O'REILLY"

_\

AN
\\\\\

Visualizatio

with Python
& J avaS cript

SCRAPE, CLEAN & TRANSFORM YOUR DATA

Kyran Dale

data visualization with
python and javascript

Crafting a Data-visualisation
Toolchain for the Web

Kyran Dale

Beijing + Boston + Farnham -« Sebastopol + Tokyo OREILLY®

Data Visualization with Python and JavaScript
by Kyran Dale

Copyright © 2016 Kyran Dale. All rights reserved.
Printed in the United States of America.

Published by O’'Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com .

Editors: Dawn Schanafelt and Meghan Proofreader: FILL IN PROOFREADER

Blanchette Indexer: FILL IN INDEXER
Production Editor: FILL IN PRODUC- Interior Designer: David Futato
TION EDITOR Cover Designer: Karen Montgomery
Copyeditor: FILL IN COPYEDITOR lllustrator: Rebecca Demarest
January -4712: First Edition

Revision History for the First Edition
2016-02-22: First Early Release
2016-03-21: Second Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491956434 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data Visualiza-
tion with Python and JavaScript, the cover image, and related trade dress are trade-
marks of O'Reilly Media, Inc.

While the publisher and the author(s) have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author(s) disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub-
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

978-1-491-95643-4
[FILL IN]

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491956434

Table of Contents

Introduction.......ooovviiiiiiiiiiiiiii v
1. ADevelopmentSetup........oovvriiiiiiiiiiiiierinieennnnns 23
Python 23
JavaScript 26
Databases 28
Integrated Development Environments 28
Summary 29

Partl. ABasic Toolkit

2. Alanguage Learning Bridge Between Python and JavaScript..... 33
Similarities and differences 33
Interacting with the Code 35
Basic Bridge Work 37
Differences in Practice 62
A Cheatsheet 73
Summary 76

3. Reading and Writing Data with Python........................ 77
Easy Does It 77
Passing Data Around 78
Working with System Files 79
CSV, TSV and Row-column Data-formats 80
JSON 83

SQL 86

MongoDB 97

Dealing with Dates, Times and Complex Data 102
Summary 104
4, WebdevT0T....c.iiiiiiiiiiiii it 105
The Big Picture 105
Single-page Apps 106
Tooling Up 106
Building a Web-page 111
Chrome’s Developer Tools 119
A Basic Page with Placeholders 122
Scalable Vector Graphics (SVG) 127
Summary 142

Partll. Getting Your Data

5. Getting Data off the Web with Python........................ 145
Getting Web-data with the requests library 145
Getting Data-files with requests 146
Using Python to Consume Data from a Web-API 149
Using Libraries to access Web-APIs 155
Scraping Data 160
Summary 173

6. Heavyweight Scraping with Scrapy.........c.ooovvvvviinnnn. 175
Setting up Scrapy 176
Establishing the Targets 177
Targeting HTML with Xpaths 179
A First Scrapy Spider 183
Scraping the Individual Biography Pages 189
Chaining Requests and Yielding Data 192
Scrapy Pipelines 196
Scraping Text and Images with a Pipeline 198
Summary 204

iv | Table of Contents

Introduction

This book aims to get you up to speed with what is, in my opinion,
the most powerful data-visualisation stack going: Python and Java-
Script. You'll learn enough of big libraries like Pandas and D3 to
start crafting your own web data-visualisations and refining your
own toolchain. Expertise will come with practice but this book
presents a shallow learning curve to basic competence.

If youre reading this in Early Release form I'd
love to hear any feedback you have. Please post
it to pyjsdataviz@kyrandale.com. Thanks a lot,
Kyran.

You'll also find a working copy of the Nobel-
visualisation the book literally and figuratively
builds towards at http://kyrandale.com/static/pyjs
dataviz/index.html.

The bulk of this book tells one of the innumerable tales of data-
visualisation, one carefully selected to showcase some powerful
Python and JavaScript libraries or tools which together form a tool-
chain. This toolchain gathers raw, unrefined data at its start and
delivers a rich, engaging web-visualisation at its end. Like all tales of
data-visualisation it is a tale of transformation, in this case trans-
forming a basic Wikipedia list of Nobel prize-winners into an inter-
active visualisation, bringing the data to life and making exploration
of the prize’s history easy and fun.

A primary motivation for writing the book is the belief that, what-
ever data you have, whatever story you want to tell with it, the natu-
ral home for the visualizations you transform it into is the web. As a

mailto:pyjsdataviz@kyrandale.com
http://kyrandale.com/static/pyjsdataviz/index.html
http://kyrandale.com/static/pyjsdataviz/index.html

delivery platform it is orders of magnitude more powerful than what
came before and this book aims to smooth the passage from desktop
or server-based data analysis and processing to getting the fruits of
that labour out on the web.

But the most ambitious aim of this book is to persuade you that
working with these two powerful languages towards the goal of
delivering powerful web-visualisations is actually fun and engaging.

I think many potential data-viz programmers assume there is a big
divide, called Web Development, between doing what they would like
to do, which is program in Python and JavaScript. Web-dev involves
loads of arcane knowledge about markup-languages, style-scripts,
administration etc. and can't be done without tools with strange
names like Gulp or Yeoman. I aim to show that these days that big
divide can be collapsed to a thin and very permeable membrane,
allowing you to focus on what you do well, programming stuff (see
Figure P-1) with minimal effort, relegating the web-servers to data-
delivery.

Perceptio

n

ALK

Reality

Figure P-1. Here be web-dev dragons

Who This Book is For

First off, this book is for anyone with a reasonable grasp of Python
or JavaScript who wants to explore one of the most exciting areas in
the data-processing ecosystem right now, the exploding field of
data-visualisation for the web. It’s also about addressing some spe-
cific pain-points which in my experience are quite common.

vi | Introduction

When you get commissioned to write a technical book, chances are
your editor will sensibly caution you to think in terms of ‘pain
points’ that your book aims to address. The two key pain points of
this book are best illustrated by way of a couple of stories, one my
own, the other one that has been told to me in various guises by Jav-
aScripters I know.

Many years ago, as an academic researcher, I came across Python
and fell in love. I had been writing some fairly complex simulations
in C(++) and Python’s simplicity and power was a breathe of fresh
air from all the boilerplate, Makefiles, declarations and definitions
and the like. Programming was fun, Python the perfect glue, playing
nicely with my C(++) libraries (Python wasn’t then and still isn’t a
speed demon) and doing, with consummate ease, all the stuff that in
low level languages is such a pain, e.g. file I/O, database access, seri-
alisation etc.. I started to write all my graphical user interfaces
(GUIs) and visualisations in Python, using wxPython, PyQt and a
whole load of other refreshingly easy toolsets. Now there’s some stuff
there that I think is pretty cool but I doubt I'll ever get around to the
necessary packaging, version checking and various other hurdles to
distribution, so no-one else will ever see it.

At the time there existed what in theory was the perfect universal
distribution system for the software I'd so lovingly crafted, namely
the web-browser. Available on pretty much every computer on
earth, with its own built-in, interpreted programming language,
write once, run everywhere. But everyone knew that 4. Python
doesn’t play in the web-browser’s sandpit and b. browsers were inca-
pable of ambitious graphics and visualisations, being pretty much
limited to static images and the odd jQuery transformation. Java-
Script was a ‘toy language tied to a very slow interpreter good for
little DOM tricks but certainly nothing approaching what I could do
on the desktop with Python. So that route was discounted, out of
hand. My visualisations wanted to be on the web but there was no
route through.

Fast forward a decade or so and, thanks to an arms race initiated by
Google and their V8 engine, JavaScript is now orders of magnitude
faster, in fact it's now an awful lot faster than Python'. HTML has
also tidied up its act a bit, in the guise of HTMLS5. It’s a lot nicer to

1 See here for a fairly jaw-dropping comparison.

Introduction | vii

https://benchmarksgame.alioth.debian.org/u32/compare.php?lang=v8&lang2=python3
https://jquery.com/
https://en.wikipedia.org/wiki/Document_Object_Model

work with, with much less boilerplate. What were loosely followed
and distinctly shaky protocols like Scalable Vector Graphics (SVG)
have firmed up nicely thanks to powerful visualisation libraries, D3
being preeminent. Modern browsers are obliged to work nicely with
SVG and, increasingly, 3D in the form of WebGL and its children
such as THREE.js. Those visualisations I was doing in Python are
now possible on your local web-browser and the payoff is that, with
very little effort, they can be made accessible to every desktop, lap-
top, smartphone and tablet in the world.

So why aren’t Pythonistas flocking to get their data out there in a
form they dictate? After all, the alternative to crafting it yourself is
leaving it to somebody else, something most data-scientists I know
would find far from ideal. Well, first there’s that term Web Develop-
ment, connoting complicated markup, opaque stylesheets, a whole
slew of new tools to learn, IDEs to master. And then there’s Java-
Script itself, a strange language, thought of as little more than a toy
until recently and having something of the neither fish nor fowl to
it. I aim to take those pain-points head-on and show that you can
craft modern web-visualisations (often single page apps) with a very
minimal amount of HTML and CSS boilerplate, allowing you to
focus on the programming, and that JavaScript is an easy leap for
the Pythonista, having a lot in common. But you don't have to leap,
Chapter 2 is a language-bridge, which aims to help Pythonistas and
JavaScripters bridge the divide between the languages by highlight-
ing common elements and providing simple translations.

The second story is a common one I run into among JavaScript
data-visualiers I know. Processing data in JavaScript is far from
ideal. There are few heavyweight libraries and although recent func-
tional enhancements to the language make data-munging much
more pleasant, there’s still no real data-processing ecosystem to
speak of. So there’s a distinct asymmetry between the hugely power-
ful visualisation libraries available, D3 as ever paramount, and the
ability to clean and process any data delivered to the browser. All of
this mandates doing your data-cleaning, processing and exploration
in another language or with a toolkit like Tableau and this often
devolves into piecemeal forays into vaguely remembered Matlab, the
steepish learning curve that is R or a Java library or two.

Toolkits like Tableau, although very impressive, are often, in my
experience, ultimately frustrating for programmers. There’s no way
to replicate in a GUI the expressive power of a good, general pur-

vii | Introduction

http://www.tableau.com/

pose programming language. Plus, what if you want to create a little
web-server to deliver your processed data? That means learning at
least one new web-dev capable language.

In other words, JavaScripters starting to stretch their data visualisa-
tion are looking for a complementary data-processing stack which
requires the least investment of time and has the shallowest learning
curve.

Minimal requirements to use the book

I always feel reluctant placing restrictions on people’s explorations,
particularly in the context of programming and the web, which is
chock full of auto-didacts (how else would one learn, the halls of
academe being lightyears behind the trend?), learning fast and furi-
ously, gloriously uninhibited by the formal constraints that used to
apply to learning. Python and JavaScript are pretty much as simple
as it gets, programming language wise, and are both top candidates
for best first language. There isn’'t a huge cognitive load in interpret-
ing the code.

In that spirit, there are expert programmers who, without any expe-
rience of Python and JavaScript, could consume this book and be
writing custom libraries within a week. These are also the people
most likely to ignore anything I write here so good luck to you peo-
ple if you decide to make the effort.

For beginner programmers, fresh to Python or JavaScript, this book
is probably too advanced for you and I'd recommend taking advan-
tage of the plethora of books, web-resources, screencasts and the
like that make learning so easy these days. Focus on a personal itch,
a problem you want to solve and learn to program by doing - it’s the
only way.

For people who have programmed a bit in either Python or Java-
Script, my advised threshold to entry is that you have used a few
libraries together, understand the basic idioms of your language and
can look at a piece of novel code and generally get a hook on what’s
going on. i.e. Pythonistas who can use a few modules of the standard
library and JavaScripters who can not only use Jquery but under-
stand some of its source-code.

Introduction | ix

Why Python and JavaScript?

Why JavaScript is an easy question to answer. For now and the fore-
seeable future there is only one first class, browser-based program-
ming language. There have been various attempts to extend,
augment and usurp but good old plain vanilla JS is still preeminent.
If you want to craft modern, dynamic, interactive visualisations and,
at the touch of a button, deliver them to the world, at some point
you are going to run into JavaScript. You might not need to be a zen
master but basic competence is a fundamental price of entry into
one of the most exciting areas of modern data science. This book
hopes to get you into the ballpark.

Why not Python on the browser?

There are currently some very impressive initiatives aimed at ena-
bling Python produced visualisations, often built on Matplotlib, to
run in the browser. This is achieved by converting the Python code
into JavaScript based on the canvas or svg drawing contexts. The
most popular and mature of these are Bokeh and the recently open-
sourced Plotly. IPython’s Jupyter project. While these are both bril-
liant initiatives, I feel that in order to do web-based data-viz you
have to bite the JavaScript bullet to exploit the increasing potential
of the medium. Thats why, along with space constraints, I'm not
covering the Python to Javscript dataviz converters.

While there is some brilliant coding behind these JavaScript con-
verters and many solid use-cases, they do have big limitations:

o Automated code-conversion may well do the job but the code
produced is usually pretty impenetrable for a human being.

o Adapting and customising the resulting plots using the power-
ful browser-based JavaScript development environment is likely
to be very painful.

 You are limited to the subset of plot types currently available in
the libraries.

o Interactivity is very basic at the moment. Stitching this together
is better done in JavaScript, using the browser’s dev-tools.

Bear in mind that the people building these libraries have to be Java-
Script experts so if you want to understand anything of what they’re

X | Introduction

http://matplotlib.org/
http://bokeh.pydata.org/en/latest/
https://plot.ly
http://jupyter.org/

doing and eventually express yourself then you’ll have to get up to
scratch with some JavaScript.

My basic take-home with Python-to-JavaScript conversion is that it
has its place but would only be generally justified were JavaScript
ten times harder to program than it is. The fiddly, iterative process
of creating a modern browser-based data-visualisation is hard
enough using a first-class language without having to negotiate an
indirect journey through a second-class one.

Why Python for data-processing

Why you should choose Python for your data-processing needs is a
little more involved. For a start there are good alternatives as far as
data-processing is concerned. Let’s deal with a few candidates for the
job, starting with the enterprise behemoth Java:

Java

Among the other main, general-purpose programming languages,
only Java offers anything like the rich ecosystem of libraries that
Python does, with considerably more native speed too. But while
Java is a lot easier to program in than, say, C++ it isn’t, in my opin-
ion, a particularly nice language to program in, having rather too
much in the way of tedious boilerplate and excessive verbiage. This
sort of thing starts to weigh after a while and makes for a hard slog
at the code-face. As for speed, Python’s default interpreter is slow
but Python is a great glue language, which plays nicely with other
languages. This ability is demonstrated by the big Python data-
processing libraries like Numpy (and its dependent Pandas), Scipy
and the like, which use C(++) and Fortran libraries to do the heavy
lifting while providing the ease of use of a simple, scripting lan-

guage.
R

The Venerable R has, until recently, been the tool of choice for many
data-scientists and is probably Python’s main competitor in the
space. Like Python, R benefits from a very active community, some
great tools like the plotting library ggplot and a syntax specially craf-
ted for data-science and statistics. But this specialism is a double-
edged sword. Because R was developed for a specific purpose, it
means that if, for example, you wish to write a web-server to serve

Introduction | xi

your R processed data, you have to skip out to another language,
with all the attendant learning overheads, or try and hack something
together, round hole, square-peg wise. Python’s general purpose
nature and it’s rich ecosystem mean one can do pretty much every-
thing required of a data-processing pipeline (JS visuals aside)
without having to leave its comfort zone. Personally, it is a small sac-
rifice to pay for a little syntactic clunkiness.

Others

There are other alternatives to doing your data-processing with
Python but none of them come close to the flexibility and power
afforded by a general purpose, easy to use programming language
with a rich ecosystem of libraries. While, for example, mathematical
programming environments such as Matlab and Mathematica have
active communities and a plethora of great libraries, they hardly
count as general purpose, designed to be used within a closed gar-
den. They are also proprietary, which means a significant initial
investment and a different vibe to the Python’s resoundingly open-
source environment.

GUI-driven data-viz tools like Tableau are great creations but will
quickly frustrate someone used to the freedom to programming.
They tend to work great as long as you are singing from their song-
sheet, as it were. Deviations from the designated path get painful
very quickly.

Python’s getting better all the time

As things stand, I think a very good case can be made for Python
being the budding data-scientist’s language of choice. But things are
not standing still, in fact Python’s capabilities in this area are grow-
ing at an astonishing rate. To put it in perspective, I have been pro-
gramming in Python for over fifteen years, have grown used to
being surprised if I can't find a Python module to help solve a prob-
lem at hand, but I find myself surprised at the growth of Python’s
data-processsing abiliites, with a new, powerful library appearing
weekly. To give an example, Python has traditionally been weak on
statistical analysis libraries, with R being far ahead here. Recently a
number of powerful modules, such as StatsModel have started to
close this gap fast.

xii | Introduction

http://www.tableau.com/

So Python is a thriving data-processing ecosystem with pretty much
unmatched general purpose and it’s getting better week on week. It’s
understandable why so many in the community are in a state of such
excitement - it’s pretty exhilarating.

As far as visualisation in the browser, the good news is that there’s
more to JavaScript than its privileged, nay exclusive place in the
web-ecosystem. Thanks to an interpreter arms race which has seen
performance increase in staggering leaps and bounds and some
powerful visualisation libraries, such as D3, which would comple-
ment any language out there, JavaScript now has serious chops.

In short, Python and JavaScript are a wonderful complement for
data-visualisation on the web, each needing the other to provide a
vital missing component.

What You'll Learn

There are some big Python and JavaScript libraries in our dataviz
toolchain and comprehensive coverage of them all would require a
number of books. Nevertheless I think that the fundamentals of
most libraries, and certainly the ones covered here, can be grasped
fairly quickly. Expertise takes time and practice but the basic knowl-
edge needed to be productive is, so to speak, low-hanging fruit.

In that sense this book aims to give you a solid backbone of practical
knowledge, strong enough to take the weight of future development.
I aim to make the learning curve as shallow as possible and get you
over the initial climb, with the practical skills needed to start refin-
ing your art.

This book emphasises pragmatism and best-practice. It's going to
cover a fair amount of ground and there isn’t enough space for too
many theoretical diversions. I will aim to cover those aspects of the
libraries in the toolchain that are most commonly used, and point
you to resources for the other stuff. Most libraries have a hard-core
of functions, methods, classes and the like that are the chief, func-
tional subset. With these at your disposal you can actually do stuff.
Eventually you find an itch you can’t scratch with those at which
time good books, documentation and online forums are your friend.

Introduction | xiii

The Choice of Libraries

I had three things in mind while choosing the libraries used in the
book.

1. Open-source and free as in beer - you shouldn’t have to invest
any extra money to learn with this book.

2. Longevity - generally well-established, community-driven and
popular.

3. Best-of-breed, allowing for 2. - at the sweet-spot between popu-
larity and utility.

The skills you learn here should be relevant for a long time. Gener-
ally the obvious candidates have been chosen, libraries that write
their own ticket as it were. Where appropriate I will highlight the
alternative choices and give a rationale for my selection.

Preliminaries

A few preliminary chapters are needed before beginning the trans-
formative journey of our Nobel data-set through the toolchain.
These aim to cover the basic skills necessary to make the rest tool-
chain chapters run more fluidly. The first few chapters cover the fol-
lowing:

« Building a Language bridge between Python and JavaScript.
« Covering the Basic Web-dev needed by the book.

o How to pass data around with Python, through various file-
formats and databases.

These chapters are part-tutorial, part-reference and it’s fine to skip
straight to the beginning of the toolchain, dipping back where
needed.

The Dataviz Toolchain

The main part of the book demonstrates the data-visualisation tool-
chain, which follows the journey of a data-set (of Nobel-prize win-
ners) from raw, freshly scraped data to engaging, interactive
JavaScript visualisation. During the process of collection, refinement
and transformation a number of big libraries are demonstrated,
summarised in Figure P-2. These libraries are the industrial lathes of

xiv. | Introduction

our toolchain, rich, mature tools which demonstrate the power of
the Python + JavaScript dataviz stack. Heres a brief introduction to
the five stages of our toolchain and their major libraries.

5. TRANSFORM

D3
Wikipedia Nobel-page Interactive Nobel-visualisation
database/files
1. SCRAPE 4. DELIVER

Scrapy Flask RESTful API

2. CLEAN 3. EXPLORE/PROCESS

Pandas IPython + Pandas + Matplotlib

Figure P-2. The Data-viz Toolchain

1. Scraping data with Scrapy

The first challenge for any data-visualiser is getting hold of the data
they need, whether by request or to scratch a personal itch. If you're
very lucky this will be delivered to you in pristine form but more
often than not you have to go find it. I'll cover the various ways you
can use Python to get data off the web (e.g. web-APIs or google-
spreadsheets) but the Nobel-prize data-set for the toolchain demon-
stration is scraped” from its Wikipedia pages using Scrapy.

Python’s Scrapy is an industrial strength scraper that does all the
data-throttling, media pipelining etc. that are indispensable if you
plan on scraping significant amounts of data. Scraping is often the
only way to get the data you are interested in and once you’ve mas-
tered Scrapy’s workflow all those previously off-limits datasets are
only a spider® away.

2 Web scraping is a computer software technique to extract information from websites,
usually involving getting and parsing web-pages.

3 Scrapy’s controllers are called spiders.

Introduction | xv

https://en.wikipedia.org/wiki/Web_scraping

2. (leaning data with Pandas

The dirty secret of data-viz is that pretty much all data is dirty and
turning it into something you can use may well occupy a lot more
time than anticipated. This is an unglamourous process which can
easily steal over half your time. Which is all the more reason to get
good at it and use the right tools.

Pandas is a huge player in the Python data-processing ecosystem. It’s
a Python data-analysis library whose chief component is the Data-
Frame, essentially a programmatic spreadsheet. Pandas extends
Numpy, Python’s powerful numeric library, into the realm of hetero-
geneous data-sets, the kind of categorical, temporal, ordinal etc.
information that data-visualisers have to deal with. As well as being
great for interactively exploring your data (using its built-in Mat-
plotlib plots), Pandas is well-suited to the drudge-work of cleaning
data, making it easy to locate duplicate records, fix dodgy date-
strings, find missing fields etc..

3. Exploring data with Pandas and Matplotlib

Before beginning the transformation of your data into a visualisa-
tion you need to understand it. The patterns, trends, anomalies etc.
hidden in the data will inform the stories you are trying to tell with
it, whether that’s explaining a recent rise in year-on-year widget sales
or demonstrating global climate change.

In conjunction with IPython, the Python interpreter on steroids,
Pandas and Matplolib (with additions such as Seaborn) provide a
great way to explore your data interactively, generating rich, inline
plots from the command-line, slicing and dicing your data to reveal
interesting patterns. The results of these explorations can then be
easily saved to file or database to be passed on to your JavaScript vis-
ualisation.

4. Delivering your data with Flask

Once you've explored and refined your data you’ll need to serve it to
the web-browser, where a JavaScript library like D3 can transform it.
One of the great strengths of using a general purpose language like
Python is that it’s as comfortable rolling a web-server in a few lines
of code as it is crunching through large datasets with special-

xvi | Introduction

purpose libraries like Numpy and Scipy*. Flask is Python’s most pop-
ular lightweight server and is perfect for creating a small, RESTful®
APIs which can be used by JavaScript to get data from the server, in
files or databases, to the browser. As I'll demonstrate, you can roll a
RESTful API in a few lines of code, capable of delivering data from
SQL or NoSQL databases.

5. Transforming the data into interactive visualisations
with D3

Once the data is cleaned and refined, we have the visualisation
phase, where selected reflections of the data-set are presented, ide-
ally allowing the user to explore them interactively. Depending on
the data this might involve barcharts, maps or novel visualisations.

D3 is JavaScript's powerhouse visualisation library, arguably one of
the most powerful visualisation tools irrespective of language. We'll
use D3 to create a novel Nobel-prize visualisation with multiple ele-
ments and user interaction, allowing people to explore the dataset
for items of interest. D3 can be challenging to learn but I hope to
bring you quickly up to speed, ready to start honing your skills in
the doing.

Smaller Libraries

As well as the big libraries covered, there is a large supporting cast of
smaller libraries. These are the indispensable smaller tools, the ham-
mers, spanners etc. of the toolchain. Python in particular has an
incredibly rich ecosystem, with small, specialised libraries for almost
every conceivable job. Among the strong supporting cast, some par-
ticularly deserving of mention are:

o requests: Python’s go-to HTTP library, fully deserving its
motto ‘HTTP for humans. requests is far superior to urllib2,
one of Python’s included batteries.

4 The Scientific Python library, part of the Numpy ecosystem.

5 REST is short for Representational State Transfer, the dominant style for HTTP-based
web-APIs and much recommended.

Introduction | xvii

o SQLAlchemy: the best Python SQL Toolkit and Object Relational
Mapper (ORM) there is. Its feature rich and makes working
with the various SQL-based databases a relative breeze.

o Seaborn: a great addition to Python’s plotting powerhouse Mat-
plotlib, adding some very useful plot-types including some stat-
istical ones of particular use to data-visualisers. It also adds
arguably superior aesthetics, over-riding the Matplotlib defaults.

o crossfilter: although JavaScript’s data-processing libraries are
a work-in-progress, a few really useful ones have emerged
recently with crossfilter being a stand-out. It enables very
fast filtering of row-columnar datasets and is ideally suited to
data-viz work, unsurprising as one of it’s creators is Mike
Bostock, the father of D3.

A Little Bit of Context

This is a practical book and assumes that the reader has a pretty
good idea what he or she wants to visualise, how that visualization
should look and feel and a desire to get cracking on, unencumbered
by too much theory. Nevertheless, drawing on the history of data-
visualisation can both clarify the central themes of the book and add
valuable context. It can also help explain why now is such an excit-
ing time to be entering the field, as technological innovation is driv-
ing novel data-viz forms and people are grappling with the problem
of presenting the increasing amount of multi-dimensional data gen-
erated by the internet.

Data visualisation has an impressive body of theory behind it and
there are some great books out there that I would recommend you
read (see 222 on page 21 for a little selection). The practical benefit of
understanding the way humans visually harvest information cannot
be overstated. It can be easily demonstrated, for example, that a pie-
chart is almost always a bad way of presenting comparative data and
a simple bar-chart far preferable. By conducting psychometric
experiments, we now have a pretty good idea how to trick the
human visual system and make the relationships in the data harder
to grasp. Conversely we can show that some visual forms are close to
optimal for amplifying contrast. The literature, at its very least, pro-
vides some useful rules of thumb which suggest good candidates for
any particular data narrative.

xviii | Introduction

In essence good data-viz tries to present data, collected from meas-
urements in the world (empirical) or maybe the product of abstract
mathematical explorations (e.g. the beautiful fractal patterns of the
Mandlebrot set, in such a way as to draw out or emphasise any pat-
terns or trends that might exist. These patterns can be simple, e.g.
average weight by country, or the product of sophisticated statistical
analysis, e.g. data-clustering in a higher dimensional space.

ussie 812 1813,

Figure P-3. (a) An early spreadsheet (b) Joseph Minard’s visualisation
of Napoleon’s Russian campaign of 1812

In its untransformed state, we can imagine this data floating as a
nebulous cloud of numbers or categories. Any patterns or correla-
tions are entirely obscure. It’s easy to forget but the humble spread-
sheet (Figure P-3 a.) is a data-visualisation, the ordering of data into
row-columnar form an attempt to tame it, make its manipulation
easier and highlight discrepancies (e.g. actuarial book-keeping etc..).
Of course, most people are not adept at spotting patterns in rows of
numbers, so more accessible, visual forms were developed to engage

Introduction | xix

https://en.wikipedia.org/wiki/Mandelbrot_set

with our visual-cortex, the prime human conduit for information
about the world. Enter the bar-chart, pie-chart®, line-chart etc. More
imaginative ways were employed to distil statistical data in a more
accessible form, one of the most famous being Charles Joseph Min-
ard’s visualisation of Napoleon’s disastrous Russian campaign of
1812 (Figure P-3 b.).

The tan colored stream in Figure P-3 b. shows the advance of Napo-
leon’s army on Moscow, the black line the retreat. The thickness of
the stream represents the size of Napoleaon’s army, thinning as casu-
alties mounted. A temperature chart below is used to indicate the
temperature at locations along the way. Note the elegant way in
which Minard has combined multi-dimensional data (casualty sta-
tistics, geographical location and temperature) to give an impression
of the carnage which would be hard to grasp in any other way
(imagine trying to jump from a chart of casualties to a list of loca-
tions and make the necessary connections). I would argue that the
chief problem of modern interactive data-viz is exactly that faced by
Minard: how to move beyond conventional one-dimensional bar-
charts etc. (perfectly good for many things) and develop new way to
communicate cross-dimensional patterns effectively.

Until quite recently, most of our experience of charts was not much
different from those of Charles Minard’s audience. They were pre-
rendered, inert and showed one reflection of the data, hopefully an
important and insightful one but nevertheless under total control of
the author. In this sense the replacement of real ink-points with
computer screen pixels was only a change in the scale of distribu-
tion.

The leap to the internet just replaced newsprint with pixels, the visu-
alisation still being unclickable and static. Recently the combination
of some powerful visualisation libraries (D3 preeminent among
them) and a massive improvement in JavaScript’s performance have
opened the way to a new type of visualization, one that is easily
accessible, dynamic and actually encourages exploration and discov-
ery. The clear distinction between data exploration and presentation
is blurred. This new type of data visualisation is the focus of this
book and the reason why data-viz for the web is such an exciting
area right now. People are trying to create new ways to visualize data

6 William Playfair’s Statistical Breviary of 1801 having the dubious distinction of origin

xx | Introduction

and make it more accessible/useful to the end-user. This is nothing
short of a revolution.

Summary

Dataviz on the web is an exciting place to be right now with innova-
tions in interactive visualisations coming thick and fast, many (if not
most) of them being developed with D3. JavaScript is the only
browser-based language so the cool visuals are by necessity being
coded in it (or converted into it). But JavaScript lacks the tools or
environment necessary for the less dramatic but just as vital element
or modern data-viz, the aggregation, curation and processing of the
data. This is where Python rules the roost, providing a general-
purpose, concise and eminently readable programming language
with access to an increasing stable of first-class data-processing
tools. Many of these tools leverage the power of very fast, low-level
libraries making Python data-processing fast as well as easy.

This book aims to introduce some of those heavy-weight tools as
well as a host of other smaller but equally vital tools. It also aims to
show how Python and JavaScript in concert represent the best data-
viz stack out there for anyone wishing to deliver their visualisations
to the internet.

Up next is the first part of the book covering the preliminary skills
needed for the toolchain. You can work through it now or skip
ahead to part two and the start of the toolchain, referring back when
ne

Recommended Books

Here’s a few key data-visualisation books to whet your appetite, cov-
ering the gamut from interactive dashboards to beautiful and
insightful info-graphics.

o The Visual Display of Quantitative Information. Edward Tufte.
Graphics Press, 1983.

o Information Visualization: Perception for Design. Colin Ware.
Morgan Kaufmann, 2004.

o Cartographies of Time: A History of the Timeline. Daniel
Rosenberg. Princeton Architectural Press, 2012.

Introduction | xxi

o Information Dashboard Design: Displaying Data for at-a-glance
Monitoring. Stephen Few. Analytics Press, 2013.

o The Functional Art. Alberto Cairo. New Riders 2012.

o Semiology of Graphics: Diagrams, Networks, Maps. Jacques
Bertin. Esri Press 2010.

xxii | Introduction

CHAPTER1
A Development Setup

This chapter will cover the downloads and software installations
needed to use this book as well as sketching out a recommended
development environment. As you'll see, this isn’t as onerous as it
might once have been. I'll cover Python and JavaScript dependen-
cies separately and give a brief overview of cross-language IDEs.

Python

The bulk of the libraries covered in the book are Python-based but
what might have been a challenging attempt to provide comprehen-
sive installation instructions for the various Operating Systems and
their quirks is made much easier by the existence of Continuum
Analytics Anaconda, a Python platform which bundles together
most of the popular analytics libraries in a convenient package.

Anaconda

Installing some of the bigger Python libraries used to be a challenge
all in itself, particularly those such as Numpy which depend on
complex low-level C and Fortran packages. That's why the existence
of Anaconda is such a God-send. It does all the dependency check-

23

https://www.continuum.io/
https://www.continuum.io/

ing, binary installs etc. so you don’t have to. It’s also a very conve-
nient resource for a book like this.

Python 2 or 3?

Right now Python is in transition to version 3, a process which is
taking longer than many would like. This is because Python 2+
works fine for many people, a lot of code will have to be converted'
and up until recently some of the big libraries, such as Numpy and
Scipy, only worked for 3.

Now that most of the major libraries are Python 3 compatible it
would be a no-brainer to recommend that version for this book.
Unfortunately one of the few hold-outs, not yet v3. ready, is Scrapy,
a big tool on our tool-chain* which you’ll learn about in Chapter 6.
I don’t want to oblige you to run two versions so for that reason
we'll be using the version 2. Anaconda package.

I will be using the new print function®* which means all the non-
Scrapy code will work fine with Python 3.

To get your free Anaconda install, just navigate your browser to
https://www.continuum.io/downloads, choose the version for your
Operating System (as of late 2015, the we're going with Python 2.7),
and follow the instructions. Windows and OSX get a graphical
installer (just download and double-click) while Linux requires you
to run a little bash script:

$ bash Anaconda-2.3.0-Linux-x86_64.sh

I recommend sticking to defaults when installing Anaconda.

Checking the Anaconda install

The best way to check your Anaconda install went ok is to try firing
up an IPython session at the command-line. How to do this depends
on your operating system:

1 There are a number of pretty reliable automatic converters out there.

2 The Scrapy team are working hard to rectify this. Scrapy relies on Python’s Twisted, an
event-driven networking engine also making the journey to Python 3+ compatability.

3 This is imported from the future module, i.e. *from future import print_function.

24 | Chapter 1: A Development Setup

https://www.continuum.io/downloads

At the Windows command-prompt:
C:\Users\Kyran>ipython

At the OS-X or Linux prompt:
$ ipython

This should produce something like the following:

kyran@Tweedledum:~/projects/pyjsbook$ ipython
Python 2.7.10 |Anaconda 2.3.0 (64-bit)|

(default, May 28 2015, 17:02:03) Type
"copyright", "credits" or "license" for more information.

IPython 3.2.0 -- An enhanced Interactive Python. Anaconda is
brought to you by Continuum Analytics. Please check out:
http://continuum.io/thanks and

https://anaconda.org

Most installation problems will stem from a badly configured envi-
ronment Path variable. This Path needs to contain the location of
the main Anaconda Directory and its Scripts sub-directory. In Win-
dows this should look something like:

'...C:\\Anaconda;C:\\Anaconda\Scripts...

You can access and adjust the environment variables in Windows 7
by typing “environment variables” in program’s search field and
selecting Edit environment variables or in XP via Control
Panel > System > Advanced > Environment Variables.

In OS-X and Linux systems you should be able to set your PATH vari-
able explicitly by appending this line to the .bashrc file in your
home directory:

export PATH=/home/kyran/anaconda/bin:S$PATH

Installing extra libs

Anaconda contains almost all the Python libraries covered in this
book (see here for the full list of Anaconda libraries). Where we
need a non-Anaconda library we can use pip (short for Pip Installs
Python), the defacto standard for installing Python libraries. Using
pip to install is as easy as can be, just call pip install followed by
the name of the package from the command-line and it should be
installed or, with any luck, give a sensible error:

$ pip install dataset

Python | 25

http://docs.continuum.io/anaconda/pkg-docs
https://pypi.python.org/pypi/pip

Virtual Environments

http://docs.python-guide.org/en/latest/dev/virtualenvs/[Virtual Environments] prc

Anaconda comes with a conda system command that makes creat-
ing and using virtual-environments easy. Let’s create a special one
for this book, based on the full Anaconda package:

$ conda create --name pyjsviz anaconda

#

To activate this environment, use:
S source activate pyjsviz

#

To deactivate this environment, use:
S source deactivate

#

As the final message says, to use this virtual environment you need

only source activate it (for Windows machines you can leave out
the source):

$ source activate pyjsviz

discarding /home/kyran/anaconda/bin from PATH

prepending /home/kyran/.conda/envs/pyjsviz/bin to PATH

(pyjsviz) $
Note that you get a helpful cue at the command-line to let you know
which virtual environment you're using.

The conda command can do a lot more than just facilitate virtual
environments, combining the functionality of Python’s pip installer
and virtualenv command, among other things. You can get a full
run-down here.

JavaScript

The good news is that you don’t need much JavaScript software at
all. The only must-have is the Chrome/Chromium web-browser,
which is used in this book. It offers the most powerful set of devel-
oper tools of any current browser and is cross-platform.

To download Chrome just go here and download the version for
your operating system. This should be automatically detected.

If you want something slightly less Googlefied then you can use
Chromium, the browser based on the open-source project from
which Google Chrome is derived. You can find up to date instruc-

26 | Chapter1: A Development Setup

http://conda.pydata.org/docs/using/using.html
https://www.google.com/chrome/browser/desktop/

tions on installation here or just head on to the main download
page. Chromium tends to lag Chrome feature-wise but is still an
eminently usable development browser.

Content Delivery Networks (CDNs)

One of the reasons you don’'t have to worry about installing Java-
Script libraries is that the ones used in this book are available via
content delivery networks (CDNs). Rather than having the libraries
installed on your local machine, the JavaScript is retrieved by the
browser over the web, from the closest available server. This should
make things very fast - faster than if you served the content yourself.

To include a library via CDN you use the usual <script> tag, usu-
ally placed at bottom of your HTML page. For example, his call adds
the latest (as of late 2015) version of D3:

<script
src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.6/d3.min.js"
charset="utf-8">

</script>

Installing libraries locally

If you need to install JavaScript libraries locally, e.g. you anticipate
doing some offline development work or can’t guarantee an internet
connection, there are a number of fairly simple ways.

You can just download the separate libraries and put them in your
local server’s static folder. This is a typical folder-structure. Third-
party libraries go in the static/libs directory off root, like so:

nobel_viz/
L— static
— css
— data
— libs
| L— d3.min.js
L js

If you organise things this way, to use D3 in your scripts now
requires a local file reference with the <script> tag:

<script src="/static/libs/d3.min.js"></script>

JavaScript | 27

https://www.chromium.org/getting-involved/download-chromium
https://download-chromium.appspot.com/
https://download-chromium.appspot.com/

Databases

This book shows how to interact with the main SQL databases and
MongoDB, the chief non-relational or NoSQL database, from
Python. We'll be using SQLite, the brilliant file-based SQL database.
Here’s the download details for SQLite and MongoDB:

» SQLite - a great, file-based, serverless SQL-database. It should
come as standard with Mac OS-X and Linux. For Windows, fol-
low this guide.

o MongoDB - by a long way the most popular NoSQL database.
Installation instructions here.

Note that well either be using Python’s SQLAlchemy SQL-library
directly or through libraries that build on it. This means any SQLite
examples can be converted to another SQL backend (e.g. MySQL or
PostgreSQL) by changing a configuration line or two.

Integrated Development Environments

As I explain in “The myth of IDEs, frameworks and tools” on page
108, I don't think you need an IDE to program in Python or Java-
Script. The development tools provided by modern browsers,
Chrome in particular, mean you only really need add a good code-
editor to have pretty much the optimal setup. It’s free as in beer too.

For Python, I have tried a few IDEs but they’ve never stuck. The
main itch I was trying to scratch was a decent debugging system.
Setting breakpoints etc. in Python with a text-editor isn’t particularly
elegant and using the command-line debugger pdb feels a little too
old-school sometimes. Nevertheless, Python’s logging etc. is so easy
and effective that breakpoints were an edge-case which didn’t justify
leaving my favourite editor!, which does pretty decent code-
completion, solid syntax-highlighting etc..

In no particular order, here are a few I've tried and not disliked:

o PyCharm - solid code-assistance etc., good debugging.

4 Emacs with VIM key-bindings.

28 | Chapter 1: A Development Setup

https://www.mongodb.org/
https://en.wikipedia.org/wiki/NoSQL
https://www.sqlite.org/
http://www.tutorialspoint.com/sqlite/sqlite_installation.htm
http://docs.mongodb.org/manual/installation/
http://www.sqlalchemy.org/
https://www.mysql.com/
http://www.postgresql.org/
https://www.jetbrains.com/pycharm/

 PyDev - if you like Eclipse and can tolerate it’s rather large foot-
print, this might well be for you.

o WingIDE is a solid bet, with a great debugger and incremental
improvements over a decade and a half development.

Summary

With free, packaged Python distributions such as Anaconda and the
inclusion of sophisticated Javscript development tools in freely avail-
able web-browsers, the necessary Python and JavaScript elements of
your dev environment are a couple of clicks away. Add a favourite
editor and a database of choice' and you are pretty much good to go.
There are additional libraries such as node.js which can be useful
but don’t count as essential. Now we've established our program-
ming environment, the next chapters will teach the preliminaries
needed to start our journey of data-transformation along the tool-
chain. Starting with a language bridge between Python and Java-
Script.

1 SQLite is great for development purposes and doesn’'t need a server running on your
machine.

Summary | 29

http://pydev.org/
http://www.wingware.com/

PARTI
A Basic Toolkit

This first part of the book provides a basic toolkit for the toolchain to
come and is part tutorial, part reference. Given the fairly wide range of
knowledge in the book’s target audience, there will probably be things
covered that you already know. My advice is just to cherry-pick the
material to fill any gaps in your knowledge and maybe skim what you
already know as a refresher.

If you're confident you already have the basic toolkit to hand, feel
free to skip to the start of our journey along the toolchain in Part II.

Summary | 31

CHAPTER 2

A Language Learning Bridge
Between Python and JavaScript

Probably the most ambitious aspect of this book is that it deals with
two programming languages. Moreover, it only requires that you are
competent in one of these languages. This is only possible because
Python and JavaScript (JS) are fairly simple languages with much in
common. The aim of this chapter is to draw out those commonali-
ties and use them to make a learning-bridge between the two lan-
guages such that core skills acquired in one can easily be applied to
the other.

After showing the key similarities and differences between the two
languages I'll show how set up a learning environment for Python
and JS. The bulk of the chapter will then deal with core syntactical
and conceptual differences, followed by a selection of patterns and
idioms that I use a lot while doing data visualisation work.

Similarities and differences

Syntax differences aside, Python and JavaScript actually have a lot in
common. After a short while, switching between them can be

33

almost seamless'. Let’s compare the two from a data-visualiser’s per-
spective:

These are the chief similarities

 They both work without needing a compilation step (i.e. they
are interpreted).

» You can use both with an interactive interpreter, which means
you can type in lines of code and see the results right away.

 Both have garbage collection.
o Neither language has header files, package boilerplate etc..
o Both are primarily developed with a text-editor not an IDE.

o In both, functions are first class citizens which can be passed as
arguments etc..

Their key differences

o Possibly the biggest difference is that JavaScript is single-
threaded and non-blocking, using asynchronous I/O. This
means simple things like file-access involve the use of a callback
function.

o JS is used essentially in web-development, until very recently
being browser bound? but Python is used almost everywhere.

o JS is the only first class language in web-browsers, Python being
excluded.

o Python has a comprehensive standard library whereas JS a limi-
ted set of utility objects, e.g. JSON, Math.

o Python has fairly classical Object Oriented classes whereas JS
uses prototypes.

o JS lacks general-purpose data-processing libs.

The differences here emphasise the need for this book to be bi-
lingual. JavaScript’s monopoly of browser dataviz needs the comple-

1 One particularly annoying little gotcha is that while Python uses pop to remove a list
item, it uses append not push to add an item. Javscript uses push to add an item while
append is used to concatenate arrays.

2 The ascent of node.js has extended JavaScript to the server.

3 This is changing with libraries like crossfilter but JS is far behind Python, R and others.

34 | Chapter2:ALanguage Learning Bridge Between Python and JavaScript

https://nodejs.org/en/
http://stackoverflow.com/questions/14795145/how-the-single-threaded-non-blocking-io-model-works-in-node-js
http://stackoverflow.com/questions/14795145/how-the-single-threaded-non-blocking-io-model-works-in-node-js

ment of a conventional data-processing stack. And Python has the
best there is.

Interacting with the Code

One of the great advantages of Python and JavaScript is that because
they are interpreted on-the-fly, you can interact with them. Python’s
interpreter can be run from the command-line while JavaScript’s is
generally accessed from the web-browser through a console, usually
available from the in-built development tools. In this section we'll
see how to fire up a session with the interpreter and start trying out
your code.

Python

By far the best Python interpreter is IPython, which comes in three
shades, the basic terminal version, an enhanced graphical version
and a notebook. The notebook is a wonderful and fairly recent inno-
vation, providing a browser-based interactive computational envi-
ronment. There are pros and cons to the different versions. The
command-line is fastest to scratch a problematic itch but lacks some
bells and whistles, particularly embedded plotting courtesy of Mat-
plotlib and friends. The makes it sub-optimal for Pandas based data-
processing and data-visualisation work. Of the other two, both are
better for multi-line coding (trying out functions etc.) than the basic
interpreter but I find the graphical gtconsole more intuitive, having a
familiar command-line rather than executable cells* . The great
boon of the notebook is session persistence and the possibility of
web-access®. The ease with which one can share programming ses-
sions, complete with embedded data-visualisations, makes the note-
book a fantastic teaching tool, as well as a great way to recover
programming context.

You can start them at the command-line like this
$ ipython [qt | notebook]

options can be empty, for the basic command-line interpreter, -gt
for a Qt based graphical version and -notebook for the browser-

4 This version is based on the Qt GUI library.

5 At the cost of a running a Python interpreter on the server.

Interacting with the Code | 35

http://www.qt.io
http://ipython.org/
http://matplotlib.org/
http://matplotlib.org/
http://pandas.pydata.org/

based notebook. You can use any of the three IPython alternatives
for this section but for serious interactive data-processing I generally
find myself gravitating to the Qt console for sketches or the note-
book if T anticipate an extensive project.

JavaScript

There are lots of options for trying out JavaScript code without
starting a server, though the latter isn’t that difficult. Because the
JavaScript interpreter comes embedded in all modern web-browsers,
there are a number of sites that let you try out bits of JavaScript
along with HTML and CSS and see the results. JSBin is a good
option. These sites are great for sharing code, trying out snippets
etc. and usually allow you to add libraries such as D3.js.

If you want to try out code one-liners or quiz the state of live code,
browser-based consoles are your best bet. With Chrome you can
access the console with the key-combo Ctrl-Shift-J. As well as
trying little JS snippets, the console allows you to drill-down into
any objects in scope, revealing their methods and properties. This is
a great way to quiz the state of a live object and search for bugs.

One disadvantage of using on-line JavaScript editors is losing the
power of your favourite editing environment, with linting, familiar
keyboard-shortcuts and the like (see Chapter 4). On-line editors
tend to be rudimentary, to say the least. If you anticipate an exten-
sive JavaScript session and want to use your favourite editor, the best
bet is to run a local server.

First, create a project directory, called sandpit for example, and add
a minimal HTML file which includes a JS script:

sandpit

F— index.html

L— script.js
The index.html file need only be a few lines long, with an optional
div place-holder on which to start building your visualisation or just
trying out a little DOM-manipulation.

<!-- index.html -->
<!DOCTYPE html>
<meta charset="utf-8">

<div id='viz's</div>

36 | Chapter2:ALanguage Learning Bridge Between Python and JavaScript

https://jsbin.com

<script type="text/javascript" src="script.js" async></script>
You can then add a little JavaScript to your script.js file:

// script.js

var data = [3, 7, 2, 9, 1, 11];

var total = 0;

var sum = data.forEach(function(d){
total += d;

b

console.log('Sum = ' + sum);
// outputs 'Sum = 33'
Start your development server in the project directory

$sandpit python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...
Then open your browser at http://localhost:8000, press Ctrl-Shift-]
(Cmd + Opt + J on a Mac) to access the console and you should see
Figure 2-1, showing the logged output of the script (see Chapter 4
for further details).

Q D Elements Network Sources Timeline Profiles Resources Audits |Console |

® W <topframes v [Preserve log
Sum = 33

Do not clear log on page reload / navigation.

>

Figure 2-1. Outputting to the Chrome console

Now we've established how to run the demo code, let’s start building
a bridge between Python and JavaScript. First, we'll cover the basic
differences in syntax. As you'll see, theyre fairly minor and easily
absorbed.

Basic Bridge Work

In this section I'll contrast the basic nuts and bolts of programming
in the two languages.

Style guidelines, PEP 8 and ‘use strict’

Where JavaScript style guidelines are a bit of a free for all (with peo-
ple often defaulting to those used by a big library like jQuery),
Python has a Python Enhancement Proposal (PEP) dedicated to it.

Basic Bridge Work | 37

http://localhost:8000

I'd recommend getting acquainted with PEP-8 but not submitting
totally to its leadership. It’s right about most things but there’s room
for some personal choice here. There’s a handy on-line checker here
which will pick up any infractions of PEP-8.

In Python you should use four spaces to indent a code-block. Java-
Script is less strict but two spaces is the most common indent.

One recent addition to Javscript (Ecmascript 5) is the use strict
directive, which imposes strict mode. This mode enforces some
good Javscript practice, which includes catching accidental global
declarations and I thoroughly recommend its use. To use it just
place the string at the top of your function or module:

(function(foo){
'use strict';

/] ...

}(window.foo = window.foo || {});

Camel-case vs underscore

JS conventionally uses camel-case (e.g. processStudentData) for its
variables while Python, in accordance with PEP-8, uses underscores
(e.g. process_student_data) in its variable names (Example 2-4 and
Example 2-3 B). By convention (and convention is more important
in the Python ecosystem than JS) Python uses capitalised camel-case
for class declarations (see below), uppercase for constants and
underscores for everything else:

FOO_CONST = 10
class FooBar(object): # ...
def foo_bar():

baz_bar = 'some string'

Importing modules, including scripts

Using other libraries in your code, either your own or third party, is
fundamental to modern programming. Which makes it all the more
surprising that JavaScript doesn’t really have a mechanism for doing
it®. Python has a simple import system which, on the whole, works
pretty well.

6 The constraint of having to deliver JS scripts over the web via HTTP is largely responsi-
ble for this.

38 | Chapter2:ALanguage Learning Bridge Between Python and JavaScript

http://pep8online.com/

The good news on the JavaScript front is that Ecmascript 6, the next
version of the language, does address this issue, with the addition of
import and export statements. Ecmascript 6 will be getting browser
support soon but as of late 2015 you need a converter to Ecmascript
5 such as Babeljs. Meanwhile, although there have been many
attempts to create a reasonable client-side modular system none
have really achieved critical mass and all are a little awkward to use.
For now I would recommend using the well-established HTML
script tag to include scripts. So to include the D3 visualisation
library you would add this tag to your main HTML file, convention-
ally index.html:

<!DOCTYPE html>
<meta charset="utf-8">

<script src="http://d3js.org/d3.v3.min.js"></script>

You can include the script anywhere in your HTML file but it’s best
practice to add them after the body (div tags etc.) section’ Note that
the order of the script tags is important. If a script is dependent on a
module, e.g. it uses the D3 library, its script tag must be placed
after that of the module. i.e. big library scripts, such as jQuery and
D3 will be included first.

Python comes with ‘batteries included, a comprehensive set of libra-
ries covering everything from extended data containers (collec
tions) to working with the family of CSV files (csv). If you want to
use one of these just import it using the import keyword:

In [1]: import sys

In [2]: sys.platform

Out[2]: 'linux2'
If you don’t want to import the whole library, want to use an alias
etc., you can use the as and from keywords instead:

import pandas as pd

from csv import DictWriter, DictReader
from numpy import * ﬂ

df = pd.read_json('data.json")

reader = DictReader('data.csv')
md = median([12, 56, 44, 33])

7 This means any blocking script loading calls occur after the page’s HTML has rendered.

Basic Bridge Work | 39

https://babeljs.io/

@ This imports all the variables from the module into the current
namespace and is almost always a bad idea. One of the variables
could mask an existing one and it goes against Python best-
practice of explicit being better than implicit. One exception to
this rule is if you are using the Python interpreter interactively.
In this limited context it may make sense to import all functions
from a library to cut down on key-presses, e.g. importing all the
math functions (from math import *) if doing some Python
math hacking.

If you import a non-standard library, Python uses sys.path to try
and find it. sys.path consists of:

o the directory containing the importing module (current direc-
tory)

o the PYTHOPATH variable, containing a list of directories

o the installation-dependent default, where libraries installed
using pip or easy_install will usually be placed.

Big libraries are often packaged, being divided into sub-modules.
These sub-modules are accessed by dot-notation:
import matplotlib.pyplot as plt

Packages are constructed from the filesystem using ‘init.py’ files,
usually empty, as shown in Example 2-1. The presence of an init file
makes the directory visible to Pythons import system.

Example 2-1. Building a Python package

mypackage
— __init__.py
}— core
| L— __init__.py
|
L— {0
— __init__.py
L— api.py
L— tests
L

_init__.py
L— test_data.py
L— test_excel.py

40 | Chapter2: Alanguage Learning Bridge Between Python and JavaScript

@ This module would be imported using from mypack
age.ilo.tests import test_excel.

Packages on sys.path can be accessed from the root directory
(that's mypackage in Example 2-1) using dot-notation. A special case
of import is intra-package references. The test_excel.py submodule
in Example 2-1 can import submodules from the mypackage pack-
age both absolutely and relatively:

from mypackage.io.tests import test_data (1]
from . import test_data e

import test_data

from ..10 import api e

© Imports the test_data.py module absolutely, from the package’s
head-directory.

@ An explicit (. import’) and implicit relative import.
® A relative import from a sibling package of fests.

Keeping your namespaces clean

The variables defined in Python modules are encapsulated, which
means that unless you import them explicitly, e.g. from foo import
baa, you will be accessing them from the imported module’s name-
space using dot notation, e.g. foo.baa. This modularisation of the
global namespace is quite rightly seen as a very good thing and plays
to one of one of Python’s key tenets, the importance of explicit state-
ments over implicit. When analysing someone’s Python code it
should be possible to see exactly where a class, function or variable
has come from. Just as importantly, preserving the namespace limits
the chance of conflicting or masking variables - a big potential prob-
lem as code-bases get larger.

One of the main criticisms of JavaScript, and a fair one, is that it
plays fast and loose with namespace conventions. The most egre-
gious example of this is that variables declared outside of functions

Basic Bridge Work | 41

or missing the ‘var’ keyword® are global rather than confined to the
script in which they are declared. There are various ways to rectify
this situation but the one I use and recommend is to make each of
your scripts a self-calling function. This makes all variables declared
using var local to the script/function, preventing them polluting the
global namespace. Any objects, functions, variables etc. you want to
make available to other scripts can be attached to an object which is
part of the global namespace.

Example 2-2 demonstrates a module-pattern. The boilerplate head
and tail (labelled 1. and 3.) effectively create an encapsulated mod-
ule. This pattern is far from a perfect solution to modular JavaScript
but is the best compromise I know until Ecmascript 6 and a dedica-
ted import system becomes standard. One obvious disadvantage is
that the module is part of the global namespace, which means,
unlike in Python, there is no need to explicitly import it.

Example 2-2. A module pattern for JavaScript

(function(nbviz) { (1]
'use strict';
/..
nbviz.updateTimeChart = function(data) { e
/] ...
}(window.nbviz = window.nbviz || {3})); €

@ Receives the global nbviz object.

@ Attaches the updateTimeChart method to the global nbviz
object, effectively exporting it.

® Ifan nbviz object exists in the global (window) namespace pass
it into the module function, otherwise add it to the global
namespace.

Outputting ‘Hello World’

By far the most popular initial demonstration of any programming
language is getting it to print or communicate ‘Hello World!" in

8 This possibility of a missing ‘var’ can be removed by using the Ecmascript 5 use strict
directive.

42 | Chapter2: Alanguage Learning Bridge Between Python and JavaScript

some form, so let’s start with getting output from Python and Java-
Script.

Python’s output couldn’t be much simpler but version 3 sees a
change to the print statement, making it a proper function’

In Python 2
print 'Hello World!'

In Python 3
print('Hello World!')

You can use Python 3’s print function in Python 2 by importing it
from the future module:

from _ future__ import print_function

If youre not using Python 3 then this is a sensible approach. The
new print function is here to stay and it’s best to get used to it now.

JavaScript has no print function but you can log output to the
browser console:

console.log('Hello World!);

Simple data-processing

A good way to get an overview of the language differences is to see
the same function written in both. Example 2-3 and Example 2-4
show a small, contrived example of data-munging in Python and
Javscript respectively. We'll use these to compare Python and JS syn-
tax.

Example 2-3. Simple Data-munging with Python
from _ future__ import print_function

A

student_data = [
{'name': 'Bob', 'id':0, 'scores':[68, 75, 56, 81]},
{'name': 'Alice', 'id':1, ‘'scores':[75, 90, 64, 88]},
{'name': 'Carol', 'id':2, 'scores':[59, 74, 71, 68]},
{'name': 'Dan', 'id':3, 'scores':[64, 58, 53, 62]},

9 This is a good thing for reasons outlined in PEP 3105 here.

Basic Bridge Work | 43

https://www.python.org/dev/peps/pep-3105/

def process_student_data(data, pass_threshold=60,
merit_threshold=75):
""" perform some basic stats on some student data. """
C
for sdata in data:
av = sum(sdata['scores'])/float(len(sdata['scores']))
sdata['average'] = av

if av > merit_threshold:

sdata['assessment'] = 'passed with merit'
elif av > pass_threshold:

sdata['assessment'] = 'passed'
else:

sdata['assessment'] = 'failed'
#D

print("%s's (id: %d) final assessment is: %s"%(
sdata['name'], sdata['id'], sdata['assessment'].upper()))

E
if __name__ == '__main__
process_student_data(student_data)

Example 2-4. Simple data-munging with JavaScript

// A (note deliberate and valid inconsistency in keys (some quoted
// and some unquoted)
var studentData = [

{name: 'Bob', 1d:0, 'scores':[68, 75, 76, 81]},

{name: 'Alice', id:1, 'scores':[75, 90, 64, 88]},

{'name': 'Carol', id:2, 'scores':[59, 74, 71, 68]},

{'name': 'Dan', id:3, 'scores':[64, 58, 53, 62]},

1;

// B

function processStudentData(data, passThreshold, meritThreshold){
passThreshold = typeof passThreshold !== 'undefined'? passThreshold: 60;
meritThreshold = typeof meritThreshold !== 'undefined'? meritThreshold: 75;
// C

data.forEach(function(sdata){
var av = sdata.scores.reduce(function(prev, current){
return prev+current;
},0) / sdata.scores.length;
sdata.average = av;

if(av > meritThreshold){
sdata.assessment = 'passed with merit';
}
else if(av > passThreshold){
sdata.assessment = 'passed';

44 | Chapter2: ALanguage Learning Bridge Between Python and JavaScript

}
else{
sdata.assessment = 'failed';
}
// D
console.log(sdata.name + "'s (id:
") final assessment is: " +
sdata.assessment.toUpperCase());

+ sdata.id +

s
}

//E
processStudentData(studentData);

String construction

Section D in Example 2-4 and Example 2-3 show the standard way
to print output to console or terminal. JavaScript has no print state-
ment but will log to the browser’s console through the console
object.

console.log(sdata.name + "'s (id: + sdata.id +
") final assessment is: " + sdata.assessment.toUpperCase());
Note that the integer variable id is coerced to a string, allowing con-
catenation. Python doesnt perform this implicit coercion so
attempting to add a string to an integer in this way would give an
error. Instead explicit conversion to string form is achieved using
one of the str or repr functions.

In Section A Example 2-3 the output string is constructed using C
type formatting. String (%s) and integer (%d) place-holders are pro-
vided by a final tuple (%f(...)):

print("%s's (id: %d) final assessment is: %s"
%(sdata['name'], sdata['id'], sdata['assessment'].upper()))

These days I rarely use Python’s print statement, opting for the
much more powerful and flexible Logging module, which is demon-
strated in the following code-block. It takes a little more effort to use
but it is worth it. Logging gives you the flexibility to direct output to
a file and/or the screen, adjust the logging level to prioritise certain
information and a whole load of other useful things. Check out the
details here.

import logging
logger = logging.getlLogger(__name__) (1]

Basic Bridge Work | 45

https://docs.python.org/2/howto/logging.html

/]...
logger.debug('Some useful debugging output')
logger.info('Some general information')

// IN INITIAL MODULE
logging.basicConfig(level=1logging.DEBUG) (2]

@ Creates a logger with the name of this module.

@ You can set the logging level, an output file as opposed to the
default to screen etc..

Significant whitespace vs curly brackets

The syntactic feature most associated with Python is significant
whitespace. Wheras languages like C and JavaScript use whitespace
for readability and could easily be condensed into one line', in
Python leading spaces are used to indicate code-blocks and remov-
ing them changes the meaning of the code. The extra effort required
to maintain correct code alignment is more than compensated for
by increased readability - you spend far longer reading than writing
code and the easy reading of Python is probably the main reason
why the Python library ecosystem is so healthy. Four spaces is pretty
much mandatory (see PEP 8) and my personal preference is for
what is know as soft tabs, where your editor inserts (and deletes)
multiple spaces instead of a tab character"!

In the following code, the indentation of the return statement must
be four spaces by convention'.

def doubler(x):
return x * 2
|[<-this spacing is important
JavaScript doesn’t care about the number of spaces between state-
ments, variables etc.., using curly-brackets to demark code-blocks,
the two doubler functions in this code being equivalent:

10 this is actually done by JavaScript compressors to reduce the filesize of downloaded
web-pages

11 The soft vs hard tab debate generates controversy, with much heat and little light. PEP 8
stipulates spaces, which is good enough for me.

12 It could be two or even three spaces but this number must be consistent throughout the
module.

46 | Chapter2: ALanguage Learning Bridge Between Python and JavaScript

var doubler = function(x){
return x * 2;

}

var doubler=function(x){return x*2;}

Much is made of Pythons whitespace but most good coders I know
set their editors up to enforce indented code-blocks and a consistent
look and feel. Python merely enforces this good practice. And, to
reiterate, I believe the extreme readability of Python code contrib-
utes as much to Python’s supremely healthy ecosystem as its simple
syntax.

Comments and doc-strings
To add comments to code, Python uses hashes #:

ex.py, a single informative comment

data = {} # Our main data-ball

By contrast, JavaScript uses the C language convention of double
backslashes // or /*... */ for multi-line comments:

// script.js, a single informative comment
/* A multi-line comment block for
function descriptions, library script
headers and the like */

var data = {}; // Our main data-ball

As well as comments, and in keeping with its philosophy of read-
ability and transparency, Python has documentation strings (doc-
strings) by convention. The process_student_data function in
Example 2-3 has a triple-quoted line of text at its top which will
automatically be assigned to the function’s __doc__ attribute. You
can also use multi-line docstrings.

def doubler(x):
"""This function returns double its input.
return 2 * x

nwwn

def sanitize_string(s):
"""This function replaces any string spaces
with '-' after stripping any white-space

mwnn

return s.strip().replace(' ', '-")

Docstrings are a great habit to get into, particularly if working col-
laboratively. They are understood by most decent Python editing

Basic Bridge Work | 47

toolsets and are also used by such automated documentation libra-
ries as Sphinx. The string-literal docstring is accessible as the doc
property of a function or class.

Declaring variables, var

In Section A of Example 2-3 and Example 2-4 the declaration of the
student data requires a var keyword for JavaScript. We could dis-
pense with the var and the script would run fine but we would be in
danger of being skewered by JS gotcha number one: any variables
declared without var are attached to the global namespace, or win-
dow object, which means they can easily mask or be masked by any
other variables sharing the same name. This possibility of name-
space pollution is a big problem for JS and the reason why you
should get a good linter to warn of missing vars. You should also
use Ecmascript’s use strict directive to force all variables to be
declared with var (see “Style guidelines, PEP 8 and ‘use strict” on
page 37).

Strictly speaking JS statements should be terminated with a semi-
colon as opposed to Python’s new line. You will see examples where
the semi-colon is dispensed with and modern browsers will usually
do the right thing here but there are risks involved (e.g. it can trip up
code minifiers and compressors which remove white-space). I'm in
the semi-colon camp but many smart people seem to make do
without them.

Declare all variables to be used in a function at
its top. Javscript has variable hoisting, which
means variables are processed before any other
code. This means declaring them anywhere in
the function is equivalent to declaring them at
the top. This can result in weird errors and con-
fusion. Explicitly placing vars at the top avoids
this.

Strings and numbers

The name strings used in the student-data (see Section A of
Example 2-3 and Example 2-4) will be interpreted as UCS-2 (the

48 | Chapter2: ALanguage Learning Bridge Between Python and JavaScript

http://sphinx-doc.org/

parent of unicode UTF-16) in JavaScript®, a string of bytes in
Python 2 and unicode (UTF-8 by default) in Python 3"

Both languages allow single and double quotes for strings. If you
want to include a single or double quote in the string then enclose
with the alternative, like so:

pub_name = "The Brewer's Tap"

The scores in Section A Example 2-4 are stored as JavaScript’s one
numeric type, double-precision 64-bit (IEEE 754) floating-point
numbers. Although JavaScript has a parseInt conversion function,
when used with floats® it is really just a rounding operator, similar
to floor. The type of the parsed number is still number:

var x = parselnt(3.45); // 'cast' x to 3

typeof(x); // "number"”
Python has three numeric types, the 32 bit int, to which the student
scores are cast, a float equivalent (IEE 754) to JS’s number and a
long for arbitrary precision integer arithmetic. This means Python
can represent any integer whereas JavaScript is more limited'.
Python’s casting changes type:

foo = 3.4 # type(foo) -> float
bar = int(3.4) # type(bar) -> int

The nice thing about Python and JavaScript numbers is that they are
easy to work with and usually do what you want. If you need some-
thing more efficient, Python has the Numpy library which allows
fine-grained control of your numeric types (you'll learn more about
Numpy in ???2. In JavaScript, aside from some cutting edge projects,
you're pretty much stuck with 64 bit floats.

13 The quite fair assumption that JavaScript uses UTF-16 has been the cause of much bug-
driven misery. See here for an interesting analysis.

14 The change to unicode strings in Python 3 is a big one. Given the confusion that often
attends unicode de/encoding it’s worth reading a little bit about it: https://
docs.python.org/3/howto/unicode.html

15 parselnt can do qutie a bit more than round. For example parselnt(12.5px) gives 12,

first removing the px and then casting the string to a number. It also has a second radix
argument to specify the base of the cast. See here for the specifics.

16 With very large numbers JavaScript can get very weird, with non-continuous integer.

Basic Bridge Work | 49

https://mathiasbynens.be/notes/javascript-encoding
https://docs.python.org/3/howto/unicode.html
https://docs.python.org/3/howto/unicode.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt

Booleans

Python differs from the JavaScript and the C class languages in using
named booleans operators. Other than that they work pretty much
as expected. This table gives a comparison:

Python bool True False not and or

JavaScript boolean true false ! && $$

Python’s capitalised True and False is an obvious trip up for any Jav-
aScripter and vice-versa but any decent syntax-highlighting should
catch that as should your code-linter.

Rather than always returning boolean true or false, both Python and
JavaScript and/or expressions return the result of one of the argu-
ments, which may of course be a boolean value. The following table
shows how this works, using Python to demonstrate:

Table 2-1. Pythons’ boolean operators

Operation Result

Xory if x is false, then y, else x
xandy if x is false, then x, else y

not x if x is false, then True, else False

This fact allows for some occasionally useful variable assignments

rocket_launch = True

(rocket_launch == True and 'All OK') or 'We have a problem!'
Out:

'"All OK'

rocket_launch = False

(rocket_launch == True and 'All OK') or 'We have a problem!'
Out:

'We have a problem!'

Data containers: dicts, objects, lists, arrays

Roughy speaking, Javscript objects can be used like Python dicts
and Python lists like JavaScript arrays. Python also has an tuple

50 | Chapter2:ALanguage Learning Bridge Between Python and JavaScript

container, which functions like an immutable list. Heres some
examples:

Python

d = {'name': 'Groucho', 'occupation': 'Ruler of Freedonia'}
1 = ['Harpo', 'Groucho', 99]

t = ('an', 'immutable', 'container')

// JavaScript

d = {'name': 'Groucho', 'occupation': 'Ruler of Freedonia'}

1 = ['Harpo', 'Groucho', 99]
As shown in Section A Example 2-3 and Example 2-4, while
Python’s dict keys must be quote-marked strings (or hashable types),
JavaScript allows you to omit the quotes if the property is a valid
identifier, i.e. not containing special characters such as spaces,
dashes etc.. So in our studentData objects JS implicitly converts the
property name to string form.

The student data declarations look pretty much the same and, in
practice, are used pretty much the same too. The key difference to
note is that while the curly-bracketed containers in the JS student
Data look like Python dicts, they are actually a shorthand declara-
tion of JS objects, a somewhat different data-container.

In JS data-visualisation we tend to use arrays of objects as the chief
data-container and here JS objects function much as a Pythonista
would expect. In fact, as demonstrated in the following code, we get
the advantage of both dot notation and key-string access, the former
being preferred where applicable (keys with spaces, dashes etc.
needing quoted strings):

var foo = {bar:3, baz:5};

foo.bar; // 3

foo['baz']; // 5, same as Python
It's good to be aware that though they can be used like Python dic-
tionaries, JavaScript objects are much more than just containers
(aside from primitives like strings and numbers pretty much every-
thing in Javscript is an object)””. But in most dataviz examples you
see, they are used very much like Python dicts.

Here’s a little table to convert basic list operations:

17 This makes iterating over their properties a little trickier than it might be. See here for
more details.

Basic Bridge Work | 51

http://stackoverflow.com/questions/8312459/iterate-through-object-properties
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects

Table 2-2. Lists and arrays

JavaScript array (a) Python list (1)
a.length len(l)
a.push(item) l.append(item)
a.pop() I.pop()

a.shift() .pop(0)
a.unshift(item) Linsert(0, item)
a.slice(start, end) I[start:end]

a.splice(start, howMany, i1, ...) I[start:end] = [i1, ...]

Functions

Section B of Example 2-3 and Example 2-4 shows a function decla-
ration. Python uses def to indicate a function:

def process_student_data(data, pass_threshold=60,

merit_threshold=75):
Perform some basic stats on some student data.

I mwun

Whereas JavaScript uses function:

function processStudentData(data, passThreshold, meritThreshold){
passThreshold = typeof passThreshold !== 'undefined'? passThreshold: 60;
meritThreshold = typeof meritThreshold !== 'undefined'? meritThreshold: 75;

}

Both have a list of parameters. With JS the function codeblock is
indicated by the curly brackets { ... }, with Python the code-block is
defined by a colon and indentation.

JS has an alternative way of defining a function, the function expres-
sion, which you may see in examples:

var processStudentData = function(...){

52 | Chapter2: A Language Learning Bridge Between Python and JavaScript

The differences are subtle enough not to worry now'®. For what it’s
worth, I tend to use function expressions pretty much exclusively.

Function parameters is an area where Python’s handling is a deal
more sophisticated than JavaScript’s. As you can see in process_stu
dent_data (Section B Example 2-3), Python allows default argu-
ments for the parameters. In JavaScript all parameters not used in
the function call are declared undefined. In order to set a default
value for these we have to perform a distinctly hacky conditional
(ternary) expression:

function processStudentData(data, passThreshold, meritThreshold){
passThreshold = typeof passThreshold !== 'undefined'? passThreshold: 60;

The good news for JavaScripters is that the latest version of Java-
Script, based on Ecmascript 6 and coming very soon allows Python-
like default parameters:

function processStudentData(data, passThreshold = 60, meritThreshold = 75){

Iterating: for loops and functional alternatives

Section C Example 2-4 and Example 2-3 shows our first major
departure, demonstrating JavaScript’s functional chops.

Python’s for loops are simple, intuitive and work on any iterator",
for example arrays and dicts. One gotcha with dicts is that standard
iteration is by key, not items. For example:

foo = {'a':3, 'b':2}

for x in foo:

print(x)

outputs 'a' 'b'
To iterate over the key-value pairs, use the dict’s items method like
s0:

for x in foo.items():
print(x)
outputs key-value tuples ('a', 3) ('b' 2)

18 For the curious, there’s a nice summation here.

19 see below for generators and pseudo containers

Basic Bridge Work | 53

https://javascriptweblog.wordpress.com/2010/07/06/function-declarations-vs-function-expressions/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/default_parameters

You can assign the key/values in the for statement for convenience.
For example:

for key, value in foo.items():

Because Python’s for loop works on anything with the correct itera-
tor plumbing, you can do cool things like loop over file lines:

for line in open('data.txt'):
print(line)
Coming from Python, JS’s for loop is a pretty horrible, unintuitive
thing. Here’s an example:
for(var 1 in ['a', 'b', 'c']){
console.log(1)

}

outputs 1, 2, 3
JS’s for .. in returns the index of the array’s items, not the items
themselves. To compound matters, for the Pythonista, the order of
iteration is not guaranteed, so the indexes could be returned in non-
consecutive order.

Even iterating over an object is trickier than it might be. Unlike
Python’s dicts, objects could have inherited properties from the pro-
totyping chain so you should use a hasOwnProperty guard to filter
these out, like so:

var obj = {a:3, b:2, c:4};
for (var prop in obj) {
if(obj.hasOwnProperty(prop)) {
console.log("o."
}

}
// out: o.a = 3, o.b =2, o.c =4

+ prop + " =" + obj[prop]);

Shifting between Python and]S for loops is hardly seamless,
demanding you keep on the ball. The good news is that you hardly
need to use JS for-loops these days. In fact, I almost never find the
need. That’s because JS has recently acquired some very powerful
first-class functional abilities, which have more expressive power,
less scope for confusion with Python and, once you get used to
them, quickly become indispensable®.

20 this is one area where JS beats Python hands-down and which finds many of us wishing
for similar functionality in Python.

54 | Chapter2: A Language Learning Bridge Between Python and JavaScript

Section C Example 2-4 demonstrates forEach(), one of the functional
methods available to modern JavaScript arrays®. forEach() iterates
over the array’s items, sending them in turn to an anonymous call-
back function defined in the first argument where they can be pro-
cessed. The true expressive power of these functional methods
comes from chaining them (maps, filters etc.) but already we have a
cleaner, more elegant iteration with none of the awkward book-
keeping of old.

The callback function receives index and the original array as
optional second argument

data.forEach(function(currentValue, index){//---

Whereas JS arrays have a set of native functional iterator methods
(map, reduce, filter, every, sum, reduceRight), Objects -in their
guise as pseudo-dictionaries- don't. If you want to iterate over
Object key-value pairs then I'd recommend using underscore?, the
most used functional library for JS and almost as ubiquitous as
jQuery. Underscore methods are accessed with the shorthand _, like
this:
_.each(obj, function(value, key){
// do something with the data..

This does introduce a library dependency but this type of iteration is
very common in data-visualisation work and underscore has lots of
other goodies. Along with jQuery it has pretty much honorary JS
standard-library status.

Conditionals: if, else, elif, switch

Section C Example 2-3 and Example 2-4 shows Python and Java-
Script conditionals in action. Aside from JavaScript’s bracket fetish,
the statements are very similar, the only real difference being
Python’s extra elif keyword, a convenient conjunction of else if.

Though much requested, Python does not have the switch statement
found in most high-level languages. JS does, allowing you to do this:

switch(expression){
case valuel:

21 Added with Ecmascript 5 and available on all modern browsers.

22 T use lodash, which is functionally identical

Basic Bridge Work | 55

// execute if expression === valuel
break; // optional end expression
case value2:

Y/
default:

// if other matches fail

File input and output

JavaScript has no real equivalent of file input and output (I/O) but
Python’s is as simple as could be:

READING A FILE
f = open("data.txt") # open file for reading

for line in f: # iterate over file-lines
print(line)

lines = f.readlines() # grab all lines in file into array
data = f.read() # read all of file as single string

WRITING TO A FILE

f = open("data.txt", 'w') # use 'w' to write, 'a' to append to file
f.write("this will be written as a line to the file")

f.close() # explicitly close the file

One much recommended best-practice is to use Python’s with, as
context manager when opening files. This ensures they are closed
automatically when leaving the block, essentially providing syntactic
sugar for a try, except, finally block. Here’s how to open a file using
with, as:

with open("data.txt") as f:
lines = f.readlines()

Classes and prototypes

Possibly the cause of more confusion that any other topic is JavaS-
cript’s choice of prototypes rather than classical classes as its chief
Object Orientated Programming (OOP) element. I have come to
appreciate the concept of prototypes, if not its JS implementation,
which could have been cleaner. Nevertheless, once you get the basic
principle you may find that it is actually a better mental model for
much of what we do as programmers than classical OOP paradigms.

I remember, when I first started my forays into more advanced lan-
guages like C++, falling for the promise of OOP, particularly class-

56 | Chapter2: A Language Learning Bridge Between Python and JavaScript

based inheritance. Polymorphism was all the rage and Shape classes
were being sub-classed to rectangles and ellipses, which were in turn
subclassed to more specialised squares and circles.

It didn’t take long to realise that the clean class divisions found in
the text-books were rarely found in real programming and that try-
ing to balance generic and specific APIs quickly became fraught. In
this sense, I find composition and mix-ins much more useful as a
programming concept than attempts at extended subclassing and
often avoid all these by using functional programming techniques,
particularly in JavaScript. Nevertheless, the class/prototype distinc-
tion is an obvious difference between the two languages and the
more you understand its nuances the better you’ll code*

Python’s classes are fairly simple affairs and, like most of the lan-
guage, easy to use. I tend to think of them these days as a handy way
to encapsulate data with a convenient API and rarely extend sub-
classing beyond one generation. Here’s a simple example:

class Citizen(object):

def __init__(self, name, country): ﬂ
self.name = name
self.country = country

def print_details(self):
print('Citizen %s from %s'%(self.name, self.country))

c = Citizen('Groucho M.', 'Freedonia') a
c.print_details()

Out:

Citizen Groucho M. from Freedonia

© Python classes have a number of double-underscored special
methods, __init__ being the most common, called when the
class instance is created. All instance methods have a first,
explicit self argument (you could name is something else but it’s

23 I mentioned to a talented programmer friend that I was faced with the challenge of
explaining prototypes to Python programmers and he pointed out that most JavaScrip-
ters could probably do with some pointers too. There’s a lot of truth in this and many
JSers do manage to be productive by using prototypes in a classy way, hacking their way
around the edge-cases.

Basic Bridge Work | 57

a very bad idea) which refers to the instance. In this case we use
it to set name and country properties.

@ Creates a new Citizen instance, initialised with name and coun-
try.

Python follows a fairly classical pattern of class inheritance. It’s easy

to do, which is probably why Pythonistas make a lot of use of it. Let’s

customise the Citizen class to create a (Nobel) Winner class with a

couple of extra properties:

class Winner(Citizen):

def __init__ (self, name, country, category, year):

super(Winner, self).__init__(name, country)
self.category = category
self.year = year

def print_details(self):
print('Nobel winner %s from %s, category %s, year %s'\
%(self.name, self.country, self.category, str(self.year)))

w = Winner('Albert E.', 'Switzerland', 'Physics', 1921)
w.print_details()

Out:

Nobel prize-winner Albert E. from Switzerland, category Physics,
year 1921

@ We want to reuse the super-class Citizen’s __init__ method,
using this Winner instance as self. The super method scales the
inheritance tree one branch from its first argument, supplying
the second as instance to the class-instance method.

I think the best article I have read on the key difference between Jav-
aScript’s prototypes and classical classes is Reginald Braithwaite’s
“OOP, JavaScript, and so-called Classes”. This quote sums up the
difference between classes and prototypes as nice as any I've found:

“The difference between a prototype and a class is similar to the
difference between a model home and a blueprint for a home.

When you instantiate a C++ or Python class, a blueprint is followed,
creating an object and calling its various constructors in the inheri-
tance tree. In other words you start from scratch and build a nice,
pristine new class instance.

58 | Chapter2: A Language Learning Bridge Between Python and JavaScript

http://raganwald.com/2015/05/11/javascript-classes.html

With JavaScript prototypes you start with a model home (object)
which has rooms (methods). If you want a new living room you can
just replace the old one with something in better colors etc. If you
want a new conservatory then just make an extension. But rather
than building from scratch with a blueprint, youre adapting and
extending an existing object.

With that necessary theory out of the way and the reminder that
object-inheritance is useful to know but hardly ubiquitous in data-
viz, let’s see a simple JavaScript prototype example, Example 2-5.

Example 2-5. A simple Javscript object

var Citizen = function(name, country){ 1]
this.name = name;
this.country = country;

}

Citizen.prototype = { (3]
printDetails: function(){
console.log('Citizen '

+ this.name + ' from ' + this.country);

}
1

var ¢ = new Citizen('Groucho M.', 'Freedonia'); (4]

c.printDetails();
Out:
Citizen Groucho M. from Freedonia

typeof(c) # object

@ Javscript has no classes® so object-instances are built from func-
tions or objects.

@ this is an implicit reference to the calling context of the func-
tion. For now it behaves as you would expect but though it
looks a little like Pythons self the two are quite different, as
we'll see.

24 As of Ecmascript 6 this will change with the addition of the class keyword, a piece of
syntactic sugar generating a lot of heat and not much light right now.

Basic Bridge Work | 59

€® The methods specified here will both override any prototypical
methods up the inheritance chain and be inherited by any
objects derived from Citizen.

@ new is used to create a new object, set its prototype to the Citi
zen function and then call

self vs this

It would be easy enough, at first glance, to assume that Python’s
self and Javscript’s this are essentially the same, the latter being an
implicit version of the former, which is supplied to all class instance
methods. But actually this and self are significantly different. Let’s
use our bi-lingual Citizen class to demonstrate.

Python’s self is a variable supplied to each class method, (you can
call it anything you like but it’s not advisable) representing the class
instance. But this is a keyword that refers to the object calling the
method. This calling object can be different from the method’s
object instance and Javascript provides the call, bind and apply
function methods to allow you to exploit this fact.

Lets use the call method to change the calling object of a
print_details method and therefore the reference for this, used
in the method to get the Citizen’s name:

var groucho = new Citizen('Groucho M.', 'Freedonia');
var harpo = new Citizen('Harpo M.', 'Freedonia');

groucho.print_details.call(harpo);
Out:
"Citizen Harpo M. from Freedonia"

So JavaScript’s this is a much more malleable proxy than Python’s
self, offering more freedom but also the responsibility of tracking
calling context and, should you use it, making sure new is always
used in creating objects®.

I included Example 2-5 which shows new in JavaScript object instan-
tiation because you will run into its use a fair deal. But the syntax is

25 This is another reason to use Ecmascript 5’s use strict; injunction, which calls attention
to such mistakes.

60 | Chapter2: A Language Learning Bridge Between Python and JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function

already a little awkward and gets quite a bit worse when you try to
do inheritance. Ecmascript 5 introduced the Object.create
method, a better way to create objects and to implement inheritance.
I'd recommend using it in your own code but new will probably crop
up in some third party libraries.

Let’s use Object.create to create a Citizen and its Winner inheri-
tor. To emphasise, Javscript has many ways to do this but
Example 2-6 shows the cleanest I have found and my personal pat-
tern.

Example 2-6. Prototypical inheritance with Object.create

var Citizen = { (1]
setCitizen: function(name, country){
this.name = name;
this.country = country;
return this;
1,
printDetails: function(){
console.log('Citizen ' + this.name + ' from ', + this.country);
}
b

var Winner = Object.create(Citizen);

Winner.setWinner = function(name, country, category, year){
this.setCitizen(name, country);
this.category = category;
this.year = year;
return this;

};

Winner.printDetails = function(){
console.log('Nobel winner ' + this.name + ' from

this.country + ', category ' + this.category + ', year ' +
this.year);

+
1

};

var albert = Object.create(Winner)
.setWinner('Albert Einstein', 'Switzerland', 'Physics', 1921);

albert.printDetails();

Out:

Nobel winner Albert Einstein from Switzerland, category
Physics, year 1921

Basic Bridge Work | 61

@ Citizen is now an Object rather than a constructor function.
Think of this as the base-house for any new buildings such as
Winner.

To reiterate, prototypical inheritance is not seen that often in Java-
Script data-viz, particularly the 800-pound gorilla D3, with its
emphasis on declarative and functional patterns, with raw unencap-
sulated data being used to stamp its impression on the web-page.

The tricky class/prototype comparison concludes this section on
basic syntactic differences. Now let’s look at some common patterns
seen in dataviz work with Python and JS.

Differences in Practice

The syntactic differences between JS and Python are important to
know and thankfully outweighed by their syntactic similarities. The
meat and potatoes of imperative programming, loops, conditionals,
data declaration and manipulation is much the same. This is all the
more so in the specialised domain of data-processing and data-
visualisation where the languages first class functions allow com-
mon idioms.

What follows is a less than comprehensive list of some important
patterns and idioms seen in Python and JavaScript, from the per-
spective of a data-visualiser. Where possible a translation between
the two languages.

Method chaining

A common JavaScript idiom is method chaining, popularised by its
most popular library, jQuery and much used in D3. Method chain-
ing involves returning an object from its own method in order to
call another method on the result, using dot-notation:

var sel = d3.select('#viz')
.attr('width', '600px") ﬂ
.attr('height', '400px')
.style('background', 'lightgray');

@ The attr method returns the D3 selection that called it, which
is then used to call another attr method.

62 | Chapter2: A Language Learning Bridge Between Python and JavaScript

Method chaining is not much seen in Python, which generally advo-
cates one statement per line, in keeping with simplicity and readabil-

ity.

Enumerating a list

Often it’s useful to iterate through a list while keeping track of the
item’s index. Python has the very handy enumerate keyword for just
this reason:

names = ['Alice', 'Bob', 'Carol']

for 1, n in enumerate(names):
print('%d: %s'%(i, n))

Out:

0: Alice
1: Bob
2: Carol

JavaScript’s list methods, such as forEach and the functional map,
reduce and filter, supply the iterated item and its index to the
callback function:

var names = ['Alice', 'Bob', 'Carol'];

names . forEach(function(n, i){
console.log(i + ': ' + n);

s

Out:

0: Alice
1: Bob
2: Carol

Tuple unpacking

One of the first cool tricks Python initiates come across uses tuple
unpacking to switch variables:

(a, b) = (b, a)

Note that the brackets are optional. This can be put to more practi-
cal purpose as a way of reducing the temporary variables, for exam-
ple in a fibonacci function:

def fibonacci(n):
X, y=0,1
for 1 in range(n):

Differences in Practice | 63

print(x)

X, Yy =Y, xX+y
If you want to ignore one of the unpacked variables, use an under-
score:

winner = 'Albert Einstein', 'Physics', 1921, 'Swiss'

name, _, _, nationality = winner

Tuple unpacking has a slew of use-cases. It is also a fundamental fea-
ture of the language and not available in JavaScript.

Collections

One of the most useful Python ‘batteries’ is the collections module.
This provides some specialised container datatypes to augment
Python’s standard set. It has a deque, which provides a list-like con-
tainer with fast appends and pops at either end, an OrderedDict
which remembers the order entries were added, a defaultdict,
which provides a factory function to set the dictionary’s default and
a Counter container for counting hashable objects, among others. I
find myself using the last three a lot. Here’s a few examples:

from collections import Counter, defaultdict, OrderedDict
i_temS:[lFl, ‘CI, lcl, ‘A', 'B‘, ‘A', lc|, |El’ IF|]

cntr = Counter(items)

print(cntr)

cntr['C'] -=1

print(cntr)

Out:

Counter({'C': 3, 'A': 2, '"F': 2, 'B': 1, '"E': 1})
Counter({'A': 2, 'C': 2, '"F': 2, 'B': 1, "E': 1})

d = defaultdict(int) @

for item in items:
dlitem] += 1 @

d

Out:
defaultdict(<type 'int's, {'A': 2, 'C': 3, 'B': 1, "E': 1, 'F':

OrderedDict(sorted(d.items(), key=lambda i: i[1])) (3]

64 | Chapter2: A Language Learning Bridge Between Python and JavaScript

Out:
Ordereddict([('B', 1), ('E', 1), ('A', 2), ('F', 2), ('c’, 3)]) @

© Sets the dictionary default to an integer, value 0 by default.

@ If the item-key doesn't exist its value is set to the default of zero
and 1 added to that.

® Gets the list of items in the dictionary d as key-value tuple pairs,
sorts using the integer value and then creates an OrderedDict
with the sorted list.

@ The Ordereddict remembers the (sorted) order of the items as
they were added to it.

You can get more details on the collection module from here.

There is a recent JavaScript library that emulates the Python collec
tions module. You can find it here. As of late 2015 it is a very new
but impressive piece of work, worth checking out even if you just
want to extend your JavaScript knowledge.

If you want to replicate some of Python’s collection function using
more conventional JavaScript libraries, underscore or its function-
ally identical replacement lodash® are a good place to start. These
libraries offer some enhanced functional programming utilities. Let’s
take a quick look at these handy tools.

Underscore

Underscore is probably the most popular JavaScript library after the
ubiquitous jQuery and offers a bevy of functional programming
utilities for the JavaScript dataviz programmer. The easiest way to
use underscore is to use a content delivery network (CDN) to load it
remotely (these loads will be cached by your browser, making things
very efficient for common libraries), like so:

<script src="https://cdnjs.cloudflare.com/ajax/libs/
underscore.js/1.8.3/underscore-min.js"></script>

26 My personal choice for performance reasons.

Differences in Practice | 65

https://docs.python.org/2/library/collections.html
https://github.com/seriesoftubes/pycollections.js

Underscore has loads of useful functions. There is, for example, a
countBy method which serves the same purpose as the Python’s col-
lections Counter just discussed:

var items = [‘F', 'C‘, IC', IAI; IBI, ‘AIJ 'C‘, ‘E', |F|];

_.countBy(items) 0
Out:
Object {F: 2, C: 3, A: 2, B: 1, E: 1}

@ Now you see why the library is called underscore.

As we'll now see, the inclusion in modern JavaScript of native func-
tional methods (map, reduce, filter) and a forEach iterator for
arrays has made underscore slightly less indispensable but it still has
some great utilities to augment vanilla JS. With a little chaining you
can produce extremely terse but very powerful code. Underscore
was my gateway drug to functional programming in JavaScript and
the idioms are just as addictive today. Check out underscores reper-
toire of utilities here.

Let’s have a look at underscore in action, tackling a more involved
task:

journeys = [
{period: 'morning', times:[44, 34, 56, 31]},
{period: 'evening', times:[35, 331,},
{period: 'morning', times:[33, 29, 35, 41]},
{period: 'evening', times:[24, 45, 27]},
{period: 'morning', times:[18, 23, 28]}

1;

var groups = _.groupBy(journeys, 'period');

var mTimes = _.pluck(groups['morning'], 'times');

mTimes = _.flatten(mTimes);

var average = function(1l){
var sum = _.reduce(l, function(a,b){return a+b},0);
return sum/1l.length;

1

console.log('Average morning time is ' + average(mTimes));

Out:

Average morning time is 33.81818181818182

@ Our array of morning times arrays ([[44, 34, 56, 31], [33...]])
needs to be flattened into a a single array of numbers.

66 | Chapter2: A Language Learning Bridge Between Python and JavaScript

http://underscorejs.org/

Functional array methods and list comprehensions

I find myself using underscore a lot less since the addition, with
Ecmascript 5, of functional methods to JavaScript arrays. I don’t
think I've used a conventional for-loop since then which, given the
ugliness of JS for-loops, is a very good thing.

Once you get used to processing arrays functionally, it’s hard to con-
sider going back. Combined with JS’s anonymous functions it makes
for very fluid, expressive programming. It's also an area where
method chaining seems very natural. Let’s look at a highly contrived
example:

var nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

var sum = nums.filter(function(o){ return 0%2 }) (1]
.map(function(o){ return o * o})
.reduce(function(a, b){return a+b}); E’

console.log('Sum of the odd squares is ' + sum);

@ Filters the list for odd numbers, i.e. returning 1 for the modulus
(%) 2 operation.

@ nap produces a new list by applying a function to each member,
ie. [1,3,5...] > [1,9,25...].

® reduce processes the resultant mapped list in sequence, provid-
ing the current (in this case summed) value (a) and the item
value (b). By default, the initial value of the first argument (a) is
0.

Python’s powerful list comprehensions can emulate the example
above easily enough:

nums = range(10) ﬂ

odd_squares = [x * x for x in nums if x%2] a
sum(odd_squares) (3]

Out:

165

@ Python has a handy built-in range keyword, which can also take
a start, end and step, e.g. range(2, 8, 2) - [2, 4, 6]

Differences in Practice | 67

® The if condition tests for oddness of x and any numbers pass-
ing this filter are squared and inserted into the list.

® Python also has a built in and often used sum statement.

Python’s list comprehensions can use recursive
control structures, applying a second for/if
expression to the iterated items etc. Although
this can create terse and powerful lines of code it
goes against the grain of Python’s readability and
I would discourage its use. Even simple list-
comprehensions are less than intuitive and as
much as it appeals to the leet hacker in all of us,
you risk creating incomprehensible code.

Python’ list comprehensions work well for basic filtering and map-
ping. They do lack the convenience of JavaScript’s anonymous func-
tions (which are fully fledged, with their own scope, control blocks,
exception handling etc.) but there are arguments against the use of
anonymous functions. For example, they are not reusable and, being
unnamed, they make it hard to follow exceptions and debug. See
here for some persuasive arguments. Having said that, for libraries
like D3, replacing the small, throw-away anonymous functions used
to set DOM attributes and properties with named ones would be far
too onerous and just add to the boilerplate.

Python does have functional lambda expressions, which we'll look at
in the next section, but for full functional processing in Python by
necessity and Javscript for best-practice, we might use named func-
tions to increase our control scope. For our simple odd-squares
example named functions are a contrivance but note that they
increase the first-glance readability of the list comprehension -
much more important as your functions get more complex.

def is_odd(x):
return x%2

def sq(x):
return x * x

sum([sq(x) for x in 1 if is_odd(x)])

68 | Chapter2: A Language Learning Bridge Between Python and JavaScript

http://toddmotto.com/avoiding-anonymous-javascript-functions/

With JavaScript a similar contrivance can also increase readability
and facilitate DRY* code:

var i1s0dd = function(x){ return x%2; };

sum = 1.filter(is0dd)

Map, reduce and filter with Python’s lambdas

Although Python lacks anonymous functions it does have lambdas,
nameless expressions which take arguments. While lacking the bells
and whistles of JavaScript’s anonymous functions these are a power-
ful addition to Pythons functional programming repertoire, espe-
cially when combined with its functional methods.

Python’s functional built-ins, map, reduce, filter
methods and lambda expressions, have a cheq-
uered past. Its no secret that the creator of
Python wanted to remove them from the lan-
guage. The clamour of disapproval lead to their
reluctant preservation. With the recent trend
towards functional programming this looks like
a very good thing. Theyre not perfect but far
better than nothing. And given JavaScript’s
strong functional emphasis theyre a good way
to leverage skills acquired in that language.

Python’s lambdas take a number of parameters and return an opera-
tion on them, using a colon separator to define the function block,
in much the same way as standard Python functions only pared to
the bare essentials and with an implicit return. The following exam-
ple shows a few lambdas employed in functional programming:

from functools import reduce # if using Python 3+
nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

odds = filter(lambda x: x % 2, nums)
odds_sq = map(lambda x: x * x, odds)
reduce(lambda x, y: x + vy, odds_sq) (1]
Out:

165

27 Don't repeat yourself being a solid coding convention.

Differences in Practice | 69

@ Here the reduce method provides two arguments to the lambda,
which uses them to return the expression after the colon.

JavaScript closures and the module-pattern

One of the key concepts in JavaScript is that of the closure, essen-
tially a nested function declaration which uses variables declared in
an outer (but not global) scope which are kept alive after the func-
tion is returned. Closures allow for a number of very useful pro-
gramming patterns and are a common feature of the language.

Let’s look at possibly the most common usage of closures and one
we've already seen exploited in our module pattern (Example 2-2):
exposing a limited API while having access to essentially private
member variables.

A simple example of a closure is this little counter:

function Counter(inc) {
var count = 0;

var add = function() { (1]
count += inc;
console.log('Current count: ' + count);

}

return add;

}

var inc2 = Counter(2); a9
inc2(); ©

Out:

Current count: 2

inc2();

Out:

Current count: 4

@ The add function gets access to the essentially private, outer-
scope count and inc variables.

@ This returns an add function with the closure-variables, count
(0) and inc (2).

® Calling inc2 calls add, updating the closed count variable.

We can extend the Counter to add a little API. This technique is the
basis of JavaScript modules and many simple libraries. In essence it
selectively exposes public method while hiding private method and

70 | Chapter2: A Language Learning Bridge Between Python and JavaScript

variables, generally seen as good practice in the programming
world:

function Counter(inc) {

var count = 0;

var apt = {};

api.add = function() {
count += inc;
console.log('Current count:

}

api.sub = function() {
count -= inc;
console.log('Current count:

}

api.reset = function() {
count = 0O
console.log('Count reset to 0')

}

+ count);

+ count)

return api;

}

cntr = Counter(3);

cntr.add() // Current count:
cntr.add() // Current count:
cntr.sub() // Current count:
cntr.reset() // Count reset to @

w W

Closures have all sorts of uses in JavaScript and I'd recommend get-
ting your head around them - you’ll see them a lot as you start
investigating other people’s code. These are three particularly good
web-articles that provide a lot of good use-cases for closures: 1, 2, 3.

Python has closures but they are not used nearly as much as JavaS-
cript’s, perhaps because of a few quirks which, though surmounta-
ble, make for some slightly awkward code. To demonstrate,
Example 2-7 tries to replicate the previous JavaScript Counter.

Example 2-7. A first-pass attempt at a Python counter closure

def get_counter(inc):
count = 0
def add():
count += inc
print('Current count:
return add

+ str(count))

If you create a counter with get_counter (Example 2-7) and try to
run it you’ll get an UnboundLocalError:

Differences in Practice | 71

http://markdaggett.com/blog/2013/02/25/getting-closure
http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html
https://msdn.microsoft.com/en-us/magazine/ff696765.aspx

cntr = get_counter(2)
cntr()
Out:

UnboundLocalError: local variable 'count' referenced before
assignment

Interestingly, although we can read the value of count within the add
function (comment out the count += 1inc line to try it), attempts to
change it throw an error. This is because attempts to assign a value
to something in Python assume it is local in scope. There is no
count local to the add function and so an error is thrown.

In Python 3 we can get around the error in Example 2-7 by using
the nonlocal keyword to tell Python that count is in a non-local
scope:

def add():
nonlocal count
count += inc

In Python 2 we can use a little dictionary hack to allow mutation of
our closed variables:

def get_counter(inc):
vars = {'count': 0}
def add():
vars['count'] += inc
print('Current count:
return add

+ str(vars['count']))

This hack works because we are not assigning a new value to vars
but mutating an existing container, perfectly valid even if it is out of
local scope.

As you can see, with a bit of effort, JavaScripters can transfer their
closure skills to Python. The use-cases are similar but Python, being
a richer language with lots of useful batteries included, has more
options to apply to the same problem. Probably the most common
use of closures is in Python’s decorators.

Decorators are essentially function wrappers that extend the func-
tions’ utility without having to alter the function itself. Theyre a rel-
atively advanced concept but you can find a user-friendly
introduction here.

72 | Chapter 2: A Language Learning Bridge Between Python and JavaScript

http://thecodeship.com/patterns/guide-to-python-function-decorators/

This is that

One JavaScript hack you'll see a lot of is a consequence of closures
and the slippery this keyword. If you wish to refer to the outer-
scoped this in a child function then you must use a proxy as the
child’s this will be bound according to context. The convention is to
use that to refer to this. The code is less confusing than the explan-
ation:
function outer(bar){

this.bar = bar;

var that = this;

function inner(baz){

this.baz = baz * that.bar; ﬂ
// ...

@ that refers to the outer function’s this

This concludes my cherry-picked selection of patterns and hacks I
find myself using a lot in Dataviz work. You'll doubtless acquire
your own but I hope these give you a leg up.

A Cheatsheet

As a handy reference guide, here’s a set of cheat-sheets to translate
basic operations between Python and JavaScript.

JavaScript Python
<script src="lib/ vizUtils.js" > import vizutils as viz
</script> from vizutils import gblur
(function(foolib){

. // module pattern
}(window.foolib = window.foolib || {}));

var foo; // undefined variables

var bar=20; bar = 20
var foo = function(a, b){ def foo(a, b=10):
// clunky defaults, fixed in ES6! X = a%b
b = typeof b !== 'undefined' ? b : 18; .
var x = a%b; return result
.return result; significant
b whitespace!

Figure 2-2. Some basic syntax

ACheatsheet | 73

{name: 'Alice’,
‘scores':[75, 90, 64, 88]},
A

anonymous functions

studentData. forEach(function(sdata){
var av = sdata.scores

.reduce(function(prev, current){

return prev+current;
},0) / sdata.scores.length;
sdata,average = av;

first-class functional methods

console.log(sdata.name + " scored " +
sdata.average);

while(i < 10){
}
do {

}
while(i < 10);

JavaScript Python
var x = false; x = False
var y = true; y = True
var 1L =[] 1=1]
if(lx & y === x){... if not x and y == x:
if(l.length === 0){... if 1:
Figure 2-3. Booleans
JavaScript Python
camelCase vs
var studentData = [underscored student_data = [
{'name': 'Bob', {'name': 'Bob',
‘scores':[68, 75, 56, 81]}, ‘scores':[68, 75, 56, 81]},
{'name': 'Alice’,

‘scores':[75, 90, 64, 88]},
]

line-break
s data = student data
for data in s_data.items():
av = sum(data['scores'])\
/float(len(data['scores']))
sdata['average'] = av

print("%s scored %d"%
(sdata.name, sdata.average));

while i < 10:

while True:
if 1 >= 10:
break

Figure 2-4. Loops and iterations

74 | Chapter2: A Language Learning Bridge Between Python and JavaScript

JavaScript

if(x ===
S}
else if(x === 'bar'){

Lo}
else{
)

"foo'){

if(x === foo && y !== bar){...

if(['foo', 'bar', 'baz']
.index0f(s) != -1){...

switch(foo){
case bar:
break;
case baz:

default:
return false;
}

Python
if x == 'foo':
elif x == 'bar':
else;
if x == foo and y != bar:

if s in ['foo', 'bar', 'baz']:

Figure 2-5. Conditionals

JavaScript

var 1 = [1, 2, 3, 4];
l.push('foo'); // [...4, 'foo']
l.pop(); // 'foo', l=[..., 4]
1l.slice(1,3) // [2, 3]
1l.slice(-3, -1) // [2, 3]

l.map(function(o){ return o*o;})
// [1, 4, 9, 16]

d = {a:1, b:2, c:3};
d.a===d['a"] // 1
d.z // undefined

// OLD BROWSERS
for(key in d){
if(d.hasOwnProperty(key){
var item = d[key];

// NEW AND BETTER
Object.keys(d).forEach(key, i){
var item = d[key];

Python

1=1[1, 2, 3, 4]
1.append('foo') # [...4, 'foo']
1l.pop() # 'foo', 1=[..., 4]
1[1:3] # [2, 3]

1[-3:-11 # [2, 3]

1[0:4:2] # [1, 3] (stride of 2)

[o*o for o in 1]
// [1, 4, 9, 16]

d={'a':1, 'b':2, 'c':3}
dl'a'] #1

d.get('z') # NoneType
d['z'] # KeyError!

for key, value in d.items():
for key in d:
for value in d.values():...

Figure 2-6. Containers

ACheatsheet |

75

JavaScript Python

var Foo = { class Foo(object):
initFoo: function(bar}{ def init (self, bar):
this.bar = bar; self.bar = bar
return this;
} class Baz(Foo):
}; def _ init_ (self, bar, qux):
super(Baz).__init_ (bar)
var Baz = Object.create(Foo); self.qux = qux
Baz.initBaz = function(bar, qux){ baz = Baz('answer', 42)
this.initFoo(bar); baz.bar # 'answer

this.qux = qux;
return this;

b

var baz = Object.create(Baz)
.initBaz('answer', 42);

Figure 2-7. Classes and prototypes

Summary

I hope this chapter has shown that JavaScript and Python have a lot
of common syntax and that most common idioms and patterns
from one of the languages can be expressed in the other without too
much fuss. The meat and potatoes of programming, iteration, con-
ditionals, basic data manipulation etc. is simple in both languages
and translation of functions straightforward. If you can program in
one to any degree of competency, the threshold to entry for the
other is low. That’s the huge appeal of these simple scripting lan-
guages, which have a lot of common heritage.

I provided a list of patterns, hacks, idioms I find myself using a lot in
dataviz work. I'm sure this list has its idiosyncrasies but I've tried to
tick the obvious boxes.

Treat this as part-tutorial, part-reference for the chapters to come.
Anything not covered here will be dealt with when introduced.

76 | Chapter2: A Language Learning Bridge Between Python and JavaScript

CHAPTER 3

Reading and Writing Data with
Python

One of the fundamental skills of any data-visualiser is the ability to
move data around. Whether your data is in an SQL database, a
comma-separated-value (CSV) file or in some more esoteric form,
you should be comfortable reading the data and being able to con-
vert it and write it into a more convenient form if need be. One of
Python’s great strengths is how easy it makes manipulating data in
this way and the focus of this chapter is to bring you up to speed
with this essential aspect of our Dataviz toolchain.

This chapter is part tutorial, part reference and sections of it will be
referred back in later chapters. If you know the fundamentals of
reading and writing Python data you can cherry-pick parts of the
chapter as a refresher.

Easy Does It

I remember when I started programming back in the day (using
low-level languages like C) how awkward data manipulation was.
Reading from and writing to files was an annoying mixture of
boiler-plate code, hand-rolled kludges and the like. Reading from
databases was equally difficult and as for serialising data, the memo-
ries are still painful. Discovering Python was a breath of fresh air. It
wasn't a speed demon but opening a file was pretty much as simple
as it could be:

file = open('data.txt')

77

Back then Python made reading from and writing to files refresh-
ingly easy and its sophisticated string-processing made parsing the
data in those files just as easy. It even had an amazing module called
Pickle that could serialise pretty much any Python object.

In the years since, Python has added robust, mature modules to its
standard library which make dealing with CSV and JSON files, the
standard for web data-viz work, just as easy. There are also some
great libraries for interacting with SQL-databases, such as SQLAI-
chemy, my thoroughly recommended go-to. The newer NoSQL-
databases are also well served. MongoDB is by some way the most
popular of these newer document-based databases and Python’s
pymongo library which, demonstrated later in the chapter, makes
interacting with it a relative breeze.

Passing Data Around

A good way to demonstrate how to use the key data-storage libraries
is to pass a single data packet among them, reading and writing it as
we go. This will give us an opportunity to see in action the key data
formats and databases employed by data-visualisers.

The data we'll be passing around is probably the most commonly
used in web-visualisations, a list of dictionary-like objects (see
Example 3-1). This data-set would be transferred to the browser in
JSON form, which is, as well see, easily converted from a Python
dictionary.

Example 3-1. Our target list of data objects

nobel_winners = [
{'category': 'Physics’,

'name': 'Albert Einstein',
'nationality': 'Swiss',
'sex': 'male’,

'year': 1921},
{'category': 'Physics',

'name': 'Paul Dirac',
'nationality': 'British’,
'sex': 'male’,

'year': 1933},
{'category': 'Chemistry',

'name': 'Marie Curie',
'nationality': 'Polish',
'sex': 'female',

78 | Chapter 3:Reading and Writing Data with Python

https://en.wikipedia.org/wiki/JSON

'year': 1911}
1

We'll start by creating a CSV file from the Python list shown in
Example 3-1, as a demonstration of reading (opening) and writing
system files.

The following sections assume youre in a work directory with a
data sub-directory to hand. You can run the code from a Python
interpreter or file.

Working with System Files

In this section we'll create a CSV-file from a Python list of dictionar-
ies (Example 3-1). Usually youd do this using the csv module,
which well demonstrate after this section, so this is just a way of
demonstrating basic Python file-manipulation.

First let’s open a new file, using w as a second argument to indicate
we'll be writing data to it.

f = open('data/nobel_winners.csv', 'w')

Now we'll create our CSV file from the nobel_winners dictionary
(Example 3-1):

cols = nobel_winners[0].keys() 0
cols.sort() g

with open('data/nobel_winners.csv, 'w') as f: 3]
f.write(','.join(cols) + "\n') (4]
for o in nobel_winners:
row = [str(o[col]) for col in cols] (5]

f.write(','.join(row) + '\n')

@ Gets our data columns from the keys of the first object, i.e. “cat-
egory, name, ...

@ Sorts the columns in alphabetical order.

® Uses Python’s with statement to guarantee the file is closed on
leaving the block or if any exceptions occur.

@ join creates a concatenated string from a list of strings (cols
here), joined by the initial string, i.e. “category,name,..”.

Working with System Files | 79

@ Creates a list using the column keys to the objects in nobel_win
ners.

Now we've created our CSV-file, lets use to Python to read it and
make sure everything is correct:

with open('data/nobel_winners.csv') as f:
for line in f.readlines():

print(line), (1]

Out:

category,name,nationality,sex,year
Physics,Albert Einstein,Swiss,male,1921
Physics,Paul Dirac,British,male,1933
Chemistry,Marie Curie,Polish,female,1911

@ Adding a, to the print statement inhibits the addition of an
unnecessary new-line.

As the previous output shows, our CSV-file is well-formed. Let’s use
Python’s built-in csv module to first read it and then create a CSV-
file the right way.

(SV, TSV and Row-column Data-formats

Comma separated values (CSV) or their tab-separated cousins
(TSV) are probably the most ubiquitous file-based data-formats and
as a data-visualiser this will often be the forms you’ll receive to work
your magic with. Being able to read and write CSV files and their
various quirky variants, such as pipe or semi-colon separated or
those using ' in place of the standard double-quotes, is a fundamen-
tal skill and Python’s csv module is capable of doing pretty much all
your heavy-lifting here. Let’s put it through its paces reading and
writing our nobel_winners data:

nobel_winners = [
{'category': 'Physics',

'name': 'Albert Einstein',
'nationality': 'Swiss',
'sex': 'male’,

'year': 1921},

]...

Writing our nobel_winners data (see Example 3-1) to a CSV file is a
pretty simple affair. csv has a dedicated DictWriter class which will

80 | Chapter3:Reading and Writing Data with Python

turn our dictionaries into csv rows. The only piece of explicit book-
keeping we have to do is write a header to our csv-file, using the
keys of our dictionaries as fields (i.e. “category, name, nationality,
sex’):

import csv

with open('data/nobel_winners.csv', 'wb') as f:
fieldnames = nobel_winners[0].keys() 1]
fieldnames.sort() a
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader() E}
for w in nobel_winners:

writer.writerow(w)

<1> You need to explicitly tell the writer what fieldnames (in this case the
<2> We'll sort the CSV header-fields alphabetically for readability.
<3> Writes the CSV-file header ("category,name,...").

You'll probably be reading csv files more often than writing them'.
Let’s read back the nobel_winners.csv file we just wrote.

If you just want to use csv as a superior and eminently adaptable file
line-reader, a couple of lines will produce a handy iterator, which
can deliver your CSV rows as lists of strings:

import csv

with open('data/nobel_winners.csv') as f:
reader = csv.reader(f)
for row in reader: @
print(row)

Out:

['category', 'name', 'nationality', 'sex', 'year']
['Physics', 'Albert Einstein', 'Swiss', 'male', '1921']
['Physics', 'Paul Dirac', 'British', 'male', '1933']
['Chemistry', 'Marie Curie', 'Polish', 'female', '1911']

@ Iterates over the reader object, consuming the lines in the file.

Note that the numbers are read in string-form. If you want to
manipulate them naturally you’ll need to convert any numeric col-
umns to their respective type, in this case integer years.

1 Irecommend using JSON over CSV as your preferred data-format.

SV, TSV and Row-column Data-formats | 81

'cat

Usually a more convenient way to consume CSV data is to convert
the rows into Python dictionaries. This record form is also the one
we are using as our conversion target (a list of dicts). csv has a
handy DictReader for just this purpose:

import csv
with open('data/nobel_winners.csv') as f:
reader = csv.DictReader(f)

nobel_winners = list(reader) (1]

nobel_winners

Out:

[{'category': 'Physics', 'nationality': 'Swiss', 'year': '1921',\
'name': 'Albert Einstein', 'sex': 'male'},

{'category': 'Physics', 'nationality': 'British', 'year': '1933',\
'name': 'Paul Dirac', 'sex': 'male'},

{'category': 'Chemistry', 'nationality': 'Polish', 'year': '1911',\
'name': 'Marie Curie', 'sex': 'female'}]

@ Inserts all of the reader items into a list.

As the output shows, we just need to cast the dicts year attributes
to integers to conform nobel_winners to the chapter’s target data
(Example 3-1), thus:
for w in nobel_winners:
w['year'] = int(w['year'])

The csv readers don't infer data-types from your file, interpreting
everything as a string. Pandas, Pythons pre-eminent data-hacking
library, will try and guess the correct type of the data columns, usu-
ally successfully. We'll see this in action in the later dedicated Pandas
chapters.

csv has a few useful arguments to help parse members of the CSV-
family:

o dialect: by default excel, specifies a set of dialect-specific param-
eters. excel-tab is a sometimes used alternative.

o delimiter: usually files are comma-separated but they could use
[, : or' 'instead.

o quotechar: by default double-quotes are used but you occasion-
ally find | or **" instead.

82 | Chapter3:Reading and Writing Data with Python

You can find the full set of csv parameters here.

Now we've successfully written and read our target data using the
csv module, let’s pass on our CSV-derived nobel_winners dict to
the json module.

JSON

In this section well write and read our nobel_winners data using
Python’s json module. Let’s remind ourselves of the data we’re using;

nobel_winners = [
{'category': 'Physics’,

'name': 'Albert Einstein',
'nationality': 'Swiss',
'sex': 'male’,

'year': 1921},

]...

For data-primitives such as strings, integers, floats etc.., Python dic-
tionaries are easily saved (or dumped in the JSON vernacular) into
JSON-files, using the json module. The dump method takes a Python
container and a file-pointer, saving the former to the latter:

import json

with open('data/nobel_winners.json', 'w') as f:
json.dump(nobel_winners, f)

open('data/nobel_winners.json').read()

Out: '[{"category": "Physics", "name": "Albert Einstein",
"sex": "male", "person_data": {"date of birth": "14th March
1879", "date of death": "18th April 1955"}, "year": 1921,
"nationality": "Swiss"}, {"category": "Physics",
"nationality": "British", "year": 1933, "name": "Paul Dirac",
"sex": "male"}, {"category": "Chemistry", "nationality":
"Polish", "year": 1911, "name": "Marie Curie", "
"female"}]"

sex :

Reading (or loading) a JSON-file is just as easy. We just pass the
opened JSON-file to the json module’s load method:

import json

with open('data/nobel_winners.json') as f:
nobel_winners = json.load(f)

nobel_winners

JSON | 83

https://docs.python.org/2/library/csv.html#csv-fmt-params

Out:

[{u'category': u'Physics',
u'name': u'Albert Einstein',
u'nationality': u'Swiss',
u'sex': u'male',
u'year': 1921},

@ Note that, unlike our CSV-file conversion, the integer type of
the year column is preserved.

json has loads and dumps counterparts to the file access method,
which load and dump JSON object-strings respectively.

Dealing with dates and times
Trying to dump a date(time) object to json produces a TypeError:

from datetime import datetime

json.dumps(datetime.now())
Out:

TypeError: datetime.datetime(2015, 9, 13, 10, 25, 52, 586792)

is not JSON serializable
When serializing simple data-types such as strings or numbers, the
default json encoders and decoders are fine. But for more special-
ised data such as dates you will need to do your own encoding and
decoding. This isn't as hard as it sounds and quickly becomes rou-
tine. Let’s first look at encoding your Python datetimes into sensi-
ble JSON strings.

The easiest way to encode Python data containing datetimes is to
create a custom encoder like the one shown in Example 3-2 which is
provided to the json.dumps method as a cls argument. This encoder
is applied to each object in your data in turn and converts and dates
or date-times to their ISO-format string (see “Dealing with Dates,
Times and Complex Data” on page 102).

Example 3-2. Encoding a Python datetime to JSON

import datetime
from dateutil import parser
import json

84 | Chapter3:Reading and Writing Data with Python

https://docs.python.org/2/library/datetime.html#datetime-objects

class JSONDateTimeEncoder(json.JSONEncoder): 0
def default(self, obj):
if isinstance(obj, (datetime.date, datetime.datetime)): a
return obj.isoformat()
else:
return json.JSONEncoder.default(self, obj)

def dumps(obj):
return json.dumps(obj, cls=JSONDateTimeEncoder) e

© Subclasses a JSONEncoder in order to create customised date-
handling one.

@ Tests for a datetime object and if true returns the isoformat of
any dates or datetimes, e.g. 2015-09-13T10:25:52.586792

©® Uses the cls argument to set our custom date-encoder.

Let’s see how our new dumps method copes some datetime data:

now_str = dumps({'time': datetime.now()})
now_str

Out:

"{"time": "2015-09-13T10:25:52.586792"}'

The time field is correctly converted into an ISO-format string,

ready to be decoded into a JavaScript Date object (see “Dealing with
Dates, Times and Complex Data” on page 102 for a demonstration).

. While you could write a generic decoder to cope with date-strings
in arbitrary JSON files? its probably not advisable. Date-strings
come in so many weird and wonderful varieties that this is a job best
done by hand on what is pretty much always a known data-set.

The venerable strptime method, part of the datetime.datetime
package is good for the job of turning a time-string in a known for-
mat into a Python datetime instance:

In [0]: time_str = '2012/01/01 12:32:11"'

In [1]: dt = datetime.strptime(time_str, '%Y/%m/%d %H:%M:%S") (1]

2 The Python module dateutil has a parser that will parse most dates and times sensibly
and might be a good basis for this.

JSON | 85

In [2]: dt
Out[2]: datetime.datetime(2012, 1, 1, 12, 32, 11)

@ strptime tries to match the time-string to a format string using
various directives such as %Y (year with century) and %H (hour
as a zero-padded decimal number). If successful it creates a
Python datetime instance. See here for a full list of the direc-
tives available.

If strptime is fed a time-string that does not match its format it
throws a handy ValueError:

dt = datetime.strptime('1/2/2012 12:32:11', '%Y/%Mm/%d %H:%M:%S")

ValueError Traceback (most recent call last)
<ipython-input-111-af657749a9fe> in <module>()
----> 1 dt = datetime.strptime('1/2/2012 12:32:11", "%Y/%m/%d %H:%M:%S")

ValueError: time data '1/2/2012 12:32:11' does not match
format '%Y/%m/%d %H:%M:%S'

So to convert date fields of a known format into datatimes for a
data list of dictionaries you could do something like this:

for d in data:
try:
d['date'] = datetime.strptime(d['date'], '%Y/%m/%d %H:%M:%S"')
except ValueError:
print('Oops! - invalid date for ' + repr(d))
Now that we've dealt with the two most popular data file-formats
let’s shift to the big-guns and see how to read or data from and write
our data to SQL and NoSQL databases.

saL

For interacting with an SQL-database, sqlalchemy is by some way
the most popular and, in my opinion, best Python library. It allows
you to use raw SQL instructions if speed and efficiency is an issue
but also provides a powerful object relational mapping (ORM)
which allows you to operate on SQL-tables using a high-level,
Pythonic API, treating them essentially as Python classes.

Reading and writing data using SQL while allowing the user to treat
that data as a Python container is a complicated process and while
sqlalchemy is far more user-friendly than using a low-level SQL-
engine, it is still a fairly complex library. I'll be covering the basics

86 | Chapter3:Reading and Writing Data with Python

https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior

here, using our data as a target but would encourage you to spend a
little time reading some of the rather excellent documentation here.
Let’s remind ourselves of the nobel_winners data-set we're aiming to
write and read:

nobel_winners = [
{'category': 'Physics',

'name': 'Albert Einstein',
'nationality': 'Swiss',
'sex': 'male',

1

year': 1921},

]...

Let’s first write our target data to an SQLite file using SQLAlchemy,
starting by creating the database engine.

Creating the database engine

The first thing you need to do when starting an sqlalchemy session
is to create a database engine. This engine will establish a connec-
tion with the database in question and perform any conversions
needed to the generic SQL instructions being generated by sqlal
chemy and the data being returned.

There are engines for pretty much every popular database as well as
a memory option, which holds the database in RAM, allowing fast
access for testing etc.’. The great thing about these engines is that
they are interchangeable, which means you could develop your code
using the convenient file-based SQLite database and then switch in
production to something a little more industrial, say Postgresql, by
changing a single config-string. Check here for the full list of
engines available.

The form for specifying a database URL is
dialect+driver://username:password@host:port/database

So, to connect to a nobel_prize MySQL database running on local-
host would require something like this. Note that the

3 On a cautionary note, it is probably a bad idea to use different database configurations
for testing and production.

saL | 87

http://www.sqlalchemy.org/library.html#reference
http://docs.sqlalchemy.org/en/rel_1_0/core/engines.html

create_engine does not actually make any SQL requests at this
point, merely sets up the framework for doing so*.

engine = create_engine('mysql://kyran:mypsswd@localhost/nobel prize')

We'll use a file-based SQLite database, setting the echo argument to
true, which will output any SQL instructions generated by SQLAI-
chemy. Note the use of three back-slashes after the colon:

from sqlalchemy import create_engine

engine = create_engine('sqlite:///data/nobel_prize.db', echo=True)

SQLAlchemy offers various ways to engage with databases but I
would recommend using the more recent declarative style unless
there are good reasons to go with something more low-level and
fine-grained. In essence, with declarative mapping you sub-class
your Python SQL-table classes from a base and SQLAlchemy intro-
spects their structure and relationships. See here for more details.

Defining the database tables

We first create a Base class using declarative_base. This base will
be used to create table-classes, from which SQLAlchemy will create
the database’s table schemas. You can use these table-classes to inter-
act with the database in a fairly Pythonic fashion. Note that most
SQL-libraries require you to formally define table-schemas. This is
in contrast to such schemaless NoSQL variants as MongoDB. We'll
take a look at the Dataset library later in this chapter, which enables
schemaless SQL.

Using this Base we define our various tables, in our case a single Win
ner table. Example 3-3 shows how to subclass Base and use sqlal
chemy’s datatypes to define a table-schema. Note the
__tablename__ member, which will be used to name the SQL-table
and as a keyword to retrieve it, and the optional custom __repr__
method, which will be used when printing a table-row.

Example 3-3. Defining an SQL-database table

from sqlalchemy import Column, Integer, String, Enum

/...

4 See details here of this lazy initialization.

88 | Chapter3:Reading and Writing Data with Python

http://docs.sqlalchemy.org/en/latest/core/engines.html
http://docs.sqlalchemy.org/en/rel_1_0/orm/mapping_styles.html#declarative-mapping

class Winner(Base):
__tablename__ = 'winners'

id = Column(Integer, primary_key=True)
name = Column(String)

category = Column(String)

year = Column(Integer)

nationality = Column(String)

sex = Column(Enum('male', 'female'))

def _ repr__(self):
return "<Winner(name='%s', category='%s', year='%s')>"\
%(self.name, self.category, self.year)

Having declared our Base subclasses in Example 3-3 we supply its
metadata create_all method with our database engine to create
our database®. Because we set the echo argument to true when creat-
ing the engine, we can see the SQL instructions generated by
SQLAlchemy from the command-line:

Base.metadata.create_all(engine)

INFO:sqlalchemy.engine.base.Engine SELECT CAST('test plain
returns' AS VARCHAR(60)) AS anon_1

INFO sqlalchemy.engine.base.Engine
CREATE TABLE winners (

id INTEGER NOT NULL,

name VARCHAR,

category VARCHAR,

year INTEGER,

nationality VARCHAR,

sex VARCHAR(6),

PRIMARY KEY (id),

CHECK (sex IN ('male', 'female'))

)

INFO:sqlalchemy.engine.base.Engine:COMMIT

With our new winners table declared we can start adding winner
instances to it.

5 This assumes the database doesn’t already exist. If it does the Base will be used to create
new insertions and to interpret retrievals.

saL | 89

Adding instances with a session

Now that we have created our database, we need a session to interact
with:

from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

We can now use our Winner class to create instances/database-rows
and add them to the session:

albert = Winner(**nobel_winners[0]) (1]

session.add(albert)

session.new

Out:

IdentitySet([<Winner(name='Albert Einstein', category='Physics',
year='1921"')>])

@ Python’s handy ** operator unpacks our first nobel_winners
member into key-value pairs, i.e. (name=Albert Einstein, cate-
gory=Physics...).

@ new is the set of any items that have been added to this session.

Note that all database insertions, deletions etc. take place in Python.
It's only when we use the commit method that the database is altered.

Use as few commits as possible, allowing
SQLAlchemy to work its magic behind the
scenes. When you commit, your various data-
base manipulations should be summarised by
SQLAlchemy and communicated in an efficient
fashion. Commits involve establishing a data-
base handshake and negotiating transactions,
often a slow process and one you want to limit
as much as possible, leveraging SQLAlchemy’s
book-keeping abilities to full advantage.

As the new method shows, we have added a Winner to the session.
We can remove the object using expunge, leaving an empty Identi
tySet:

90 | Chapter3:Reading and Writing Data with Python

session.expunge(albert) (1]
session.new

Out:

IdentitySet([])

@ Remove the instance from the session (there is an expunge_all
method which removes all new objects added to the session.).

At this point no database insertions or delections have taken place.
Let’s add all the members of our nobel_winners list to the session
and commit them to the database:

winner_rows = [Winner(**w) for w in nobel_winners]
session.add_all(winner_rows)

session.commit()

Out:

INFO:sqlalchemy.engine.base.Engine:BEGIN (implicit)

INFO:sqlalchemy.engine.base.Engine:INSERT INTO winners (name,
category, year, nationality, sex) VALUES (?, ?, ?, 7, ?)
INFO:sqlalchemy.engine.base.Engine: (u'Albert Einstein',
u'Physics', 1921, u'Swiss', u'male')

INFO:sqlalchemy.engine.base.Engine:COMMIT

Now that we've committed our nobel_winners data to the database,
let's see what we can do with it and how to recreate the target list
Example 3-1.

Querying the database

To access data you use the session’s query method, the result of
which can be filtered, grouped, intersected etc., allowing the full
range of standard SQL data retrieval. You can check out querying
methods available here. For now T'll quickly run through some of
the most common queries on our Nobel data-set.

Let’s first count the number of rows in our winners’ table:

session.query(Winner).count()
Out:
3

Next, let’s retrieve all Swiss winners:

result = session.query(Winner).filter_by(nationality="'Swiss") 1]
list(result)
Out:

[<Winner(name='Albert Einstein', category='Physics', year='1921")>]

saL | 91

http://docs.sqlalchemy.org/en/rel_1_0/orm/query.html

@ filter_by uses keyword-expressions, its SQL-expressions
counterpart being filter, e.g. filter(Winner.nationality ==
Swiss).

Now let’s get all non-Swiss Physics winners:

result = session.query(Winner).filter(\
Winner.category == 'Physics', Winner.nationality != 'Swiss')
list(result)
Out:
[<Winner(name='Paul Dirac', category='Physics', year='1933")>]

Here’s how to get a row based on Id-number:

session.query(Winner).get(3)
Out:
<Winner(name='Marie Curie', category='Chemistry', year='1911")>

Now let’s retrieve winners ordered by year:

res = session.query(Winner).order_by('year")

list(res)

Out:

[<Winner(name='Marie Curie', category='Chemistry', year='1911')>,
<Winner(name='Albert Einstein', category='Physics', year='1921")>,
<Winner(name='Paul Dirac', category='Physics', year='1933"')>]

To reconstruct our target list requires a little effort converting the
Winner objects returned by our session query into Python dicts.
Let’s write a little function to create a dict from an SQLAlchemy

class. We'll use a little table-introspection to get the column labels
(see Example 3-4).

Example 3-4. Converts a SQLAlchemy instance to a dict

def inst_to_dict(inst, delete_id=True):
dat = {}
for column in inst.__table__.columns: (1]
dat[column.name] = getattr(inst, column.name)
if delete_1id:
dat.pop('id") a
return dat

@ Accesses the instance’s table class to get a list of column objects.

@ If delete_id is true, remove the SQL primary id field.

92 | Chapter 3:Reading and Writing Data with Python

We can use Example 3-4 to reconstruct our nobel_winners target
list:

winner_rows = session.query(Winner)
nobel_winners = [inst_to_dict(w) for w in winner_rows]
nobel_winners
Out:
[{'category': u'Physics',
'name': u'Albert Einstein',
"nationality': u'Swiss',
'sex': u'male’,
'year': 1921},

]...

You can update database rows easily by changing the property of
their reflected objects:

marie = session.query(Winner).get(3) (1]

marie.nationality = 'French'

session.dirty a

Out:

IdentitySet([<Winner(name='Marie Curie', category='Chemistry',
year='1911"')>])

@ Fetches Marie Curie, nationality Polish.

@ dirty shows any changed instances not yet committed to the
database.

Lets commit marie’s changes and check that her nationality has
changed from Polish to French:

session.commit()

Out:

INFO:sqlalchemy.engine.base.Engine:UPDATE winners SET
nationality=? WHERE winners.id = ?
INFO:sqlalchemy.engine.base.Engine:('French', 3)

session.dirty
Out:
IdentitySet([])

session.query(Winner).get(3).nationality
Out:
'French’
As well as updating database rows you can delete the results of a

query:

saL | 93

session.query(Winner).filter_by(name='Albert Einstein').delete()
Out:

INFO:sqlalchemy.engine.base.Engine:DELETE FROM winners WHERE
winners.name = ?

INFO:sqlalchemy.engine.base.Engine: ('Albert Einstein',)

1

list(session.query(Winner))

Out:

[<Winner(name="'Paul Dirac', category='Physics', year='1933")>,

<Winner(name='Marie Curie', category='Chemistry', year='1911")>]
You can also drop the whole table if required, using the declarative
class’s table attribute:

Winner.__table__.drop(engine)

In this section we've dealt with a single winners table, without any
foreign-keys or relationship to any other tables, akin to a CSV or
JSON file. SQLAlchemy adds the same level of convenience to deal-
ing with such database tables many-to-one, one-to-many etc. rela-
tionships as it does to basic querying, using implicit joins, by
supplying the query method with more than one table class, or
explicitly using the query’s join method. Check out the examples
here for more details.

Easier SQL with Dataset

One library I've found myself using a fair deal recently is Dataset, a
module designed to make working with SQL databases a little easier
and more Pythonic than existing powerhouses like SQLAlchemy®.
Dataset tries to provide the same degree of convenience you get
when working with schemaless NoSQL databases such as Mon-
goDB, removing a lot of the formal boilerplate, such as schema defi-
nitions, demanded by the more conventional libraries. Dataset is
built on top of SQLAlchemy which means it works with pretty much
all major databases and can exploit the power, robustness and
maturity of that best-of-breed library. Let’s see how it deals with
reading and writing our target dataset (from Example 3-1).

Lets use the SQLite nobel_prize.db database we've just created to
put Dataset through its paces:

6 Dataset’s official motto being ‘databases for lazy people’

94 | Chapter 3: Reading and Writing Data with Python

http://docs.sqlalchemy.org/en/rel_1_0/orm/tutorial.html#querying-with-joins
https://dataset.readthedocs.org/en/latest/

First we connect to our SQL database, using the same URL/file for-
mat as SQLAlchemy:

import dataset

db = dataset.connect('sqglite:///data/nobel_prize.db")

To get our list of winners we grab a table from our db database,
using its name as a key, and then use the find method without argu-
ments to return all winners:

wtable = db['winners']

winners = wtable.find()

winners = list(winners)

winners

Out:

[OrderedDict([(u'id', 1), (u'name', u'Albert Einstein'),
(u'category', u'Physics'), (u'year', 1921), (u'nationality',
u'Swiss'), (u'sex', u'male')]), OrderedDict([(u'id', 2),
(u'name', u'Paul Dirac'), (u'category', u'Physics'),
(u'year', 1933), (u'nationality', u'British'), (u'sex',
u'male')]), OrderedDict([(u'id', 3), (u'name', u'Marie
Curie'), (u'category', u'Chemistry'), (u'year', 1911),
(u'nationality', u'Polish'), (u'sex', u'female')])]

Note that the instances returned by Dataset’s find method are Order
edDicts. These useful containers are an extension of Python’s dict
class which behave just like dictionaries but remember the order in
which items were inserted, meaning you can guarantee the result of
iteration, pop the last item inserted etc. This is a very handy addi-
tional functionality.

One of the most useful Python batteries for data-
mungers is collections, from where Dataset’s
OrderedDicts come. The defaultdict and
Counter classes are particularly useful. Check
out what’s available here.

Let’s recreate our winners table with Dataset, first dropping the
existing one:

wtable = db['winners']
wtable.drop()

wtable = db['winners']
wtable.find()

saL | 95

https://docs.python.org/2/library/collections.html

Out:

[
To recreate our dropped winners table, we don't need to define a
schema as with SQLAlchemy (see “Defining the database tables” on
page 88). Dataset will infer that from the data we add, doing all the
SQL creation implicitly. This is the kind of convenience one is used
to when working with collection-based NoSQL databases. Let’s use
our nobel_winners dataset (Example 3-1) to insert some winner
dictionaries. We use a database transaction and the with statement
to efficiently insert our objects and then commit them’.

with db as tx: @
for w in nobel_winners:
tx['winners'].insert(w)

@ Use the with statement to guarantee the transaction tx is com-
mitted to the database.

Let’s check that everything has gone well:

list(db['winners'].find())

Out:

[OrderedDict([(u'id', 1), (u'name', u'Albert Einstein'),
(u'category', u'Physics'), (u'year', 1921), (u'nationality',
u'Swiss'), (u'sex', u'male')]),

The winners have been correctly inserted and their order of inser-
tion preserved by the OrderedDict.

Dataset is great for basic SQL-based work, particularly retrieving
data you might wish to process or visualise. For more advanced
manipulation it allows you to drop down into SQLAlchemy’s core
API using the query method.

On top of its huge convenience, Dataset has a freeze method which
is a great asset to budding data-visualisers. freeze will take the
result of an SQL-query and turn it into a JSON or CSV file, a very
convenient way to start playing around with the data with Java-
Script/D3:

winners = db['winners'].find()
dataset.freeze(winners, format='csv', \

7 See here for further details of how to use transactions to group updates.

96 | Chapter3:Reading and Writing Data with Python

https://dataset.readthedocs.org/en/latest/quickstart.html#using-transactions

filename='data/nobel_winners_ds.csv')

open('data/nobel_winners_ds.csv').read()

Out:

'id,name,category,year,nationality,sex\r\n

1,Albert Einstein,Physics,1921,Swiss,male\r\n

2,Paul Dirac,Physics,1933,British,male\r\n

3,Marie Curie,Chemistry,1911,Polish,female\r\n’
Now that we've covered the basics of working with SQL databases,
let’s see how Python makes working with the most popular NoSQL
database just as painless.

MongoDB

Document-centric data-stores like MongoDB offer a lot of conve-
nience to data wranglers. As with all tools, there are good and bad
use-cases for NoSQL databases but if you have data that has already
been refined and processed and don’t anticipate needing SQLs pow-
erful query language, based on optimised table-joins etc., MongoDB
will probably prove easier to work with. MongoDB is a particularly
good fit for web-dataviz because it uses Binary JSON (BSON) as its
data-format. An extension of JSON, BSON can deal with binary-
data, datetime-objects etc.. and plays very nicely with JavaScript.

Let’s remind ourselves of the target data-set were aiming to write
and read:

nobel_winners = [
{'category': 'Physics',

'name': 'Albert Einstein',
'nationality': 'Swiss',
'sex': 'male’,

'year': 1921},

]...

Creating a MongoDB collection with Python is the work of a few
lines:

from pymongo import MongoClient
client = MongoClient() 1]

db = client.nobel_prize a
coll = db.winners (3]

@ Creates a Mongo-client, using the default host and ports.

MongoDB | 97

@ Creates or accesses the nobel_prize database.

€© If a winners collection exists this retrieves it, otherwise (as in
our case) it creates it.

Using Constants for MongoDB Access

Accessing and creating a MongoDB database with Python involves
the same operation, using dot-notation or square-bracket key-
access:

db = client.nobel_prize
db = client['nobel_prize']

This is all very convenient but it means a single spelling mistake,
e.g. noble_prize, could both create an unwanted database and future
operations fail to update the correct one. For this reason I would
advise using constant strings to access your MongoDB databases
and collections:

DB_NOBEL_PRIZE = 'nobel_prize'
COLL_WINNERS = 'winners'

db = client[DB_NOBEL_PRIZE]
coll = db[COLL_WINNERS]

MongoDB databases run on localhost port 27017 by default but
could be anywhere on the web. They also take an optional username
and password. Example 3-5 shows how to create a simple utility
function to access our database, with standard defaults.

Example 3-5. Accessing a MongoDB database
from pymongo import MongoClient

def get_mongo_database(db_name, host='localhost',\
port=27017, username=None, password=None):

""" Get named database from MongoDB with/out authentication """
make Mongo connection with/out authentication
if username and password:

mongo_uri = 'mongodb://%s:%s@%s/%s ' %\ 1]

(username, password, host, db_name)

conn = MongoClient(mongo_uri)
else:

conn = MongoClient(host, port)

98 | Chapter3:Reading and Writing Data with Python

return conn[db_name]

@ We specify the database-name in the mongo URI (Uniform
Resource Identifier) as the user may not have general privilages
for the database.

We can now create a Nobel-prize database and add our target data-
set (Example 3-1). Let’s first get a winners collection, using the string
constants for access:

db = mongo_to_database(DB_NOBEL_PRIZE)
coll = db[COLL_WINNERS]

Inserting our Nobel dataset is then as easy as can be:

coll.insert(nobel_winners)

Out:

[ObjectId('55f8326f26a7112e547879d4"),
ObjectId('55f8326f26a7112e547879d5"),
ObjectId('55f8326126a7112e547879d6")]

The resulting array of ObjectIds can be used for future retrieval but
MongoDB has already left its stamp on our nobel_winners list,
adding a hidden id property®:

nobel_winners
Out:
[{'_id': ObjectId('55f8326f26a7112e547879d4"),
'category': u'Physics',
'name': u'Albert Einstein',
'nationality': u'Swiss',
'sex': u'male’,
'year': 1921},

8 One of the cool things about MongoDB is that the ObjectIds are generated client-side,
removing the need to quiz the database for them.

MongoDB | 99

MongoDB’s ObjectIds have quite a bit of hid-
den functionality, being a lot more than a simple
random identifier. You can, for example, get the
generation time of the Objectld, giving you
access to a handy time-stamp:

oid = bson.ObjectId()
oid.generation_time
Out: datetime.datetime(2015, 11, 4, 15, 43, 23...

Find the full details here.

Now that we've got some items in our winners collection, MongoDB
makes finding them very easy its, with its find method taking a dic-
tionary query:

res = coll.find({'category':'Chemistry'})
list(res)
Out:
[{u'_id': ObjectId('55f8326f26a7112e547879d6"),
u'category': u'Chemistry',
u'name': u'Marie Curie',
u'nationality': u'Polish',
u'sex': u'female',
u'year': 1911}]

There are a number of special dollar-prefixed operators which allow
for sophisticated querying. Let’s find all the winners after 1930 using
the $gt (greater-than) operator:

res = coll.find({'year': {'$gt': 1930}})
list(res)
Out:
[{u'_id': ObjectId('55f8326F26a7112e547879d5"),
u'category': u'Physics',
u'name': u'Paul Dirac',
u'nationality': u'British',
u'sex': u'male’,
u'year': 1933}]

You can also use Boolean expression, e.g. to find all winners after
1930 or female:

res = coll.find({'Sor':[{'year': {'Sgt': 1930}}, {'sex':'female'}]})
list(res)
Out:
[{u'_1d': ObjectId('55f8326f26a7112e547879d5"),
u'category': u'Physics',
u'name': u'Paul Dirac',
u'nationality': u'British',
u'sex': u'male',

100 | Chapter3: Reading and Writing Data with Python

http://api.mongodb.org/python/current/api/bson/objectid.html

u'year': 1933},
{u'_id': ObjectId('55f8326f26a7112e547879d6"),
u'category': u'Chemistry',

u'name': u'Marie Curie',

u'nationality': u'Polish',

u'sex': u'female',

u'year': 1911}]

You can find the full list of available query expressions here.

As a final test, let’s turn our new winners collection back into a
Python list of dictionaries. We'll create a little utility function for the
task:

def mongo_coll_to_dicts(dbname='test', collname='test',)\
query={}, del_id=True, **kw): 1)

db = get_mongo_database(dbname, **kw)
res = list(db[collname].find(query))

if del_id:
for r in res:
r.pop('_id")

return res

© An empty query dict {} will find all documents in the collection.
del_1id is a flag to remove MongoDB’s ObjectId’s from the
items by default.

We can now create our target dataset:

mongo_coll_to_dicts(DB_NOBEL_PRIZE, COLL_WINNERS)
Out:
[{u'category': u'Physics',

u'name': u'Albert Einstein',

u'nationality': u'Swiss',

u'sex': u'male',

u'year': 1921},

]...

MongoDB’s schemaless databases are great for fast-prototyping in
solo work or small teams. There will probably come a point, particu-
larly with large code-bases, where some formal schema is a useful
reference and sanity-check but while settling on the right data-
model, the ease with which document forms can be adapted is a
bonus.

MongoDB | 101

https://docs.mongodb.org/manual/tutorial/query-documents/

Being able to pass Python dictionaries as queries to pymongo and
having access to client-side generated Objectlds are couple of other
conveniences.

We've now passed the nobel_winners data in Example 3-1 through
all our required file-formats and databases. Let’s consider the special
case of dealing with dates and times before summing up.

Dealing with Dates, Times and Complex Data

The ability to deal comfortably with dates and times is fundamental
to data-viz work but can be quite tricky. There are many ways to
represent a date or date-time as a string, each one requiring a sepa-
rate encoding or decoding. For this reason it’s good to settle on one
format in your own work and encourage others to do the same. I'd
recommend using the lInternational Standard Organisation (ISO)
time-format as your string representation for dates and times and
using the Coordinated Universal Time (UTC) form’. Here’s a few
examples of ISO 8601 date and date-time strings:

2015-09-23 A date (Python/C format-code %Y-%m-%qd)
2015-09-23116:32:352 A UTC (Z after time) date and time (T9%H:%M:%S)

2015-09-23716:32+02:00 A positive two hour (+02:00) offset from UTC, e.g. Central European
Time

Note the importance of being prepared to deal with different time-
zones. These are not always on lines of longitude (see here) and
often the best way to derive an accurate time is by UTC-time plus a
geographic location.

ISO 8601 is the standard used by JavaScript and is easy to work with
in Python. As web data-visualisers our key concern in creating a
string representation that can be passed between Python and Javsa-
cript using JSON and encoded and decoded easily at both ends.

9 To get the actual local time from UTC you can store a time-zone offset or, better still,
derive it from a geo-coordinate; this is because time-zones do not follow lines of longi-
tude very exactly

102 | Chapter 3: Reading and Writing Data with Python

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Time_zone

Let’s take a date and time, in the shape of a Python datetime, con-
vert it into a string, and then see how that string can be consumed
by JavaScript.

First we produce our Python datetime:

from datetime import datetime

d = datetime.now()

d.isoformat()

Out:

'2015-09-15T21:48:50.746674"
This string can then be saved to JSON, CSV etc. read by JavaScript
and used to create a Date object:

d = new Date('2015-09-15T21:48:50.746674")

> Tue Sep 15 2015 22:48:50 GMT+0100 (BST)
We can return the date-time to ISO 8601 string form with the toISO
String method:

d.toISOString()
> "2015-09-15T21:48:50.746Z"

Finally, we can read the string back into Python.

If you know that youre dealing with ISO-format time-string,
Python’s dateutil module should do the job']. But you’ll probably
want to sanity-check the result:

from dateutil import parser

d = parser.parse("2015-09-15T21:48:50.746Z")

d

Out:

datetime.datetime(2015, 9, 15, 21, 48, 50, 746000, tzinfo=tzutc())
Note that we've lost some resolution in the trip from Python to Jav-
script and back again, the latter dealing in milli not micro seconds.
This is unlikely to be an issue in any dataviz work but is good to bear
in mind, just in case some strange temporal errors occur.

10 To install just run ‘pip install dateutil’ dateutil is a pretty powerful extension of
Python’s datetime, check it out here

Dealing with Dates, Times and ComplexData | 103

https://dateutil.readthedocs.org/en/latest/

Summary

This chapter aimed to make you comfortable using Python to move
data around the various file-formats and databases a data-visualiser
might expect to bump into. Using databases effectively and effi-
ciently is a skill it takes a while to learn but you should now be com-
fortable with basic reading and writing for the large majority of
dataviz use-cases.

Now we have the vital lubrication for our dataviz tool-chain, let’s get
up to scratch on the basic web-dev skills you'll need for the chapters
ahead.

104 | Chapter 3: Reading and Writing Data with Python

CHAPTER 4

Webdev 101

This chapter introduces the core web-development knowledge you
will need to understand the web-pages you might want to scrape for
data and to structure those you want to deliver, as the skeleton of
your JavaScripted visualisations. As you’'ll see, in modern web-dev a
little knowledge goes a long way, particularly when your focus is
building self-contained visualisations and not whole web-sites (See
“Single-page Apps” on page 106 for more details).

The usual caveats apply to a chapter in Part I — this chapter is part
reference, part tutorial. There will probably be stuff here you know
already so feel free to skip over it and get to the new material.

The Big Picture

The humble web-page, the collection of which compromises the
World Wide Web (WWW) -that fraction of the internet consumed
by humans- is constructed from files of various types. Apart from
the multi-media files, images, videos, sound etc.., the key elements
are textual, consisting of hypertext markup-language (HTML), cas-
cading style sheets (CSS), and JavaScript. These three, along with
any necessary data-files, are delivered using the Hypertext Transfer
Protocol (HTTP) and used to build the page you see and interact
with in your browser window, which is described by the Document
Object Model (DOM), a hierarchical tree off which your content
hangs. A basic understanding of how these elements interact is vital
to building modern web visualisations and the aim of this chapter is
to get you quickly up to speed.

105

Web-development is a big field and the aim here is not to turn you
into a full-fledged web-developer. I assume you want to limit the
amount of basic web-dev as much as possible, focusing only on that
fraction necessary to build a modern visualisation. In order to build
the sort of visualisations showcased at d3js.org , the New York Times
or incorporated in basic interactive data-dashboards you actually
need surprisingly little webdev fu. The result of your labours should
be easily added to a larger web-site by someone dedicated to that
job. In the case of small, personal web-sites it’s trivial to do it your-
self.

Single-page Apps

Single-page applications (SPAs) are web applications (or whole sites)
which are dynamically assembled using JavaScript, often building
from a lightweight HTML backbone and CSS-styles that can be
applied dynamically with class and id attributes. Many modern data-
visualisations fit this description, including the Nobel-prize visuali-
sation that this book builds towards.

Often self-contained, the SPAs root-folder can be easily incorpora-
ted in an existing web-site or stand alone, REQUIRING only an
HTTP server such as Apache or Nginx.

Thinking of our data-visualisations in terms of SPAs removes a lot
of the cognitive overhead from the web-dev aspect of JavaScript vis-
ualisations, allowing us to focus on the programming challenges.
The skills required to put the visualisation on the web are still fairly
basic and quickly amortised. Often it will be someone else’s job.

Tooling Up

As you'll see, the web-dev needed to make modern data-
visualisations requires no more than a decent text-editor, modern
browser and a terminal (Figure 4-1). I'll cover what I see as the min-
imal requirements for a web-dev ready editor and non-essential but
nice-to-have features. My browser development tools of choice are
Chrome’s web-developer kit, freely available on all platforms. It has a
lot of tab-delineated functionality and in this chapter I'll cover:

o The Elements tab, which allows you to explore the structure of a
web-page, its HTML content, CSS styles and DOM presenta-
tion.

106 | Chapter4: Webdev 101

http://d3js.org/
https://developers.google.com/web/tools/chrome-devtools/

o The Sources tab, where most of your JavaScript debugging will
take place.

You'll need a terminal for output, starting your local web-server,
sketching ideas with the IPython interpreter etc..

Editor

Multi-language aware
Syntax highlighting
Code-linting
Comfortable

Browser

Modern

Good JS-engine
Powerful debugger)
SVG compliant

Good WebGL a bonus

Console

Server logging
Output/logging from
Python modules

Figure 4-1. Primary Webdev Tools

Before dealing with what you do need, let’s deal with a few things
you really don’t need when setting out, laying a couple of myths to
rest on the way.

ToolingUp | 107

The myth of IDEs, frameworks and tools

There is a common assumption among the prospective JavaScripter
that to program for the web requires a complex toolset, primarily an
Intelligent Development Environment (IDE), as used by Enterprise -
and other- coders everywhere. This is both potentially expensive
and presents another learning curve. The good news is that not only
have I never used an IDE to program for the web but I can’t think of
anyone I know in the discipline who does. In all probability the
wonderful web-visualisations you have seen, that may have spurred
you to pick up this book, were created with nothing more than a
humble text-editor, a modern web-browser for viewing and debug-
ging, and a console or terminal for logging and output.

There is also a commonly believed myth that one cannot be produc-
tive in JavaScript without using a framework of some kind. At the
moment a number of these frameworks are vying for control of the
JS ecosystem, sponsored by the various huge companies that created
them. These frameworks come and go at a dizzying rate and my
advice for anyone starting out in JavaScript is to ignore them
entirely while you develop your core skills. Use small, targeted libra-
ries, such as those in the jQuery ecosystem or Underscores func-
tional programming extensions and see how far you can get before
needing a my way or the highway framework. Only lock yourself into
a Framework to meet a clear and present need, not because the cur-
rent JS group-think is raving about how great it is'. Another impor-
tant consideration is that D3, the prime web datviz library, doesn’t
really play well with any of the bigger frameworks I know particu-
larly the ones that want control over the DOM.

Another thing you'll find if you hang around web-dev forums,
Reddit-lists, Stackoverflow etc.. is a huge range of tools constantly
clamouring for attention. There are JS+CSS minifiers, watchers to
automatically detect file-changes and reload web-pages during
development etc. etc. While a few of these have their place, in my
experience there are a lot of flaky tools which probably cost more
time in hair-tearing than they gain in productivity. To reiterate, you
can be very productive without such stuff and should only reach for
one to scratch a current itch. Some, like Bower covered in this chap-

1 I'bear the scars so you don’t have to.

108 | Chapter4: Webdev 101

ter, are keepers but very few are remotely essential for data-
visualisation work.

Your text editing work-horse

First and foremost among your webdev tools is a text-editor you are
comfortable with and which can, at the very least, do syntax high-
lighting for multiple languages -in our case HTML, CSS, JavaScript
and Python. You can get away with a plain, non-highlighting editor
but in the long run it will prove a pain. Things like syntax-
highlighting, code-linting, intelligent indentation and the like
remove a huge cognitive load from the process of programming, so
much so that I see their absence as a limiting factor. These are my
minimal requirements for a text editor:

o Syntax highlighting for all languages you use.

« Configurable indentation levels and types for languages (e.g.
Python 4 soft-tabs, JavaScript 2 soft-tabs).

« Multiple windows/panes/tabs to allow easy navigation around
your code-base.

If you are using a relatively advanced text-editor, all the above
should come as standard with the exception of code-linting which
will probably require a bit of configuration.

My leading candidate for nice to have is a decent code-linter. If the
mark of a useful tool is how much you would miss its absence then
code-linting is easily in my top five. For scripting languages like
Python and JavaScript, there’s only so much intelligent code-analysis
that can be achieved syntactically but just sanity-checking the obvi-
ous syntax errors can be a huge time save. In JavaScript in particular,
some mistakes are transparent, in the sense that things will run in
spite of them, and will quite often produce confusing error-
messages. A code-linter can save you time here and enforce good
practice. Figure 4-2 shows a contrived example of a JavaScript code-
linter in action.

A recent addition to Ecmascript 5 is a strict mode, which enforces a
modern JavaScript context. This mode is recognized by most linters

2 The specification for modern JavaScript is defined by the Ecmascript lineage.

ToolingUp | 109

https://en.wikipedia.org/wiki/Lint_%28software%29

and can be invoked by placing ‘use strict’ at the top of your program
or within a function, to restrict it to that context. Modern browsers
should also honour the strict mode, throwing errors for non-
compliance. In strict mode trying to assign foo = "bar"; will fail if
foo hasn't been previously defined. See John Resig's nice explana-
tion here.

ion (%) {
defined

d

part of an object literal, not an assignment

function(response) {
se should nse
(respnse);

Figure 4-2. A running code-linter analyses the JavaScript continuously,
highlighting syntax errors etc. in red and adding a *I’ to the left of the
offending line.

Browser with development tools

One of the reasons an IDE is pretty much redundant in modern
web-dev is that the best place to do debugging is in the web-browser
itself and such is the pace of change there that any IDE attempting
to emulate that context would have its work cut out. On top of this,
modern web-browsers have evolved a powerful set of debugging and
development tools. Firefox’s Firebug lead the way but has since been
surpassed by Chrome developer, which offers a huge amount of func-
tionality, from sophisticated (certainly to a Pythonista) debugging
(parametric breakpoints, variable watches etc..) to memory and pro-
cessor optimization profiling, device emulation (want to know what
your web-page looks like on a smart-phone or tablet?) and a whole
lot more. Chrome developer is my debugger of choice and will be
used in this book. Like everything covered, it’s free as in beer.

110 | Chapter4: Webdev 101

http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/

Terminal or command-prompt

The terminal or command-line will be where you initiate the vari-
ous servers and probably output the useful logging information. It’s
also where you'll try out Python modules etc.. or run a Python inter-
preter (IPython being by some way the best).

In OSX and Linux, this window is called a Terminal or xterm. In
Windows it's a command-prompt which should be available through
clicking Start—All-Programs—> Accessories.

Building a Web-page
There are four elements to a typical web-visualisation:

o An HTML skeleton, with placeholders for our programmatic
visualisation.

o Cascading Style Sheets (CSS) which define the look and feel
(e.g. border widths, colors, font-sizes, placement of content-
blocks).

o JavaScript to build the visualisation.

o Data to be transformed.

The first three of these are just text-files, created using our favourite
editor and delivered to the browser by our web-server (of which
more later - see 22?). Let’s examine them in turn.

Serving Pages with HTTP

The delivery of the HTML, CSS and JS files that are used to make a
particular web-page (and any data-files, multimedia video, audio), is
negotiated between a server and browser using the Hypertext Trans-
fer Protocol. HTTP provides a number of methods, the most com-
monly used being GET, which requests a web resource, retrieving
data from the server if all goes well or throwing an error if it doesn’t.
We'll be using GET, along with Python’s requests module, to scrape
some web-page content in Chapter 6.

To negotiate the HTTP browser generated HTTP requests you’ll
need a server. In development you can run a little server locally
using Python’s command-line initialised SimpleHTTPServer, like
thus:

BuildingaWeb-page | 111

$ python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...
This server is now serving content locally on port 8000. You can
access the site it’s serving by going to the URL http://localhost:
8000 on your browser.

SimpleHTTPServer is a nice thing to have and ok for demos and the
like but is lacks a lot of basic functionality. For this reason, as we'll
see in 222, it’s better to master the use of a proper development (and
production) server like Flask (this booK’s server of choice).

The DOM

The HTML files you send through HTTP are converted at the
browser end into a Document Object Model or DOM, which can in
turn be adapted by Javscript, this programmatic DOM being the
basis of dataviz libraries like D3. The DOM is a tree structure, repre-
sented by hierarchical nodes, the top node being the main web-page
or Document.

Essentially, the HTML you write or generate with a template is con-
verted by the browser into a tree hierarchy of nodes, each one repre-
senting an HTML element. The top node is called the “Document
Object” and all other nodes descend in a parent-child fashion. Pro-
grammatically manipulating the DOM is at the heart of such libra-
ries as jQuery and the mighty D3 so it’s vital to have a good mental
model of what’s going on. A great way to get the feel for the DOM is
to use a web tool such as Chrome Developer (my recommended tool-
set) to inspect branches of the tree. ??? shows the DOM tree of a
HTML page, accessible through the Elements tab.

Whatever you see rendered on the web-page, the book-keeping of
the objects’ state (displayed or hidden, matrix transform etc.) is
being done with the DOM. D3’s powerful innovation was to attach
data directly to the DOM and use it to drive visual changes (Data
Driven Documents).

The HTML skeleton

A typical web visualisation use an HTML skeleton, on which to
build the visualisation with JavaScript.

HTML is the language used to describe the content of a web-page. It
was first proposed by physicist Tim Berners Lee in 1980 while he

12 | Chapter4: Webdev 101

http://localhost:8000
http://localhost:8000

was working at the CERN particle accelerator complex in Switzer-
land. It uses tags such as <div>, <image>, <h> to structure the con-
tent of the page while CSS is used to define the look and feel®. The
advent of HTML5 has reduced the boilerplate considerably but the
essence is unchanged over those thirty years.

Fully specced HTML used to involve a lot of rather confusing header
tags but with HTML5 some thought was put into a more user-
friendly minimalism. This is pretty much the minimal requirement
for a starting template’:

<!DOCTYPE html>
<meta charset="utf-8">
<body>

<!-- page content -->
</body>

So we need only declare the document HTML, our character-set
eight-bit unicode and a body tag below which to add our pages con-
tent. This is a big advance on the book-keeping required before and
a very low threshold to entry, as far as creating the documents which
will be turned into web-pages goes. Note the comment tag form:
<!-- comment -->.

Now, more realistically we would probably want to add some CSS
and JavaScript. You can add both directly to an HTML document by
using <style> and <script> tags like this:

<!DOCTYPE html>
<meta charset="utf-8">
<style>
<!-- CSS -->
</style>
<body>
<!-- page content -->
<script>
<!/-- JavaScript -->
</script>
</body>

This single-page HTML form is often used in examples such as
those visualisations at d3js.org. It's convenient to have a single page

2 You can code style in HTML tags, using the style attribute, but it’s generally bad prac-
tice. Better to use classes and ids defined in CSS.

3 as demonstrated by Mike Bostock here http://bost.ocks.org/mike/d3/workshop/#8, with a
hat-tip to Paul Irish

BuildingaWeb-page | 113

http://bost.ocks.org/mike/d3/workshop/#8

to deal with when demonstrating code or keeping track of files but
generally I'd suggest separating the HTML, CSS and JavaScript ele-
ments into separate files. The big win here, apart from easier naviga-
tion as the code-base gets larger, is that you can take full advantage
of your editor’s specific language enhancements such as solid syntax
highlighting, code-linting (essentially syntax-checking on the fly)
etc.. While some editors and libraries claim to deal with embedded
CSS and JavaScript I haven't found an adequate one.

To use CSS and JavaScript files we just include them in the HTML
using <link> and <script> tags like this:

<!DOCTYPE html>
<meta charset="utf-8">
<link rel="stylesheet" href="style.css" [>
<body>
<!-- page content -->
<script type="text/javascript" src="script.js"></script> “
</body>

@ Note the async directive to allow the browser to continue pars-
ing the page while the script loads?

Marking-up content

Visualisations often use a small subset of the available HTML tags,
usually building the page programmatically by attaching elements to
the DOM-tree.

The most common tag is the <div>, marking a block of content.
<div>s can contain other <div>s, allowing for a tree hierarchy, the
branches of which are used during element selection and to propa-
gate user-interface (UI) events such as mouse-clicks. Here’s a simple
div hierarchy:

<div id="my-chart-wrapper" class="chart-holder dev">
<div id="my-chart" class="bar-chart">
this is a placeholder, with parent #my-chart-wrapper
</div>
</div>

Note the use of id and class attributes. These are used when selecting
DOM elements and to apply CSS styles. id’s are unique identifiers,

2 See this Stackoverflow thread for a good explanation http://stackoverflow.com/ques
tions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup.

114 | Chapter4: Webdev 101

http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup
http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup

each element should have only one and there should only be one
occurrence of any particular id per page. The class can be applied to
multiple elements, allowing bulk-selection, and each element can
have multiple classes.

For textual content, the main tags are <p>, <h*> and
. You’'ll be
using these a lot. This code produces Figure 4-3:

<h2>A Level-2 Header</h2>
<p>A paragraph of body-text with a line-break here..</br>
and a second paragraph...</p>

A Level-2 Header

A paragraph of body-text with a line-break here..
and a second paragraph...

Figure 4-3. An h2 header and text

Header tags are reverse ordered by size from the largest <h1>.

<div>, <h*>, <p> are what is known as block elements. They nor-
mally begin and end with a new line. The other class of tag is inline
elements, which display without line-breaks. Images , hyper-
links <a>, and table cells <td> are among these, which include the
 tag for inline text:

<div id="1inline-examples">
<img src="path/to/image.png" id="prettypic"s (1]
<p>This is a link to
<span class="url"slink-url</p> a
</div>

© Note that we don’t need a closing tag for images.

@ The span and link are continuous in the text
Other useful tags include lists, ordered and unordered :

First item</1i>
Second item</1i>

HTML also has a dedicated <table> tag, useful if you want to
present raw data in your visualisation. This HTML produces the
header and row in Figure 4-4:

BuildingaWeb-page | 115

<table id='chart-data's
<tr> ﬂ
<th>Name</th>
<th>Category</th>
<th>Country</th>
</tr>
<tr>
<td>Albert Einstein</td>
<td>Physics</td>
<td>Switzerland</td>
</tr>
</table>

© The header row

@ The first row of data

Name Category Country
Albert Einstein Physics ~ Switzerland

Figure 4-4. An HTML table

When making web visualisations, the most often used of the tags
above are the textual tags, to provide instructions, information
boxes etc.. But the meat of our JavaScripted efforts will probably be
devoted to building DOM branches rooted on the Scalable Vector
Graphics (SVG) <svg> and <canvas> tags. On most modern brows-
ers the <canvas> tag also supports a 3D WebGL context, allowing
OpenGL visualisations to be embedded in the page.

We'll deal with SVG, the focus of this book and the format used by
the mighty D3 library, in a later section (“Scalable Vector Graphics
(SVG)” on page 127). Now let’s look at how we add style to our con-
tent blocks.

(ss

CSS, short for Cascading Style Sheets, is a language for describing
the look and feel of a web-page. While you can hard-code style
attributes into your HTML it’s generally considered bad practice?.

2 This is not the same as programmatically setting styles, which is a hugely powerful
technique allowing styles to adapt to user interaction etc.

116 | Chapter4: Webdev 101

Much better to label your tag with an id or class and use that to
apply styles in the stylesheet.

The key word in CSS is cascading - CSS follows a precedence rule so
that in the case of a clash, the latest style overrides earlier ones. This
means the order of inclusion for sheets is important. Usually you
want your stylesheet to be loaded last so that you can override both
the browser defaults and styles defined by any libraries you are
using.

Figure 4-5 shows how CSS is used to apply styles to the HTML ele-
ments. First the element is selected, using hash #s to indicate a
unique ID and dot .s to select members of a class. You then define
one or more property—>value pairs. Note that the font-family prop-
erty can be a list of fallbacks, in order of preference. Here we want
the browser default font-family of serif (capped strokes) to be
replaced with the more modern sans-serif, with Helvetica Neue our
first choice.

selector property value
r A} r Al r L}
{ font-family: 'Helvetica Neue',

Helvetica, Arial, sans-serif; }
#lead { font-size: 150%; }
Calert){ color:red; background:yellow }

~ [<div id="my-viz">
<div id="lead">
<h2>A Leader header</h2>
<p>Some enlarged text for,

(class="alert’)

emphasis.

€ 2 & [localhost8080

A Leader header

(o </;£5: Some enlarged text for(emphasis).
<p>and some normal sized texXt " N
with our chosen font</p> and some normal sized text with our chosen font
<div id="chart-holder">
<svg></svg>
</div>
L </div>

Figure 4-5. Styling the page with CSS

Understanding the CSS precedence rules is key to successfully
applying styles. In a nutshell the order is

1. limportant after CSS property trumps all.

2. The more specific the better. i.e. ids override classes.

BuildingaWeb-page | 117

3. The order of declaration - last declaration wins, subject to I.
and 2.

So, for example, say we have a of class alert:
something to be alerted to

Putting the following in our style.css file will make the alert text red

and bold:
.alert { font-weight:bold; color:red }

If we then add this to the style.css, the id color black will override
the class color red, while the class font-weight remains bold:

#special-alert {background: yellow; color:black}

To enforce the color red for alerts, we can use the limportant direc-
tive:?

.alert { font-weight:bold; color:red !important }
If we then add another stylesheet, style2.css, after style.css:

<link rel="stylesheet" href="style.css" type="text/css" [>
<link rel="stylesheet" href="style2.css" type="text/css" [>

With style2.css containing the following:
.alert { font-weight:normal }

Then the font-weight of the alert will be reverted to normal, the new
class style having been declared last.

JavaScript

JavaScript is the only first-class, browser-based programming lan-
guage. In order to do anything remotely advanced (and that
includes all modern web-visualizations) you should have a Java-
Script grounding. Other languages which claim to make client-side/
browser programming easier, such as Typescript, Coffeescript etc.,
compile to JavaScript, which means debugging either uses (generally
flaky) mapping files or involves understanding the automated Java-
Script. 99% of all web visualisation examples, the ones you should
aim to be learning from, are in JavaScript and voguish alternatives
have a way of fading with time. In essence, good competence in, if

2 This is generally considered bad practice and usually an indication of poorly structured
CSS. Use with extreme caution as it can make life very difficult for co-developers.

118 | Chapter4: Webdev 101

not mastery of JavaScript is a pre-requisite for interesting web-
visualisations.

The good news for Pythonistas reading is that JavaScript is actually
quite a nice language, once you've tamed a few of its more awkward
quirks®. As I showed in Chapter 2, JavaScript and Python have a lot
in common and it’s usually easy to translate from one to the other.

Data

The data needed to fuel you web visualisation will be provided by
the web-server as static files (e.g. JSON or CSV files) or dynamically,
through some kind of web-API (e.g. RESTful APIs) usually retriev-
ing the data server-side from a database. We'll be covering all these
forms in ??%.

Although a lot of data used to be delivered in XML form, modern
web-visualisation is predominantly about JSON and, to a lesser
extent, CSV or TSV files.

JSON (short for Javascript Object Notation) is the de-facto web-
visualisation data standard and I recommend you learn to love it. It
obviously plays very nicely with Javascript but its structure will also
be familiar to Pythonistas. As we saw in “JSON” on page 83, reading
and writing JSON data with Python is a snip. Here’s a little example
of some JSON data:

{

"firstName": "Groucho",

"lastName": "Marx",

"siblings": ["Harpo", "Chico", "Gummo", "Zeppo"],
"nationality": "American",

"yearOfBirth": 1890

}

Chrome’s Developer Tools

The arms-race in JavaScript engines in recent years, which has pro-
duced huge increases in performance, has been matched by an
increasingly sophisticated range of development tools built in to the
various browers. Firefox’s Firebug lead the pack but for a while now

2 These are succinctly discussed in Douglas Crockford’s famously short JavaScript the
Good Parts

Chrome’s Developer Tools | 119

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON

Chrome’s Developer Tools have surpassed it, adding functionality all
the time. There’s now a huge amount you can do with Chrome’s tab-
bed tools but here I'll introduce the two most useful tabs, the HTML
+CSS focused Elements and the Javscript focused Sources. Both of
these work in complement to Chrome’s developer console, demon-
strated in “JavaScript” on page 36.

The Elements Tab

To access the Elements tab, select More Tools > Developer Tools from
the right-hand options menu or use the Ctrl-Shift-I keyboard short-
cut.

Figure 4-6 shows the elements tab at work. You can select DOM-
elements on the page by using the left-hand magnifying glass and
see their HTML-branch in the left-panel. The right panel allows you
to see CSS styles applied to the element and look at any event-
listeners attached or DOM-properties.

€ % ¢ [localhost3080 Qv @ =
A Dummy Chart
ﬂ}
]
%}
B
- A
Q, [|elements| Network Sources Timeline Profiles Resources Audits Console P - B P
= |Styles| Computed Event Listeners *
¥ <html> I ctvle
» <head=_</head= element.style { + F & -
¥ <body> }
¥<syg id="chart” width="300" height="158"> #chart, #chartx, #charty (index}:5
" - </circles i

8" yl="28" x2="28" y2="130"></line> background:» [J#eee:

8" yl="130" x2="280" y2="138"></line> font-family: sans-serif;
<rect x="248" " width="55" height="30"=</rect= 1
<polygon points="216,160, 238,100,

220, 80"></polygon=

<text id="title" text-anchor="middle" x="158" y=
"20"=A Dummy Chart</text= 1
<text x="20" y="20" transform="rotate(-90,20,20)"
text-anchor="end" dy="0.7lem">y axis label</text=> « |Ntml|* = swg user agent stylesheet ..

html body EEYEIOEL4

svg[Attributes Style] {
width: 308px;
height: 150px;

Figure 4-6. Chrome Developer Tools Elements tab

120 | Chapter4: Webdev 101

One really cool feature of the Elements tab is that you can interac-
tively change element styling, both CSS styles and attributes®. This is
a great way to refine the look and feel of your data visualisations.

Chrome’s Elements tab provides a great way to explore the structure
of a page, finding out how the different elements are positioned.
This is good way to get your head around positioning content blocks
with the position and float properties. Seeing how the pros apply
CSS-styles is a really good way to up your game and learn some use-
ful tricks.

The Sources Tab

The Sources tab allows you to see any JavaScript included in the
page. Figure 4-7 shows the tab at work. In the left-panel you can
select a script or an HTML-file with embedded <script> tagged
JavaScript. As shown, you can place a breakpoint in the code, load
the page and, on break, see the call-stack, any scoped or global vari-
ables etc.. These breakpoints are parametric so you can set condi-
tions for them to trigger, handy if you want to catch and step
through a particular configuration. On break you have the standard
to step in, out and over functions etc..

2 Being able to play with attributes is particularly useful when trying to get Scalable Vec-
tor Graphics (SVG) to work.

Chrome’s Developer Tools | 121

€ & ¢ [4localhost:3080 Qi & O =
A Dummy Chart
[
]
o
&
> A
Q, [] Elements Network |Sources| Timeline Profiles Resources Audits Console > B O, x
Sources | Content scripts Snippets [+ scriptjs = o1} LU S]
» 2 (no domain) © Serving from the file syste more Never show x | » Watch + C
» (2 cdnjs.cloudflare.com 1 w Call Stack”] Async
» (2 code jquery.com 2| function buildChart(){ Not Paused
»@d3 3 var padding = 28:
Js.0rg 4 var height = 150, width = 300; ¥ Scope
¥ () localhost:8080 5 Wt Bauced
= (index) | 6] var chart = d3.select('#chart'); oL Fausec
— Y Breakpoint:
B scriptjs 8 chart.append{‘circle’) v re_a p_om s
9 attr('r', 15) | scriptjsi6
10 .attr{'cx’, 108) var chart = d3..
i; -attr{’ey’, 50); ~ | » DOM Breakpoints
» ;
12 » XHR Breakpointg-
{} Line1,Column 1 ——— =

Figure 4-7. Chrome Developer Tools Sources tab

The Source tab is a fantastic resource and is the main reason why I
hardly ever turn to console logging when trying to debug Javscript.
In fact, where JS debugging was once a hit-and-miss black art, it is
now almost a pleasure.

Other Tools

There’s a huge amount of functionality in those Chrome Developer
Tools tabs and it’s being updated almost daily. You can do memory
and CPU timelines and profiling, monitor your network downloads,
test out your pages for different form-factors etc. But you’ll spend
99% of your time as a data visualiser in the Elements and Sources
tabs.

A Basic Page with Placeholders

Now that we have covered the major elements of a web-page, let’s
put them together. Most web-visualisations start off as HTML and
CSS skeletons, with placeholder elements ready to be fleshed out
with a little JavaScript plus data (see “Single-page Apps” on page
106).

122 | Chapter4: Webdev 101

We'll first need our HTML skeleton, using the code in Example 4-1.
This consists of a tree of <div> content blocks, defining three chart-
elements, a header, main and sidebar section.

Example 4-1. The HTML skeleton

<!DOCTYPE html>
<meta charset="utf-8">

<link rel="stylesheet" href="style.css" type="text/css" [>
<body>

<div id="chart-holder" class='dev's>
<div id="header">
<h2>A Catchy Title Coming Soon...</h2>
<p>Some body-text describing what this visualisation is all
about and why you should care.</p>
</div>
<div id="chart-components"s>
<div id="main">
A placeholder for the main chart..
</div><div id="sidebar"s>
<p>Some useful information about the chart,
probably changing with user interaction...</p>
</div>
</div>
</div>

<script src="script.js"s</script>
</body>

Now we have our HTML skeleton, we want to style it using some
CSS. This will use the classes and ids of our content-blocks to adjust
size, position, background color etc. To apply our CSS, in
Example 4-1 we import a style.css file, shown in Example 4-2.

Example 4-2. CSS styling
body {

background: #ccc;
font-family: Sans-serif;

}
div.dev { (1]

border: solid 1px red;
}

ABasic Page with Placeholders | 123

div.dev div {
border: dashed 1px green;

}

div#chart-holder {
width: 600px;
background :white;
margin: auto;
font-size :16px;

}

div#chart-components {
height :400px;
position :relative; E;

}

div#main, div#sidebar {
position: absolute; E’

}

div#main {
width: 75%;
height: 100%;
background: #eee;

}

div#sidebar {
right: 0;
width: 25%;
height: 100%;

@ This dev class is a handy way to see the border of any visual
blocks, useful for visualisation work.

@ Makes chart-components the relative parent.

® Makes the main and sidebar positions relative to chart-
components.

@ Positions this block flush with the right wall of chart-
components.

We use absolute positioning of the main and siderbar chart elements
(Example 4-2). There are various ways to position the content-
blocks with CSS but absolute positioning gives you explicit control
over their placement, a must if you want to get the look just right.

124 | Chapter4: Webdev 101

After specifying the size of the chart-components container, the
main and sidebar child elements are sized and position using per-
centages of their parent. This means any changes to the size of
chart-components will be reflected in its children.

With our HTML and CSS defined we can examine the skeleton by
firing up Python’s single-line SimpleHTTPServer in the project
directory, like so:

$ python -m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 ...

Figure 4-8 shows the resulting page with the Elements tab open, dis-
playing the page’s DOM-tree.

8 Q=
/A Catchy Title Coming Soon...
iSome body-text describing what this visualisation is all about and why you should
icare.
div#main 450.5px x 482px
{A placeholder for the main chart..
Some useful
information about
The chart, probably
changing with user
interaction...
Q [J |Elements | Network Sources Timeline Profiles Resources Audits Console > # o, x
Styles | Computed Event Listeners »
¥ <htnl> clement s
» chead>..</head> element.style { hEe
¥ <body> }
v<div id="chart-holder" class="dev"> div#main { index.html:46
v<div id="header"> width: 75%;
<h2>A catchy Title Coming Soon...</h2> height: 100%;
> <p>.</p> background: » [#eee;
</div> }

v<div id="chart-components">
<div id="main">
A placeholder fo&(he main chart..
</div>

div#main, div#sidebar { index.html:42
position: absolute;

P <div id="sidebar"s..</div= div.dev div { index.html:22
</div> border: »dashed 1px Mgreen;
</div> }
:scdrint sre="script.js"></script> div { user agent stylesheet
</body> i 5 .
P) display: block;

html body divitchart-holder.dev d\\m(hart-(cmpanenls

Figure 4-8. Building a Basic Webpage

The chart’s content-blocks are now positioned and sized correctly,
ready for JavaScript to add some engaging content.

Filling the placeholders with content

With our content blocks defined in HTML and positioned using
CSS, a modern data visualisation uses JavaScript to construct its
interactive charts, menus, tables and the like. There are many ways

ABasic Page with Placeholders | 125

to create visual content (aside from image or multimedia tags) on
your modern browser, the main ones being:

Scalable Vector Graphics (SVG) using special HTML-tags.
o Drawing to a 2D canvas context.

» Drawing to a 3D canvas WebGL context, allowing a subset of
OpenGL commands.

o Using modern CSS to create animations, graphic primitives etc.

Because SVG is the language of choice for D3, by some way the big-
gest Javscript dataviz library, many of the cool web data-
visualisations you have seen, such as those by the New York Times,
are built in that. Broadly speaking, unless you anticipate having lots
(>1000) of moving elements in your visualisation or need to use a
specific canvas based library, SVG is probably the way to go.

By using vectors instead of pixels to express its primitives SVG will
generally produce ‘cleaner’ graphics that respond smoothly to scal-
ing operations. It’s also much better at handling text, a crucial con-
sideration for many visualisations. Another key advantage of SVG is
that user interaction (e.g. mouse hovering or clicking) is native to
the browser, being part of the standard DOM event handling®. A
final point in its favour is that because the graphic components are
built on the DOM, you can inspect and adapt them using your
browser’s development tools (see “Chrome’s Developer Tools” on
page 119). This can make debugging and refining your visualisa-
tions much easier than trying to find errors in the canvas’s rela-
tively black box.

canvas graphics contexts come into their own when you need to
move beyond simple graphic primitives like circles and lines, for
example incorporating images, such as pngs or jpegs. canvas is usu-
ally considerably more performant than SVG so anything with lots
of moving elements’ is better off rendered to a canvas. If you want to
be really ambitious or move beyond 2D graphics, you can even
unleash the awesome power of modern graphics cards by using a
special form of canvas context, the OpenGL-based “webgl” context.

2 With a canvas graphic context you generally have to contrive your own event handling.

3 What this number is changes with time and the browser in question but as a rough rule
of thumb the low thousands is where SVG often starts to strain.

126 | Chapter4: Webdev 101

Just bear in mind that what would be simple user interaction with
SVG (e.g clicking on a visual element) often has to be derived from
mouse-coordinates manually etc. adding a tricky layer of complex-
ity.

The Nobel-prize data-visualisation realised at the end of this book’s
tool-chain is built primarily with D3 so SVG graphics are focus of
this book. Being comfortable with SVG is fundamental to modern
web-based dataviz so let’s take a little primer.

Scalable Vector Graphics (SVG)

It doesn’t seem long ago that Scalable Vector Graphics (SVG)
seemed all washed up. Browser coverage was spotty and few big
libraries were using it. It seemed inevitable that the canvas tag
would act as a gateway to full-fledged, rendered graphics based on
leveraging the awesome power of modern graphics cards. Pixels not
vectors would be the building block of web-graphics and SVG
would go down in history as a valiant but ultimately doomed ‘nice
idead.

D3 might not single-handedly have rescued SVG in the browser but
it must take the lion’s share of responsibility. By demonstrating what
can be done by using data to manipulate or drive the web-page’s
DOM it provided a compelling use-case for SVG. D3 really needs its
graphic primitives to be part of the document hierarchy, in the same
domain as the other HTML content. In this sense it needed SVG as
much as SVG needed it.

The svg element

All SVG creations start with an <svg> root tag. All graphical ele-
ments such as circles, lines etc. and groups thereof are defined on
this branch of the DOM-tree. Example 4-3 shows a little SVG con-
text we'll use in upcoming demonstrations, a light-gray rectangle
with id chart. We also include the D3 library, loaded from d3js.org
and a script. js JavaScript file in the project folder.

Example 4-3. A basic SVG context

<!DOCTYPE html>
<meta charset="utf-8">
<!-- A few CSS style-rules -->

Scalable Vector Graphics (SVG) | 127

<style>
svg#chart {
background: lightgray;

}
</style>

<svg id='chart' width="300" height="225">
</svg>

<!-- Third-party libraries and our JS script. -->
<script src="http://d3js.org/d3.v3.min.js"></script>
<script src="script.js"s</script>

Now we've got our little SVG canvas in place, lets start doing some
drawing.

The g element

We can group shapes within our svg element by using the group g
element. As we'll see in “Working with groups” on page 137, shapes
contained in a group can be manipulated together, e.g. changing
their position, scale or opacity.

Circles

To create SVG visualisations, from the humblest little static bar-
chart to full-fledged interactive, geographic masterpieces, involves
putting together elements from a fairly small set of graphical primi-
tives such as lines, circles and the very powerful paths. Each of these
elements will have its own DOM-tag which will update as it
changes’. e.g. e.g. it’s x and y attributes will change to reflect any
translations within its svg or group (g) context.

Let’s add a circle to our SVG context to demonstrate:

<svg id='chart' width="300" height="225">
<circle r="15" cx="100" cy="50"></circle>
</svg>
This produces Figure 4-9. Note that the y-coordinate is measured
from the top of the svg #chart container, a common graphic conven-
tion.

2 You should be able to use your browser’s development tools to see the tag attributes
updating in real time.

128 | Chapter4: Webdev 101

€ = & |[Ylocalhost:8080

Cy=50

cx=100
tr=15

Figure 4-9. An SVG circle

Now let’s see how we go about applying styles to SVG elements.

Applying CSS-styles

The circle in Figure 4-9 is fill-colored lightblue using CSS styling
rules:

#chart circle{ fill: lightblue }

In modern browsers, most visual SVG styles can be set using CSS,
including fill, stroke, stroke-width and opacity. So if we wanted a
thick, semi-transparent green line (with id total) we could use the
following CSS:

#chart line#total {
stroke: green;
stroke-width: 3px;
opacity: 0.5;

}

You can also set the styles as attributes of the tags, though CSS is
generally preferable.

<circle r="15" cx="100" cy="50" fill="lightblue"></circle>

Scalable Vector Graphics (SVG) | 129

Which SVG features can be set by CSS and
which can’t is a source of some confusion and
plenty of gotchas. The SVG spec distinguishes
between element properties and attributes, the
former being more likely to be found among the
valid CSS styles. You can investigate the valid
CSS properties using Chrome’s Elements tab and
it's auto-complete. Also, be prepared for some
surprises. For example, SVG text is colored
using the fill not color property.

For fill and stroke, there are various color conventions you can use:

» named HTML colors, such as lightblue
o using HTML hex-codes (#RRGGBB), e.g. white #FFFFFF
o RGB values, e.g. red = rgb(255, 0, 0)

o RGBA values, where A is an alpha-channel (0-1), e.g half-
transparent blue rgba(0, 0, 255, 0.5)

As well as adjusting the colors alpha-channel with RGBA, the SVG
elements can be faded using their opacity property. Opacity is used
a lot in D3 animations.

Stroke-width is measured in pixels by default but can use points etc..

Lines, rectangles, polygons
We'll add a few more elements to our chart to produce Figure 4-10.

First we’ll add a couple of simple axis-lines to our chart, using the
<line> tag. Line positions are defined by a start coordinate (x1, y1)
and an end one (x2, y2):

<line x1="20" y1="20" x2="20" y2="130"></line>

<line x1="20" y1="130" x2="280" y2="130"></line>
We'll also add a dummy legend-box in the top-right corner using an
SVG rectangle. Rectangles are defined by x and y coordinates rela-
tive to their parent container and a width and height:

<rect x="240" y="5" width="55" helght="30"></rect>

You can create irregular polygons using the <polygon> tag, which
takes a list of coordinate pairs. Let’s make a triangle marker in the
bottom right of our chart:

130 | Chapter4: Webdev 101

https://www.w3.org/TR/SVG/propidx.html

<polygon points="210,100, 230,100, 220,80"></polygon>
We'll style the elements with a little CSS:

#chart circle {fill: lightblue}

#chart line {stroke: #555555; stroke-width: 2}
#chart rect {stroke: red; fill: white}

#chart polygon {fill: green}

€ = & | [localhost:2080

A

Figure 4-10. Adding a few elements to our dummy-chart

Now we've a few graphical primitives in place, let’s see how we add
some text to our dummy-chart.

Text

One of the key strengths of SVG over the rasertized canvas context
is how it handles text. Vector-based text tends to look a lot clearer
than its pixellated counterparts and benefits from smooth scaling
too. You can also adjust stroke and fill properties, just like any SVG
element.

Let’s add a bit of text to our dummy-chart, a title and labelled y-axis
(see Figure 4-11).

Text is placed using x and y coordinates. One important property is
the text-anchor which stipulates where the text is placed relative to

its x position. The options are start, middle and end, start being the
default.

Scalable Vector Graphics (SVG) | 131

We can use the text-anchor property to center our chart title. We
set the x coordinates at half the chart width and then set the text-
anchor to middle:

<text id="title" text-anchor="middle" x="150" y="20">
A Dummy Chart

</text>
Like all SVG primitives, we can apply scaling and rotation trans-
forms to our text. To label our y-axis we’ll need to rotate the text to
the vertical (Example 4-4). By convention, rotations are clockwise by
degree so we’ll want an anti-clockwise, -90deg. rotation. By default
rotations are about the (0,0) point of the element’s container (svg or
group g). We want to rotate our text about its own position so first
translate the rotation point using the extra arguments to the rotate
function. We also want to first set the text-anchor to the end of the
‘y axis label’ string to rotate about its end point.

Example 4-4. Rotating text

<text x="20" y="20" transform="rotate(-90,20,20)"
text-anchor="end" dy="0.71lem">y axis label</text>

In Example 4-4 we make use of the text’s dy attribute which, along
with dx can be used to make fine adjustments to the text’s position.
In this case we want to lower it so that when rotated anti-clockwise
it will be to the right of the y-axis.

SVG text elements can also be styled using CSS. Here we set the
font-family of the chart to sans-serif and the font-size to 16px,
using the title id to make that a little bigger:

#chart {

background: #eee;

font-family: sans-serif;

}

#chart text{ font-size: 16px }
#chart text#title{ font-size: 18px }

132 | Chapter4: Webdev 101

€< = ¢ [localhost:2080

A Dummy Chart

y axis label

A

Figure 4-11. Some SVG text

Note that the text elements inherit font-family and font-size from
the chart’s CSS - you don't have to specify a text element.

Paths

Paths are the most complicated and powerful SVG element, enabling
the creation of multi-line, multi-curve component paths which can
be closed and filled, creating pretty much any shape you want. A
simple example is adding a little chart-line to our dummy-chart to
give Figure 4-12.

The red path in Figure 4-12 is produced by the following SVG:
<path d="M20,130L60,70L110,100L160,45"></path>

The path’s d attribute specifies the series of operations needed to
make the red-line. Let’s break it down:

1. “M20, 130” - move to coordinate (20, 130)

2. “L60, 70” - draw a line to (60, 70)

3. “L110, 100” - draw a line to (110, 100)

4. “L160, 45” - draw a line to (160, 45)

You can imagine d as a set of instructions to a pen to move to a
point with M raising the pen from the canvas.

Scalable Vector Graphics (SVG) | 133

A little CSS-styling is needed. Note that the fill is set to none;
otherwise, to create a fill-area, the path would be closed, drawing a
line from the its end to beginning points, and any enclosed areas fil-
led in with the default color black:

#chart path {stroke: red; fill: none}

€ = ¢ [localhost:2080

A Dummy Chart

y axis label

A

Figure 4-12. A red line-path from the chart axis

As well as the moveto ‘M’ and lineto ‘L, the path has a number of
other commands to draw arcs, Bezier curves etc.. SVG arcs and
curves are commonly used in dataviz work, with many of D3’s libra-
ries making use of them? Figure 4-13 shows some SVG elliptical-
arcs created by the following code:

<svg id='chart' width="300" height="150">
<path d="M40,40
p30,40 O
,0,0,1, @
80,80
A50,50 ,0,0,1, 160, 80,
A30,30 ,0,0,1, 190, 80

>
</svg>

@ Having moved to position (40, 40), draw an elliptical-arc x-
radius 30 and y-radius 40 and end-point (80, 80).

2 This chord-diagram is a nice example, using D3’s chord function.

134 | Chapter4: Webdev 101

http://bl.ocks.org/mbostock/4062006

@ The last two flags (0, 1) are large-arc-flag, specifying which
arc of the ellipse to use and sweep-flag which specifies which
of the two possible ellipses defined by start and end-points to
use.

et

< ® | [localhost:8080/index.html

Figure 4-13. Some SVG Elliptical-arcs

The key flags used in the elliptical arc, large-arc-flag and sweep-
flag are, like most things geometric, better demonstrated than
described. Figure 4-14 shows the effect of changing the flags for the
same relative beginning and end points, like so:

<svg id='chart' width="300" height="150">
<path d="M40,80

A30,40 ,0,0,1, 80,80

A30,40 ,0,0,0, 120, 80,
A30,40 ,0,1,0, 160, 80
A30,40 ,0,1,1, 200, 80

</svg>

Scalable Vector Graphics (SVG) | 135

€& = (& [localhost2080

Figure 4-14. Changing the elliptic-arc flags

As well as lines and arcs, the path element offers a number of Bézier
curves, quadratic, cubic and compounds of the two. With a little
work these can realise any line-path you want. There’s a nice run-
through here with good illustrations.

For the definitive list of path elements and their arguments go here
to the w3 source. And for a nice round-up see Jakob Jenkov’s intro-
duction

Scaling and rotating

As befits their vector nature, all SVG elements can be transformed
by geometric operations. The most common used are rotate, trans-
late and scale but you can also apply skewing using skewX and skewY
or use the powerful, multi-purpose matrix transform.

Let’s demonstrate the most popular transforms, using a set of identi-
cal rectangles. The transformed rectangles in Figure 4-15 are
achieved like so:

<svg id='chart' width="300" height="150">

<rect width="20" height="40" transform="translate(60, 55)"
fill="blue'/>

<rect width="20" height="40" transform="translate(120, 55),
rotate(45)" fill='blue'/>

<rect width="20" height="40" transform="translate(180, 55),
scale(0.5)" fill='blue'/>

<rect width="20" height="40" transform="translate(240, 55),

136 | Chapter4: Webdev 101

http://www.sitepoint.com/closer-look-svg-path-data/
http://www.w3.org/TR/SVG/paths.html
http://tutorials.jenkov.com/svg/path-element.html
http://tutorials.jenkov.com/svg/path-element.html

rotate(45),scale(0.5)" fill='blue'/>
</svg>

€ & & [Ylocalhost:8080

I'Il

Figure 4-15. Some SVG transforms: rotate(45), scale(0.5), scale(0.5) +
rotate(45)

The order in which transforms are applied is
important. A rotation of 45 deg. clockwise foll-
lowed by a translation along the x-axis will see
the element moved south-easterly whereas the
reverse operation moves it to the left and then
rotates it.

Working with groups

Often when constructing a visualisation it’s helpful to group the vis-
ual elements. A couple of particular uses being:

o When you require local coordinate schemes, e.g. if you have a
text label for an icon you want to specify its position relative to
the icon not the whole svg canvas.

o If you want to apply a scaling and/or rotation transformation to
a sub-set of the visual elements.

Scalable Vector Graphics (SVG) | 137

SVG has a group <g> tag for this which you can think of as a mini
canvas within the svg canvas. Groups can contain groups, allowing
for very flexible geometric mappings®

Example 4-5 groups some shapes in the center of the canvas, pro-
ducing Figure 4-16. Note that the position of circle, rect and path
elements is relative to the translated group.

Example 4-5. Grouping some SVG shapes

<svg id='chart' width='300"' height='150">
<g id='shapes' transform='translate(150,75)'s>
<circle cx='50"' cy='0" r='25" fill="red' />
<rect x='30' y='10"' width="'40"' height='20" fill='blue' />
<path d='M-20,-10L50,-10L10,60Z" fill='green' />
<circle r="10" fill="yellow'>
</g>
</svg>

€ = & [localhost:2080

Figure 4-16. Grouping some shapes with SVG <g> tag

If we now apply a transform to the group, all shapes within it will be
affected. Figure 4-17 shows the result of scaling Figure 4-16 by a fac-
tor of 0.75 and then rotating it 90, achieved by adapting the trans-
form attribute, like so:

2 For example, a body group can contain an arm group can contain a hand group can
contain finger elements.

138 | Chapter4: Webdev 101

<svg id='chart' width="300" height="150">
<g id='shapes',
transform = 'translate(150,75),scale(0.5),rotate(90)"'s>

</svg>

€ = & [localhost:8080

Figure 4-17. Transforming an SVG group

Layering and transparency

The order in which the SVG elements are added to the DOM-tree is
important, with later elements taking precedence, layering over oth-
ers. In Figure 4-16, for example, the triangle path obscures the red
circle and blue rectangle and is in turn obscured by the yellow circle.

Manipulating the DOM ordering is an important part of JavaScrip-
ted dataviz, e.g. D3’s insert method allows you to place an SVG ele-
ment before an existing one.

Element transparency can be manipulated using the alpha-channel
of rgba(R,G,B,A) colors or the more convenient opacity property.
Both can be set using CSS. For overlaid elements, opacity is cumula-
tive, as demonstrated by the color triangle Figure 4-18, produced by
the following SVG:

<style>
#chart circle { opacity: 0.33 }
</style>

<svg id='chart' width="300" height="150">
<g transform='translate(150, 75)'s

Scalable Vector Graphics (SVG) | 139

<circle cx='0" cy="'-20" r="30" fill='red'/>
<circle cx='17.3"' cy="10"' r='30"' fill='green'/>
<circle cx='-17.3"' cy="10" r="30" fill='blue'/>
</g>
<[svg>

€ = ¢ [localhost:2080

Figure 4-18. Manipulating opacity with SVG

The SVG elements demonstrated above were hand-coded in HTML
but in data-visualisation work they are almost always added pro-
grammatically. Thus the basic D3 workflow is to add SVG elements
to a visualisation, using data-files to specify their attributes and
properties.

JavaScripted SVG

The fact that SVG graphics are described by DOM-tags has a num-
ber of advantages over a black-box such as the <canvas> context.
For example, it allows non-programmers to create or adapt graphics
and is a boon for debugging.

In web dataviz pretty much all your SVG elements will be created
with JavaScript, using a library such as D3. You can inspect the
results of this scripting using the browsers Element’s tab (“Chrome’s
Developer Tools” on page 119), which is a great way to refine and
debug your work, e.g. nailing an annoying visual glitch.

As a little taster for things to come, let’s use D3 to scatter a few red
circles on an SVG canvas. The dimensions of the canvas and circles
are contained in a data object sent to a chartCircles function.

140 | Chapter4: Webdev 101

We use a little HTML place-holder for the SVG element:

<!DOCTYPE html>
<meta charset="utf-8">

<style>
#chart circle {fill: red}
</style>

<body>
<svg id='chart's

<script src="http://d3js.org/d3.v3.min.js"></script>
<script src="script.js"></script>
</body>

With our place-holder SVG chart element in place, a little D3 in the
script.js file is used to turn some data into the scattered circles
(see Figure 4-19):

/] script.js
var chartCircles = function(data) {

var chart = d3.select('#chart');
// Set the chart height and width from data
chart.attr('height', data.height).attr('width', data.width);
/] Create some circles using the data
chart.selectAll('circle').data(data.circles)
.enter()
.append('circle')
.attr('ex', function(d) { return d.x })
.attr('cy', function(d) { return d.y })
.attr('r', function(d) { return d.r });
b

var data = {
width: 300, height: 150,
circles: [
{'x': 50, 'y': 30, 'r': 20},
{'x": 70, 'y': 80, 'r': 10},
{'x': 160, 'y': 60, 'r': 10},
{'x": 200, 'y': 100, 'r': 5},

}

chartCircles(data);

Scalable Vector Graphics (SVG) | 141

& & | [localhost:8080/index.html

Figure 4-19. Some D3-generated circles

We'll see exactly how D3 works its magic in ???. For now, let’s sum-
marise what we've learned in this chapter.

Summary

This chapter provided a basic set of modern web-development skills
for the budding data-visualiser. It showed how the various elements
of a web-page (the HTML, CSS-stylesheets, JavaScript and media-
files) are delivered by HTTP and, on being received by the browser,
combined into the web-page the user sees. We saw how content
blocks are described, using HTML tags such as div and p, and then
styled and positioned using CSS. We also covered Chrome’s Ele-
ments and Source tabs, the key browser development tools. Finally
we had a little primer in SVG , the language in which most modern
web data-visualisations are expressed. These skills will be extended
when our toolchain reaches its D3 visualisation and new ones intro-
duced in context.

142 | Chapter4: Webdev 101

PARTII
Getting Your Data

In this part of the book we start our journey along the dataviz toolchain
(see Figure II-1), beginning with a couple of chapters on how to get
your data if it hasn't been provided for you.

In Chapter 5 we see how to get data off the web, using Python’s
requests library to grab web-based files and consume RESTful
APIs. We also see how to use a couple of Python libraries that wrap
more complex web-APIs, namely Twitter (with Python’s Tweepy)
and Google docs. The chapter ends with an example of light-weight
web-scraping with the BeautifulSoup library.

In Chapter 6 we use Scrapy, Pythons industrial-strength web-
scraper, to get the Noble prize data-set we'll be using for our web-
visualisation. With this dirty data-set to hand, were ready for the
next part of the book 2??.

Figure II-1. Our dataviz toolchain: Getting the data

https://en.wikipedia.org/wiki/Web_scraping

CHAPTER 5

Getting Data off the Web with
Python

A fundamental part of the data-visualiser’s skill-set is getting the
right data-set, in as clean a form as possible. And more often than
not these days, this involves getting it off the web. There are various
ways you can do this and Python provides some great libraries
which make sucking up the data easy.

The main ways to get data off the web are:

o Get a raw data-file over HTTP.
o Use a dedicated API to get the data.

o Scrape the data by getting web pages by HTTP and parsing
them locally for content.

This chapter will deal with these ways in turn, but first let’s get
acquainted with the best Python HTTP library out there, requests.

Getting Web-data with the requests library

As we saw in Chapter 4, the files that are used by web-browsers to
construct web-pages are communicated using the Hypertext Trans-
fer Protocol, HTTP, first developed by Tim Berners Lee. Getting
web-content, in order to parse it for data involves making HTTP
requests.

145

https://en.wikipedia.org/wiki/Tim_Berners-Lee

Negotiating HTTP requests is a vital part of any general purpose
language but getting web-pages with Python used to be a rather irk-
some affair. The venerable ur11ib2 library was hardly user-friendly,
with a very clunky API. Requests, courtesy of Kennith Reitz,
changed that, making HTTP a relative breeze and fast establishing
itself as the go-to Python HTTP library.

Requests is not part of the Python standard-library? but is part of
the Anaconda package (see Chapter 1). If youre not using Ana-
conda, the following pip command should do the job:

$ pip install requests
Downloading/unpacking requests

Cleaning up...

If you're using a Python version prior to 2.7.9 then using requests
may generate some Secure Sockets Layer (SSL) warnings. Upgrading
to newer SSL libraries should fix this®:

$ pip intall --upgrade ndg-httpsclient

Now that you have requests installed, youre ready to perform the
first task mentioned at the beginning of this chapter and grab some
raw data-files off the web.

Getting Data-files with requests

A Python interpreter session is a good way to put requests through
its paces so find a friendly local command-line, fire up IPython and
import requests:

$ ipython
Python 2.7.5+ (default, Feb 27 2014, 19:37:08)

In [1]: import requests

To demonstrate, let’s use the library to download a Wikipedia page.
We use the requests library’s get method to get the page and, by
convention, assign the result to a response object.

2 This is actually a deliberate policy of the developers.

3 There are some platform dependencies that might still generate errors. This Stackover-
flow thread is a good starting point if you still have problems.

146 | Chapter 5: Getting Data off the Web with Python

http://docs.python-requests.org/en/latest/dev/philosophy/#standard-library
http://stackoverflow.com/questions/29099404/ssl-insecureplatform-error-when-using-requests-package
http://docs.python-requests.org/en/latest/
http://docs.continuum.io/anaconda/pkg-docs
https://en.wikipedia.org/wiki/SSL

response = requests.get("https://en.wikipedia.org/wiki/Nobel_Prize")

Lets use Pythons dir method to get a list of the response object’s
attributes:

dir(response)
Out:

'content’,
'cookies',
'elapsed’,
'encoding',
'headers’,

'iter_content',

'{ter_lines"',

'json',

'links"',

'status_code',

'text',

'url']
Most of these attributes are self-explanatory and together provide a
lot of information about the HTTP response generated. You'll use a
small subset of these attributes generally. Firstly, let’s check the status
of the response:

response.status_code
Out: 200

As all good minimal web-devvers know, 200 is the HTTP status
code for OK, indicating a successful transaction. Other than 200, the
most common codes are:

o 401 (Unauthorized): attempting unauthorized access.
o 400 (Bad Request): trying to access the web-server incorrectly.

o 403 (Forbidden): similar to 401 but no login opportunity was
available.

o 404 (Not Found): trying to access a web-page that doesn't exist.

« 500 (Internal Server Error): a general-purpose, catch-all error.

So, for example, if we made a spelling mistake with our request, ask-
ing to see the SNoble_Prize page, wed get a 404 (Not Found) error:
response = requests.get("http://en.wikipedia.org/wiki/SNobel_Prize")

response.status_code
Out: 404

Getting Data-files with requests | 147

https://docs.python.org/3/library/functions.html#dir
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

With our 200 OK response, from the correctly-spelled request, lets
look at some of the info returned. A quick overview can be had with
the headers property:

response.headers
out: {
'X-Client-IP': '104.238.169.128',
'"Content-Length': '65820', ...
'Content-Encoding': 'gzip', ...
'Last-Modified': 'Sun, 15 Nov 2015 17:14:09 GMT', ...
'Date': 'Mon, 23 Nov 2015 21:33:52 GMT',
'"Content-Type': 'text/html; charset=UTF-8'...
}

This shows, among other things, that the page returned was gzip
encoded and 65k in size with content-type of text/html, encoded
with unicode UTF-8.

Since we know text has been returned, we can use the text property
of the response to see what it is:

response.text

Out: u'<!DOCTYPE html>\n<html lang="en"

dir="1tr" class="client-nojs">\n<head>\n<meta charset="UTF-8"
/>\n<title>Nobel Prize - Wikipedia, the free
encyclopedia</title>\n<script>document.documentElement.className =

This shows we do indeed have our Wikipedia HTML page, with
some inline JavaScript. As we'll see in “Scraping Data” on page 160,
in order to make sense of this content we'll need a parser to read the
HTML and provide us with the content-blocks.

requests can be a convenient way of getting web-data into your
program or Python session. For example, we can grab one of the
datasets from the huge US government catalog, which often has the
choice of various file-formats, e.g. JSON or CSV. Picking randomly,
here’s the data from a 2006-2010 study on food affordability, in
JSON format. Note that we check that it has been fetched correctly,
with a status_code 200:

response = requests.get(
"https://cdph.data.ca.gov/api/views/6tej-5zx7/rows.json\
?accessType=DOWNLOAD")

response.status_code
Out: 200

148 | Chapter 5: Getting Data off the Web with Python

https://data.gov

For JSON data, requests has a convenience method, allowing us to
access the response data as a Python dictionary. This contains meta-
data and a list of data-items:

data = response. json()
data.keys()

Out:

[u'meta', u'data']

data['meta']['view']['description']

Out: u'This table contains data on the average cost of a
market basket of nutritious food items relative to income for
female-headed households with children, for California, its
regions, counties, and cities/towns. The ratio uses data from
the U.S. Department of Agriculture...

data['data'][0]

Out:

[1,
u'4303993D-76F7-4A5C-914E-FDEA4EAB67BA',

u'Food affordability for female-headed household with
children under 18 years',

u'2006-2010"',

u't',

u'AIAN',

u'CA',

u'oe',

u'California', ...

Now we've grabbed a raw page and a JSON file off the web, let’s see
how to use requests to consume a web data-API.

Using Python to Consume Data from a Web-
API

If the data-file isn’t on the web and you are lucky, rather than having
to scrape some data configured for human consumption, there will
be an Application Programming Interface (API) that enables you get
the data programmatically and hopefully in a form that is cleaner
and better organized (e.g. getting Twitter tweets from the official
Twitter API).

The most popular data formats for web-APIs are JSON and XML,
though a number of esoteric formats exist. For the purposes of the
JavaScripting data-visualiser (discussed in ???), JavaScript Object

Using Python to Consume Data from a Web-API | 149

Notation (JSON) is obviously preferred. Helpfully, it is also starting
to predominate.

There are different approaches to creating a web-API and for a few
years there was a little war of the architectures. Three main types of
API inhabit the web:

« REST: short for Representational state transfer, using a combi-
nation of HTTP verbs (GET, POST etc.) and Uniform Resource
Identifiers (URIs), e.g. /user/kyran, to access, create and adapt
data.

o XML-RPC: a remote procedure call (RPC) protocol using XML
encoding and HT TP transport.

o SOAP: short for Simple Object Access Protocol, using XML and
HTTP.

This battle seems to be resolving in a victory for RESTful APIs and
this is a very good thing. Quite apart from RESTful APIS being more
elegant, easier to use and implement (see ???), some standardization
here makes it much more likely that you will recognize and quickly
adapt to a new API that comes your way. Ideally you will be able to
reuse existing code.

Most access and manipulation of remote data can be summed up by
the acronymn CRUD (create, retrieve, update, delete) originally
coined to describe all the major functions implemented in relational
databases. HT'TP provides CRUD counterparts with the POST, GET,
PUT and DELETE verbs and the REST abstraction builds on this
use of these verbs, acting on a Universal Resource Identifier (URI).

Discussions about what is and isn't a proper RESTful interface can
get quite involved® but essentially the URI (e.g. http://
example.com/api/items/2) should contain all the information
required in order to perform a CRUD operation. The particular
operation (e.g. GET or DELETE) is specified by the HTTP verb.
This excludes architectures such as SOAP which place stateful infor-
mation in meta-data on the requests header. Imagine the URI as the
virtual address of the data and CRUD all the operations you can per-
form on it.

2 See Parkinson’s law of triviality, also known as bike-shedding.

150 | Chapter 5: Getting Data off the Web with Python

https://en.wikipedia.org/wiki/Parkinson’s_law_of_triviality
http://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://example.com/api/items/2)
http://example.com/api/items/2)

As data visualizers, keen to lay our hands on some interesting data-
sets, we are avid consumers here, so our HTTP verb of choice is
GET and the examples below will focus on the fetching of data with
various well known web-APIs. Hopefully some patterns will emerge.

Although the two constraints of stateless URIs and the use of the
CRUD verbs is a nice constraint on the shape of RESTless APIs,
there still manage to be many varients on the theme.

Using a RESTful Web-API with requests

requests has a fair number of bells and whistles based around the
main HTTP request verbs. For a good overview see here. For the
purposes of getting data, you’ll use GET and POST pretty much
exclusively with GET being by a long way the most used verb. POST
allows you to emulate web-forms, including login details, field-
values etc. in the request. For those occasions where you find your-
self driving a web-form with, for example, lots of options selectors,
requests makes automation with POST easy. GET covers pretty
much everything else, including the ubiquitous RESTful APIs, which
provide an increasing amount of the well-formed data available on
the web.

Let’s look at a more complicated use of requests, getting a URL
with arguments. The Organisation for Economic Cooperation and
Development (OECD) provides some useful datasets on its site. The
API is described here and queries are constructed using the dataset
name (dsname), some dot-separated dimensions, each of which can
be a number of + separated values. The URL can also take standard
HTTP parameters initiated by a ? and separated by &s:

<root_url>/<dsname>/<dim 1>.<dim 2>...<dim n>/all?paraml=foo¶m2=baa..
<dim 1> = 'AUS'+'AUT'+'BEL'...

So the following is a valid URL:

http://stats.oecd.org/sdmx-json/data/QNA (1]
/AUS+AUT . GDP+B1_GE . CUR+VOBARSA. Q
/all2startTine=2009-Q28endTime=2011-04 €

@ Specifies the QNA dataset.

@ TFour dimensions, by location, subject, measure and frequency.

® Data from the second quarter 2009 to fourth quarter 2011,

Using Python to Consume Data from a Web-API | 151

http://docs.python-requests.org/en/latest/user/quickstart/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Organisation_for_Economic_Co-operation_and_Development
https://en.wikipedia.org/wiki/Organisation_for_Economic_Co-operation_and_Development
https://data.oecd.org/
https://data.oecd.org/api/sdmx-json-documentation/

Let’s construct a little Python function to query the OECD’s API:

Example 5-1. Making a URL for the OECD API
OECD_ROOT_URL = 'http://stats.oecd.org/sdmx-json/data’

def make_ OECD_request(dsname, dimensions, params=None, \
root_dir=0ECD_ROOT_URL):
""" Make a URL for the OECD-API and return a response """

if not params: 1]
params = {}

dim_str = '.'.join('+'.join(d) for d in dimensions) 2
url = root_dir + '/' + dsname + '/' + dim_str + '/all'
print('Requesting URL: ' + url)

return requests.get(url, params=params) (3]

@ You shouldn’t use mutable values, such as {}, for Python func-
tion defaults. See here for an explanation of this gotcha.

@ Using a list comprehension with Python’s succinct string con-
catenator join.

® Note that request’s get can take a parameter dictionary as its
second argument, using it to make the URL-query string.

We can use this function like so, to grab economic data for the USA
and Australia from 2009-2010:

response = make_OECD_request('QNA',
((C'USA', 'AUS"),('GDP', 'B1_GE"),('CUR', 'VOBARSA'), ('Q')),
{'startTime':'2009-Q1', 'endTime':'2010-Q1'})

Requesting URL: http://stats.oecd.org/sdmx-json/data/QNA/
USA+AUS .GDP+B1_GE.CUR+VOBARSA.Q/all

Now to look at the data, we just check the response is OK and have a
look at the dictionary keys:

if response.status_code == 200:
json = response.json()
json.keys()
Out: [u'header', u'dataSets', u'structure']

The resulting JSON data is in the SDMX format, designed to facili-
tate the communication of statistical data. It’s not the most intuitive
format around but it’s often the case that data-sets have a less than

152 | Chapter 5: Getting Data off the Web with Python

http://docs.python-guide.org/en/latest/writing/gotchas/
https://en.wikipedia.org/wiki/SDMX

ideal structure. The good news is that Python is a great language for
knocking data into shape. For Python’s Pandas library (see ?2?) there
is pandaSDMX which currently handles the XML based format.

The OECD API is essentially RESTful® with all the query being con-
tained in the URL and the HTTP verb GET specifying a fetch opera-
tion. If a specialised Python library isn't available to use the API, e.g.
Tweepy for Twitter, then you’ll probably end up writing something
like Example 5-1. requests is a very friendly, well designed library
and can cope with pretty much all the manipulations required to use
a web-APL

Getting some country data for the Nobel-viz

There are some national statistics which will come in handy for the
Nobel-visualisation were using our tool-chain to build. Population
sizes, three-letter international codes (e.g. GDR, USA), geographic
centers etc., are potentially useful when visualising an international
prize and its distribution. REST-countries is a handy RESTful web-
resource with various international stats. Let’s use it to grab some
data.

Requests to REST-countries take the following form:

https://restcountries.eu/rest/v1/<field>/<name>?<params>

As with the OECD API (see Example 5-1), we can make a simple
calling function to allow easy access to the API’s data, like so:

def REST_country_request(field, name, params=None):
headers = {'User-Agent': 'Mozilla/5.0'} (1]

if not params:
params = {}

if field == 'all':
return requests.get(REST_EU_ROOT_URL + '/all', headers=headers)

url = '%s/%s/%s'%(REST_EU_ROOT_URL, field, name)
print('Requesting URL: ' + url)
return requests.get(url, params=params, headers=headers)

<1>

2 SDMX is a RESTful specification.

Using Python to Consume Data from a Web-API | 153

http://pandas.pydata.org/
https://pypi.python.org/pypi/pandaSDMX
https://restcountries.eu/

With the Request_country_EU function to hand, let’s get a list of all
the countries using the US-dollar as currency:

response = REST_country_request('currency', 'usd')
if response.status_code == 200: # request OK
response.json()
Out:
[{u'alpha2Code': u'AS',
u'alpha3Code': u'ASM',
u'altSpellings': [u'AS',

u'capital': u'Pago Pago',
u'currencies': [u'USD'],
u'demonym': u'American Samoan',

u'latlng': [12.15, -68.266667],
u'name': u'Bonaire’,

u'name': u'British Indian Ocean Territory',

u'name': u'United States Minor Outlying Islands',

The full data-set at REST-countries is pretty small so for conve-
nience we'll make a copy and store it locally to MongoDB and our
nobel-prize database using the get_mongo_database method from
“MongoDB” on page 97:

db_nobel = get_mongo_database('nobel _prize')
col = db_nobel['country_data'] # country-data collection

Get all the RESTful country-data

response = REST_country_request()

if response.status_code == 200:
Insert the JSON-objects straight to our collection
col.insert(country_data)

Out:

[ObjectId('5665alef26a7110b79e88d49'),

ObjectId('5665al1ef26a7110b79e88d4a'),

With our country-data inserted to its MongoDB collection, lets
again find all the countries using the US-dollar as currency:

res = col.find({ 'currencies':{'S$in':['USD']}})
list(res)
Out:
[{u'_id': ObjectId('5665alef26a7110b79e88d4d"),
u'alpha2Code': u'AS',
u'alpha3Code': u'ASM',
u'altSpellings': [u'AS',

154 | Chapter 5: Getting Data off the Web with Python

u'currencies': [u'USD'],
u'demonym': u'American Samoan',
u'languages': [u'en', u'sm'],

Now that we've rolled a couple of our own API consumers, let’s take
a look at some dedicated libraries that wrap some of the larger web
APIs in an easy to use form.

Using Libraries to access Web-APIs

requests is capable of negotiating with pretty much all web-APIs
and often a little function like Example 5-1 is all you need. But as the
APIs start adding authentication and the data structures become
more complicated, a good wrapper-library can save a lot of hassle
and reduce the tedious book-keeping. In this section I'll cover a cou-
ple of the more popular wrapper libraries to give you a feel for the
workflow and some useful start-points.

Using Google-spreadsheets

It's becoming more common these days to have live data-sets in the
cloud. So, for example, you might find yourself required to visualise
aspects of a Google-spreadsheet which is the shared data-pool for a
group. My preference is to get this data out of the Google-plex and
into Pandas, to start exploring it (see ???) but a good library will let
you access and adapt the data in-place, negotiating the web-traffic as
required.

Gspread is the best known Python library for accessing Google-
spreadsheets and makes doing so a relative breeze.

You'll need OAth 2.0 credentials to use the API2 The most up to
date guide can be found here. Following those instructions should
provide a JSON file containing your private key.

You'll need to install gspread and the latest Python OAuth2 client
library. Here’s how to do it with pip.

$ pip install gspread
$ pip install --upgrade oath2client

2 OAuthl access has been deprecated recently.

Using Libraries to access Web-APIs | 155

https://en.wikipedia.org/wiki/Wrapper_library
https://github.com/burnash/gspread
https://en.wikipedia.org/wiki/OAuth
https://developers.google.com/identity/protocols/OAuth2ServiceAccount

Depending on your system you may also need PyOpenSSL:
$ pip install PyOpenSSL

See here for more details and trouble-shooting

Google’s API assumes that the spreadsheets you
are trying to access are owned or shared by your
API-account, not your personal one. The email-
address to share the spreadsheet with is available
at your Google developers console and in the
JSON credentials key needed to use the APIL It
should look something like account-1@My
Project..iam.gserviceaccount.com.

With those libraries installed you should be able to access any of
your spreadsheets in a few lines. I'm using the Microbe-scope
spreadsheet which you can see here. Example 5-2 shows how to load
the spreadsheet.

Example 5-2. Opening a Google-spreadsheet
import json
import gspread

from oauth2client.client import SignedJwtAssertionCredentials

json_key = json.load(open('My Project-b8a....json')) (1]
scope = ['https://spreadsheets.google.com/feeds']

credentials = SignedJwtAssertionCredentials(json_key['client_email'],\
json_key['private_key'].encode(), scope)

gspread.authorize(credentials)

gc

ss = gc.open('Microbe-scope') a

© The JSON credentials file is the one provided by Google-
services.

@ Here were opening the spreadsheet by name. Alternatives are
open_by_url or open_by_1id. See here for details.

Now that we've got our spreadsheet we can see what work-sheets it
contains:

156 | Chapter 5: Getting Data off the Web with Python

http://gspread.readthedocs.org/en/latest/oauth2.html
https://console.developers.google.com/apis/credentials/serviceaccount/
https://docs.google.com/spreadsheets/d/1kHCEWY-d9HXlWrft9jjRQ2xf6WHQlmwyrXel6wjxkW8/edit#gid=0&vpid=B3
http://gspread.readthedocs.org/en/latest/index.html#gspread.Client

ss.worksheets()

Out: [<Worksheet 'bugs' 1id:od6>,

<Worksheet 'outrageous facts' id:o74cw7y>,
<Worksheet 'physicians per 1,000' id:okzh6fp>,
<Worksheet 'amends' 1id:ogkk64p>]

ws = ss.worksheet('bugs')

With the worksheet bugs selected from the spreadsheet, gspread
allows you to access and change column, row and cell values
(assuming the sheet isn’t read-only). So we can get the values in the
second column with the col_values command:

ws.col_values(1)

Out: [None,
'grey = not plotted',
'Anthrax (untreated)',
'Bird Flu (H5N1)',
'Bubonic Plague (untreated)',
'C.Difficile’,
'Campylobacter',
'Chicken Pox',
'Cholera’,...

Although you can use gspread’s API to plot directly, using a plot-
library like Matplotlib, I prefer to send the whole sheet to Pandas,
Python’s powerhouse programmatic spreadsheet. This is easily
achieved using gspread’s get_all_records, which returns a list of
item dictionaries. This list can be used directly to initialise a Pandas
DataFrame (see 2??):

df = pd.DataFrame(ws.get_all_records())
df.info()
Out:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 41 entries, 0 to 40
Data columns (total 23 columns):
41 non-null object

average basic reproductive rate 41 non-null object
case fatality rate 41 non-null object
infectious dose 41 non-null object
upper RO 41 non-null object
viral load in acute stage 41 non-null object
yearly fatalities 41 non-null object

dtypes: object(23)
memory usage: 7.7+ KB

In 222 we'll see how to interactively explore a DataFrame’s data.

Using Libraries to access Web-APIs | 157

Using the Twitter APl with Tweepy

The advent of social media has generated a lot of data and an inter-
est in visualising the social-networks, trending hashtags, media-
storms etc. contained in it. Twitter’s broadcast network is probably
the richest source of cool data-visualisations and its API provides
tweets? filtered by user, hashtag, date etc.

Python’s Tweepy is an easy to use Twitter library which provides a
number of useful features, such as a StreamListener class for
streaming live twitter updates. To start using it you'll need a Twitter
access token, which can be acquired by following the instructions
here to create your twitter application. Once this application is cre-
ated you can get the keys and access tokens for your app by clicking
on the link here.

Tweepy typically requires the four authorisation elements shown
here:

The user credential variables to access Twitter API
access_token = "2677230157-Ze3bWuBAwdkwoj4via2dEntU86...TD7z2"
access_token_secret = "DxwKAVVzMFLQ7WnQGnty493jgJ39Acu. . .paR8ZH"
consumer_key = "pIorGFGQHShuYQtIxzYWk1jMD"

consumer_secret = "yLc4Hw82GOZn4vT14q8pSBcNyHkn35BfIe. ..oVa4P7R"

With those defined, accessing tweets could hardly be easier. Here we
create an OAuth auth object using our tokens and keys and use it to

start an API session. We can then grab the latest tweets from our
timeline:

import tweepy

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

public_tweets = api.home_timeline()
for tweet in public_tweets:
print tweet.text

RT @Glinner: Read these tweets https://t.co/QqzJIPsDxUD
Volodymyr Bilyachat https://t.co/VIyOHlje6b +1 bmeyer
#javascript

RT @bbcworldservice: If scientists edit genes to

2 The free APT is currently limited to around 350 requests per hour.

158 | Chapter 5: Getting Data off the Web with Python

https://dev.twitter.com/rest/public/rate-limiting
https://dev.twitter.com/oauth/overview/application-owner-access-tokens
https://apps.twitter.com/

make people healthier does it change what it means to be
human? Ohttps://t.co/Vciuyu6BCx h..

RT @ForrestTheWoods:

Launching something pretty cool tomorrow. I'm excited. Keep

Tweepy’s API class offers a lot of convenience methods which you
can check out here. A common visualisation is using a network
graph to show patterns of friends and followers among Twitter sub-
populations. The Tweepy methods follower_1ids (get all users fol-
lowing) and friends_ids (get all users being followed) can be used
to construct such a network:

my_follower_1ids = api.follower_1ids() (1]

for id in my_followers_ids:
followers = api.follower_ids(id) a
...

@ Gets a list of your followers ids, eg. [1191701545,
1554134420, ..].

@ The first argument to follower_ids can be an id or screen-
name

By mapping followers of followers etc. you can create a network of
connections which might just reveal something interesting about
groups and subgroups clustered about a particular individual or
subject. There’s a nice example of just such a twitter analysis here.

One of the coolest features of Tweepy is its StreamListener class,
which makes it easy to collect and process filtered tweets in real-
time. Live updates of twitter streams have been used by many mem-
orable visualisations such as tweetping. Let’s set up a little stream to
record tweets mentioning Python, JavaScript and Dataviz and save it
to a MongoDB database, using the get_mongo_database method
from “MongoDB” on page 97:

...
from tweepy.streaming import StreamListener
import json

...

class MyStreamListener(StreamListener):
""" Streams tweets and saves to a MongoDB database

o

Using Libraries to access Web-APIs | 159

http://docs.tweepy.org/en/v3.2.0/api.html#api-reference
http://gabesawhney.com/visualizing-twitter-clusters-with-gephi-update/
http://tweetping.net/

def __init__(self, api, **kw):
self.api = api
super (tweepy.StreamListener, self).__init__ ()
self.col = get_mongo_database('tweets', **kw)['tweets'] (1]

def on_data(self, tweet):
self.col.insert(json.loads(tweet)) a

def on_error(self, status):
return True # keep stream open

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
apl = tweepy.API(auth)

stream = tweepy.Stream(auth, MyStreamListener(api))

Start the stream with track-list of keywords
stream.filter(track=["'python', 'javascript', 'dataviz'])

@ The extra kw keywords allow us to pass the MongoDB specific
host, port, username/password arguments to the stream-
listener.

@ The data is a raw JSON string that needs decoding before insert-
ing into our tweets collection.

Now that we've had a taste of the kind of APIs you might run into in
your search for interesting data, let’s look at the primary technique
you'll use if, as is often the case, no one is providing the data you
want in a neat, user-friendly form: Scraping data with Python.

Scraping Data

Scraping is the chief metaphor used for the practice of getting data
that wasn’t designed to be programmatically consumed off the web.
It is a pretty good metaphor because scraping is often about getting
the balance right between removing too much and too little. Creat-
ing procedures that extract just the right data, as clean as possible,
from web-pages is a craft skill and often a fairly messy one at that.
But the pay-off is access to visualizable data that often cannot be got
in any other way. Approached in the right way scraping can even
have an intrinsic satisfaction.

160 | Chapter5: Getting Data off the Web with Python

Why we need to scrape

In an ideal virtual world, online data would be organised in a library,
with everything catalogued using a sophisticated dewey-decimal sys-
tem for the web-age. Unfortunately for the keen data hunter, the
web has grown organically, often unconstrained by considerations
of easy data access for the budding data visualiser. So in reality the
web resembles a big mound of data, some of it clean and usable (and
thankfully this percentage is increasing) but much of it poorly
formed and designed for human consumption. And humans are
able to parse the kind of messy, poorly-formed data that our rela-
tively dumb computers have problems with*

Scraping is about fashioning selection patterns that grab the data we
want and leave the rest behind. If we're lucky the web-pages contain-
ing the data have helpful pointers, like named tables, specific identi-
ties in preference to generic classes etc.. If we're unlucky then these
pointers are missing and we have to resort to using other patterns
or, in a worst case, ordinal specifiers such as third table in the main
div. These latter are obviously pretty fragile, broken in this case if
somebody adds a table above the third.

Essentially, if you haven’t been given the data in ‘clean’ form or have
access to a web-API to deliver the data you need, in JSON, XML or
some other common format, then you will probably find that the
dataset you need to create your visualisation is encoded in HTML,
in the form of tables, headers, ordered and unordered lists of con-
tent and the like. If the data-set is small enough, and we’re talking
very small, you could resort to cut and paste but, aside from the
tedium and inevitable human-error involved, this approach just isn’t
going to scale. But, generally, although the data is secreted within
blocks of HTML those blocks have some repeated structure and, if
were lucky, CSS labels. These two facts allow us to describe, in the
formal way a computer understands, where that data is in the
HTML. We can then extract it, manually and on a small scale using
specialised tools like requests and BeautifulSoup or in bulk, using
Scrapy (see 227).

2 Much of modern Machine Learning and Artificial Intelligence research (AI) is dedica-
ted to creating computer software that can cope with messy, noisy, fuzzy, informal data
but, as of this book’s publication, there’s no off-the-shelf solution I know of.

ScrapingData | 161

In this section we'll set a little scraping task, aiming to get the some
Nobel-prize winners data. We'll use Python’s best-of-breed Beauti-
fulSoup for this lightweight scraping foray, saving the heavy guns of
Scrapy for the next chapter.

BeautifulSoup and Ixml

Python’s key lightweight scraping tools are BeautifulSoup and Ixml.
Their primary selection syntax is different but, confusingly, both can
use each other’s parsers. The consensus seems to be that Ixml is con-
siderably faster but BeautifulSoup might be more robust dealing
with poorly-formed html. Personally, I've found Ixml to be robust
enough and it’s syntax, based on xpaths, more powerful and intu-
itive. I think for someone coming from web-development, familiar
with CSS and Jquery, selection based on CSS is much more natural.
But, as mentioned, BeautifulSoup allows us access to these selectors
and has a bigger following, which often pays off in, for example,
StackOverflow advice. In the following sections I'll use Beautiful-
Soup’s selectors. In the next chapter we'll see Ixml xpaths selectors in
action with Scrapy.

BeautifulSoup is part of the Anaconda packages (see Chapter 1) and
easily installed with pip:

$ pip install beautifulsoup

A First Scraping Foray

Armed with requests and BeautifulSoup, let’s set ourselves a little
task, to get the names, years, categories and nationalities of all the
Nobel prize-winners. We'll start at the main Wikipedia Nobel page
at http://en.wikipedia.org/wiki/List_of _Nobel_laureates. ~ Scrolling
down shows a table with all the Laureates by year and category,
which is a good start to our minimal data requirements.

Some kind of HTML-explorer is pretty much a must for web-
scraping and the best I know is Chrome web-developer’s elements
tab (see “The Elements Tab” on page 120). Figure 5-1 shows the key-
elements involved in quizzing a web-page’s structure. We need to
know how to select the data of interest, in this case a Wikipedia
table, while avoiding other elements on the page. Crafting good
selector patterns is the key to effective scraping and highlighting the
DOM element using the element inspector gives us both the CSS
pattern and, with a right-click on the mouse, the xpath. The latter is

162 | Chapter 5: Getting Data off the Web with Python

http://en.wikipedia.org/wiki/List_of_Nobel_laureates

a particularly powerful syntax for DOM-element selection and the
basis of our industrial strength scraping solution, Scrapy.

v List of Nobel | - wikipedia, the free pedia - Google Chrome -+ x
|/ W Listof Nobel laureates - x \
€ 9 ¢ [enwikipedia.org/wiki/List_of_Nobel_laureates B D =
== FIYSICS 111 19500, + Snguas aisu Uie 1150 PEisult (IHale Ut e1iale) (U U awalucu (wWo NuUet =
Edit links Prizes, the second a) being the Nobel Prize in Chemistry, given in 1911
~ Add Attribute 7‘
[Ef\e.kauanle.scrtab\e.Jquéryr(ablesorterl|71px < 11559, EditAttribute
Physiology Force Element State »
Year ¢ | Physics ¢ Chemistry ¢ or 4 | Lit] Econ
Medicine Edit as HTML
Wilhelm i il adott v, ST
1901 Henricus van 't) Copy XPath
Rontgen Behring |
Hoff Copy
Hendrik) GEE
Hermann Emil The
1902 |Lorentz;) Ronald Ross Paste
. Fischer M|
Pieter Zeeman Delete Node <
« { »
@ [|Elements| Network Sources Timeline Profiles Resources Audits Console Angular, Scroll into View =
» <h2>. </h2>
" ':2 Break on...

lo ebug=.ert2Cfeatu..:
tabindex="0" role="columnheader button" table.wikitable {

ar</th> margin: ¥ lem 0;

eaderSort” tabindex="0" role="columnheader background-color:
nding">..</th> #F97979;

- “ - e ~pindex="0" role="columnheader v| border:»lpx M#aaa -
table wikitable.sortable jquery-tablesorter | R

J

b <th width="18%

. #mw-content-tex}

Figure 5-1. Wikipedia’s Main Nobel-prize Page: A. and B. show the
wikitable’s CSS-selector. Right-clicking the mouse and selecting C.
('Copy XPath) gives the table’s xpath (//*[@id="mw-content -
text"]/table[1]). D. shows a +<thead> tag generated by jQuery.

Selecting the data

When doing basic scraping on the page’s HTML, i.e. not parsing
JavaScript-generated pages, we are working with the source code.
Sometimes JavaScript is used to alter the page structure, an example
being the addition by jQuery of extra tags (see Figure 5-1 D.) to
make the table sortable. These are only visible on the rendered page
so cannot be used as selection guides working on the raw source.
For this reason it’s sensible to have the source HTML to hand and be
prepared for JS additives. To access the source you can right-click
and select from the menu or use the CTRL-U short-cut.

The first thing we need to do is select the data table. The
get_main_table() method shown in Example 5-3 does just that

ScrapingData | 163

Example 5-3. Selecting a Wikipedia table with BeautifulSoup

from bs4 import BeautifulSoup
import requests

BASE_URL = 'http://en.wikipedia.org'

Wikipedia will reject our request unless we add a 'User-Agent'
attribute to our http header.

HEADERS = {'User-Agent': 'Mozilla/5.0'}

def get_main_table():

""" Get the wikitable list of Nobel winners """

Make a request to the Nobel-page, setting valid headers

response = requests.get(
BASE_URL + '/wiki/List_of_Nobel laureates',
headers=HEADERS)

Parse the response content with BeautifulSoup

soup = BeautifulSoup(response.content)

Use the parsed tree to find our table

table = soup.find('table', {'class':'wikitable sortable'}) (1]

return table

@ The second argument to find takes a dictionary of element
properties: there’s only one table with the classes wikitable and
sortable.

First we send the page content to BeautifulSoup, which parses it,
creating a tree-structure which we apply selectors to. If you look at
Figure 5-1 you’ll see that our table has the css classes wikitable and
sortable. There’s only one such table on the page so these two classes
disambiguate the data table we need. Using the find method on our
parsed content we pass in a dictionary to filter any child elements by
class (in this case), id, name etc..

Let’s see what we get, using the selection’s prettify method to return a
readable string.

wikitable = get_main_table()
print(wikitable.prettify())

<table class="wikitable sortable">
<tr>
<th>
Year
</th>
<th width="18%">
<a href="/wiki/List_of_Nobel laureates_in_Physics" title="List of No...
Physics

164 | Chapter 5: Getting Data off the Web with Python

</th>

<th width="16%">

<a href="/wiki/List_of_Nobel_laureates_1in_Chemistry" title="List of ...
Chemistry

<tr>

<td align="center">
1901

</td>

<td>

Réntgen, Wilhelm

</table>
This output shows the parser has successfully constructed an HTML
tree from our wiki-table. Now let’s get some information from it.

Crafting some selection patterns

Having successfully selected our data table, we now want to craft
some selection patterns to scrape the required data. Using the
HTML-explorer you can see that the individual winners are con-
tained in <td> cells, with an href <a> link to Wikipedia’s bio-pages
(in the case of individuals). Heres a typical target row, with CSS-
classes we can use as targets to get the data in the <td> cells.

<tr>
<td align="center">
1901
</td>
<td>

Rontgen, Wilhelm

Wilhelm Rontgen

</td>
<td>

</tr>

ScrapingData | 165

If we loop through these data cells, keeping track of their row (year)
and column (category) then we should be able to create a list of win-
ners with all the data we specified except nationality.

The following get_column_titles function scrapes our table for the
Nobel category column headers, ignoring the first Year column.
Often the header cell to a Wikipedia table contains a web-linked a
tag and all the Nobel categories fit this model, pointing to their
respective Wikipedia pages. If the header is not clickable we store its
text and a null href:

def get_column_titles(table):

""" Get the Nobel categories from the table header

cols = []

for th in table.find('tr').find_all('th')[1:]: (1]
link = th.find('a")
Store the category name and any Wikipedia link it has
if link:

cols.append({'name':link.text,\
"href':link.attrs['href']})

o

else:
cols.append({'name':th.text, 'href':None})
return cols

@ We loop through the table head, ignoring the first Year column
([1:]). This selects the column titles shown in Figure 5-2.

Let’s make sure get_column_titles is giving us what we want:

get_column_titles(wikitable)
Out:
[{'href': '/wiki/List_of_Nobel_laureates_1in_Physics',
'name': u'Physics'},
{'href': '/wiki/List_of_Nobel_laureates_1in_Chemistry',
'name': u'Chemistry'}, ...

166 | Chapter 5: Getting Data off the Web with Python

| € 9 ¢ [enwikipedia.org/wiki/List_of_Nobel_laureates 2 & B
Shaip T e
| Sownsoma A olumns <th>
| Cpnckn / srpski List of laureates
Suomi
Sk Physi Chemi Literatus P Ec
Year ¢ sics + iemisti * + rature s eace 4 onomics
s hy 'y or Medicine
Tiirkge T i T
Jacobus Henricus |Emil Adolf von Henry Dunant;
Yupaitcera 1901 |Wilhelm Rontgen . Sully Prudhomme | "~ > —
o van 't Hoff Behring Frédéric Passy
e Hendrik Lorentz; | Hermann Emil Theodor EIoEI=TT
i : i
Yoruba 1902 Ronald Ross Charles Albert =
s Pieter Zeeman Fischer Mommsen
N Gobat
Edit L
| - Henri Becquerel;
Bjomsteme
=] 1903 |Pierre Curie; Svante Arrhenius | Niels Ryberg Finsen Bipmeon Randal Cremer
i
V Marie Curie
Data <td>: o
1904 |Lord Rayleigh Wiliam Ramsz
m suse conegaray | International
Henryk
1905 |Philipp Lenard Adolf von Baeyer | Robert Koch Bertha von Suttner
Sienkiewicz
Canmillo Golgi;
O B _ Theodore
1906 |J.J. Thomson Henri Moissan Santiago Ramény |Giosué Carducci
[a'e Roosevelt
Cajal
Emesto Teodoro
Albert Abraham Charles Louis
1907 Eduard Buchner Rudyard Kipling |Moneta;

Michelson Alphonse Laveran
Louis Renault

Figure 5-2. Wikipedia’s table of Nobel-winners

We use the column names from get_column_titles in the follow-
ing get _nobel_winners_BS function:

def get_nobel_winners_BS(table):
cols = get_column_titles(table)
winners = []
for row in table.find_all('tr')[1:-1]: 1]
year = int(row.find('td').text) # Gets I1st <td>
for 1, td in enumerate(row.find_all('td')[1:]): a
for winner in td.find_all('a'):
href = winner.attrs['href']
if not href.startswith('#endnote'):
winners.append({
'year':year,
'category':cols[i]['name'],
'name’ :winner.text,
"link' :winner.attrs['href']

b

return winners

@ Gets all the Year-rows, starting from the second, corresponding
to the rows in Figure 5-2.

@ Finds the <td> data-cells shown in Figure 5-2.

Iterating through the year rows, we take the first Year column and
then iterate over the remaining columns, using enumerate to keep
track of our index, which will map to the category column names.
We know that all the winner names are contained in an <a> tag but

ScrapingData | 167

that there are occasional extra <a> tags beginning with #endnote,
which we filter for. Finally we append a year, category, name and
link dict to our data-array. Note that the winner selector has an attrs
dict containing, among other things, the <a> tag’s href.

Let’s use our wikitable to confirm that get_nobel_winners_BS deliv-
ers a list of winner dictionaries with the correct attributes. We'll use
Python’s built-in pprint module to pretty-print the results:

from pprint import pprint

wikitable = get_main_table()
winners = get_nobel_winners_BS(wikitable)
pprint(winners[:10])
[{'category': u'Physics',
"link': '/wiki/Wilhelm_R%C3%B6ntgen',
'name': u'Wilhelm R\xféntgen',
'year': 1901},

{'category': u'Chemistry',

"link': '/wiki/Jacobus_Henricus_van_%27t_Hoff"',
"name': u"Jacobus Henricus van 't Hoff",
'year': 1901},

{'category': u'Physiology\nor Medicine',
"link': '/wiki/Emil_Adolf_von_Behring',
'name': u'Emil Adolf von Behring',
'year': 1901},

Now that we have the full list of Nobel prize-winners and links to
their Wikipedia pages, we will be using these links to scrape data
from the individuals’ biographies. This will involve making a largish
number of requests, and it's not something we really want to do
more than once. The sensible thing is to cache the data we scrape,
allowing us to try out various scraping experiments without return-
ing to Wikipedia.

Caching the web-pages

It’s easy enough to rustle up a quick cacher in Python but as often as
not easier still to find a better solution written by someone else and
kindly donated to the open-source community. Requests has a nice
plugin called requests-cache which, with a few lines of configura-
tion, will take care of all your basic caching needs.

First we install the plugin using pip:

$ pip install --upgrade requests-cache

168 | Chapter 5: Getting Data off the Web with Python

requests-cache uses Monkey-patching to dynamically replace parts
of the requests API at run-time. This means it can work transpar-
ently. You just have to install its cache and then use requests as
usual, with all the caching being taken care of. Here’s the simplest
way to use requests-cache:

import requests
import requests_cache

requests_cache.install_cache()

use requests as usual...
The install_cache method has a number of useful options, e.g.
allowing you to specify the cache backend (sqlite, memory, mongdb
or redis) or set an expiry time (expiry_after) in seconds on the
caching. So the following creates a cache named nobel_pages with an
sqlite backend and pages that expire in two hours (7200s).

requests_cache.install_cache('nobel_pages',\

backend="sqlite', expire_after=7200)

If you get tired trying to calculate the number of seconds for your
expiry time, you set the timedelta in install_cache:

from datetime import timedelta

expire_after = timedelta(days=1)

requests_cache.install_cache(expire_after=expire_after)
requests-cache will serve most of your caching needs and couldn’t
be much easier to use. For more details see here where you'll also
find a little example of request-throttling, a useful technique when
doing bulk scraping.

Scraping the winners’ nationalities

With caching in place, let’s try getting the winners’ nationalities,
using the first fifty for our experiment. A little get nationality()
function will use the winner links we stored earlier to scrape their
page and then use the infobox shown in Figure 5-3 to get the
Nationality attribute.

ScrapingData | 169

http://stackoverflow.com/questions/5626193/what-is-a-monkey-patch
https://docs.python.org/2/library/datetime.html#timedelta-objects
https://requests-cache.readthedocs.org/en/latest/user_guide.html

A

[en.wikipedia.org/wiki/Wilhelm_Rontgen =
Sa— Wilhelm Conrad Réntgen (/rentgan, -dzan, 't/ Geman: ['vihelm "scentgan] Wilhelm Rontgen 3
hop 27 March 1845 — 10 February 1923) was a German physicist, who, on 8

1895, produced and detected radiation in a range knoffn

as X-rays or Rontgen rays, an achievement that earned him the first Nobel Prize in|
ipedia Physics in 190112 In honour of his accomplishments, in 2004 the International Unigh
y portal of Pure and Applied Chemistry (JUPAC) named element 111, roentgenium, a

anges
age

radioactive element with multiple unstable isotopes, after him.

Contents [hide]

ihere 1 Biography
"anges 1.1 Career
: 1.2 Personal life
1ges 2 Honors and awards
tlink 3 Doy
‘mation

4See also

em

5 References
age

6 External links

Born ‘Wilhelm Conrad Rontgen
27 March 1845
100k Lennep, Rhine Province,
asthe Biography fecig Germany
rersion Died 10 February 1923 (aged 77)

In 1865, he tried to attend the University of Utrecht without having the necessary Munich, Germany

credentials required for a regular student. Upon hearing that he could enter the Nationality _ German

Federal Polytechnic Institute in Zurich (today known as the ETH Zurich), he passedfjts | Fields Physics

o

Figure 5-3. Scraping a winner’s nationality

When scraping you are looking for reliable pat-
terns, repeating elements with useful data. As
we'll see, the Wikipedia infoboxes for individu-
als are not such a reliable source but clicking on
a few random links certainly gives that impres-
sion. Depending on the size of the dataset, it’s
good to perform a few experimental sanity-
checks. You can do this manually but, as men-
tioned at the start of the chapter, this won’t scale
or improve your craft skills.

Example 5-4 takes one of the winner dictionaries we scraped earlier
and returns a name-labelled dictionary with a Nationality key if one
were found. Let’s run it on the first fifty winners and see how often a
Nationlity attribute is missing:

Example 5-4. Scraping the winner’s country from their biography page

def get_nationality(w):
""" scrape blographic data from the winner's wikipedia page """
data = get_url('http://en.wikipedia.org/' + w['link'])
soup = BeautifulSoup(data)
person_data = {'name': w['name']}
attr_rows = soup.select('table.infobox tr') 1]
for tr in attr_rows:
try:

170 | Chapter 5: Getting Data off the Web with Python

attribute = tr.find('th').text
if attribute == 'Nationality':
person_data[attribute] = tr.find('td').text
except AttributeError:
pass

return person_data

© Selects all rows of the infobox table

@ Cycles through the rows looking for a Nationality field.

ManeC e Niels Ryberg Finsen

)

Bom December 15, 1860
Torshavn, Faroe Islands
Dit Sepmmoer 24 100 et 9 Photo only
Marie Skiodowska Curie, ¢. 1920 Copenhagen, I?TUY\BIR
Notable Nobel Prize in Physiology or
awards Medicine (1903)

Bom Maria Salomea Skiodowska
7 November 1867
Warsaw, Kingdom of Poland,
then part of Russian Empire*!

Died 4 July 1934 (aged 66) H 1
ol I o nationality
Residence Poland, France
Citizenship Poland (by birth)

France (by marriage)
Fields Physics, chemistry

'Citizenship'

Figure 5-4. Winners without a recorded nationality

Example 5-5 shows 14 of the 50 first winners failed our attempt to
scrape their nationality. In the case of the Institut de Droit Interna-
tional national affiliation may well be moot but Theodore Roosevelt
is about as American as they come. Clicking on a few of the names
shows the problem (see Figure 5-4). The lack of a standardised biog-
raphy format means synonyms for Nationality are often employed,
as in Marie Curie’s Citizenship, sometimes no reference is made, as
with Niels Finsen and Randall Cremer has nothing but a photo-
graph in his info-box. We can discard the infoboxes as a reliable
source of winners’ nationalities but, as they appeared to be the only
regular source of potted data, this sends us back to the drawing
board. In the next chapter we'll see a successful approach using
Scrapy and a different start page.

ScrapingData | 171

Example 5-5. Testing for scraped nationalities

wdata = []

test first 50 winners

for w in winners[:50]:
wdata.append(get_nationality(w))

missing_nationality = []

for w in wdata:
1f missing 'Nationality' add to list
if not w.get('Nationality'):

missing_nationality.append(w)
output list
missing_nationality

[{'name': u'\xc9lie Ducommun'},

{'name': u'Charles Albert Gobat'},

{'name': u'Marie Curie'},

{'name': u'Niels Ryberg Finsen'},

{'name': u'Randal Cremer'},

{'name': u'Institut de Droit International'},
{'name': u'Bertha von Suttner'},

{'name': u'Theodore Roosevelt'},

Although Wikipedia is a relative free-for-all, production-wise, where
data is designed for human-consumption you can expect a lack of
rigour. Many sites have similar gotchas and as the data sets get big-
ger more tests may be needed to find the flaws in a collection pat-
tern.

Although our first scraping exercise was a little artificial, in order to
introduce the tools, I hope it captured something of the slightly
messy spirit of web-scraping. The ultimately abortive pursuit of a
reliable nationality field for our Nobel data-set could have been fore-
stalled by a bit of web-browsing and manual HTML-source trawling
but if the dataset was significantly larger and the failure rate a bit
smaller then programmatic detection, which gets easier and easier as
you become acquainted with the scraping modules, really starts to
deliver.

This little scraping test was designed to introduce BeautifulSoup and
shows that collecting the data we set ourselves requires a little more
thought, often the case with scraping. In the next chapter we’ll wheel
out the big gun Scrapy and, with what we've learned in this section,
harvest the data we need for our Nobel-visualisation.

172 | Chapter 5: Getting Data off the Web with Python

Summary

In this chapter we've seen examples of the most common ways in
which data can be sucked out of the web and into Python contain-
ers, databases or Panda’s DataSets. Python’s requests library is the
true work-horse of HTTP negotiation and a fundamental tool in our
dataviz toolchain. For simpler, RESTful APIs, consuming data with
requests is a few lines of Python away. For the more awkward APIs,
for example those with potentially complicated authorisation, a
wrapper library like Tweepy (for twitter) can save a lot of hassle.
Decent wrappers can also keep track of access rates and where nec-
essary throttle your requests. This is a key consideration, particu-
larly where there is the possibility of black-listing unfriendly
consumers.

We also started our first forays into data-scraping, often a necessary
fall-back where no API exists and the data is for human consump-
tion. In the next chapter we'll aim to get all the Nobel-prize data
needed for the books visualisation, using Pythons Scrapy, an
industrial-strength scraping library.

Summary | 173

CHAPTER 6
Heavyweight Scraping with Scrapy

Where BeautifulSoup is a very handy little pen-knife for fast and
dirty scraping, Python has a library, Scrapy, which can do large-scale
data scrapes with ease. It has all the things youd expect, like built in
caching (with expiration times), asynchronous threading via
Python’s Twisted web-framework, User-Agent randomisation and a
whole lot more. Although it’s got a steeper learning curve than
BeautifulSoup, it’s still Python-succinct and quickly becomes rou-
tine. For any large data scraping jobs, this is a must-have tool.

In “Scraping Data” on page 160, we managed to scrape a dataset
containing all the Nobel-winners by name, year and category. We
did a speculative scrape of the winners linked biography pages
which showed that extracting the country of nationality was going
to be difficult. In this chapter we'll set the bar on our Nobel-prize
data a bit higher and aim to scrape objects of the form shown in
Example 6-1.

Example 6-1. Our targeted Nobel JSON object
{

'category': u'Physiology or Medicine',

'date_of_birth': u'8 October 1927',

'date_of_death': u'24 March 2002',

'gender': 'male’,

'"link': u'http://en.wikipedia.org/wiki/C%C3%A9sar_Milstein',
'name': u'C\xe9sar Milstein',

'country': u'Argentina’,

'place_of_birth': u'Bah\xeda Blanca , Argentina',

175

'place_of_death': u'Cambridge , England',
'year': 1984}

In addition to this data, we'll aim to scrape prize winners photos
(where applicable) and some potted biographical data (see
Figure 6-1). We'll be using the photos and body-text to add a little
character to our Nobel-visualisation.

€ 9 & [hips//enwikipedia.org/wiki/Francs_Cric % Bl =
7 i Craate acooent Logn
'
£a Ao Talk Read Gl Viowhisiory
"wm

‘.‘Ei.'f%%ﬂlé FranciBli@ g ra p h y P h OtO

Fiorm Wikipeda, tha rem encycBiecka

Francis Harry Gompton Crick, OM, FRS (6 Ju rancis cric

erar 1

1 tt playsd A crucial

e idea hat genefic
way. l1om DAA 10 RNA 1D

the post of 1. Kicekheter T

Born Francis Hanry Compeon Crick

L)
SalK Insemng r BlakoqCH

Figure 6-1. Scraping targets for the prize-winners’ pages

Setting up Scrapy

Scrapy is one of the Anaconda packages (see Chapter 1) so you
should already have it to hand. If youre not using Anaconda, a
quick pip install will do the job*

$ pip install scrapy

With Scrapy installed, you should have access to the scrapy com-
mand. Unlike the vast majority of Python libraries, Scrapy is
designed to be driven from the command-line, within the context of
a scraping project, defined by configuration files, scraping-spiders,
pipelines etc. Let’s generate a fresh project for our Nobel-prize
scraping, using the startproject option. This is going to generate a

2 See here for any platform-specific details.

176 | Chapter 6: Heavyweight Scraping with Scrapy

http://doc.scrapy.org/en/latest/intro/install.html

project folder so make sure you run it from a suitable work direc-
tory:
$ scrapy startproject nobel_winners

New Scrapy project 'nobel_winners' created in:
/home/kyran/workspace/.../scrapy/nobel_winners

You can start your first spider with:
cd nobel_winners
scrapy genspider example example.com

As the output of startproject says, you'll want to switch to the
nobel_winners directory in order to start driving scrapy.

Let’s take a look at the project’s directory tree:

nobel_winners

}— nobel_winners

| — _init__.py

| F items.py

| | pipelines.py

| F— settings.py

| L— spiders

| L— init__.py

L— scrapy.cfg
As shown, the project directory has a sub-directory with the same
name and a config file scrapy.cfg. The nobel_winners sub-
directory is a Python module (containing an __init__.py file) with
a few skeleton files and a spiders directory, which will contain your
scrapers.

Establishing the Targets

In “Scraping Data” on page 160 we tried to scrape the Nobel win-
ners nationalities from their biography pages but found they were
missing or inconsistently labelled in many cases (see ???). Rather
than get the country-data indirectly, a little Wikipedia searching
shows a way through. There is a page that lists winners by country.
The winners are presented in titled, ordered-lists (see Figure 6-2),
not in tabular form, which makes recovering our basic name, cate-
gory and year data a little harder. Also the data organisation is not
ideal, e.g. the header titles and lists aren’t in useful, separate blocks.
But it still nets us the all-important country field and a few, well-
structured xpath queries should easily target the data we need.

Establishing the Targets | 177

http://en.wikipedia.org/wiki/List_of_Nobel_laureates_by_country
https://en.wikipedia.org/wiki/XPath

Figure 6-2 shows the starting page for our first spider along with the
key elements it will be targeting. A list of country name titles (A) are
followed by an ordered list (B) of their Nobel-prize winning citizens.

In order to scrape the list-data we need to fire up our Chrome
browser’s development tools (see “The Elements Tab” on page 120)
and inspect the target elements using the Elements tab and its
inspector (magnifying glass). Figure 6-3 shows the key HTML tar-
gets for our first spider: Header titles (h2) containing a country
name and followed by an ordered list (ol) of winners (lis).

= N\
€ 5 ¢ kﬁ en.wikipedia.org/wiki/List_of Nobel_lau reaies_by;_c-:nJ"ﬁry,)

73 Yugoslavia
74 See also
75 References

(Argentina Jeai B

1. (César Milstein, Physiology or Medicine, 1984
2. |Adolfo Pérez Esquivel, Peace, 1980
A 3. |Luis Federico Leloir, Chemistry, 1970
4
S.

. |Bermardo Houssay, Physiology or Medicine, 1947
. \Carlos Saavedra Lamas, Peace, 1936

1. Brian P. Schmidt, born in the United States, Physics, 2011
2. Elizabeth H. Blackburn*, Physiology or Medicine, 2009

2 Rarns Marchall Dhucinlams ar Madirina 2nNE

Figure 6-2. Scraping Wikipedia’s Nobel-prizes by nationionality

178 | Chapter 6: Heavyweight Scraping with Scrapy

Argentina reat)
1. César Milstein, Physiology or Medicine, 1984
2. Adolfo Pérez Esquivel, Peace, 1980
3. Luis Federico Leloir, Chemistry, 1970
4. Bemardo Houssay, Physiology or Medicine, 1947
5. Carlos Saavedra Lamas, Peace, 1936

Q_ [] |Elements | Network Sources Timeline Profiles Resources Audits Console
pr

¥ <h2>

h2

P ..

ol LT country name

v
César Milstein

", Physiology or Medicine, 1984"

| 1 b <liz.
I S P .
p<liz.</1i>
P <lis.

» <h2>.</h2>

Figure 6-3. Finding the HTML-targets for the Wiki-list

Targeting HTML with Xpaths

Scrapy uses the xpaths to define its HTML targets. Xpath is a syntax
for describing parts of an X(HT)ML document and while it can get
rather complicated, the basics are straightforward and will often
solve the job at hand.

You can get the xpath of an HTML element by using Chrome’s Ele-
ments tab to hover over the source and then right-clicking the
mouse and selecting Copy Xpath. For example, in the case of our
Nobel Wiki-list's country names (h2 in Figure 6-3) , selecting the
xpath of ‘Argentina’ (the first country) gives the following:

//*[@id="mw-content-text"]/h2[1]
We can use the following xpath rules to decode it:
/IE Element <E> by relative reference (in this case relative to the root Document)
/[E[@id="fo0"] select Element <E> with id foo
/[*[@id="foo"] select any element with id foo
JIE/F[1] first child element <F> of element <E>

/IE/*(1] first child of element <E>

Targeting HTML with Xpaths | 179

Following these rules shows our Argentinian title //*[@id="mw-
content-text"]/h2[1] is the first header (h2) child of a DOM ele-
ment with id mw-content-text. This is equivalent to the following
HTML:

<div id="mw-content-text"s>
<h2>

</h2>
</div>

Note that unlike Python, the xpaths don’t use a zero-based index but
make the first member ‘1’.

Testing xpaths with the Scrapy shell

Getting your xpath targeting right is crucial to good scraping and
can involve a degree of iteration. Scrapy makes this process much
easier by providing a command-line shell, which takes a URL and
creates a response context in which you can try out your xpaths, like
s0:

$ scrapy shell https://en.wikip...List_of_Nobel_laureates_by_country

2015-12-15 17:42:12+0000 [scrapy] INFO: Scrapy 0.24.4 started
(bot: nobel_winners)

2015-12-15 17:42:12+0000 [default] INFO: Spider opened
2015-12-15 17:42:13+0000 [default] DEBUG: Crawled (200)
<GET https://en.wikip...List_of_Nobel_laureates_by_country>
(referer: None)

[s] Available Scrapy objects:

[s] crawler <scrapy.crawler.Crawler object at 0x3a8f510>

[s] 1item {}

[s] request <GET https://en.wik...Nobel_laureates_by_country>
[s] response <200 https://en.wik...Nobel_laureates_by_country>
[s] settings <scrapy.settings.Settings object at 0x34a398d0>
[s] spider <Spider 'default' at 0x3f59190>

[s] Useful shortcuts:

[s] shelp() Shell help (print this help)

[s] fetch(req_or_url) Fetch request (or URL) and update local
objects

[s] view(response) View response in a browser

In [1]:

180 | Chapter 6: Heavyweight Scraping with Scrapy

Now we have an IPython-based shell with code-complete and syntax
highlighting, in which to try out our xpath targeting. Let’s grab all
the <h2> headers on the Wiki-page:

In [1]: h2s = response.xpath('//h2")

The resulting h2s is a SelectorList, a specialised Python 1ist object.
Lets see how many headers we have:

len(h2s)
Out:
76

We can grab the first Selector object and query its methods using tab
auto-complete:

h2 = h2s[0]

h2.

h2.css h2.namespaces h2.remove_namespaces

h2.text h2.extract h2.re

h2.response h2.type h2.register_namespace h2.select

You'll often be using the extract method to get the raw result of the
xpath selector:

h2.extract()

Out:

u'<h2>Contents</h2>'
This shows our first <h2> header is that of the table of contents for
our list of winners by nationality. Let’s look at the second header:

h2s[1].extract()

u'<h2>
Argentina

</h2>'
This shows that our country headers start on the second <h2> and
contain a span with class mw-headline. We can use the presence of
the mw-headline class as a filter for our country headers and the
contents as our country label. Let’s try out an xpath, using the selec-
tor’s text method to extract the text from the mw-headline span.
Note that we use the xpath method of the <h2> selector, which
makes the xpath query relative to that element.
h2_arg = h2s[1]

country = h2_arg.xpath('span[@class="mw-headline"]/text()"').extract()
country

Targeting HTML with Xpaths | 181

http://doc.scrapy.org/en/latest/topics/selectors.html#scrapy.selector.SelectorList
http://doc.scrapy.org/en/latest/topics/selectors.html#topics-selectors-ref

Out:

[u'Argentina']
The extract method returns a list of possible matches, in our case
the single Argentina string. By iterating through the h2s list, we can
now get our country names.

Assuming we have a country’s <h2> header, we now need to get the
 ordered list of Nobel winners following it (Figure 6-2 B.).
Handily the xpath following-sibling selector can do just that. Lets
grab the first ordered list after the Argentina header:

ol_arg = h2_arg.xpath('following-sibling::ol[1]")

ol_arg

Out:

[<Selector xpath='following-sibling::ol[1]' data=u'\n
]

Looking at the truncated data for ol_arg shows we have selected an
ordered-list. Note that even though there’s only one Selector, xpath

still returns a SelectorList. For convenience you’ll generally just
select the first member directly:

ol_arg = h2_arg.xpath('following-sibling::ol[1]')[0]

Now that we've got the ordered list, lets get a list of its member <1i>
elements:

1is_arg = ol_arg.xpath('li")
len(lis_arg)
Out: 5

Let’s examine one of those list elements using extract. As a first

test, we're looking to scrape the name of the winner and capture the
list element’s text.

1i = lis_arg[0] # select the first list element
1i.extract()
Out:
u'<a href="/wiki/C%C3%A9sar_Milstein"
title="C\xe9sar Milstein">C\xe9sar Milstein,
Physiology or Medicine, 1984</1i>'

Extracting the list element shows a standard pattern: A hyperlinked
name to the winner’s Wikipedia page followed by a comma-
separated winning category and year. A robust way to get the win-
ning name is just to select the text of the list element’s first <a> tag:

182 | Chapter 6: Heavyweight Scraping with Scrapy

name = li.xpath('a//text()')[0].extract()
name
Out: u'C\xe9sar Milstein'

Its often useful to get all the text in, for example, a list element,
stripping the various HTML <a>, etc. tags. descendent-or-
self gives us a handy way of doing this, producing a list of the
descendents’ text:

list_text = 1i.xpath('descendant-or-self::text()').extract()
list_text
Out: [u'C\xe9sar Milstein', u', Physiology or Medicine, 1984']

We can get the full text by joining the list elements together:

'.join(list_text)
Out: u'C\xe9sar Milstein , Physiology or Medicine, 1984'

Note that the first item of 1ist_text is the winner’s name, giving us
another way to access it if, for example, it was missing a hyperlink.

Now that we've established the xpaths to our scraping targets (the
name and link-text of the Nobel winners) let’s incorporate them into
our first Scrapy spider.

Getting the right Xpath expression for your tar-
get element(s) can be a little tricky and those dif-
ficult edge cases can demand a complex nest of
clauses. The use of a well-written cheat-sheet
can be a great help here and thankfully there are
many good xpath ones. A very nice selection can
be found here with this color-coded one being
particularly useful.

A First Scrapy Spider

Armed with a little Xpath knowledge, let’s produce our first scraper,
aiming to get the country and link-text for the winners (Figure 6-2
A.and B.).

Scrapy calls its scrapers spiders, each of which is a Python module
placed in the spiders directory of your project. We'll call our first
scraper nwinner_list_spider.py:

}— nobel_winners
| F— _init__.py
| | items.py

AFirst Scrapy Spider | 183

http://scraping.pro/5-best-xpath-cheat-sheets-and-quick-references/
http://scraping.pro/res/xpath-cheat/xpath_css_dom_ref.pdf

| | pipelines.py

| | settings.py

| L— spiders

| |— __init__.py

| L— nwinners_list_spider.py <---
L— scrapy.cfg

Spiders are sub-classed scrapy.Spider classes and any placed in the

spiders directory will be automatically detected by Scrapy and
made accessible by name to the scrapy command.

The basic Scrapy spider shown in Example 6-2 follows a pattern
you’'ll be using with most of your spiders. First you subclass a Scrapy
item to create fields for your scraped data (section A
inExample 6-2). You then create a named spider by subclassing
scrapy.Spider (section B in Example 6-2). The spider’s name will
be used when calling scrapy from the command line. Each spider
has a parse method which deals with the HTTP requests to a list of
start URLs contained in a start_url class attribute. In our case the
start URL is the Wikipedia page for Nobel laureates by country.

Example 6-2. A first Scrapy spider
nwinners_list_spider.py

import scrapy

import re

A. Define the data to be scraped

class NWinnerItem(scrapy.Item):
country = scrapy.Field()
name = scrapy.Field()
link_text = scrapy.Field()

B Create a named spider
class NWinnerSpider(scrapy.Spider):
""" Scrapes the country and link-text of the Nobel-winners. """
name = 'nwinners_list'
allowed_domains = ['en.wikipedia.org']
start_urls = [
"http://en.wikipedia.org ... of_Nobel_laureates_by_country"
1
C A parse method to deal with the HTTP response
def parse(self, response):

h2s = response.xpath('//h2') @

items = []

184 | Chapter 6: Heavyweight Scraping with Scrapy

for h2 in h2s:
country = h2.xpath('span[@class="mw-headline"]/text()"')\ a
.extract()
if country:
winners = h2.xpath('following-sibling::ol[1]") 3]
for w in winners.xpath('1i'):
text = w.xpath('descendant-or-self::text()")\
.extract()
items.append(NWinnerItem(
country=country[0], name=text[0],
link_text = ' '.join(text)
))

return items

@ Gets all the <h2> headers on the page, most of which will be our
target country titles.

& Where possible, gets the text of the <h2> element’s child
with class mw-headline.

® Gets the list of country winners.

The parse method in Example 6-2 receives the response from an
HTTP requests to the Wikipedia Nobel page and is required to
return a list containing Scrapy items. These items are then converted
to a list of JSON objects which can be saved to an output file.

Lets run our first spider to make sure were correctly parsing and
scraping our Nobel data. First navigate to the nobel_winners root
directory (containing the scrapy.cfgq file) of the scraping project.
Let’s see what scraping spiders are available:

$ scrapy list

nwinners_list
As expected, we have one nwinners_list spider sitting in the spi
ders directory. To start it scraping we use the crawl command and
direct the output to a nwinners. json file. By default we will get a lot
of Python logging information accompanying the crawl:

$ scrapy crawl nwinners_list -o nobel_winners.json

2015- ... [scrapy] INFO: Scrapy 0.24.4 started (bot: nobel_winners)
2015- ... [scrapy] INFO: Optional features available: ssl, httpil
2015- ... [nwinners_list] INFO: Closing spider (finished)

2015- ... [nwinners_list] INFO: Dumping Scrapy stats:

{'downloader/request_bytes': 551,

AFirst Scrapy Spider | 185

'downloader/request_count': 2,
'downloader/request_method_count/GET': 2,
'downloader/response_bytes': 45469,

'item_scraped_count': 1075, (1]
2015- ... [nwinners_list] INFO: Spider closed (finished)

@ We scraped 1075 Nobel winners from the page.

The output of the scrapy crawl shows 1075 items successfully scra-
ped. Let’s look at our JSON output file to make sure things have
gone according to plan:

$ head nobel_winners.json
[{"country": "Argentina",
"link_text": "C\u@Oe9sar Milstein , Physiology or Medicine, 1984",
"name": "C\uOG0e9sar Milstein"},
{"country": "Argentina",
"link_text": "Adolfo P\u@0e9rez Esquivel , Peace, 1980",
"name": "Adolfo P\u@0e9rez Esquivel"},

As you can see, we have an array of JSON objects with the four key
fields present and correct.

Now we have a spider that successfully scrapes the list-data for all
the Nobel winners on the page, let’s start refining it to grab all the
data we are targeting for our Nobel visualisation (see Example 6-1
and Figure 6-1).

First, let's add all the data we plan to scrape as fields to our
scrapy.Iltem:

class NWinnerItem(scrapy.Item):
name = scrapy.Field()
link = scrapy.Field()
year = scrapy.Field()
category = scrapy.Field()
nationality = scrapy.Field()
gender = scrapy.Field()
born_in = scrapy.Field()
date_of_birth = scrapy.Field()
date_of_death = scrapy.Field()
place_of_birth = scrapy.Field()
place_of_death = scrapy.Field()
text = scrapy.Field()

186 | Chapter 6: Heavyweight Scraping with Scrapy

It’s also sensible to simplify the code a bit and use a dedicated func-
tion, process_winner_li to process the winners link-text. We'll
pass a link selector and country name to it and return a dictionary
containing the scraped data:

def parse(self, response):
h2s = response.xpath('//h2")

items = []
for h2 in h2s:
country = h2.xpath('span[@class="mw-headline"]/text()"').extract()
if country:
winners = h2.xpath('following-sibling::ol[1]")
for w in winners.xpath('li'):
wdata = process_winner_li(w, country[0])

The process_winner_11i method is shown in Example 6-3

Example 6-3. Processing a winner list item

...

import re

BASE_URL = 'http://en.wikipedia.org'

...

def process_winner_li(w, country=None):
Process a winner's tag, adding country of birth or
nationality, as applicable.

wnn

wdata = {}
wdata['link'] = BASE_URL + w.xpath('a/@href').extract()[0] 1]

text = ' '.join(w.xpath('descendant-or-self::text()")
.extract())

get comma-delineated name and strip trailing white-space

wdata['name'] = text.split(',')[0].strip()

year = re.findall('\d{4}', text) (2]
if year:

wdata['year']
else:

wdata['year'] = 0

print('Oops, no year in ', text)

int(year[0])

category = re.findall(
'"Physics|Chemistry|Physiology or Medicine|Literature|Peace|Economics',

AFirst Scrapy Spider | 187

text) [3]
if category:
wdata['category'] = category[0]
else:
wdata['category'] =
print('Oops, no category in ', text)

if country:
if text.find('*') 1= -1: @
wdata['nationality'] = "'
wdata['born_in'] = country
else:
wdata['nationality'] = country
wdata['born_in'] = "'

store a copy of the link's text-string for any manual corrections

wdata['text'] = text
return wdata

@ To grab the href attribute from the list-items <a> tag ([winner name]...) , we use the xpath
attribute referent @.

@ Here we use re, Python’s built-in regex library, to find the four-
digit year strings in the list-item’s text.

® Another use of the regex library to find the Nobel prize category
in the text.

© An asterisk following the winner’s name is used to indicate that
the country is the winner’s by birth not nationality at the time of
the prize. e.g. “William Lawrence Bragg*, Physics, 1915” in the
list for Austrialia.

Embracing regex

Some people, when confronted with a problem, think “I know,
I'll use regular expressions.” Now they have two problems.

—Jamie Zawinskie

The above quote is a hoary old classic but does sum up what many
people feel about regular expressions (regex). There is something of
the Alien Hieroglyphics about them and tales abound of recursive
patterns gone horribly wrong. But the fact is that web-scraping is
often about pattern matching messy and under-specified data and

188 | Chapter 6: Heavyweight Scraping with Scrapy

regex is pretty much tailor-made for many of the jobs that crop up.
You can probably hack your way around them but embracing them
a little will make your life that much easier and the good news is
that a little goes a long way. See Example 6-3 for some examples.

Example 6-3 returns all the winners’ data available on the main
Wikipedia Nobels by Nationality page, i.e. the name, year, category,
country (of birth or when awarded the prize) and a link to the indi-
vidual winners’ pages. We'll need to use this last information to get
those biographical pages and use them to scrape our remaining tar-
get data (see Example 6-1 and Figure 6-1).

Scraping the Individual Biography Pages

The main Wikipedia Nobels by Nationality page gave us a lot of our
target data, but winner’s date of birth, date of death (where applica-
ble) and gender are still to be scraped. This information is hopefully
available, either implicitly or explicitly, on their biography pages (for
non-organization winners). Now’s a good time to fire up Chrome’s
Elements tab and take a look at those pages, to work out how were
going to extract the desired data.

We saw in the last chapter (??2?) that the visible information boxes on
individual’s pages are not a reliable source of information and are
often missing entirely. Until recently?, a hidden persondata table
(see Figure 6-4) gave fairly reliable access to such information as
place-of-birth, date-of-death etc. Unfortunately this handy resource
has been deprecated®. The good news is that this is part of an
attempt to improve the categorisation of biographical information
by giving it a dedicated space in Wikidata, Wikipedia’s central stor-
age for its structured data.

2 The author got stung by this removal...

3 See here for an insight into Wikipedia dispute management.

Scraping the Individual Biography Pages | 189

https://en.wikipedia.org/wiki/Wikipedia:Village_pump_(proposals)/Archive_122#RfC:_Should_Persondata_template_be_deprecated_and_methodically_removed_from_articles.3F
https://www.wikidata.org/wiki/Wikidata:Main_Page

</table>
<table id="persondata" class="persendatd noprint" style="border:1px solid #a

<tr>
<th colspan="2"><a href="/wiki/Wikipedia:Persondata" title="Wikipedia:Person
</tr>
<tr>

<td class="persondata-label” style="color:#aaa;">Name</td>

<td=Rontgen, Wilhelm=/td>

</tr=>

<tr=>

<td class="persondata-label" style="color:#aaa;">Alternative names</td>
<td>Conrad</td>

</tr>

Figure 6-4. A Nobel winner’s hidden persondata table

Examining Wikipedia’s biography pages with Chrome’s Elements tab
shows a link to the relevant Wikidata item (see Figure 6-5), which
takes you to the biographical data held at wikidata.org. By follow-
ing this link we can scrape whatever we find there, hopefully the
bulk of our target data significant dates and places (see
Example 6-1).

Page information
Wikidata item
mﬁ'“““’“,& us2es0 - 0.18290:] \j|stein was born in Bahia Blanca,

Biography |edit]

Print/export Argentina, to a Jewish family. His
Create a book parents were Maxima (Vapniarsky) ¢
&= O Elements Console Sources Network Timeline Profiles Resources Audits

N3 I0= p-Tp-LapeL = 100L5</n3>
¥ <div class="body"=
¥ <uls

1i id="t-whatlinkshere"=..</11i-

1i id="t-recentchangeslinked"=..

1i id="t-upload"=..=/11i-

1i id="t-specialpages =.</1i>

1i id="t-permalink"=.</1i=

»<1i id="t-info"=.</1i>

¥<1i id="t-wikibase
<a href="//www.wikidata.org/wikis/Q155525" title="Link to connected d
shift-g]" accesskey="g">Wikidata item</a:

»<li id="t-cite"=.</1i=
=/uls

Figure 6-5. Hyperlink to the winner’s wikidata

Following the link to Wikidata shows a page containing fields for
the data we are looking for, for example the date-of-birth of our
prize winner. As Figure 6-6 shows, the properties are embedded in a
nest of computer generated HTML, with related codes, which we
can use as a scraping identifier. e.g. data-of-birth has the code P569.

190 | Chapter 6: Heavyweight Scraping with Scrapy

date of birth £ 8October 1927 Gregorian

a 73.9375px = 16px

» 1 reference

date of death & 24 March 2002
& 0 Elements Console Sources Network Timeline Profiles Resources Audits
T F =01V Class= WiKlbase-Statementgroupview LISTVIew-1Tem’ 1d='P463">.</d1V=
» <div class="wikibase-statementgroupview listview-item" i
» <div class="wikibase-statementgroupview listview-item" i
» <div class="wikibase-statementgroupview listview-item" i
w=div class="wikibase-statementgroupview listview-item"
¥ <div class="wikibase-statementgroupview-property"=
¥ <=div class="wikibase-statementgroupview-property-label” dir="auto" style
relative; top: -0.468012px; left: 0.408524px;"
<a title="Property:P569" href="/wiki/Property:P569" -date of birth</a-

</div>
</div>
» =div class="wikibase-statementlistview wikibase-toolbar-item =.</div=
</div>
» <div class="wikibase-statementgroupview listview-item" id="P570">.</div=

Figure 6-6. Biographical properties at Wikidata

As Figure 6-7 shows, the actual data we want, in this case a date-
string, is contained in a further nested branch of HTML, within its
respective property tag. By selecting the div and right-clicking we
can store the element’s xpath and use that to tell Scrapy how to get
the data it contains.

Elements Console Sources MNetwork Timeline Profiles Resources Audits

¥ <div class="wikibase-statementview-rankselector">.</div>
¥<div class="wikibase-statementview-mainsnak-container"=
¥<div class="wikibase-statementview-mainsnak"” dir="auto">
¥<div class="wikibase-snakview"=
» <div class="wikibase-snakview-property-container"=.</div=
¥ <div class="wikibase-snakview-value-container" dir="auto">
<div class="wikibase-snakview-typeselector'></div>
¥-div class="wikibase-snakview-val el el e -variation-valueg
"8 October 1927" Add Attribute
=sup class="wb-calendar-name"

Edit Attribute

</div=
</div= Editas HTML
<:.{div:> Copy outerHTML
</div= .
<di ="wiki - iew- . Copy selector
-dl_w class="wikibase-statementview-qua (TREE 24
=/div= Nopy XPath

Delete element

v #P569 div div div div div div div EIETIELERSSIEIRY Cutelement

mulation Rendering active Copy element

thover Paste element

<top frame> ¥ [JPreserve log

focus

g entitytermsforlanguagelistview DOM does not match conf ~isited

Figure 6-7. Getting the xpath for a Wikidata property

Now we have the xpaths necessary to find our scraping targets, let’s
put it all together and see how Scrapy chains requests, allowing for
complex, multi-page scraping operations.

Scraping the Individual Biography Pages | 191

Chaining Requests and Yielding Data

In this section we'll see how to chain Scrapy requests, allowing us to
follow hyper-links, scraping data as we go. First let’s enable Scrapy’s
page-caching. While experimenting with xpath targets etc. we want
to limit the number of calls to Wikipedia and it's good manners to
be storing our fetched pages. Unlike some data-sets out there, our
Nobel-prizewinners’ changes but once a year’.

Caching our pages

As you might expect, Scrapy has a sophisticated caching system that
gives you fine-grained control over your page-caching, e.g. allowing
you to choose between database or filesystem storage backends, how
long before your pages are expired etc.. It is implemented as middle-
ware enabled in our projects settings.py module. There are vari-
ous options available but for the purposes of our Nobel scraping,
simply setting HTTPCACHE_ENABLED to True will suffice:

-*- coding: utf-8 -*-
Scrapy settings for nobel_winners project

For simplicity, this file contains only the most important settings by
default. All the other settings are documented here:

http://doc.scrapy.org/en/latest/topics/settings.html

RO OB R W™ R W

BOT_NAME = 'nobel_winners'

SPIDER_MODULES

= ['nobel_winners.spiders']
NEWSPIDER_MODULE =

'nobel_winners.spiders'

Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'nobel_winners (+http://www.yourdomain.com)'

HTTPCACHE_ENABLED = True

Check out the full range of Scrapy middleware here.

Having ticked the caching box, let’s see how to chain Scray requests.

2 Strictly speaking there are edits being made continually by the Wikipedia community
but the fundamental details should be stable until the next set of prizes.

192 | Chapter 6: Heavyweight Scraping with Scrapy

http://doc.scrapy.org/en/latest/topics/downloader-middleware.html#module-scrapy.downloadermiddlewares.httpcache
https://en.wikipedia.org/wiki/Middleware
https://en.wikipedia.org/wiki/Middleware
http://doc.scrapy.org/en/latest/topics/downloader-middleware.html#downloader-middleware

Yielding requests

Our existing spider’s parse method cycles through the Nobel win-
ners, using the process_winner_1i method to scrape the country,
name, year and category and biography-hyperlink fields. We now
want to use the biography hyperlinks to generate a Scrapy request
which will fetch the bio-pages and send them to a custom-method
for scraping.

Scrapy implements a Pythonic pattern for chaining requests, using
Python’s yield statement to create a generator?, allowing Scrapy to
easily consume any extra page-requests we make. Example 6-4
shows the pattern in action.

Example 6-4. Yielding a request with Scrapy

class NWinnerSpider(scrapy.Spider):
name = 'nwinners_full'
allowed_domains = ['en.wikipedia.org']
start_urls = [
"http://en.wikipedia.org/wiki..._Nobel laureates_by_country"
1

def parse(self, response):
filename = response.url.split('/')[-1]
h2s = response.xpath('//h2")
items = []
for h2 in list(h2s)[:2]:
country = h2.xpath('span[@class="mw-headline"]/text()")
.extract()
if country:
winners = h2.xpath('following-sibling::ol[1]")
for w in winners.xpath('li'):
wdata = process_winner_li(w, country[0])
request = scrapy.Request(
wdata['link'],
callback=self.parse_bio, (2]
dont_filter=True)
request.meta['item'] = NWinnerItem(**wdata) (3]
yield request (4]

def parse_bio(self, response):
item = response.meta['item'] (5

2 See here for a nice run-down of Python generators and the use of yield.

Chaining Requests and Yielding Data | 193

https://www.jeffknupp.com/blog/2013/04/07/improve-your-python-yield-and-generators-explained/

@ Makes a request to the winner’s biography page, using the link
(wdata[link]) scraped from process_winner_11.

@ Sets the callback function to handle the response.

® Creates a Scrapy Item to hold our Nobel-data and initialises it
with the data just scraped from process_winner_1i. This Item-
data is attached to the meta-data of the request to allow any
response access to it.

@ By yielding the request, we make the parse method a generator
of consumable requests.

@ This method handles the callback from our bio-link request. In
order to add scraped data to our Scrapy Item, we first retrieve it
from the response meta-data.

Our investigation of the Wikipedia pages in “Scraping the Individual
Biography Pages” on page 189 showed that we need to locate a win-
ner’s Wikidata link from their biography-page and use it to generate
a request. We will then scrape the date, place, and gender data from
the response.

Example 6-5 shows parse_bio and parse_wikidata, the two meth-
ods used to scrape our winners biographical data. parse_bio uses
the scraped Wikidata link to request the Wikidata page, yielding the
request as it in turn was yielded in the parse method. At the end of
the request chain, parse_wikidata retrieves the item and fills in any
of the fields available from Wikidata, eventually yielding the item to
Scrapy.

Example 6-5. Parsing the winners’ biography data
#o...
def parse_bio(self, response):

item = response.meta['item']
href = response.xpath("//li[@id="t-wikibase']/a/@href") ‘I
.extract()
if href:
request = scrapy.Request('https:' + href[0],\
callback=self.parse_wikidata,)\ a

194 | Chapter 6: Heavyweight Scraping with Scrapy

dont_filter=True)
request.meta['item'] = item
yield request

def parse_wikidata(self, response):

item = response.meta['item']

property_codes = [
{'name':'date_of_birth', 'code':'P569'},
{'name':'date_of_death', 'code':'P570'},
{'name':'place_of_birth', 'code':'P19', 'link':True},
{'name':'place_of_death', 'code':'P20', 'link':True},
{'name':'gender', 'code':'P21', 'link':True}

]

p_template = '//*[@ld="%(code)s"]/div[2]/div/div/div[2]
/div[1]/div/div[2]/div[2]"

for prop in property_codes:

extra_html = '
if prop.get('link'): # property string in <a> tag

extra_html = '/a'
sel = response.xpath(p_template%prop + extra_html + '/text()')
if sel:

item[prop['name']] = sel[0].extract()

yield iten @

@ Extracts the link to Wikidata identified in Figure 6-5.

@ Uses the Wikidata link to generate a request with our spider’s
parse_wikidata as a callback to deal with the response.

® These are the property codes we found earlier (see Figure 6-6),
with names corresponding to fields in our Scrapy Item, NWinner
Item. Those with a True link attribute are contained in <a> tags.

@ The nasty, nested xpath for the Wikidata properties used to cre-
ate this template comes straight from the Chrome’s Elements tab
(see Figure 6-7).

@ Finally we yield the item which at this point should have all the
target data available from Wikipedia.

With our request chain in place, let’s check that the spider is scrap-
ing our required data:

Chaining Requests and Yielding Data | 195

$ scrapy crawl nwinners_full

2015-... [scrapy] ... started (bot: nobel_winners)
2015-... [nwinners_full] DEBUG: Scraped from
<200 https://www.wikidata.org/wiki/Q155525>
{'born_in': "'

'category': u'Physiology or Medicine',

'date_of_birth': u'8 October 1927',

'date_of_death': u'24 March 2002',

'gender': u'male’,

"link': u'http://en.wikipedia.org/wiki/C%C3%A9sar_Milstein',

'name': u'C\xe9sar Milstein',

'nationality': u'Argentina',

'place_of_birth': u'Bah\xeda Blanca',

'place_of_death': u'Cambridge',

"text': u'C\xe9sar Milstein , Physiology or Medicine, 1984',

'year': 1984}
2015-... [nwinners_full] DEBUG: Scraped from

<200 https://www.wikidata.org/wiki/Q193672>

{'born_in': "'

'category': u'Peace',

'date_of_birth': u'l November 1878',

'date_of_death': u'5 May 1959',

'gender': u'male’,

"link': u'http://en.wikipedia.org/wiki/Carlos_Saavedra_Lamas',

Things are looking good. With the exception of the born_in field,
which is dependent on a name in the main Wikipedia Nobel win-
ners list having an asterisk, we're getting all the data we were target-
ing. This data-set is now ready to be cleaned by Pandas in the
coming chapter.

Now that we've scraped our basic biographical data for the Nobel-
winners, let’s go scrape our remaining targets, some biographical

body-text, and a picture of the great man or woman, where avail-
able.

Scrapy Pipelines

In order to add a little personality to our Nobel visualisation it
would be good to have a little biographical text and an image of the
winner. Wikipedias biographical pages generally provide these
things so let’s go about scraping them.

Up to now our scraped data has been text strings. In order to scrape
images, in their various formats, we need to use a Scrapy pipeline.
Pipelines provide a way of post-processing the items we have scra-

196 | Chapter 6: Heavyweight Scraping with Scrapy

http://doc.scrapy.org/en/latest/topics/item-pipeline.html

ped and you can define any number of them. You can write your
own or take advantage of those already provided by Scrapy, such as
the ImagesPipeline well be using.

In its simplest form, a pipeline need only define a process_1item
method. This receives the scraped items and the spider object. Let’s
write a little pipeline to reject genderless Nobel winners (so we can
omit prizes given to organizations rather than individuals) using our
existing nwinners_full spider to deliver the items. First we add a
DropNonPersons pipeline to the pipelines.py module of our
project:

nobel_winners/nobel_winners/settings.py

Define your item pipelines here

#

Don't forget to add your pipeline to the ITEM_PIPELINES setting
See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html

from scrapy.exceptions import DropIltem

class DropNonPersons(object):
""" Remove non-person winners

win

def process_1item(self, item, spider):
if not item['gender']:
raise DropItem("No gender for %s"%item['name'])
return item

@ If our scraped item failed to find a gender property at Wikidata
it is probably an organization such as the Red Cross.. Our visu-
alisation is focused on invdividual winners so here we use DropI
tem to remove the item from our output stream.

@ We need to return the item to further pipelines or for saving by
Scrapy.

As mentioned in the pipelines.py header, in order to add this
pipeline to the spiders of our project we need to register it in the
settings.py module by adding it to a dict of pipelines and setting
it to active (1):

nobel_winners/nobel_winners/settings.py

BOT_NAME = 'nobel_winners'
SPIDER_MODULES = ['nobel_winners.spiders']

Scrapy Pipelines | 197

NEWSPIDER_MODULE = 'nobel_winners.spiders'

HTTPCACHE_ENABLED = True

ITEM_PIPELINES = {'nobel_winners.pipelines.DropNonPersons':1}
Now we've got the basic workflow for our pipelines, let’s add a useful
one to our project.

Scraping Text and Images with a Pipeline

We now want to scrape the winners biography and photos (see
Figure 6-1), where available. The biographical text can be scraped
using the same method as our last spider but the photos are best
dealt with by an image pipeline.

We could easily write our own pipeline to take a scraped image
URL, request it from Wikipedia, and save to disk but to do it prop-
erly would requires a bit of care. For example, we would like to
avoid reloading an image that was recently downloaded or hasn't
changed in the meantime. Some flexibility in specifying where to
store the images is a useful feature. It would also be good to have the
option of converting the images into a common format (e.g. JPG or
PNG) or of generating thumbnails. Luckily, Scrapy provides an
ImagesPipeline object with all this functionality and more. This is
one of its media pipelines, which includes a FilesPipeline for deal-
ing with general files.

We could add the image and biography-text scraping to our existing
nwinners_full spider but that’s starting to get a little large and seg-
regating this character data from the more formal categories makes
sense. So we'll create a new spider, called nwinners_minibio which
will reuse parts of the previous spider’s parse method in order to
loop through the Nobel winners.

As usual when creating a Scrapy spider, our first job is to get the
xpaths for our scraping targets — in this case, where available that’s
the first part of the winners’ biographical text and a photograph of
them. To do this we fire up Chrome Elements and explore the
HTML source of the biography pages looking for the targets shown
in Figure 6-8.

198 | Chapter 6: Heavyweight Scraping with Scrapy

http://doc.scrapy.org/en/latest/topics/media-pipeline.html

® ¥ € & hupsyenwikipedia.org/wikl/Francs_Crick R - 3 I =

ot sconun Log

Atide Talk Read G View hisiory Q
Francis Crick B

Fiorm Wikipedia, th rem encyciopecia

Francis Harry Gompton Grick, OM, FRS (8 June 1916 - 28 July 2004)

Francis Crick

Meicine “for
ic acids and i

nteraciion

Hep

AU W
ol

memarize the idea ihat penesic
sssentially Gne-way, from DNA 0 RNA 1D

1. Kieekheter

for Biological

FraG Crick

Born Francis Hanry Compeon Crick
20 1916
v .,

Died 28 Juky 2004 gaget 65)
San Cheg, Caliormia, LS,
Resinance LK LS

Figure 6-8. The target elements for our biography scraping: The first
part of the biography (A), marked by a stop-point (B) and the winner’s
photograph ©

Investigating with Chrome Elements shows the biographical text
(Figure 6-8 A.) is contained in the first paragraphs of the <div> with
id mw-content-text, captured by the xpath //*[@id="mw-content-
text"]/p. There is an empty paragraph which signals the stop-point
(Figure 6-8 B.) of the first section of the biography:

<div id="mw-content-text">
<p>...</p>
<p>...</p>
<p><p> <---- stop-point
</div>
The exploration shows that the photos (Figure 6-8 C.) are contained

in a table of class infobox, being the only image in that table:

<table class="infobox vcard">

</table>
The xpath //table[contains(@class,"infobox")]//img/@src will
get the source address of the image.

Scraping Text and Images with a Pipeline | 199

As with our first spider, we first need to declare a Scrapy Item to
hold our scraped data. We'll scrape the bio-link and name of the
winner, which we can use as identifiers for the image and text. We
also need somewhere to store our image-urls (although we will only
scrape one bio-image, I'll cover the multiple-image use-case), the
resultant images references (a file-path), and a bio_image field to
store the particular image were interested in:

import scrapy
import re

BASE_URL = 'http://en.wikipedia.org'

class NWinnerItem(scrapy.Item):
1ink = scrapy.Field()
name = scrapy.Field()
mini_bio = scrapy.Field()
image_urls = scrapy.Field()
bio_image = scrapy.Field()
images = scrapy.Field()

Now we reuse the scraping loop over our Nobel winners (see
Example 6-4 for details), this time yielding a request to our new
get_mini_bilo method, which will scrape the image-urls and bio-
text:

class NWinnerSpider(scrapy.Spider):
name = 'nwinners_minibio’
allowed_domains = ['en.wikipedia.org']
start_urls = [
"http://en.wikipedia.org/...of _Nobel_laureates_by_country"
1

def parse(self, response):

filename = response.url.split('/')[-1]
h2s = response.xpath('//h2")
items = []

for h2 in h2s:
country = h2.xpath('span[@class="mw-headline"]/text()"')\
.extract()
if country:
winners = h2.xpath('following-sibling::ol[1]")
for w in winners.xpath('li'):
wdata = {}
wdata['link'] = BASE_URL + w.xpath('a/@href"')

200 | Chapter 6: Heavyweight Scraping with Scrapy

.extract()[0]
Process the winner's bio-page with get_mini_bio
request = scrapy.Request(wdata['link'],
callback=self.get_mini_bio)
request.meta['item'] = NWinnerItem(**wdata)
yield request

Our get_mini_bilo method will add any available photo URLs to the
image_urls list and add all paragraphs of the biography up to the
<p></p> stop-point to the item’s mini_bio field:

def get_mini_bio(self, response):
""" Get the winner's bio-text and photo

o

BASE_URL_ESCAPED = 'http:\/\/en.wikipedia.org'
item = response.meta['item']
item['image_urls'] = []
img_src = response.xpath(\
'//table[contains(@class, "infobox")]//img/@src"') (1]
if img_src:
item['image_urls'] = ['http:' + img_src[0].extract()]
mini_bio = "'
paras = response.xpath(
'//*[@id="mw-content-text"]/p[text() or
normalize-space(.)=""]").extract()

for p in paras:
if p == '<p></p>': # the bio-intros stop-point (3]
break
mini_bio += p

correct for wiki-links
mini_bio = mini_bio.replace('href="/wiki', 'href=""'
+ BASE_URL + '/wiki') €
mini_bio = mini_bio.replace('href="#', item['link'] + '#')
item['mini_bio'] = mini_bio
yield item

@ Targets the first (and only) image in the table of class infobox
and gets its source (src) attribute, e.g. <img src=//upload.wiki
media.org/../Max_Perutz. jpg..

@ This xpath gets all the paragraphs in the <div> with id mw-
content-text. If the paragraph are empty (text() == False)
then the normalize-space(.) command is used to force the
contents of the paragraph (. represents the p-node in question)
to an empty string. This is to make sure any empty paragraph

Scraping Text and Images with a Pipeline | 201

matches the stop-point marking the end of the intro-section of
the biography.

® Iterates through the available paragraphs, breaking on the
empty paragraph stop-point.

@ Replaces wikipedias internal hrefs (e.g. /wiki/...) with the full
addresses our visualisation will need.

With our bio-scraping spider defined, we need to create its comple-
mentary pipeline, which will take the image-URLSs scraped and con-
vert them into saved images. We'll use Scrapy’s images-pipeline for
this job.

The ImagesPipeline shown in Example 6-6 has two main methods,
get_media_requests, which generates the requests for the image-
URLs, and item_completed, called after the requests have been con-
sumed.

Example 6-6. Scraping images with the image-pipeline

import scrapy

from scrapy.contrib.pipeline.images import ImagesPipeline

from scrapy.exceptions import DropItem

class NobelImagesPipeline(ImagesPipeline):

def get_media_requests(self, item, info): 1]

for image_url in item['image urls']:
yield scrapy.Request(image_url)

def item_completed(self, results, item, info): (2]
image_paths = [x['path'] for ok, x in results if ok] (3]
if image_paths:

item['bilo_image'] = image_paths[0]

return item

@ This takes any image-URLs scraped by our nwinners_minibio
spider and generates an HTTP request for their content.

@ After the image-URL requests have been made, the results are
delivered to the 1tem_completed method.

202 | Chapter 6: Heavyweight Scraping with Scrapy

http://doc.scrapy.org/en/latest/topics/media-pipeline.html#using-the-images-pipeline

® This Python list-comprehension filters the list of result tuples
(of form [(True, Image), (False, Image) ...]) for those that were
successful and stores their file-paths relative to directory speci-
fied by the IMAGES_STORE variable in settings.py.

Now that we have spider and pipeline defined, we just need to add
the pipeline to our settings.py module and set the IMAGES_STORE
variable to the directory we want to save the images in:

nobel_winners/nobel_winners/settings.py

ITEM_PIPELINES = {'nobel_winners.pipelines.NobelImagesPipeline':1}
IMAGES_STORE = 'images'

Let’s run our new spider, from the nobel_winners root directory of
our project and check its output:

$ scrapy crawl nwinners_minibio -o minibios.json

2015-... DEBUG: Scraped from <200 http:.../Albert_Claude>
{'"image_urls': [],
"link': u'http://en.wikipedia.org/wiki/Albert_Claude',
'mini_bilo': u'<p>Albert Claude (24 August 1899 \u2013...
Belgian

2015-... DEBUG: Scraped from <200 http:.../Brian_P._Schmidt>
{ 'blo_image': 'full/a5f763b828006e704cb291411b8b643bfb91886¢C.jpg’,
'image_urls': [u'http://upload.wiki...220px-Brian_Schmidt.jpg'],
"link': u'http://en.wikipedia.org/wiki/Brian_P._Schmidt',
'mini_bilo': u'<p>Brian Paul Schmidt...

We can see that scraping Albert Claude’s biography page failed to
turn up an image (a quick trip to Wikipedia confirms it'’s missing)
but Brian Schmidt’s page came up trumps. The image was stored in
image_urls and successfully processed, giving the JPG file stored in
the images directory we specified with IMAGE_STORE with a relative
path (full/a5f763b828006e704cb291411b8b643bfb91886c. jpg).
The file-name is, conveniently enough, a SHA1 hash of the image’s
URL, which allows the image-pipeline to check for existing images,
allowing it to prevent redundant requests etc.

A quick listing of our images directory shows a nice array of Wiki-
pedia Nobel-winner images, ready to be used in our web-
visualisation:

Scraping Text and Images with a Pipeline | 203

https://en.wikipedia.org/wiki/Secure_Hash_Algorithm

$ (nobel_winners) tree images

images

L— full
}— 0512ae11141584da1262661992a1b05dfb20dd52. jpg
— 092a92689118c16b15b1613751af422439df2850. jpg
|— obsa8ca56e6ff115b7d30087df9c21dab9684db1. jpg
— 1197aa95299a1fec983b3dbdeaeb97a1f7e545¢c9. jpg
— 1fe6fb8e9e2241733da47328291b25bd1a78fa588. jpg
— 272cf1b089c7a28ea0109ad8655bc3ef1c03fb52. jpg
— 28dcc7978d9d5710f0c29d6dfcfO9caa7e13a1d0. jpg

As we'll see in 222 we will be placing these in the static folder of

our web-app, ready to be accessed using the winner’s bio_image
field.

With our images and biography text to hand we've successfully scra-
ped all the targets we set ourselves at the beginning of the chapter
(see Example 6-1 and Figure 6-1). Time for a quick summary before
moving on to clean this inevitably dirty data with help from Pandas.

Summary

In this chapter we produced two Scrapy spiders which managed to
grab the simple statistical data-set of our Nobel winners plus some
biographical text and, where available, a photograph, to add some
color to the stats. Scrapy is a powerful library which takes care of
everything you could need in a full-fledged scraper. Although the
work-flow requires a little more effort to implement than some
hacking with BeautifulSoup, Scrapy has far more power available
and for any ambitious scraping really is a no-brainer. All Scrapy spi-
ders follow a standard recipe, which you should now know, and
after a while rolling one out for standard scraping tasks is a breeze.

I hope this chapter has conveyed the rather hacky, iterative nature of
scraping and some of the quiet satisfaction that can be had from
producing relatively clean data from the unpromising mound of
stuff so often found on the web. The fact is that now and for the
foreseeable future the large majority of interesting data, the fuel to
the art+science of data-visualisation, is trapped in a form unusable
for the web-based visualisations that are the focus of this book.
Scraping is, in this sense, an emancipating endeavour.

The data we scraped, much of it human-edited, will certainly have
some errors, from badly formatted dates to categorical anomalies to

204 | Chapter 6: Heavyweight Scraping with Scrapy

missing fields etc.. Making that data presentable is the focus of the
next, Pandas-based, chapters. But first we need a little introduction
to Pandas and its building block Numpy.

Summary | 205

	Cover
	Copyright
	Table of Contents
	Introduction
	Who This Book is For
	Minimal requirements to use the book

	Why Python and JavaScript?
	Why not Python on the browser?
	Why Python for data-processing
	Python’s getting better all the time

	What You’ll Learn
	The Choice of Libraries
	Preliminaries

	The Dataviz Toolchain
	1. Scraping data with Scrapy
	2. Cleaning data with Pandas
	3. Exploring data with Pandas and Matplotlib
	4. Delivering your data with Flask
	5. Transforming the data into interactive visualisations with D3
	Smaller Libraries

	A Little Bit of Context
	Summary
	Recommended Books

	Chapter 1. A Development Setup
	Python
	Anaconda
	Checking the Anaconda install
	Installing extra libs
	Virtual Environments

	JavaScript
	Content Delivery Networks (CDNs)
	Installing libraries locally

	Databases
	Integrated Development Environments
	Summary

	Part I. A Basic Toolkit
	Chapter 2. A Language Learning Bridge Between Python and JavaScript
	Similarities and differences
	Interacting with the Code
	Python
	JavaScript

	Basic Bridge Work
	Style guidelines, PEP 8 and ‘use strict’
	Camel-case vs underscore
	Importing modules, including scripts
	Keeping your namespaces clean
	Outputting ‘Hello World’
	Simple data-processing
	String construction
	Significant whitespace vs curly brackets
	Comments and doc-strings
	Declaring variables, var
	Strings and numbers
	Booleans
	Data containers: dicts, objects, lists, arrays
	Functions
	Iterating: for loops and functional alternatives
	Conditionals: if, else, elif, switch
	File input and output
	Classes and prototypes

	Differences in Practice
	Method chaining
	Enumerating a list
	Tuple unpacking
	Collections
	Underscore
	Functional array methods and list comprehensions
	Map, reduce and filter with Python’s lambdas
	JavaScript closures and the module-pattern
	This is that

	A Cheatsheet
	Summary

	Chapter 3. Reading and Writing Data with Python
	Easy Does It
	Passing Data Around
	Working with System Files
	CSV, TSV and Row-column Data-formats
	JSON
	Dealing with dates and times

	SQL
	Creating the database engine
	Defining the database tables
	Adding instances with a session
	Querying the database
	Easier SQL with Dataset

	MongoDB
	Dealing with Dates, Times and Complex Data
	Summary

	Chapter 4. Webdev 101
	The Big Picture
	Single-page Apps
	Tooling Up
	The myth of IDEs, frameworks and tools
	Your text editing work-horse
	Browser with development tools
	Terminal or command-prompt

	Building a Web-page
	Serving Pages with HTTP
	The DOM
	The HTML skeleton
	Marking-up content
	CSS
	JavaScript
	Data

	Chrome’s Developer Tools
	The Elements Tab
	The Sources Tab
	Other Tools

	A Basic Page with Placeholders
	Filling the placeholders with content

	Scalable Vector Graphics (SVG)
	The svg element
	The g element
	Circles
	Applying CSS-styles
	Lines, rectangles, polygons
	Text
	Paths
	Scaling and rotating
	Working with groups
	Layering and transparency
	JavaScripted SVG

	Summary

	Part II. Getting Your Data
	Chapter 5. Getting Data off the Web with Python
	Getting Web-data with the requests library
	Getting Data-files with requests
	Using Python to Consume Data from a Web-API
	Using a RESTful Web-API with requests
	Getting some country data for the Nobel-viz

	Using Libraries to access Web-APIs
	Using Google-spreadsheets
	Using the Twitter API with Tweepy

	Scraping Data
	Why we need to scrape
	BeautifulSoup and lxml
	A First Scraping Foray
	Selecting the data
	Crafting some selection patterns
	Caching the web-pages
	Scraping the winners’ nationalities

	Summary

	Chapter 6. Heavyweight Scraping with Scrapy
	Setting up Scrapy
	Establishing the Targets
	Targeting HTML with Xpaths
	Testing xpaths with the Scrapy shell

	A First Scrapy Spider
	Scraping the Individual Biography Pages
	Chaining Requests and Yielding Data
	Caching our pages
	Yielding requests

	Scrapy Pipelines
	Scraping Text and Images with a Pipeline
	Summary

