_test	=	sc.transform(X_test)

#	Fitting	Random	Forest	Classification	to	the	Training	set
from	sklearn.ensemble	import	RandomForestClassifier
classifier	=	RandomForestClassifier(n_estimators	=	10,	criterion	=	'entropy',	random_state	=	0)
classifier.fit(X_train,	y_train)

#	Predicting	the	Test	set	results
y_pred	=	classifier.predict(X_test)

#	Making	the	Confusion	Matrix
from	sklearn.metrics	import	confusion_matrix
cm	=	confusion_matrix(y_test,	y_pred)

#	Visualising	the	Training	set	results
from	matplotlib.colors	import	ListedColormap
X_set,	y_set	=	X_train,	y_train
X1,	X2	=	np.meshgrid(np.arange(start	=	X_set[:,	0].min()	-	1,	stop	=	X_set[:,	0].max()	+	1,	step	=
0.01),
np.arange(start	=	X_set[:,	1].min()	-	1,	stop	=	X_set[:,	1].max()	+	1,	step	=	0.01))
plt.contourf(X1,	X2,	classifier.predict(np.array([X1.ravel(),	X2.ravel()]).T).reshape(X1.shape),
alpha	=	0.75,	cmap	=	ListedColormap(('red',	'green')))
plt.xlim(X1.min(),	X1.max())
plt.ylim(X2.min(),	X2.max())
for	i,	j	in	enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set	==	j,	0],	X_set[y_set	==	j,	1],
c	=	ListedColormap(('red',	'green'))(i),	label	=	j)
plt.title('Random	Forest	Classification	(Training	set)')
plt.xlabel('Age')
plt.ylabel('Estimated	Salary')
plt.legend()
plt.show()

#	Visualising	the	Test	set	results
from	matplotlib.colors	import	ListedColormap
X_set,	y_set	=	X_test,	y_test
X1,	X2	=	np.meshgrid(np.arange(start	=	X_set[:,	0].min()	-	1,	stop	=	X_set[:,	0].max()	+	1,	step	=
0.01),
np.arange(start	=	X_set[:,	1].min()	-	1,	stop	=	X_set[:,	1].max()	+	1,	step	=	0.01))
plt.contourf(X1,	X2,	classifier.predict(np.array([X1.ravel(),	X2.ravel()]).T).reshape(X1.shape),
alpha	=	0.75,	cmap	=	ListedColormap(('red',	'green')))
plt.xlim(X1.min(),	X1.max())
plt.ylim(X2.min(),	X2.max())
for	i,	j	in	enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set	==	j,	0],	X_set[y_set	==	j,	1],
c	=	ListedColormap(('red',	'green'))(i),	label	=	j)
plt.title('Random	Forest	Classification	(Test	set)')
plt.xlabel('Age')



plt.ylabel('Estimated	Salary')
plt.legend()
plt.show()	When	we	run	the	code,	we’ll	see	the	following:	

Notice	the	similarities	between	the	Decision	Tree	and	Random	Forest.	After	all,
they	take	a	similar	approach	of	breaking	down	a	dataset	into	smaller	subsets.	The
difference	 is	 that	 Random	 Forest	 uses	 randomness	 and	 averaging	 different
decision	trees	to	come	up	with	a	more	accurate	model.



12.	Clustering

In	 the	 previous	 chapters,	we’ve	 discussed	 Supervised	Learning	 (Regression	&
Classification).	We’ve	 learned	about	 learning	 from	“labelled”	data.	There	were
already	correct	answers	and	our	job	back	then	was	to	learn	how	to	arrive	at	those
answers	and	apply	the	learning	to	new	data.

But	 in	 this	 chapter	 it	 will	 be	 different.	 That’s	 because	 we’ll	 be	 starting	 with
Unsupervised	Learning	wherein	there	were	no	correct	answers	or	labels	given.	In
other	words,	there’s	only	input	data	but	there’s	no	output.	There’s	no	supervision
when	learning	from	data.

In	 fact,	 Unsupervised	 Learning	 is	 said	 to	 embody	 the	 essence	 of	 Artificial
Intelligence.	That’s	because	there’s	not	much	human	supervision	or	intervention.
As	 a	 result,	 the	 algorithms	 are	 left	 on	 their	 own	 to	 discover	 things	 from	data.
This	 is	 especially	 the	 case	 in	Clustering	wherein	 the	 goal	 is	 to	 reveal	 organic
aggregates	or	“clusters”	in	data.

Goals	&	Uses	of	Clustering

This	 is	a	 form	of	Unsupervised	Learning	where	 there	are	no	 labels	or	 in	many
cases	 there	 are	 no	 truly	 correct	 answers.	 That’s	 because	 there	were	 no	 correct
answers	 in	 the	 first	 place.	 We	 just	 have	 a	 dataset	 and	 our	 goal	 is	 to	 see	 the
groupings	that	have	organically	formed.

We’re	not	trying	to	predict	an	outcome	here.	The	goal	is	to	look	for	structures	in
the	 data.	 In	 other	 words,	 we’re	 “dividing”	 the	 dataset	 into	 groups	 wherein
members	have	 some	 similarities	or	proximities.	For	 example,	 each	ecommerce
customer	 might	 belong	 to	 a	 particular	 group	 (e.g.	 given	 their	 income	 and
spending	 level).	 If	 we	 have	 gathered	 enough	 data	 points,	 it’s	 likely	 there	 are
aggregates.

At	first	the	data	points	will	seem	scattered	(no	pattern	at	all).	But	once	we	apply
a	Clustering	algorithm,	the	data	will	somehow	make	sense	because	we’ll	be	able
to	 easily	 visualize	 the	 groups	 or	 clusters.	 Aside	 from	 discovering	 the	 natural
groupings,	Clustering	algorithms	may	also	reveal	outliers	for	Anomaly	Detection
(we’ll	also	discuss	this	later).

Clustering	 is	 being	 applied	 regularly	 in	 the	 fields	 of	 marketing,	 biology,
earthquake	 studies,	manufacturing,	 sensor	 outputs,	 product	 categorization,	 and



other	scientific	and	business	areas.	However,	there	are	no	rules	set	in	stone	when
it	 comes	 to	 determining	 the	 number	 of	 clusters	 and	 which	 data	 point	 should
belong	 to	 a	 certain	 cluster.	 It’s	 up	 to	 our	 objective	 (or	 if	 the	 results	 are	 useful
enough).	This	is	also	where	our	expertise	in	a	particular	domain	comes	in.

As	with	other	data	analysis	and	machine	learning	algorithms	and	tools,	it’s	still
about	our	domain	knowledge.	This	way	we	can	look	at	and	analyze	the	data	in
the	 proper	 context.	 Even	 with	 the	 most	 advanced	 tools	 and	 techniques,	 the
context	and	objective	are	still	crucial	in	making	sense	of	data.

K-Means	Clustering

One	way	to	make	sense	of	data	through	Clustering	is	by	K-Means.	It’s	one	of	the
most	 popular	 Clustering	 algorithms	 because	 of	 its	 simplicity.	 It	 works	 by
partitioning	 objects	 into	 k	 clusters	 (number	 of	 clusters	we	 specified)	 based	 on
feature	similarity.

Notice	that	the	number	of	clusters	is	arbitrary.	We	can	set	it	into	any	number	we
like.	However,	it’s	good	to	make	the	number	of	clusters	just	enough	to	make	our
work	meaningful	and	useful.	Let’s	discuss	an	example	to	illustrate	this.

Here	 we	 have	 data	 about	Mall	 Customers	 (‘Mall_Customers.csv’)	 where	 info
about	their	Gender,	Age,	Annual	Income,	and	Spending	Score	are	indicated.	The
higher	the	Spending	Score	(out	of	100),	the	more	they	spend	at	the	Mall.

To	start,	we	import	the	necessary	libraries:	import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	pandas	as	pd
%matplotlib	inline	Then	we	import	the	data	and	take	a	peek:	dataset	=
pd.read_csv('Mall_Customers.csv')	dataset.head(10)	



In	 this	 example	we’re	more	 interested	 in	grouping	 the	Customers	according	 to
their	Annual	Income	and	Spending	Score.
X	=	dataset.iloc[:,	[3,	4]].values	Our	goal	here	is	to	reveal	the	clusters	and	help	the	marketing	department
formulate	their	strategies.	For	instance,	we	might	subdivide	the	Customers	in	5	distinct	groups:

1.	 Medium	Annual	Income,	Medium	Spending	Score
2.	 High	Annual	Income,	Low	Spending	Score
3.	 Low	Annual	Income,	Low	Spending	Score
4.	 Low	Annual	Income,	High	Spending	Score
5.	 High	Annual	Income,	High	Spending	Score

It’s	 worthwhile	 to	 pay	 attention	 to	 the	 #2	 Group	 (High	 Annual	 Income,	 Low
Spending	 Score).	 If	 there’s	 a	 sizable	 number	 of	 customers	 that	 fall	 under	 this
group,	it	could	mean	a	huge	opportunity	for	the	mall.	These	customers	have	high
Annual	Income	and	yet	they’re	spending	or	using	most	of	their	money	elsewhere
(not	 in	 the	 Mall).	 If	 we	 could	 know	 that	 they’re	 in	 sufficient	 numbers,	 the
marketing	department	could	formulate	specific	strategies	to	entice	Cluster	#2	to
buy	more	from	the	Mall.

Although	 the	 number	 of	 clusters	 is	 often	 arbitrary,	 there	 are	ways	 to	 find	 that
optimal	 number.	 One	 such	 way	 is	 through	 the	 Elbow	 Method	 and	 WCSS
(within-cluster	 sums	 of	 squares).	 Here’s	 the	 code	 to	 accomplish	 this:	 from
sklearn.cluster	import	KMeans
wcss	=	[]
for	i	in	range(1,	11):
kmeans	=	KMeans(n_clusters	=	i,	init	=	'k-means++',	random_state	=	42)
kmeans.fit(X)



wcss.append(kmeans.inertia_)
plt.plot(range(1,	11),	wcss)
plt.title('The	Elbow	Method')
plt.xlabel('Number	of	clusters')
plt.ylabel('WCSS')

plt.show()	

Notice	 that	 the	 “elbow”	 points	 at	 5	 (number	 of	 clusters).	 Coincidentally,	 this
number	was	also	the	“desired”	number	of	groups	that	will	subdivide	the	dataset
according	to	their	Annual	Income	and	Spending	Score.

After	 determining	 the	 optimal	 number	 of	 clusters,	 we	 can	 then	 proceed	 with
applying	K-Means	to	the	dataset	and	then	performing	data	visualization:	kmeans
=	KMeans(n_clusters	=	5,	init	=	'k-means++',	random_state	=	42)
y_kmeans	 =	 kmeans.fit_predict(X)	 plt.scatter(X[y_kmeans	 ==	 0,	 0],
X[y_kmeans	==	0,	1],	s	=	100,	c	=	'red',	label	=	'Cluster	1')
plt.scatter(X[y_kmeans	==	1,	 0],	X[y_kmeans	==	1,	 1],	 s	=	 100,	 c	=	 'blue',
label	=	'Cluster	2')
plt.scatter(X[y_kmeans	==	2,	0],	X[y_kmeans	==	2,	1],	s	=	100,	c	=	'green',
label	=	'Cluster	3')
plt.scatter(X[y_kmeans	==	3,	0],	X[y_kmeans	==	3,	1],	 s	=	100,	c	=	 'cyan',
label	=	'Cluster	4')
plt.scatter(X[y_kmeans	 ==	 4,	 0],	 X[y_kmeans	 ==	 4,	 1],	 s	 =	 100,	 c	 =
'magenta',	label	=	'Cluster	5')
plt.scatter(kmeans.cluster_centers_[:,	 0],	 kmeans.cluster_centers_[:,	 1],	 s	 =
300,	c	=	'yellow',	label	=	'Centroids')
plt.title('Clusters	of	customers')
plt.xlabel('Annual	Income	(k$)')



plt.ylabel('Spending	Score	(1-100)')
plt.legend()

plt.show()	

There	we	have	it.	We	have	5	clusters	and	Cluster	#2	(blue	points,	High	Annual
Income	and	Low	Spending	Score)	is	significant	enough.	It	might	be	worthwhile
for	the	marketing	department	to	focus	on	that	group.

Also	 notice	 the	Centroids	 (the	 yellow	points).	 This	 is	 a	 part	 of	 how	K-Means
clustering	 works.	 It’s	 an	 iterative	 approach	 where	 random	 points	 are	 placed
initially	until	they	converge	to	a	minimum	(e.g.	sum	of	distances	is	minimized).

As	mentioned	 earlier,	 it	 can	 all	 be	 arbitrary	 and	 it	may	depend	heavily	on	our
judgment	 and	 possible	 application.	We	 can	 set	 n_clusters	 into	 anything	 other
than	 5.	We	 only	 used	 the	 Elbow	Method	 so	 we	 can	 have	 a	 more	 sound	 and
consistent	basis	for	the	number	of	clusters.	But	it’s	still	up	to	our	judgment	what
should	we	use	and	if	the	results	are	good	enough	for	our	application.

Anomaly	Detection

Aside	from	revealing	the	natural	clusters,	it’s	also	a	common	case	to	see	if	there
are	 obvious	 points	 that	 don’t	 belong	 to	 those	 clusters.	 This	 is	 the	 heart	 of
detecting	anomalies	or	outliers	in	data.

This	 is	a	crucial	 task	because	any	 large	deviation	from	the	normal	can	cause	a
catastrophe.	Is	a	credit	card	transaction	fraudulent?	Is	a	login	activity	suspicious
(you	might	 be	 logging	 in	 from	 a	 totally	 different	 location	 or	 device)?	Are	 the
temperature	 and	 pressure	 levels	 in	 a	 tank	 being	 maintained	 consistently	 (any
outlier	 might	 cause	 explosions	 and	 operational	 halt)?	 Is	 a	 certain	 data	 point
caused	by	wrong	entry	or	measurement	(e.g.	perhaps	inches	were	used	instead	of



centimeters)?

With	straightforward	data	visualization	we	can	immediately	see	the	outliers.	We
can	 then	evaluate	 if	 these	outliers	present	 a	major	 threat.	We	can	also	 see	 and
assess	 those	outliers	by	 referring	 to	 the	mean	and	standard	deviation.	 If	 a	data
point	deviates	by	a	standard	deviation	from	the	mean,	it	could	be	an	anomaly.

This	 is	 also	where	our	domain	 expertise	 comes	 in.	 If	 there’s	 an	 anomaly,	 how
serious	 are	 the	 consequences?	 For	 instance,	 there	 might	 be	 thousands	 of
purchase	transactions	happening	in	an	online	store	every	day.	If	we’re	too	tight
with	our	anomaly	detection,	many	of	those	transactions	will	be	rejected	(which
results	 to	 loss	of	sales	and	profits).	On	the	other	hand,	 if	we’re	allowing	much
freedom	in	our	anomaly	detection	our	system	would	approve	more	transactions.
However,	 this	might	 lead	 to	complaints	 later	and	possibly	 loss	of	customers	 in
the	long	term.

Notice	here	that	it’s	not	all	about	algorithms	especially	when	we’re	dealing	with
business	 cases.	 Each	 field	 might	 require	 a	 different	 sensitivity	 level.	 There’s
always	a	tradeoff	and	either	of	the	options	could	be	costly.	It’s	a	matter	of	testing
and	 knowing	 if	 our	 system	 of	 detecting	 anomalies	 is	 sufficient	 for	 our
application.



13.	Association	Rule	Learning

This	is	a	continuation	of	Unsupervised	Learning.	In	the	previous	chapter	we’ve
discovered	 natural	 patterns	 and	 aggregates	 in	Mall_Customers.csv.	 There	 was
not	much	 supervision	and	guidance	on	how	 the	 “correct	 answers”	 should	 look
like.	We’ve	allowed	 the	algorithms	 to	discover	and	study	 the	data.	As	a	 result,
we’re	able	to	gain	insights	from	the	data	that	we	can	use.

In	 this	 chapter	 we’ll	 focus	 on	 Association	 Rule	 Learning.	 The	 goal	 here	 is
discover	 how	 items	 are	 “related”	 or	 associated	with	 one	 another.	 This	 can	 be
very	useful	in	determining	which	products	should	be	placed	together	in	grocery
stores.	 For	 instance,	many	 customers	might	 always	 be	 buying	 bread	 and	milk
together.	We	can	then	rearrange	some	shelves	and	products	so	the	bread	and	milk
will	be	near	to	each	other.

This	can	also	be	a	good	way	to	recommend	related	products	 to	customers.	For
example,	many	customers	might	be	buying	diapers	online	and	 then	purchasing
books	 about	 parenting	 later.	 These	 two	 products	 have	 strong	 associations
because	 they	 mark	 the	 customer’s	 life	 transition	 (having	 a	 baby).	 Also	 if	 we
notice	a	demand	surge	in	diapers,	we	might	also	get	ready	with	parenting	books.
This	 is	 a	 good	 way	 to	 somehow	 forecast	 and	 prepare	 for	 future	 demands	 by
buying	supplies	in	advance.

In	 grocery	 shopping	 or	 any	 business	 involved	 in	 retail	 and	 wholesale
transactions,	 Association	 Rule	 Learning	 can	 be	 very	 useful	 in	 optimization
(encouraging	 customers	 to	 buy	 more	 products)	 and	 matching	 supply	 with
demand	 (e.g.	 sales	 improvement	 in	 one	product	 also	 signals	 the	 same	 thing	 to
another	related	product).

Explanation

So	how	do	we	determine	the	“level	of	relatedness”	of	items	to	one	another	and
create	useful	groups	out	of	it.?	One	straightforward	approach	is	by	counting	the
transactions	 that	 involve	 a	 particular	 set.	 For	 example,	we	 have	 the	 following
transactions:

Transaction Purchases

1 Egg,	ham,	hotdog



2 Egg,	ham,	milk

3 Egg,	apple,	onion

4 Beer,	milk,	juice

	

Our	target	set	is	{Egg,	ham}.	Notice	that	this	combination	of	purchases	occurred
in	 2	 transactions	 (Transactions	 1	 and	 2).	 In	 other	 words,	 this	 combination
happened	50%	of	 the	 time.	 It’s	a	simple	example	but	 if	we’re	studying	10,000
transactions	 and	 50%	 is	 still	 the	 case,	 of	 course	 there’s	 a	 strong	 association
between	egg	and	ham.

We	might	 then	 realize	 that	 it’s	 worthwhile	 to	 put	 eggs	 and	 hams	 together	 (or
offer	them	in	a	bundle)	to	make	our	customers’	lives	easier	(while	we	also	make
more	sales).	The	higher	the	percentage	of	our	target	set	in	the	total	transactions,
the	better.	Or,	if	the	percentage	still	falls	under	our	arbitrary	threshold	(e.g.	30%,
20%),	we	could	still	pay	attention	to	a	particular	set	and	make	adjustments	to	our
products	and	offers.

Aside	 from	 calculating	 the	 actual	 percentage,	 another	 way	 to	 know	 how
“popular”	an	itemset	is	by	working	on	probabilities.	For	example,	how	likely	is
product	 X	 to	 appear	 with	 product	 Y?	 If	 there’s	 a	 high	 probability,	 we	 can
somehow	say	that	the	two	products	are	closely	related.

Those	are	ways	of	estimating	 the	“relatedness”	or	 level	of	association	between
two	products.	One	or	a	combination	of	approaches	might	be	already	enough	for
certain	 applications.	 Perhaps	working	on	probabilities	 yields	 better	 results.	Or,
prioritising	 a	 very	 popular	 itemset	 (high	 percentage	 of	 occurrence)	 results	 to
more	transactions.

In	the	end,	 it	might	be	about	 testing	different	approaches	(and	combinations	of
products)	and	then	seeing	which	one	yields	the	optimal	results.	It	might	be	even
the	case	that	a	combination	of	two	products	with	very	low	relatedness	allow	for
more	purchases	to	happen.

Apriori

Whichever	is	the	case,	let’s	explore	how	it	all	applies	to	the	real	world.	Let’s	call
the	problem	“Market	Basket	Optimization.”	Our	goal	here	is	to	generate	a	list	of



sets	(product	sets)	and	their	corresponding	level	of	relatedness	or	support	to	one
another.	 Here’s	 a	 peek	 of	 the	 dataset	 to	 give	 you	 a	 better	 idea:
shrimp,almonds,avocado,vegetables	 mix,green	 grapes,whole	 weat
flour,yams,cottage	 cheese,energy	 drink,tomato	 juice,low	 fat	 yogurt,green
tea,honey,salad,mineral	 water,salmon,antioxydant	 juice,frozen
smoothie,spinach,olive	oil
burgers,meatballs,eggs
chutney
turkey,avocado
mineral	water,milk,energy	bar,whole	wheat	rice,green	tea
low	fat	yogurt
whole	wheat	pasta,french	fries
soup,light	cream,shallot
frozen	vegetables,spaghetti,green	tea
french	fries	Those	 are	 listed	 according	 to	 the	 transactions	where	 they	 appear.
For	example,	in	the	first	transaction	the	customer	bought	different	things	(from
shrimp	 to	 olive	 oil).	 In	 the	 second	 transaction	 the	 customer	 bought	 burgers,
meatballs,	and	eggs.

As	before,	let’s	import	the	necessary	library/libraries	so	that	we	can	work	on	the
data:	import	pandas	as	pd
dataset	 =	 pd.read_csv('Market_Basket_Optimisation.csv',	 header	 =	 None)
Next	is	we	add	the	items	in	a	list	so	that	we	can	work	on	them	much	easier.	We
can	accomplish	this	by	initializing	an	empty	list	and	then	running	a	for	loop	(still
remember	how	to	do	all	these?):	transactions	=	[]
for	i	in	range(0,	7501):
transactions.append([str(dataset.values[i,j])	 for	 j	 in	 range(0,	 20)])	 After
we’ve	done	that,	we	should	then	generate	a	list	of	“related	products”	with	their
corresponding	level	of	support	or	relatedness.	One	way	to	accomplish	this	is	by
the	 implementation	 of	 the	 Apriori	 algorithm	 (for	 association	 rule	 learning).
Thankfully,	we	don’t	have	to	write	anything	from	scratch.

We	can	use	Apyori	which	is	a	simple	implementation	of	the	Apriori	algorithm.
You	 can	 find	 it	 here	 for	 your	 reference:
https://pypi.org/project/apyori/#description

It’s	prebuilt	 for	us	and	almost	 ready	for	our	own	usage.	 It’s	similar	 to	how	we
use	scikit-learn,	pandas,	and	numpy.	Instead	of	starting	from	scratch,	we	already
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have	blocks	of	code	we	can	simply	implement.	Take	note	that	coding	everything
from	scratch	is	time	consuming	and	technically	challenging.

To	 implement	 Apyori,	 we	 can	 import	 it	 similarly	 as	 how	 we	 import	 other
libraries:	from	apyori	import	apriori	Next	is	we	set	up	the	rules	(the	levels	of
minimum	relatedness)	so	we	can	somehow	generate	a	useful	list	of	related	items.
That’s	because	almost	any	two	items	might	have	some	level	of	relatedness.	The
objective	here	is	to	include	only	the	list	that	could	be	useful	for	us.

rules	 =	 apriori(transactions,	 min_support	 =	 0.003,	 min_confidence	 =	 0.2,
min_lift	=	3,	min_length	=	2)	Well	 that’s	 the	 implementation	 of	Apriori	 using
Apyori.	The	next	step	is	to	generate	and	view	the	results.	We	can	accomplish	this
using	the	following	block	of	code:	results	=	list(rules)
results_list	=	[]
for	i	in	range(0,	len(results)):
results_list.append('RULE:\t'	 +	 str(results[i][0])	 +	 '\nSUPPORT:\t'	 +
str(results[i][1]))
print	(results_list)	When	you	run	all	 the	code	 in	Jupyter	Notebook,	you’ll	see
something	 like	 this:	

It’s	messy	 and	 almost	 incomprehensible.	 But	 if	 you	 run	 it	 in	 Spyder	 (another
useful	 data	 science	 package	 included	 in	Anaconda	 installation),	 the	 result	will



look	a	bit	neater:	

Notice	that	there	are	different	itemsets	with	their	corresponding	“Support.”	The
higher	 the	 Support,	 we	 can	 somehow	 say	 that	 the	 higher	 the	 relatedness.	 For
instance,	 light	 cream	 and	 chicken	 often	 go	 together	 because	 people	 might	 be
using	 the	 two	 to	 cook	 something.	 Another	 example	 is	 in	 the	 itemset	 with	 an
index	of	 5	 (tomato	 sauce	 and	ground	beef).	These	 two	 items	might	 always	go
together	 in	 the	 grocery	 bag	 because	 they’re	 also	 used	 to	 prepare	 a	 meal	 or	 a
recipe.

This	is	only	an	introduction	of	Association	Rule	Learning.	The	goal	here	was	to
explore	 the	 potential	 applications	 of	 it	 to	 real-world	 scenarios	 such	 as	market
basket	optimization.	There	are	other	more	sophisticated	ways	to	do	this.	But	in
general,	it’s	about	determining	the	level	of	relatedness	among	the	items	and	then
evaluating	that	if	it’s	useful	or	good	enough.



14.	Reinforcement	Learning

Notice	that	in	the	previous	chapters,	the	focus	is	on	working	on	past	information
and	 then	deriving	 insights	 from	 it.	 In	other	words,	we’re	much	 focused	on	 the
past	than	on	the	present	and	future.

But	for	data	science	and	machine	learning	to	become	truly	useful,	the	algorithms
and	 systems	 should	 work	 on	 real-time	 situations.	 For	 instance,	 we	 require
systems	that	learn	real-time	and	adjusts	accordingly	to	maximize	the	rewards.

What	is	Reinforcement	Learning?

This	is	where	Reinforcement	Learning	(RL)	comes	in.	In	a	nutshell,	RL	is	about
reinforcing	 the	correct	or	desired	behaviors	as	 time	passes.	A	reward	for	every
correct	behavior	and	a	punishment	otherwise.

Recently	RL	was	implemented	to	beat	world	champions	at	the	game	of	Go	and
successfully	play	various	Atari	video	games	(although	Reinforcement	Learning
there	 was	 more	 sophisticated	 and	 incorporated	 deep	 learning).	 As	 the	 system
learns	from	reinforcement,	it	was	able	to	achieve	a	goal	or	maximize	the	reward.

One	simple	example	is	in	the	optimization	of	click-through	rates	(CTR)	of	online
ads.	 Perhaps	 you	 have	 10	 ads	 that	 essentially	 say	 the	 same	 thing	 (maybe	 the
words	and	designs	are	slightly	different	from	one	another).	At	first	you	want	to
know	which	ad	performs	best	and	yields	the	highest	CTR.	After	all,	more	clicks
could	mean	more	prospects	and	customers	for	your	business.

But	if	you	want	to	maximize	the	CTR,	why	not	perform	the	adjustments	as	the
ads	are	being	run?	In	other	words,	don’t	wait	for	your	entire	ad	budget	to	run	out
before	 knowing	 which	 one	 performed	 best.	 Instead,	 find	 out	 which	 ads	 are
performing	best	while	they’re	being	run.	Make	adjustments	early	on	so	later	only
the	highest-performing	ads	will	be	shown	to	the	prospects.

It’s	very	similar	to	a	famous	problem	in	probability	theory	about	the	multi-armed
bandit	problem.	Let’s	say	you	have	a	 limited	resource	(e.g.	advertising	budget)
and	some	choices	(10	ad	variants).	How	will	you	allocate	your	resource	among
those	choices	so	you	can	maximize	your	gain	(e.g.	optimal	CTR)?

First,	 you	 have	 to	 “explore”	 and	 try	 the	 ads	 one	 by	 one.	Of	 course,	 if	 you’re
seeing	 that	Ad	1	performs	unusually	well,	you’ll	“exploit”	 it	and	run	 it	 for	 the
rest	of	the	campaign.	You	don’t	need	to	waste	your	money	on	underperforming



ads.	Stick	to	the	winner	and	continuously	exploit	its	performance.

There’s	 one	 catch	 though.	 Early	 on	 Ad	 1	might	 be	 performing	well	 so	 we’re
tempted	 to	 use	 it	 again	 and	 again.	 But	what	 if	Ad	 2	 catches	 up	 and	 if	we	 let
things	 unfold	Ad	 2	will	 produce	 higher	 gains?	We’ll	 never	 know	 because	 the
performance	of	Ad	1	was	already	exploited.

There	 will	 always	 be	 tradeoffs	 in	 many	 data	 analysis	 and	 machine	 learning
projects.	 That’s	 why	 it’s	 always	 recommended	 to	 set	 performance	 targets
beforehand	 instead	 of	 wondering	 about	 the	 what-ifs	 later.	 Even	 in	 the	 most
sophisticated	 techniques	 and	 algorithms,	 tradeoffs	 and	 constraints	 are	 always
there.

Comparison	with	Supervised	&	Unsupervised	Learning

Notice	 that	 the	 definition	 of	Reinforcement	Learning	 doesn’t	 exactly	 fit	 under
either	 Supervised	 or	 Unsupervised	 Learning.	 Remember	 that	 Supervised
Learning	is	about	learning	through	supervision	and	training.	On	the	other	hand,
Unsupervised	 Learning	 is	 actually	 revealing	 or	 discovering	 insights	 from
unstructured	data	(no	supervision,	no	labels).

One	key	difference	 compared	 to	RL	 is	 in	maximizing	 the	 set	 reward,	 learning
from	user	interaction,	and	the	ability	to	update	itself	in	real	time.	Remember	that
RL	 is	 first	 about	 exploring	 and	 exploiting.	 In	 contrast,	 both	 Supervised	 and
Unsupervised	 Learning	 can	 be	 more	 about	 passively	 learning	 from	 historical
data	(not	real	time).

There’s	 a	 fine	 boundary	 among	 the	 3	 because	 all	 of	 them	 are	 still	 concerned
about	 optimization	 in	 one	 way	 or	 another.	 Whichever	 is	 the	 case,	 all	 3	 have
useful	applications	in	both	scientific	and	business	settings.

Applying	Reinforcement	Learning

RL	 is	 particularly	 useful	 in	many	business	 scenarios	 such	 as	 optimizing	 click-
through	rates.	How	can	we	maximize	the	number	of	clicks	for	a	headline?	Take
note	that	news	stories	often	have	limited	lifespans	in	terms	of	their	relevance	and
popularity.	Given	that	limited	resource	(time),	how	can	we	immediately	show	the
best	performing	headline?

This	is	also	the	case	in	maximising	the	CTR	of	online	ads.	We	have	a	limited	ad
budget	and	we	want	to	get	the	most	out	of	it.	Let’s	explore	an	example	(using	the



data	from	Ads_CTR_Optimisation.csv)	to	better	illustrate	the	idea:	As	usual	we
first	import	the	necessary	libraries	so	that	we	can	work	on	our	data	(and	also	for
data	visualization)	import	matplotlib.pyplot	as	plt
import	pandas	as	pd
%matplotlib	 inline	 #so	 plots	 can	 show	 in	 our	 Jupyter	 Notebook	We	 then
import	 the	 dataset	 and	 take	 a	 peek	 dataset	 =
pd.read_csv('Ads_CTR_Optimisation.csv')	 dataset.head(10)	

In	 each	 round,	 the	 ads	 are	 displayed	 and	 it’s	 indicated	 which	 one/ones	 were
clicked	(0	if	not	clicked,	1	if	clicked).	As	discussed	earlier,	the	goal	is	to	explore
first,	pick	the	winner	and	then	exploit	it.

One	popular	way	to	achieve	this	is	by	Thompson	Sampling.	Simply,	it	addresses
the	exploration-exploitation	dilemma	(trying	to	achieve	a	balance)	by	sampling
or	 trying	 the	 promising	 actions	 while	 ignoring	 or	 discarding	 actions	 that	 are
likely	 to	 underperform.	 The	 algorithm	works	 on	 probabilities	 and	 this	 can	 be
expressed	in	code	through	the	following:	import	random
N	=	10000
d	=	10
ads_selected	=	[]
numbers_of_rewards_1	=	[0]	*	d
numbers_of_rewards_0	=	[0]	*	d
total_reward	=	0
for	n	in	range(0,	N):
ad	=	0
max_random	=	0



for	i	in	range(0,	d):
random_beta	 =	 random.betavariate(numbers_of_rewards_1[i]	 +	 1,
numbers_of_rewards_0[i]	+	1)
if	random_beta	>	max_random:
max_random	=	random_beta
ad	=	i
ads_selected.append(ad)
reward	=	dataset.values[n,	ad]
if	reward	==	1:
numbers_of_rewards_1[ad]	=	numbers_of_rewards_1[ad]	+	1
else:
numbers_of_rewards_0[ad]	=	numbers_of_rewards_0[ad]	+	1
total_reward	 =	 total_reward	 +	 reward	 When	 we	 run	 and	 the	 code	 and
visualize:	plt.hist(ads_selected)
plt.title('Histogram	of	ads	selections')
plt.xlabel('Ads')
plt.ylabel('Number	of	times	each	ad	was	selected')

plt.show()	

Notice	that	the	implementation	of	Thompson	sampling	can	be	very	complex.	It’s
an	interesting	algorithm	which	is	widely	popular	in	online	ad	optimization,	news
article	recommendation,	product	assortment	and	other	business	applications.

There	are	other	interesting	algorithms	and	heuristics	such	as	Upper	Confidence
Bound.	 The	 goal	 is	 to	 earn	 while	 learning.	 Instead	 of	 later	 analysis,	 our
algorithm	 can	 perform	 and	 adjust	 in	 real	 time.	We’re	 hoping	 to	maximize	 the
reward	 by	 trying	 to	 balance	 the	 tradeoff	 between	 exploration	 and	 exploitation
(maximize	 immediate	 performance	 or	 “learn	 more”	 to	 improve	 future



performance).	 It’s	an	 interesting	 topic	 itself	and	 if	you	want	 to	dig	deeper,	you
can	 read	 the	 following	 Thompson	 Sampling	 tutorial	 from	 Stanford:
https://web.stanford.edu/~bvr/pubs/TS_Tutorial.pdf
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15.	Artificial	Neural	Networks

For	 us	 humans	 it’s	 very	 easy	 for	 us	 to	 recognize	 objects	 and	 digits.	 It’s	 also
effortless	 for	us	 to	know	the	meaning	of	a	sentence	or	piece	of	 text.	However,
it’s	an	entirely	different	case	with	computers.	What’s	automatic	and	trivial	for	us
could	be	an	enormous	task	for	computers	and	algorithms.

In	contrast,	computers	can	perform	long	and	complex	mathematical	calculations
while	we	humans	are	terrible	at	it.	It’s	interesting	that	the	capabilities	of	humans
and	computers	are	opposites	or	complementary.

But	the	natural	next	step	is	to	imitate	or	even	surpass	human	capabilities.	It’s	like
the	goal	is	to	replace	humans	at	what	they	do	best.	In	the	near	future	we	might
not	be	able	to	tell	the	difference	whether	whom	we’re	talking	to	is	human	or	not.

An	Idea	of	How	the	Brain	Works

To	accomplish	this,	one	of	the	most	popular	and	promising	ways	is	through	the
use	of	artificial	neural	networks.	These	are	loosely	inspired	by	how	our	neurons
and	brains	work.	The	prevailing	model	about	how	our	brains	work	is	by	neurons
receiving,	 processing,	 and	 sending	 signals	 (may	 connect	 with	 other	 neurons,
receive	input	from	senses,	or	give	an	output).	Although	it’s	not	a	100%	accurate
understanding	about	the	brain	and	neurons,	this	model	is	useful	enough	for	many
applications.

This	is	the	case	in	artificial	neural	networks	wherein	there	are	neurons	(placed	in
one	 or	 few	 layers	 usually)	 receiving	 and	 sending	 signals.	 Here’s	 a	 basic
illustration	 from	 TensorFlow	 Playground:	
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Notice	 that	 it	 started	with	 the	 features	 (the	 inputs)	 and	 then	 they’re	 connected
with	2	“hidden	layers”	of	neurons.	Finally	there’s	an	output	wherein	the	data	was
already	processed	iteratively	to	create	a	useful	model	or	generalization.

In	many	cases	how	artificial	neural	networks	(ANNs)	are	used	is	very	similar	to
how	 Supervised	 Learning	 works.	 In	 ANNs,	 we	 often	 take	 a	 large	 number	 of
training	 examples	 and	 then	 develop	 a	 system	which	 allows	 for	 learning	 from
those	 said	 examples.	 During	 learning,	 our	ANN	 automatically	 infers	 rules	 for
recognizing	an	image,	text,	audio	or	any	other	kind	of	data.

As	you	might	have	already	realized,	the	accuracy	of	recognition	heavily	depend
on	the	quality	and	quantity	of	our	data.	After	all,	 it’s	Garbage	In	Garbage	Out.
Artificial	neural	networks	learn	from	what	feed	in	to	it.	We	might	still	improve
the	accuracy	and	performance	 through	means	other	 than	 improving	 the	quality
and	quantity	of	data	 (such	as	 feature	 selection,	 changing	 the	 learning	 rate,	 and
regularization).

Potential	&	Constraints

The	 idea	 behind	 artificial	 neural	 networks	 is	 actually	 old.	 But	 recently	 it	 has
undergone	massive	reemergence	that	many	people	(whether	they	understand	it	or
not)	talk	about	it.

Why	 did	 it	 become	 popular	 again?	 It’s	 because	 of	 data	 availability	 and
technological	 developments	 (especially	 massive	 increase	 in	 computational



power).	Back	then	creating	and	implementing	an	ANN	might	be	impractical	 in
terms	of	time	and	other	resources.

But	it	all	changed	because	of	more	data	and	increased	computational	power.	It’s
very	 likely	 that	 you	 can	 implement	 an	 artificial	 neural	 network	 right	 in	 your
desktop	 or	 laptop	 computer.	 And	 also,	 behind	 the	 scenes	 ANNs	 are	 already
working	to	give	you	the	most	relevant	search	results,	most	likely	products	you’ll
purchase,	 or	 the	most	 probable	 ads	 you’ll	 click.	ANNs	 are	 also	 being	 used	 to
recognize	the	content	of	audio,	image,	and	video.

Many	 experts	 say	 that	 we’re	 only	 scratching	 the	 surface	 and	 artificial	 neural
networks	 still	 have	 a	 lot	 of	 potential.	 It’s	 like	 when	 an	 experiment	 about
electricity	 (done	 by	Michael	 Faraday)	was	 performed	 and	 no	 one	 had	 no	 idea
what	use	would	come	from	it.	As	the	story	goes,	Faraday	told	that	the	UK	Prime
Minister	would	 soon	be	 able	 to	 tax	 it.	Today,	 almost	 every	 aspect	 of	our	 lives
directly	or	indirectly	depends	on	electricity.

This	might	also	be	the	case	with	artificial	neural	networks	and	the	exciting	field
of	 Deep	 Learning	 (a	 subfield	 of	 machine	 learning	 that	 is	 more	 focused	 on
ANNs).

Here’s	an	Example

With	TensorFlow	Playground	we	can	get	a	quick	idea	of	how	it	all	works.	Go	to
their	website	 (https://playground.tensorflow.org/)	 and	 take	note	of	 the	different
words	 there	 such	 as	 Learning	 Rate,	 Activation,	 Regularization,	 Features,	 and
Hidden	Layers.	At	the	beginning	it	will	look	like	this	(you	didn’t	click	anything

yet):	

Click	the	“Play”	button	(upper	left	corner)	and	see	the	cool	animation	(pay	close
attention	 to	 the	Output	at	 the	 far	 right.	After	 some	 time,	 it	will	 look	 like	 this:	
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The	 connections	 became	 clearer	 among	 the	 Features,	 Hidden	 Layers,	 and
Output.	Also	notice	that	the	Output	has	a	clear	Blue	region	(while	the	rest	falls	in
Orange).	This	could	be	a	Classification	task	wherein	blue	dots	belong	to	Class	A
while	the	orange	ones	belong	to	Class	B.

As	 the	 ANN	 runs,	 notice	 that	 the	 division	 between	 Classs	 A	 and	 Class	 B
becomes	 clearer.	 That’s	 because	 the	 system	 is	 continuously	 learning	 from	 the
training	 examples.	 As	 the	 learning	 becomes	 more	 solid	 (or	 as	 the	 rules	 are
getting	inferred	more	accurately),	the	classification	also	becomes	more	accurate.

Exploring	 the	 TensorFlow	 Playground	 is	 a	 quick	 way	 to	 get	 an	 idea	 of	 how
neural	networks	operate.	It’s	a	quick	visualization	(although	not	a	100%	accurate
representation)	so	we	can	see	the	Features,	Hidden	Layers,	and	Output.	We	can
even	do	some	tweaking	like	changing	the	Learning	Rate,	the	ratio	of	training	to
test	data,	and	the	number	of	Hidden	Layers.

For	 instance,	 we	 can	 set	 the	 number	 of	 hidden	 layers	 to	 3	 and	 change	 the
Learning	Rate	to	1	(instead	of	0.03	earlier).	We	should	see	something	like	this:	

When	we	click	 the	Play	button	and	 let	 it	 run	 for	 a	while,	 somehow	 the	 image



will	remain	like	this:	

Pay	attention	to	the	Output.	Notice	that	the	Classification	seems	worse.	Instead
of	enclosing	most	of	the	yellow	points	under	the	Yellow	region,	there	are	a	lot	of
misses	 (many	yellow	points	 fall	 under	 the	Blue	 region	 instead).	This	 occurred
because	of	the	change	in	parameters	we’ve	done.

For	instance,	the	Learning	Rate	has	a	huge	effect	on	accuracy	and	achieving	just
the	right	convergence.	If	we	make	the	Learning	Rate	too	low,	convergence	might
take	 a	 lot	 of	 time.	And	 if	 the	Learning	Rate	 is	 too	 high	 (as	with	 our	 example
earlier),	we	might	not	 reach	 the	convergence	at	all	because	we	overshot	 it	 and
missed.

There	 are	 several	 ways	 to	 achieve	 convergence	 within	 reasonable	 time	 (e.g.
Learning	Rate	is	just	right,	more	hidden	layers,	probably	fewer	or	more	Features
to	 include,	 applying	 Regularization).	 But	 “overly	 optimizing”	 for	 everything
might	not	make	economic	sense.	It’s	good	to	set	a	clear	objective	at	the	start	and
stick	to	 it.	 If	 there	are	other	 interesting	or	promising	opportunities	 that	pop	up,
you	 might	 want	 to	 further	 tune	 the	 parameters	 and	 improve	 the	 model’s
performance.

Anyway,	 if	 you	want	 to	 get	 an	 idea	 how	 an	ANN	might	 look	 like	 in	 Python,
here’s	a	sample	code:	X	=	np.array([	[0,0,1],[0,1,1],[1,0,1],[1,1,1]	])
y	=	np.array([[0,1,1,0]]).T
syn0	=	2*np.random.random((3,4))	-	1
syn1	=	2*np.random.random((4,1))	-	1
for	j	in	xrange(60000):
l1	=	1/(1+np.exp(-(np.dot(X,syn0))))
l2	=	1/(1+np.exp(-(np.dot(l1,syn1))))
l2_delta	=	(y	-	l2)*(l2*(1-l2))
l1_delta	=	l2_delta.dot(syn1.T)	*	(l1	*	(1-l1))



syn1	+=	l1.T.dot(l2_delta)
syn0	 +=	 X.T.dot(l1_delta)	 From	 https://iamtrask.github.io/2015/07/12/basic-
python-network/

It’s	a	very	simple	example.	In	real	world,	artificial	neural	networks	would	look
long	 and	 complex	 when	 written	 from	 scratch.	 Thankfully,	 how	 to	 work	 with
them	is	becoming	more	“democratized,”	which	means	even	people	with	limited
technical	backgrounds	would	be	able	to	take	advantage	of	them.
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16.	Natural	Language	Processing

Can	we	make	computers	understand	words	and	sentences?	As	mentioned	in	the
previous	 chapter,	 one	 of	 the	 goals	 is	 to	 match	 or	 surpass	 important	 human
capabilities.	One	of	those	capabilities	is	language	(communication,	knowing	the
meaning	 of	 something,	 arriving	 at	 conclusions	 based	 on	 the	 words	 and
sentences).

This	 is	where	Natural	Language	Processing	or	NLP	comes	 in.	 It’s	 a	branch	of
artificial	 intelligence	 wherein	 the	 focus	 is	 on	 understanding	 and	 interpreting
human	 language.	 It	can	cover	 the	understanding	and	 interpretation	of	both	 text
and	speech.

Have	you	ever	done	a	voice	search	 in	Google?	Are	you	familiar	with	chatbots
(they	 automatically	 respond	 based	 on	 your	 inquiries	 and	 words)?	What	 about
Google	Translate?	Have	you	ever	talked	to	an	AI	customer	service	system?

It’s	Natural	Language	Processing	(NLP)	at	work.	In	fact,	within	a	few	or	several
years	 the	 NLP	 market	 might	 become	 a	 multi-billion	 dollar	 industry.	 That’s
because	it	could	be	widely	used	in	customer	service,	creation	of	virtual	assistants
(similar	to	Iron	Man’s	JARVIS),	healthcare	documentation,	and	other	fields.

Natural	 Language	 Processing	 is	 even	 used	 in	 understanding	 the	 content	 and
gauging	 sentiments	 found	 in	 social	 media	 posts,	 blog	 comments,	 product
reviews,	news,	and	other	online	sources.	NLP	is	very	useful	in	these	areas	due	to
the	massive	 availability	 of	 data	 from	 online	 activities.	Remember	 that	we	 can
vastly	 improve	 our	 data	 analysis	 and	 machine	 learning	 model	 if	 we	 have
sufficient	amounts	of	quality	data	to	work	on.

Analyzing	Words	&	Sentiments

One	 of	 the	most	 common	 uses	 of	NLP	 is	 in	 understanding	 the	 sentiment	 in	 a
piece	of	text	(e.g.	Is	it	a	positive	or	negative	product	review?What	does	the	tweet
say	overall?).	If	we	only	have	a	dozen	comments	and	reviews	to	read,	we	don’t
need	any	technology	to	do	the	task.	But	what	if	we	have	to	deal	with	hundreds	or
thousands	of	sentences	to	read?

Technology	is	very	useful	in	this	large-scale	task.	Implementing	NLP	can	make
our	 lives	 a	 bit	 easier	 and	 even	 make	 the	 results	 a	 bit	 more	 consistent	 and
reproducible.



To	get	started,	let’s	study	Restaurant_Reviews.tsv	(let’s	take	a	peek):
Wow...	Loved	this	place.	1
Crust	is	not	good.	0
Not	tasty	and	the	texture	was	just	nasty.	0
Stopped	by	during	the	late	May	bank	holiday	off	Rick	Steve	recommendation	and	loved	it.	1
The	selection	on	the	menu	was	great	and	so	were	the	prices.	1
Now	I	am	getting	angry	and	I	want	my	damn	pho.	0
Honeslty	it	didn't	taste	THAT	fresh.)	0
The	potatoes	were	 like	rubber	and	you	could	tell	 they	had	been	made	up	ahead	of	 time	being	kept
under	a	warmer.	0
The	fries	were	great	too.	1

The	 first	 part	 is	 the	 statement	 wherein	 a	 person	 shares	 his/her	 impression	 or
experience	 about	 the	 restaurant.	 The	 second	 part	 is	 whether	 that	 statement	 is
negative	 or	 not	 (0	 if	 negative,	 1	 if	 positive	 or	 Liked).	Notice	 that	 this	 is	 very
similar	with	Supervised	Learning	wherein	there	are	labels	early	on.

However,	NLP	is	different	because	we’re	dealing	mainly	with	text	and	language
instead	 of	 numerical	 data.	 Also,	 understanding	 text	 (e.g.	 finding	 patterns	 and
inferring	 rules)	 can	 be	 a	 huge	 challenge.	 That’s	 because	 language	 is	 often
inconsistent	with	no	explicit	rules.	For	instance,	the	meaning	of	the	sentence	can
change	 dramatically	 by	 rearranging,	 omitting,	 or	 adding	 a	 few	 words	 in	 it.
There’s	 also	 the	 thing	 about	 context	 wherein	 how	 the	 words	 are	 used	 greatly
affect	the	meaning.	We	also	have	to	deal	with	“filler”	words	that	are	only	there	to
complete	the	sentence	but	not	important	when	it	comes	to	meaning.

Understanding	 statements,	 getting	 the	meaning	 and	 determining	 the	 emotional
state	of	the	writer	could	be	a	huge	challenge.	That’s	why	it’s	really	difficult	even
for	 experienced	programmers	 to	 come	up	with	 a	 solution	on	how	 to	deal	with
words	and	language.

Using	NLTK

Thankfully,	 there	 are	 now	 suites	 of	 libraries	 and	 programs	 that	 make	 Natural
Language	 Processing	 within	 reach	 even	 for	 beginner	 programmers	 and
practitioners.	 One	 of	 the	most	 popular	 suites	 is	 the	 Natural	 Language	 Toolkit
(NLTK).

With	NLTK	(developed	by	Steven	Bird	and	Edward	Loper	in	the	Department	of
Computer	 and	 Information	 Science	 at	 the	 University	 of	 Pennsylvania.),	 text
processing	becomes	a	bit	more	straightforward	because	you’ll	be	implementing
pre-built	code	instead	of	writing	everything	from	scratch.	In	fact,	many	countries



and	universities	actually	incorporate	NLTK	in	their	courses.

	



Thank	you   !
Thank	you	for	buying	this	book!	It	is	intended	to	help	you	understanding	data
analysis	using	Python.	If	you	enjoyed	this	book	and	felt	that	it	added	value	to

your	life,	we	ask	that	you	please	take	the	time	to	review	it.
Your	honest	feedback	would	be	greatly	appreciated.	It	really	does	make	a

difference.

We	are	a	very	small	publishing	company	and	our	survival	depends	on	your
reviews.	Please,	take	a	minute	to	write	us	an	honest	review.
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