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1

Introducing deep learning 
and the PyTorch library

We’re living through exciting times. The landscape of what computers can do is 
changing by the week. Tasks that only a few years ago were thought to require 
higher cognition are getting solved by machines at near-superhuman levels of per-
formance. Tasks such as describing a photographic image with a sentence in idiom-
atic English, playing complex strategy game, and diagnosing a tumor from a 
radiological scan are all approachable now by a computer. Even more impressively, 
computers acquire the ability to solve such tasks through examples, rather than 
human-encoded of handcrafted rules.

 It would be disingenuous to assert that machines are learning to “think” in any 
human sense of the word. Rather, a general class of algorithms is able to approxi-

This chapter covers
� What this book will teach you
� PyTorch’s role as a library for building deep learning 

projects
� The strengths and weaknesses of PyTorch
� The hardware you’ll need to follow along with the 

examples
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mate complicated, nonlinear processes extremely effectively. In a way, we’re learning 
that intelligence, as we subjectively perceive it, is a notion that’s often conflated with 
self-awareness, and self-awareness definitely isn’t required to solve or carry out these 
kinds of problems. In the end, the question of computer intelligence may not even be 
important. As pioneering computer scientist Edsger W. Dijkstra said in “The Threats 
to Computing Science,”

Alan M. Turing thought about . . . the question of whether Machines Can Think, 
a question . . . about as relevant as the question of whether Submarines Can Swim.

That general class of algorithms we’re talking about falls under the category of deep 
learning, which deals with training mathematical entities named deep neural networks on 
the basis of examples. Deep learning leverages large amounts of data to approximate 
complex functions whose inputs and outputs are far apart, such as an image (input) 
and a line of text describing the input (output); a written script (input) and a natural-
sounding voice reciting the script (output); or, even more simply, associating an 
image of a golden retriever with a flag that indicates that a golden retriever is present. 
This capability allows developers to create programs with functionality that until 
recently was the exclusive domain of human beings.

1.1 What is PyTorch?
PyTorch is a library for Python programs that facilitates building deep learning proj-
ects. It emphasizes flexibility and allows deep learning models to be expressed in idi-
omatic Python. This approachability and ease of use found early adopters in the 
research community, and in the years since the library’s release, it has grown into one 
of the most prominent deep learning tools for a broad range of applications.

 PyTorch provides a core data structure, the Tensor, a multidimensional array that 
has many similarities with NumPy arrays. From that foundation, a laundry list of fea-
tures was built to make it easy to get a project up and running, or to design and train 
investigation into a new neural network architecture. Tensors accelerate mathematical 
operations (assuming that the appropriate combination of hardware and software is 
present), and PyTorch has packages for distributed training, worker processes for effi-
cient data loading, and an extensive library of common deep learning functions.

 As Python is for programming, PyTorch is both an excellent introduction to deep 
learning and a tool usable in professional contexts for real-world, high-level work.

 We believe that PyTorch should be the first deep learning library you learn. 
Whether it should be the last is a decision that we’ll leave to you.

1.2 What is this book?
This book is intended to be a starting point for software engineers, data scientists, and 
motivated students who are fluent in Python and want to become comfortable using 
PyTorch to build deep learning projects. To that end, we take a hands-on approach; 
we encourage you to keep your computer at the ready so that you can play with the 
examples and take them a step further.
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 Though we stress the practical applications, we also believe that providing an 
accessible introduction to foundational deep learning tools like PyTorch is more than 
a way to facilitate the acquisition of new technical skills. It is also a step toward equip-
ping a new generation of scientists, engineers, and practitioners from a wide range of 
disciplines with a working knowledge of the tools that will be the backbone of many 
software projects during the decades to come.

 To get the most out of this book, you need two things:

� Some experience programming in Python—We’re not going to pull any punches on 
that one: you’ll need to be up on Python data types, classes, floating-point num-
bers, and the like.

� Willingness to dive in and get your hands dirty—It’ll be much easier for you to learn 
if you follow along with us.

Deep learning is a huge space. In this book, we’ll be covering a tiny part of that 
space—specifically, using PyTorch for smaller-scope projects. Most of the motivating 
examples use image processing of 2D and 3D data sets. We focus on practical PyTorch, 
with the aim of covering enough ground to allow you to solve realistic problems with 
deep learning or explore new models as they pop up in research literature. A great 
resource for the latest publications related to deep learning research is the ArXiV 
public preprint repository, hosted at https://arxiv.org.1

1.3 Why PyTorch?
As we’ve said, deep learning allows you to carry out a wide range of complicated 
tasks—such as performing machine translation, playing strategy games, and identify-
ing objects in cluttered scenes—by exposing your model to illustrative examples. To 
do so in practice, you need tools that are flexible so that they can be adapted to your 
specific problem and efficient, to allow training to occur over large amounts of data in 
reasonable times. You also need the trained network to perform correctly in the pres-
ence of uncertainty in the inputs. In this section, we take a look at some of the reasons 
why we decided to use PyTorch.

 PyTorch is easy to recommend because of its simplicity. Many researchers and prac-
titioners find it easy to learn, use, extend, and debug. It’s Pythonic, and although (like 
any complicated domain) it has caveats and best practices, using the library generally 
feels familiar to developers who have used Python previously.

 For users who are familiar with NumPy arrays, the PyTorch Tensor class will be 
immediately familiar. PyTorch feels like NumPy, but with GPU acceleration and auto-
matic computation of gradients, which makes it suitable for calculating backward pass 
data automatically starting from a forward expression.

 The Tensor API is such that the additional features of the class relevant to deep 
learning are unobtrusive; the user is mostly free to pretend that those features don’t 
exist until need for them arises.

1 We also recommed http://www.arxiv-sanity.com to help organize research papers of interest.
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 A design driver for PyTorch is expressivity, allowing a developer to implement com-
plicated models without undue complexity being imposed by the library. (The library 
isn’t a framework!) PyTorch arguably offers one of the most seamless translations of 
ideas into Python code in the deep learning landscape. For this reason, PyTorch has 
seen widespread adoption in research, as witnessed by the high citation counts in 
international conferences.2

 PyTorch also has a compelling story for the transition from research and develop-
ment to production. Although it initially focused on research workflows, PyTorch has 
been equipped with a high-performance C++ runtime that users can leverage to 
deploy models for inference without relying on Python, keeping most of the flexibility 
of PyTorch without paying the overhead of the Python runtime.

 Claims of ease of use and high performance are trivial to make, of course. We hope 
that by the time you’re in the thick of this book, you’ll agree that our claims here are 
well founded.

1.3.1 The deep learning revolution

In this section, we take a step back and provide some context for where PyTorch fits 
into the current and historical landscape of deep learning tools.

 Until the late 2000s, the broader class of systems that fell into the category 
“machine learning” relied heavily on feature engineering. Features are transformations of 
input data resulting in numerical features that facilitate a downstream algorithm, such 
as a classifier, to produce correct outcomes on new data. Feature engineering aims to 
take the original data and come up with representations of the same data that can be fed 
to an algorithm to solve a problem. To tell ones from zeros in images of handwritten 
digits, for example, you’d come up with a set of filters to estimate the direction of 
edges over the image and then train a classifier to predict the correct digit, given a dis-
tribution of edge directions. Another useful feature could be the number of enclosed 
holes in a zero, an eight, or particularly loopy twos.

 Deep learning, on the other hand, deals with finding such representations auto-
matically, from raw data, to perform a task successfully. In the ones-versus-zeros exam-
ple, filters would be refined during training by iteratively looking at pairs of examples 
and target labels. This isn’t to say that feature engineering has no place in deep learn-
ing; developers often need to inject some form of knowledge into a learning system. 
The ability of a neural network to ingest data and extract useful representations on 
the basis of examples, however, is what makes deep learning so powerful. The focus of 
deep learning practitioners is not so much on handcrafting those representations but 
on operating on a mathematical entity so that it discovers representations from the 
training data autonomously. Often, these automatically created features are better 
than those that are handcrafted! As in many disruptive technologies, this fact has led 
to a change in perspective.

2 At ICLR 2019, PyTorch appeared as a citation in 252 papers, up from 87 the previous year and at the same 
level as TensorFlow, which appeared in 266 papers.
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 On the left side of figure 1.1, a practitioner is busy defining engineering features 
and feeding them to a learning algorithm. The results of the task will be as good as the 
features he engineers. On the right side of the figure, with deep learning, the raw data 
is fed to an algorithm that extracts hierarchical features automatically, based on opti-
mizing the performance of the algorithm on the task. The results will be as good as 
the practitioner’s ability to drive the algorithm toward its goal. 

Figure 1.1 The change in perspective brought by deep learning

1.3.2 Immediate versus deferred execution

One key differentiator for deep learning libraries is immediate versus deferred execu-
tion. Much of PyTorch’s ease of use is due to how it implements immediate execution, 
so we briefly cover that implementation here.

 Consider the expression (a**2 + b**2) ** 0.5 that implements the Pythagorean 
theorem. If you want to execute this expression, you need to have an a and b handy, 
like so:

>>> a = 3
>>> b = 4
>>> c = (a**2 + b**2) ** 0.5
>>> c
5.0

Immediate execution like this consumes inputs and produces an output value
(c here). PyTorch, like Python in general, defaults to immediate execution (referred 
to as eager mode in the PyTorch documentation). Immediate execution is useful 
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because if problems arise in executing the expression, the Python interpreter, debug-
ger, and similar tools have direct access to the Python objects involved. Exceptions can 
be raised directly at the point where the issue occurred.

 Alternatively, you could define the Pythagorean expression even before knowing 
what the inputs are and use that definition to produce the output when the inputs are 
available. That callable function that you define can be used later, repeatedly, with var-
ied inputs:

>>> p = lambda a, b: (a**2 + b**2) ** 0.5
>>> p(1, 2)
2.23606797749979
>>> p(3, 4)
5.0

In the second case, you defined a series of operations to perform, resulting in a out-
put function (p in this case). You didn’t execute anything until later, when you passed 
in the inputs—an example of deferred execution. Deferred execution means that 
most exceptions are be raised when the function is called, not when it’s defined. For 
normal Python (as you see here), that’s fine, because the interpreter and debuggers 
have full access to the Python state at the time when the error occurred.

 Things get tricky when specialized classes that have heavy operator overloading are 
used, allowing what looks like immediate execution to be deferred under the hood. 
These classes can look like the following:

>>> a = InputParameterPlaceholder()
>>> b = InputParameterPlaceholder()
>>> c = (a**2 + b**2) ** 0.5
>>> callable(c)
True
>>> c(3, 4)
5.0

Often in libraries that use this form of function definition, the operations of squaring 
a and b, adding, and taking the square root aren’t recorded as high-level Python byte 
code. Instead, the point usually is to compile the expression into a static computation 
graph (a graph of basic operations) that has some advantage over pure Python (such 
as compiling the math directly to machine code for performance reasons).

 The fact that the computation graph is built in one place and used in another 
makes debugging more difficult, because exceptions often lack specificity about what 
went wrong and Python debugging tools don’t have any visibility into the intermediate 
states of the data. Also, static graphs usually don’t mix well with standard Python flow 
control: they’re de-facto domain-specific languages implemented on top of a host lan-
guage (Python in this case).

 Next, we take a more concrete look at the differences between immediate and 
deferred execution, specifically regarding issues that are relevant to neural networks. 
We won’t be teaching these concepts in any depth here, instead giving you a high-level 
introduction to the terminology and the relationships among these concepts. Under-
standing those concepts and relationships lays the groundwork for understand how 
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libraries like PyTorch that use immediate execution differ from deferred-execution 
frameworks, even though the underlying math is the same for both types.

 The fundamental building block of a neural network is a neuron. Neurons are 
strung together in large numbers to form the network. You see a typical mathematical 
expression for a single neuron in the first row of figure 1.2: o = tanh(w * x + b). As 
we explain the execution modes in the following figures, keep these facts in mind:

� x is the input to the single-neuron computation.
� w and b are the parameters or weights of the neuron and can be changed as 

needed.
� To update the parameters (to produce output that more closely matches what 

we desire), we assign error to each of the weights via backpropagation and then 
tweak the weights accordingly.

� Backpropagation requires computing the gradient of the output with respect to 
the weights (among other things).

� We use automatic differentiation to compute the gradient automatically, saving 
us the trouble of writing the calculations by hand.

In figure 1.2, the neuron gets compiled into a symbolic graph in which each node rep-
resents individual operations (second row),

Figure 1.2 Static graph for a simple computation corresponding to a single neuron

 using placeholders for inputs and out-
puts. Then the graph is evaluated numerically (third row) when concrete numbers 
are plugged into the placeholders (in this case, the numbers are the values stored in w, 
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x, and b). The gradient of the output with respect to the weights is constructed sym-
bolically by automatic differentiation, which traverses the graph backward and multi-
plies the gradients at individual nodes (fourth row). The corresponding mathematical 
expression is shown in the fifth row. 

 One of the major competing deep learning frameworks is TensorFlow, which has a 
graph mode that uses a similar kind of deferred execution. Graph mode is the default 
mode of operation in TensorFlow 1.0. By contrast, PyTorch sports a define-by-run 
dynamic graph engine in which the computation graph is built node by node as the 
code is eagerly evaluated.

 The top half of figure 1.3 shows the same calculation running under a dynamic 
graph engine. 

Figure 1.3 Dynamic graph for a simple computation corresponding to a single neuron

The computation is broken into individual expressions, which are greed-
ily evaluated as they’re encountered. The program has no advance notion of the inter-
connection between computations. The bottom half of the figure shows the behind-the-
scenes construction of a dynamic computation graph for the same expression. The 
expression is still broken into individual operations, but here those operations are 
eagerly evaluated, and the graph is built incrementally. Automatic differentiation is 
achieved by traversing the resulting graph backward, similar to static computation 
graphs. Note that this does not mean dynamic graph libraries are inherently more capa-
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ble than static graph libraries, just that it’s often easier to accomplish looping or condi-
tional behavior with dynamic graphs. 

 Dynamic graphs can change during successive forward passes. Different nodes can 
be invoked according to conditions on the outputs of the preceding nodes, for exam-
ple, without a need for such conditions to be represented in the graph itself—a dis-
tinct advantage over static graph approaches.

 The major frameworks are converging toward supporting both modes of opera-
tion. PyTorch 1.0 gained the ability to record the execution of a model in a static com-
putation graph or define it through a precompiled scripting language, with the goal 
of improved performance and ease of putting the model into production. TensorFlow 
has also gained “eager mode,” a new define-by-run API, increasing the library’s flexi-
bility as we have discussed.

1.3.3 The deep learning competitive landscape

Although all analogies are flawed, it seems that the release of PyTorch 0.1 in January 
2017 marked the transition from a Cambrian Explosion–like proliferation of deep 
learning libraries, wrappers, and data exchange formats to an era of consolidation 
and unification.

NOTE The deep learning landscape has been moving so quickly lately that by 
the time you read this book, some aspects may be out of date. If you’re unfa-
miliar with some of the libraries mentioned here, that’s fine.

At the time of PyTorch’s first beta release

� Theano and TensorFlow were the premiere low-level deferred-execution libraries.
� Lasagne and Keras were high-level wrappers around Theano, with Keras wrap-

ping TensorFlow and CNTK as well.
� Caffe, Chainer, Dynet, Torch (the Lua-based precursor to PyTorch), mxnet, 

CNTK, DL4J, and others filled various niches in the ecosystem.

In the roughly two years that followed, the landscape changed dramatically. The com-
munity has largely consolidated behind PyTorch or TensorFlow, with the adoption of 
other libraries dwindling or filling specific niches:

� Theano, one of the first deep learning frameworks, has ceased active develop-
ment.

� TensorFlow
– Consumed Keras, promoting it to a first-class API
– Provided an immediate execution eager mode
– Announced that TF 2.0 will enable eager mode by default

� PyTorch
– Consumed Caffe2 for its backend
– Replaced most of the low-level code reused from the Lua-based Torch project
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– Added support for ONNX, a vendor-neutral model description and exchange 
format

– Added a delayed execution graph mode runtime called TorchScript
– Released version 1.0

TensorFlow has a robust pipeline to production, an extensive industrywide community, 
and massive mindshare. PyTorch has made huge inroads with the research and teaching 
community, thanks to its ease of use, and has picked up momentum as researchers and 
graduates train students and move to industry. Interestingly, with the advent of Torch-
Script and eager mode, both libraries have seen their feature sets start to converge.

1.4 PyTorch has the batteries included
We’ve already hinted at a few components of PyTorch. Now we’ll take some time to 
formalize a high-level map of the main components that form PyTorch.

 First, PyTorch has the Py from Python, but there’s a lot of non-Python code in it. For 
performance reasons, most of PyTorch is written in C++ and CUDA3, a C++-like lan-
guage from NVIDIA that can be compiled to run with massive parallelism on NVIDIA 
GPUs. There are ways to run PyTorch directly from C. One of the main motivations 
for this capability is providing a reliable strategy for deploying models in production. 
Most of the time, however, you’ll interact with PyTorch from Python, building models, 
training them, and using the trained models to solve problems. Depending on a given 
use case’s requirements for performance and scale, a pure-Python solution can be suf-
ficient to put models into production. It can be perfectly viable to use a Flask web 
server to wrap a PyTorch model using the Python API, for example.

 Indeed, the Python API is where PyTorch shines in term of usability and integra-
tion with the wider Python ecosystem. Next, we take a peek at the mental model of 
PyTorch.

 At its core, PyTorch is a library that provides multidimensional arrays, called tensors in 
PyTorch parlance, and an extensive library of operations on them is provided by the 
torch module. Both tensors and related operations can run on the CPU or GPU. Run-
ning on the GPU results in massive speedups compared with CPU (especially if you’re 
willing to pay for a top-end GPU), and with PyTorch doing so, it doesn’t require more 
than an additional function call or two. The second core thing that PyTorch provides 
allows tensors to keep track of the operations performed on them and to compute 
derivatives of an output with respect to any of its inputs analytically via backpropagation. 
This capability is provided natively by tensors and further refined in torch.autograd.

 We could argue that by having tensors and the autograd-enabled tensor standard 
library, PyTorch could be used for more than neural networks, and we’d be correct: 
PyTorch can be used for physics, rendering, optimization, simulation, modeling, and 
so on. We’re likely to see PyTorch being used in creative ways across the spectrum of 
scientific applications.

3 https://www.geforce.com/hardware/technology/cuda
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 But PyTorch is first and foremost a deep learning library, and as such, it provides all 
the building blocks needed to build and train neural networks. Figure 1.4 shows a stan-
dard setup that loads data, trains a model, and then deploys that model to production.

 The core PyTorch modules for building neural networks are located in torch.nn, 
which provides common neural network layers and other architectural components. 
Fully connected layers, convolutional layers, activation functions, and loss functions 
can all be found here. These components can be used to build and initialize the 
untrained model shown in the center of figure 1.4.

Figure 1.4 Basic high-level structure of a PyTorch project, with data loading, training, and deployment to production

To train this model, you need a few things (besides the loop itself, which can be a stan-
dard Python for loop): a source of training data, an optimizer to adapt the model to 
the training data, and a way to get the model and data to the hardware that will be per-
forming the calculations needed for training the model.

 Utilities for data loading and handling can be found in torch.util.data. The two 
main classes you’ll work with are Dataset, which acts as the bridge between your cus-
tom data (in whatever format it might be in), and a standardized PyTorch Tensor. The 
other class you’ll see a lot of is DataLoader, which can spawn child processes to load 
data from a Dataset in the background so that it’s ready and waiting for the training 
loop as soon as the loop can use it.
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 In the simplest case, the model will be running the required calculations on the 
local CPU or on a single GPU, so when the training loop has the data, computation 
can start immediately. It’s more common, however, to want to use specialized hard-
ware such as multiple GPUs or to have multiple machines contribute their resources 
to training the model. In those cases, torch.nn.DataParallel and torch.distrib-
uted can be employed to leverage the additional hardware available.

 When you have results from running your model on the training data, 
torch.optim provides standard ways of updating the model so that the output starts to 
more closely resemble the answers specified in the training data.

 As mentioned earlier, PyTorch defaults to an immediate execution model (eager 
mode). Whenever an instruction involving PyTorch is executed by the Python inter-
preter, the corresponding operation is immediately carried out by the underlying C++ 
or CUDA implementation. As more instructions operate on tensors, more operations 
are executed by the backend implementation. This process is as fast as it typically can 
be on the C++ side, but it incurs the cost of calling that implementation through 
Python. This cost is minute, but it adds up.

 To bypass the cost of the Python interpreter and offer the opportunity to run mod-
els independently from a Python runtime, PyTorch also provides a deferred execution 
model named TorchScript. Using TorchScript, PyTorch can serialize a set of instruc-
tions that can be invoked independently from Python. You can think of this model as 
being a virtual machine with a limited instruction set specific to tensor operations. 
Besides not incurring the costs of calling into Python, this execution mode gives 
PyTorch the opportunity to Just in Time (JIT) transform sequences of known opera-
tions into more efficient fused operations. These features are the basis of the produc-
tion deployment capabilities of PyTorch.

1.4.1 Hardware for deep learning

Running a pretrained network on new data is within the capabilities of any recent lap-
top or personal computer. Even retraining a small portion of a pretrained network to 
specialize it on a new data set doesn’t necessarily require specialized hardware. You 
can follow along with this book on a standard personal computer or laptop. We antici-
pate, however, that completing a full training run for more-advanced examples will 
require a CUDA-capable graphical processing unit (GPU), such as a GPU with 8GB of 
RAM (we suggest an NVIDIA GTX 1070 or better). But those parameters can be 
adjusted if your hardware has less RAM available.

 To be clear: such hardware isn’t mandatory if you’re willing to wait, but running on a 
GPU cuts training time by at least an order of magnitude (and usually is 40 to 50 times 
faster). Taken individually, the operations required to compute parameter updates are 
fast (from fractions of a second to a few seconds) on modern hardware such as a typical 
laptop CPU. The issue is that training involves running these operations over and over, 
many times, incrementally updating the network parameters to minimize training error.

 Moderately large networks can take hours to days to train from scratch on large, 
real-world data sets on workstations equipped with good GPUs. That time can be 
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reduced by using multiple GPUs on the same machine and even further by using clus-
ters of machines equipped with multiple GPUs. These setups are less prohibitive to 
access than they sound thanks to the offerings of cloud computing providers. DAWN-
Bench4 is an interesting initiative from Stanford University aimed at providing bench-
marks on training time and cloud computing costs related to common deep learning 
tasks on publicly available data sets.

 If you have a GPU around, great. Otherwise, we suggest checking out the offerings 
of the various cloud platforms, many of which offer GPU-enabled Jupyter notebooks 
with PyTorch preinstalled, often with a free quota.

 Last consideration: the operating system (OS). PyTorch has supported Linux and 
macOS from its first release and gained Windows support during 2018. Because current 
Apple laptops don’t include GPUs that support CUDA, the precompiled macOS pack-
ages for PyTorch are CPU-only. We try to avoid assuming that you run a particular OS; 
scripts’ command lines should convert to a Windows-compatible form readily. For con-
venience, whenever possible we list code as though it’s running on a Jupyter Notebook.

 For installation information, please see the Getting Started guide on the official 
website.5 We suggest that Windows users install with Anaconda or Miniconda. Other 
operating systems, such as Linux, typically have a wider variety of workable options, 
with Pip being one of the most common installers. Experienced users, of course, are 
free to install packages in the way that’s most compatible with their preferred develop-
ment environments.

1.4.2 Using Jupyter Notebooks

We’re going to assume that you have PyTorch and the other dependencies installed 
and have verified that things are working. We’re going to be making heavy use of Jupy-
ter Notebooks for example code. A Jupyter Notebook shows itself as a page in the 
browser through which you can run code interactively. The code gets evaluated by a 
kernel, a process running on a server that’s ready to receive code to execute and send 
back the results, which are rendered inline on the page. A notebook maintains the 
state of the kernel, such as variables defined during the evaluation of code, in memory 
until it’s terminated or restarted. The fundamental unit with which you interact with a 
notebook is a cell, a box on the page where you can type code and have the kernel 
evaluate it (by choosing the menu item or pressing Shift-Enter). You can add multiple 
cells to a notebook, and the new cells see the variables you created in the earlier cells. 
The value returned by the last line of a cell is printed below the cell after execution, 
and the same goes for plots. By mixing source code, results of evaluations, and Mark-
down-formatted text cells, you can generate beautiful interactive documents. You can 
read everything about Jupyter Notebooks on the project website.6

4 https://dawn.cs.stanford.edu/benchmark/index.html
5 https://pytorch.org/get-started/locally
6 https://jupyter.org
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 At this point, you’ll need to start the notebook server from the root directory of 
the code checkout from GitHub. How starting the server looks depends on the details 
of your operating system and on how and where you installed Jupyter. If you have 
questions, feel free to ask on our forums.7 When the notebook server starts, your 
default browser pops up, showing a list of local notebook files.

 Jupyter Notebooks are powerful tools for expressing and investigating ideas 
through code. Although we think that they make a good fit with our use case, they’re 
not for everyone. We would argue that it’s important to focus on removing friction 
and minimizing cognitive overhead, which is going to be different for everyone. Use 
what you like during your experimentation with PyTorch.

 You can find full working code for the listings in this book in our repository on 
GitHub.8

Exercises
� Start Python to get an interactive prompt.

– What Python version are you using: 2.x or 3.x?
– Can you import torch? What version of PyTorch do you get?
– What is the result of torch.cuda.is_available()? Does it match your 

expectation based on the hardware you’re using?
� Start the Jupyter Notebook server.

– What version of Python is Jupyter using?
– Is the location of the torch library used by Jupyter the same as the one you 

imported from the interactive prompt?

Summary
� Deep learning models automatically learn to associate inputs and desired out-

puts from examples.
� Libraries like PyTorch allow you to build and train neural network models 

efficiently.
� PyTorch minimizes cognitive overhead while focusing on flexibility and speed. 

It also defaults to immediate execution for operations.
� TorchScript is a precompiled deferred-execution mode that can be invoked 

from C++.
� Since the release of PyTorch in early 2017, the deep learning tooling ecosystem 

has consolidated significantly.
� PyTorch provides several utility libraries to facilitate deep learning projects.

7 https://forums.manning.com/forums/deep-learning-with-pytorch
8 https://github.com/deep-learning-with-pytorch/dlwpt-code
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It starts with a tensor

Deep learning enables many applications, which invariably consist of taking data in 
some form, such as images or text, and producing data in another form, such as 
labels, numbers, or more text. Taken from this angle, deep learning consists of 
building a system that can transform data from one representation to another. This 
transformation is driven by extracting commonalities from a series of examples that 
demonstrate the desired mapping. The system might note the general shape of a 
dog and the typical colors of a golden retriever, for example. By combining the two 
image properties, the system can correctly map images with a given shape and color 
to the golden-retriever label instead of a black lab (or a tawny tomcat, for that mat-
ter). The resulting system can consume broad swaths of similar inputs and produce 
meaningful output for those inputs.

 The first step of this process is converting the input into floating-point numbers, 
as you see in the first step of figure 2.1 (along with many other types of data). 

This chapter covers
� Tensors, the basic data structure in PyTorch
� Indexing and operating on PyTorch tensors to explore 

and manipulate data
� Interoperating with NumPy multidimensional arrays
� Moving computations to the GPU for speed
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Because a network uses floating-point numbers to deal with information, you need a 
way to encode real-world data of the kind you want to process into something that’s 
digestible by a network and then decode the output back to something you can under-
stand and use for a purpose.

 The transformation from one form of data to another is typically learned by a deep 
neural network in stages, which means that you can think of the partially transformed 
data between stages as being a sequence of intermediate representations. For image rec-
ognition, early representations can be things (like edge detection) or textures (like fur). 
Deeper representations can capture more-complex structures (like ears, noses, or eyes).

 In general, such intermediate representations are collections of floating-point 
numbers that characterize the input and capture the structure in the data, in a way 
that’s instrumental for describing how inputs are mapped to the outputs of the neural 
network. Such characterization is specific to the task at hand and is learned from rele-
vant examples. These collections of floating-point numbers and their manipulation 
are at the heart of modern AI. It’s important to keep in mind that these intermediate 
representations (such as the ones shown in the second step of figure 2.1) are the 
results of combining the input with the weights of the previous layer of neurons. Each 
intermediate representation is unique to the inputs that preceded it. 

Figure 2.1 A deep neural network learns how to transform an input representation to an output representation. 
(Note: The number of neurons and outputs is not to scale.)

 Before you can begin the process of converting data to floating-point input, you 
must have a solid understanding of how PyTorch handles and stores data: as input, as 
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intermediate representations, and as output. This chapter is devoted to providing pre-
cisely that understanding.

 To this end, PyTorch introduces a fundamental data structure: the tensor. For 
those who come from mathematics, physics, or engineering, the term tensor comes 
bundled with the notion of spaces, reference systems, and transformations between 
them. For everyone else, tensor refers to the generalization of vectors and matrices to 
an arbitrary number of dimensions, as shown in figure 2.2. Another name for the 
same concept is multidimensional arrays. The dimensionality of a tensor coincides with 
the number of indexes used to refer to scalar values within the tensor. 

Figure 2.2 Tensors are the building blocks for representing data in PyTorch

 PyTorch isn’t not the only library that deals with multidimensional arrays. NumPy 
is by far the most popular multidimensional-array library, to the point that it has argu-
ably become the lingua franca of data science. In fact, PyTorch features seamless 
interoperability with NumPy, which brings with it first-class integration with the rest of 
the scientific libraries in Python, such as SciPy1, Scikit-learn2, and Pandas3.

 Compared with NumPy arrays, PyTorch tensors have a few superpowers, such as 
the ability to perform fast operations on graphical processing units (GPUs), to distrib-
ute operations on multiple devices or machines, and to keep track of the graph of 
computations that created them. All these features are important in implementing a 
modern deep learning library.

 We start the chapter by introducing PyTorch tensors, covering the basics to set 
things in motion. We show you how to manipulate tensors by using the PyTorch tensor 
library, covering things such as how the data is stored in memory and how certain 
operations can be performed on arbitrarily large tensors in constant time; then we 
move on to the aforementioned NumPy interoperability and the GPU acceleration.

 Understanding the capabilities and API of tensors is important if they’re to be go-
to tools in your programming toolbox.

1 https://www.scipy.org
2 https://scikit-learn.org/stable
3 https://pandas.pydata.org
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2.1 Tensor fundamentals
You’ve already learned that tensors are the fundamental data structures in PyTorch. 
A tensor is an array—that is, a data structure storing collection of numbers that are 
accessible individually by means of an index and that can be indexed with multiple 
indices.

 Take a look at list indexing in action so that you can compare it with tensor 
indexing. The following listing shows a list of three numbers in Python.

# In[1]:
a = [1.0, 2.0, 1.0]

You can access the first element of the list by using the corresponding 0-based index:

# In[2]:
a[0]

# Out[2]:
1.0

# In[3]:
a[2] = 3.0
a

# Out[3]:
[1.0, 2.0, 3.0]

It’s not unusual for simple Python programs that deal with vectors of numbers, such as 
the coordinates of a 2D line, to use Python lists to store the vector. This practice can 
be suboptimal, however, for several reasons:

� Numbers in Python are full-fledged objects. Whereas a floating-point number might 
take only 32 bits to be represented on a computer, Python boxes them in a full-
fledged Python object with reference counting and so on. This situation isn’t a 
problem if you need to store a small number of numbers, but allocating mil-
lions of such numbers gets inefficient.

� Lists in Python are meant for sequential collections of objects. No operations are 
defined for, say, efficiently taking the dot product of two vectors or summing 
vectors. Also, Python lists have no way of optimizing the layout of their content 
in memory, as they’re indexable collections of pointers to Python objects (of 
any kind, not numbers alone). Finally, Python lists are one-dimensional, and 
although you can create lists of lists, again, this practice is inefficient.

� The Python interpreter is slow compared with optimized, compiled code. Performing 
mathematical operations on large collections of numerical data can be must 
faster using optimized code written in a compiled, low-level language like C.

For these reasons, data science libraries rely on NumPy or introduce dedicated data 
structures such as PyTorch tensors that provide efficient low-level implementations of 

Listing 2.1 code/p1ch3/1_tensors.ipynb
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numerical data structures and related operations on them, wrapped in a convenient 
high-level API.

 Many types of data—from images to time series, audio, and even sentences—can 
be represented by tensors. By defining operations over tensors, some of which you 
explore in this chapter, you can slice and manipulate data expressively and efficiently 
at the same time, even from a high-level (and not particularly fast) language such as 
Python.

 Now you’re ready to construct your first PyTorch tensor to see what it looks like. 
This tensor won’t be particularly meaningful for now, being three ones in a column:

# In[4]:
import torch
a = torch.ones(3)
a

# Out[4]:
tensor([1., 1., 1.])

# In[5]:
a[1]

# Out[5]:
tensor(1.)

# In[6]:
float(a[1])

# Out[6]:
1.0

# In[7]:
a[2] = 2.0
a

# Out[7]:
tensor([1., 1., 2.])

Now take a look at what you did here. After importing the torch module, you called a 
function that creates a (one-dimensional) tensor of size 3 filled with the value 1.0. 
You can access an element by using its 0-based index or assign a new value to it.

 Although on the surface, this example doesn’t differ much from a list of number 
objects, under the hood, things are completely different. Python lists or tuples of num-
bers are collections of Python objects that are individually allocated in memory, as 
shown on the left side of figure 2.3. PyTorch tensors or NumPy arrays, on the other 
hand, are views over (typically) contiguous memory blocks containing unboxed 
C numeric types, not Python objects. In this case, 32 bits (4 bytes) float, as you see on 
the right side of figure 2.3. So a 1D tensor of 1 million float numbers requires 4 million 
contiguous bytes to be stored, plus a small overhead for the metadata (dimensions, 
numeric type, and so on).



Figure 2.3 Python object (boxed) numeric values versus tensor (unboxed array) numeric values
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Suppose that you have a list of 2D coordinates that you’d like to manage to represent 
a geometrical object, such as a triangle. The example isn’t particularly pertinent to 
deep learning, but it’s easy to follow. Instead of having coordinates as numbers in a 
Python list, you can use a one-dimensional tensor by storing xs in the even indices and 
ys in the odd indices, like so:

# In[8]:
points = torch.zeros(6) 
points[0] = 1.0 
points[1] = 4.0
points[2] = 2.0
points[3] = 1.0
points[4] = 3.0
points[5] = 5.0

You can also pass a Python list to the constructor to the same effect

# In[9]:
points = torch.tensor([1.0, 4.0, 2.0, 1.0, 3.0, 5.0])
points

# Out[9]:
tensor([1., 4., 2., 1., 3., 5.])

to get the coordinates of the first point:
# In[10]:
float(points[0]), float(points[1])

# Out[10]:
(1.0, 4.0)

This technique is OK, although it would be practical to have the first index refer to 
individual 2D points rather than point coordinates. For this purpose, you can use a 2D 
tensor:

The use of .zeros here is a way to 
get an appropriately sized array.

Overwrite those zeros with 
the values you want.
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# In[11]:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
points

# Out[11]:
tensor([[1., 4.],
        [2., 1.],
        [3., 5.]])

Here, you passed a list of lists to the constructor. You can ask the tensor about its 
shape,

# In[12]:
points.shape

# Out[12]:
torch.Size([3, 2])

which informs you of the size of the tensor along each dimension. You could also use 
zeros or ones to initialize the tensor, providing the size as a tuple:

# In[13]:
points = torch.zeros(3, 2)
points

# Out[13]:
tensor([[0., 0.],
        [0., 0.],
        [0., 0.]])

Now you can access an individual element in the tensor by using two indices:

# In[14]:
points = torch.FloatTensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
points

# Out[14]:
tensor([[1., 4.],
        [2., 1.],
        [3., 5.]])

# In[15]:
points[0, 1]

# Out[15]:
tensor(4.)

This code returns the y coordinate of the 0th point in your data set. You can also 
access the first element in the tensor as you did before to get the 2D coordinates of 
the first point:

# In[16]:
points[0]

# Out[16]:
tensor([1., 4.])
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Note that what you get as the output is another tensor, but a 1D tensor of size 2 contain-
ing the values in the first row of the points tensor. Does this output mean that a new 
chunk of memory was allocated, values were copied into it, and the new memory was 
returned wrapped in a new tensor object? No, because that process would be ineffi-
cient, especially if you had millions of points. What you got back instead was a differ-
ent view of the same underlying data, limited to the first row.

2.2 Tensors and storages
In this section, you start getting hints about the implementation under the hood. Val-
ues are allocated in contiguous chunks of memory, managed by torch.Storage
instances. A storage is a one-dimensional array of numerical data, such as a contiguous 
block of memory containing numbers of a given type, perhaps a float or int32. 
A PyTorch Tensor is a view over such a Storage that’s capable of indexing into that 
storage by using an offset and per-dimension strides.

 Multiple tensors can index the same storage even if they index into the data differ-
ently. You can see an example in figure 2.4. In fact, when you requested points[0] in 
the last snippet, what you got back was another tensor that indexes the same storage as 
the points tensor, but not all of it and with different dimensionality (1D versus 2D). 
The underlying memory is allocated only once, however, so creating alternative tensor 
views on the data can be done quickly, regardless of the size of the data managed by 
the Storage instance. 

Figure 2.4 Tensors are views over a Storage instance

Next, you see how indexing into the storage works in practice with 2D points. You can 
access the storage for a given tensor by using the .storage property:
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# In[17]:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
points.storage()

# Out[17]:
 1.0
 4.0
 2.0
 1.0
 3.0
 5.0
[torch.FloatStorage of size 6]

Even though the tensor reports itself as having three rows and two columns, the stor-
age under the hood is a contiguous array of size 6. In this sense, the tensor knows how 
to translate a pair of indices into a location in the storage.

 You can also index into a storage manually:

# In[18]:
points_storage = points.storage()
points_storage[0]

# Out[18]:
1.0

# In[19]:
points.storage()[1]

# Out[19]:
4.0

You can’t index a storage of a 2D tensor by using two indices. The layout of a storage is 
always one-dimensional, irrespective of the dimensionality of any tensors that may 
refer to it.

 At this point, it shouldn’t come as a surprise that changing the value of a storage 
changes the content of its referring tensor:

# In[20]:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
points_storage = points.storage()
points_storage[0] = 2.0
points

# Out[20]:
tensor([[2., 4.],
        [2., 1.],
        [3., 5.]])

You’ll seldom, if ever, use storage instances directly, but understanding the relation-
ship between a tensor and the underlying storage is useful for understanding the cost 
(or lack thereof) of certain operations later. This mental model is a good one to keep 
in mind when you want to write effective PyTorch code.
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2.3 Size, storage offset, and strides
To index into a storage, tensors rely on a few pieces of information that, together with 
their storage, unequivocally define them: size, storage offset, and stride (figure 2.5). 
The size (or shape, in NumPy parlance) is a tuple indicating how many elements across 
each dimension the tensor represents. The storage offset is the index in the storage that 
corresponds to the first element in the tensor. The stride is the number of elements in 
the storage that need to be skipped to obtain the next element along each dimension.

Figure 2.5 Relationship among a tensor’s offset, size, and stride

You can get the second point in the tensor by providing the corresponding index:

# In[21]:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
second_point = points[1]
second_point.storage_offset()

# Out[21]:
2

# In[22]:
second_point.size()

# Out[22]:
torch.Size([2])
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The resulting tensor has offset 2 in the storage (because we need to skip the first 
point, which has two items) and the size is an instance of the Size class containing 
one element because the tensor is one-dimensional. Important note: this information 
is the same information contained in the shape property of tensor objects:

# In[23]:
second_point.shape

# Out[23]:
torch.Size([2])

Last, stride is a tuple indicating the number of elements in the storage that have to be 
skipped when the index is increased by 1 in each dimension. Your points tensor, for 
example, has a stride:

# In[24]:
points.stride()

# Out[24]:
(2, 1)

Accessing an element i, j in a 2D tensor results in accessing the storage_offset + 
stride[0] * i + stride[1] * j element in the storage. The offset will usually be 
zero; if this tensor is a view into a storage created to hold a larger tensor the offset 
might be a positive value.

 This indirection between Tensor and Storage leads some operations, such as 
transposing a tensor or extracting a subtensor, to be inexpensive, as they don’t lead to 
memory reallocations; instead, they consist of allocating a new tensor object with a dif-
ferent value for size, storage offset, or stride.

 You saw how to extract a subtensor when you indexed a specific point and saw the 
storage offset increasing. Now see what happens to size and stride:

# In[25]:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
second_point = points[1]
second_point.size()

# Out[25]:
torch.Size([2])

# In[26]:
second_point.storage_offset()

# Out[26]:
2

# In[27]:
second_point.stride()

# Out[27]:
(1,)
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Bottom line, the subtensor has one fewer dimension (as you’d expect) while still 
indexing the same storage as the original points tensor. Changing the subtensor has a 
side effect on the original tensor too:

# In[28]:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
second_point = points[1]
second_point[0] = 10.0
points

# Out[28]:
tensor([[ 1.,  4.],
        [10.,  1.],
        [ 3.,  5.]])

This effect may not always be desirable, so you can eventually clone the subtensor into 
a new tensor:

# In[29]:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
second_point = points[1].clone()
second_point[0] = 10.0
points

# Out[29]:
tensor([[1., 4.],
        [2., 1.],
        [3., 5.]])

Try transposing now. Take your points tensor, which has individual points in the rows 
and x and y coordinates in the columns, and turn it around so that individual points 
are along the columns:

# In[30]:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
points

# Out[30]:
tensor([[1., 4.],
        [2., 1.],
        [3., 5.]])

# In[31]:
points_t = points.t()
points_t

# Out[31]:
tensor([[1., 2., 3.],
        [4., 1., 5.]])

You can easily verify that the two tensors share storage

# In[32]:
id(points.storage()) == id(points_t.storage())

# Out[32]:
True
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and that they differ only in shape and stride:

# In[33]:
points.stride()

# Out[33]:
(2, 1)
# In[34]:
points_t.stride()

# Out[34]:
(1, 2)

This result tells you that increasing the first index by 1 in points—that is, going from 
points[0,0] to points[1,0]—skips along the storage by two elements, and that 
increasing the second index from points[0,0] to points[0,1] skips along the stor-
age by one. In other words, the storage holds the elements in the tensor sequentially 
row by row.

 You can transpose points into points_t as shown in figure 2.6. You change the 
order of the elements in the stride. After that, increasing the row (the first index of 
the tensor) skips along the storage by 1, as when you were moving along columns in 
points. This is the definition of transposing. No new memory is allocated: transpos-
ing is obtained only by creating a new Tensor instance with different stride ordering 
from the original.

Figure 2.6 Transpose operation applied to a tensor
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Transposing in PyTorch isn’t limited to matrices. You can transpose a multidimen-
sional array by specifying the two dimensions along which transposing (such as flip-
ping shape and stride) should occur:

# In[35]:
some_tensor = torch.ones(3, 4, 5)
some_tensor_t = some_tensor.transpose(0, 2)
some_tensor.shape

# Out[35]:
torch.Size([3, 4, 5])

# In[36]:
some_tensor_t.shape

# Out[36]:
torch.Size([5, 4, 3])

# In[37]:
some_tensor.stride()

# Out[37]:
(20, 5, 1)

# In[38]:
some_tensor_t.stride()

# Out[38]:
(1, 5, 20)

A tensor whose values are laid out in the storage starting from the rightmost dimen-
sion onward (moving along rows for a 2D tensor, for example) is defined as being con-
tiguous. Contiguous tensors are convenient because you can visit them efficiently and 
in order without jumping around in the storage. (Improving data locality improves 
performance because of the way memory access works in modern CPUs.)

 In this case, points is contiguous but its transpose is not:

# In[39]:
points.is_contiguous()

# Out[39]:
True

# In[40]:
points_t.is_contiguous()

# Out[40]:
False

You can obtain a new contiguous tensor from a noncontiguous one by using the con-
tiguous method. The content of the tensor stays the same, but the stride changes, as 
does the storage:
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# In[41]:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
points_t = points.t()
points_t

# Out[41]:
tensor([[1., 2., 3.],
        [4., 1., 5.]])

# In[42]:
points_t.storage()

# Out[42]:
 1.0
 4.0
 2.0
 1.0
 3.0
 5.0
[torch.FloatStorage of size 6]

# In[43]:
points_t.stride()

# Out[43]:
(1, 2)

# In[44]:
points_t_cont = points_t.contiguous()
points_t_cont

# Out[44]:
tensor([[1., 2., 3.],
        [4., 1., 5.]])

# In[45]:
points_t_cont.stride()

# Out[45]:
(3, 1)

# In[46]:
points_t_cont.storage()

# Out[46]:
 1.0
 2.0
 3.0
 4.0
 1.0
 5.0
[torch.FloatStorage of size 6]

Notice that the storage has been reshuffled for elements to be laid out row by row in 
the new storage. The stride has been changed to reflect the new layout.
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2.4 Numeric types
All right, you know the basics of how tensors work. But we haven’t touched on the 
numeric types you can store in a Tensor. The dtype argument to tensor constructors 
(that is, functions such as tensor, zeros, and ones) specifies the numerical data type 
that will be contained in the tensor. The data type specifies the possible values that the 
tensor can hold (integers versus floating-point numbers) and the number of bytes per 
value.4 The dtype argument is deliberately similar to the standard NumPy argument 
of the same name. Here’s a list of the possible values for the dtype argument:

� torch.float32 or torch.float—32-bit floating-point
� torch.float64 or torch.double—64-bit, double-precision floating-point
� torch.float16 or torch.half—16-bit, half-precision floating-point
� torch.int8—Signed 8-bit integers
� torch.uint8—Unsigned 8-bit integers
� torch.int16 or torch.short—Signed 16-bit integers
� torch.int32 or torch.int—Signed 32-bit integers
� torch.int64 or torch.long—Signed 64-bit integers

Each of torch.float, torch.double, and so on has a corresponding concrete class of 
torch.FloatTensor, torch.DoubleTensor, and so on. The class for  torch.int8  is 
torch.CharTensor, and the class for  torch.uint8  is torch.ByteTensor. torch.Ten-
sor is an alias for torch.FloatTensor. The default data type is 32-bit floating-point.

 To allocate a tensor of the right numeric type, you can specify the proper dtype as 
an argument to the constructor, as follows:

# In[47]:
double_points = torch.ones(10, 2, dtype=torch.double)
short_points = torch.tensor([[1, 2], [3, 4]], dtype=torch.short)

You can find out about the dtype for a tensor by accessing the corresponding attri-
bute:

# In[48]:
short_points.dtype

# Out[48]:
torch.int16

You can also cast the output of a tensor-creation function to the right type by using the 
corresponding casting method, such as

# In[49]:
double_points = torch.zeros(10, 2).double()
short_points = torch.ones(10, 2).short()

4 And signedness, in the case of uint8
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or the more convenient to method:

# In[50]:
double_points = torch.zeros(10, 2).to(torch.double)
short_points = torch.ones(10, 2).to(dtype=torch.short)

Under the hood, type and to perform the same type check-and-convert-if-needed 
operation, but the to method can take additional arguments.

 You can always cast a tensor of one type as a tensor of another type by using the 
type method:

# In[51]:
points = torch.randn(10, 2) 
short_points = points.type(torch.short)

2.5 Indexing tensors
You’ve seen that points[0] returns a tensor containing the 2D point at the first row of 
the tensor. What if you need to obtain a tensor that contains all points but the first? 
That task is easy when you use range indexing notation, the same kind that applies to 
standard Python lists:

# In[53]:

From element 1 
inclusive to 

element 4 exclusive 
in steps of 2

some_list = list(range(6))
some_list[:]     
some_list[1:4]   
some_list[1:]    
some_list[:4]    
some_list[:-1]  
some_list[1:4:2] 

To achieve your goal, you can use the same notation for PyTorch tensors, with the 
added benefit that as in NumPy and in other Python scientific libraries, we can use 
range indexing for each dimension of the tensor:

# In[54]:
points[1:]  
points[1:, :]    
points[1:, 0]  

All rows after first, first column

In addition to using ranges, PyTorch features a powerful form of indexing called 
advanced indexing. 

2.6 NumPy interoperability
Although we don’t consider experience in NumPy to be a prerequisite for reading this 
book, we strongly encourage you to get familiar with NumPy due to its ubiquity in the 
Python data science ecosystem. PyTorch tensors can be converted to NumPy arrays 
and vice versa efficiently. By doing so, you can leverage the huge swath of functionality 
in the wider Python ecosystem that has built up around the NumPy array type. This 

randn initializes the tensor elements to 
random numbers between 0 and 1. 

All elements 
in the list

From element 1 inclusive 
to element 4 exclusive

From element 1 inclusive 
to the end of the list

From the start of the list 
to element 4 exclusiveFrom the start of the list to 

one before the last element

All rows after first, implicitly all columnsAll rows 
after first, 

all columns
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zero-copy interoperability with NumPy arrays is due to the storage system that works 
with the Python buffer protocol.5

 To get a NumPy array out of your points tensor, call

# In[55]:
points = torch.ones(3, 4)
points_np = points.numpy()
points_np

# Out[55]:
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.]], dtype=float32)

which returns a NumPy multidimensional array of the right size, shape, and numeri-
cal type. Interestingly, the returned array shares an underlying buffer with the tensor 
storage. As a result, the numpy method can be executed effectively at essentially no cost 
as long as the data sits in CPU RAM, and modifying the NumPy array leads to a change 
in the originating tensor.

 If the tensor is allocated on the GPU, PyTorch makes a copy of the content of the 
tensor into a NumPy array allocated on the CPU.

 Conversely, you can obtain a PyTorch tensor from a NumPy array this way

# In[56]:
points = torch.from_numpy(points_np)

which uses the same buffer-sharing strategy.

2.7 Serializing tensors
Creating a tensor on the fly is all well and good, but if the data inside it is of any value 
to you, you want to save it to a file and load it back at some point. After all, you don’t 
want to have to retrain a model from scratch every time you start running your pro-
gram! PyTorch uses pickle under the hood to serialize the tensor object, as well as 
dedicated serialization code for the storage. Here’s how you can save your points ten-
sor to a ourpoints.t file:

# In[57]:
torch.save(points, '../data/p1ch3/ourpoints.t')

As an alternative, you can pass a file descriptor in lieu of the filename:

# In[58]:
with open('../data/p1ch3/ourpoints.t','wb') as f:
   torch.save(points, f)

Loading your points back is similarly a one-liner:

# In[59]:
points = torch.load('../data/p1ch3/ourpoints.t')

5 https://docs.python.org/3/c-api/buffer.html
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The equivalent is

# In[60]:
with open('../data/p1ch3/ourpoints.t','rb') as f:
   points = torch.load(f)

This technique allows you to save tensors quickly in case you only want to load them 
with PyTorch, but the file format itself isn’t interoperable. You can’t read the tensor 
with software other than PyTorch. Depending on the use case, this situation may not 
be a limitation, but you should learn how to save tensors interoperably for those times 
when it is. Although every use case is unique, we suspect that this one will be more 
common when you introduce PyTorch into existing systems that already rely on differ-
ent libraries. New projects probably won’t need to save tensors interoperably as often.

 For those cases when you need to, however, you can use the HDF5 format and 
library.6 HDF5 is a portable, widely supported format for representing serialized multi-
dimensional arrays, organized in a nested key-value dictionary. Python supports HDF5 
through the h5py library7, which accepts and returns data under the form of NumPy 
arrays.

 You can install h5py by using

$ conda install h5py

At this point, you can save your points tensor by converting it to a NumPy array (at no 
cost, as noted earlier) and passing it to the create_dataset function:

# In[61]:
import h5py

f = h5py.File('../data/p1ch3/ourpoints.hdf5', 'w')
dset = f.create_dataset('coords', data=points.numpy())
f.close()

Here, 'coords' is a key into the HDF5 file. You can have other keys, even nested ones. 
One interesting thing in HDF5 is that you can index the data set while on disk and 
access only the elements you’re interested in. Suppose that you want to load only the 
last two points in your data set:

# In[62]:
f = h5py.File('../data/p1ch3/ourpoints.hdf5', 'r')
dset = f['coords']
last_points = dset[1:]

Here, data wasn’t loaded when the file was opened or the data set was required. 
Rather, data stayed on disk until you requested the second and last rows in the data 
set. At that point, h5py accessed those two columns and returned a NumPy array-like 
object encapsulating that region in that data set that behaves like a NumPy array and 
has the same API.

6 https://www.hdfgroup.org/solutions/hdf5
7 http://www.h5py.org
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 Owing to this fact, you can pass the returned object to the torch.from_numpy func-
tion to obtain a tensor directly. Note that in this case, the data is copied over to the 
tensor’s storage:

# In[63]:
last_points = torch.from_numpy(dset[1:])
f.close()
>>> last_points = torch.from_numpy(dset[1:])

When you finish loading data, close the file.

2.8 Moving tensors to the GPU
One last point about PyTorch tensors is related to computing on the GPU. Every 
Torch tensor can be transferred to a GPUs to perform fast, massively parallel compu-
tations. All operations to be performed on the tensor are carried out by GPU-specific 
routines that come with PyTorch.

NOTE As of early 2019, main PyTorch releases have acceleration only on 
GPUs that have support for CUDA. Proof-of-concept versions of PyTorch run-
ning on AMD’s ROCm8 platform exist, but full support hasn’t been merged 
into PyTorch as of version 1.0. Support for Google’s TPUs is a work in prog-
ress9, with the current proof of concept available to the public in Google 
Colab.10 Implementation of data structures and kernels on other GPU tech-
nology, such as OpenCL, wasn’t planned at the time we wrote this chapter.

In addition to the dtype, a PyTorch tensor has a notion of device, which is where on 
the computer the tensor data is being placed. Here’s how to create a tensor on the 
GPU by specifying the corresponding argument to the constructor:

# In[64]:
points_gpu = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 4.0]], 

device='cuda')

You could instead copy a tensor created on the CPU to the GPU by using the to
method:

# In[65]:
points_gpu = points.to(device='cuda')

This code returns a new tensor that has the same numerical data but is stored in the 
RAM of the GPU rather than in regular system RAM.

 Now that the data is stored locally on the GPU, you start to see speedups when per-
forming mathematical operations on the tensor. Also, the class of this new GPU-backed 
tensor changes to torch.cuda.FloatTensor. (Given the starting type of torch.Float-
Tensor; the corresponding set of torch.cuda.DoubleTensor and so on exists.) In 
almost all cases, CPU- and GPU-based tensors expose the same user-facing API, making 

8 https://rocm.github.io
9 https://github.com/pytorch/xla
10 https://colab.research.google.com
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it much easier to write code that is agnostic to where the heavy number-crunching pro-
cess is running.

 In case your machine has more than one GPU, you can decide which GPU to allo-
cate the tensor to by passing a zero-based integer identifying the GPU on the 
machine:

# In[66]:
points_gpu = points.to(device='cuda:0')

At this point, any operation performed on the tensor, such as multiplying all elements 
by a constant, is carried out on the GPU:

# In[67]:
points = 2 * points  
points_gpu = 2 * points.to(device='cuda')  Multiplication performed on the GPU

Note that the points_gpu tensor isn’t brought back to the CPU when the result has 
been computed. Here’s what happened:

1 The points tensor was copied to the GPU.
2 A new tensor was allocated on the GPU and used to store the result of the mul-

tiplication.
3 A handle to that GPU tensor was returned.

Therefore, if you also add a constant to the result,

# In[68]:
points_gpu = points_gpu + 4

the addition is still performed on the GPU, and no information flows to the CPU 
(except if you print or access the resulting tensor). To move the tensor back to the 
CPU, you need to provide a cpu argument to the to method:

# In[69]:
points_cpu = points_gpu.to(device='cpu')

You can use the shorthand methods cpu and cuda instead of the to method to achieve 
the same goal:

# In[70]:
points_gpu = points.cuda() 
points_gpu = points.cuda(0)
points_cpu = points_gpu.cpu()

It’s worth mentioning that when you use the to method, you can change the place-
ment and the data type simultaneously by providing device and dtype as arguments.

2.9 The tensor API
At this point, you know what PyTorch tensors are and how they work under the hood. 
Before we wrap up this chapter, we’ll take a look at the tensor operations that PyTorch 
offers. It would be of little use to list all of them all here. Instead, we’re going to give 
you a general feel for the API and show you where to find things in the online docu-
mentation at http://pytorch.org/docs.

Multiplication performed on the CPU

Defaults to GPU index 0
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 First, the vast majority of operations on and between tensors are available under 
the torch module and can also be called as methods of a tensor object. The trans-
pose function that you encountered earlier, for example, can be used from the torch
module

# In[71]:
a = torch.ones(3, 2)
a_t = torch.transpose(a, 0, 1)

or as a method of the a tensor:

# In[72]:
a = torch.ones(3, 2)
a_t = a.transpose(0, 1)

No difference exists between the two forms, which can be used interchangeably. 
A caveat, though: a small number of operations exist only as methods of the tensor 
object. They’re recognizable by the trailing underscore in their name, such as zero_, 
which indicates that the method operates in-place by modifying the input instead of 
creating a new output tensor and returning it. The zero_ method, for example, zeros 
out all the elements of the input. Any method without the trailing underscore leaves 
the source tensor unchanged and returns a new tensor:

# In[73]:
a = torch.ones(3, 2)

# In[74]:
a.zero_()
a

# Out[74]:
tensor([[0., 0.],
        [0., 0.],
        [0., 0.]])

Earlier, we mentioned the online docs11, which are exhaustive and well organized with 
the tensor operations divided into groups:

� Creation ops—Functions for constructing a tensor, such as ones and from_numpy
� Indexing, slicing, joining, and mutating ops—Functions for changing the shape, 

stride, or content of a tensor, such as transpose
� Math ops—Functions for manipulating the content of the tensor through com-

putations:
– Pointwise ops—Functions for obtaining a new tensor by applying a function to 

each element independently, such as abs and cos
– Reduction ops—Functions for computing aggregate values by iterating through 

tensors, such as mean, std, and norm

11 http://pytorch.org/docs



37The tensor API

– Comparison ops—Functions for evaluating numerical predicates over tensors, 
such as equal and max

– Spectral ops—Functions for transforming in and operating in the frequency 
domain, such as stft and hamming_window

– Other ops—Special functions operating on vectors, such as cross, or matrices, 
such as trace

– BLAS and LAPACK ops—Functions that follow the BLAS (Basic Linear Alge-
bra Subprograms) specification for scalar, vector-vector, matrix-vector, and 
matrix-matrix operations

� Random sampling ops—Functions for generating values by drawing randomly 
from probability distributions, such as randn and normal

� Serialization ops—Functions for saving and loading tensors, such as load and 
save

� Parallelism ops—Functions for controlling the number of threads for parallel 
CPU execution, such as set_num_threads

It’s useful to play with the general tensor API. This chapter should provide all the pre-
requisites for this kind of interactive exploration.

Exercises
� Create a tensor a from list(range(9)). Predict then check what the size, off-

set, and strides are.
� Create a tensor b = a.view(3, 3). What is the value of b[1,1]?
� Create a tensor c = b[1:,1:]. Predict then check what the size, offset, and 

strides are.
� Pick a mathematical operation like cosine or square root. Can you find a corre-

sponding function in the torch library?
� Is there a version of your function that operates in-place?

Summary
� Neural networks transform floating-point representations into other floating-

point representations, with the starting and ending representations typically 
being human-interpretable. The intermediate representations are less so.

� These floating-point representations are stored in tensors.
� Tensors are multidimensional arrays and the basic data structure in PyTorch.
� PyTorch has a comprehensive standard library for tensor creation and manipu-

lation and for mathematical operations.
� Tensors can be serialized to disk and loaded back.
� All tensor operations in PyTorch can execute on the CPU as well as on the GPU 

with no change in the code.
� PyTorch uses a trailing underscore to indicate that a function operates in-place 

on a tensor (such as Tensor.sqrt_).
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Real-world data 
representation with tensors

Tensors are the building blocks for data in PyTorch. Neural networks take tensors 
in input and produce tensors as outputs. In fact, all operations within a neural net-
work and during optimization are operations between tensors, and all parameters 
(such as weights and biases) in a neural network are tensors. Having a good sense 
of how to perform operations on tensors and index them effectively is central to 
using tools like PyTorch successfully. Now that you know the basics of tensors, your 
dexterity with them will grow.

This chapter covers
� Representing different types of real-world data as 

PyTorch tensors
� Working with range of data types, including 

spreadsheet, time series, text, image, and medical 
imaging

� Loading data from file
� Converting data to tensors
� Shaping tensors so that they can be used as inputs for 

neural network models
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 We can address one question at this point: how do you take a piece of data, a video, 
or text, and represent it with a tensor, and do that in a way that’s appropriate for train-
ing a deep learning model?

 The answer is what you’ll learn in this chapter. We cover different types of data and 
show you how to get them represented as tensors. Then we show you how to load the 
data from the most common on-disk formats and also get a feeling for those data types 
structure so that you can see how to prepare them for training a neural network. 
Often, your raw data won’t be perfectly formed for the problem you’d like to solve, so 
you’ll have a chance to practice your tensor manipulation skills on a few more inter-
esting tensor operations. You’ll be using a lot of image and volumetric data because 
those data types are common and reproduce well in book format. We also cover tabu-
lar data, time series, and text, which are also of interest to many readers.

 Each section of the chapter describes a data type, and each comes with its own data 
set. Although we’ve structured the chapter so that each data type builds on the pre-
ceding one, you should feel free to skip around a bit if you’re so inclined.

 We start with tabular data of data about wines, as you’d find in a spreadsheet. Next, 
we move to ordered tabular data, with a time-series data set from a bike-sharing pro-
gram. After that, we show you how to work with text data from Jane Austen. Text data 
retains the ordered aspect but introduces the problem of representing words as arrays 
of numbers. Because a picture is worth a thousand words, we demonstrate how to 
work with image data. Finally, we dip into medical data with a 3D array that represents 
a volume containing patient anatomy.

 In every section, we stop where a deep learning researcher would start: right 
before feeding the data to a model. We encourage you to keep these data sets around. 
They’ll constitute excellent material when you start learning how to train neural net-
work models.

3.1 Tabular data
The simplest form of data you’ll encounter in your machine learning job is sitting in a 
spreadsheet, in a CSV (comma-separated values) file, or in a database. Whatever the 
medium, this data is a table containing one row per sample (or record), in which col-
umns contain one piece of information about the sample.

 At first, assume that there’s no meaning in the order in which samples appear in 
the table. Such a table is a collection of independent samples, unlike a time-series, in 
which samples are related by a time dimension.

 Columns may contain numerical values, such as temperatures at specific locations, 
or labels, such as a string expressing an attribute of the sample (like "blue"). There-
fore, tabular data typically isn’t homogeneous; different columns don’t have the same 
type. You might have a column showing the weight of apples and another encoding 
their color in a label.

 PyTorch tensors, on the other hand, are homogeneous. Other data science pack-
ages, such as Pandas, have the concept of the data frame, an object representing a data 
set with named, heterogenous columns. By contrast, information in PyTorch is encoded 
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as a number, typically floating-point (though integer types are supported as well). 
Numeric encoding is deliberate, because neural networks are mathematical entities that 
take real numbers as inputs and produce real numbers as output through successive 
application of matrix multiplications and nonlinear functions.

 Your first job as a deep learning practitioner, therefore, is to encode heterogenous, 
real-world data in a tensor of floating-point numbers, ready for consumption by a neu-
ral network.

 A large number of tabular data sets is freely available on the internet. See 
https://github.com/caesar0301/awesome-public-data sets, for example.

 We start with something fun: wine. The Wine Quality data set is a freely available 
table containing chemical characterizations of samples of vinho verde (a wine from 
northern Portugal) together with a sensory quality score. You can download the data set 
for white wines at https://archive.ics.uci.edu/ml/machine-learning-databases/wine-
quality/winequality-white.csv. For convenience, we created a copy of the data set on the 
Deep Learning with PyTorch Git repository, under data/p1ch4/tabular-wine.

 The file contains a comma-separated collection of values organized in 12 columns 
preceded by a header line containing the column names. The first 11 columns con-
tain values of chemical variables; the last column contains the sensory quality score 
from 0 (worst) to 10 (excellent). Following are the column names in the order in 
which they appear in the data set:

fixed acidity
volatile acidity
citric acid
residual sugar
chlorides
free sulfur dioxide
total sulfur dioxide
density
pH
sulphates
alcohol
quality

A possible machine learning task on this data set is predicting the quality score from 
chemical characterization alone. Don’t worry, though—machine learning isn’t going 
to kill wine tasting anytime soon. We have to get the training data from somewhere!

 As shown in figure 3.1, you hope to find a relationship between one of the chemi-
cal columns in your data and the quality column. Here, you’re expecting to see quality 
increase as sulfur decreases. 

 Before you can get to that observation, however, you need to be able to examine 
the data in a more usable way than opening the file in a text editor. We’ll show you 
how to load the data by using Python and then turn it into a PyTorch tensor.

 Python offers several options for loading a CSV file quickly. Three popular options are

� The csv module that ships with Python
� NumPy
� Pandas



Figure 3.1 The relationship between sulfur and quality in wine
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The third option is the most time- and memory-efficient, but we’ll avoid introducing 
an additional library into your learning trajectory merely to load a file. Because we’ve 
already introduced NumPy and PyTorch has excellent NumPy interoperability, you’ll 
go with it. Load your file and turn the resulting NumPy array into a PyTorch tensor, as 
shown in the following listing.

# In[2]:
import csv
wine_path = "../data/p1ch4/tabular-wine/winequality-white.csv"
wineq_numpy = np.loadtxt(wine_path, dtype=np.float32, delimiter=";", 

skiprows=1)
wineq_numpy

# Out[2]:
array([[ 7.  ,  0.27,  0.36, ...,  0.45,  8.8 ,  6.  ],
       [ 6.3 ,  0.3 ,  0.34, ...,  0.49,  9.5 ,  6.  ],
       [ 8.1 ,  0.28,  0.4 , ...,  0.44, 10.1 ,  6.  ],
       ...,
       [ 6.5 ,  0.24,  0.19, ...,  0.46,  9.4 ,  6.  ],
       [ 5.5 ,  0.29,  0.3 , ...,  0.38, 12.8 ,  7.  ],
       [ 6.  ,  0.21,  0.38, ...,  0.32, 11.8 ,  6.  ]], dtype=float32)

Here, you prescribed the type of the 2D array (32-bit floating-point) and the delimiter 
used to separate values in each row, and stated that the first line shouldn’t be read 
because it contains the column names. Next, check that all the data has been read,

Listing 3.1 code/p1ch4/1_tabular_wine.ipynb
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# In[3]:
col_list = next(csv.reader(open(wine_path), delimiter=';'))

wineq_numpy.shape, col_list

# Out[3]:
((4898, 12),
 ['fixed acidity',
  'volatile acidity',
  'citric acid',
  'residual sugar',
  'chlorides',
  'free sulfur dioxide',
  'total sulfur dioxide',
  'density',
  'pH',
  'sulphates',
  'alcohol',
  'quality'])

and proceed to convert the NumPy array to a PyTorch tensor:

# In[4]:
wineq = torch.from_numpy(wineq_numpy)

wineq.shape, wineq.type()

# Out[4]:
(torch.Size([4898, 12]), 'torch.FloatTensor')

At this point, you have a torch.FloatTensor containing all columns, including the 
last, which refers to the quality score.  

Interval, ordinal, and categorical values
You should be aware of three kinds of numerical values as you attempt to make 
sense of your data.

The first kind is continuous values. These values are the most intuitive when repre-
sented as numbers; they’re strictly ordered, and a difference between various values 
has a strict meaning. Stating that package A is 2 kilograms heavier than package B 
or that package B came from 100 miles farther away than package A has a fixed 
meaning, no matter whether package A weighs 3 kilograms or 10, or whether B came 
from 200 miles away or 2,000. If you’re counting or measuring something with units, 
the value probably is a continuous value.

Next are ordinal values. The strict ordering of continuous values remains, but the fixed 
relationship between values no longer applies. A good example is ordering a small, 
medium, or large drink, with small mapped to the value 1, medium to 2, and large to 3. 
The large drink is bigger than the medium, in the same way that 3 is bigger than 2, but 
it doesn’t tell you anything about how much bigger. If you were to convert 1, 2, and 3 to 
the actual volumes (say, 8, 12, and 24 fluid ounces), those values would switch to inter-
val values. It’s important to remember that you can’t do math on the values beyond order-
ing them; trying to average large=3 and small=1 does not result in a medium drink!
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You could treat the score as a continuous variable, keep it as a real number, and per-
form a regression task, or treat it as a label and try to guess such label from the chemi-
cal analysis in a classification task. In both methods, you typically remove the score 
from the tensor of input data and keep it in a separate tensor, so that you can use the 
score as the ground truth without it being input to your model:
# In[5]:
data = wineq[:, :-1] 
data, data.shape

# Out[5]:
(tensor([[ 7.0000,  0.2700,  ...,  0.4500,  8.8000],
         [ 6.3000,  0.3000,  ...,  0.4900,  9.5000],
         ...,
         [ 5.5000,  0.2900,  ...,  0.3800, 12.8000],
         [ 6.0000,  0.2100,  ...,  0.3200, 11.8000]]), torch.Size([4898, 

11]))

# In[6]:
target = wineq[:, -1] 
target, target.shape

# Out[6]:
(tensor([6., 6.,  ..., 7., 6.]), torch.Size([4898]))

If you want to transform the target tensor in a tensor of labels, you have two options, 
depending on the strategy or how you want to use the categorical data. One option is 
to treat a label as an integer vector of scores:

# In[7]:
target = wineq[:, -1].long()
target

# Out[7]:
tensor([6, 6,  ..., 7, 6])

If targets were string labels (such as wine color), assigning an integer number to each 
string would allow you to follow the same approach.

 The other approach is to build a one-hot encoding of the scores—that is, encode 
each of the ten scores in a vector of ten elements, with all elements set to zero but 
one, at a different index for each score. This way, a score of 1 could be mapped to the 
vector (1,0,0,0,0,0,0,0,0,0), a score of 5 to (0,0,0,0,1,0,0,0,0,0) and so on. 

(continued)
Finally, categorical values have neither ordering nor numerical meaning. These values 
are often enumerations of possibilities, assigned arbitrary numbers. Assigning water to 
1, coffee to 2, soda to 3, and milk to 4 is a good example. Placing water first and milk 
last has no real logic; you simply need distinct values to differentiate them. You could 
assign coffee to 10 and milk to –3 with no significant change (although assigning values 
in the range 0..N-1 will have advantages when we discuss one-hot encoding later).

Select all rows and all 
columns except the last.

Select all rows and 
the last column.
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The fact that the score corresponds to the index of the nonzero element is purely inci-
dental; you could shuffle the assignment, and nothing would change from a classifica-
tion standpoint.

 The two approaches have marked differences. Keeping wine-quality scores in an 
integer vector of scores induces an ordering of the scores, which may be appropriate 
in this case because a score of 1 is lower than a score of 4. It also induces some dis-
tance between scores. (The distance between 1 and 3 is the same as the distance 
between 2 and 4, for example.) If this holds for your quantity, great. If, on the other 
hand, scores are purely qualitative, such as color, one-hot encoding is a much better 
fit, as no implied ordering or distance is involved. One-hot encoding is appropriate 
for quantitative scores when fractional values between integer scores (such as 2.4) 
make no sense for the application (when score is either this or that).

 You can achieve one-hot encoding by using the scatter_ method, which fills the 
tensor with values from a source tensor along the indices provided as arguments.

# In[8]:
target_onehot = torch.zeros(target.shape[0], 10)

target_onehot.scatter_(1, target.unsqueeze(1), 1.0)

# Out[8]:
tensor([[0., 0.,  ..., 0., 0.],
        [0., 0.,  ..., 0., 0.],
        ...,
        [0., 0.,  ..., 0., 0.],
        [0., 0.,  ..., 0., 0.]])

Now take a look at what scatter_ does. First, notice that its name ends with an under-
score. This convention in PyTorch indicates that the method won’t return a new ten-
sor but modify the tensor in place. The arguments for scatter_ are

� The dimension along which the following two arguments are specified
� A column tensor indicating the indices of the elements to scatter
� A tensor containing the elements to scatter or a single scalar to scatter (1, in 

this case)

In other words, the preceding invocation reads this way: “For each row, take the index of 
the target label (which coincides with the score in this case), and use it as the column 
index to set the value 1.0. The result is a tensor encoding categorical information.”

 The second argument of scatter_, the index tensor, is required to have the same 
number of dimensions as the tensor you scatter into. Because target_onehot has two 
dimensions (4898x10), you need to add an extra dummy dimension to target by 
using unsqueeze:

# In[9]:
target_unsqueezed = target.unsqueeze(1)
target_unsqueezed

# Out[9]:
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tensor([[6],
        [6],
        ...,
        [7],
        [6]])

The call to unsqueeze adds a singleton dimension, from a 1D tensor of 4898 elements 
to a 2D tensor of size (4898x1), without changing its contents. No elements were 
added; you decided to use an extra index to access the elements. That is, you accessed 
the first element of target as target[0] and the first element of its unsqueezed coun-
terpart as target_unsqueezed[0,0].

 PyTorch allows you to use class indices directly as targets while training neural net-
works. If you want to use the score as a categorical input to the network, however, 
you’d have to transform it to a one-hot encoded tensor.

 Now go back to your data tensor, containing the 11 variables associated with the 
chemical analysis. You can use the functions in the PyTorch Tensor API to manipulate 
your data in tensor form. First, obtain means and standard deviations for each column:

# In[10]:
data_mean = torch.mean(data, dim=0)
data_mean

# Out[10]:
tensor([6.8548e+00, 2.7824e-01, 3.3419e-01, 6.3914e+00, 4.5772e-02, 

3.5308e+01,
        1.3836e+02, 9.9403e-01, 3.1883e+00, 4.8985e-01, 1.0514e+01])
# In[11]:
data_var = torch.var(data, dim=0)
data_var

# Out[11]:
tensor([7.1211e-01, 1.0160e-02, 1.4646e-02, 2.5726e+01, 4.7733e-04, 

2.8924e+02,
        1.8061e+03, 8.9455e-06, 2.2801e-02, 1.3025e-02, 1.5144e+00])

In this case, dim=0 indicates that the reduction is performed along dimension 0. At 
this point, you can normalize the data by subtracting the mean and dividing by the 
standard deviation, which helps with the learning process.

# In[12]:
data_normalized = (data - data_mean) / torch.sqrt(data_var)
data_normalized

# Out[12]:
tensor([[ 1.7209e-01, -8.1764e-02,  ..., -3.4914e-01, -1.3930e+00],
        [-6.5743e-01,  2.1587e-01,  ...,  1.3467e-03, -8.2418e-01],
        ...,
        [-1.6054e+00,  1.1666e-01,  ..., -9.6250e-01,  1.8574e+00],
        [-1.0129e+00, -6.7703e-01,  ..., -1.4882e+00,  1.0448e+00]])

Next, look at the data with an eye to finding an easy way to tell good and bad wines 
apart at a glance. First, use the torch.le function to determine which rows in target
correspond to a score less than or equal to 3:
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# In[13]:
bad_indexes = torch.le(target, 3)
bad_indexes.shape, bad_indexes.dtype, bad_indexes.sum()

# Out[13]:
(torch.Size([4898]), torch.uint8, tensor(20))

Note that only 20 of the bad_indexes entries are set to 1! By leveraging a feature in 
PyTorch called advanced indexing, you can use a binary tensor to index the data tensor. 
This tensor essentially filters data to be only items (or rows) that correspond to 1 in 
the indexing tensor. The bad_indexes tensor has the same shape as target, with a 
value of 0 or 1 depending on the outcome of the comparison between your threshold 
and each element in the original target tensor:

# In[14]:
bad_data = data[bad_indexes]
bad_data.shape

# Out[14]:
torch.Size([20, 11])

Note that the new bad_data tensor has 20 rows, the same as the number of rows with a 
1 in the bad_indexes tensor. It retains all 11 columns.

 Now you can start to get information about wines grouped into good, middling, 
and bad categories. Take the .mean() of each column:

# In[15]:
bad_data = data[torch.le(target, 3)]
mid_data = data[torch.gt(target, 3) & torch.lt(target, 7)] 
good_data = data[torch.ge(target, 7)]

bad_mean = torch.mean(bad_data, dim=0)
mid_mean = torch.mean(mid_data, dim=0)
good_mean = torch.mean(good_data, dim=0)

for i, args in enumerate(zip(col_list, bad_mean, mid_mean, good_mean)):
    print('{:2} {:20} {:6.2f} {:6.2f} {:6.2f}'.format(i, *args))

# Out[15]:
 0 fixed acidity          7.60   6.89   6.73
 1 volatile acidity       0.33   0.28   0.27
 2 citric acid            0.34   0.34   0.33
 3 residual sugar         6.39   6.71   5.26
 4 chlorides              0.05   0.05   0.04
 5 free sulfur dioxide   53.33  35.42  34.55
 6 total sulfur dioxide 170.60 141.83 125.25
 7 density                0.99   0.99   0.99
 8 pH                     3.19   3.18   3.22
 9 sulphates              0.47   0.49   0.50
10 alcohol               10.34  10.26  11.42

It looks as though you’re on to something here. At first glance, the bad wines seem to 
have higher total sulfur dioxide, among other differences. You could use a threshold 
on total sulfur dioxide as a crude criterion for discriminating good wines from bad 

For numpy arrays and 
PyTorch tensors, the & 
operator does a logical 
and operation.
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ones. Now get the indexes in which the total sulfur dioxide column is below the mid-
point you calculated earlier, like so:

# In[16]:
total_sulfur_threshold = 141.83
total_sulfur_data = data[:,6]
predicted_indexes = torch.lt(total_sulfur_data, total_sulfur_threshold)

predicted_indexes.shape, predicted_indexes.dtype, predicted_indexes.sum()

# Out[16]:
(torch.Size([4898]), torch.uint8, tensor(2727))

Your threshold implies that slightly more than half of the wines are going to be high-quality.
 Next, you need to get the indexes of the good wines:

# In[17]:
actual_indexes = torch.gt(target, 5)

actual_indexes.shape, actual_indexes.dtype, actual_indexes.sum()

# Out[17]:
(torch.Size([4898]), torch.uint8, tensor(3258))

Because you have about 500 more good wines than your threshold predicted, you 
already have hard evidence that the threshold isn’t perfect.

 Now you need to see how well your predictions line up with the actual rankings. 
Perform a logical and between your prediction indexes and the good indexes 
(remembering that each index is an array of 0s and 1s), and use that intersection of 
wines in agreement to determine how well you did:

# In[18]:
n_matches = torch.sum(actual_indexes & predicted_indexes).item()
n_predicted = torch.sum(predicted_indexes).item()
n_actual = torch.sum(actual_indexes).item()

n_matches, n_matches / n_predicted, n_matches / n_actual

# Out[18]:
(2018, 0.74000733406674, 0.6193984039287906)

You got around 2,000 wines right! Because you had 2,700 wines predicted, a 74 per-
cent chance exists that if you predict a wine to be high-quality, it is. Unfortunately, you 
have 3,200 good wines and identified only 61 percent of them. Well, we guess you got 
what you signed up for; that result is barely better than random.

 This example is naïve, of course. You know for sure that multiple variables contrib-
ute to wine quality and that the relationships between the values of these variables and 
the outcome (which could be the actual score rather than a binarized version of it) is 
likely to be more complicated than a simple threshold on a single value.

 Indeed, a simple neural network would overcome all these limitations, as would a lot of 
other basic machine learning methods. You’ll have the tools to tackle this problem after 
completing chapters 5 and 6, in which you build your first neural network from scratch.
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3.2 Time series
In the preceding section, we covered how to represent data organized in a flat table. 
As we noted, every row in the table was independent from the others; their order did 
not matter. Equivalently, no column encoded information on what rows came before 
and what rows came after.

 Going back to the wine data set, you could have had a Year column that allowed you to 
look at how wine quality evolved year over year. (Unfortunately, we don’t have such data at 
hand, but we’re working hard on collecting the data samples manually, bottle by bottle.)

 In the meantime, we’ll switch to another interesting data set: data from a Washing-
ton, D.C., bike sharing system reporting the hourly count of rental bikes between 
2011 and 2012 in the Capital bike-share system with the corresponding weather and 
seasonal information.1

 The goal is to take a flat 2D data set and transform it into a 3D one, as shown in 
figure 3.2.

 In the source data, each row is a separate hour of data (Figure 3.2 shows a trans-
posed version of this to better fit on the printed page). 

Figure 3.2 Transforming a 1D multichannel data set into a 2D multichannel data set by separating the date 
and hour of each sample into separate axes

We want to change the row-per-

1 https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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hour organization so that you have one axis that increases at a rate of one day per index 
increment and another axis that represents hour of day (independent of the date). The 
third axis is different columns of data (weather, temperature, and so on).
Load the data, as shown in the following listing.

# In[2]:
bikes_numpy = np.loadtxt("../data/p1ch4/bike-sharing-data set/hour-

fixed.csv",
                         dtype=np.float32,
                         delimiter=",",
                         skiprows=1,
                         converters={1: lambda x: float(x[8:10])}) 
bikes = torch.from_numpy(bikes_numpy)
bikes

# Out[2]:
tensor([[1.0000e+00, 1.0000e+00,  ..., 1.3000e+01, 1.6000e+01],
        [2.0000e+00, 1.0000e+00,  ..., 3.2000e+01, 4.0000e+01],
        ...,
        [1.7378e+04, 3.1000e+01,  ..., 4.8000e+01, 6.1000e+01],
        [1.7379e+04, 3.1000e+01,  ..., 3.7000e+01, 4.9000e+01]])

For every hour, the data set reports the following variables:

instant      # index of record
day          # day of month
season       # season (1: spring, 2: summer, 3: fall, 4: winter)
yr           # year (0: 2011, 1: 2012)
mnth         # month (1 to 12)
hr           # hour (0 to 23)
holiday      # holiday status
weekday      # day of the week
workingday   # working day status
weathersit   # weather situation
             # (1: clear, 2:mist, 3: light rain/snow, 4: heavy rain/snow)
temp         # temperature in C
atemp        # perceived temperature in C
hum          # humidity
windspeed    # windspeed
casual       # number of causal users
registered   # number of registered users
cnt          # count of rental bikes

In a time-series data set such as this one, rows represent successive time points: a 
dimension along which they’re ordered. Sure, you could treat each row as indepen-
dent and try to predict the number of circulating bikes based on, say, a particular time 
of day regardless of what happened earlier.

 This existence of an ordering, however, gives you the opportunity to exploit causal 
relationships across time. You can predict bike rides at one time based on the fact that 
it was raining at an earlier time, for example. For the time being, you’re going to focus 

Listing 3.2 code/p1ch4/2_time_series_bikes.ipynb

Convert date strings to numbers 
corresponding to the day 
of the month in column 1.
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on learning how to turn your bike-sharing data set into something that your neural 
network can ingest in fixed-size chunks.

 This neural network model needs to see sequences of values for each quantity, 
such as ride count, time of day, temperature, and weather conditions, so N parallel 
sequences of size C. C stands for channel, in neural network parlance, and is the same 
as column for 1D data like you have here. The N dimension represents the time axis—
here, one entry per hour.

 You may want to break up the 2-year data set in wider observation periods, such as 
days. This way, you’ll have N (for number of samples) collections of C sequences of length 
L. In other words, your time-series data set is a tensor of dimension 3 and shape N x C 
x L. The C remains your 17 channels, and L would be 24, one per hour of the day. 
There’s no particular reason why we must use chunks of 24 hours, though the general 
daily rhythm is likely to give us patterns we can exploit for predictions. We could 
instead use 7*24=168 hour blocks to chunk by week instead, if we desired.

 Now go back to your bike-sharing data set. The first column is the index (the 
global ordering of the data); the second is the date; the sixth is the time of day. You 
have everything you need to create a data set of daily sequences of ride counts and 
other exogenous variables. Your data set is already sorted, but if it weren’t, you could 
use torch.sort on it to order it appropriately.

NOTE The version of the file you’re using here, hour-fixed.csv, has had 
some processing done to include rows that were missing from the original 
data set. We presumed that the missing hours had zero bikes active (typically 
the early-morning hours).

All you have to do to obtain your daily hours data set is view the same tensor in 
batches of 24 hours. Take a look at the shape and strides of your bikes tensor:

# In[3]:
bikes.shape, bikes.stride()

# Out[3]:
(torch.Size([17520, 17]), (17, 1))

That’s 17,520 hours, 17 columns. Now reshape the data to have three axes (day, hour, 
and then your 17 columns):

# In[4]:
daily_bikes = bikes.view(-1, 24, bikes.shape[1])
daily_bikes.shape, daily_bikes.stride()

# Out[4]:
(torch.Size([730, 24, 17]), (408, 17, 1))

What happened here? First, the bikes.shape[1] is 17, which is the number of columns 
in the bikes tensor. But the real crux of the code is the call to view, which is important: 
it changes the way that the tensor looks at the same data as contained in storage.

 Calling view on a tensor returns a new tensor that changes the number of dimen-
sions and the striding information without changing the storage. As a result, you can 
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rearrange your tensor at zero cost because no data is copied at all. Your call to view
requires you to provide the new shape for the returned tensor. Use the -1 as a place-
holder for “however many indexes are left, given the other dimensions and the origi-
nal number of elements.” 

 Remember that Storage is a contiguous, linear container for numbers—floating-
point, in this case. Your bikes tensor has rows stored one after the other in corre-
sponding storage, as confirmed by the output from the call to bikes.stride() earlier.

 For daily_bikes, stride is telling you that advancing by 1 along the hour dimen-
sion (the second) requires you to advance by 17 places in the storage (or one set of 
columns), whereas advancing along the day dimension (the first) requires you to 
advance by a number of elements equal to the length of a row in the storage times 24 
(here, 408, which is 17 * 24).

 The rightmost dimension is the number of columns in the original data set. In the 
middle dimension, you have time split into chunks of 24 sequential hours. In other 
words, you now have N sequences of L hours in a day for C channels. To get to your 
desired NxCxL ordering, you need to transpose the tensor:

# In[5]:
daily_bikes = daily_bikes.transpose(1, 2)
daily_bikes.shape, daily_bikes.stride()

# Out[5]:
(torch.Size([730, 17, 24]), (408, 1, 17))

We mentioned earlier that the weather-situation variable is ordinal. In fact, it has 4 lev-
els: 1 for the best weather and 4 for the worst. You could treat this variable as categori-
cal, with levels interpreted as labels, or continuous. If you choose categorical, you turn 
the variable into a one-hot encoded vector and concatenate the columns with the data 
set. To make rendering your data easier, limit yourself to the first day for now. First, 
initialize a zero-filled matrix with a number of rows equal to the number of hours in 
the day and a number of columns equal to the number of weather levels:

# In[6]:
first_day = bikes[:24].long()
weather_onehot = torch.zeros(first_day.shape[0], 4)
first_day[:,9]

# Out[6]:
tensor([1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2])

Then scatter ones into our matrix according to the corresponding level at each row. 
Remember the use of unsqueeze to add a singleton dimension earlier:

# In[7]:
weather_onehot.scatter_(
    dim=1,
    index=first_day[:,9].unsqueeze(1) - 1, 
    value=1.0)

# Out[7]:

You’re decreasing the values by 1 because 
the weather situation ranges from 1 to 4, 
whereas indices are 0-based.



53Time series

tensor([[1., 0., 0., 0.],
        [1., 0., 0., 0.],
        ...,
        [0., 1., 0., 0.],
        [0., 1., 0., 0.]])

The day started with weather 1 and ended with 2, so that seems right.
 Last, concatenate your matrix to your original data set, using the cat function. 

Look at the first of your results:

# In[8]:
torch.cat((bikes[:24], weather_onehot), 1)[:1]

# Out[8]:
tensor([[ 1.0000,  1.0000,  1.0000,  0.0000,  1.0000,  0.0000,  0.0000,  6.0000,
          0.0000,  1.0000,  0.2400,  0.2879,  0.8100,  0.0000,  3.0000, 13.0000,
         16.0000,  1.0000,  0.0000,  0.0000,  0.0000]])

Here, you prescribed your original bikes data set and your one-hot encoded weather-
situation matrix to be concatenated along the column dimension (such as 1). In other 
words, the columns of the two data sets are stacked together, or the new one-hot 
encoded columns are appended to the original data set. For cat to succeed, the ten-
sors must have the same size along the other dimensions (the row dimension, in this 
case).

 Note that your new last four columns are 1, 0, 0, 0—exactly what you’d expect 
with a weather value of 1.

 You could have done the same thing with the reshaped daily_bikes tensor. 
Remember that it’s shaped (B, C, L), where L = 24. First, create the zero tensor, with 
the same B and L but with the number of additional columns as C:

# In[9]:
daily_weather_onehot = torch.zeros(daily_bikes.shape[0], 4, 
daily_bikes.shape[2])
daily_weather_onehot.shape

# Out[9]:
torch.Size([730, 4, 24])

Then scatter the one-hot encoding into the tensor in the C dimension. Because opera-
tion is performed in place, only the content of the tensor changes:

# In[10]:
daily_weather_onehot.scatter_(1, daily_bikes[:,9,:].long().unsqueeze(1) - 1, 

1.0)
daily_weather_onehot.shape

# Out[10]:
torch.Size([730, 4, 24])

Concatenate along the C dimension:

# In[11]:
daily_bikes = torch.cat((daily_bikes, daily_weather_onehot), dim=1)
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We mentioned earlier that this method isn’t the only way to treat the weather-situation 
variable. Indeed, its labels have an ordinal relationship, so you could pretend that 
they’re special values of a continuous variable. You might transform the variable so 
that it runs from 0.0 to 1.0:

# In[12]:
daily_bikes[:, 9, :] = (daily_bikes[:, 9, :] - 1.0) / 3.0

As we mention in section 4.1, rescaling variables to the [0.0, 1.0] interval or the 
[-1.0, 1.0] interval is something that you’ll want to do for all quantitative variables, 
such as temperature (column 10 in your data set). You’ll see why later; for now, we’ll 
say that it’s beneficial to the training process.

 You have multiple possibilities for rescaling variables. You can map their range to 
[0.0, 1.0]

# In[13]:
temp = daily_bikes[:, 10, :]
temp_min = torch.min(temp)
temp_max = torch.max(temp)
daily_bikes[:, 10, :] = (daily_bikes[:, 10, :] - temp_min) / (temp_max - 

temp_min)

or subtract the mean and divide by the standard deviation:

# In[14]:
temp = daily_bikes[:, 10, :]
daily_bikes[:, 10, :] = (daily_bikes[:, 10, :] - torch.mean(temp)) / 

torch.std(temp)

In this latter case, the variable has zero mean and unitary standard deviation. If the 
variable were drawn from a Gaussian distribution, 68 percent of the samples would sit 
in the [-1.0, 1.0] interval. 

 Great—you’ve built another nice data set that you’ll get to use later. For now, it’s 
important only that you got an idea of how a time series is laid out and how you can 
wrangle the data into a form that a network will digest.

 Other kinds of data look like a time series, in that strict ordering exists. The top 
two in that category are text and audio. 

3.3 Text
Deep learning has taken the field of natural language processing (NLP) by storm, par-
ticularly by using models that repeatedly consume a combination of new input and 
previous model output. These models are called recurrent neural networks, and they’ve 
been applied with great success to text categorization, text generation, and automated 
translation systems. Previous NLP workloads were characterized by sophisticated mul-
tistage pipelines that included rules encoding the grammar of a language.2 3 Now, 

2 Nadkarni et al., “Natural language processing: an introduction”. JAMIA https://www.ncbi.nlm.nih.gov/pmc/arti-
cles/PMC3168328

3 Wikipedia entry for natural language processing: https://en.wikipedia.org/wiki/Natural-language_processing
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state-of-the-art work trains networks end to end on large corpuses starting from 
scratch, letting those rules emerge from data. For the past several years, the most-used 
automated translation systems available as services on the internet have been based on 
deep learning.

 Your goal in this chapter is to turn text into something that a neural network can 
process, which, like the previous cases, is a tensor of numbers. If you can do that and 
later choose the right architecture for your text processing job, you’ll be in the posi-
tion of doing NLP with PyTorch. You see right away how powerful this capability is: 
you can achieve state-of-the-art performance on tasks in different domains with the 
same PyTorch tools if you cast your problem in the right form. The first part of this job is 
reshaping data.

 Networks operate on text at two levels: at character level, by processing one charac-
ter at a time, and at word level, in which individual words are the finest-grained enti-
ties seen by the network. The technique you use to encode text information into 
tensor form is the same whether you operate at character level or at word level. This 
technique is nothing magic; you stumbled upon it earlier. It’s one-hot encoding.

 Start with a character-level example. First, get some text to process. An amazing 
resource is Project Gutenberg4, a volunteer effort that digitizes and archives cultural 
work and makes it available for free in open formats, including plain-text files. 
If you’re aiming at larger-scale corpora, the Wikipedia corpus stands out: it’s the 
complete collection of Wikipedia articles containing 1.9 billion words and more 
than 4.4 million articles. You can find several other corpora at the English Corpora 
website.5

 Load Jane Austen’s Pride and Prejudice from the Project Gutenberg website.6 Save 
the file and read it in, as shown in the following listing.

# In[2]:
with open('../data/p1ch4/jane-austin/1342-0.txt', encoding='utf8') as f:
    text = f.read()

You need to take care of one more detail before you proceed: encoding. Encoding is a 
vast subject, so all we’ll do now is touch on it. Every written character is represented by 
a code, a sequence of bits of appropriate length that allow each character to be 
uniquely identified. The simplest such encoding is ASCII (American Standard Code 
for Information Interchange), dating back to the 1960s. ASCII encodes 128 characters 
using 128 integers. Letter a, for example, corresponds to binary 1100001 or decimal 
97; letter b corresponds to binary 1100010 or decimal 98, and so on. The encoding 
would fit 8 bits, which was a big bonus in 1965.

4 http://www.gutenberg.org
5 https://www.english-corpora.org
6 http://www.gutenberg.org/files/1342/1342-0.txt

Listing 3.3 code/p1ch4/3_text_jane_austin.ipynb
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NOTE Clearly, 128 characters aren’t enough to account for all the glyphs, 
accents, ligatures, and other features that are needed to properly represent 
written text in languages other than English. To this end, other encodings 
have been developed, using a larger number of bits as a code for a wider 
range of characters. That wider range of characters got standardized as Uni-
code, which maps all known characters to numbers, with the representation in 
bits of those numbers being provided by a specific encoding. Popular encod-
ings include UTF-8, UTF-16 and UTF-32, in which the numbers are a sequence 
of 8-, 16-, or 32-bit integers. Strings in Python 3.x are Unicode strings.

You’re going to one-hot encode your characters to limit the one-hot encoding to a 
character set that’s useful for the text being analyzed. In this case, because you loaded 
text in English, it’s quite safe to use ASCII and deal with a small encoding. You could 
also make all characters lowercase to reduce the number of characters in your encod-
ing. Similarly, you could screen out punctuation, numbers, and other characters that 
aren’t relevant to the expected kinds of text, which may or may not make a practical 
difference to your neural network, depending on the task at hand.

 At this point, you need to parse the characters in the text and provide a one-hot encod-
ing for each of them. Each character will be represented by a vector of length equal to the 
number of characters in the encoding. This vector will contain all zeros except for a 1 at 
the index corresponding to the location of the character in the encoding.

 First, split your text into a list of lines and pick an arbitrary line to focus on:

# In[3]:
lines = text.split('\n')
line = lines[200]
line

# Out[3]:
'“Impossible, Mr. Bennet, impossible, when I am not acquainted with him'

Create a tensor that can hold the total number of one-hot encoded characters for the 
whole line:

# In[4]:
letter_tensor = torch.zeros(len(line), 128) 
letter_tensor.shape

# Out[4]:
torch.Size([70, 128])

Note that letter_tensor holds a one-hot encoded character per row. Now set a 1 on 
each row in the right position so that each row represents the right character. The index 
where the 1 has to be set corresponds to the index of the character in the encoding:

# In[5]:
for i, letter in enumerate(line.lower().strip()):
    letter_index = ord(letter) if ord(letter) < 128 else 0  
    letter_tensor[i][letter_index] = 1

128 hardcoded due to 
the limits of ASCII\

The text uses directional double quotes, 
 which aren’t valid ASCII, so screen them out here. 
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You’ve one-hot encoded your sentence into a representation that a neural network 
can digest. You could do word-level encoding the same way by establishing a vocabu-
lary and one-hot encoding sentences, sequences of words, along the rows of your ten-
sor. Because a vocabulary contains many words, this method produces wide encoded 
vectors that may not be practical. Later in this chapter, you see a more efficient way to 
represent text at word level by using embeddings. For now, stick with one-hot encod-
ings to see what happens.

 Define clean_words, which takes text and returns it lowercase and stripped of punc-
tuation. When you call it on your “Impossible, Mr. Bennet” line, you get the following:

# In[6]:
def clean_words(input_str):
    punctuation = '.,;:"!?”“_-'
    word_list = input_str.lower().replace('\n',' ').split()
    word_list = [word.strip(punctuation) for word in word_list]
    return word_list

words_in_line = clean_words(line)
line, words_in_line

# Out[6]:
('“Impossible, Mr. Bennet, impossible, when I am not acquainted with him',
 ['impossible',
  'mr',
  'bennet',
  'impossible',
  'when',
  'i',
  'am',
  'not',
  'acquainted',
  'with',
  'him'])

Next, build a mapping of words to indexes in your encoding:

# In[7]:
word_list = sorted(set(clean_words(text)))
word2index_dict = {word: i for (i, word) in enumerate(word_list)}

len(word2index_dict), word2index_dict['impossible']

# Out[7]:
(7261, 3394)

Note that all_words is now a dictionary with words as keys and an integer as value. 
You’ll use this dictionary to efficiently find the index of a word as you one-hot encode it.

 Now focus on your sentence. Break it into words and one-hot encode it—that is, 
populate a tensor with one one-hot encoded vector per word. Create an empty vector, 
and assign the one-hot encoded values of the word in the sentence:

# In[8]:
word_tensor = torch.zeros(len(words_in_line), len(word2index_dict))
for i, word in enumerate(words_in_line):
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    word_index = word2index_dict[word]
    word_tensor[i][word_index] = 1
    print('{:2} {:4} {}'.format(i, word_index, word))

print(word_tensor.shape)

# Out[8]:
 0 3394 impossible
 1 4305 mr
 2  813 bennet
 3 3394 impossible
 4 7078 when
 5 3315 i
 6  415 am
 7 4436 not
 8  239 acquainted
 9 7148 with
10 3215 him
torch.Size([11, 7261])

At this point, tensor represents one sentence of length 11 in an encoding space of 
size 7261—the number of words in your dictionary. 

3.3.1 Text embeddings

One-hot encoding is a useful technique for representing categorical data in tensors. 
As you may have anticipated, however, one-hot encoding starts to break down when 
the number of items to encode is effectively unbound, as with words in a corpus. In 
one book, you had more than 7,000 items!

 You certainly could do some work to deduplicate words, condense alternative spell-
ings, collapse past and future tenses into a single token, and that kind of thing. Still, a 
general-purpose English-language encoding is going to be huge. Worse, every time you 
encounter a new word, you have to add a new column to the vector, which means add-
ing a new set of weights to the model to account for that new vocabulary entry, which 
is going to be painful from a training perspective.

 How can you compress your encoding to a more manageable size and put a cap on 
the size growth? Well, instead of using vectors of many zeros and a single 1, you could 
use vectors of floating-point numbers. A vector of, say, 100 floating-point numbers can 
indeed represent a large number of words. The trick is to find an effective way to map 
individual words to this 100-dimensional space in a way that facilitates downstream 
learning. This technique is called embedding.

 In principle, you could iterate over your vocabulary and generate a set of 100 ran-
dom floating-point numbers for each word. This method would work, in that you 
could cram a large vocabulary into 100 numbers, but it would forgo any concept of 
distance between words based on meaning or context. A model that used this word 
embedding would have to deal with little structure in its input vectors. An ideal solu-
tion would be to generate the embedding in such a way that words used in similar con-
texts map to nearby regions of the embedding.
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 If you were to design a solution to this problem by hand, you might decide to 
build your embedding space by mapping basic nouns and adjectives along the axes. 
You can generate a 2D space in which axes map to nouns "fruit" (0.0–0.33), 
"flower" (0.33–0.66), and "dog" (0.66–1.0), and to adjectives "red" (0.0–0.2), 
"orange" (0.2–0.4), "yellow" (0.4–0.6), "white" (0.6–0.8), and "brown" (0.8–
1.0). Your goal now is to take actual fruit, flowers, and dogs and lay them out in the 
embedding.

 As you start embedding words, you can map "apple" to a number in the "fruit"
and "red" quadrant. Likewise, you can easily map "tangerine", "lemon", "lychee", 
and "kiwi" (to round out your list of colorful fruits). Then you can start on flowers, 
assigning "rose", "poppy", "daffodil", "lily", and . . . well, there aren’t many 
brown flowers out there. Well, "sunflower" can get "flower", "yellow", and 
"brown", and "daisy" can get "flower"  "white", and "yellow". Perhaps you should 
update "kiwi" to map close to "fruit", "brown", and "green". For dogs and color, 
you can embed "redbone", "fox" perhaps for "orange", "golden retriever", "poo-
dles" for "white", and . . . most kinds of dogs are "brown".

 Although doing this mapping manually isn’t feasible for a large corpus, you should 
note that although you had an embedding size of 2, you described 15 different words 
besides the base 8 and probably could cram quite a few more in if you take the time to be 
creative.

 As you’ve probably guessed, this kind of work can be automated. By processing a 
large corpus of organic text, you can generate embeddings similar to this one. The 
main differences are that the embedding vector has 100 to 1,000 elements and that 
axes don’t map directly to concepts, but conceptually similar words map to neigh-
boring regions of an embedding space whose axes are arbitrary floating-point 
dimensions.

 Although the exact algorithms7 used are a bit out of scope for what we wanting to 
focus on here, we’d like to mention that embeddings are often generated by using 
neural networks, trying to predict a word from nearby words (the context) in a sen-
tence. In this case, you could start from one-hot encoded words and use a (usually 
rather shallow) neural network to generate the embedding. When the embedding is 
available, you could use it for downstream tasks.

 One interesting aspect of the resulting embeddings is that similar words end up 
not only clustered together, but also with consistent spatial relationships with other 
words. If you were to take the embedding vector for "apple" and begin to add and 
subtract the vectors for other words, you could begin to perform analogies such as 
apple - red - sweet + yellow + sour and end up with a vector similar to the one 
for "lemon".

 We won’t be using text embeddings here, but they’re essential tools when a large 
number of entries in a set has to be represented with numeric vectors. 

7 One example is https://en.wikipedia.org/wiki/Word2vec
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3.4 Images
The introduction of convolutional neural networks revolutionized computer vision8, 
and image-based systems have since acquired a new set of capabilities. Problems that 
required complex pipelines of highly tuned algorithmic building blocks became solv-
able at unprecedented levels of performance by training end-to-end networks with 
paired input-and-desired-output examples. To participate in this revolution, you need 
to be able to load images from common image formats and then transform the data 
into a tensor representation that has the various parts of the image arranged in the 
way that PyTorch expects.

 An image is represented as a collection of scalars arranged in a regular grid, hav-
ing a height and a width (in pixels). You might have a single scalar per grid point (the 
pixel), which would be represented as a grayscale image, or multiple scalars per grid 
point, which typically represent different colors or different features, such as depth 
from a depth camera.

 Scalars representing values at individual pixels are often encoded with 8-bit inte-
gers, as in consumer cameras, for example. In medical, scientific, and industrial appli-
cations, you not infrequently find pixels with higher numerical precision, such as 12-
bit and 16-bit. This precision provides a wider range or increased sensitivity in cases in 
which the pixel encodes information on a physical property, such as bone density, 
temperature, or depth.

 You have several ways of encoding numbers into colors.9 The most common is 
RGB, which defines a color with three numbers that represent the intensity of red, 
green and blue. You can think of a color channel as being a grayscale intensity map of 
only the color in question, similar to what you’d see if you looked at the scene in ques-
tion through a pair of pure-red sunglasses. Figure 3.3 shows a rainbow in which each 
of the RGB channels captures a certain portion of the spectrum. (The figure is simpli-
fied, in that it elides things. The orange and yellow bands, for example, are repre-
sented as a combination of red and green.) 

 Images come in several file formats, but luckily, you have plenty of ways to load 
images in Python. Start by loading a PNG image with the imageio module. You’ll use 
imageio throughout the chapter because it handles different data types with a uni-
form API. Now load an image, as in the following listing.

# In[2]:
import imageio

img_arr = imageio.imread('../data/p1ch4/image-dog/bobby.jpg')
img_arr.shape

# Out[2]:
(720, 1280, 3)

8 https://en.wikipedia.org/wiki/Convolutional_neural_network#History
9 Something of an understatement: https://en.wikipedia.org/wiki/Color_model

Listing 3.4 code/p1ch4/5_image_dog.ipynb



Figure 3.3 A rainbow broken into red, green, and blue channels
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At this point, img is a NumPy array-like object with three dimensions: two spatial 
dimensions (width and height) and a third dimension corresponding to the channels 
red, green, and blue. Any library that outputs a NumPy array does so to obtain a 
PyTorch tensor. The only thing to watch out for is the layout of dimensions. PyTorch 
modules that deal with image data require tensors to be laid out as C x H x W (chan-
nels, height, and width, respectively).

 You can use the transpose function to get to an appropriate layout. Given an input 
tensor W x H x C, you get to a proper layout by swapping the first and last channels:

# In[3]:
img = torch.from_numpy(img_arr)
out = torch.transpose(img, 0, 2)

You’ve seen this example before, but note that this operation doesn’t make a copy of the 
tensor data. Instead, out uses the same underlying storage as img and plays with the size 
and stride information at the tensor level. This arrangement is convenient because the 
operation is cheap, but (heads up) changing a pixel in img leads to a change in out.

 Also note that other deep learning frameworks use different layouts. Originally, 
TensorFlow kept the channel dimension last, resulting in a H x W x C layout. (Now it 
supports multiple layouts.) This strategy has pros and cons from a low-level perfor-
mance standpoint, but it doesn’t make a difference to you as long as you reshape your 
tensors properly.

 So far, you’ve described a single image. Following the same strategy that you used 
for earlier data types, to create a data set of multiple images to use as an input for your 
neural networks, you store the images in a batch along the first dimension to obtain a 
N x C x H x W tensor.

 As a more efficient alternative to using stack to build up the tensor, you can preal-
locate a tensor of appropriate size and fill it with images loaded from a directory,
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# In[4]:
batch_size = 100
batch = torch.zeros(100, 3, 256, 256, dtype=torch.uint8)

which indicates that your batch will consist of 100 RGB images 256 pixels in height 
and 256 pixels in width. Notice the type of the tensor: you’re expecting each color to 
be represented as a 8-bit integer, as in most photographic formats from standard con-
sumer cameras. Now you can load all png images from an input directory and store 
them in the tensor:

# In[5]:
import os

data_dir = '../data/p1ch4/image-cats/'
filenames = [name for name in os.listdir(data_dir) if os.path.splitext(name) 

== '.png']
for i, filename in enumerate(filenames):
    img_arr = imageio.imread(filename)
    batch[i] = torch.transpose(torch.from_numpy(img_arr), 0, 2)

As we mentioned earlier, neural networks usually work with floating-point tensors as 
their input. As you’ll also see in upcoming chapters, neural networks exhibit the best 
training performance when input data ranges from roughly 0 to 1 or –1 to 1 (an effect 
of how their building blocks are defined).

 A typical thing that you’ll want to do is cast a tensor to floating-point and normal-
ize the values of the pixels. Casting to floating-point is easy, but normalization is trick-
ier, as it depends on what range of the input you decide should lie between 0 and 1
(or –1 and 1). One possibility is to divide the values of pixels by 255 (the maximum 
representable number in 8-bit unsigned):

# In[6]:
batch = batch.float()
batch /= 255.0

Another possibility is to compute mean and standard deviation of the input data and 
scale it so that the output has zero mean and unit standard deviation across each 
channel:

# In[7]:
n_channels = batch.shape[1]
for c in range(n_channels):
    mean = torch.mean(batch[:, c])
    std = torch.std(batch[:, c])
    batch[:, c] = (batch[:, c] - mean) / std

You can perform several other operations on inputs, including geometric transfor-
mations such as rotation, scaling, and cropping. These operations may help with 
training or may be required to make an arbitrary input conform to the input 
requirements of a network, such as the size of the image. You’ll stumble onto quite a 
few of these strategies. For now, just remember that you have image manipulation 
options available. 
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3.5 Volumetric data
You’ve learned how to load and represent 2D images, like the ones you take with your 
camera. In contexts such as medical imaging applications involving, say, CT (Com-
puted Tomography) scans, you typically deal with sequences of images stacked along 
the head-to-feet direction, each corresponding to a slice across the body. In CT scans, 
the intensity represents the density of the different parts of the body: lungs, fat, water, 
muscle, bone, in order of increasing density, mapped from dark to bright when CT 
scans are displayed on clinical workstations. The density at each point is computed 
from the amount of x-ray reaching a detector after passing through the body, with 
some complex math used to deconvolve the raw sensor data into the full volume.

 CTs have a single intensity channel, similar to a grayscale image. Often, in native 
data formats, the channel dimension is left out, so the raw data typically has three 
dimensions. By stacking individual 2D slices into a 3D tensor, you can build volumetric 
data representing the 3D anatomy of a subject. Unlike figure 3.3, the extra dimension 
in figure 3.4 represents an offset in physical space rather than a particular band of the 
visible spectrum.

Figure 3.4 Slices of a CT scan, from the top of the head to the jawline

 We won’t go into detail here on medical imaging data formats. For now, it suffices 
to say that no fundamental difference exists between a tensor that stores volumetric 
data and one that stores image data. You have an extra dimension, depth, after the 
channel dimension, leading to a 5D tensor of shape N x C x D x H x W.

 Load a sample CT scan by using the volread function in the imageio module, which 
takes a directory as argument and assembles all DICOM (Digital Imaging Communica-
tion and Storage) files10 in a series in a NumPy 3D array, as shown in the following listing.

10 https://wiki.cancerimagingarchive.net/display/Public/CPTAC-LSCC#dd4a08a246524596add33b9f8f00f288
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# In[2]:
import imageio

dir_path = "../data/p1ch4/volumetric-dicom/2-LUNG 3.0  B70f-04083"
vol_arr = imageio.volread(dir_path, 'DICOM')
vol_arr.shape

# Out[2]:
Reading DICOM (examining files): 1/99 files (1.0%99/99 files (100.0%)
  Found 1 correct series.
Reading DICOM (loading data): 87/99  (87.999/99  (100.0%)

# Out[2]:
(99, 512, 512)

Also in this case, the layout is different from what PyTorch expects, due to the lack of 
channel information. You’ll have to make room for the channel dimension by using 
unsqueeze:

# In[3]:
vol = torch.from_numpy(vol_arr).float()
vol = torch.transpose(vol, 0, 2)
vol = torch.unsqueeze(vol, 0)

vol.shape

# Out[3]:
torch.Size([1, 512, 512, 99])

At this point, you could assemble a 5D data set by stacking multiple volumes along the 
batch direction, as you did earlier in the chapter.

Conclusion
You covered a lot of ground in this chapter. You learned to load the most common 
types of data and shape them up for consumption by a neural network. There are 
more data formats in the wild than we could hope to describe in a single volume, of 
course. Some, like medical histories, are too complex to cover in this volume. For the 
interested reader, however, we do provide short examples of audio and video tensor 
creation in bonus Jupyter notebooks in our code repository11.

Exercises
� Take several pictures of red, blue, and green items with your phone or other 

digital camera.12

– Load each image, and convert it to a tensor.
– For each image tensor, use the .mean() method to get a sense of how bright 

the image is.

Listing 3.5 code/p1ch4/6_volumetric_ct.ipynb

11 https://github.com/deep-learning-with-pytorch/dlwpt-code/tree/master/p1ch4
12 Or download some from the internet if a camera isn’t available.
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– Now take the mean of each channel of your images. Can you identify the red, 
green, and blue items from only the channel averages?

� Select a relatively large file containing Python source code.
– Build an index of all the words in the source file. (Feel free to make your 

tokenization as simple or as complex as you like; we suggest starting by 
replacing r"[^a-zA-Z0-9_]+" with spaces.)

– Compare your index with the one you made for Pride and Prejudice. Which is 
larger?

– Create the one-hot encoding for the source code file.
– What information is lost with this encoding? How does that information 

compare with what’s lost in the Pride and Prejudice encoding?

Summary
� Neural networks require data to be represented as multidimensional numerical 

tensors, often 32-bit floating-point.
� Thanks to how the PyTorch libraries interact with the Python standard library 

and surrounding ecosystem, loading the most common types of data and con-
verting them to PyTorch tensors is convenient.

� In general, PyTorch expects data to be laid out along specific dimensions, 
according to the model architecture (such as convolutional versus recurrent). 
Data reshaping can be achieved effectively with the PyTorch tensor API.

� Spreadsheets can be straightforward to convert to tensors. Categorical- and ordi-
nal-valued columns should be handled differently from interval-valued columns.

� Text or categorical data can be encoded to a one-hot representation through 
the use of dictionaries.

� Images can have one or many channels. The most common are the red, green, 
and blue channels of typical digital photos.

� Single-channel data formats sometimes omit an explicit channel dimension.
� Volumetric data is similar to 2D image data, with the exception of adding a 

third dimension: depth.
� Many images have a per-channel bit depth of 8, though 12 and 16 bits per chan-

nel are not uncommon. These bit-depths can be stored in a 32-bit floating-point 
number without loss of precision.
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The mechanics of learning

With the blooming of machine learning that has occurred over the past decade, 
the notion of machines that learn from experience has become a mainstream 
theme in both technical and journalistic circles. Now, how is it exactly that a 
machine learns? What are the mechanics of it, or the algorithm behind it? From the 
point of view of an outer observer, a learning algorithm is presented input data that 
is paired with desired outputs. When learning has occurred, that algorithm is capa-
ble of producing correct outputs when it’s fed new data that is similar enough to 
the input data on which it was trained. With deep learning, this process works even 
when the input data and the desired output are far from each other—when they 
come from different domains, such as an image and a sentence describing it.

 As a matter of fact, models that allow you to explain input/output relationships 
date back centuries. When Johannes Kepler, a German mathematical astronomer 

This chapter covers
� Understanding how algorithms can learn from data
� Reframing learning as parameter estimation, using 

differentiation and gradient descent
� Walking through a simple learning algorithm from 

scratch
� Seeing how PyTorch supports learning with autograd
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who lived between 1571 and 1630, figured out his three laws of planetary motion in the 
early 1600s, he based them on data collected by his mentor, Tycho Brahe, during naked-
eye observations (yep, naked eye and a piece of paper). Not having Newton’s Law of 
gravitation at his disposal (in fact, Newton used Kepler’s work to figure things out), he 
extrapolated the simplest possible geometric model that could fit the data. By the way, it 
took him six years of staring at data that didn’t make sense to him, as well as incremental 
realizations, to formulate these laws.1 You can see this process in figure 4.1.

 The first law reads: “The orbit of every planet is an ellipse with the Sun at one of 
the two foci.” He didn’t know what caused orbits to be ellipses, but given a set of obser-
vations for a planet (or a moon of a large planet, such as Jupiter), he could at that 
point estimate the shape (the eccentricity) and size (the semi-latus rectum) of the ellipse. 
With those two parameters computed from the data, he could tell where the planet 
could possibly be during its journey in the sky. When he figured out the second law—
“A line joining a planet and the Sun sweeps out equal areas during equal intervals of 
time—he could also tell when a planet would be at a particular point in space given 
observations in time.2

Figure 4.1 Johannes Kepler considers multiple candidate models that might fit the data at hand, 
settling on an ellipse.

1 As recounted by Michael Fowler: http://galileoandeinstein.physics.virginia.edu/1995/lectures/morekepl.html
2 Understanding the details of Kepler’s laws isn’t needed for understanding the chapter, but you can find more 

information at https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion.
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 How would Kepler estimate the eccentricity and size of the ellipse without comput-
ers, pocket calculators or even calculus, none of which had been invented yet? You 
learn the answer from Kepler’s own recollection in his book New Astronomy or from 
how J.V. Field put it in his The Origins of Proof series:3

Essentially, Kepler had to try different shapes, using a certain number of observations to 
find the curve, then use the curve to find some more positions, for times when he had 
observations available, and then check whether these calculated positions agreed with the 
observed ones.

 To sum things up, over those six years, Kepler

1 Got lots of good data from his friend Brahe (not without some struggle).
2 Tried to visualize the heck out of that data because he felt that something fishy 

was going on.
3 Chose the simplest possible model that had a chance to fit the data (an ellipse).
4 Split the data so that he could work on part of it and keep an independent set 

for validation.
5 Started with a tentative eccentricity and size, and iterated until the model fit the 

observations.
6 Validated his model on the independent observations.
7 Looked back in disbelief.

There’s a data-science handbook for you, all the way from 1609.
 The history of science is constructed on these seven steps, and as scientists have 

learned over the centuries, deviating from them is a recipe for disaster.4

 These steps are exactly what you’ll follow to learn something from data. Here, 
there’s virtually no difference between saying that you’ll fit the data and saying that 
you’ll make an algorithm learn from data. The process always involves a function with 
unknown parameters whose values are estimated from data—in short, a model.

 You can argue that learning from data presumes that the underlying model isn’t 
engineered to solve a specific problem (as was the ellipse in Kepler’s work) and is 
capable of approximating a much wider family of functions. A neural network would 
have predicted Tycho Brahe’s trajectories without requiring Kepler’s flash of insight to 
try fitting the data to an ellipse. Sir Isaac Newton, however, would have had a much 
harder time deriving his laws of gravitation from a generic model.

 You’re interested here in the latter kinds of models: one that aren’t engineered to 
solve specific narrow tasks and can be adapted automatically to specialize in solving 
many similar tasks, using input and output pairs—in other words, general models 
trained on data relevant to the task at hand. In particular, PyTorch is designed to 
make it easy to create models for which the derivatives of the fitting error, with respect 
to the parameters, can be expressed analytically. Don’t worry if the last sentence didn’t 
make sense; section 1.1 should clear it up for you.

3 https://plus.maths.org/content/origins-proof-ii-keplers-proofs
4 Unless you’re a theoretical physicist ;)
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 This chapter is about how to automate this generic function-fitting, which is all you 
do with deep learning, deep neural networks being the generic functions, and 
PyTorch makes this process as simple and transparent as possible. To make sure that 
you get the key concepts right and to allow you to understand the mechanics of learn-
ing algorithms from first principles, we’ll start with a model that’s a lot simpler than a 
deep neural network.

4.1 Learning is parameter estimation
In this section, you learn how you can take data, choose a model, and estimate the 
parameters of the model so that it gives good predictions on new data. To do so, you’ll 
leave the intricacies of planetary motion and divert your attention to the second-hard-
est problem in physics: calibrating instruments.

 Figure 4.2 shows a high-level overview of what you’ll have implemented by the end 
of the chapter. Given input data and the corresponding desired outputs (ground 
truth), as well as initial values for the weights, the model is fed input data (forward 
pass), and a measure of the error is evaluated by comparing the resulting outputs with 
the ground truth. To optimize the parameter of the model, its weights—the change in 
the error following a unit change in weights (the gradient of the error with respect to 
the parameters)—is computed by using the chain rule for the derivative of a compos-
ite function (backward pass). Then the value of the weights is updated in the direc-
tion that leads to a decrease in the error. The procedure is repeated until the error, 
evaluated on unseen data, falls below an acceptable level.

 If this sounds obscure, we’ve got a whole chapter to clarify things. By the time 
we’re done, all the pieces will fall into place, and the preceding paragraph will make 
perfect sense to you.

 Next, you take a problem with a noisy data set, build a model, and implement a 
learning algorithm for it. You’ll start by doing everything by hand, but by the end of 
the chapter, you’ll be letting PyTorch do all the heavy lifting. By the end of the chap-
ter, we’ll have covered many of the essential concepts that underlie training deep neu-
ral networks, even if the motivating example is simple and the model isn’t a neural 
network (yet!).

4.1.1 A hot problem

Suppose that you took a trip to some obscure location and brought back a fancy, wall-
mounted analog thermometer. It looks great, it’s a perfect fit for your living room. Its 
only flaw is that it doesn’t show units. Not to worry; you’ve got a plan. You’ll build a data 
set of readings and corresponding temperature values in your favorite units, choose a 
model, and adjust its weights iteratively until a measure of the error is low enough, and 
you’ll finally be able to interpret the new readings in units you understand.

 Start by making a note of temperature data in good old Celsius5 and measure-
ments from your new thermometer.

5 Luca is Italian, so please forgive him for using sensible units.
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After a couple of weeks, here’s the data:

# In[2]:
t_c = [0.5,  14.0, 15.0, 28.0, 11.0,  8.0,  3.0, -4.0,  6.0, 13.0, 21.0]
t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]
t_c = torch.tensor(t_c)
t_u = torch.tensor(t_u)

t_c are temperatures in Celsius, and t_u are the unknown units. You can expect noise 
in both measurements coming from the devices themselves and from your approxi-
mate readings. For convenience, the data is already in tensors, which you’ll use soon.

4.1.2 Choosing a linear model as a first try

In the absence of further knowledge, assume the simplest possible model for convert-
ing between the two sets of measurements, as Kepler might have done. The two sets 
may be linearly related. That is, multiplying t_u by a factor and adding a constant, you 
may get the temperature in Celsius:

t_c = w * t_u + b

Is this assumption reasonable? Probably; you’ll see how well the final model performs. 
(You chose to name w and b after weight and bias, two common terms for linear scaling 
and the additive constant, which you’ll bump into all the time.)

Listing 4.1 code/p1ch5/1_parameter_estimation.ipynb
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NOTE Spoiler alert: We know that a linear model is correct because the prob-
lem and data have been fabricated, but please bear with us; this model is a 
useful motivating example to build your understanding of what PyTorch is 
doing under the hood.

Now you need to estimate w and b, the parameters in the model, based on the data 
you have. You must do this so that the temperatures you obtain from running the 
unknown temperatures t_u through the model are close to temperatures you mea-
sured in Celsius. If that process sounds like fitting a line through a set of measure-
ments, that’s exactly what you’re doing. As you go through this simple example 
using PyTorch, realize that training a neural network essentially involves changing 
the model for a slightly more elaborate one with a few (or a metric ton) more 
parameters.

 To flesh out the example again, you have a model with some unknown parameters, 
and you need to estimate those parameters so that the error between predicted out-
puts and measured values is as low as possible. You notice that you still need to define 
a measure of such error. Such measure, which we refer to as the loss function, should 
be high if the error is high and should ideally be as low as possible for a perfect match. 
Your optimization process, therefore, should aim at finding w and b so that the loss 
function is at a minimum level.

4.1.3 Less loss is what you want

A loss function (or cost function) is a function that computes a single numerical value 
that the learning process attempts to minimize. The calculation of loss typically 
involves taking the difference between the desired outputs for some training samples 
and those produced by the model when fed those samples—in this case, the differ-
ence between the predicted temperatures t_p output by the model and the actual 
measurements, so t_p - t_c.

 You need to make sure the loss function makes the loss positive both when t_p is 
above and when below the true t_c, because the goal is to minimize this value. (Being 
able to push the loss infinitely negative isn’t useful.) You have a few choices, the most 
straightforward being |t_p - t_c| and (t_p - t_c)^2. Based on the mathematical 
expression you choose, you can emphasize or discount certain errors. Conceptually, a loss 
function is a way of prioritizing which errors to fix from your training samples, so that 
your parameter updates result in adjustments to the outputs for the highly weighted sam-
ples instead of changes to some other samples’ output that had a smaller loss.

 Both of the example loss functions have a clear minimum in zero and grow mono-
tonically as the predicted value moves farther from the true value in either direction. 
For this reason, both functions are said to be convex. Because your model is linear, the 
loss as a function of w and b is also convex. Cases in which the loss is a convex function 
of the model parameters are usually great to deal with because you can find a mini-
mum in an efficient way through specialized algorithms. Deep neural networks don’t 
exhibit a convex loss, however, so those methods aren’t generally useful to you.
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 For the two loss functions |t_p - t_c| and (t_p - t_c)^2, as shown in figure 4.3, 
notice that the square of differences behaves more nicely around the minimum: the 
derivative of the error-squared loss with respect to t_p is zero when t_p equals t_c. 
The absolute value, on the contrary, has an undefined derivative right where you’d 
like to converge. This issue is less important than it looks in practice, but stick to the 
square of differences for the time being.

Figure 4.3 Absolute difference versus difference squared

It’s worth noting that the square difference also penalizes wildly wrong results more 
than the absolute difference. Often, having more slightly wrong results is better than 
having a few wildly wrong ones, and the squared difference helps prioritize those 
results as desired. 

4.1.4 From problem to PyTorch

You’ve figured out the model and the loss function, so you’ve already got a good part 
of the high-level picture figured out. Now you need to set the learning process in 
motion and feed it actual data. Also, enough with math notation already, so now 
switch to PyTorch. After all, you came here for the fun.

 You’ve already created your data tensors, so write out the model as a Python function

# In[3]:
def model(t_u, w, b):
    return w * t_u + b

in which you’re expecting t_u, w, and b to be the input tensor, weight parameter, and 
bias parameter, respectively. In your model, the parameters will be PyTorch scalars 
(aka zero-dimensional tensors), and the product operation will use broadcasting to 
yield the returned tensors. Now define your loss:

# In[4]:
def loss_fn(t_p, t_c):
    squared_diffs = (t_p - t_c)**2
    return squared_diffs.mean()
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Note that you’re building a tensor of differences, taking their square elementwise and 
finally producing a scalar loss function by averaging all elements in the resulting ten-
sor. The loss is a mean square loss.

 Now you can initialize the parameters, invoke the model,

# In[5]:
w = torch.ones(1)
b = torch.zeros(1)

t_p = model(t_u, w, b)
t_p

# Out[5]:
tensor([35.7000, 55.9000, 58.2000, 81.9000, 56.3000, 48.9000, 33.9000, 21.8000,
        48.4000, 60.4000, 68.4000])

and check the value of the loss:

# In[6]:
loss = loss_fn(t_p, t_c)
loss

# Out[6]:
tensor(1763.8846)

In this section, you implemented the model and the loss. The meat of the section is 
how to estimate the w and b such that the loss reaches a minimum. First, you work 
things out by hand; then you learn how to leverage PyTorch superpowers to solve the 
same problem in a more general, off-the-shelf way.

4.1.5 Down along the gradient

In this section, you optimize the loss function with respect to the parameters by using 
the so-called gradient descent algorithm and build your intuition about how gradient 
descent works from first principles, which will help you a lot in the future. There are 
ways to solve this particular example more efficiently, but those approaches aren’t 
applicable to most deep learning tasks. Gradient descent is a simple idea that scales up 
surprisingly well to large neural network models with millions of parameters.

 Start with the mental image conveniently sketched out in figure 4.4. Suppose that 
you’re in front of a machine sporting two knobs, labeled w and b. You’re allowed to 
see the value of the loss on a screen and are told to minimize that value. Not knowing 
the effect of the knobs on the loss, you’d probably start fiddling with them and 
decide for each knob what direction makes the loss decrease. You’d probably decide 
to rotate both knobs in their direction of decreasing loss. If you’re far from the opti-
mal value, you’re likely to see the loss decrease quickly and then slow as it gets closer 
to the minimum. You’d notice that at some point, the loss climbs back up again, so 
you’d invert the direction of rotation for one or both knobs. You’d also learn that 
when the loss changes slowly, it’s a good idea to adjust the knobs more finely to avoid 
reaching the point where the loss goes back up. After a while, eventually, you’d con-
verge to a minimum.



Figure 4.4 A cartoon depiction of the optimization 
process, in which a person with knobs for w and b 
searches for the direction that makes the loss decrease
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Gradient descent isn’t too different. The idea is to compute the rate of change of the 
loss with respect to each parameter and apply a change to each parameter in the 
direction of decreasing loss. As when you were fiddling with the knobs, you could esti-
mate such rate of change by applying a small change to w and b to see how much the 
loss is changing in that neighborhood:

# In[7]:
delta = 0.1

loss_rate_of_change_w = \
    (loss_fn(model(t_u, w + delta, b), t_c) -
     loss_fn(model(t_u, w - delta, b), t_c)) / (2.0 * delta)

This code is saying that in a small neighborhood of the current values of w and b, a 
unit increase in w leads to some change in the loss. If the change is negative, you need 
to increase w to minimize the loss, whereas if the change is positive, you need to 
decrease w. By how much? Applying a change to w that’s proportional to the rate of 
change of the loss is a good idea, especially when the loss has several parameters: 
you’d apply a change to those that exert a significant change on the loss. It’s also wise 
to change the parameters slowly in general, because the rate of change could be dra-
matically different at a distance from the neighborhood of the current w value. There-
fore, you should scale the rate of change by a typically small factor. This scaling factor 
has many names; the one used in machine learning is learning_rate.

# In[8]:
learning_rate = 1e-2

w = w - learning_rate * loss_rate_of_change_w

You can do the same with b:

# In[9]:
loss_rate_of_change_b = \
    (loss_fn(model(t_u, w, b + delta), t_c) -
     loss_fn(model(t_u, w, b - delta), t_c)) / (2.0 * delta)

b = b - learning_rate * loss_rate_of_change_b
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This code represents the basic parameter update step for gradient descent. By reiter-
ating these evaluations (provided that you choose a small-enough learning rate), 
you’d converge to an optimal value of the parameters for which the loss computed on 
the given data is minimal. We’ll show you the complete iterative process soon, but this 
method of computing rates of change is rather crude and needs an upgrade. In the 
next section, you see why and how.

4.1.6 Getting analytical

Computing the rate of change by using repeated evaluations of model and loss to 
probe the behavior of the loss function in the neighborhood of w and b doesn’t scale 
well to models with many parameters. Also, it isn’t always clear how large that neigh-
borhood should be. You chose delta equal to 0.1 earlier, but everything depends on 
the shape of the loss as a function of w and b. If the loss changes too quickly compared 
with delta, you won’t have a good idea of where downhill is.

 What if you could make the neighborhood infinitesimally small, as in figure 4.5? 
That’s exactly what happens when you take the derivative of the loss with respect to a 
parameter analytically. In a model with two or more parameters, you compute the 
individual derivatives of the loss with respect to each parameter and put them in a vec-
tor of derivatives: the gradient. 

Figure 4.5 Differences in the estimated 
downhill directions when evaluating them 
at discrete locations versus analytically

To compute the derivative of the loss with respect to a parameter, you can apply the 
chain rule and compute the derivative of the loss with respect to its input (which is the 
output of the model) times the derivative of the model with respect to the parameter:

d loss_fn / d w = (d loss_fn / d t_p) * (d t_p / d w)

Recall that the model is a linear function and the loss is a sum of squares. Now figure 
out the expressions for the derivatives. Recalling the expression for the loss

# In[4]:
def loss_fn(t_p, t_c):
    squared_diffs = (t_p - t_c)**2
    return squared_diffs.mean()
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and remembering that d x^2 / d x = 2 x, you get

# In[10]:
def dloss_fn(t_p, t_c):
    dsq_diffs = 2 * (t_p - t_c)
    return dsq_diffs

As for the model, recalling that the model is

# In[3]:
def model(t_u, w, b):
    return w * t_u + b

you get derivatives of

# In[11]:
def dmodel_dw(t_u, w, b):
    return t_u

# In[12]:
def dmodel_db(t_u, w, b):
    return 1.0

Putting all this together, the function that returns the gradient of the loss with respect 
to w and b is

# In[13]:
def grad_fn(t_u, t_c, t_p, w, b):
    dloss_dw = dloss_fn(t_p, t_c) * dmodel_dw(t_u, w, b)
    dloss_db = dloss_fn(t_p, t_c) * dmodel_db(t_u, w, b)
    return torch.stack([dloss_dw.mean(), dloss_db.mean()])

The same idea expressed in mathematical notation is shown in figure 4.6.

Figure 4.6 The derivative of the loss function with respect to the weights

 Again, you’re averaging (summing and dividing by a constant) over all data points 
to get a single scalar quantity for each partial derivative of the loss.
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4.1.7 The training loop

Now you have everything in place to optimize your parameters. Starting from a tenta-
tive value for a parameter, you can iteratively apply updates to it for a fixed number of 
iterations or until w and b stop changing. You can use several stopping criteria, but 
stick to a fixed number of iterations for now.

 While we’re at it, we’ll introduce you to another piece of terminology. A training 
iteration during which you update the parameters for all your training samples is 
called an epoch.

 The complete training loop looks like this:

# In[14]:
def training_loop(n_epochs, learning_rate, params, t_u, t_c):
    for epoch in range(1, n_epochs + 1):
        w, b = params

        t_p = model(t_u, w, b)  
        loss = loss_fn(t_p, t_c)
        grad = grad_fn(t_u, t_c, t_p, w, b) 

        params = params - learning_rate * grad

        print('Epoch %d, Loss %f' % (epoch, float(loss))) 

    return params

The actual logging logic used for the output in this text is more complicated (see cell 
15 in the same notebook),6 but the differences are unimportant for understanding 
the core concepts in this chapter.

 Now invoke your training loop:

# In[16]:
training_loop(
    n_epochs = 100,
    learning_rate = 1e-2,
    params = torch.tensor([1.0, 0.0]),
    t_u = t_u,
    t_c = t_c)

# Out[16]:
Epoch 1, Loss 1763.884644
    Params: tensor([-44.1730,  -0.8260])
    Grad:   tensor([4517.2964,   82.6000])
Epoch 2, Loss 5802484.500000
    Params: tensor([2568.4011,   45.1637])
    Grad:   tensor([-261257.4062,   -4598.9707])
Epoch 3, Loss 19408031744.000000
    Params: tensor([-148527.7344,   -2616.3933])
    Grad:   tensor([15109615.0000,   266155.7188])
...

6 https://github.com/deep-learning-with-pytorch/dlwpt-code/blob/master/p1ch5/1_parameter_estimation.ipynb

This is the forward pass.

And this is the backward pass.

This logging 
line can be 

verbose.
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Epoch 10, Loss 90901075478458130961171361977860096.000000
    Params: tensor([3.2144e+17, 5.6621e+15])
    Grad:   tensor([-3.2700e+19, -5.7600e+17])
Epoch 11, Loss inf
    Params: tensor([-1.8590e+19, -3.2746e+17])
    Grad:   tensor([1.8912e+21, 3.3313e+19])

tensor([-1.8590e+19, -3.2746e+17])

Wait—what happened? Your training process blew up, leading to losses becoming inf. 
This result is a clear sign that params is receiving updates that are too large; their val-
ues start oscillating back and forth as each update overshoots, and the next overcor-
rects even more. The optimization process is unstable; it diverges instead of converging 
to a minimum. You want to see smaller and smaller updates to params, not larger, as 
shown in figure 4.7.

Figure 4.7 Top: Diverging optimization on convex function (parabolalike) due to large steps. Bottom: 
Converging optimization with small steps.

How can you limit the magnitude of the learning_rate * grad? Well, that process 
looks easy. You could simply choose a smaller learning_rate. You usually change learn-
ing rates by order of magnitude, so you might try 1e-3 or 1e-4, which would decrease 
the magnitude of updates by orders of magnitude. Go with 1e-4 to see how it works out:

# In[17]:
training_loop(
    n_epochs = 100,
    learning_rate = 1e-4,
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    params = torch.tensor([1.0, 0.0]),
    t_u = t_u,
    t_c = t_c)

# Out[17]:
Epoch 1, Loss 1763.884644
    Params: tensor([ 0.5483, -0.0083])
    Grad:   tensor([4517.2964,   82.6000])
Epoch 2, Loss 323.090546
    Params: tensor([ 0.3623, -0.0118])
    Grad:   tensor([1859.5493,   35.7843])
Epoch 3, Loss 78.929634
    Params: tensor([ 0.2858, -0.0135])
    Grad:   tensor([765.4666,  16.5122])
...
Epoch 10, Loss 29.105242
    Params: tensor([ 0.2324, -0.0166])
    Grad:   tensor([1.4803, 3.0544])
Epoch 11, Loss 29.104168
    Params: tensor([ 0.2323, -0.0169])
    Grad:   tensor([0.5780, 3.0384])
...
Epoch 99, Loss 29.023582
    Params: tensor([ 0.2327, -0.0435])
    Grad:   tensor([-0.0533,  3.0226])
Epoch 100, Loss 29.022669
    Params: tensor([ 0.2327, -0.0438])
    Grad:   tensor([-0.0532,  3.0226])

tensor([ 0.2327, -0.0438])

Nice. The behavior is stable now. But there’s another problem: updates to parameters 
are small, so the loss decreases slowly and eventually stalls. You could obviate this issue 
by making the learning_rate adaptive—that is, change according to the magnitude 
of updates. You can use several optimization schemes for that purpose; you see one 
toward the end of this chapter, in section “Optimizers a-la Carte”.

 Another potential troublemaker exists in the update term: the gradient itself. Go 
back to look at grad at epoch 1 during optimization. You see that the first-epoch gradi-
ent for the weight is about 50 times larger than the gradient for the bias, so the weight 
and bias live in differently scaled spaces. In this case, a learning rate that’s large 
enough to meaningfully update one is so large that it’s unstable for the other, or a rate 
that’s appropriate for the second one won’t be large enough to change the first mean-
ingfully. You’re not going to be able to update your parameters unless you change 
your formulation of the problem. You could have individual learning rates for each 
parameter, but for models with many parameters, this approach would be too much to 
bother with; it’s babysitting of the kind you don’t like.

 You have a simpler way to keep things in check: change the inputs so that the gra-
dients aren’t so different. You can make sure that the range of the input doesn’t get 
too far from the range of -1.0 to 1.0, roughly speaking. In this case, you can achieve 
something close enough to that example by multiplying t_u by 0.1:
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# In[18]:
t_un = 0.1 * t_u

Here, you denote the normalized version of t_u by appending n to the variable name. 
At this point, you can run the training loop on your normalized input:

# In[19]:
training_loop(
    n_epochs = 100,
    learning_rate = 1e-2,
    params = torch.tensor([1.0, 0.0]),
    t_u = t_un, 
    t_c = t_c)

# Out[19]:
Epoch 1, Loss 80.364342
    Params: tensor([1.7761, 0.1064])
    Grad:   tensor([-77.6140, -10.6400])
Epoch 2, Loss 37.574917
    Params: tensor([2.0848, 0.1303])
    Grad:   tensor([-30.8623,  -2.3864])
Epoch 3, Loss 30.871077
    Params: tensor([2.2094, 0.1217])
    Grad:   tensor([-12.4631,   0.8587])
...
Epoch 10, Loss 29.030487
    Params: tensor([ 2.3232, -0.0710])
    Grad:   tensor([-0.5355,  2.9295])
Epoch 11, Loss 28.941875
    Params: tensor([ 2.3284, -0.1003])
    Grad:   tensor([-0.5240,  2.9264])
...
Epoch 99, Loss 22.214186
    Params: tensor([ 2.7508, -2.4910])
    Grad:   tensor([-0.4453,  2.5208])
Epoch 100, Loss 22.148710
    Params: tensor([ 2.7553, -2.5162])
    Grad:   tensor([-0.4445,  2.5165])

tensor([ 2.7553, -2.5162])

Even though you set your learning rate back to 1e-2, parameters didn’t blow up 
during iterative updates. Now take a look at the gradients; they were of similar magni-
tudes, so using a single learning_rate for both parameters worked fine. You probably 
could do a better job of normalization than rescaling by a factor of ten, but because 
doing so is good enough for your needs, stick it for now.

NOTE The normalization here helps you get the network trained, but you 
could make an argument that it’s not strictly needed to optimize the parame-
ters for this problem. That’s absolutely true! This problem is small enough 
that you have numerous ways to beat the parameters into submission. For 
larger, more sophisticated problems, however, normalization is an easy and 
effective (if not crucial!) tool to use to improve model convergence.

You’ve updated t_u to 
your new, rescaled t_un.
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Next, run the loop for enough iterations to see the changes in params get small. 
Change n_epochs to 5000:

# In[20]:
params = training_loop(
    n_epochs = 5000,
    learning_rate = 1e-2,
    params = torch.tensor([1.0, 0.0]),
    t_u = t_un,
    t_c = t_c,
    print_params = False)

params

# Out[20]:
Epoch 1, Loss 80.364342
Epoch 2, Loss 37.574917
Epoch 3, Loss 30.871077
...
Epoch 10, Loss 29.030487
Epoch 11, Loss 28.941875
...
Epoch 99, Loss 22.214186
Epoch 100, Loss 22.148710
...
Epoch 4000, Loss 2.927680
Epoch 5000, Loss 2.927648

tensor([  5.3671, -17.3012])

Good. You saw the loss decrease while you were changing parameters along the direc-
tion of gradient descent. The loss didn’t go to zero, which could mean that iterations 
weren’t enough to converge to zero or that the data points aren’t sitting on a line. As 
anticipated, your measurements weren’t perfectly accurate or noise was involved in 
the reading.

 But look: the value for w and b looks an awful lot like the numbers you need to use 
to convert Celsius to Fahrenheit (after accounting for the earlier normalization when 
you multiplied your inputs by 0.1). The exact values are w=5.5556 and b=-17.7778. 
Your fancy thermometer was showing temperatures in Fahrenheit the whole time, 
which is no big discovery, but it proves that your gradient descent optimization pro-
cess works.

 Next, do something that you should have done right from the start: plot your data. 
We didn’t introduce this topic until now for the sake of drama (the surprise effect). 
But seriously, the first thing that anyone doing data science should do is plot the heck 
out of the data.

# In[21]:
%matplotlib inline
from matplotlib import pyplot as plt

t_p = model(t_un, *params)  

Remember that you’re training on 
the normalized unknown units.
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fig = plt.figure(dpi=600)
plt.xlabel("Fahrenheit")
plt.ylabel("Celsius")

plt.plot(t_u.numpy(), t_p.detach().numpy())
plt.plot(t_u.numpy(), t_c.numpy(), 'o')

This code produces Figure 4.8. 

Figure 4.8 The plot of your linear-fit model (solid line) versus input data (circles)

The linear model is a good model for the data, it seems. It also seems that your mea-
surements are somewhat erratic. You should either call your optometrist for a new 
pair of glasses or think about returning your fancy thermometer.

4.2 PyTorch’s autograd: Backpropagate all things
In your little adventure so far, you saw a simple example of backpropagation. You com-
puted the gradient of a composition of functions—the model and the loss—with 
respect to their innermost parameters—w and b—by propagating derivatives backward 
via the chain rule. The basic requirement is that all functions you’re dealing with are 
differentiable analytically. In this case, you can compute the gradient (which we called 
“the rate of change of the loss” earlier) with respect to the parameters in one sweep.

 Should you have a complicated model with millions of parameters, as long as the 
model is differentiable, computing the gradient the loss with respect to parameters 
amounts to writing the analytical expression for the derivatives and evaluating them 
once. Granted, writing the analytical expression for the derivatives of a deep composi-
tion of linear and nonlinear functions isn’t a lot of fun.7 It isn’t particularly quick, either.

7 Or maybe it is; we won’t judge how you spend your weekend!

But you’re plotting the 
raw unknown values.
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 This situation is where PyTorch tensors come to the rescue, with a PyTorch compo-
nent called autograd. PyTorch tensors can remember where they come from in terms 
of the operations and parent tensors that originated them, and they can provide the 
chain of derivatives of such operations with respect to their inputs automatically. You 
won’t need to derive your model by hand;8 given a forward expression, no matter how 
nested, PyTorch provides the gradient of that expression with respect to its input 
parameters automatically.

 At this point, the best way to proceed is to rewrite the thermometer calibration 
code, this time using autograd, and see what happens. First, recall your model and loss 
function, as shown in the following listing.

# In[3]:
def model(t_u, w, b):
    return w * t_u + b

# In[4]:
def loss_fn(t_p, t_c):
    squared_diffs = (t_p - t_c)**2
    return squared_diffs.mean()

Again initialize a parameters tensor:

# In[5]:
params = torch.tensor([1.0, 0.0], requires_grad=True)

Notice the requires_grad=True argument to the tensor constructor? That argument 
is telling PyTorch to track the entire family tree of tensors resulting from operations 
on params. In other words, any tensor that has params as an ancestor has access to the 
chain of functions that were called to get from params to that tensor. In case these 
functions are differentiable (and most PyTorch tensor operations are), the value of 
the derivative is automatically populated as a grad attribute of the params tensor.

 In general, all PyTorch tensors have an attribute named grad, normally None:

# In[6]:
params.grad is None

# Out[6]:
True

All you have to do to populate it is start with a tensor with requires_grad set to True, 
call the model, compute the loss, and then call backward on the loss tensor:

# In[7]:
loss = loss_fn(model(t_u, *params), t_c)
loss.backward()

8 Bummer! What are we going to do on Saturdays now?

Listing 4.2 code/p1ch5/2_autograd.ipynb
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params.grad

# Out[7]:
tensor([4517.2969,   82.6000])

At this point, the grad attribute of params contains the derivatives of the loss with 
respect to each element of params (figure 4.9). 

Figure 4.9 The forward graph and backward graph of model as computed with autograd

 You could have any number of tensors with requires_grad set to True and any 
composition of functions. In this case, PyTorch would compute derivatives of the loss 
throughout the chain of functions (the computation graph) and accumulate their val-
ues in the grad attribute of those tensors (the leaf nodes of the graph).

 Alert: Big gotcha ahead. This is one thing that PyTorch newcomers (and a lot of 
more experienced folks) trip up on regularly. We wrote accumulate, not store.

WARNING Calling backward leads derivatives to accumulate at leaf nodes. You 
need to zero the gradient explicitly after using it for parameter updates.
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To repeat, calling backward leads derivatives to accumulate at leaf nodes. So if back-
ward has been called earlier, the loss is evaluated again, and backward is called again 
(as in any training loop), the gradient at each leaf is accumulated (summed) on top of 
the one computed at the preceding iteration, which leads to an incorrect value for the 
gradient.

 To prevent this situation from occurring, you need to zero the gradient explicitly at 
each iteration. You can do so easily by using the in-place zero_ method:

# In[8]:
if params.grad is not None:
    params.grad.zero_()

NOTE You may be curious why zeroing the gradient is a required step instead 
of automatic whenever you call backward. The reason is to provide more flex-
ibility and control for working with gradients in complicated models.

Having this reminder drilled into your head, now see how your autograd-enabled 
training code looks like, start to end:

# In[9]:
def training_loop(n_epochs, learning_rate, params, t_u, t_c):
    for epoch in range(1, n_epochs + 1):
        if params.grad is not None:  
            params.grad.zero_()

        t_p = model(t_u, *params)
        loss = loss_fn(t_p, t_c)
        loss.backward()

        params = (params - learning_rate * 
params.grad).detach().requires_grad_()

        if epoch % 500 == 0:
            print('Epoch %d, Loss %f' % (epoch, float(loss)))	
    return params

Notice that when you updated params, you also did an odd .detach().requi-
res_grad_() dance. To understand why, think about the computation graph that 
you’ve built. Reformulate your params update line a little so that you’re not reusing vari-
able names: p1 = (p0 * lr * p0.grad) Here, p0 is the random weights with which you 
initialized the model. p0.grad is computed from a combination of p0 and your training 
data via the loss function.

 So far, so good. Now you need to look at the second iteration of the loop: p2 = (p1 
* lr * p1.grad). As you’ve seen, the computation graph for p1 goes back to p0,
which is problematic because (a) you have to keep p0 in memory (until you’re done 
with training), and (b) it confuses the matter of where you should be assigning error 
via backpropagation.

This could be done at any point in the loop 
prior to calling loss.backward()

It’s somewhat cumbersome, but as 
you’ll see in “Optimizers a-la Carte,” 

it’s not an issue in practice.



87PyTorch’s autograd: Backpropagate all things

 Instead, detach the new params tensor from the computation graph associated 
with its update expression by calling .detatch(). This way, params effectively loses the 
memory of the operations that generated it. Then you can reenable tracking by call-
ing .requires_grad_(), an in_place operation (see the trailing _) that reactivates 
autograd for the tensor. Now you can release the memory held by old versions of 
params and need to backpropagate through only your current weights.

 See whether this code works:

# In[10]:
training_loop(
    n_epochs = 5000,
    learning_rate = 1e-2,
    params = torch.tensor([1.0, 0.0], requires_grad=True), 
    t_u = t_un, 
    t_c = t_c)

# Out[10]:
Epoch 500, Loss 7.860116
Epoch 1000, Loss 3.828538
Epoch 1500, Loss 3.092191
Epoch 2000, Loss 2.957697
Epoch 2500, Loss 2.933134
Epoch 3000, Loss 2.928648
Epoch 3500, Loss 2.927830
Epoch 4000, Loss 2.927679
Epoch 4500, Loss 2.927652
Epoch 5000, Loss 2.927647

tensor([  5.3671, -17.3012], requires_grad=True)

You get the same result that you got previously. Good for you! Although you’re capable
of computing derivatives by hand, you no longer need to.

4.2.1 Optimizers a la carte

This code uses vanilla gradient descent for optimization, which works fine for this sim-
ple case. Needless to say, several optimization strategies and tricks can help conver-
gence, especially when models get complicated.

 Now is the right time to introduce the way that PyTorch abstracts the optimization 
strategy away from user code, such as the training loop, sparing you from the boiler-
plate busywork of having to update every parameter in your model yourself. The 
torch module has an optim submodule where you can find classes that implement dif-
ferent optimization algorithms. Here’s an abridged listing:

# In[5]:
import torch.optim as optim

dir(optim)

# Out[5]:

Listing 4.3 code/p1ch5/3_optimizers.ipynb

Adding this 
requires_grad=True 
is key.

Note that again, you’re 
using the normalized 
t_un instead of t_u.
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['ASGD',
 'Adadelta',
 'Adagrad',
 'Adam',
 'Adamax',
 'LBFGS',
 'Optimizer',
 'RMSprop',
 'Rprop',
 'SGD',
 'SparseAdam',
...
]

Every optimizer constructor takes a list of parameters (aka PyTorch tensors, typically 
with requires_grad set to True) as the first input. All parameters passed to the opti-
mizer are retained inside the optimizer object so that the optimizer can update their 
values and access their grad attribute, as represented in figure 4.10.

Figure 4.10 Conceptual representation of how an optimizer holds a reference to parameters (A), 
and after a loss is computed from inputs (B), a call to .backward leads to .grad being populated 
on parameter (C). At that point, the optimizer can access .grad and compute the parameter 
updates (D).

 Each optimizer exposes two methods: zero_grad and step. The former zeros the 
grad attribute of all the parameters passed to the optimizer upon construction. The 
latter updates the value of those parameters according to the optimization strategy 
implemented by the specific optimizer.
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Now create params and instantiate a gradient descent optimizer:

# In[6]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-5
optimizer = optim.SGD([params], lr=learning_rate)

Here, SGD stands for Stochastic Gradient Descent. The optimizer itself is a vanilla gradient 
descent (as long as the momentum argument is set to 0.0, which is the default). The 
term stochastic comes from the fact that the gradient is typically obtained by averaging 
over a random subset of all input samples, called a minibatch. The optimizer itself, 
however, doesn’t know whether the loss was evaluated on all the samples (vanilla) or a 
random subset thereof (stochastic), so the algorithm is the same in the two cases.

 Anyway, take your fancy new optimizer for a spin:

# In[7]:
t_p = model(t_u, *params)
loss = loss_fn(t_p, t_c)
loss.backward()

optimizer.step()

params

# Out[7]:
tensor([ 9.5483e-01, -8.2600e-04], requires_grad=True)

The value of params was updated when step was called, and you didn’t have to touch 
it yourself! What happened was that the optimizer looked into params.grad and 
updated params by subtracting learning_rate times grad from it, exactly as in your 
former hand-rolled code.

 Are you ready to stick this code in a training loop? Nope! The big gotcha almost 
got you: you forgot to zero out the gradients. Had you called the preceding code in a 
loop, gradients would have accumulated in the leaves at every call to backward, and 
your gradient descent would have been all over the place!

 Here’s the loop-ready code, with the extra zero_grad in the right spot (before the 
call to backward):

# In[8]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-2
optimizer = optim.SGD([params], lr=learning_rate)

t_p = model(t_un, *params)
loss = loss_fn(t_p, t_c)

optimizer.zero_grad() 
loss.backward()
optimizer.step()

params

# Out[8]:
tensor([1.7761, 0.1064], requires_grad=True)

As before, the placement of this call is somewhat 
arbitrary. It could be earlier in the loop as well.
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Perfect! See how the optim module helped you abstract away the specific optimization 
scheme? All you have to do is provide a list of params to it (that list can be extremely 
long, as needed for deep neural network models) and then forget about the details.

 Update your training loop accordingly:

# In[9]:
def training_loop(n_epochs, optimizer, params, t_u, t_c):
    for epoch in range(1, n_epochs + 1):
        t_p = model(t_u, *params)
        loss = loss_fn(t_p, t_c)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch % 500 == 0:
            print('Epoch %d, Loss %f' % (epoch, float(loss)))

    return params

# In[10]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-2
optimizer = optim.SGD([params], lr=learning_rate) 

training_loop(
    n_epochs = 5000,
    optimizer = optimizer,
    params = params, 
    t_u = t_un,
    t_c = t_c)

# Out[10]:
Epoch 500, Loss 7.860116
Epoch 1000, Loss 3.828538
Epoch 1500, Loss 3.092191
Epoch 2000, Loss 2.957697
Epoch 2500, Loss 2.933134
Epoch 3000, Loss 2.928648
Epoch 3500, Loss 2.927830
Epoch 4000, Loss 2.927679
Epoch 4500, Loss 2.927652
Epoch 5000, Loss 2.927647

tensor([  5.3671, -17.3012], requires_grad=True)

Again, you get the same result as before. Great. You have further confirmation that 
you know how to descend a gradient by hand! To test more optimizers, all you have to 
do is instantiate a different optimizer, such as Adam, instead of SGD. The rest of the 
code stays as is. This stuff is pretty handy.

 We won’t go into much detail on Adam, but it suffices to say that it’s a more sophis-
ticated optimizer in which the learning rate is set adaptively. In addition, it’s a lot less 
sensitive to the scaling of the parameters—so insensitive that you can go back to use 

It’s important that both 
params here are the same 
object; otherwise, the 
optimizer won’t know what 
parameters the model used.
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the original (non-normalized) input t_u and even increase the learning rate to 1e-1. 
Adam won’t even blink:

# In[11]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-1
optimizer = optim.Adam([params], lr=learning_rate) 

training_loop(
    n_epochs = 2000,
    optimizer = optimizer,
    params = params,
    t_u = t_u, 
    t_c = t_c)

# Out[11]:
Epoch 500, Loss 7.612901
Epoch 1000, Loss 3.086700
Epoch 1500, Loss 2.928578
Epoch 2000, Loss 2.927646

tensor([  0.5367, -17.3021], requires_grad=True)

The optimizer isn’t the only flexible part of your training loop. Turn your attention to 
the model. To train a neural network on the same data and the same loss, all you’d 
need to change is the model function. Doing this wouldn’t make sense in this case, 
because you know that converting Celsius to Fahrenheit amounts to a linear transfor-
mation. Neural networks allow you to remove your arbitrary assumptions about the 
shape of the function you should be approximating. Even so, neural networks manage 
to be trained even when the underlying processes are highly nonlinear (such in the 
case of describing an image with a sentence).

 We’ve touched on a lot of the essential concepts that will enable you to train com-
plicated deep learning models while knowing what’s going on under the hood: back-
propagation to estimate gradients, autograd, and optimizing weights of models by 
using gradient descent or other optimizers. We don’t have a whole lot more to cover. 
The rest is mostly filling in the blanks, however extensive they are.

 Next, we discuss how to split up samples, which sets up a perfect use case for learn-
ing to control autograd better.

4.2.2 Training, validation, and overfitting

Johannes Kepler kept a part of the data on the side so that he could validate his mod-
els on independent observations—a vital thing to do, especially when the model you 
adopt could potentially approximate functions of any shape, as in the case of neural 
networks. In other words, a highly adaptable model tends to use its many parameters 
to make sure that the loss is minimal at the data points, but you’ll have no guarantee 
that the model behaves well away from or between the data points. After all, that’s all 
you’re asking the optimizer to do: minimize the loss at the data points. Sure enough, 
if you had independent data points that you didn’t use to evaluate your loss or 

New optimizer class here.

Note that you’re back to the 
original t_u as input.
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descend along its negative gradient, you’d soon find out that evaluating the loss at 
those independent data points would yield a higher-than-expected loss. We’ve already 
mentioned this phenomenon, called overfitting.

 The first action you can take to combat overfitting is to recognize that it might 
happen. To do so, as Kepler figured out in 1600, you must take a few data points out 
of your data set (the validation set) and fit our model to the remaining data points (the 
training set), as shown in figure 4.11. Then, while you’re fitting the model, you can 
evaluate the loss once on the training set and once on the validation set. When you’re 
trying to decide whether you’ve done a good job of fitting your model to the data, you 
must look at each data set!

Figure 4.11 Conceptual representation of a �
data-producing process and the collection and use 
of training data and independent validation data

 The first figure, the training loss, tells you whether your model can fit the training 
set at all—in other words, whether your model has enough capacity to process the rele-
vant information in the data. If your mysterious thermometer somehow managed to 
measure temperatures by using a logarithmic scale, your poor linear model wouldn’t 
have had a chance to fit those measurements and provide a sensible conversion to Cel-
sius. In that case, your training loss (the loss you were printing in the training loop) 
would stop decreasing well before approaching zero.

 A deep neural network can potentially approximate complicated functions, pro-
vided that the number of neurons—and, therefore, parameters—is high enough. The 
fewer the parameters, the simpler the shape of the function your network will be able 
to approximate. So here’s rule one: if the training loss isn’t decreasing, chances are 
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that the model is too simple for the data. The other possibility is that your data doesn’t 
contain meaningful information for it to explain the output. If the nice folks at the 
shop sold you a barometer instead of a thermometer, you’d have little chance to pre-
dict temperature in Celsius from pressure alone, even if you used the latest neural net-
work architecture from Quebec.9

 What about the validation set? Well, if the loss evaluated in the validation set 
doesn’t decrease along with the training set, your model is improving its fit of the sam-
ples it’s seeing during training, but it isn’t generalizing to samples outside this precise 
set. As soon as you evaluate the model at new, previously unseen points, the values of 
the loss function are poor. Here’s rule two: if the training loss and the validation loss 
diverge, you’re overfitting.

 We’ll delve into this phenomenon a little here, going back to the thermometer 
example. You could have decided to fit the data with a more complicated function, 
such as a piecewise polynomial or a large neural network. This function could gener-
ate a model that meanders its way through the data points, as in figure 4.12, because it 
pushes the loss close to zero. Because the behavior of the function away from the data 
points doesn’t increase the loss, there’s nothing to keep the model away from the 
training data points in check.

Figure 4.12 Rather extreme example of overfitting

9 https://www.umontreal.ca/en/artificialintelligence



94 CHAPTER 4 The mechanics of learning

What’s the cure, though? Good question. Overfitting looks like a problem of making 
sure that the behavior of the model in between data points is sensible for the process 
you’re trying approximate. First, you should make sure that you get enough data for 
the process. If you collected data from a sinusoidal process by sampling it regularly at 
a low frequency, you’d have a hard time fitting a model to it.

 Assuming that you have enough data points, you should make sure that the model 
that’s capable of fitting the training data is as regular as possible between the data 
points. You have several ways to achieve this goal. One way is to add so-called penaliza-
tion terms to the loss function to make it cheaper for the model to behave more 
smoothly and change more slowly (up to a point). Another way is to add noise to the 
input samples, to artificially create new data points between training data samples and 
force the model to try to fit them too. Several other ways are somewhat related to the 
preceding ones. But the best favor you can do for yourself, at least as a first move, is to 
make your model simpler. From an intuitive standpoint, a simpler model may not fit 
the training data as perfectly as a more complicated model would do, but it will likely 
behave more regularly between data points.

 You’ve got some nice tradeoffs here. On one hand, you need to model to have 
enough capacity for it to fit the training set. On the other hand, you need the model 
to avoid overfitting. Therefore, the process for choosing the right size of a neural net-
work model, in terms of parameters, is based on two steps: increase the size until it fits 
and then scale it down until it stops overfitting.

 Your life will be a balancing act between fitting and overfitting. You can split the 
data into a training set and a validation set by shuffling t_u and t_c in the same way 
and then splitting the resulting shuffled tensors into two parts.

 Shuffling the elements of a tensor amounts to finding a permutation of its indices. 
The randperm function does this:

# In[12]:
n_samples = t_u.shape[0]
n_val = int(0.2 * n_samples)

shuffled_indices = torch.randperm(n_samples)

train_indices = shuffled_indices[:-n_val]
val_indices = shuffled_indices[-n_val:]

train_indices, val_indices  

# Out[12]:
(tensor([ 8,  0,  3,  6,  4,  1,  2,  5, 10]), tensor([9, 7]))

You get index tensors that you can use to build training and validation sets starting 
from the data tensors:

# In[13]:
train_t_u = t_u[train_indices]
train_t_c = t_c[train_indices]

val_t_u = t_u[val_indices]

Because these values are random, don’t be surprised 
if your values end up being different from here on.
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val_t_c = t_c[val_indices]

train_t_un = 0.1 * train_t_u
val_t_un = 0.1 * val_t_u

Your training loop doesn’t change. You want to evaluate the validation loss at every 
epoch to have a chance to recognize whether you’re overfitting:

# In[14]:
def training_loop(n_epochs, optimizer, params, train_t_u, val_t_u, train_t_c, 

val_t_c):
    for epoch in range(1, n_epochs + 1):
        train_t_p = model(train_t_u, *params)  
        train_loss = loss_fn(train_t_p, train_t_c)

        val_t_p = model(val_t_u, *params)       
        val_loss = loss_fn(val_t_p, val_t_c)

        optimizer.zero_grad()
        train_loss.backward() 
        optimizer.step()

        if epoch <= 3 or epoch % 500 == 0:
            print('Epoch {}, Training loss {}, Validation loss {}'.format(
                epoch, float(train_loss), float(val_loss)))

    return params
# In[15]:
params = torch.tensor([1.0, 0.0], requires_grad=True)
learning_rate = 1e-2
optimizer = optim.SGD([params], lr=learning_rate)

training_loop(
    n_epochs = 3000,
    optimizer = optimizer,
    params = params,
    train_t_u = train_t_un, 
    val_t_u = val_t_un,   
    train_t_c = train_t_c,
    val_t_c = val_t_c)

# Out[15]:
Epoch 1, Training loss 88.59708404541016, Validation loss 43.31699752807617
Epoch 2, Training loss 34.42190933227539, Validation loss 35.03486633300781
Epoch 3, Training loss 27.57990264892578, Validation loss 40.214229583740234
Epoch 500, Training loss 9.516923904418945, Validation loss 9.02982234954834
Epoch 1000, Training loss 4.543173789978027, Validation loss 

2.596876621246338
Epoch 1500, Training loss 3.1108808517456055, Validation loss 

2.9066450595855713
Epoch 2000, Training loss 2.6984243392944336, Validation loss 

4.1561737060546875
Epoch 2500, Training loss 2.579646348953247, Validation loss 

5.138668537139893
Epoch 3000, Training loss 2.5454416275024414, Validation loss 

5.755766868591309

tensor([  5.6473, -18.7334], requires_grad=True)

These two pairs of lines are 
the same except for the 
train_* vs. val_* inputs.

Note that you have no val_loss.backward() 
here because you don’t want to train the model on 
the validation data.

Because you’re using SGD again, you’re 
back to using normalized inputs.
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Here, we’re not being entirely fair to the model. The validation set is small, so the val-
idation loss will be meaningful only up to a point. In any case, note that the validation 
loss is higher than your training loss, although not by an order of magnitude. The fact 
that a model performs better on the training set is expected since the model parame-
ters are being shaped by the training set. Your main goal is to also see both the train-
ing loss and the validation loss decreasing. Although ideally, both losses would be 
roughly the same value, as long as validation loss stays reasonably close to the training 
loss, you know that your model is continuing to learn generalized things about your 
data. In figure 4.13, case C is ideal, and D is acceptable. In case A, the model isn’t 
learning at all, and in case B, you see overfitting.

Figure 4.13 Overfitting scenarios for the training (blue) and validation (red) losses. (A) Training and 
validation losses don’t decrease; the model isn’t learning due to no information in the data or insufficient 
capacity of the model. (B) Training loss decreases while validation increases (overfitting). (C) Training 
and validation losses decrease in tandem; performance may be improved further, as the model isn’t at 
the limit of overfitting. (D) Training and validation losses have different absolute values but similar 
trends; overfitting is under control.

4.2.3 Nits in autograd and switching it off

From the training loop, you can appreciate that you only ever call backward on the 
train_loss. Therefore, errors only ever backpropagate based on the training set. The 
validation set is used to provide an independent evaluation of the accuracy of the 
model’s output on data that wasn’t used for training.

 The curious reader will have an embryo of a question at this point. The model is 
evaluated twice—once on train_t_u and then on val_t_u—after which backward is 
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called. Won’t this confuse the hell out of autograd? Won’t backward be influenced by 
the values generated during the pass on the validation set?

 Luckily, this isn’t the case. The first line in the training loop evaluates model on 
train_t_u to produce train_t_p. Then train_loss is evaluated from train_t_p, 
creating a computation graph that links train_t_u to train_t_p to train_loss. 
When model is evaluated again on val_t_u, it produces val_t_p and val_loss. In this 
case, a separate computation graph is created that links val_t_u to val_t_p to 
val_loss. Separate tensors have been run through the same functions, model and 
loss_fn, generating separate computation graphs, as shown in figure 4.14.

Figure 4.14 Diagram showing how gradients propagate through a graph with two losses when 
.backward is called on one of them

The only tensors that these two graphs have in common are the parameters. When 
you call backward on train_loss, you run the backward on the first graph. In other 
words, you accumulate the derivatives of the train_loss with respect to the parame-
ters based on the computation generated from train_t_u.

 If you (incorrectly) called backward on val_loss as well, you’d have accumulated 
the derivatives of the val_loss with respect to the parameters on the same leaf nodes. 
Remember the zero_grad thing, whereby gradients would be accumulated on top of 
each other every time you called backward unless you zeroed out gradients explicitly? 
Well, here something similar would happen: calling backward on val_loss would 
lead to gradients accumulating in the params tensor, on top of those generated during 
the train_loss.backward() call. In this case, you’d effectively train your model on 
the whole data set (both training and validation), because the gradient would depend 
on both. Pretty interesting.
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 Here’s another element for discussion: because you’re never calling backward on 
val_loss, why are you building the graph in the first place? You could in fact call 
model and loss_fn as plain functions without tracking history. However optimized, 
tracking history comes with additional costs that you could forgo during the validation 
pass, especially when the model has millions of parameters.

 To address this situation, PyTorch allows you to switch off autograd when you don’t 
need it by using the torch.no_grad context manager. You won’t see any meaningful 
advantage in terms of speed or memory consumption on your small problem. But for 
larger models, the differences can add up. You can make sure that this context manager 
works by checking the value of the requires_grad attribute on the val_loss tensor:

# In[16]:
def training_loop(n_epochs, optimizer, params, train_t_u, val_t_u, train_t_c, 

val_t_c):
    for epoch in range(1, n_epochs + 1):
        train_t_p = model(train_t_u, *params)
        train_loss = loss_fn(train_t_p, train_t_c)

        with torch.no_grad(): 
            val_t_p = model(val_t_u, *params)
            val_loss = loss_fn(val_t_p, val_t_c)
            assert val_loss.requires_grad == False 

        optimizer.zero_grad()
        train_loss.backward()
        optimizer.step()

Using the related set_grad_enabled context, you can also condition code to run with 
autograd enabled or disabled, according to a Boolean expression, typically indicating 
whether you’re running in training or inference. You could define a calc_forward
function that takes data in input and runs model and loss_fn with or without auto-
grad, according to a Boolean train_is argument:

# In[17]:
def calc_forward(t_u, t_c, is_train):
    with torch.set_grad_enabled(is_train):
        t_p = model(t_u, *params)
        loss = loss_fn(t_p, t_c)
    return loss

Conclusion
This chapter started with a big question: how can a machine learn from examples? We 
spent the rest of the chapter describing the mechanism by which a model can be opti-
mized to fit data. We chose to stick with a simple model to show all the moving parts 
without unneeded complications.

Context manager here.

All requires_grad args 
are forced to False 
inside this block.
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Exercises
� Redefine the model to be w2 * t_u ** 2 + w1 * t_u + b.

– What parts of the training loop and so on must be changed to accommodate 
this redefinition?
• What parts are agnostic to swapping out the model?

– Is the resulting loss higher or lower after training?
• Is the result better or worse?

Summary
� Linear models are the simplest reasonable model to use to fit data.
� Convex optimization techniques can be used for linear models, but they don’t 

generalize to neural networks, so this chapter focuses on parameter estimation.
� Deep learning can be used for generic models that aren’t engineered to solve a 

specific task but can be adapted automatically to specialize in the problem at 
hand.

� Learning algorithms amount to optimizing parameters of models based on 
observations. Loss function is a measure of the error in carrying out a task, such 
as the error between predicted outputs and measured values. The goal is to get 
loss function as low as possible.

� The rate of change of the loss function with respect to model parameters can be 
used to update the same parameters in the direction of decreasing loss.

� The optim module in PyTorch provides a collection of ready-to-use optimizers 
for updating parameters and minimizing loss functions.

� Optimizers use the autograd feature of PyTorch to compute the gradient for 
each parameter, depending on how that parameter contributed to the final out-
put. This feature allows users to rely on the dynamic computation graph during 
complex forward passes.

� Context managers such as with torch.no_grad(): can be used to control auto-
grad behavior.

� Data is often split into separate sets of training samples and validation samples, 
allowing a model to be evaluated on data it wasn’t trained on.

� Overfitting a model happens when the model’s performance continues to 
improve on the training set but degrades on the validation set. This situation 
usually occurs when the model doesn’t generalize and instead memorizes the 
desired outputs for the training set.
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Using a neural network 
to fit your data

You’ve taken a close look at how a linear model can learn and how to make it hap-
pen in PyTorch, focusing on a simple regression problem that required a linear 
model with one input and one output. This simple example allowed you to dissect 
the mechanics of a model that learns without getting overly distracted by the imple-
mentation of the model itself. Backpropagating error to the parameters and then 
updating those parameters by taking the gradient with respect to the loss is going 
to be the same no matter what the underlying model is (figure 5.1).

 In this chapter, you’re going to make changes in your model architecture. 
You’re going to implement a full artificial neural network to solve your problem.

This chapter covers
� The use of nonlinear activation functions as the key 

difference from linear models
� The many kinds of activation functions in common use
� PyTorch’s nn module, containing neural network building 

blocks
� Solving a simple linear-fit problem with a neural network



Figure 5.1 Mental model of the learning process
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Your thermometer conversion training loop and Fahrenheit-to-Celsius samples split 
into training and validation sets remain. You could start to use a quadratic model, 
rewriting your model as a quadratic function of its input (such as y = a * x**2 + b * 
x + c). Because such a model would be differentiable, PyTorch would take care of 
computing gradients, and the training loop would work as usual. That wouldn’t be too 
interesting for you, though, because you’d still be fixing the shape of the function.

 This chapter is where you start to hook the foundational work you’ve put in with 
the PyTorch features you’ll be using day in and day out as you work on your projects. 
You’ll have an understanding of what’s going on underneath the porcelain of the 
PyTorch API rather than thinking that it’s so much black magic.

 Before we get into the implementation of the new model, though, we’ll explain 
what we mean by artificial neural network.

5.1 Artificial neurons
At the core of deep learning are neural networks, mathematical entities capable of rep-
resenting complicated functions through a composition of simpler functions. The 
term neural network obviously suggests a link to the way the human brain works. As a 
matter of fact, although the initial models were inspired by neuroscience,1 modern 

1 http://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0042519
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artificial neural networks bear only a vague resemblance to the mechanisms of neu-
rons in the brain. It seems likely that artificial and physiological neural networks use 
vaguely similar mathematical strategies for approximating complicated functions 
because that family of strategies works effectively.

NOTE We’re going to drop artificial and refer to these constructs as neural net-
works from here on.

The basic building block of these complicated functions is the neuron, pictured in 
figure 5.2. At its core, a neuron is nothing but a linear transformation of the input 
(such as multiplication of the input by a number [the weight] and the addition of a 
constant [the bias]) followed by the application of a fixed nonlinear function 
(referred to as the activation function). 

Figure 5.2 An artificial neuron: a linear transformation enclosed in a nonlinear function

 Mathematically, you can write this as o = f(w * x + b), with x as the input, w as 
the weight or scaling factor, and b as the bias or offset. f is the activation function, set 
to the hyperbolic tangent or “tanh” function here. In general, x and hence o can be 
simple scalars, or vector-valued (holding many scalar values). Similarly, w can be a sin-
gle scalar, or a matrix, whereas b is a scalar or vector (the dimensionality of the inputs 
and weights must match, however). In the latter case, the expression is referred to as a 
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layer of neurons because it represents many neurons via the multidimensional weights 
and biases.

 A multilayer neural network, as represented in figure 5.3, is a composition of the 
preceding functions:

x_1 = f(w_0 * x + b_0)
x_2 = f(w_1 * x_1 + b_1)
...
y = f(w_n * x_n + b_n)

where the output of a layer of neurons is used as an input for the following layer. 
Remember that w_0 here is a matrix, and x is a vector! Using a vector here allows w_0
to hold an entire layer of neurons, not just a single weight.

Figure 5.3 A neural network with three layers

An important difference between the earlier linear model and what you’ll be using for 
deep learning is the shape of the error function. The linear model and error-squared loss 
function had a convex error curve with a singular, clearly defined minimum. If you were 
to use other methods, you could solve for it automatically and definitively. Your parame-
ter updates were attempting to estimate that singular correct answer as best they could.

 Neural networks don’t have that same property of a convex error surface, even 
when using the same error-squared loss function. There’s no single right answer for 
each parameter that you’re attempting to approximate. Instead, you’re trying to get 
all the parameters, when acting in concert, to produce useful output. Since that useful 



105Artificial neurons

output is only going to approximate the truth, there will be some level of imperfec-
tion. Where and how those imperfections manifest is somewhat arbitrary, and by 
implication the parameters that control the output (and hence the imperfections) are 
somewhat arbitrary as well. This output results in neural network training’s looking 
much like parameter estimation from a mechanical perspective, but you must remem-
ber that the theoretical underpinnings are quite different.

 A big part of the reason why neural networks have nonconvex error surfaces is due 
to the activation function. The ability of an ensemble of neurons to approximate a 
wide range of useful functions depends on the combination of the linear and nonlin-
ear behavior inherent to each neuron.

5.1.1 All you need is activation

The simplest unit in (deep) neural networks is a linear operation (scaling + offset) fol-
lowed by an activation function. You had a linear operation in your latest model; the 
linear operation was the entire model. The activation function has the role of concen-
trating the outputs of the preceding linear operation into a given range.

 Suppose that you’re assigning a “good doggo” score to images. Pictures of retriev-
ers and spaniels should have a high score; images of airplanes and garbage trucks 
should have a low score. Bear pictures should have a low-ish score too, though higher 
than garbage trucks.

 The problem is that you have to define a high score. Because you’ve got the entire 
range of float32 to work with, you can go pretty high. Even if you say “It’s a ten point 
scale,” sometimes your model is going to produce a score of 11 out of 10. Remember 
that under the hood, it’s all sum of w*x+b matrix multiplications, which won’t natu-
rally limit themselves to a specific range of outputs.

 What you want to do is firmly constrain the output of your linear operation to a 
specific range so that the consumer of this output isn’t having to handle numerical 
inputs of puppies at 12/10, bears at -10, and garbage trucks at -1000.

 One possibility is to cap the output values. Anything below zero is set to zero, and 
anything above 10 is set to 10. You use a simple activation function called 
torch.nn.Hardtanh.2

 Another family of functions that works well is torch.nn.Sigmoid, which is 1 / (1 
+ e ** -x), torch.tanh, and others that you’ll see in a moment. These functions 
have a curve that asymptotically approaches zero or negative one as x goes to negative 
infinity, approaches one as x increases, and has a mostly constant slope at x == 0. Con-
ceptually, functions shaped this way work well, because it means that your neuron 
(which, again, is a linear function followed by an activation) will be sensitive to an area 
in the middle of your linear function’s output; everything else gets lumped up next to 
the boundary values. As you see in figure 5.4, a garbage truck gets a score of -0.97, 
whereas bears, foxes, and wolves may end up somewhere in the -0.3 to 0.3 range.

2 See https://pytorch.org/docs/stable/nn.html#hardtanh, but note that the default range is -1 to +1.



Figure 5.4 Dogs, bears, and garbage trucks being mapped to “how doglike” 
via the tanh activation function
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Garbage trucks are flagged as “not dogs,” the good dog maps to “clearly a dog,” and 
the bear ends up somewhere in the middle. In code, you see the exact values:

>>> import math
>>> math.tanh(-2.2)  
-0.9757431300314515
>>> math.tanh(0.1)   
0.09966799462495582
>>> math.tanh(2.5)   
0.9866142981514303

With the bear in the sensitive range, small changes to the bear result in a noticeable 
change in the result. You could swap from a grizzly to a polar bear (which has a 
vaguely more traditionally canine face) and see a jump up the Y axis as you slide 
toward the “very much a dog” end of the graph. Conversely, a koala bear would regis-
ter as less doglike and would see a drop in the activated output. There isn’t much you 
could do to the garbage truck to make it register as doglike, though. Even with drastic 
changes, you might see a shift only from -0.97 to -0.8 or so.

 Quite a few activation functions are available, some of which are pictured in figure 
5.5. In the first column, you see the continuous functions Tanh and Softplus; the sec-
ond column has “hard” versions of the activation functions to their left, Hardtanh and 
ReLU. ReLU (Rectified Linear Unit) deserves special note, as it is currently considered 
to be one of the best-performing general activation functions, as many state-of-the-art 
results have used it. The Sigmoid activation function, also known as the logistic func-

Garbage truck

Bear

Good doggo
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tion, was widely used in early deep learning work but has fallen out of common use. 
Finally, the LeakyReLU function modifies the standard ReLU to have a small positive 
slope rather than being strictly zero for negative inputs. (Typically, this slope is 0.01, 
but it’s shown here with slope 0.1 for clarity.)

Figure 5.5 A collection of common and not-so-common activation functions

 Activation functions are curious, because with such a wide variety of proven-suc-
cessful ones (many more than pictured in figure 5.5), it’s clear that there are few, if 
any, strict requirements. As such, we’re going to discuss some generalities about activa-
tion functions that can probably be disproved in the specific. That said, by definition, 
activation functions3

� Are nonlinear—Repeated applications of w*x+b without an activation function 
results in a polynomial. The nonlinearity allows the overall network to approxi-
mate more complex functions.

� Are differentiable—They’re differentiable so that gradients can be computed 
through them. Point discontinuities, as you see in Hardtanh or ReLU, are fine.

Without those functions, the network either falls back to being a complicated polyno-
mial or becomes difficult to train.

3 Even these statements aren’t always true, of course: See https://openai.com/blog/nonlinear-computation-
in-linear-networks.
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 Also generally true (though less so), the functions

� Have at least one sensitive range, where no-trivial changes to the input result in 
a corresponding nontrivial change in the output.

� Have at least one insensitive (or saturated) range, where changes to the input 
result in little to no change in the output.

By way of example, the Hardtanh function could easily be used to make piecewise-lin-
ear approximations of a function due to combining the sensitive range with different 
weights and biases on the input.

 Often (but far from universally so), the activation function has at least one of the 
following:

� A lower bound that is approached (or met) as the input goes to negative infinity
� A similar-but-inverse upper bound for positive infinity

Thinking about what you know about how backpropagation works, you can figure out 
that the errors will propagate backward through the activation more effectively when 
the inputs are in the response range, whereas errors won’t greatly affect neurons for 
which the input is saturated (because the gradient will be close to zero due to the flat 
area around the output).

 All put together, this mechanism is pretty powerful. What we’re saying is that in a 
network built out of linear + activation units, when different inputs are presented to 
the network, (a) different units respond in different ranges for the same inputs, and 
(b) the errors associated with those inputs will primarily affect the neurons operating 
in the sensitive range, leaving other units more or less unaffected by the learning pro-
cess. In addition, thanks to the fact that derivatives of the activation with respect to its 
inputs are often close to one in the sensitive range, estimating the parameters of the 
linear transformation through gradient descent for the units that operate in that 
range will look a lot like the linear fit.

 You’re starting to get a deeper intuition about how joining many linear + activation 
units in parallel and stacking them one after the other leads to a mathematical object 
that is capable of approximating complicated functions. Different combinations of 
units respond to inputs in different ranges and for those parameters are relatively easy 
to optimize through gradient descent, because learning will behave a lot like that of a 
linear function until the output saturates.

5.1.2 What learning means for a neural network

Building models out of stacks of linear transformations followed by differentiable acti-
vations leads to models that can approximate highly nonlinear processes whose 
parameters you can estimate surprisingly well through gradient descent. This fact 
remains true even when you’re dealing with models with millions of parameters. What 
makes using deep neural networks so attractive is that it allows you not to worry too 
much about the exact function that represents your data, whether it’s quadratic, 
piecewise polynomial, or something else. With a deep neural network model, you 
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have a universal approximator and a method to estimate its parameters. This approxi-
mator can be customized to your needs, in terms of model capacity and its ability to 
model complicated input/output relationships, by composing simple building blocks. 
Figure 5.6 shows some examples.

Figure 5.6 Composing multiple linear units and tanh activation functions to produce nonlinear outputs

 The four top-left graphs show four neurons—A, B, C, and D—each with its own 
(arbitrarily chosen) weight and bias. Each neuron uses the Tanh activation function, 
with a minimum of -1 and a maximum of 1. The varied weights and biases move the 
center point and change how drastically the transition from min to max goes, but they 
clearly are all the same general shape. The columns to the right show both pairs of 
neurons added together (A+B and then C+D). Here, you start to see some interesting 
properties that mimic a single layer of neurons. A+B shows a slight S curve, with the 
extremes approaching zero, but both a positive and negative bump in the middle. 
Conversely, C+D has only a large positive bump, which peaks at a higher value than 
the single-neuron max of 1.

 In the third row, you start to compose your neurons as they would be in a two-layer 
network. Both C(A+B) and D(A+B) have the same positive-and-negative-bumps that A+B 
shows, but the positive peak is more subtle. The composition of C(A+B)+D(A+B) shows a 
new property: two clear negative bumps and possibly a subtle second positive peak to the 
left of the main area of interest. All this occurs with only four neurons in two layers!
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 Again, these neurons’ parameters were chosen only to create a visually interesting 
result. Training consists of finding acceptable values for these weights and biases so 
that the resulting network carries out a task correctly, such as predicting likely tem-
peratures given geographic coordinates and time of the year. By carrying out a task suc-
cessfully, we mean obtaining a correct output on unseen data produced by the same 
data-generating process used for training data. A successfully trained network, 
through the value of its weights and biases, captures the inherent structure of the data 
in the form of meaningful numerical representations that work correctly for previ-
ously unseen data.

 Here’s another step in your realization of the mechanics of learning: deep neural 
networks allow you to approximate highly nonlinear phenomena without having an 
explicit model for them. Instead, starting from a generic, untrained model, you spe-
cialize it on a task by providing it a set of inputs and outputs and a loss function to 
backpropagate from. Specializing a generic model to a task by using examples is what 
we refer to as learning, because the model wasn’t built with that specific task in mind; 
no rules describing how that task worked were encoded in the model.

 For your thermometer experience, you assumed that both thermometers mea-
sured temperatures linearly. That assumption is where we implicitly encoded a rule 
for our task: we hard-coded the shape of our input/output function; we couldn’t have 
approximated anything other than data points sitting around a line. As the dimen-
sionality of a problem grows (many inputs to many outputs) and input/output rela-
tionships get complicated, assuming a shape for the input/output function is unlikely 
to work. The job of a physicist or an applied mathematician is often to come up with a 
functional description of a phenomenon from first principles so that it’s possible to 
estimate the unknown parameters from measurements and get an accurate model of 
the world. Deep neural networks, at the other end, are families of functions that can 
approximate a wide range of input/output relationships without necessarily requiring 
one to come up with an explanatory model of a phenomenon. In a way, you’re 
renouncing an explanation in exchange for the possibility of tackling increasingly 
complicated problems. In another way, you sometimes lack the ability, information, or 
computational resources to build an explicit model of what you’re presented with, so 
data-driven methods are your only way forward.

5.2 The PyTorch nn module
All this talk about neural networks may be getting you curious about building one 
from scratch with PyTorch. The first step is replacing your linear model with a neural 
network unit. This step is a somewhat-useless step backward from a correctness per-
spective, because you’ve already verified that your calibration required only a linear 
function, but it’ll still be instrumental for starting a sufficiently simple problem and 
scaling up later.

 PyTorch has a whole submodule dedicated to neural networks: torch.nn. This sub-
module contains the building blocks needed to create all sorts of neural network 
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architectures. Those building blocks are called modules in PyTorch parlance (and layers
in other frameworks).

 A PyTorch module is a Python class deriving from the nn.Module base class. 
A Module can have one or more Parameter instances as attributes, which are tensors 
whose values are optimized during the training process. (Think w and b in your 
linear model.) A Module can also have one or more submodules (subclasses of 
nn.Module) as attributes, and it can track their Parameters as well.

NOTE The submodules must be top-level attributes, not buried inside list or 
dict instances! Otherwise, the optimizer won’t be able to locate the submod-
ules (and, hence, their parameters). For situations in which your model 
requires a list or dict of submodules, PyTorch provides nn.ModuleList and 
nn.ModuleDict.

Unsurprisingly, you can find a subclass of nn.Module called nn.Linear, which applies 
an affine transformation to its input (via the parameter attributes weight and bias); 
it’s equivalent to what you implemented earlier in your thermometer experiments. 
Now start precisely where you left off and convert your previous code to a form that 
uses nn.

 All PyTorch-provided subclasses of nn.Module have their call method defined, 
which allows you to instantiate an nn.Linear and call it as though it were a function, 
as in the following listing.

# In[5]:
import torch.nn as nn

linear_model = nn.Linear(1, 1) 
linear_model(t_un_val)

# Out[5]:
tensor ([[-0.9852],
        [-2.6876]], grad_fn=<AddmmBackward>)

Calling an instance of nn.Module with a set of arguments ends up calling a method 
named forward with the same arguments. The forward method executes the forward 
computation; call does other rather important chores before and after calling 
forward. So it’s technically possible to call forward directly, and it produces the same 
output as call, but it shouldn’t be done from user code:

>>> y = model(x)         Correct!
>>> y = model.forward(x) Silent error. 

Don’t do it!

The following listing shows the implementation of Module.call (with some simplifi-
cations made for clarity).

Listing 5.1 code/p1ch6/1_neural_networks.ipynb

You look into the constructor 
arguments in a moment.
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def __call__(self, *input, **kwargs):
    for hook in self._forward_pre_hooks.values():
        hook(self, input)

    result = self.forward(*input, **kwargs)

    for hook in self._forward_hooks.values():
        hook_result = hook(self, input, result)
        # ...

    for hook in self._backward_hooks.values():
        # ...

    return result

As you can see, a lot of hooks won’t get called properly if you use .forward(…)
directly.

 Now turn back to the linear model. The constructor to nn.Linear accepts three 
arguments: the number of input features, the number of output features, and 
whether the linear model includes a bias (defaulting to True here).

# In[5]:
import torch.nn as nn

linear_model = nn.Linear(1, 1)	
linear_model(t_un_val)

# Out[5]:
tensor([[-0.9852],
         [-2.6876]], grad_fn=<AddmmBackward>)

 The number of features in this case refers to the size of the input and the output 
tensor for the module, so 1 and 1. If you used both temperature and barometric pres-
sure in input, for example, you’d have two features in input and one feature in out-
put. As you’ll see, for more complex models with several intermediate modules, the 
number of features is associated with the capacity of the model.

 You have an instance of nn.Linear with one input and one output feature, which 
requires one weight and one bias:

# In[6]:
linear_model.weight

# Out[6]:
Parameter containing:
tensor([[-0.4992]], requires_grad=True)

# In[7]:
linear_model.bias

# Out[7]:
Parameter containing:
tensor([0.1031], requires_grad=True)

Listing 5.2 torch/nn/modules/module.py, line 483, class: Module

The arguments are input size, output size, 
and bias defaulting to True.
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You can call the module with some input:

# In[8]:
x = torch.ones(1)
linear_model(x)

# Out[8]:
tensor([-0.3961], grad_fn=<AddBackward0>)

 Although PyTorch let you get away with it, you didn’t provide an input with the 
right dimensionality. You have a model that takes one input and produces one output, 
but PyTorch nn.Module and its subclasses are designed to do so on multiple samples at 
the same time. To accommodate multiple samples, modules expect the zeroth dimen-
sion of the input to be the number of samples in the batch.

 Any module in nn is written to produce outputs for a batch of multiple inputs at the 
same time. Thus, assuming that you need to run nn.Linear on 10 samples, you can 
create an input tensor of size B x Nin, where B is the size of the batch and Nin the 
number of input features, and run it once through the model:

# In[9]:
x = torch.ones(10, 1)
linear_model(x)

# Out[9]:
tensor([[-0.3961],
        [-0.3961],
        [-0.3961],
        [-0.3961],
        [-0.3961],
        [-0.3961],
        [-0.3961],
        [-0.3961],
        [-0.3961],
        [-0.3961]], grad_fn=<AddmmBackward>)

Figure 5.7 shows a similar situation with batched image data. The input is BxCxHxW
with a batch size of three (say, images of a dog, bird, and then car), three channel 
dimensions (red, green, and blue), and an unspecified number of pixels for height 
and width.

 As you can see, the output is a tensor of size B x Nout, where Nout is the number 
of output features—four, in this case.

 The reason we want to do this batching is multi-faceted. One big motivation is to 
make sure that the computation we’re asking for is big enough to saturate the comput-
ing resources we’re using to perform the computation. GPUs in particular are highly 
parallelized, so a single input on a small model will leave most of the computing units 
idle. By providing batches of inputs, the calculation can be spread across the otherwise-
idle units, which means that the batched results come back just as quickly as a single 
one would. Another benefit is that some advanced models will use statistical informa-
tion from the entire batch, and those statistics get better with larger batch sizes.



Figure 5.7 Three RGB images batched together and fed into a neural network. 
The output is a batch of three vectors of size 4.
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Now turn back to the thermometer data. Your t_u and t_c were two 1D tensors of size 
B. Thanks to broadcasting, you could write your linear model as w * x + b, where w 
and b are two scalar parameters. This model works because you have one input fea-
ture; if you had two, you’d need to add an extra dimension to turn that 1D tensor into 
a matrix with samples in the rows and features in the columns.

 That’s exactly what you need to do to switch to using nn.Linear. You reshape your 
B inputs to B x Nin, where Nin is 1. You can easily do this with unsqueeze:

# In[2]:
t_c = [0.5,  14.0, 15.0, 28.0, 11.0,  8.0,  3.0, -4.0,  6.0, 13.0, 21.0]
t_u = [35.7, 55.9, 58.2, 81.9, 56.3, 48.9, 33.9, 21.8, 48.4, 60.4, 68.4]
t_c = torch.tensor(t_c).unsqueeze(1) 
t_u = torch.tensor(t_u).unsqueeze(1) 

t_u.shape

# Out[2]:
torch.Size([11, 1])

You’re done. Now update your training code. First, replace your handmade model 
with nn.Linear(1,1); then pass the linear model parameters to the optimizer:

# In[10]:
linear_model = nn.Linear(1, 1) 
optimizer = optim.SGD(
    linear_model.parameters(), 
    lr=1e-2)

Here, you add the extra dimension at axis 1.

A redefinition from above.

You replace [params] 
with this method call.
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Earlier, it was your responsibility to create parameters and pass them as the first argu-
ment to optim.SGD. Now you can ask any nn.Module for a list of parameters owned by 
it or any of its submodules by using the parameters method:

# In[11]:
linear_model.parameters()

# Out[11]:
<generator object Module.parameters at 0x0000020A2B022D58>

# In[12]:
list(linear_model.parameters())

# Out[12]:
[Parameter containing:
 tensor([[0.3791]], requires_grad=True), Parameter containing:
 tensor([-0.5349], requires_grad=True)]

This call recurses into submodules defined in the module’s init constructor and 
returns a flat list of all parameters encountered, so you can conveniently pass it to the 
optimizer constructor as you did earlier.

 You can already figure out what happens in the training loop. The optimizer is pro-
vided a list of tensors that were defined with requires_grad = True. All Parameters 
are defined this way, by definition, because they need to be optimized by gradient 
descent. When training_loss.backward() is called, grad is accumulated on the leaf 
nodes of the graph, which are precisely the parameters that were passed to the optimizer.

 At this point, the SGD optimizer has everything it needs. When optimizer.step()
is called, it iterates through each Parameter and changes it by an amount propor-
tional to what is stored in its grad attribute, which is clean design.

 Take a look at the training loop now:

# In[13]:
def training_loop(n_epochs, optimizer, model, loss_fn, t_u_train, t_u_val, 

t_c_train, t_c_val):
    for epoch in range(1, n_epochs + 1):
        t_p_train = model(t_un_train) 
        loss_train = loss_fn(t_p_train, t_c_train)

        t_p_val = model(t_un_val) 
        loss_val = loss_fn(t_p_val, t_c_val)

        optimizer.zero_grad()
        loss_train.backward()
        optimizer.step()

        if epoch == 1 or epoch % 1000 == 0:
            print('Epoch {}, Training loss {}, Validation loss {}'.format(
                epoch, float(loss_train), float(loss_val)))

The training loop hasn’t changed practically except that now you don’t pass params
explicitly to model because the model itself holds its Parameters internally.

Now the model is 
passed in instead of 
the individual params.

The loss function is also passed in. 
You’ll use it in a moment.
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 You can use one last bit from torch.nn: the loss. Indeed, nn comes with several 
common loss functions, among which nn.MSELoss (MSE stands for Mean Square Error), 
which is exactly what you defined earlier as your loss_fn. Loss functions in nn are still 
subclasses of nn.Module, so create an instance and call it as a function. In this case, 
you get rid of the handwritten loss_fn and replace it:

# In[15]:
linear_model = nn.Linear(1, 1)
optimizer = optim.SGD(linear_model.parameters(), lr=1e-2)

training_loop(
    n_epochs = 3000,
    optimizer = optimizer,
    model = linear_model,
    loss_fn = nn.MSELoss(), 
    t_u_train = t_un_train,
    t_u_val = t_un_val,
    t_c_train = t_c_train,
    t_c_val = t_c_val)

print()
print(linear_model.weight)
print(linear_model.bias)

# Out[15]:
Epoch 1, Training loss 92.3511962890625, Validation loss 57.714385986328125
Epoch 1000, Training loss 4.910993576049805, Validation loss 

1.173926591873169
Epoch 2000, Training loss 3.014694929122925, Validation loss 

2.8020541667938232
Epoch 3000, Training loss 2.857640504837036, Validation loss 

4.464878559112549
Parameter containing:
tensor([[5.5647]], requires_grad=True)
Parameter containing:
tensor([-18.6750], requires_grad=True)

Everything else input into our training loop stays the same. Even our results remain 
the same as before. Of course, getting the same results is expected, as a difference 
would imply a bug in one of the two implementations.

 It’s been a long journey, with a lot to explore for these twenty-something lines of 
code. We hope that by now, the magic has vanished and left room for the mechanics. 
What you learn in this chapter will allow you to own the code you write instead of 
merely poking at a black box when things get more complicated.

 You have one last step left to take: replacing your linear model with a neural net-
work as your approximating function. As we said earlier, using a neural network won’t 
result in a higher-quality model, because the process underlying the calibration prob-
lem is fundamentally linear. It’s good to make the leap from linear to neural network 
in a controlled environment, however, so that you won’t feel lost later on.

You’re no longer using your handwritten 
loss function from earlier.
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 This section keeps everything else fixed, including the loss function, and redefines 
only the model. You’ll build the simplest possible neural network: a linear module fol-
lowed by an activation function feeding into another linear module. The first linear + 
activation layer is commonly referred to as a hidden layer for historical reasons, 
because its outputs aren’t observed directly but fed into the output layer. Whereas the 
input and the output of the model are both of size 1 (they have one input and one 
output feature), the size of the output of the first linear module usually is larger than 
one. Recalling the earlier explanation on the role of activations, this situation can 
lead different units to respond to different ranges of the input, which increases the 
capacity of the model. The last linear layer takes the output of activations and com-
bines them linearly to produce the output value.

 nn provides a simple way to concatenate modules through the nn.Sequential con-
tainer:

# In[16]:
seq_model = nn.Sequential(
            nn.Linear(1, 13), 
            nn.Tanh(),
            nn.Linear(13, 1)) 
seq_model

# Out[16]:
Sequential(
  (0): Linear(in_features=1, out_features=13, bias=True)
  (1): Tanh()
  (2): Linear(in_features=13, out_features=1, bias=True)
)

The result is a model that takes the inputs expected by the first module specified as an 
argument of nn.Sequential, passes intermediate outputs to subsequent modules, and 
produces the output returned by the last module. The model fans out from 1 input 
feature to 13 hidden features, passes them through a tanh activation, and linearly 
combines the resulting 13 numbers into 1 output feature.

 Calling model.parameters() collects weight and bias from both the first and the 
second linear modules. It’s instructive to inspect the parameters in this case by print-
ing their shapes:

# In[17]:
[param.shape for param in seq_model.parameters()]

# Out[17]:
[torch.Size([13, 1]), torch.Size([13]), torch.Size([1, 13]), torch.Size([1])]

These are the tensors that the optimizer will get. Again, after model.backward() is 
called, all parameters are populated with their grad, and then the optimizer updates 
their values accordingly during the optimizer.step() call, which isn’t too different 
from the previous linear model. After all, both models are differentiable models that 
can be trained with gradient descent.

13 was chosen arbitrarily. We wanted to pick 
a number that was a different size from the 
other various tensor shapes floating around.

This 13 must match 
the first size, however.
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 A few notes on parameters of nn.Modules: when you’re inspecting parameters of a 
model made up of several submodules, it’s handy to be able to identify parameters by 
their names. There’s a method for that, called named_parameters:

# In[18]:
for name, param in seq_model.named_parameters():
    print(name, param.shape)

# Out[18]:
0.weight torch.Size([13, 1])
0.bias torch.Size([13])
2.weight torch.Size([1, 13])
2.bias torch.Size([1])

In fact, the name of each module in Sequential is the ordinal with which the module 
appeared in the arguments. Interestingly, Sequential also accepts an OrderedDict4 in 
which you can name each  module passed to Sequential:

# In[19]:
from collections import OrderedDict

seq_model = nn.Sequential(OrderedDict([
    ('hidden_linear', nn.Linear(1, 8)),
    ('hidden_activation', nn.Tanh()),
    ('output_linear', nn.Linear(8, 1))
]))

seq_model

# Out[19]:
Sequential(
  (hidden_linear): Linear(in_features=1, out_features=8, bias=True)
  (hidden_activation): Tanh()
  (output_linear): Linear(in_features=8, out_features=1, bias=True)
)

This code allows you to get more explanatory names for submodules:

# In[20]:
for name, param in seq_model.named_parameters():
    print(name, param.shape)

# Out[20]:
hidden_linear.weight torch.Size([8, 1])
hidden_linear.bias torch.Size([8])
output_linear.weight torch.Size([1, 8])
output_linear.bias torch.Size([1])

You can also get to a particular Parameter by accessing submodules as though they 
were attributes:

4 Not all versions of Python specify the iteration order for dict, so we’re using OrderedDict here to ensure the 
ordering of the layers and emphasize that the order of the layers matters.
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# In[21]:
seq_model.output_linear.bias

# Out[21]:
Parameter containing:
tensor([-0.2194], requires_grad=True)

This code is useful for inspecting parameters or their gradients, such as to monitor 
gradients during training, as you did the beginning of this chapter. Suppose that you 
want to print out the gradients of weight of the linear portion of the hidden layer. You 
can run the training loop for the new neural network model and then look at the 
resulting gradients after the last epoch:

# In[22]:
optimizer = optim.SGD(seq_model.parameters(), lr=1e-3) 

training_loop(
    n_epochs = 5000,
    optimizer = optimizer,
    model = seq_model,
    loss_fn = nn.MSELoss(),
    t_u_train = t_un_train,
    t_u_val = t_un_val,
    t_c_train = t_c_train,
    t_c_val = t_c_val)

print('output', seq_model(t_un_val))
print('answer', t_c_val)
print('hidden', seq_model.hidden_linear.weight.grad)

# Out[22]:
Epoch 1, Training loss 207.2268524169922, Validation loss 106.6062240600586
Epoch 1000, Training loss 6.121204376220703, Validation loss 

2.213937759399414
Epoch 2000, Training loss 5.273784637451172, Validation loss 

0.0025627268478274345
Epoch 3000, Training loss 2.4436306953430176, Validation loss 

1.9463319778442383
Epoch 4000, Training loss 1.6909029483795166, Validation loss 

4.027190685272217
Epoch 5000, Training loss 1.4900192022323608, Validation loss 

5.368413925170898
output tensor([[-1.8966],
        [11.1774]], grad_fn=<AddmmBackward>)
answer tensor([[-4.],
        [14.]])
hidden tensor([[-0.0073],
        [ 4.0584],
        [-4.5080],
        [-4.4498],
        [ 0.0127],
        [-0.0073],
        [-4.1530],
        [-0.6572]])

Note that the learning 
rate has dropped a bit 
to help with stability.
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You can also evaluate the model on the whole data to see how different it is from a line:

# In[23]:
from matplotlib import pyplot as plt

t_range = torch.arange(20., 90.).unsqueeze(1)

fig = plt.figure(dpi=600)
plt.xlabel("Fahrenheit")
plt.ylabel("Celsius")
plt.plot(t_u.numpy(), t_c.numpy(), 'o')
plt.plot(t_range.numpy(), seq_model(0.1 * t_range).detach().numpy(), 'c-')
plt.plot(t_u.numpy(), seq_model(0.1 * t_u).detach().numpy(), 'kx')

This code produces figure 5.8.

Figure 5.8 The plot of the neural network model, with input data (circles), desired output (Xs), and 
continuous line showing behavior between samples

You can appreciate that the neural network has a tendency to overfit because it tries to 
chase the measurements, including the noisy ones. It doesn’t do a bad job overall, 
though.

5.3 Subclassing nn.Module
For larger and more complex projects, you need to leave nn.Sequential behind in 
favor of something that gives you more flexibility: subclassing nn.Module. To subclass 
nn.Module, at a minimum you need to define a .forward(…)function that takes the 
input to the module and returns the output. If you use standard torch operations, 
autograd takes care of the backward pass automatically.

NOTE Often, your entire model is implemented as a subclass of nn.Module, 
which can in turn contain submodules that are also subclasses of nn.Module.
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We’ll show you three ways to implement the same network structure, using increas-
ingly more complex PyTorch functionality to do so and varying the number of neu-
rons in the hidden layer to make it easier to differentiate among the approaches.

 The first method is a simple instance of nn.Sequential, as shown in the following 
listing.

# In[2]:
seq_model = nn.Sequential(
            nn.Linear(1, 11), 
            nn.Tanh(),
            nn.Linear(11, 1)) 
seq_model

# Out[2]:
Sequential(
  (0): Linear(in_features=1, out_features=11, bias=True)
  (1): Tanh()
  (2): Linear(in_features=11, out_features=1, bias=True)
)

Although this code works, you don’t have any semantic information about what the 
various layers are intended to be. You can rectify that situation by giving each layer a 
label, using an ordered dictionary instead of a list as input:

# In[3]:
from collections import OrderedDict

namedseq_model = nn.Sequential(OrderedDict([
    ('hidden_linear', nn.Linear(1, 12)),
    ('hidden_activation', nn.Tanh()),
    ('output_linear', nn.Linear(12 , 1))
]))

namedseq_model

# Out[3]:
Sequential(
  (hidden_linear): Linear(in_features=1, out_features=12, bias=True)
  (hidden_activation): Tanh()
  (output_linear): Linear(in_features=12, out_features=1, bias=True)
)

Much better. You don’t have any ability to control the flow of data through the net-
work, however, aside from the purely sequential pass-through provided by the (aptly 
named!) nn.Sequential class. You can take full control of the processing of input 
data by subclassing nn.Module yourself:

# In[4]:
class SubclassModel(nn.Module):
    def __init__(self):
        super().__init__()

Listing 5.3 code/p1ch6/3_nn_module_subclassing.ipynb

The choice of 11 is somewhat arbitrary, �
but the sizes of the two layers must match.
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        self.hidden_linear = nn.Linear(1, 13)
        self.hidden_activation = nn.Tanh()
        self.output_linear = nn.Linear(13, 1)

    def forward(self, input):
        hidden_t = self.hidden_linear(input)
        activated_t = self.hidden_activation(hidden_t)
        output_t = self.output_linear(activated_t)

        return output_t

subclass_model = SubclassModel()
subclass_model

# Out[4]:
SubclassModel(
  (hidden_linear): Linear(in_features=1, out_features=13, bias=True)
  (hidden_activation): Tanh()
  (output_linear): Linear(in_features=13, out_features=1, bias=True)
)

This code ends up being somewhat more verbose, because you have to define the layers 
you want to have and then define how and in what order they should be applied in the 
forward function. That repetition grants you an incredible amount of flexibility in the 
sequential models, however, as you’re now free to do all sorts of interesting things inside 
the forward function. Although this example is unlikely to make sense, you could 
implement activated_t = self.hidden_activation(hidden_t) if random.ran-
dom() > 0.5 else hidden_t to apply the activation function only half the time! 
Because PyTorch uses a dynamic graph-based autograd, gradients would flow properly 
through the sometimes-present activation, no matter what random.random() returned!

 Typically, you want to use the constructor of the module to define the submodules 
that we call in the forward function so that they can hold their parameters through-
out the lifetime of your module. You might instantiate two instances of nn.Linear in 
the constructor and use them in forward, for example. Interestingly, assigning an 
instance of nn.Module to an attribute in a nn.Module, as you did in the constructor 
here, automatically registers the module as a submodule, which gives modules access 
to the parameters of its submodules without further action by the user.

 Going back to the nonrandom SubclassModel, you see that the printed output 
for that class is similar to the output for the sequential model with named parame-
ters. This makes sense, because you used the same names and intended to implement 
the same architecture. If you look at the parameters of all three models, you also see 
similarities there (except, again, for the differences in the number of hidden neurons):

# In[5]:
for type_str, model in [('seq', seq_model), ('namedseq', namedseq_model), 

('subclass', subclass_model)]:
    print(type_str)
    for name_str, param in model.named_parameters():
        print("{:21} {:19} {}".format(name_str, str(param.shape), param.numel()))

    print()
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# Out[5]:
seq
0.weight              torch.Size([11, 1]) 11
0.bias                torch.Size([11])    11
2.weight              torch.Size([1, 11]) 11
2.bias                torch.Size([1])     1

namedseq
hidden_linear.weight  torch.Size([12, 1]) 12
hidden_linear.bias    torch.Size([12])    12
output_linear.weight  torch.Size([1, 12]) 12
output_linear.bias    torch.Size([1])     1

subclass
hidden_linear.weight  torch.Size([13, 1]) 13
hidden_linear.bias    torch.Size([13])    13
output_linear.weight  torch.Size([1, 13]) 13
output_linear.bias    torch.Size([1])     1

What happens here is that the named_parameters() call delves into all submodules 
assigned as attributes in the constructor and recursively calls named_parameters() on 
them. No matter how nested the submodule is, any nn.Module can access the list of 
all child parameters. By accessing their grad attribute, which will have been popu-
lated by autograd, the optimizer knows how to change parameters so as to minimize 
the loss. 

NOTE Child modules contained inside Python list or dict instances won’t 
be registered automatically! Subclasses can register those modules manually 
with the add_module(name, module) method of nn.Module5 or can use the 
provided nn.ModuleList and nn.ModuleDict classes (which provide auto-
matic registration for contained instances).

Looking back at the implementation of the SubclassModel class, and thinking about 
the utility of registering submodules in the constructor so that you can access their 
parameters, it appears to be a bit of a waste to also register submodules that have no 
parameters, such as nn.Tanh. Wouldn’t it be easier to call them directly in the forward
function?6 It certainly would.

 PyTorch has functional counterparts of every nn module. By functional, we mean 
“having no internal state” or “whose output value is solely and fully determined by the 
value input arguments.” Indeed, torch.nn.functional provides many of the same 
modules you find in nn, but with all eventual parameters moved as an argument to the 
function call. The functional counterpart of nn.Linear, for example, is nn.func-
tional.linear, which is a function that has signature linear(input, weight, 
bias=None). The weight and bias parameters are arguments to the function.

5 https://pytorch.org/docs/stable/nn.html#torch.nn.Module.add_module
6 Aren’t rhetorical questions great?
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 To get back to your model, it makes sense to keep using nn modules for nn.Linear
so that SubclassModel can to manage all its Parameter instances during training. You 
can safely switch to the functional counterparts of Tanh, however, because it has no 
parameters:

# In[6]:
class SubclassFunctionalModel(nn.Module):
    def __init__(self):
        super().__init__()

        self.hidden_linear = nn.Linear(1, 14)
                                                
        self.output_linear = nn.Linear(14, 1)

    def forward(self, input):
        hidden_t = self.hidden_linear(input)
        activated_t = torch.tanh(hidden_t) 
        output_t = self.output_linear(activated_t)

        return output_t

func_model = SubclassFunctionalModel()
func_model

# Out[6]:
SubclassFunctionalModel(
  (hidden_linear): Linear(in_features=1, out_features=14, bias=True)
  (output_linear): Linear(in_features=14, out_features=1, bias=True)
)

The functional version is a bit more concise and fully equivalent to the non-functional 
version (as your models get more complicated, the saved lines of code start to add 
up!) Note that it would still make sense to instantiate modules that require arguments 
for their initialization in the constructor. HardTanh, for example, takes optional 
min_val and max_val arguments, and rather than repeatedly state those arguments in 
the body of forward, you could create a HardTanh instance and reuse it.

TIP Although general-purpose scientific functions like tanh still exist in 
torch.nn.functional in version 1.0, those entry points are deprecated in 
favor of ones in the top-level torch namespace. More niche functions remain 
in torch.nn.functional.

Conclusion
We covered a lot in this chapter, although we dealt with a simple problem. We dis-
sected building differentiable models and training them by using gradient descent, 
using raw autograd first and then relying on nn. By now, you should have confidence 
in your understanding of what’s going on behind the scenes.

 We hope that this taste of PyTorch has given you an appetite for more!

The self.hidden_activation = 
… line is missing here.

That line was replaced 
with the equivalent 
functional call here.
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Exercises
� Experiment with the number of hidden neurons in your simple neural network

model, as well as the learning rate.
– What changes result in a more linear output from the model?
– Can you get the model to obviously overfit the data?

� The third-hardest problem in physics is finding a proper wine to celebrate dis-
coveries. Load the wine data from chapter 3 and create a new model with the
appropriate number of input parameters.
– How long does it take to train compared to the temperature data you’ve

been using?
– Can you explain what factors contribute to the training times?
– Can you get the loss to decrease while training on this data set?
– How would you go about graphing this data set?

Summary
� Neural networks can be automatically adapted to specialize in the problem at

hand.
� Neural networks allow easy access to the analytical derivatives of the loss with

respect to any parameter in the model, which makes evolving the parameters
efficient. Thanks to its automated differentiation engine, PyTorch provides
such derivatives effortlessly.

� Activation functions around linear transformations make neural networks capa-
ble of approximating highly nonlinear functions, at the same time keeping
them simple enough to optimize.

More resources
A tremendous number of books and other resources are available to help teach deep
learning. We recommend the following:

� The official PyTorch website: https://pytorch.org
� Grokking Deep Learning, by Andrew W. Traska, is a great resource for developing

a strong mental model and intuition on the mechanism underlying deep neural net-
works.

� For a thorough introduction and reference to the field, we direct you to Deep
Learning, by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.b

� Last but not least, the full version of this book is available in Early Access now, with
an estimated print date in late 2019: https://www.manning.com/books/deep-
learning-with-pytorch.

a) https://www.manning.com/books/grokking-deep-learning
b)https://www.deeplearningbook.org
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� The nn module, together with the tensor standard library, provides all the build-
ing blocks for creating neural networks.

� To recognize overfitting, it’s essential to maintain the training set of data points 
separate from the validation set. There’s no one recipe to combat overfitting, 
but getting more data (or more variability in the data) and resorting to simpler 
models are good starts.

� Anyone who does data science should be plotting data all the time.
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and nonconvex error surfaces 104–105
and time series 49–54
artificial 102
channel 51
deep 2

and approximating complicated 
functions 92

and exhibiting convex loss 72
and transformation from one form of data to 

another 16
and universal approximator 108
as families of functions 110
as generic functions 70
linear operation 105

described 102
embeddings generated by using 59
gradient descent and large neural network 

models 74
input data range and best training 

performance 62
introduction of convolutional 60
model function 91
moderately large 12
multilayer 104
operations and parameters in 39
recurrent 54
successfully trained 110
tensors and outputs 39
two levels of operation 55
what learning means for 108–110

neurons
activation function 103
and typical mathematical expression for 

single 7
artificial 103
defined 103
layer of neurons 104
neural networks and 7
sensitive range and errors affecting 108
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graph 8

single-neuron computation and static graph 7
symbolic graph 7
See also neural networks

neuroscience, modern artificial neural networks 
and 102

NLP. See natural language processing
nn.Linear, subclass of nn.Module 111–112
nn.Sequential container, concatenating 

modules 117
normalization 81
numeric encoding, PyTorch and 41
numeric types

allocating tensors of the right 30
and tensors 30–31
dtype argument and 30

NumPy
and loading SCV file 41
as the most popular multidimensional-array 

library 17
interoperability 31–32
PyTorch and seamless interoperability with 17

NumPy argument, standard, similarity with dtype 
argument 30

NumPy arrays
and PyTorch Tensor class 3
and similarities with Tensor 2
converting to PyTorch tensors 43

numpy method 32

O

one-hot encoding 52
and parsing characters in text 56
representing categorical data in tensors and 58

OpenCL 34
operations, as methods of tensor objects 36
optim module 90, 99
optimization process 78

changing inputs 80
loss decrease 75
optim submodule 87
unstable 79
vanilla gradient descent 87

optimizers 88–89, 99, 115
optimizer.step() 115, 117
SGD (Stochastic Gradient Descent) 89, 115
testing more 90
two methods exposed by 88
vanilla gradient descent 89

ordinal values 43, 65

overfitting 92, 99
extreme example of 93
how to recognize 126
scenarios for training and validation losses 96

P

Pandas
and loading CSV file 41
concept of data frame 40

parallelism ops, tensor API and 37
parameters

adaptive learning_rate 80
and scaling rate of change 75
applying updates iteratively 78
as PyTorch scalars 73
backpropagation and updating 7
estimating 72
initializing 74
small updates 80
updating, potential problem 80

parameters method 115
penalization terms 94
points tensor 22
Project Gutenberg 55
Pythagorean theorem, example od immediate 

execution and 5
Python

HDF5 33
computation graph and 6
lists as sequential collections of objects 18
numbers as full-fledged objects 18
PyTorch, described 2

Python interpreter
PyTorch

and non-Python code 10
and significant consolidation of deep learning 

tooling ecosystem 9
as introduction to deep learning 2
as deep learning library 11
autograd 83–87, 99

switching off 98
autograd-enabled tensor standard library 10
automation of generic function-fitting 70
creative use 10
described 2
dynamic graph engine 8
functional counterparts 123
high-performance C++ runtime 4
immediate execution 5–9
implementing complicated models 4
minimizing cognitive overhead 4, 14
main components of 10–12



132 INDEX

modules as building blocks for creating neural 
networks 11, 111

nn module 110–120
official website 125
production deployment capabilities 12
reasons for using 3–10
running directly from C 10
seamless interoperability with NumPy 17, 42
simplicity of 3
smaller-scope projects and 3
tensor operations offered by 35
Tensor, as multidimensional array 2
tensors as building blocks for representing data 

in 17, 39
transposing in 26–28
use of class indices 46
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random sampling ops, tensor API and 37
randperm function 94
rate of change 75, 99

computing 76
recurrent neural networks 54
ReLU (Rectified Linear Unit) activation 

function 106
representation

deeper, and capturing more-complex 
structures 16

intermediate 16
transforming from one to another 15

requires_grad=True argument 84
RGB channels 60

S

scatter_ method
arguments for 45–46
one-hot encoding and 45

score
as continuous variable 44
distance between scores 45
keeping in separate tensor 44
one-hot encoding 44

sensitive range 108
serialization ops, tensor API and 37
shape property 25
Sigmoid activation function 106
singleton dimension 46
size, defined 24
Size class 25
Softplus activation function 106
Stochastic Gradient Descent (SGD) 89

Storage, as contiguous, linear container for 
numbers 52

storages
.storage property 22
accessing for given tensor 22
and direct use of storage instances 23
changing values of 23
defined 22
indexing manually 23
layout of 23
muliple tensors and indexing the same 22
Storage instance 22
storage offset, defined 24

stride
changing the order of elements 27
defined 24

submodules, registering 123
subtensors

changing 26
cloning 26
extracting 25

systems, image-based 60

T

tabular data
as the simplest form of data 40
as typically non-homogeneous 40
described 40
sets freely available on the internet 41

Tanh activation function 106
TensorFlow 8

eager mode of 9
TensorFlow library 9
tensors

2D 20
accessing 21
advanced indexing 31
and acceleration of mathematical operations 2
and data types represented by 19
and defining operations over 19
as building blocks for representing data in 

PyTorch 17
as fundamental data structures 17
as multidimensional arrays provided by 

PyTorch 10
binary tensor 47
compared with NumPy arrays 17
contiguous 28
conversion into NumPy arrays 31
converting data to 43–54
CPU- and GPU-based 34
defined 18
dimensionality of 17
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grad attribute 84
groups of operations 36–37
homogeneous, versus tabular data 40
keeping score in separate 44
list indexing compared to tensor indexing 18
obtaining PyTorch tensors from NumPy 

arrays 32
params as an ancestor 84
params receiving too large updates 79
relationship among offset, size and stride 24
saving 32–34
serialization 32–34
shuffling elements of 94
size, indexing into a storage and 24
stride, indexing into a storage and 24
subtensors 26
tensor numeric values vs. Python object 

numeric values 20
transpose operation applied to 27
use of zeros or ones to initialize 21
verification of shared storage 26
zero-dimensional 73

text
and recurrent neural networks 54
character-level encoding, example of 55–56
embedding 58–59
encoding 55
one-hot encoding 56–58
word-level encoding, example of 57

Theano library 9
time series 49–54

breaking up data set in wider observation 
periods 51

calling view on tensors 51
concatenation 52
data set 50
number of samples 51
options for rescaling variables 54
rearranging tensors 52
separate axes 49
transformation of 2D data set into 3D data set, 

example of 49–54
torch module 10, 19

and operations on and between tensors 36
torch.autograd 10
torch.distributed 12
torch.from_numpy function 34
torch.le function 46
torch.nn submodule 110
torch.nn, and modules for building neural 

networks 11
torch.nn.DataParallel 12

torch.nn.Hardtanh activation function 105
torch.nn.Sigmoid activation function 105
torch.optim 12
torch.Storage instances 22
torch.tanh activation function 105
torch.util.data 11
TorchScript, deferred execution model 12
training loop

epoch 78
invoking 78

training loss 92
overfitting, scenarios for 96

training samples 72, 78, 99
training set 92, 99

and model performance 96
backpropagation 96
splitting data 94

train_is argument 98
train_loss, calling backward on 96–97
transpose function 36

U

universal approximator, and modeling complex 
input/output relationships 109

unsqueeze, adding a singleton dimension 46, 52

V

validation loss
evaluating at every epoch 95
overfitting 93

scenarios for 96
training loss and 96

validation samples 99
validation set 92–93, 96, 99
val_loss, calling backward on 97
volumetric data 63, 65 

W

weight parameter
derivative of loss function 77
estimation 72
linear scaling 71
neuron 103, 109
updates 80

Wikipedia 55
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zero_ method 86




