
David Foster

Generative
Deep Learning
Teaching Machines to Paint, Write,
Compose and Play

David Foster

Generative Deep Learning
Teaching Machines to Paint, Write,

Compose, and Play

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04194-8

[LSI]

Generative Deep Learning
by David Foster

Copyright © 2019 Applied Data Science Partners Ltd. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Development Editor: Michele Cronin
Acquisitions Editor: Jonathan Hassell
Production Editor: Katherine Tozer
Copyeditor: Rachel Head
Proofreader: Charles Roumeliotis

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

July 2019: First Edition

Revision History for the First Edition
2019-06-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492041948 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Generative Deep Learning, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492041948

Table of Contents

Preface. ix

Part I. Introduction to Generative Deep Learning

1. Generative Modeling. 1
What Is Generative Modeling? 1

Generative Versus Discriminative Modeling 2
Advances in Machine Learning 4
The Rise of Generative Modeling 5
The Generative Modeling Framework 7

Probabilistic Generative Models 10
Hello Wrodl! 13
Your First Probabilistic Generative Model 14
Naive Bayes 17
Hello Wrodl! Continued 20

The Challenges of Generative Modeling 22
Representation Learning 23

Setting Up Your Environment 27
Summary 29

2. Deep Learning. 31
Structured and Unstructured Data 31
Deep Neural Networks 33

Keras and TensorFlow 34
Your First Deep Neural Network 35

Loading the Data 35

iii

Building the Model 37
Compiling the Model 41
Training the Model 43
Evaluating the Model 44

Improving the Model 46
Convolutional Layers 46
Batch Normalization 51
Dropout Layers 54
Putting It All Together 55

Summary 59

3. Variational Autoencoders. 61
The Art Exhibition 61
Autoencoders 64

Your First Autoencoder 66
The Encoder 66
The Decoder 68
Joining the Encoder to the Decoder 71
Analysis of the Autoencoder 72

The Variational Art Exhibition 75
Building a Variational Autoencoder 78

The Encoder 78
The Loss Function 84
Analysis of the Variational Autoencoder 85

Using VAEs to Generate Faces 86
Training the VAE 87
Analysis of the VAE 91
Generating New Faces 92
Latent Space Arithmetic 93
Morphing Between Faces 94

Summary 95

4. Generative Adversarial Networks. 97
Ganimals 97
Introduction to GANs 99
Your First GAN 100

The Discriminator 101
The Generator 103
Training the GAN 107

GAN Challenges 112
Oscillating Loss 112

iv | Table of Contents

Mode Collapse 113
Uninformative Loss 114
Hyperparameters 114
Tackling the GAN Challenges 115

Wasserstein GAN 115
Wasserstein Loss 115
The Lipschitz Constraint 117
Weight Clipping 118
Training the WGAN 119
Analysis of the WGAN 120

WGAN-GP 121
The Gradient Penalty Loss 121
Analysis of WGAN-GP 125

Summary 127

Part II. Teaching Machines to Paint, Write, Compose, and Play

5. Paint. 131
Apples and Organges 132
CycleGAN 135
Your First CycleGAN 137

Overview 137
The Generators (U-Net) 139
The Discriminators 142
Compiling the CycleGAN 144
Training the CycleGAN 146
Analysis of the CycleGAN 147

Creating a CycleGAN to Paint Like Monet 149
The Generators (ResNet) 150
Analysis of the CycleGAN 151

Neural Style Transfer 153
Content Loss 154
Style Loss 156
Total Variance Loss 160
Running the Neural Style Transfer 160
Analysis of the Neural Style Transfer Model 161

Summary 162

6. Write. 165
The Literary Society for Troublesome Miscreants 166

Table of Contents | v

Long Short-Term Memory Networks 167
Your First LSTM Network 168

Tokenization 168
Building the Dataset 171
The LSTM Architecture 172
The Embedding Layer 172
The LSTM Layer 174
The LSTM Cell 176

Generating New Text 179
RNN Extensions 183

Stacked Recurrent Networks 183
Gated Recurrent Units 185
Bidirectional Cells 187

Encoder–Decoder Models 187
A Question and Answer Generator 190

A Question-Answer Dataset 191
Model Architecture 192
Inference 196
Model Results 198

Summary 200

7. Compose. 201
Preliminaries 202

Musical Notation 202
Your First Music-Generating RNN 205

Attention 206
Building an Attention Mechanism in Keras 208
Analysis of the RNN with Attention 213
Attention in Encoder–Decoder Networks 217
Generating Polyphonic Music 221

The Musical Organ 221
Your First MuseGAN 223
The MuseGAN Generator 226

Chords, Style, Melody, and Groove 227
The Bar Generator 229
Putting It All Together 230

The Critic 232
Analysis of the MuseGAN 233
Summary 235

vi | Table of Contents

8. Play. 237
Reinforcement Learning 238

OpenAI Gym 239
World Model Architecture 241

The Variational Autoencoder 242
The MDN-RNN 243
The Controller 243

Setup 244
Training Process Overview 245
Collecting Random Rollout Data 245
Training the VAE 248

The VAE Architecture 249
Exploring the VAE 252

Collecting Data to Train the RNN 255
Training the MDN-RNN 257

The MDN-RNN Architecture 258
Sampling the Next z and Reward from the MDN-RNN 259
The MDN-RNN Loss Function 259

Training the Controller 261
The Controller Architecture 262
CMA-ES 262
Parallelizing CMA-ES 265
Output from the Controller Training 267

In-Dream Training 268
In-Dream Training the Controller 270
Challenges of In-Dream Training 272

Summary 273

9. The Future of Generative Modeling. 275
Five Years of Progress 275
The Transformer 277

Positional Encoding 279
Multihead Attention 280
The Decoder 283
Analysis of the Transformer 283
BERT 285
GPT-2 285
MuseNet 286

Advances in Image Generation 287
ProGAN 287
Self-Attention GAN (SAGAN) 289

Table of Contents | vii

BigGAN 291
StyleGAN 292

Applications of Generative Modeling 296
AI Art 296
AI Music 297

10. Conclusion. 299

Index. 303

viii | Table of Contents

Preface

What I cannot create, I do not understand.
—Richard Feynman

An undeniable part of the human condition is our ability to create. Since our earliest
days as cave people, we have sought opportunities to generate original and beautiful
creations. For early man, this took the form of cave paintings depicting wild animals
and abstract patterns, created with pigments placed carefully and methodically onto
rock. The Romantic Era gave us the mastery of Tchaikovsky symphonies, with their
ability to inspire feelings of triumph and tragedy through sound waves, woven
together to form beautiful melodies and harmonies. And in recent times, we have
found ourselves rushing to bookshops at midnight to buy stories about a fictional
wizard, because the combination of letters creates a narrative that wills us to turn the
page and find out what happens to our hero.

It is therefore not surprising that humanity has started to ask the ultimate question of
creativity: can we create something that is in itself creative?

This is the question that generative modeling aims to answer. With recent advances in
methodology and technology, we are now able to build machines that can paint origi‐
nal artwork in a given style, write coherent paragraphs with long-term structure,
compose music that is pleasant to listen to, and develop winning strategies for com‐
plex games by generating imaginary future scenarios. This is just the start of a gener‐
ative revolution that will leave us with no choice but to find answers to some of the
biggest questions about the mechanics of creativity, and ultimately, what it means to
be human.

In short, there has never been a better time to learn about generative modeling—so
let’s get started!

ix

Objective and Approach
This book covers the key techniques that have dominated the generative modeling
landscape in recent years and have allowed us to make impressive progress in creative
tasks. As well as covering core generative modeling theory, we will be building full
working examples of some of the key models from the literature and walking through
the codebase for each, step by step.

Throughout the book, you will find short, allegorical stories that help explain the
mechanics of some of the models we will be building. I believe that one of the best
ways to teach a new abstract theory is to first convert it into something that isn’t quite
so abstract, such as a story, before diving into the technical explanation. The individ‐
ual steps of the theory are clearer within this context because they involve people,
actions, and emotions, all of which are well understood, rather than neural networks,
backpropagation, and loss functions, which are abstract constructs.

The story and the model explanation are just the same mechanics explained in two
different domains. You might therefore find it useful to refer back to the relevant
story while learning about each model. If you are already familiar with a particular
technique, then have fun finding the parallels of each model element within the story!

In Part I of this book I shall introduce the key techniques that we will be using to
build generative models, including an overview of deep learning, variational autoen‐
coders, and generative adversarial networks. In Part II, we will be building on these
techniques to tackle several creative tasks, such as painting, writing, and composing
music through models such as CycleGAN, encoder–decoder models, and MuseGAN.
In addition, we shall see how generative modeling can be used to optimize playing
strategy for a game (World Models) and take a look at the most cutting-edge genera‐
tive architectures available today, such as StyleGAN, BigGAN, BERT, GPT-2, and
MuseNet.

Prerequisites
This book assumes that you have experience coding in Python. If you are not familiar
with Python, the best place to start is through LearningPython.org. There are many
free resources online that will allow you to develop enough Python knowledge to
work with the examples in this book.

Also, since some of the models are described using mathematical notation, it will be
useful to have a solid understanding of linear algebra (for example, matrix multiplica‐
tion, etc.) and general probability theory.

Finally, you will need an environment in which to run the code examples from the
book’s GitHub repository. I have deliberately ensured that all of the examples in this
book do not require prohibitively large amounts of computational resources to train.

x | Preface

https://www.learnpython.org
https://github.com/davidADSP/GDL_code

There is a myth that you need a GPU in order to start training deep learning models
—while this is of course helpful and will speed up training, it is not essential. In fact,
if you are new to deep learning, I encourage you to first get to grips with the essen‐
tials by experimenting with small examples on your laptop, before spending money
and time researching hardware to speed up training.

Other Resources
Two books I highly recommend as a general introduction to machine learning and
deep learning are as follows:

• Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems by Aurelien Geron (O’Reilly)

• Deep Learning with Python by Francois Chollet (Manning)

Most of the papers in this book are sourced through arXiv, a free repository of scien‐
tific research papers. It is now common for authors to post papers to arXiv before
they are fully peer-reviewed. Reviewing the recent submissions is a great way to keep
on top of the most cutting-edge developments in the field.

I also highly recommend the website Papers with Code, where you can find the latest
state-of-the-art results in a variety of machine learning tasks, alongside links to the
papers and official GitHub repositories. It is an excellent resource for anyone wanting
to quickly understand which techniques are currently achieving the highest scores in
a range of tasks and has certainly helped me to decide which techniques to cover in
this book.

Finally, a useful resource for training deep learning models on accelerated hardware
is Google Colaboratory. This is a free Jupyter Notebook environment that requires no
setup and runs entirely in the cloud. You can tell the notebook to run on a GPU that
is provided for free, for up to 12 hours of runtime. While it is not essential to run the
examples in this book on a GPU, it may help to speed up the training process. Either
way, Colab is a great way to access GPU resources for free.

Preface | xi

https://arxiv.org
https://paperswithcode.com
https://colab.research.google.com

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/davidADSP/GDL_code.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Generative Deep Learning by David
Foster (O’Reilly). Copyright 2019 Applied Data Science Partners Ltd.,
978-1-492-04194-8.”

xii | Preface

https://github.com/davidADSP/GDL_code

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/generative-dl.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xiii

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/generative-dl
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
There are so many people I would like to thank for helping me write this book.

First, I would like to thank everyone who has taken time to technically review the
book—in particular, Luba Elliott, Darren Richardson, Eric George, Chris Schon,
Sigurður Skúli Sigurgeirsson, Hao-Wen Dong, David Ha, and Lorna Barclay.

Also, a huge thanks to my colleagues at Applied Data Science Partners, Ross Witeszc‐
zak, Chris Schon, Daniel Sharp, and Amy Bull. Your patience with me while I have
taken time to finish the book is hugely appreciated, and I am greatly looking forward
to all the machine learning projects we will complete together in the future! Particular
thanks to Ross—had we not decided to start a business together, this book might
never have taken shape, so thank you for believing in me as your business partner!

I also want to thank anyone who has ever taught me anything mathematical—I was
extremely fortunate to have fantastic math teachers at school, who developed my
interest in the subject and encouraged me to pursue it further at university. I would
like to thank you for your commitment and for going out of your way to share your
knowledge of the subject with me.

A huge thank you goes to the staff at O’Reilly for guiding me through the process of
writing this book. A special thanks goes to Michele Cronin, who has been there at
each step, providing useful feedback and sending me friendly reminders to keep com‐
pleting chapters! Also to Katie Tozer, Rachel Head, and Melanie Yarbrough for get‐
ting the book into production, and Mike Loukides for first reaching out to ask if I’d
be interested in writing a book. You have all been so supportive of this project from
the start, and I want to thank you for providing me with a platform on which to write
about something that I love.

Throughout the writing process, my family has been a constant source of encourage‐
ment and support. A huge thank you goes to my mum, Gillian Foster, for checking
every single line of text for typos and for teaching me how to add up in the first place!
Your attention to detail has been extremely helpful while proofreading this book, and
I’m really grateful for all the opportunities that both you and dad have given me. My
dad, Clive Foster, originally taught me how to program a computer—this book is full
of practical examples, and that’s thanks to his early patience while I fumbled around
in BASIC trying to make football games as a teenager. My brother, Rob Foster, is the
most modest genius you will ever find, particularly within linguistics—chatting with
him about AI and the future of text-based machine learning has been amazingly
helpful. Last, I would like to thank my Nana, who is a constant source of inspiration
and fun for all of us. Her love of literature is one of the reasons I first decided that
writing a book would be an exciting thing to do.

xiv | Preface

Finally, I would like to thank my fiancée (and soon to be wife) Lorna Barclay. As well
as technically reviewing every word of this book, she has provided endless support to
me throughout the writing process, making me tea, bringing me various snacks, and
generally helping me to make this a better guide to generative modeling through her
meticulous attention to detail and deep expertise in statistics and machine learning. I
certainly couldn’t have completed this project without you, and I’m grateful for the
time you have invested in helping me restructure and expand parts of the book that
needed more explanation. I promise I won’t talk about generative modeling at the
dinner table for at least a few weeks after it is published.

Preface | xv

PART I

Introduction to Generative
Deep Learning

The first four chapters of this book aim to introduce the core techniques that you’ll
need to start building generative deep learning models.

In Chapter 1, we shall first take a broad look at the field of generative modeling and
consider the type of problem that we are trying to solve from a probabilistic perspec‐
tive. We will then explore our first example of a basic probabilistic generative model
and analyze why deep learning techniques may need to be deployed as the complexity
of the generative task grows.

Chapter 2 provides a guide to the deep learning tools and techniques that you will
need to start building more complex generative models. This is intended to be a prac‐
tical guide to deep learning rather than a theoretical analysis of the field. In particular,
I will introduce Keras, a framework for building neural networks that can be used to
construct and train some of the most cutting-edge deep neural network architectures
published in the literature.

In Chapter 3, we shall take a look at our first generative deep learning model, the var‐
iational autoencoder. This powerful technique will allow us to not only generate real‐
istic faces, but also alter existing images—for example, by adding a smile or changing
the color of someone’s hair.

Chapter 4 explores one of the most successful generative modeling techniques of
recent years, the generative adversarial network. This elegant framework for structur‐
ing a generative modeling problem is the underlying engine behind most state-of-
the-art generative models. We shall see the ways that it has been fine-tuned and
adapted to continually push the boundaries of what generative modeling is able to
achieve.

CHAPTER 1

Generative Modeling

This chapter is a general introduction to the field of generative modeling. We shall
first look at what it means to say that a model is generative and learn how it differs
from the more widely studied discriminative modeling. Then I will introduce the
framework and core mathematical ideas that will allow us to structure our general
approach to problems that require a generative solution.

With this in place, we will then build our first example of a generative model (Naive
Bayes) that is probabilistic in nature. We shall see that this allows us to generate novel
examples that are outside of our training dataset, but shall also explore the reasons
why this type of model may fail as the size and complexity of the space of possible
creations increases.

What Is Generative Modeling?
A generative model can be broadly defined as follows:

A generative model describes how a dataset is generated, in terms of a probabilistic
model. By sampling from this model, we are able to generate new data.

Suppose we have a dataset containing images of horses. We may wish to build a
model that can generate a new image of a horse that has never existed but still looks
real because the model has learned the general rules that govern the appearance of a
horse. This is the kind of problem that can be solved using generative modeling. A
summary of a typical generative modeling process is shown in Figure 1-1.

First, we require a dataset consisting of many examples of the entity we are trying to
generate. This is known as the training data, and one such data point is called an
observation.

1

Figure 1-1. The generative modeling process

Each observation consists of many features—for an image generation problem, the
features are usually the individual pixel values. It is our goal to build a model that can
generate new sets of features that look as if they have been created using the same
rules as the original data. Conceptually, for image generation this is an incredibly dif‐
ficult task, considering the vast number of ways that individual pixel values can be
assigned and the relatively tiny number of such arrangements that constitute an
image of the entity we are trying to simulate.

A generative model must also be probabilistic rather than deterministic. If our model
is merely a fixed calculation, such as taking the average value of each pixel in the
dataset, it is not generative because the model produces the same output every time.
The model must include a stochastic (random) element that influences the individual
samples generated by the model.

In other words, we can imagine that there is some unknown probabilistic distribution
that explains why some images are likely to be found in the training dataset and other
images are not. It is our job to build a model that mimics this distribution as closely
as possible and then sample from it to generate new, distinct observations that look as
if they could have been included in the original training set.

Generative Versus Discriminative Modeling
In order to truly understand what generative modeling aims to achieve and why this
is important, it is useful to compare it to its counterpart, discriminative modeling. If
you have studied machine learning, most problems you will have faced will have most
likely been discriminative in nature. To understand the difference, let’s look at an
example.

Suppose we have a dataset of paintings, some painted by Van Gogh and some by
other artists. With enough data, we could train a discriminative model to predict if a
given painting was painted by Van Gogh. Our model would learn that certain colors,

2 | Chapter 1: Generative Modeling

shapes, and textures are more likely to indicate that a painting is by the Dutch master,
and for paintings with these features, the model would upweight its prediction
accordingly. Figure 1-2 shows the discriminative modeling process—note how it dif‐
fers from the generative modeling process shown in Figure 1-1.

Figure 1-2. The discriminative modeling process

One key difference is that when performing discriminative modeling, each observa‐
tion in the training data has a label. For a binary classification problem such as our
artist discriminator, Van Gogh paintings would be labeled 1 and non–Van Gogh
paintings labeled 0. Our model then learns how to discriminate between these two
groups and outputs the probability that a new observation has label 1—i.e., that it was
painted by Van Gogh.

For this reason, discriminative modeling is synonymous with supervised learning, or
learning a function that maps an input to an output using a labeled dataset. Genera‐
tive modeling is usually performed with an unlabeled dataset (that is, as a form of
unsupervised learning), though it can also be applied to a labeled dataset to learn how
to generate observations from each distinct class.

Let’s take a look at some mathematical notation to describe the difference between
generative and discriminative modeling.

Discriminative modeling estimates p y x —the probability of a label y given observa‐
tion x.

Generative modeling estimates p x —the probability of observing observation x.

If the dataset is labeled, we can also build a generative model that estimates the distri‐
bution p x y .

What Is Generative Modeling? | 3

In other words, discriminative modeling attempts to estimate the probability that an
observation x belongs to category y. Generative modeling doesn’t care about labeling
observations. Instead, it attempts to estimate the probability of seeing the observation
at all.

The key point is that even if we were able to build a perfect discriminative model to
identify Van Gogh paintings, it would still have no idea how to create a painting that
looks like a Van Gogh. It can only output probabilities against existing images, as this
is what it has been trained to do. We would instead need to train a generative model,
which can output sets of pixels that have a high chance of belonging to the original
training dataset.

Advances in Machine Learning
To understand why generative modeling can be considered the next frontier for
machine learning, we must first look at why discriminative modeling has been the
driving force behind most progress in machine learning methodology in the last two
decades, both in academia and in industry.

From an academic perspective, progress in discriminative modeling is certainly easier
to monitor, as we can measure performance metrics against certain high-profile clas‐
sification tasks to determine the current best-in-class methodology. Generative mod‐
els are often more difficult to evaluate, especially when the quality of the output is
largely subjective. Therefore, much emphasis in recent years has been placed on
training discriminative models to reach human or superhuman performance in a
variety of image or text classification tasks.

For example, for image classification, the key breakthrough came in 2012 when a
team led by Geoff Hinton at the University of Toronto won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) with a deep convolutional neural network.
The competition involves classifying images into one of a thousand categories and is
used as a benchmark to compare the latest state-of-the-art techniques. The deep
learning model had an error rate of 16%—a massive improvement on the next best
model, which only achieved a 26.2% error rate. This sparked a deep learning boom
that has resulted in the error rate falling even further year after year. The 2015 winner
achieved superhuman performance for the first time, with an error rate of 4%, and
the current state-of-the-art model achieves an error rate of just 2%. Many would now
consider the challenge a solved problem.

As well as it being easier to publish measurable results within an academic setting,
discriminative modeling has historically been more readily applicable to business
problems than generative modeling. Generally, in a business setting, we don’t care
how the data was generated, but instead want to know how a new example should be
categorized or valued. For example:

4 | Chapter 1: Generative Modeling

1 Tero Karras, Samuli Laine, and Timo Aila, “A Style-Based Generator Architecture for Generative Adversarial
Networks,” 12 December 2018, https://arxiv.org/abs/1812.04948.

2 Alec Radford et al., “Language Models Are Unsupervised Multitask Learners,” 2019, https://paperswith
code.com/paper/language-models-are-unsupervised-multitask.

3 Miles Brundage et al., “The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation,”
February 2018, https://www.eff.org/files/2018/02/20/malicious_ai_report_final.pdf.

• Given a satellite image, a government defense official would only care about the
probability that it contains enemy units, not the probability that this particular
image should appear.

• A customer relations manager would only be interested in knowing if the senti‐
ment of an incoming email is positive or negative and wouldn’t find much use in
a generative model that could output examples of customer emails that don’t yet
exist.

• A doctor would want to know the chance that a given retinal image indicates
glaucoma, rather than have access to a model that can generate novel pictures of
the back of an eye.

As most solutions required by businesses are in the domain of discriminative model‐
ing, there has been a rise in the number of Machine-Learning-as-a-Service (MLaaS)
tools that aim to commoditize the use of discriminative modeling within industry, by
largely automating the build, validation, and monitoring processes that are common
to almost all discriminative modeling tasks.

The Rise of Generative Modeling
While discriminative modeling has so far provided the bulk of the impetus behind
advances in machine learning, in the last three to five years many of the most inter‐
esting advancements in the field have come through novel applications of deep learn‐
ing to generative modeling tasks.

In particular, there has been increased media attention on generative modeling
projects such as StyleGAN from NVIDIA,1 which is able to create hyper-realistic
images of human faces, and the GPT-2 language model from OpenAI,2 which is able
to complete a passage of text given a short introductory paragraph.

Figure 1-3 shows the striking progress that has already been made in facial image
generation since 2014.3 There are clear positive applications here for industries such
as game design and cinematography, and improvements in automatic music genera‐
tion will also surely start to resonate within these domains. It remains to be seen
whether we will one day read news articles or novels written by a generative model,
but the recent progress in this area is staggering and it is certainly not outrageous to
suggest that this one day may be the case. While exciting, this also raises ethical

What Is Generative Modeling? | 5

https://arxiv.org/abs/1812.04948
https://paperswithcode.com/paper/language-models-are-unsupervised-multitask
https://paperswithcode.com/paper/language-models-are-unsupervised-multitask
https://www.eff.org/files/2018/02/20/malicious_ai_report_final.pdf

4 Source: Brundage et al., 2018.

questions around the proliferation of fake content on the internet and means it may
become ever harder to trust what we see and read through public channels of
communication.

Figure 1-3. Face generation using generative modeling has improved significantly in the
last four years4

As well as the practical uses of generative modeling (many of which are yet to be dis‐
covered), there are three deeper reasons why generative modeling can be considered
the key to unlocking a far more sophisticated form of artificial intelligence, that goes
beyond what discriminative modeling alone can achieve.

First, purely from a theoretical point of view, we should not be content with only
being able to excel at categorizing data but should also seek a more complete under‐
standing of how the data was generated in the first place. This is undoubtedly a more
difficult problem to solve, due to the high dimensionality of the space of feasible out‐
puts and the relatively small number of creations that we would class as belonging to
the dataset. However, as we shall see, many of the same techniques that have driven
development in discriminative modeling, such as deep learning, can be utilized by
generative models too.

Second, it is highly likely that generative modeling will be central to driving future
developments in other fields of machine learning, such as reinforcement learning (the
study of teaching agents to optimize a goal in an environment through trial and
error). For example, we could use reinforcement learning to train a robot to walk
across a given terrain. The general approach would be to build a computer simulation
of the terrain and then run many experiments where the agent tries out different
strategies. Over time the agent would learn which strategies are more successful than
others and therefore gradually improve. A typical problem with this approach is that
the physics of the environment is often highly complex and would need be calculated
at each timestep in order to feed the information back to the agent to decide its next
move. However, if the agent were able to simulate its environment through a genera‐
tive model, it wouldn’t need to test out the strategy in the computer simulation or in

6 | Chapter 1: Generative Modeling

the real world, but instead could learn in its own imaginary environment. In Chap‐
ter 8 we shall see this idea in action, training a car to drive as fast as possible around a
track by allowing it to learn directly from its own hallucinated environment.

Finally, if we are to truly say that we have built a machine that has acquired a form of
intelligence that is comparable to a human’s, generative modeling must surely be part
of the solution. One of the finest examples of a generative model in the natural world
is the person reading this book. Take a moment to consider what an incredible gener‐
ative model you are. You can close your eyes and imagine what an elephant would
look like from any possible angle. You can imagine a number of plausible different
endings to your favorite TV show, and you can plan your week ahead by working
through various futures in your mind’s eye and taking action accordingly. Current
neuroscientific theory suggests that our perception of reality is not a highly complex
discriminative model operating on our sensory input to produce predictions of what
we are experiencing, but is instead a generative model that is trained from birth to
produce simulations of our surroundings that accurately match the future. Some the‐
ories even suggest that the output from this generative model is what we directly per‐
ceive as reality. Clearly, a deep understanding of how we can build machines to
acquire this ability will be central to our continued understanding of the workings of
the brain and general artificial intelligence.

With this in mind, let’s begin our journey into the exciting world of generative model‐
ing. To begin with we shall look at the simplest examples of generative models and
some of the ideas that will help us to work through the more complex architectures
that we will encounter later in the book.

The Generative Modeling Framework
Let’s start by playing a generative modeling game in just two dimensions. I’ve chosen
a rule that has been used to generate the set of points X in Figure 1-4. Let’s call this
rule pdata. Your challenge is to choose a different point x = x1, x2 in the space that
looks like it has been generated by the same rule.

What Is Generative Modeling? | 7

Figure 1-4. A set of points in two dimensions, generated by an unknown rule pdata

Where did you choose? You probably used your knowledge of the existing data points
to construct a mental model, pmodel, of whereabouts in the space the point is more
likely to be found. In this respect, pmodel is an estimate of pdata. Perhaps you decided
that pmodel should look like Figure 1-5—a rectangular box where points may be found,
and an area outside of the box where there is no chance of finding any points. To gen‐
erate a new observation, you can simply choose a point at random within the box, or
more formally, sample from the distribution pmodel. Congratulations, you have just
devised your first generative model!

Figure 1-5. The orange box, pmodel, is an estimate of the true data-generating distribution,
pdata

8 | Chapter 1: Generative Modeling

While this isn’t the most complex example, we can use it to understand what genera‐
tive modeling is trying to achieve. The following framework sets out our motivations.

The Generative Modeling Framework
• We have a dataset of observations X.
• We assume that the observations have been generated according to some

unknown distribution, pdata.
• A generative model pmodel tries to mimic pdata. If we achieve this goal, we can sam‐

ple from pmodel to generate observations that appear to have been drawn from
pdata.

• We are impressed by pmodel if:
— Rule 1: It can generate examples that appear to have been drawn from pdata.
— Rule 2: It can generate examples that are suitably different from the observa‐

tions in X. In other words, the model shouldn’t simply reproduce things it has
already seen.

Let’s now reveal the true data-generating distribution, pdata, and see how the frame‐
work applies to this example.

As we can see from Figure 1-6, the data-generating rule is simply a uniform distribu‐
tion over the land mass of the world, with no chance of finding a point in the sea.

Figure 1-6. The orange box, pmodel, is an estimate of the true data-generating distribution
pdata (the gray area)

What Is Generative Modeling? | 9

Clearly, our model pmodel is an oversimplification of pdata. Points A, B, and C show
three observations generated by pmodel with varying degrees of success:

• Point A breaks Rule 1 of the Generative Modeling Framework—it does not
appear to have been generated by pdata as it’s in the middle of the sea.

• Point B is so close to a point in the dataset that we shouldn’t be impressed that
our model can generate such a point. If all the examples generated by the model
were like this, it would break Rule 2 of the Generative Modeling Framework.

• Point C can be deemed a success because it could have been generated by pdata
and is suitably different from any point in the original dataset.

The field of generative modeling is diverse and the problem definition can take a
great variety of forms. However, in most scenarios the Generative Modeling Frame‐
work captures how we should broadly think about tackling the problem.

Let’s now build our first nontrivial example of a generative model.

Probabilistic Generative Models
Firstly, if you have never studied probability, don’t worry. To build and run many of
the deep learning models that we shall see later in this book, it is not essential to have
a deep understanding of statistical theory. However, to gain a full appreciation of the
history of the task that we are trying to tackle, it’s worth trying to build a generative
model that doesn’t rely on deep learning and instead is grounded purely in probabil‐
istic theory. This way, you will have the foundations in place to understand all genera‐
tive models, whether based on deep learning or not, from the same probabilistic
standpoint.

If you already have a good understanding of probability, that’s great
and much of the next section may already be familiar to you. How‐
ever, there is a fun example in the middle of this chapter, so be sure
not to miss out on that!

As a first step, we shall define four key terms: sample space, density function, paramet‐
ric modeling, and maximum likelihood estimation.

10 | Chapter 1: Generative Modeling

5 Or integral if the sample space is continuous.
6 If the sample space is discrete, p(x) is simply the probability assigned to observing point x.

Sample Space
The sample space is the complete set of all values an observation x can take.

In our previous example, the sample space consists of all points of latitude and longi‐
tude x = x1, x2 on the world map.

For example, x = (40.7306, –73.9352) is a point in the sample space (New York City).

Probability Density Function
A probability density function (or simply density function), p x , is a function that
maps a point x in the sample space to a number between 0 and 1. The sum5 of the
density function over all points in the sample space must equal 1, so that it is a well-
defined probability distribution.6

In the world map example, the density function of our model is 0 outside of the
orange box and constant inside of the box.

While there is only one true density function pdata that is assumed to have generated
the observable dataset, there are infinitely many density functions pmodel that we can
use to estimate pdata. In order to structure our approach to finding a suitable pmodel(X)
we can use a technique known as parametric modeling.

Parametric Modeling
A parametric model, pθ x , is a family of density functions that can be described using
a finite number of parameters, θ.

The family of all possible boxes you could draw on Figure 1-5 is an example of a para‐
metric model. In this case, there are four parameters: the coordinates of the bottom-
left θ1, θ2 and top-right θ3, θ4 corners of the box.

Probabilistic Generative Models | 11

Thus, each density function pθ x in this parametric model (i.e., each box) can be
uniquely represented by four numbers, θ = θ1, θ2, θ3, θ4 .

Likelihood
The likelihood ℒ θ ∣ x of a parameter set θ is a function that measures the plausibil‐
ity of θ, given some observed point x.

It is defined as follows:

ℒ θ x = pθ x

That is, the likelihood of θ given some observed point x is defined to be the value of
the density function parameterized by θ, at the point x.

If we have a whole dataset X of independent observations then we can write:

ℒ θ X = Π
x ∈ X

pθ x

Since this product can be quite computationally difficult to work with, we often use
the log-likelihood ℓ instead:

ℓ θ X = Σ
x ∈ X

log pθ x

There are statistical reasons why the likelihood is defined in this way, but it is enough
for us to understand why, intuitively, this makes sense. We are simply defining the
likelihood of a set of parameters θ to be equal to the probability of seeing the data
under the model parameterized by θ.

In the world map example, an orange box that only covered the left half of the map
would have a likelihood of 0—it couldn’t possibly have generated the dataset as we
have observed points in the right half of the map. The orange box in Figure 1-5 has a
positive likelihood as the density function is positive for all data points under this
model.

It therefore makes intuitive sense that the focus of parametric modeling should be to
find the optimal value θ of the parameter set that maximizes the likelihood of observ‐
ing the dataset X. This technique is quite appropriately called maximum likelihood
estimation.

12 | Chapter 1: Generative Modeling

Maximum Likelihood Estimation
Maximum likelihood estimation is the technique that allows us to estimate θ—the set
of parameters θ of a density function, pθ x , that are most likely to explain some
observed data X.

More formally:

θ = argmax
θ

ℒ θ X

θ is also called the maximum likelihood estimate (MLE).

We now have all the necessary terminology to start describing how we can build a
probabilistic generative model.

Most chapters in this book will contain a short story that helps to describe a particu‐
lar technique. In this chapter, we shall start by taking a trip to planet Wrodl, where
our first generative modeling assignment awaits…

Hello Wrodl!
The year is 2047 and you are delighted to have been appointed as the new Chief Fash‐
ion Officer (CFO) of Planet Wrodl. As CFO, it is your sole responsibility to create
new and exciting fashion trends for the inhabitants of the planet to follow.

The Wrodlers are known to be quite particular when it comes to fashion, so your task
is to generate new styles that are similar to those that already exist on the planet, but
not identical.

On arrival, you are presented with a dataset featuring 50 observations of Wrodler
fashion (Figure 1-7) and told that you have a day to come up with 10 new styles to
present to the Fashion Police for inspection. You’re allowed to play around with hair‐
styles, hair color, glasses, clothing type, and clothing color to create your
masterpieces.

Probabilistic Generative Models | 13

7 Images sourced from https://getavataaars.com.

Figure 1-7. Headshots of 50 Wrodlers7

As you’re a data scientist at heart, you decide to deploy a generative model to solve
the problem. After a brief visit to the Intergalactic Library, you pick up a book called
Generative Deep Learning and begin to read…

To be continued…

Your First Probabilistic Generative Model
Let’s take a closer look at the Wrodl dataset. It consists of N = 50 observations of fash‐
ions currently seen on the planet. Each observation can be described by five features,
(accessoriesType, clothingColor, clothingType, hairColor, topType), as shown in
Table 1-1.

Table 1-1. The first 10 observations in the Wrodler face dataset

face_id accessoriesType clothingColor clothingType hairColor topType
0 Round White ShirtScoopNeck Red ShortHairShortFlat
1 Round White Overall SilverGray ShortHairFrizzle
2 Sunglasses White ShirtScoopNeck Blonde ShortHairShortFlat
3 Round White ShirtScoopNeck Red LongHairStraight
4 Round White Overall SilverGray NoHair
5 Blank White Overall Black LongHairStraight
6 Sunglasses White Overall SilverGray LongHairStraight
7 Round White ShirtScoopNeck SilverGray ShortHairShortFlat

14 | Chapter 1: Generative Modeling

https://getavataaars.com

face_id accessoriesType clothingColor clothingType hairColor topType
8 Round Pink Hoodie SilverGray LongHairStraight
9 Round PastelOrange ShirtScoopNeck Blonde LongHairStraight

The possible values for each feature include:

• 7 different hairstyles (topType):
— NoHair, LongHairBun, LongHairCurly, LongHairStraight, ShortHairShort‐

Waved, ShortHairShortFlat, ShortHairFrizzle
• 6 different hair colors (hairColor):

— Black, Blonde, Brown, PastelPink, Red, SilverGray
• 3 different kinds of glasses (accessoriesType):

— Blank, Round, Sunglasses
• 4 different kinds of clothing (clothingType):

— Hoodie, Overall, ShirtScoopNeck, ShirtVNeck
• 8 different clothing colors (clothingColor):

— Black, Blue01, Gray01, PastelGreen, PastelOrange, Pink, Red, White

There are 7 × 6 × 3 × 4 × 8 = 4,032 different combinations of these features, so there
are 4,032 points in the sample space.

We can imagine that our dataset has been generated by some distribution pdata that
favors some feature values over others. For example, we can see from the images in
Figure 1-7 that white clothing seems to be a popular choice, as are silver-gray hair
and scoop-neck T-shirts.

The problem is that we do not know pdata explicitly—all we have to work with is the
sample of observations X generated by pdata. The goal of generative modeling is to use
these observations to build a pmodel that can accurately mimic the observations pro‐
duced by pdata.

To achieve this, we could simply assign a probability to each possible combination of
features, based on the data we have seen. Therefore, this parametric model would
have d = 4,031 parameters—one for each point in the sample space of possibilities,
minus one since the value of the last parameter would be forced so that the total sums
to 1. Thus the parameters of the model that we are trying to estimate are
θ1, . . . , θ4031 .

Probabilistic Generative Models | 15

This particular class of parametric model is known as a multinomial distribution, and
the maximum likelihood estimate θ j of each parameter is given by:

θ j =
n j
N

where n j is the number of times that combination j was observed in the dataset and N
= 50 is the total number of observations.

In other words, the estimate for each parameter is just the proportion of times that its
corresponding combination was observed in the dataset.

For example, the following combination (let’s call it combination 1) appears twice in
the dataset:

• (LongHairStraight, Red, Round, ShirtScoopNeck, White)

Therefore:

θ1 = 2/50 = 0.04

As another example, the following combination (let’s call it combination 2) doesn’t
appear at all in the dataset:

• (LongHairStraight, Red, Round, ShirtScoopNeck, Blue01)

Therefore:

θ2 = 0/50 = 0

We can calculate all of the θ j values in this way, to define a distribution over our sam‐
ple space. Since we can sample from this distribution, our list could potentially be
called a generative model. However, it fails in one major respect: it can never generate
anything that it hasn’t already seen, since θ j = 0 for any combination that wasn’t in the
original dataset X.

To address this, we could assign an additional pseudocount of 1 to each possible com‐
bination of features. This is known as additive smoothing. Under this model, our MLE
for the parameters would be:

θ j =
n j + 1
N + d

16 | Chapter 1: Generative Modeling

8 When a response variable y is present, the Naive Bayes assumption states that there is conditional independ‐
ence between each pair of features xj, xk given y.

Now, every single combination has a nonzero probability of being sampled, including
those that were not in the original dataset. However, this still fails to be a satisfactory
generative model, because the probability of observing a point not in the original
dataset is just a constant. If we tried to use such a model to generate Picasso paint‐
ings, it would assign just as much weight to a random collection of colorful pixels as
to a replica of a Picasso painting that differs only very slightly from a genuine
painting.

We would ideally like our generative model to upweight areas of the sample space
that it believes are more likely, due to some inherent structure learned from the data,
rather than just placing all probabilistic weight on the points that are present in the
dataset.

To achieve this, we need to choose a different parametric model.

Naive Bayes
The Naive Bayes parametric model makes use of a simple assumption that drastically
reduces the number of parameters we need to estimate.

We make the naive assumption that each feature xj is independent of every other fea‐
ture xk.8 Relating this to the Wrodl dataset, we are assuming that the choice of hair
color has no impact on the choice of clothing type, and the type of glasses that some‐
one wears has no impact on their hairstyle, for example. More formally, for all fea‐
tures xj, xk:

p x j xk = p x j

This is known as the Naive Bayes assumption. To apply this assumption, we first make
use of the chain rule of probability to write the density function as a product of con‐
ditional probabilities:

p x = p x1, . . . , xK

= p x2, . . . , xK x1 p x1

= p x3, . . . , xK x1, x2 p x2 ∣ x1 p x1

= Π
k = 1

K
p xk x1, . . . , xk − 1

Probabilistic Generative Models | 17

9 The –5 is due to the fact that the last parameter for each feature is forced to ensure that the sum of the param‐
eters for this feature sums to 1.

where K is the total number of features (i.e., 5 for the Wrodl example).

We now apply the Naive Bayes assumption to simplify the last line:

p x = Π
k = 1

K
p xk

This is the Naive Bayes model. The problem is reduced to estimating the parameters
θkl = p xk = l for each feature separately and multiplying these to find the probability
for any possible combination.

How many parameters do we now need to estimate? For each feature, we need to esti‐
mate a parameter for each value that the feature can take. Therefore, in the Wrodl
example, this model is defined by only 7 + 6 + 3 + 4 + 8 – 5 = 23 parameters.9

The maximum likelihood estimates θkl are as follows:

θkl =
nkl
N

where θkl is the number of times that the feature k takes on the value l in the dataset
and N = 50 is the total number of observations.

Table 1-2 shows the calculated parameters for the Wrodl dataset.

Table 1-2. The MLEs for the parameters under the Naive Bayes model

topType n θ
^

NoHair 7 0.14
LongHairBun 0 0.00
LongHairCurly 1 0.02
LongHairStraight 23 0.46
ShortHairShortWaved 1 0.02
ShortHairShortFlat 11 0.22
ShortHairFrizzle 7 0.14
Grand Total 50 1.00

hairColor n θ
^

Black 7 0.14
Blonde 6 0.12
Brown 2 0.04
PastelPink 3 0.06
Red 8 0.16
SilverGrey 24 0.48
Grand Total 50 1.00

clothingColor n θ
^

Black 0 0.00
Blue01 4 0.08
Grey01 10 0.20
PastelGreen 5 0.10
PastelOrange 2 0.04
Pink 4 0.08
Red 3 0.06
White 22 0.44
Grand Total 50 1.00

18 | Chapter 1: Generative Modeling

accessoriesType n θ
^

Blank 11 0.22
Round 22 0.44
Sunglasses 17 0.34
Grand Total 50 1.00

clothingType n θ
^

Hoodie 7 0.14
Overall 18 0.36
ShirtScoopNeck 19 0.38
ShirtVNeck 6 0.12
Grand Total 50 1.00

To calculate the probability of the model generating some observation x, we simply
multiply together the individual feature probabilities. For example:

p(LongHairStraight, Red, Round, ShirtScoopNeck, White)

= p(LongHairStraight) × p(Red) × p(Round) × p(ShirtScoopNeck) × p(White)
= 0.46 × 0.16 × 0.44 × 0.38 × 0.44
= 0.0054

Notice that this combination doesn’t appear in the original dataset, but our model still
allocates it a nonzero probability, so it is still able to be generated. Also, it has a higher
probability of being sampled than, say, (LongHairStraight, Red, Round, ShirtScoop‐
Neck, White), because white clothing appears more often than blue clothing in the
dataset.

Therefore, a Naive Bayes model is able to learn some structure from the data and use
this to generate new examples that were not seen in the original dataset. The model
has estimated the probability of seeing each feature value independently, so that
under the Naive Bayes assumption we can multiply these probabilities to build our
full density function, pθ(x).

Figure 1-8 shows 10 observations sampled from the model.

Probabilistic Generative Models | 19

Figure 1-8. Ten new Wrodl styles, generated using the Naive Bayes model

For this simple problem, the Naive Bayes assumption that each feature is independent
of every other feature is reasonable and therefore produces a good generative model.

Now let’s see what happens when this assumption breaks down

Hello Wrodl! Continued
You feel a certain sense of pride as you look upon the 10 new creations generated by
your Naive Bayes model. Glowing with success, you turn your attention to another
planet’s fashion dilemma—but this time the problem isn’t quite as simple.

On the conveniently named Planet Pixel, the dataset you are provided with doesn’t
consist of the five high-level features that you saw on Wrodl (hairColor, accessories‐
Type, etc.), but instead contains just the values of the 32 × 32 pixels that make up each
image. Thus each observation now has 32 × 32 = 1,024 features and each feature can
take any of 256 values (the individual colors in the palette).

Images from the new dataset are shown in Figure 1-9, and a sample of the pixel values
for the first 10 observations appears in Table 1-3.

20 | Chapter 1: Generative Modeling

Figure 1-9. Fashions on Planet Pixel

Table 1-3. The values of pixels 458–467 from the first 10 observations on Planet Pixel

face_id px_458 px_459 px_460 px_461 px_462 px_463 px_464 px_465 px_466 px_467
0 49 14 14 19 7 5 5 12 19 14
1 43 10 10 17 9 3 3 18 17 10
2 37 12 12 14 11 4 4 6 14 12
3 54 9 9 14 10 4 4 16 14 9
4 2 2 5 2 4 4 4 4 2 5
5 44 15 15 21 14 3 3 4 21 15
6 12 9 2 31 16 3 3 16 31 2
7 36 9 9 13 11 4 4 12 13 9
8 54 11 11 16 10 4 4 19 16 11
9 49 17 17 19 12 6 6 22 19 17

You decide to try your trusty Naive Bayes model once more, this time trained on the
pixel dataset. The model will estimate the maximum likelihood parameters that gov‐
ern the distribution of the color of each pixel so that you are able to sample from this
distribution to generate new observations. However, when you do so, it is clear that
something has gone very wrong.

Rather than producing novel fashions, the model outputs 10 very similar images that
have no distinguishable accessories or clear blocks of hair or clothing color
(Figure 1-10). Why is this?

Probabilistic Generative Models | 21

Figure 1-10. Ten new Planet Pixel styles, generated by the Naive Bayes model

The Challenges of Generative Modeling
First, since the Naive Bayes model is sampling pixels independently, it has no way of
knowing that two adjacent pixels are probably quite similar in shade, as they are part
of the same item of clothing, for example. The model can generate the facial color
and mouth, as all of these pixels in the training set are roughly the same shade in each
observation; however for the T-shirt pixels, each pixel is sampled at random from a
variety of different colors in the training set, with no regard to the colors that have
been sampled in neighboring pixels. Additionally, there is no mechanism for pixels
near the eyes to form circular glasses shapes, or red pixels near the top of the image to
exhibit a wavy pattern to represent a particular hairstyle, for example.

Second, there are now an incomprehensibly vast number of possible observations in
the sample space. Only a tiny proportion of these are recognizable faces, and an even
smaller subset are faces that adhere to the fashion rules on Planet Pixel. Therefore, if
our Naive Bayes model is working directly with the highly correlated pixel values, the
chance of it finding a satisfying combination of values is incredibly small.

In summary, on Planet Wrodl individual features are independent and the sample
space is relatively small, so Naive Bayes works well. On Planet Pixel, the assumption
that every pixel value is independent of every other pixel value clearly doesn’t hold.
Pixel values are highly correlated and the sample space is vast, so finding a valid face
by sampling pixels independently is almost impossible. This explains why Naive
Bayes models cannot be expected to work well on raw image data.

22 | Chapter 1: Generative Modeling

This example highlights the two key challenges that a generative model must over‐
come in order to be successful.

Generative Modeling Challenges
• How does the model cope with the high degree of conditional dependence

between features?
• How does the model find one of the tiny proportion of satisfying possible gener‐

ated observations among a high-dimensional sample space?

Deep learning is the key to solving both of these challenges.

We need a model that can infer relevant structure from the data, rather than being
told which assumptions to make in advance. This is exactly where deep learning
excels and is one of the key reasons why the technique has driven the major recent
advances in generative modeling.

The fact that deep learning can form its own features in a lower-dimensional space
means that it is a form of representation learning. It is important to understand the
key concepts of representation learning before we tackle deep learning in the next
chapter.

Representation Learning
The core idea behind representation learning is that instead of trying to model the
high-dimensional sample space directly, we should instead describe each observation
in the training set using some low-dimensional latent space and then learn a mapping
function that can take a point in the latent space and map it to a point in the original
domain. In other words, each point in the latent space is the representation of some
high-dimensional image.

What does this mean in practice? Let’s suppose we have a training set consisting of
grayscale images of biscuit tins (Figure 1-11).

The Challenges of Generative Modeling | 23

Figure 1-11. The biscuit tin dataset

To us, it is obvious that there are two features that can uniquely represent each of
these tins: the height and width of the tin. Given a height and width, we could draw
the corresponding tin, even if its image wasn’t in the training set. However, this is not
so easy for a machine—it would first need to establish that height and width are the
two latent space dimensions that best describe this dataset, then learn the mapping
function, f, that can take a point in this space and map it to a grayscale biscuit tin
image. The resulting latent space of biscuit tins and generation process are shown in
Figure 1-12.

Deep learning gives us the ability to learn the often highly complex mapping function
f in a variety of ways. We shall explore some of the most important techniques in later
chapters of this book. For now, it is enough to understand at a high level what repre‐
sentation learning is trying to achieve.

One of the advantages of using representation learning is that we can perform opera‐
tions within the more manageable latent space that affect high-level properties of the
image. It is not obvious how to adjust the shading of every single pixel to make a
given biscuit tin image taller. However, in the latent space, it’s simply a case of adding
1 to the height latent dimension, then applying the mapping function to return to the
image domain. We shall see an explicit example of this in the next chapter, applied
not to biscuit tins but to faces.

24 | Chapter 1: Generative Modeling

Figure 1-12. The latent space of biscuit tins and the function f that maps a point in the
latent space to the original image domain

Representation learning comes so naturally to us as humans that you may never have
stopped to think just how amazing it is that we can do it so effortlessly. Suppose you
wanted to describe your appearance to someone who was looking for you in a crowd
of people and didn’t know what you looked like. You wouldn’t start by stating the
color of pixel 1 of your hair, then pixel 2, then pixel 3, etc. Instead, you would make
the reasonable assumption that the other person has a general idea of what an average
human looks like, then amend this baseline with features that describe groups of pix‐
els, such as I have very blonde hair or I wear glasses. With no more than 10 or so of
these statements, the person would be able to map the description back into pixels to
generate an image of you in their head. The image wouldn’t be perfect, but it would
be a close enough likeness to your actual appearance for them to find you among pos‐
sibly hundreds of other people, even if they’ve never seen you before.

Note that representation learning doesn’t just assign values to a given set of features
such as blondeness of hair, height, etc., for some given image. The power of represen‐
tation learning is that it actually learns which features are most important for it to
describe the given observations and how to generate these features from the raw data.
Mathematically speaking, it tries to find the highly nonlinear manifold on which the
data lies and then establish the dimensions required to fully describe this space. This
is shown in Figure 1-13.

The Challenges of Generative Modeling | 25

Figure 1-13. The cube represents the extremely high-dimensional space of all images; rep‐
resentation learning tries to find the lower-dimensional latent subspace or manifold on
which particular kinds of image lie (for example, the dog manifold)

In summary, representation learning establishes the most relevant high-level features
that describe how groups of pixels are displayed so that is it likely that any point in
the latent space is the representation of a well-formed image. By tweaking the values
of features in the latent space we can produce novel representations that, when

26 | Chapter 1: Generative Modeling

10 For full instructions on installing virtualenvwrapper, consult the documentation.

mapped back to the original image domain, have a much better chance of looking real
than if we’d tried to work directly with the individual raw pixels.

Now that you have an understanding of representation learning, which forms the
backbone of many of the generative deep learning examples in this book, all that
remains is to set up your environment so that you can begin building generative deep
learning models of your own.

Setting Up Your Environment
Throughout this book, there are many worked examples of how to build the models
that we will be discussing in the text.

To get access to these examples, you’ll need to clone the Git repository that accompa‐
nies this book. Git is an open source version control system and will allow you to
copy the code locally so that you can run the notebooks on your own machine, or
perhaps in a cloud-based environment. You may already have this installed, but if not,
follow the instructions relevant to your operating system.

To clone the repository for this book, navigate to the folder where you would like to
store the files and type the following into your terminal:

git clone https://github.com/davidADSP/GDL_code.git

Always make sure that you have the most up-to-date version of the codebase by run‐
ning the following command:

git pull

You should now be able to see the files in a folder on your machine.

Next, you need to set up a virtual environment. This is simply a folder into which
you’ll install a fresh copy of Python and all of the packages that we will be using in
this book. This way, you can be sure that your system version of Python isn’t affected
by any of the libraries that we will be using.

If you are using Anaconda, you can set up a virtual environment as follows:

conda create -n generative python=3.6 ipykernel

If not, you can install virtualenv and virtualenvwrapper with the command:10

pip install virtualenv virtualenvwrapper

Setting Up Your Environment | 27

http://bit.ly/2x8LPQ4
http://bit.ly/2MUrvN1

You will also need to add the following lines to your shell startup script
(e.g., .bash_profile):

export WORKON_HOME=$HOME/.virtualenvs
export VIRTUALENVWRAPPER_PYTHON=/usr/local/bin/python3
source /usr/local/bin/virtualenvwrapper.sh

The location where your virtual environments will be stored

The default version of Python to use when a virtual environment is created—
make sure this points at Python 3, rather than Python 2.

Reloads the virtualenvwrapper initialization script

To create a virtual environment called generative, simply enter the following into your
terminal:

mkvirtualenv generative

You’ll know that you’re inside the virtual environment because your terminal will
show (generative) at the start of the prompt.

Now you can go ahead and install all the packages that we’ll be using in this book
with the following command:

pip install -r requirements.txt

Throughout this book, we will use Python 3. The requirements.txt file contains the
names and version numbers of all the packages that you will need to run the
examples.

To check everything works as expected, from inside your virtual environment type
python into your terminal and then try to import Keras (a deep learning library that
we will be using extensively in this book). You should see a Python 3 prompt, with
Keras reporting that it is using the TensorFlow backend as shown in Figure 1-14.

Figure 1-14. Setting up your environment

Finally, you will need to ensure you are set up to access your virtual environment
through Jupyter notebooks on your machine. Jupyter is a way to interactively code in

28 | Chapter 1: Generative Modeling

Python through your browser and is a great option for developing new ideas and
sharing code. Most of the examples in this book are written using Jupyter notebooks.

To do this, run the following command from your terminal inside your virtual
environment:

python -m ipykernel install --user --name generative

This gives you access to the virtual environment that you’ve just set up (genera
tive) inside Jupyter notebooks.

To check that it has installed correctly, navigate in your terminal to the folder where
you have cloned the book repository and type:

jupyter notebook

A window should open in your browser showing a screen similar to Figure 1-15.
Click the notebook you wish to run and, from the Kernel → Change kernel dropdown,
select the generative virtual environment.

Figure 1-15. Jupyter notebook

You are now ready to start building generative deep neural networks.

Summary
This chapter introduced the field of generative modeling, an important branch of
machine learning that complements the more widely studied discriminative model‐
ing. Our first basic example of a generative model utilized the Naive Bayes assump‐
tion to produce a probability distribution that was able to represent inherent
structure in the data and generate examples outside of the training set. We also saw
how these kinds of basic models can fail as the complexity of the generative task
grows, and analyzed the general challenges associated with generative modeling.
Finally, we took our first look at representation learning, an important concept that
forms the core of many generative models.

Summary | 29

In Chapter 2, we will begin our exploration of deep learning and see how to use Keras
to build models that can perform discriminative modeling tasks. This will give us the
necessary foundations to go on to tackle generative deep learning in later chapters.

30 | Chapter 1: Generative Modeling

CHAPTER 2

Deep Learning

Let’s start with a basic definition of deep learning:
Deep learning is a class of machine learning algorithm that uses multiple stacked layers
of processing units to learn high-level representations from unstructured data.

To understand deep learning fully, and particularly why it is so useful within genera‐
tive modeling, we need to delve into this definition a bit further. First, what do we
mean by “unstructured data” and its counterpart, “structured data”?

Structured and Unstructured Data
Many types of machine learning algorithm require structured, tabular data as input,
arranged into columns of features that describe each observation. For example, a per‐
son’s age, income, and number of website visits in the last month are all features that
could help to predict if the person will subscribe to a particular online service in the
coming month. We could use a structured table of these features to train a logistic
regression, random forest, or XGBoost model to predict the binary response variable
—did the person subscribe (1) or not (0)? Here, each individual feature contains a
nugget of information about the observation, and the model would learn how these
features interact to influence the response.

Unstructured data refers to any data that is not naturally arranged into columns of
features, such as images, audio, and text. There is of course spatial structure to an
image, temporal structure to a recording, and both spatial and temporal structure to
video data, but since the data does not arrive in columns of features, it is considered
unstructured, as shown in Figure 2-1.

31

Figure 2-1. The difference between structured and unstructured data

When our data is unstructured, individual pixels, frequencies, or characters are
almost entirely uninformative. For example, knowing that pixel 234 of an image is a
muddy shade of brown doesn’t really help identify if the image is of a house or a dog,
and knowing that character 24 of a sentence is an e doesn’t help predict if the text is
about football or politics.

Pixels or characters are really just the dimples of the canvas into which higher-level
informative features, such as an image of a chimney or the word striker, are embed‐
ded. If the chimney in the image were placed on the other side of the house, the
image would still contain a chimney, but this information would now be carried by
completely different pixels. If the word striker appeared slightly earlier or later in the
text, the text would still be about football, but different character positions would
provide this information. The granularity of the data combined with the high degree
of spatial dependence destroys the concept of the pixel or character as an informative
feature in its own right.

For this reason, if we train logistic regression, random forest, or XGBoost algorithms
on raw pixel values, the trained model will often perform poorly for all but the sim‐
plest of classification tasks. These models rely on the input features to be informative
and not spatially dependent. A deep learning model, on the other hand, can learn
how to build high-level informative features by itself, directly from the unstructured
data.

Deep learning can be applied to structured data, but its real power, especially with
regard to generative modeling, comes from its ability to work with unstructured data.
Most often, we want to generate unstructured data such as new images or original
strings of text, which is why deep learning has had such a profound impact on the
field of generative modeling.

32 | Chapter 2: Deep Learning

Deep Neural Networks
The majority of deep learning systems are artificial neural networks (ANNs, or just
neural networks for short) with multiple stacked hidden layers. For this reason, deep
learning has now almost become synonymous with deep neural networks. However, it
is important to point out that any system that employs many layers to learn high level
representations of the input data is also a form of deep learning (e.g., deep belief net‐
works and deep Boltzmann machines).

Let’s start by taking a high-level look at how a deep neural network can make a pre‐
diction about a given input.

A deep neural network consists of a series of stacked layers. Each layer contains units,
that are connected to the previous layer’s units through a set of weights. As we shall
see, there are many different types of layer, but one of the most common is the dense
layer that connects all units in the layer directly to every unit in the previous layer. By
stacking layers, the units in each subsequent layer can represent increasingly sophisti‐
cated aspects of the original input.

Figure 2-2. Deep learning conceptual diagram

For example, in Figure 2-2, layer 1 consists of units that activate more strongly when
they detect particular basic properties of the input image, such as edges. The output
from these units is then passed to the units of layer 2, which are able to use this infor‐
mation to detect slightly more complex features—and so on, through the network.
The final output layer is the culmination of this process, where the network outputs a
set of numbers that can be converted into probabilities, to represent the chance that
the original input belongs to one of n categories.

Deep Neural Networks | 33

1 Kaiming He et al., “Deep Residual Learning for Image Recognition,” 10 December 2015, https://arxiv.org/abs/
1512.03385.

The magic of deep neural networks lies in finding the set of weights for each layer
that results in the most accurate predictions. The process of finding these weights is
what we mean by training the network.

During the training process, batches of images are passed through the network and
the output is compared to the ground truth. The error in the prediction is then
propagated backward through the network, adjusting each set of weights a small
amount in the direction that improves the prediction most significantly. This process
is appropriately called backpropagation. Gradually, each unit becomes skilled at iden‐
tifying a particular feature that ultimately helps the network to make better
predictions.

Deep neural networks can have any number of middle or hidden layers. For example,
ResNet,1 designed for image recognition, contains 152 layers. We shall see in Chap‐
ter 3 that we can use deep neural networks to influence high-level features of an
image, such as hair color or expression of a face, by manually tweaking the values of
these hidden layers. This is only possible because the deeper layers of the network are
capturing high-level features that we can work with directly.

Next, we’ll dive straight into the practical side of deep learning and get set up with
Keras and TensorFlow, the two libraries that will enable you to start building your
own generative deep neural networks.

Keras and TensorFlow
Keras is a high-level Python library for building neural networks and is the core
library that we shall be using in this book. It is extremely flexible and has a very user-
friendly API, making it an ideal choice for getting started with deep learning. More‐
over, Keras provides numerous useful building blocks that can be plugged together to
create highly complex deep learning architectures through its functional API.

Keras is not the library that performs the low-level array operations required to train
neural networks. Instead Keras utilizes one of three backend libraries for this pur‐
pose: TensorFlow, CNTK, or Theano. You are free to choose whichever you are most
comfortable with, or whichever library works fastest for a particular network archi‐
tecture. For most purposes, it doesn’t matter which you choose as you usually won’t
be coding directly using the underlying backend framework. In this book we use Ten‐
sorFlow as it is the most widely adopted and best documented of the three.

TensorFlow is an open-source Python library for machine learning, developed by
Google. It is now one of the most utilized frameworks for building machine learning
solutions, with particular emphasis on the manipulation of tensors (hence the name).

34 | Chapter 2: Deep Learning

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

Within the context of deep learning, tensors are simply multidimensional arrays that
store the data as it flows through the network. As we shall see, understanding how
each layer of a neural network changes the shape of the data as it flows through the
network is a key part of truly understanding the mechanics of deep learning.

If you are just getting started with deep learning, I highly recommend that you
choose Keras with a TensorFlow backend as your toolkit. These two libraries are a
powerful combination that will allow you to build any network that you can think of
in a production environment, while also giving you the easy-to-learn API that is so
important for rapid development of new ideas and concepts.

Your First Deep Neural Network
Let’s start by seeing how easy it is to build a deep neural network in Keras.

We will be working through the Jupyter notebook in the book repository called
02_01_deep_learning_deep_neural_network.ipynb.

Loading the Data
For this example we will be using the CIFAR-10 dataset, a collection of 60,000 32 ×
32–pixel color images that comes bundled with Keras out of the box. Each image is
classified into exactly one of 10 classes, as shown in Figure 2-3.

The following code loads and scales the data:

import numpy as np
from keras.utils import to_categorical
from keras.datasets import cifar10

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

NUM_CLASSES = 10

x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0

y_train = to_categorical(y_train, NUM_CLASSES)
y_test = to_categorical(y_test, NUM_CLASSES)

Loads the CIFAR-10 dataset. x_train and x_test are numpy arrays of shape
[50000, 32, 32, 3] and [10000, 32, 32, 3], respectively. y_train and
y_test are numpy arrays with shape [50000, 1] and [10000, 1], respectively,
containing the integer labels in the range 0 to 9 for the class of each image.

Your First Deep Neural Network | 35

2 Source: Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” 2009, https://
www.cs.toronto.edu/~kriz/cifar.html.

By default the image data consists of integers between 0 and 255 for each pixel
channel. Neural networks work best when each input is inside the range –1 to 1,
so we need to divide by 255.

We also need to change the integer labeling of the images to one-hot-encoded
vectors. If the class integer label of an image is i, then its one-hot encoding is a
vector of length 10 (the number of classes) that has 0s in all but the ith element,
which is 1. The new shapes of y_train and y_test are therefore [50000, 10]
and [10000, 10] respectively.

Figure 2-3. Example images from the CIFAR-10 dataset2

36 | Chapter 2: Deep Learning

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

It’s worth noting the shape of the image data in x_train: [50000, 32, 32, 3]. The
first dimension of this array references the index of the image in the dataset, the sec‐
ond and third relate to the size of the image, and the last is the channel (i.e., red,
green, or blue, since these are RGB images). There are no columns or rows in this
dataset; instead, this is a tensor with four dimensions. For example, the following
entry refers to the green channel (1) value of the pixel in the (12,13) position of
image 54:

x_train[54, 12, 13, 1]
0.36862746

Building the Model
In Keras there are two ways to define the structure of your neural network: as a
Sequential model or using the Functional API.

A Sequential model is useful for quickly defining a linear stack of layers (i.e., where
one layer follows on directly from the previous layer without any branching). How‐
ever, many of the models in this book require that the output from a layer is passed to
multiple separate layers beneath it, or conversely, that a layer receives input from
multiple layers above it.

To be able to build networks with branches, we need to use the Functional API, which
is a lot more flexible. I recommend that even if you are just starting out building lin‐
ear models with Keras, you still use the Functional API rather than Sequential mod‐
els, since it will serve you better in the long run as your neural networks become
more architecturally complex. The Functional API will give you complete freedom
over the design of your deep neural network.

To demonstrate the difference between the two methods, Examples 2-1 and 2-2 show
the same network coded using a Sequential model and the Functional API. Feel free
to try both and observe that they give the same result.

Example 2-1. The architecture using a Sequential model

from keras.models import Sequential
from keras.layers import Flatten, Dense

model = Sequential([
 Dense(200, activation = 'relu', input_shape=(32, 32, 3)),
 Flatten(),
 Dense(150, activation = 'relu'),
 Dense(10, activation = 'softmax'),
])

Your First Deep Neural Network | 37

Example 2-2. The architecture using the Functional API

from keras.layers import Input, Flatten, Dense
from keras.models import Model

input_layer = Input(shape=(32,32, 3))

x = Flatten()(input_layer)

x = Dense(units=200, activation = 'relu')(x)
x = Dense(units=150, activation = 'relu')(x)

output_layer = Dense(units=10, activation = 'softmax')(x)

model = Model(input_layer, output_layer)>

Here, we are using three different types of layer: Input, Flatten, and Dense.

The Input layer is an entry point into the network. We tell the network the shape of
each data element to expect as a tuple. Notice that we do not specify the batch size;
this isn’t necessary as we can pass any number of images into the Input layer simulta‐
neously. We do not need to explicitly state the batch size in the Input layer definition.

Next we flatten this input into a vector, using a Flatten layer. This results in a vector
of length 3,072 (= 32 × 32 × 3). The reason we do this is because the subsequent
Dense layer requires that its input is flat, rather than a multidimensional array. As we
shall see later, other layer types require multidimensional arrays as input, so you need
to be aware of the required input and output shape of each layer type to understand
when it is necessary to use Flatten.

The Dense layer is perhaps the most fundamental layer type in any neural network. It
contains a given number of units that are densely connected to the previous layer—
that is, every unit in the layer is connected to every unit in the previous layer, through
a single connection that carries a weight (which can be positive or negative). The out‐
put from a given unit is the weighted sum of the input it receives from the previous
layer, which is then passed through a nonlinear activation function before being sent
to the following layer. The activation function is critical to ensure the neural network
is able to learn complex functions and doesn’t just output a linear combination of its
input.

There are many kinds of activation function, but the three most important are ReLU,
sigmoid, and softmax.

The ReLU (rectified linear unit) activation function is defined to be zero if the input is
negative and is otherwise equal to the input. The LeakyReLU activation function is
very similar to ReLU, with one key difference: whereas the ReLU activation function
returns zero for input values less than zero, the LeakyReLU function returns a small

38 | Chapter 2: Deep Learning

negative number proportional to the input. ReLU units can sometimes die if they
always output zero, because of a large bias toward negative values preactivation. In
this case, the gradient is zero and therefore no error is propagated back through this
unit. LeakyReLU activations fix the issue by always ensuring the gradient is nonzero.
ReLU-based functions are now established to be the most reliable activations to use
between the layers of a deep network to encourage stable training.

The sigmoid activation is useful if you wish the output from the layer to be scaled
between 0 and 1—for example, for binary classification problems with one output
unit or multilabel classification problems, where each observation can belong to more
than one class. Figure 2-4 shows ReLU, LeakyReLU, and sigmoid activation functions
side by side for comparison.

Figure 2-4. The ReLU, LeakyReLU, and sigmoid activation functions

The softmax activation is useful if you want the total sum of the output from the layer
to equal 1, for example, for multiclass classification problems where each observation
only belongs to exactly one class. It is defined as:

yi = e
xi

∑ j = 1
J e

xj

Here, J is the total number of units in the layer. In our neural network, we use a soft‐
max activation in the final layer to ensure that the output is a set of 10 probabilities
that sum to 1, which can be interpreted as the chance that the image belongs to each
class.

In Keras, activation functions can also be defined in a separate layer as follows:

x = Dense(units=200)(x)
x = Activation('relu')(x)

This is equivalent to:

x = Dense(units=200, activation = 'relu')(x)

Your First Deep Neural Network | 39

In our example, we pass the input through two dense hidden layers, the first with 200
units and the second with 150, both with ReLU activation functions. A diagram of the
total network is shown in Figure 2-5.

Figure 2-5. A diagram of the neural network trained on CIFAR-10 data

The final step is to define the model itself, using the Model class. In Keras a model is
defined by the input and output layers. In our case, we have one input layer that we
defined earlier, and the output layer is the final Dense layer of 10 units. It is also possi‐
ble to define models with multiple input and output layers; we shall see this in action
later in the book.

In our example, as required, the shape of our Input layer matches the shape of
x_train and the shape of our Dense output layer matches the shape of y_train. To
illustrate this, we can use the model.summary() method to see the shape of the net‐
work at each layer as shown in Figure 2-6.

40 | Chapter 2: Deep Learning

Figure 2-6. The summary of the model

Notice how Keras uses None as a marker to show that it doesn’t yet know the number
of observations that will be passed into the network. In fact, it doesn’t need to; we
could just as easily pass one observation through the network at a time as 1,000.
That’s because tensor operations are conducted across all observations simultaneously
using linear algebra—this is the part handled by TensorFlow. It is also the reason why
you get a performance increase when training deep neural networks on GPUs instead
of CPUs: GPUs are optimized for large tensor multiplications since these calculations
are also necessary for complex graphics manipulation.

The summary method also gives the number of parameters (weights) that will be
trained at each layer. If ever you find that your model is training too slowly, check the
summary to see if there are any layers that contain a huge number of weights. If so,
you should consider whether the number of units in the layer could be reduced to
speed up training.

Compiling the Model
In this step, we compile the model with an optimizer and a loss function:

from keras.optimizers import Adam

opt = Adam(lr=0.0005)
model.compile(loss='categorical_crossentropy', optimizer=opt,
 metrics=['accuracy'])

The loss function is used by the neural network to compare its predicted output to
the ground truth. It returns a single number for each observation; the greater this
number, the worse the network has performed for this observation.

Your First Deep Neural Network | 41

3 Diederik Kingma and Jimmy Ba, “Adam: A Method for Stochastic Optimization,” 22 December 2014, https://
arxiv.org/abs/1412.6980v8.

Keras provides many built-in loss functions to choose from, or you can create your
own. Three of the most commonly used are mean squared error, categorical cross-
entropy, and binary cross-entropy. It is important to understand when it is appropri‐
ate to use each.

If your neural network is designed to solve a regression problem (i.e., the output is
continuous), then you can use the mean squared error loss. This is the mean of the
squared difference between the ground truth yi and predicted value pi of each output
unit, where the mean is taken over all n output units:

MSE = 1
n ∑

i = 1

n
yi − pi

2

If you are working on a classification problem where each observation only belongs
to one class, then categorical cross-entropy is the correct loss function. This is defined
as follows:

− ∑
i = 1

n
yi log pi

Finally, if you are working on a binary classification problem with one output unit, or
a multilabel problem where each observation can belong to multiple classes simulta‐
neously, you should use binary cross-entropy:

− 1
n ∑

i = 1

n
yi log pi + 1 − yi log 1 − pi

The optimizer is the algorithm that will be used to update the weights in the neural
network based on the gradient of the loss function. One of the most commonly used
and stable optimizers is Adam.3 In most cases, you shouldn’t need to tweak the default
parameters of the Adam optimizer, except for the learning rate. The greater the learn‐
ing rate, the larger the change in weights at each training step. While training is ini‐
tially faster with a large learning rate, the downside is that it may result in less stable
training and may not find the minima of the loss function. This is a parameter that
you may want to tune or adjust during training.

42 | Chapter 2: Deep Learning

https://arxiv.org/abs/1412.6980v8
https://arxiv.org/abs/1412.6980v8

Another common optimizer that you may come across is RMSProp. Again, you
shouldn’t need to adjust the parameters of this optimizer too much, but it is worth
reading the Keras documentation to understand the role of each parameter.

We pass both the loss function and the optimizer into the compile method of the
model, as well as a metrics parameter where we can specify any additional metrics
that we would like reporting on during training, such as accuracy.

Training the Model
Thus far, we haven’t shown the model any data and have just set up the architecture
and compiled the model with a loss function and optimizer.

To train the model, simply call the fit method, as shown here:

model.fit(x_train
 , y_train
 , batch_size = 32
 , epochs = 10
 , shuffle = True
)

The raw image data.

The one-hot-encoded class labels.

The batch_size determines how many observations will be passed to the net‐
work at each training step.

The epochs determine how many times the network will be shown the full train‐
ing data.

If shuffle = True, the batches will be drawn randomly without replacement
from the training data at each training step.

This will start training a deep neural network to predict the category of an image
from the CIFAR-10 dataset.

The training process works as follows. First, the weights of the network are initialized
to small random values. Then the network performs a series of training steps.

At each training step, one batch of images is passed through the network and the
errors are backpropagated to update the weights. The batch_size determines how
many images are in each training step batch. The larger the batch size, the more sta‐
ble the gradient calculation, but the slower each training step. It would be far too
time-consuming and computationally intensive to use the entire dataset to calculate
the gradient at each training step, so generally a batch size between 32 and 256 is

Your First Deep Neural Network | 43

https://keras.io/optimizers

4 Samuel L. Smith et al., “Don’t Decay the Learning Rate, Increase the Batch Size,” 1 November 2017, https://
arxiv.org/abs/1711.00489.

used. It is also now recommended practice to increase the batch size as training
progresses.4

This continues until all observations in the dataset have been seen once. This com‐
pletes the first epoch. The data is then passed through the network again in batches as
part of the second epoch. This process repeats until the specified number of epochs
have elapsed.

During training, Keras outputs the progress of the procedure, as shown in Figure 2-7.
We can see that the training dataset of 50,000 observations has been shown to the net‐
work 10 times (i.e., over 10 epochs), at a rate of approximately 160 microseconds per
observation. The categorical cross-entropy loss has fallen from 1.842 to 1.357, result‐
ing in an accuracy increase from 33.5% after the first epoch to 51.9% after the tenth
epoch.

Figure 2-7. The output from the fit method

Evaluating the Model
We know the model achieves an accuracy of 51.9% on the training set, but how does
it perform on data it has never seen?

To answer this question we can use the evaluate method provided by Keras:

model.evaluate(x_test, y_test)

44 | Chapter 2: Deep Learning

https://arxiv.org/abs/1711.00489
https://arxiv.org/abs/1711.00489

Figure 2-8 shows the output from this method.

Figure 2-8. The output from the evaluate method

The output from this method is a list of the metrics we are monitoring: categorical
cross-entropy and accuracy. We can see that model accuracy is still 49.0% even on
images that it has never seen before. Note that if the model was guessing randomly, it
would achieve approximately 10% accuracy (because there are 10 classes), so 50% is a
good result given that we have used a very basic neural network.

We can view some of the predictions on the test set using the predict method:

CLASSES = np.array(['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog'
 , 'frog', 'horse', 'ship', 'truck'])

preds = model.predict(x_test)
preds_single = CLASSES[np.argmax(preds, axis = -1)]
actual_single = CLASSES[np.argmax(y_test, axis = -1)]

preds is an array of shape [10000, 10]—i.e., a vector of 10 class probabilities for
each observation.

We convert this array of probabilities back into a single prediction using numpy’s
argmax function. Here, axis = –1 tells the function to collapse the array over the
last dimension (the classes dimension), so that the shape of preds_single is then
[10000, 1].

We can view some of the images alongside their labels and predictions with the fol‐
lowing code. As expected, around half are correct:

import matplotlib.pyplot as plt

n_to_show = 10
indices = np.random.choice(range(len(x_test)), n_to_show)

fig = plt.figure(figsize=(15, 3))
fig.subplots_adjust(hspace=0.4, wspace=0.4)

for i, idx in enumerate(indices):
 img = x_test[idx]
 ax = fig.add_subplot(1, n_to_show, i+1)
 ax.axis('off')
 ax.text(0.5, -0.35, 'pred = ' + str(preds_single[idx]), fontsize=10
 , ha='center', transform=ax.transAxes)

Your First Deep Neural Network | 45

 ax.text(0.5, -0.7, 'act = ' + str(actual_single[idx]), fontsize=10
 , ha='center', transform=ax.transAxes)
 ax.imshow(img)

Figure 2-9 shows a randomly chosen selection of predictions made by the model,
alongside the true labels.

Figure 2-9. Some predictions made by the model, alongside the actual labels

Congratulations! You’ve just built your first deep neural network using Keras and
used it to make predictions on new data. Even though this is a supervised learning
problem, when we come to building generative models in future chapters many of the
core ideas from this network (such as loss functions, activation functions, and under‐
standing layer shapes) will still be extremely important. Next we’ll look at ways of
improving this model, by introducing a few new layer types.

Improving the Model
One of the reasons our network isn’t yet performing as well as it might is because
there isn’t anything in the network that takes into account the spatial structure of the
input images. In fact, our first step is to flatten the image into a single vector, so that
we can pass it to the first Dense layer!

To achieve this we need to use a convolutional layer.

Convolutional Layers
First, we need to understand what is meant by a convolution in the context of deep
learning.

Figure 2-10 shows a 3 × 3 × 1 portion of a grayscale image being convoluted with a
3 × 3 × 1 filter (or kernel).

46 | Chapter 2: Deep Learning

Figure 2-10. The convolution operation

The convolution is performed by multiplying the filter pixelwise with the portion of
the image, and summming the result. The output is more positive when the portion
of the image closely matches the filter and more negative when the portion of the
image is the inverse of the filter.

If we move the filter across the entire image, from left to right and top to bottom,
recording the convolutional output as we go, we obtain a new array that picks out a
particular feature of the input, depending on the values in the filter.

This is exactly what a convolutional layer is designed to do, but with multiple filters
rather than just one. For example, Figure 2-11 shows two filters that highlight hori‐
zontal and vertical edges. You can see this convolutional process worked through
manually in the notebook 02_02_deep_learning_convolutions.ipynb in the book
repository.

If we are working with color images, then each filter would have three channels
rather than one (i.e. each having shape 3 × 3 × 3) to match the three channels (red,
green, blue) of the image.

In Keras, the Conv2D layer applies convolutions to an input tensor with two spatial
dimensions (such as an image). For example, the Keras code corresponding to the
diagram in Figure 2-11 is:

input_layer = Input(shape=(64,64,1))

conv_layer_1 = Conv2D(
 filters = 2
 , kernel_size = (3,3)
 , strides = 1
 , padding = "same"
)(input_layer)

Improving the Model | 47

Figure 2-11. Two convolutional filters applied to a grayscale image

Strides
The strides parameter is the step size used by the layer to move the filters across the
input. Increasing the stride therefore reduces the size of the output tensor. For exam‐
ple, when strides = 2, the height and width of the output tensor will be half the size
of the input tensor. This is useful for reducing the spatial size of the tensor as it passes
through the network, while increasing the number of channels.

Padding
The padding = "same" input parameter pads the input data with zeros so that the
output size from the layer is exactly the same as the input size when strides = 1.

Figure 2-12 shows a 3 × 3 kernel being passed over a 5 × 5 input image, with padding
= "same" and strides = 1. The output size from this convolutional layer would also
be 5 × 5, as the padding allows the kernel to extend over the edge of the image, so that
it fits five times in both directions. Without padding, the kernel could only fit three
times along each direction, giving an output size of 3 × 3.

48 | Chapter 2: Deep Learning

5 Source: Vincent Dumoulin and Francesco Visin, “A Guide to Convolution Arithmetic for Deep Learning,” 12
January 2018, https://arxiv.org/pdf/1603.07285.pdf.

Figure 2-12. A 3 × 3 × 1 kernel (gray) being passed over a 5 × 5 × 1 input image (blue),
with padding="same” and strides = 1, to generate the 5 × 5 × 1 output (green)5

Setting padding = "same" is a good way to ensure that you are able to easily keep
track of the size of the tensor as it passes through many convolutional layers.

The values stored in the filters are the weights that are learned by the neural network
through training. Initially these are random, but gradually the filters adapt their
weights to start picking out interesting features such as edges or particular color
combinations.

The output of a Conv2D layer is another four-dimensional tensor, now of shape
(batch_size, height, width, filters), so we can stack Conv2D layers on top of each
other to grow the depth of our neural network. It’s really important to understand
how the shape of the tensor changes as data flows through from one convolutional
layer to the next. To demonstrate this, let’s imagine we are applying Conv2D layers to
the CIFAR-10 dataset. This time, instead of one input channel (grayscale) we have
three (red, green, and blue).

Figure 2-13 represents the following network in Keras:

input_layer = Input(shape=(32,32,3))

conv_layer_1 = Conv2D(
 filters = 10
 , kernel_size = (4,4)
 , strides = 2
 , padding = 'same'
)(input_layer)

conv_layer_2 = Conv2D(
 filters = 20
 , kernel_size = (3,3)
 , strides = 2
 , padding = 'same'
)(conv_layer_1)

Improving the Model | 49

https://arxiv.org/pdf/1603.07285.pdf

flatten_layer = Flatten()(conv_layer_2)

output_layer = Dense(units=10, activation = 'softmax')(flatten_layer)

model = Model(input_layer, output_layer)

Figure 2-13. A diagram of a convolutional neural network

We can use the model.summary() method to see the shape of the tensor as it passes
through the network (Figure 2-14).

Figure 2-14. A convolutional neural network summary

Let’s analyze this network from input through to output. The input shape is (None,
32, 32, 3)—Keras uses None to represent the fact that we can pass any number of
images through the network simultaneously. Since the network is just performing

50 | Chapter 2: Deep Learning

tensor algebra, we don’t need to pass images through the network individually, but
instead can pass them through together as a batch.

The shape of the filters in the first convolutional layer is 4 × 4 × 3. This is because we
have chosen the filter to have height and width of 4 (kernel_size = (4,4)) and
there are three channels in the preceding layer (red, green, and blue). Therefore, the
number of parameters (or weights) in the layer is (4 × 4 × 3 + 1) × 10 = 490, where
the + 1 is due to the inclusion of a bias term attached to each of the filters. It’s worth
remembering that the depth of the filters in a layer is always the same as the number
of channels in the preceding layer.

As before, the output from each filter when applied to each 4 × 4 × 3 section of the
input image will be the pixelwise multiplication of the filter weights and the area of
the image it is covering. As strides = 2 and padding = "same", the width and
height of the output are both halved to 16, and since there are 10 filters the output of
the first layer is a batch of tensors each having shape [16, 16, 10].

In general, the shape of the output from a convolutional layer with padding="same"
is:

None, input height
stride , input width

stride , f ilters

In the second convolutional layer, we choose the filters to be 3 × 3 and they now have
depth 10, to match the number of channels in the previous layer. Since there are 20
filters in this layer, this gives a total number of parameters (weights) of (3 × 3 × 10 +
1) × 20 = 1,820. Again, we use strides = 2 and padding = "same", so the width and
height both halve. This gives us an overall output shape of (None, 8, 8, 20).

After applying a series of Conv2D layers, we need to flatten the tensor using the Keras
Flatten layer. This results in a set of 8 × 8 × 20 = 1,280 units that we can connect to a
final 10-unit Dense layer with softmax activation, which represents the probability of
each category in a 10-category classification task.

This example demonstrates how we can chain convolutional layers together to create
a convolutional neural network. Before we see how this compares in accuracy to our
densely connected neural network, I’m going to introduce two more layer types that
can also improve performance: BatchNormalization and Dropout.

Batch Normalization
One common problem when training a deep neural network is ensuring that the
weights of the network remain within a reasonable range of values—if they start to
become too large, this is a sign that your network is suffering from what is known as
the exploding gradient problem. As errors are propagated backward through the

Improving the Model | 51

network, the calculation of the gradient in the earlier layers can sometimes grow
exponentially large, causing wild fluctuations in the weight values. If your loss func‐
tion starts to return NaN, chances are that your weights have grown large enough to
cause an overflow error.

This doesn’t necessarily happen immediately as you start training the network. Some‐
times your network can be happily training for hours when suddenly the loss func‐
tion returns NaN and your network has exploded. This can be incredibly annoying,
especially when the network has seemingly been training well for a long time. To pre‐
vent this from happening, you need to understand the root cause of the exploding
gradient problem.

One of the reasons for scaling input data into a neural network is to ensure a stable
start to training over the first few iterations. Since the weights of the network are ini‐
tially randomized, unscaled input could potentially create huge activation values that
immediately lead to exploding gradients. For example, instead of passing pixel values
from 0–255 into the input layer, we usually scale these values to between –1 and 1.

Because the input is scaled, it’s natural to expect the activations from all future layers
to be relatively well scaled as well. Initially, this may be true, but as the network trains
and the weights move further away from their random initial values, this assumption
can start to break down. This phenomenon is known as covariate shift.

Imagine you’re carrying a tall pile of books, and you get hit by a gust of wind. You
move the books in a direction opposite to the wind to compensate, but in doing so,
some of the books shift so that the tower is slightly more unstable than before. Ini‐
tially, this is OK, but with every gust the pile becomes more and more unstable, until
eventually the books have shifted so much that the pile collapses. This is covariate
shift.

Relating this to neural networks, each layer is like a book in the pile. To remain stable,
when the network updates the weights, each layer implicitly assumes that the distri‐
bution of its input from the layer beneath is approximately consistent across itera‐
tions. However, since there is nothing to stop any of the activation distributions
shifting significantly in a certain direction, this can sometimes lead to runaway
weight values and an overall collapse of the network.

Batch normalization is a solution that drastically reduces this problem. The solution is
surprisingly simple. A batch normalization layer calculates the mean and standard
deviation of each of its input channels across the batch and normalizes by subtracting
the mean and dividing by the standard deviation. There are then two learned param‐
eters for each channel, the scale (gamma) and shift (beta). The output is simply the
normalized input, scaled by gamma and shifted by beta. Figure 2-15 shows the whole
process.

52 | Chapter 2: Deep Learning

6 Source: Sergey Ioffe and Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” 11 February 2015, https://arxiv.org/abs/1502.03167.

Figure 2-15. The batch normalization process6

We can place batch normalization layers after dense or convolutional layers to nor‐
malize the output from those layers. It’s a bit like connecting the layers of books with
small sets of adjustable springs that ensure there aren’t any overall huge shifts in their
positions over time.

You might be wondering how this layer works at test time. When it comes to predic‐
tion, we may only want to predict a single observation, so there is no batch over
which to take averages. To get around this problem, during training a batch normal‐
ization layer also calculates the moving average of the mean and standard deviation of
each channel and stores this value as part of the layer to use at test time.

How many parameters are contained within a batch normalization layer? For every
channel in the preceding layer, two weights need to be learned: the scale (gamma) and
shift (beta). These are the trainable parameters. The moving average and standard
deviation also need to be calculated for each channel but since they are derived from
the data passing through the layer rather than trained through backpropagation, they
are called nontrainable parameters. In total, this gives four parameters for each chan‐
nel in the preceding layer, where two are trainable and two are nontrainable.

In Keras, the BatchNormalization layer implements the batch normalization
functionality:

BatchNormalization(momentum = 0.9)

The momentum parameter is the weight given to the previous value when calculating
the moving average and moving standard deviation.

Improving the Model | 53

https://arxiv.org/abs/1502.03167

7 Nitish Srivastava et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal of
Machine Learning Research 15 (2014): 1929–1958, http://jmlr.org/papers/volume15/srivastava14a/srivas
tava14a.pdf.

Dropout Layers
When studying for an exam, it is common practice for students to use past papers
and sample questions to improve their knowledge of the subject material. Some stu‐
dents try to memorize the answers to these questions, but then come unstuck in the
exam because they haven’t truly understood the subject matter. The best students use
the practice material to further their general understanding, so that they are still able
to answer correctly when faced with new questions that they haven’t seen before.

The same principle holds for machine learning. Any successful machine learning
algorithm must ensure that it generalizes to unseen data, rather than simply remem‐
bering the training dataset. If an algorithm performs well on the training dataset, but
not the test dataset, we say that it is suffering from overfitting. To counteract this
problem, we use regularization techniques, which ensure that the model is penalized
if it starts to overfit.

There are many ways to regularize a machine learning algorithm, but for deep learn‐
ing, one of the most common is by using dropout layers. This idea was introduced by
Geoffrey Hinton in 2012 and presented in a 2014 paper by Srivastava et al.7

Dropout layers are very simple. During training, each dropout layer chooses a ran‐
dom set of units from the preceding layer and sets their output to zero, as shown in
Figure 2-16.

Figure 2-16. A dropout layer

54 | Chapter 2: Deep Learning

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Incredibly, this simple addition drastically reduces overfitting, by ensuring that the
network doesn’t become overdependent on certain units or groups of units that, in
effect, just remember observations from the training set. If we use dropout layers, the
network cannot rely too much on any one unit and therefore knowledge is more
evenly spread across the whole network. This makes the model much better at gener‐
alizing to unseen data, because the network has been trained to produce accurate pre‐
dictions even under unfamiliar conditions, such as those caused by dropping random
units. There are no weights to learn within a dropout layer, as the units to drop are
decided stochastically. At test time, the dropout layer doesn’t drop any units, so that
the full network is used to make predictions.

Returning to our analogy, it’s a bit like a math student practicing past papers with a
random selection of key formulae missing from their formula book. This way, they
learn how to answer questions through an understanding of the core principles,
rather than always looking up the formulae in the same places in the book. When it
comes to test time, they will find it much easier to answer questions that they have
never seen before, due to their ability to generalize beyond the training material.

The Dropout layer in Keras implements this functionality, with the rate parameter
specifying the proportion of units to drop from the preceding layer:

Dropout(rate = 0.25)

Dropout layers are used most commonly after Dense layers since these are most prone
to overfitting due to the higher number of weights, though you can also use them
after convolutional layers.

Batch normalization also has been shown to reduce overfitting, and
therefore many modern deep learning architectures don’t use drop‐
out at all, and rely solely on batch normalization for regularization.
As with most deep learning principles, there is no golden rule that
applies in every situation—the only way to know for sure what’s
best is to test different architectures and see which performs best
on a holdout set of data.

Putting It All Together
You’ve now seen three new Keras layer types: Conv2D, BatchNormalization, and Drop
out. Let’s put these pieces together into a new deep learning architecture and see how
it performs on the CIFAR-10 dataset.

You can run the following example in the Jupyter notebook in the book repository
called 02_03_deep_learning_conv_neural_network.ipynb.

The model architecture we shall test is shown here:

Improving the Model | 55

input_layer = Input((32,32,3))

x = Conv2D(filters = 32, kernel_size = 3
 , strides = 1, padding = 'same')(input_layer)
x = BatchNormalization()(x)
x = LeakyReLU()(x)

x = Conv2D(filters = 32, kernel_size = 3, strides = 2, padding = 'same')(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)

x = Conv2D(filters = 64, kernel_size = 3, strides = 1, padding = 'same')(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)

x = Conv2D(filters = 64, kernel_size = 3, strides = 2, padding = 'same')(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)

x = Flatten()(x)

x = Dense(128)(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)
x = Dropout(rate = 0.5)(x)

x = Dense(NUM_CLASSES)(x)
output_layer = Activation('softmax')(x)

model = Model(input_layer, output_layer)

We use four stacked Conv2D layers, each followed by a BatchNormalization and a
LeakyReLU layer. After flattening the resulting tensor, we pass the data through a
Dense layer of size 128, again followed by a BatchNormalization and a LeakyReLU
layer. This is immediately followed by a Dropout layer for regularization, and the net‐
work is concluded with an output Dense layer of size 10.

The order in which to use the BatchNormalization and Activa
tion layers is a matter of preference. I like to place the BatchNorm
alization before the Activation, but some successful
architectures use these layers the other way around. If you do
choose to use BatchNormalization before Activation then you
can remember the order using the acronym BAD (BatchNormaliza
tion, Activation then Dropout)!

The model summary is shown in Figure 2-17.

56 | Chapter 2: Deep Learning

Figure 2-17. Convolutional neural network (CNN) for CIFAR-10

Improving the Model | 57

Before moving on, make sure you are able to calculate the output
shape and number of parameters for each layer by hand. It’s a good
exercise to prove to yourself that you have fully understood how
each layer is constructed and how it is connected to the preceding
layer! Don’t forget to include the bias weights that are included as
part of the Conv2D and Dense layers.

We compile and train the model in exactly the same way as before and call the
evaluate method to determine its accuracy on the holdout set (Figure 2-18).

Figure 2-18. CNN performance

As you can see, this model is now achieving 71.5% accuracy, up from 49.0% previ‐
ously. Much better! Figure 2-19 shows some predictions from our new convolutional
model.

Figure 2-19. CNN predictions

This improvement has been achieved simply by changing the architecture of the
model to include convolutional, batch normalization, and dropout layers. Notice that
the number of parameters is actually fewer in our new model than the previous
model, even though the number of layers is far greater. This demonstrates the impor‐
tance of being experimental with your model design and being comfortable with how
the different layer types can be used to your advantage. When building generative
models, it becomes even more important to understand the inner workings of your
model since it is the middle layers of your network that capture the high-level fea‐
tures that you are most interested in.

58 | Chapter 2: Deep Learning

Summary
This chapter introduced the core deep learning concepts that you will need to start
building your first deep generative models.

A really important point to take away from this chapter is that deep neural networks
are completely flexible by design, and there really are no fixed rules when it comes to
model architecture. There are guidelines and best practices but you should feel free to
experiment with layers and the order in which they appear. You will need to bear in
mind that, like a set of building blocks, some layers will not fit together, simply
because the input shape of one does not conform to the output shape of the other.
This knowledge will come with experience and a solid understanding of how each
layer changes the tensor shape as data flows through the network.

Another point to remember is that it is the layers in a deep neural network that are
convolutional, rather than the network itself. When people talk about “convolutional
neural networks,” they really mean “neural networks that contain convolutional lay‐
ers.” It is important to make this distinction, because you shouldn’t feel constrained to
only use the architectures that you have read about in this book or elsewhere; instead,
you should see them as examples of how you can piece together the different layer
types. Like a child with a set of building blocks, the design of your neural network is
only limited by your own imagination—and, crucially, your understanding of how
the various layers fit together.

In the next chapter, we shall see how we can use these building blocks to design a net‐
work that can generate images.

Summary | 59

1 Diederik P. Kingma and Max Welling, “Auto-Encoding Variational Bayes,” 20 December 2013, https://
arxiv.org/abs/1312.6114.

CHAPTER 3

Variational Autoencoders

In 2013, Diederik P. Kingma and Max Welling published a paper that laid the founda‐
tions for a type of neural network known as a variational autoencoder (VAE).1 This is
now one of the most fundamental and well-known deep learning architectures for
generative modeling. In this chapter, we shall start by building a standard autoen‐
coder and then see how we can extend this framework to develop a variational
autoencoder—our first example of a generative deep learning model.

Along the way, we will pick apart both types of model, to understand how they work
at a granular level. By the end of the chapter you should have a complete understand‐
ing of how to build and manipulate autoencoder-based models and, in particular,
how to build a variational autoencoder from scratch to generate images based on
your own training set.

Let’s start by paying a visit to a strange art exhibition…

The Art Exhibition
Two brothers, Mr. N. Coder and Mr. D. Coder, run an art gallery. One weekend, they
host an exhibition focused on monochrome studies of single-digit numbers. The
exhibition is particularly strange because it contains only one wall and no physical
artwork. When a new painting arrives for display, Mr. N. Coder simply chooses a
point on the wall to represent the painting, places a marker at this point, then throws
the original artwork away. When a customer requests to see the painting, Mr. D.
Coder attempts to re-create the artwork using just the coordinates of the relevant
marker on the wall.

61

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114

The exhibition wall is shown in Figure 3-1, where each black dot is a marker placed
by Mr. N. Coder to represent a painting. We also show one of the paintings that has
been marked on the wall at the point [–3.5, –0.5] by Mr. N. Coder and then recon‐
structed using just these two numbers by Mr. D. Coder.

Figure 3-1. The wall at the art exhibition

62 | Chapter 3: Variational Autoencoders

In Figure 3-2 you can see examples of other original paintings (top row), the coordi‐
nates of the point on the wall given by Mr. N. Coder, and the reconstructed paintings
produced by Mr. D. Coder (bottom row).

Figure 3-2. More examples of reconstructed paintings

So how does Mr. N. Coder decide where to place the markers? The system evolves
naturally through years of training and working together, gradually tweaking the pro‐
cesses for marker placement and reconstruction. The brothers carefully monitor the
loss of revenue at the ticket office caused by customers asking for money back
because of badly reconstructed paintings, and are constantly trying to find a system
that minimizes this loss of earnings. As you can see from Figure 3-2, it works remark‐
ably well—customers who come to view the artwork very rarely complain that Mr. D.
Coder’s re-created paintings are significantly different from the original pieces they
came to see.

One day, Mr. N. Coder has an idea. What if he randomly placed markers on parts of
the wall that currently do not have a marker? Mr. D. Coder could then re-create the
artwork corresponding to these points, and within a few days they would have their
own exhibition of completely original, generated paintings.

The brothers set about their plan and open their new exhibition to the public. Some
of the exhibits and corresponding markers are displayed in Figure 3-3.

The Art Exhibition | 63

Figure 3-3. The new generative art exhibition

As you can see, the plan was not a great success. The overall variety is poor and some
pieces of artwork do not really resemble single-digit numbers.

So, what went wrong and how can the brothers improve their scheme?

Autoencoders
The preceding story is an analogy for an autoencoder, which is a neural network
made up of two parts:

• An encoder network that compresses high-dimensional input data into a lower-
dimensional representation vector

• A decoder network that decompresses a given representation vector back to the
original domain

This process is shown in Figure 3-4.

64 | Chapter 3: Variational Autoencoders

Figure 3-4. Diagram of an autoencoder

The network is trained to find weights for the encoder and decoder that minimize the
loss between the original input and the reconstruction of the input after it has passed
through the encoder and decoder.

The representation vector is a compression of the original image into a lower-
dimensional, latent space. The idea is that by choosing any point in the latent space,
we should be able to generate novel images by passing this point through the decoder,
since the decoder has learned how to convert points in the latent space into viable
images.

In our analogy, Mr. N. Coder and Mr. D. Coder are using representation vectors
inside a two-dimensional latent space (the wall) to encode each image. This helps us
to visualize the latent space, since we can easily plot points in 2D. In practice, autoen‐
coders usually have more than two dimensions in order to have more freedom to
capture greater nuance in the images.

Autoencoders can also be used to clean noisy images, since the encoder learns that it
is not useful to capture the position of the random noise inside the latent space. For
tasks such as this, a 2D latent space is probably too small to encode sufficient relevant

Autoencoders | 65

information from the input. However, as we shall see, increasing the dimensionality
of the latent space quickly leads to problems if we want to use the autoencoder as a
generative model.

Your First Autoencoder
Let’s now build an autoencoder in Keras. This example follows the Jupyter notebook
03_01_autoencoder_train.ipynb in the book repository.

Generally speaking, it is a good idea to create a class for your model in a separate file.
This way, you can instantiate an Autoencoder object with parameters that define a
particular model architecture in the notebook, as shown in Example 3-1. This makes
your model very flexible and able to be easily tested and ported to other projects as
necessary.

Example 3-1. Defining the autoencoder

from models.AE import Autoencoder

AE = Autoencoder(
 input_dim = (28,28,1)
 , encoder_conv_filters = [32,64,64, 64]
 , encoder_conv_kernel_size = [3,3,3,3]
 , encoder_conv_strides = [1,2,2,1]
 , decoder_conv_t_filters = [64,64,32,1]
 , decoder_conv_t_kernel_size = [3,3,3,3]
 , decoder_conv_t_strides = [1,2,2,1]
 , z_dim = 2)

Let’s now take a look at the architecture of an autoencoder in more detail, starting
with the encoder.

The Encoder
In an autoencoder, the encoder’s job is to take the input image and map it to a point
in the latent space. The architecture of the encoder we will be building is shown in
Figure 3-5.

66 | Chapter 3: Variational Autoencoders

Figure 3-5. Architecture of the encoder

To achieve this, we first create an input layer for the image and pass this through four
Conv2D layers in sequence, each capturing increasingly high-level features. We use a
stride of 2 on some of the layers to reduce the size of the output. The last convolu‐
tional layer is then flattened and connected to a Dense layer of size 2, which repre‐
sents our two-dimensional latent space.

Example 3-2 shows how to build this in Keras.

Example 3-2. The encoder

THE ENCODER
encoder_input = Input(shape=self.input_dim, name='encoder_input')

x = encoder_input

for i in range(self.n_layers_encoder):
 conv_layer = Conv2D(
 filters = self.encoder_conv_filters[i]

Autoencoders | 67

 , kernel_size = self.encoder_conv_kernel_size[i]
 , strides = self.encoder_conv_strides[i]
 , padding = 'same'
 , name = 'encoder_conv_' + str(i)
)

 x = conv_layer(x)
 x = LeakyReLU()(x)

shape_before_flattening = K.int_shape(x)[1:]
x = Flatten()(x)

encoder_output= Dense(self.z_dim, name='encoder_output')(x)

self.encoder = Model(encoder_input, encoder_output)

Define the input to the encoder (the image).

Stack convolutional layers sequentially on top of each other.

Flatten the last convolutional layer to a vector.

Dense layer that connects this vector to the 2D latent space.

The Keras model that defines the encoder—a model that takes an input image
and encodes it into the 2D latent space.

You can change the number of convolutional layers in the encoder simply by adding
elements to the lists that define the model architecture in the notebook. I strongly
recommend experimenting with the parameters that define the models in this book,
to understand how the architecture affects the number of weights in each layer, model
performance, and model runtime.

The Decoder
The decoder is a mirror image of the encoder, except instead of convolutional layers,
we use convolutional transpose layers, as shown in Figure 3-6.

68 | Chapter 3: Variational Autoencoders

Figure 3-6. Architecture of the decoder

Note that the decoder doesn’t have to be a mirror image of the encoder. It can be any‐
thing you want, as long as the output from the last layer of the decoder is the same
size as the input to the encoder (since our loss function will be comparing these pixel‐
wise).

Convolutional Transpose Layers
Standard convolutional layers allow us to halve the size of an input tensor in both
height and width, by setting strides = 2.

The convolutional transpose layer uses the same principle as a standard convolutional
layer (passing a filter across the image), but is different in that setting strides = 2
doubles the size of the input tensor in both height and width.

In a convolutional transpose layer, the strides parameter determines the internal
zero padding between pixels in the image as shown in Figure 3-7.

Autoencoders | 69

2 Source: Vincent Dumoulin and Francesco Visin, “A Guide to Convolution Arithmetic for Deep Learning,” 12
January 2018, https://arxiv.org/pdf/1603.07285.pdf.

Figure 3-7. A convolutional transpose layer example—here, a 3 × 3 × 1 filter (gray) is
being passed across a 3 × 3 × 1 image (blue) with strides = 2, to produce a 6 × 6 × 1
output tensor (green)2

In Keras, the Conv2DTranspose layer allows us to perform convolutional transpose
operations on tensors. By stacking these layers, we can gradually expand the size of
each layer, using strides of 2, until we get back to the original image dimension of
28 × 28.

Example 3-3 shows how we build the decoder in Keras.

Example 3-3. The decoder

THE DECODER
decoder_input = Input(shape=(self.z_dim,), name='decoder_input')

x = Dense(np.prod(shape_before_flattening))(decoder_input)
x = Reshape(shape_before_flattening)(x)

for i in range(self.n_layers_decoder):
 conv_t_layer = Conv2DTranspose(
 filters = self.decoder_conv_t_filters[i]
 , kernel_size = self.decoder_conv_t_kernel_size[i]
 , strides = self.decoder_conv_t_strides[i]
 , padding = 'same'
 , name = 'decoder_conv_t_' + str(i)
)

 x = conv_t_layer(x)

 if i < self.n_layers_decoder - 1:
 x = LeakyReLU()(x)
 else:

70 | Chapter 3: Variational Autoencoders

https://arxiv.org/pdf/1603.07285.pdf

 x = Activation('sigmoid')(x)

decoder_output = x

self.decoder = Model(decoder_input, decoder_output)

Define the input to the decoder (the point in the latent space).

Connect the input to a Dense layer.

Reshape this vector into a tensor that can be fed as input into the first convolu‐
tional transpose layer.

Stack convolutional transpose layers on top of each other.

The Keras model that defines the decoder—a model that takes a point in the
latent space and decodes it into the original image domain.

Joining the Encoder to the Decoder
To train the encoder and decoder simultaneously, we need to define a model that will
represent the flow of an image through the encoder and back out through the
decoder. Luckily, Keras makes it extremely easy to do this, as you can see in
Example 3-4.

Example 3-4. The full autoencoder

THE FULL AUTOENCODER
model_input = encoder_input #
model_output = decoder(encoder_output) #

self.model = Model(model_input, model_output) #

The input to the autoencoder is the same as the input to the encoder.

The output from the autoencoder is the output from the encoder passed through
the decoder.

The Keras model that defines the full autoencoder—a model that takes an image,
and passes it through the encoder and back out through the decoder to generate
a reconstruction of the original image.

Now that we’ve defined our model, we just need to compile it with a loss function and
optimizer, as shown in Example 3-5. The loss function is usually chosen to be either
the root mean squared error (RMSE) or binary cross-entropy between the individual
pixels of the original image and the reconstruction. Binary cross-entropy places

Autoencoders | 71

heavier penalties on predictions at the extremes that are badly wrong, so it tends to
push pixel predictions to the middle of the range. This results in less vibrant images.
For this reason, I generally prefer to use RMSE as the loss function. However, there is
no right or wrong choice—you should choose whichever works best for your use
case.

Example 3-5. Compilation

COMPILATION
optimizer = Adam(lr=learning_rate)

def r_loss(y_true, y_pred):
 return K.mean(K.square(y_true - y_pred), axis = [1,2,3])

self.model.compile(optimizer=optimizer, loss = r_loss)

We can now train the autoencoder by passing in the input images as both the input
and output, as shown in Example 3-6.

Example 3-6. Training the autoencoder

self.model.fit(
 x = x_train
 , y = x_train
 , batch_size = batch_size
 , shuffle = True
 , epochs = 10
 , callbacks = callbacks_list
)

Analysis of the Autoencoder
Now that our autoencoder is trained, we can start to investigate how it is representing
images in the latent space. We’ll then see how variational autoencoders are a natural
extension that fixes the issues faced by autoencoders. The relevant code is included in
the 03_02_autoencoder_analysis.ipynb notebook in the book repository.

First, let’s take a set of new images that the model hasn’t seen, pass them through the
encoder, and plot the 2D representations in a scatter plot. In fact, we’ve already seen
this plot: it’s just Mr. N. Coder’s wall from Figure 3-1. Coloring this plot by digit pro‐
duces the chart in Figure 3-8. It’s worth noting that even though the digit labels were
never shown to the model during training, the autoencoder has naturally grouped
digits that look alike into the same part of the latent space.

72 | Chapter 3: Variational Autoencoders

Figure 3-8. Plot of the latent space, colored by digit

There are a few interesting points to note:

1. The plot is not symmetrical about the point (0, 0), or bounded. For example,
there are far more points with negative y-axis values than positive, and some
points even extend to a y-axis value of < –30.

2. Some digits are represented over a very small area and others over a much larger
area.

3. There are large gaps between colors containing few points.

Remember, our goal is to be able to choose a random point in the latent space, pass
this through the decoder, and obtain an image of a digit that looks real. If we do this
multiple times, we would also ideally like to get a roughly equal mixture of different
kinds of digit (i.e., it shouldn’t always produce the same digit). This was also the aim

Autoencoders | 73

of the Coder brothers when they were choosing random points on their wall to gen‐
erate new artwork for their exhibition.

Point 1 explains why it’s not obvious how we should even go about choosing a ran‐
dom point in the latent space, since the distribution of these points is undefined.
Technically, we would be justified in choosing any point in the 2D plane! It’s not even
guaranteed that points will be centered around (0,0). This makes sampling from our
latent space extremely problematic.

Point 2 explains the lack of diversity in the generated images. Ideally, we’d like to
obtain a roughly equal spread of digits when sampling randomly from our latent
space. However, with an autoencoder this is not guaranteed. For example, the area of
1’s is far bigger than the area for 8’s, so when we pick points randomly in the space,
we’re more likely to sample something that decodes to look like a 1 than an 8.

Point 3 explains why some generated images are poorly formed. In Figure 3-9 we can
see three points in the latent space and their decoded images, none of which are par‐
ticularly well formed.

Figure 3-9. Some poorly generated images

Partly, this is because of the large spaces at the edge of the domain where there are
few points—the autoencoder has no reason to ensure that points here are decoded to
legible digits as very few images are encoded here. However, more worryingly, even
points that are right in the middle of the domain may not be decoded into well-
formed images. This is because the autoencoder is not forced to ensure that the space

74 | Chapter 3: Variational Autoencoders

is continuous. For example, even though the point (2, –2) might be decoded to give a
satisfactory image of a 4, there is no mechanism in place to ensure that the point (2.1,
–2.1) also produces a satisfactory 4.

In 2D this issue is subtle; the autoencoder only has a small number of dimensions to
work with, so naturally it has to squash digit groups together, resulting in the space
between digit groups being relatively small. However, as we start to use more dimen‐
sions in the latent space to generate more complex images, such as faces, this problem
becomes even more apparent. If we give the autoencoder free rein in how it uses the
latent space to encode images, there will be huge gaps between groups of similar
points with no incentive for the space between to generate well-formed images.

So how can we solve these three problems, so that our autoencoder framework is
ready to be used as a generative model? To explain, let’s revisit the Coder brothers’ art
exhibition, where a few changes have taken place since our last visit…

The Variational Art Exhibition
Determined to make the generative art exhibition work, Mr. N. Coder recruits the
help of his daughter, Epsilon. After a brief discussion, they decide to change the way
that new paintings are marked on the wall. The new process works as follows.

When a new painting arrives at the exhibition, Mr. N. Coder chooses a point on the
wall where he would like to place the marker to represent the artwork, as before.
However, now, instead of placing the marker on the wall himself, he passes his opin‐
ion of where it should go to Epsilon, who decides where the marker will be placed.
She of course takes her father’s opinion into account, so she usually places the marker
somewhere near the point that he suggests. Mr. D. Coder then finds the marker where
Epsilon placed it and never hears Mr. N. Coder’s original opinion.

Mr. N. Coder also provides his daughter with an indication of how sure he is that the
marker should be placed at the given point. The more certain he is, the closer Epsilon
will generally place the point to his suggestion.

There is one final change to the old system. Before, the only feedback mechanism was
the loss of earnings at the ticket office resulting from poorly reconstructed images. If
the brothers saw that particular paintings weren’t being re-created accurately, they
would adjust their understanding of marker placement and image regeneration to
ensure revenue loss was minimized.

Now, there is another source of feedback. Epsilon is quite lazy and gets annoyed
whenever her father tells her to place markers far away from the center of the wall,
where the ladder rests. She also doesn’t like it when he is too strict about where the
markers should be placed, as then she feels she doesn’t have enough responsibility.
Equally, if her father professes little confidence in where the markers should go, she

The Variational Art Exhibition | 75

feels like she’s the one doing all the work! His confidence in the marker placements
that he provides has to be just right for her to be happy.

To compensate for her annoyance, her father pays her more to do the job whenever
he doesn’t stick to these rules. On the balance sheet, this expense is listed as his kitty-
loss (KL) divulgence. He therefore needs to be careful that he doesn’t end up paying
his daughter too much while also monitoring the loss of revenue at the ticket office.
After training with these simple changes, Mr. N. Coder once again tries his strategy of
placing markers on portions of the wall that are empty, so that Mr. D. Coder can
regenerate these points as original artwork.

Some of these points are shown in Figure 3-10, along with the generated images.

76 | Chapter 3: Variational Autoencoders

Figure 3-10. Artwork from the new exhibition

Much better! The crowds arrive in great waves to see this new, exciting generative art
and are amazed by the originality and diversity of the paintings.

The Variational Art Exhibition | 77

Building a Variational Autoencoder
The previous story showed how, with a few simple changes, the art exhibition could
be transformed into a successful generative process. Let’s now try to understand
mathematically what we need to do to our autoencoder to convert it into a variational
autoencoder and thus make it a truly generative model.

There are actually only two parts that we need to change: the encoder and the loss
function.

The Encoder
In an autoencoder, each image is mapped directly to one point in the latent space. In
a variational autoencoder, each image is instead mapped to a multivariate normal dis‐
tribution around a point in the latent space, as shown in Figure 3-11.

Figure 3-11. The difference between the encoder in an autoencoder and a variational
autoencoder

78 | Chapter 3: Variational Autoencoders

3 Source: Wikipedia, http://bit.ly/2ZDWRJv.

The Normal Distribution
A normal distribution is a probability distribution characterized by a distinctive bell
curve shape. In one dimension, it is defined by two variables: the mean (μ) and the
variance (σ2). The standard deviation (σ) is the square root of the variance.

The probability density function of the normal distribution in one dimension is:

f x ∣ μ, σ2 = 1
2πσ2 e

− x − μ 2

2σ2

Figure 3-12 shows several normal distributions in one dimension, for different values
of the mean and variance. The red curve is the standard normal—the normal distri‐
bution with mean equal to 0 and variance equal to 1.

Figure 3-12. The normal distribution in one dimension3

We can sample a point z from a normal distribution with mean μ and standard devia‐
tion σ using the following equation:

z = μ + σϵ
where ϵ is sampled from a standard normal distribution.

Building a Variational Autoencoder | 79

http://bit.ly/2ZDWRJv

4 σ = exp log σ = exp 2 log σ /2 = exp log σ2 /2

The concept of a normal distribution extends to more than one dimension—the
probability density function for a general multivariate normal distribution in k
dimensions is as follows:

f x1, ..., xk =
exp − 1

2 � − μ TΣ−1 � − μ

2π k Σ

In 2D, the mean vector μ and the symmetric covariance matrix Σ are defined as:

μ =
μ1

μ2
, Σ =

σ1
2 ρσ1σ2

ρσ1σ2 σ2
2

where ρ is the correlation between the two dimensions x1 and x2.

Variational autoencoders assume that there is no correlation between any of the
dimensions in the latent space and therefore that the covariance matrix is diagonal.
This means the encoder only needs to map each input to a mean vector and a var‐
iance vector and does not need to worry about covariance between dimensions. We
also choose to map to the logarithm of the variance, as this can take any real number
in the range (– ∞, ∞), matching the natural output range from a neural network unit,
whereas variance values are always positive.

To summarize, the encoder will take each input image and encode it to two vectors,
mu and log_var which together define a multivariate normal distribution in the latent
space:

mu

The mean point of the distribution.

log_var

The logarithm of the variance of each dimension.

To encode an image into a specific point z in the latent space, we can sample from
this distribution, using the following equation:

z = mu + sigma * epsilon

where4

sigma = exp(log_var / 2)

80 | Chapter 3: Variational Autoencoders

epsilon is a point sampled from the standard normal distribution.

Relating this back to our story, mu represents Mr. N. Coder’s opinion of where the
marker should appear on the wall. epsilon is his daughter’s random choice of how
far away from mu the marker should be placed, scaled by sigma, Mr. N. Coder’s confi‐
dence in the marker’s position.

So why does this small change to the encoder help?

Previously, we saw how there was no requirement for the latent space to be continu‐
ous—even if the point (–2, 2) decodes to a well-formed image of a 4, there was no
requirement for (–2.1, 2.1) to look similar. Now, since we are sampling a random
point from an area around mu, the decoder must ensure that all points in the same
neighborhood produce very similar images when decoded, so that the reconstruction
loss remains small. This is a very nice property that ensures that even when we
choose a point in the latent space that has never been seen by the decoder, it is likely
to decode to an image that is well formed.

Let’s now see how we build this new version of the encoder in Keras (Example 3-7).
You can train your own variational autoencoder on the digits dataset by running the
notebook 03_03_vae_digits_train.ipynb in the book repository.

Example 3-7. The variational autoencoder’s encoder

THE ENCODER
encoder_input = Input(shape=self.input_dim, name='encoder_input')

x = encoder_input

for i in range(self.n_layers_encoder):
 conv_layer = Conv2D(
 filters = self.encoder_conv_filters[i]
 , kernel_size = self.encoder_conv_kernel_size[i]
 , strides = self.encoder_conv_strides[i]
 , padding = 'same'
 , name = 'encoder_conv_' + str(i)
)

 x = conv_layer(x)

 if self.use_batch_norm:
 x = BatchNormalization()(x)

 x = LeakyReLU()(x)
 if self.use_dropout:
 x = Dropout(rate = 0.25)(x)

shape_before_flattening = K.int_shape(x)[1:]
x = Flatten()(x)

Building a Variational Autoencoder | 81

self.mu = Dense(self.z_dim, name='mu')(x)
self.log_var = Dense(self.z_dim, name='log_var')(x) #

encoder_mu_log_var = Model(encoder_input, (self.mu, self.log_var))

def sampling(args):
 mu, log_var = args
 epsilon = K.random_normal(shape=K.shape(mu), mean=0., stddev=1.)
 return mu + K.exp(log_var / 2) * epsilon

encoder_output = Lambda(sampling, name='encoder_output')([self.mu, self.log_var])

encoder = Model(encoder_input, encoder_output)

Instead of connecting the flattened layer directly to the 2D latent space, we con‐
nect it to layers mu and log_var.

The Keras model that outputs the values of mu and log_var for a given input
image.

This Lambda layer samples a point z in the latent space from the normal distribu‐
tion defined by the parameters mu and log_var.

The Keras model that defines the encoder—a model that takes an input image
and encodes it into the 2D latent space, by sampling a point from the normal dis‐
tribution defined by mu and log_var.

Lambda layer
A Lambda layer simple wraps any function into Keras layer. For example, the following
layer squares its input:

Lambda(lambda x: x ** 2)

They are useful when you want to apply a function to a tensor that isn’t already
included as one of the out-of-the-box Keras layer types.

A diagram of the encoder is shown in Figure 3-13.

As mentioned previously, the decoder of a variational autoencoder is identical to the
decoder of a plain autoencoder. The only other part we need to change is the loss
function.

82 | Chapter 3: Variational Autoencoders

Figure 3-13. Diagram of the VAE encoder

Building a Variational Autoencoder | 83

The Loss Function
Previously, our loss function only consisted of the RMSE loss between images and
their reconstruction after being passed through the encoder and decoder. This recon‐
struction loss also appears in a variational autoencoder, but we require one extra com‐
ponent: the Kullback–Leibler (KL) divergence.

KL divergence is a way of measuring how much one probability distribution differs
from another. In a VAE, we want to measure how different our normal distribution
with parameters mu and log_var is from the standard normal distribution. In this
special case, the KL divergence has the closed form:

kl_loss = -0.5 * sum(1 + log_var - mu ^ 2 - exp(log_var))

or in mathematical notation:

DKL N μ, σ ∥ N 0, 1 =1
2 ∑ 1 + log σ2 − μ2 − σ2

The sum is taken over all the dimensions in the latent space. kl_loss is minimized to
0 when mu = 0 and log_var = 0 for all dimensions. As these two terms start to differ
from 0, kl_loss increases.

In summary, the KL divergence term penalizes the network for encoding observa‐
tions to mu and log_var variables that differ significantly from the parameters of a
standard normal distribution, namely mu = 0 and log_var = 0.

Again, relating this back to our story, this term represents Epsilon’s annoyance at hav‐
ing to move the ladder away from the middle of the wall (mu different from 0) and
also if Mr. N. Coder’s confidence in the marker position isn’t just right (log_var dif‐
ferent from 0), both of which incur a cost.

Why does this addition to the loss function help?

First, we now have a well-defined distribution that we can use for choosing points in
the latent space—the standard normal distribution. If we sample from this distribu‐
tion, we know that we’re very likely to get a point that lies within the limits of what
the VAE is used to seeing. Secondly, since this term tries to force all encoded distribu‐
tions toward the standard normal distribution, there is less chance that large gaps will
form between point clusters. Instead, the encoder will try to use the space around the
origin symmetrically and efficiently.

In the code, the loss function for a VAE is simply the addition of the reconstruction
loss and the KL divergence loss term. We weight the reconstruction loss with a term,
r_loss_factor, that ensures that it is well balanced with the KL divergence loss. If we
weight the reconstruction loss too heavily, the KL loss will not have the desired

84 | Chapter 3: Variational Autoencoders

regulatory effect and we will see the same problems that we experienced with the
plain autoencoder. If the weighting term is too small, the KL divergence loss will
dominate and the reconstructed images will be poor. This weighting term is one of
the parameters to tune when you’re training your VAE.

Example 3-8 shows how we include the KL divergence term in our loss function.

Example 3-8. Including KL divergence in the loss function

COMPILATION
optimizer = Adam(lr=learning_rate)

def vae_r_loss(y_true, y_pred):
 r_loss = K.mean(K.square(y_true - y_pred), axis = [1,2,3])
 return r_loss_factor * r_loss

def vae_kl_loss(y_true, y_pred):
 kl_loss = -0.5 * K.sum(1 + self.log_var - K.square(self.mu)
 - K.exp(self.log_var), axis = 1)
 return kl_loss

def vae_loss(y_true, y_pred):
 r_loss = vae_r_loss(y_true, y_pred)
 kl_loss = vae_kl_loss(y_true, y_pred)
 return r_loss + kl_loss

optimizer = Adam(lr=learning_rate)
self.model.compile(optimizer=optimizer, loss = vae_loss
 , metrics = [vae_r_loss, vae_kl_loss])

Analysis of the Variational Autoencoder
All of the following analysis is available in the book repository, in the notebook
03_04_vae_digits_analysis.ipynb.

Referring back to Figure 3-10, we can see several changes in how the latent space is
organized. The black dots show the mu values of each encoded image. The KL diver‐
gence loss term ensures that the mu and sigma values never stray too far from a stan‐
dard normal. We can therefore sample from the standard normal distribution to
generate new points in the space to be decoded (the red dots).

Secondly, there are not so many generated digits that are badly formed, since the
latent space is now locally continuous due to fact that the encoder is now stochastic,
rather than deterministic.

Finally, by coloring points in the latent space by digit (Figure 3-14), we can see that
there is no preferential treatment of any one type. The righthand plot shows the space
transformed into p-values, and we can see that each color is approximately equally
represented. Again, it’s important to remember that the labels were not used at all

Building a Variational Autoencoder | 85

during training—the VAE has learned the various forms of digits by itself in order to
help minimize reconstruction loss.

Figure 3-14. The latent space of the VAE colored by digit

So far, all of our work on autoencoders and variational autoencoders has been limited
to a latent space with two dimensions. This has helped us to visualize the inner work‐
ings of a VAE on the page and understand why the small tweaks that we made to the
architecture of the autoencoder helped transform it into a more powerful class of net‐
work that can be used for generative modeling.

Let’s now turn our attention to a more complex dataset and see the amazing things
that variational autoencoders can achieve when we increase the dimensionality of the
latent space.

Using VAEs to Generate Faces
We shall be using the CelebFaces Attributes (CelebA) dataset to train our next varia‐
tional autoencoder. This is a collection of over 200,000 color images of celebrity faces,
each annotated with various labels (e.g., wearing hat, smiling, etc.). A few examples
are shown in Figure 3-15.

86 | Chapter 3: Variational Autoencoders

http://bit.ly/2WSiOXt

5 Source: Liu et al., 2015, http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

Figure 3-15. Some examples from the CelebA dataset5

Of course, we don’t need the labels to train the VAE, but these will be useful later
when we start exploring how these features are captured in the multidimensional
latent space. Once our VAE is trained, we can sample from the latent space to gener‐
ate new examples of celebrity faces.

Training the VAE
The network architecture for the faces model is similar to the digits example, with a
few slight differences:

1. Our data now has three input channels (RGB) instead of one (grayscale). This
means we need to change the number of channels in the final convolutional
transpose layer of the decoder to 3.

2. We shall be using a latent space with two hundred dimensions instead of two.
Since faces are much more complex than digits, we increase the dimensionality of
the latent space so that the network can encode a satisfactory amount of detail
from the images.

Using VAEs to Generate Faces | 87

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

3. There are batch normalization layers after each convolution layer to speed up
training. Even though each batch takes a longer time to run, the number of
batches required to reach the same loss is greatly reduced. Dropout layers are also
used.

4. We increase the reconstruction loss factor to ten thousand. This is a parameter
that requires tuning; for this dataset and architecture this value was found to gen‐
erate good results.

5. We use a generator to feed images to the VAE from a folder, rather than loading
all the images into memory up front. Since the VAE trains in batches, there is no
need to load all the images into memory first, so instead we use the built-in
fit_generator method that Keras provides to read in images only when they are
required for training.

The full architectures of the encoder and decoder are shown in Figures 3-16 and 3-17

88 | Chapter 3: Variational Autoencoders

Figure 3-16. The VAE encoder for the CelebA dataset

Using VAEs to Generate Faces | 89

Figure 3-17. The VAE decoder for the CelebA dataset

To train the VAE on the CelebA dataset, run the Jupyter notebook
03_05_vae_faces_train.ipynb from the book repository. After around five epochs of
training your VAE should be able to produce novel images of celebrity faces!

90 | Chapter 3: Variational Autoencoders

6 Xianxu Hou et al., “Deep Feature Consistent Variational Autoencoder,” 2 October 2016, https://arxiv.org/abs/
1610.00291.

Analysis of the VAE
You can replicate the analysis that follows by running the notebook
03_06_vae_faces_analysis.ipynb, once you have trained the VAE. Many of the ideas in
this section were inspired by a 2016 paper by Xianxu Hou et al.6

First, let’s take a look at a sample of reconstructed faces. The top row in Figure 3-18
shows the original images and the bottom row shows the reconstructions once they
have passed through the encoder and decoder.

Figure 3-18. Reconstructed faces, after passing through the encoder and decoder

We can see that the VAE has successfully captured the key features of each face—the
angle of the head, the hairstyle, the expression, etc. Some of the fine detail is missing,
but it is important to remember that the aim of building variational autoencoders
isn’t to achieve perfect reconstruction loss. Our end goal is to sample from the latent
space in order to generate new faces.

For this to be possible we must check that the distribution of points in the latent
space approximately resembles a multivariate standard normal distribution. Since we
cannot view all dimensions simultaneously, we can instead check the distribution of
each latent dimension individually. If we see any dimensions that are significantly dif‐
ferent from a standard normal distribution, we should probably reduce the recon‐
struction loss factor, since the KL divergence term isn’t having enough effect.

The first 50 dimensions in our latent space are shown in Figure 3-19. There aren’t any
distributions that stand out as being significantly different from the standard normal,
so we can move on to generating some faces!

Using VAEs to Generate Faces | 91

https://arxiv.org/abs/1610.00291
https://arxiv.org/abs/1610.00291

Figure 3-19. Distributions of points for the first 50 dimensions in the latent space

Generating New Faces
To generate new faces, we can use the code in Example 3-9.

Example 3-9. Generating new faces from the latent space

n_to_show = 30

znew = np.random.normal(size = (n_to_show,VAE.z_dim))

reconst = VAE.decoder.predict(np.array(znew))

fig = plt.figure(figsize=(18, 5))
fig.subplots_adjust(hspace=0.4, wspace=0.4)
for i in range(n_to_show):
 ax = fig.add_subplot(3, 10, i+1)
 ax.imshow(reconst[i, :,:,:])
 ax.axis('off')

plt.show()

We sample 30 points from a standard normal distribution with 200 dimen‐
sions…

…then pass these points to the decoder.

The resulting output is a 128 × 128 × 3 image that we can view.

The output is shown in Figure 3-20.

92 | Chapter 3: Variational Autoencoders

Figure 3-20. New generated faces

Amazingly, the VAE is able to take the set of points that we sampled and convert each
into a convincing image of a person’s face. While the images are not perfect, they are a
giant leap forward from the Naive Bayes model that we started exploring in Chap‐
ter 1. The Naive Bayes model faced the problem of not being able to capture depend‐
ency between adjacent pixels, since it had no notion of higher-level features such as
sunglasses or brown hair. The VAE doesn’t suffer from this problem, since the convo‐
lutional layers of the encoder are designed to translate low-level pixels into high-level
features and the decoder is trained to perform the opposite task of translating the
high-level features in the latent space back to raw pixels.

Latent Space Arithmetic
One benefit of mapping images into a lower-dimensional space is that we can per‐
form arithmetic on vectors in this latent space that has a visual analogue when deco‐
ded back into the original image domain.

For example, suppose we want to take an image of somebody who looks sad and give
them a smile. To do this we first need to find a vector in the latent space that points in
the direction of increasing smile. Adding this vector to the encoding of the original
image in the latent space will give us a new point which, when decoded, should give
us a more smiley version of the original image.

So how can we find the smile vector? Each image in the CelebA dataset is labeled with
attributes, one of which is smiling. If we take the average position of encoded images
in the latent space with the attribute smiling and subtract the average position of
encoded images that do not have the attribute smiling, we will obtain the vector that
points from not smiling to smiling, which is exactly what we need.

Conceptually, we are performing the following vector arithmetic in the latent space,
where alpha is a factor that determines how much of the feature vector is added or
subtracted:

z_new = z + alpha * feature_vector

Using VAEs to Generate Faces | 93

Let’s see this in action. Figure 3-21 shows several images that have been encoded into
the latent space. We then add or subtract multiples of a certain vector (e.g., smile,
blonde, male, eyeglasses) to obtain different versions of the image, with only the rele‐
vant feature changed.

Figure 3-21. Adding and subtracting features to and from faces

It is quite remarkable that even though we are moving the point a significantly large
distance in the latent space, the core image barely changes, except for the one feature
that we want to manipulate. This demonstrates the power of variational autoencoders
for capturing and adjusting high-level features in images.

Morphing Between Faces
We can use a similar idea to morph between two faces. Imagine two points in the
latent space, A and B, that represent two images. If you started at point A and walked
toward point B in a straight line, decoding each point on the line as you went, you
would see a gradual transition from the starting face to the end face.

94 | Chapter 3: Variational Autoencoders

Mathematically, we are traversing a straight line, which can be described by the fol‐
lowing equation:

z_new = z_A * (1- alpha) + z_B * alpha

Here, alpha is a number between 0 and 1 that determines how far along the line we
are, away from point A.

Figure 3-22 shows this process in action. We take two images, encode them into the
latent space, and then decode points along the straight line between them at regular
intervals.

Figure 3-22. Morphing between two faces

It is worth noting the smoothness of the transition—even where there are multiple
features to change simultaneously (e.g., removal of glasses, hair color, gender), the
VAE manages to achieve this fluidly, showing that the latent space of the VAE is truly
a continuous space that can be traversed and explored to generate a multitude of dif‐
ferent human faces.

Summary
In this chapter we have seen how variational autoencoders are a powerful tool in the
generative modeling toolbox. We started by exploring how plain autoencoders can be
used to map high-dimensional images into a low-dimensional latent space, so that
high-level features can be extracted from the individually uninformative pixels. How‐
ever, like with the Coder brothers’ art exhibition, we quickly found that there were
some drawbacks to using plain autoencoders as a generative model—sampling from
the learned latent space was problematic, for a number of reasons.

Summary | 95

Variational autoencoders solve these problems, by introducing randomness into the
model and constraining how points in the latent space are distributed. We saw that
with a few minor adjustments, we can transform our autoencoder into a variational
autoencoder, thus giving it the power to be a generative model.

Finally, we applied our new technique to the problem of face generation and saw how
we can simply choose points from a standard normal distribution to generate new
faces. Moreover, by performing vector arithmetic within the latent space, we can ach‐
ieve some amazing effects, such as face morphing and feature manipulation. With
these features, it is easy to see why VAEs have become a prominent technique for gen‐
erative modeling in recent years.

In the next chapter, we shall explore a different kind of generative model that has
attracted an even greater amount of attention: the generative adversarial network.

96 | Chapter 3: Variational Autoencoders

1 Ian Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Networks,” 21 December 2016, https://
arxiv.org/abs/1701.00160v4.

CHAPTER 4

Generative Adversarial Networks

On Monday, December 5, 2016, at 2:30 p.m., Ian Goodfellow of Google Brain presen‐
ted a tutorial entitled “Generative Adversarial Networks” to the delegates of the Neu‐
ral Information Processing Systems (NIPS) conference in Barcelona.1 The ideas
presented in the tutorial are now regarded as one of the key turning points for gener‐
ative modeling and have spawned a wide variety of variations on his core idea that
have pushed the field to even greater heights.

This chapter will first lay out the theoretical underpinning of generative adversarial
networks (GANs). You will then learn how to use the Python library Keras to start
building your own GANs.

First though, we shall take a trip into the wilderness to meet Gene…

Ganimals
One afternoon, while walking through the local jungle, Gene sees a woman thumbing
through a set of black and white photographs, looking worried. He goes over to ask if
he can help.

The woman introduces herself as Di, a keen explorer, and explains that she is hunting
for the elusive ganimal, a mythical creature that is said to roam around the jungle.
Since the creature is nocturnal, she only has a collection of nighttime photos of the
beast that she once found lying on the floor of the jungle, dropped by another gani‐
mal enthusiast. Some of these photos are shown in Figure 4-1. Di makes money by
selling the images to collectors but is starting to worry, as she hasn’t actually ever seen

97

https://arxiv.org/abs/1701.00160v4
https://arxiv.org/abs/1701.00160v4
https://bit.ly/2WkkB7r

the creatures and is concerned that her business will falter if she can’t produce more
original photographs soon.

Figure 4-1. Original ganimal photographs

Being a keen photographer, Gene decides to help Di. He agrees to search for the gani‐
mal himself and give her any photographs of the nocturnal beast that he manages to
take.

However, there is a problem. Since Gene has never seen a ganimal, he doesn’t know
how to produce good photos of the creature, and also, since Di has only ever sold the
photos she found, she cannot even tell the difference between a good photo of a gani‐
mal and a photo of nothing at all.

Starting from this state of ignorance, how can they work together to ensure Gene is
eventually able to produce impressive ganimal photographs?

98 | Chapter 4: Generative Adversarial Networks

They come up with following process. Each night, Gene takes 64 photographs, each
in a different location with different random moonlight readings, and mixes them
with 64 ganimal photos from the original collection. Di then looks at this set of pho‐
tos and tries to guess which were taken by Gene and which are originals. Based on
her mistakes, she updates her own understanding of how to discriminate between
Gene’s attempts and the original photos. Afterwards, Gene takes another 64 photos
and shows them to Di. Di gives each photo a score between 0 and 1, indicating how
realistic she thinks each photo is. Based on this feedback, Gene updates the settings
on his camera to ensure that next time, he takes photos that Di is more likely to rate
highly.

This process continues for many days. Initially, Gene doesn’t get any useful feedback
from Di, since she is randomly guessing which photos are genuine. However, after a
few weeks of her training ritual, she gradually gets better at this, which means that she
can provide better feedback to Gene so that he can adjust his camera accordingly in
his training session. This makes Di’s task harder, since now Gene’s photos aren’t quite
as easy to distinguish from the real photos, so she must again learn how to improve.
This back-and-forth process continues, over many days and weeks.

Over time, Gene gets better and better at producing ganimal photos, until eventually,
Di is once again resigned to the fact that she cannot tell the difference between Gene’s
photos and the originals. They take Gene’s generated photos to the auction and the
experts cannot believe the quality of the new sightings—they are just as convincing as
the originals. Some examples of Gene’s work are shown in Figure 4-2.

Figure 4-2. Samples of Gene’s ganimal photography

Introduction to GANs
The adventures of Gene and Di hunting elusive nocturnal ganimals are a metaphor
for one of the most important deep learning advancements of recent years: generative
adversarial networks.

Simply put, a GAN is a battle between two adversaries, the generator and the discrim‐
inator. The generator tries to convert random noise into observations that look as if

Introduction to GANs | 99

2 By happy coincidence, ganimals look exactly like camels.

they have been sampled from the original dataset and the discriminator tries to pre‐
dict whether an observation comes from the original dataset or is one of the genera‐
tor’s forgeries. Examples of the inputs and outputs to the two networks are shown in
Figure 4-3.

Figure 4-3. Inputs and outputs of the two networks in a GAN

At the start of the process, the generator outputs noisy images and the discriminator
predicts randomly. The key to GANs lies in how we alternate the training of the two
networks, so that as the generator becomes more adept at fooling the discriminator,
the discriminator must adapt in order to maintain its ability to correctly identify
which observations are fake. This drives the generator to find new ways to fool the
discriminator, and so the cycle continues.

To see this in action, let’s start building our first GAN in Keras, to generate pictures of
nocturnal ganimals.

Your First GAN
First, you’ll need to download the training data. We’ll be using the Quick, Draw! data‐
set from Google. This is a crowdsourced collection of 28 × 28–pixel grayscale doo‐
dles, labeled by subject. The dataset was collected as part of an online game that
challenged players to draw a picture of an object or concept, while a neural network
tries to guess the subject of the doodle. It’s a really useful and fun dataset for learning
the fundamentals of deep learning. For this task you’ll need to download the camel
numpy file and save it into the ./data/camel/ folder in the book repository.2 The origi‐

100 | Chapter 4: Generative Adversarial Networks

http://bit.ly/30HyNqg
http://bit.ly/30HyNqg

nal data is scaled in the range [0, 255] to denote the pixel intensity. For this GAN we
rescale the data to the range [–1, 1].

Running the notebook 04_01_gan_camel_train.ipynb in the book repository will start
training the GAN. As in the previous chapter on VAEs, you can instantiate a GAN
object in the notebook, as shown in Example 4-1, and play around with the parame‐
ters to see how it affects the model.

Example 4-1. Defining the GAN

gan = GAN(input_dim = (28,28,1)
 , discriminator_conv_filters = [64,64,128,128]
 , discriminator_conv_kernel_size = [5,5,5,5]
 , discriminator_conv_strides = [2,2,2,1]
 , discriminator_batch_norm_momentum = None
 , discriminator_activation = 'relu'
 , discriminator_dropout_rate = 0.4
 , discriminator_learning_rate = 0.0008
 , generator_initial_dense_layer_size = (7, 7, 64)
 , generator_upsample = [2,2, 1, 1]
 , generator_conv_filters = [128,64, 64,1]
 , generator_conv_kernel_size = [5,5,5,5]
 , generator_conv_strides = [1,1, 1, 1]
 , generator_batch_norm_momentum = 0.9
 , generator_activation = 'relu'
 , generator_dropout_rate = None
 , generator_learning_rate = 0.0004
 , optimiser = 'rmsprop'
 , z_dim = 100
)

Let’s first take a look at how we build the discriminator.

The Discriminator
The goal of the discriminator is to predict if an image is real or fake. This is a super‐
vised image classification problem, so we can use the same network architecture as in
Chapter 2: stacked convolutional layers, followed by a dense output layer.

In the original GAN paper, dense layers were used in place of the convolutional lay‐
ers. However, since then, it has been shown that convolutional layers give greater pre‐
dictive power to the discriminator. You may see this type of GAN called a DCGAN
(deep convolutional generative adversarial network) in the literature, but now essen‐
tially all GAN architectures contain convolutional layers, so the “DC” is implied
when we talk about GANs. It is also common to see batch normalization layers in the
discriminator for vanilla GANs, though we choose not to use them here for
simplicity.

Your First GAN | 101

The full architecture of the discriminator we will be building is shown in Figure 4-4.

Figure 4-4. The discriminator of the GAN

The Keras code to build the discriminator is provided in Example 4-2.

Example 4-2. The discriminator

discriminator_input = Input(shape=self.input_dim, name='discriminator_input')
x = discriminator_input

for i in range(self.n_layers_discriminator):

 x = Conv2D(
 filters = self.discriminator_conv_filters[i]
 , kernel_size = self.discriminator_conv_kernel_size[i]
 , strides = self.discriminator_conv_strides[i]
 , padding = 'same'
 , name = 'discriminator_conv_' + str(i)
)(x)

102 | Chapter 4: Generative Adversarial Networks

 if self.discriminator_batch_norm_momentum and i > 0:
 x = BatchNormalization(momentum = self.discriminator_batch_norm_momentum)(x)

 x = Activation(self.discriminator_activation)(x)

 if self.discriminator_dropout_rate:
 x = Dropout(rate = self.discriminator_dropout_rate)(x)

x = Flatten()(x)
discriminator_output= Dense(1, activation='sigmoid'
 , kernel_initializer = self.weight_init)(x)

discriminator = Model(discriminator_input, discriminator_output)

Define the input to the discriminator (the image).

Stack convolutional layers on top of each other.

Flatten the last convolutional layer to a vector.

Dense layer of one unit, with a sigmoid activation function that transforms the
output from the dense layer to the range [0, 1].

The Keras model that defines the discriminator—a model that takes an input
image and outputs a single number between 0 and 1.

Notice how we use a stride of 2 in some of the convolutional layers to reduce the size
of the tensor as it passes through the network, but increase the number of channels (1
in the grayscale input image, then 64, then 128).

The sigmoid activation in the final layer ensures that the output is scaled between 0
and 1. This will be the predicted probability that the image is real.

The Generator
Now let’s build the generator. The input to the generator is a vector, usually drawn
from a multivariate standard normal distribution. The output is an image of the same
size as an image in the original training data.

This description may remind you of the decoder in a variational autoencoder. In fact,
the generator of a GAN fulfills exactly the same purpose as the decoder of a VAE:
converting a vector in the latent space to an image. The concept of mapping from a
latent space back to the original domain is very common in generative modeling as it
gives us the ability to manipulate vectors in the latent space to change high-level fea‐
tures of images in the original domain.

The architecture of the generator we will be building is shown in Figure 4-5.

Your First GAN | 103

Figure 4-5. The generator

First though, we need to introduce a new layer type: the upsampling layer.

Upsampling
In the decoder of the variational autoencoder that we built in the previous chapter, we
doubled the width and height of the tensor at each layer using Conv2DTranspose lay‐
ers with stride 2. This inserted zero values in between pixels before performing the
convolution operations.

In this GAN, we instead use the Keras Upsampling2D layer to double the width and
height of the input tensor. This simply repeats each row and column of its input in
order to double the size. We then follow this with a normal convolutional layer with
stride 1 to perform the convolution operation. It is a similar idea to convolutional

104 | Chapter 4: Generative Adversarial Networks

3 Source: Augustus Odena et al., “Deconvolution and Checkerboard Artifacts, 17 October 2016, http://bit.ly/
31MgHUQ.

transpose, but instead of filling the gaps between pixels with zeros, upsampling just
repeats the existing pixel values.

Both of these methods—Upsampling + Conv2D and Conv2DTranspose—are acceptable
ways to transform back to the original image domain. It really is a case of testing both
methods in your own problem setting and seeing which produces better results. It has
been shown that the Conv2DTranspose method can lead to artifacts, or small checker‐
board patterns in the output image (see Figure 4-6) that spoil the quality of the out‐
put. However, they are still used in many of the most impressive GANs in the
literature and have proven to be a powerful tool in the deep learning practitioner’s
toolbox—again, I suggest you experiment with both methods and see which works
best for you.

Figure 4-6. Artifacts when using convolutional transpose layers3

The code for building the generator is given in Example 4-3.

Example 4-3. The generator

generator_input = Input(shape=(self.z_dim,), name='generator_input')
x = generator_input

x = Dense(np.prod(self.generator_initial_dense_layer_size))(x)

if self.generator_batch_norm_momentum:
 x = BatchNormalization(momentum = self.generator_batch_norm_momentum)(x)

Your First GAN | 105

http://bit.ly/31MgHUQ
http://bit.ly/31MgHUQ

x = Activation(self.generator_activation)(x)

x = Reshape(self.generator_initial_dense_layer_size)(x)

if self.generator_dropout_rate:
 x = Dropout(rate = self.generator_dropout_rate)(x)

for i in range(self.n_layers_generator):

 x = UpSampling2D()(x)
 x = Conv2D(
 filters = self.generator_conv_filters[i]
 , kernel_size = self.generator_conv_kernel_size[i]
 , padding = 'same'
 , name = 'generator_conv_' + str(i)
)(x)

 if i < n_layers_generator - 1:
 if self.generator_batch_norm_momentum:
 x = BatchNormalization(momentum = self.generator_batch_norm_momentum))(x)
 x = Activation('relu')(x)
 else:
 x = Activation('tanh')(x)

generator_output = x
generator = Model(generator_input, generator_output)

Define the input to the generator—a vector of length 100.

We follow this with a Dense layer consisting of 3,136 units…

…which, after applying batch normalization and a ReLU activation function, is
reshaped to a 7 × 7 × 64 tensor.

We pass this through four Conv2D layers, the first two preceded by Upsampling2D
layers, to reshape the tensor to 14 × 14, then 28 × 28 (the original image size). In
all but the last layer, we use batch normalization and ReLU activation
(LeakyReLU could also be used).

After the final Conv2D layer, we use a tanh activation to transform the output to
the range [–1, 1], to match the original image domain.

The Keras model that defines the generator—a model that accepts a vector of
length 100 and outputs a tensor of shape [28, 28, 1].

106 | Chapter 4: Generative Adversarial Networks

Training the GAN
As we have seen, the architecture of the generator and discriminator in a GAN is very
simple and not so different from the models that we looked at earlier. The key to
understanding GANs is in understanding the training process.

We can train the discriminator by creating a training set where some of the images
are randomly selected real observations from the training set and some are outputs
from the generator. The response would be 1 for the true images and 0 for the gener‐
ated images. If we treat this as a supervised learning problem, we can train the dis‐
criminator to learn how to tell the difference between the original and generated
images, outputting values near 1 for the true images and values near 0 for the fake
images.

Training the generator is more difficult as there is no training set that tells us the true
image that a particular point in the latent space should be mapped to. Instead, we
only want the image that is generated to fool the discriminator—that is, when the
image is fed as input to the discriminator, we want the output to be close to 1.

Therefore, to train the generator, we must first connect it to the discriminator to cre‐
ate a Keras model that we can train. Specifically, we feed the output from the genera‐
tor (a 28 × 28 × 1 image) into the discriminator so that the output from this
combined model is the probability that the generated image is real, according to the
discriminator. We can train this combined model by creating training batches con‐
sisting of randomly generated 100-dimensional latent vectors as input and a response
which is set to 1, since we want to train the generator to produce images that the dis‐
criminator thinks are real.

The loss function is then just the binary cross-entropy loss between the output from
the discriminator and the response vector of 1.

Crucially, we must freeze the weights of the discriminator while we are training the
combined model, so that only the generator’s weights are updated. If we do not freeze
the discriminator’s weights, the discriminator will adjust so that it is more likely to
predict generated images as real, which is not the desired outcome. We want gener‐
ated images to be predicted close to 1 (real) because the generator is strong, not
because the discriminator is weak.

A diagram of the training process for the discriminator and generator is shown in
Figure 4-7.

Your First GAN | 107

Figure 4-7. Training the GAN

Let’s see what this looks like in code. First we need to compile the discriminator
model and the model that trains the generator (Example 4-4).

Example 4-4. Compiling the GAN

COMPILE MODEL THAT TRAINS THE DISCRIMINATOR

self.discriminator.compile(
 optimizer= RMSprop(lr=0.0008)
 , loss = 'binary_crossentropy'
 , metrics = ['accuracy']
)

COMPILE MODEL THAT TRAINS THE GENERATOR

self.discriminator.trainable = False
model_input = Input(shape=(self.z_dim,), name='model_input')
model_output = discriminator(self.generator(model_input))

108 | Chapter 4: Generative Adversarial Networks

self.model = Model(model_input, model_output)

self.model.compile(
 optimizer=RMSprop(lr=0.0004)
 , loss='binary_crossentropy'
 , metrics=['accuracy']
)

The discriminator is compiled with binary cross-entropy loss, as the response is
binary and we have one output unit with sigmoid activation.

Next, we freeze the discriminator weights—this doesn’t affect the existing dis‐
criminator model that we have already compiled.

We define a new model whose input is a 100-dimensional latent vector; this is
passed through the generator and frozen discriminator to produce the output
probability.

Again, we use a binary cross-entropy loss for the combined model—the learning
rate is slower than the discriminator as generally we would like the discriminator
to be stronger than the generator. The learning rate is a parameter that should be
tuned carefully for each GAN problem setting.

Then we train the GAN by alternating training of the discriminator and generator
(Example 4-5).

Example 4-5. Training the GAN

def train_discriminator(x_train, batch_size):

 valid = np.ones((batch_size,1))
 fake = np.zeros((batch_size,1))

 # TRAIN ON REAL IMAGES
 idx = np.random.randint(0, x_train.shape[0], batch_size)
 true_imgs = x_train[idx]
 self.discriminator.train_on_batch(true_imgs, valid)

 # TRAIN ON GENERATED IMAGES
 noise = np.random.normal(0, 1, (batch_size, z_dim))
 gen_imgs = generator.predict(noise)
 self.discriminator.train_on_batch(gen_imgs, fake)

def train_generator(batch_size):

 valid = np.ones((batch_size,1))

Your First GAN | 109

 noise = np.random.normal(0, 1, (batch_size, z_dim))
 self.model.train_on_batch(noise, valid)

epochs = 2000
batch_size = 64

for epoch in range(epochs):

 train_discriminator(x_train, batch_size)
 train_generator(batch_size)

One batch update of the discriminator involves first training on a batch of true
images with the response 1…

…then on a batch of generated images with the response 0.

One batch update of the generator involves training on a batch of generated
images with the response 1. As the discriminator is frozen, its weights will not be
affected; instead, the generator weights will move in the direction that allows it to
better generate images that are more likely to fool the discriminator (i.e., make
the discriminator predict values close to 1).

After a suitable number of epochs, the discriminator and generator will have found
an equilibrium that allows the generator to learn meaningful information from the
discriminator and the quality of the images will start to improve (Figure 4-8).

Figure 4-8. Loss and accuracy of the discriminator and generator during training

By observing images produced by the generator at specific epochs during training
(Figure 4-9), it is clear that the generator is becoming increasingly adept at producing
images that could have been drawn from the training set.

110 | Chapter 4: Generative Adversarial Networks

Figure 4-9. Output from the generator at specific epochs during training

It is somewhat miraculous that a neural network is able to convert random noise into
something meaningful. It is worth remembering that we haven’t provided the model
with any additional features beyond the raw pixels, so it has to work out high-level
concepts such as how to draw a hump, legs, or a head entirely by itself. The Naive
Bayes models that we saw in Chapter 1 wouldn’t be able to achieve this level of
sophistication since they cannot model the interdependencies between pixels that are
crucial to forming these high-level features.

Another requirement of a successful generative model is that it doesn’t only repro‐
duce images from the training set. To test this, we can find the image from the

Your First GAN | 111

training set that is closest to a particular generated example. A good measure for dis‐
tance is the L1 distance, defined as:

def l1_compare_images(img1, img2):
 return np.mean(np.abs(img1 - img2))

Figure 4-10 shows the closest observations in the training set for a selection of gener‐
ated images. We can see that while there is some degree of similarity between the gen‐
erated images and the training set, they are not identical and the GAN is also able to
complete some of the unfinished drawings by, for example, adding legs or a head.
This shows that the generator has understood these high-level features and can gen‐
erate examples that are distinct from those it has already seen.

Figure 4-10. Closest matches of generated images from the training set

GAN Challenges
While GANs are a major breakthrough for generative modeling, they are also notori‐
ously difficult to train. We will explore some of the most common problems encoun‐
tered when training GANs in this section, then we will look at some adjustments to
the GAN framework that remedy many of these problems.

Oscillating Loss
The loss of the discriminator and generator can start to oscillate wildly, rather than
exhibiting long-term stability. Typically, there is some small oscillation of the loss
between batches, but in the long term you should be looking for loss that stabilizes or
gradually increases or decreases (see Figure 4-8), rather than erratically fluctuating, to
ensure your GAN converges and improves over time. Figure 4-11 shows an example
of a GAN where the loss of the discriminator and generator has started to spiral out

112 | Chapter 4: Generative Adversarial Networks

of control, at around batch 1,400. It is difficult to establish if or when this might occur
as vanilla GANs are prone to this kind of instability.

Figure 4-11. Oscillating loss in an unstable GAN

Mode Collapse
Mode collapse occurs when the generator finds a small number of samples that fool
the discriminator and therefore isn’t able to produce any examples other than this
limited set. Let’s think about how this might occur. Suppose we train the generator
over several batches without updating the discriminator in between. The generator
would be inclined to find a single observation (also known as a mode) that always
fools the discriminator and would start to map every point in the latent input space to
this observation. This means that the gradient of the loss function collapses to near 0.
Even if we then try to retrain the discriminator to stop it being fooled by this one
point, the generator will simply find another mode that fools the discriminator, since
it has already become numb to its input and therefore has no incentive to diversify its
output. The effect of mode collapse can be seen in Figure 4-12.

GAN Challenges | 113

Figure 4-12. Mode collapse

Uninformative Loss
Since the deep learning model is compiled to minimize the loss function, it would be
natural to think that the smaller the loss function of the generator, the better the qual‐
ity of the images produced. However, since the generator is only graded against the
current discriminator and the discriminator is constantly improving, we cannot com‐
pare the loss function evaluated at different points in the training process. Indeed, in
Figure 4-8, the loss function of the generator actually increases over time, even
though the quality of the images is clearly improving. This lack of correlation
between the generator loss and image quality sometimes makes GAN training diffi‐
cult to monitor.

Hyperparameters
As we have seen, even with simple GANs, there are a large number of hyperparame‐
ters to tune. As well as the overall architecture of both the discriminator and the gen‐
erator, there are the parameters that govern the batch normalization, dropout,
learning rate, activation layers, convolutional filters, kernel size, striding, batch size,
and latent space size to consider. GANs are highly sensitive to very slight changes in
all of these parameters, and finding a set of parameters that works is often a case of
educated trial and error, rather than following an established set of guidelines.

114 | Chapter 4: Generative Adversarial Networks

4 Martin Arjovsky et al., “Wasserstein GAN,” 26 January 2017, https://arxiv.org/pdf/1701.07875.pdf.

This is why it is important to understand the inner workings of the GAN and know
how to interpret the loss function—so that you can identify sensible adjustments to
the hyperparameters that might improve the stability of the model.

Tackling the GAN Challenges
In recent years, several key advancements have drastically improved the overall sta‐
bility of GAN models and diminished the likelihood of some of the problems listed
earlier, such as mode collapse.

In the remainder of this chapter we shall explore two such advancements, the Wasser‐
stein GAN (WGAN) and Wasserstein GAN–Gradient Penalty (WGAN-GP). Both are
only minor adjustments to the framework we have explored thus far. The latter is
now considered best practice for training the most sophisticated GANs available
today.

Wasserstein GAN
The Wasserstein GAN was one of the first big steps toward stabilizing GAN training.4

With a few changes, the authors were able to show how to train GANs that have the
following two properties (quoted from the paper):

• A meaningful loss metric that correlates with the generator’s convergence and
sample quality

• Improved stability of the optimization process

Specifically, the paper introduces a new loss function for both the discriminator and
the generator. Using this loss function instead of binary cross entropy results in a
more stable convergence of the GAN. The mathematical explanation for this is
beyond the scope of this book, but there are some excellent resources available online
that explain the rationale behind switching to this loss function.

Let’s take a look at the definition of the Wasserstein loss function.

Wasserstein Loss
Let’s first remind ourselves of binary cross-entropy loss - the function that that we are
currently using to train the discriminator and generator of the GAN:

Wasserstein GAN | 115

https://arxiv.org/pdf/1701.07875.pdf

Binary cross-entropy loss

− 1
n ∑i = 1

n yi log pi + 1 − yi log 1 − pi

To train the GAN discriminator D, we calculate the loss when comparing predictions
for real images pi=D(xi) to the response yi=1 and predictions for generated images
pi=D(G(zi)) to the response yi=0. Therefore for the GAN discriminator, minimizing
the loss function can be written as follows:

GAN discriminator loss minimization

minD − �x ∼ pX
log D x + �z ∼ pZ

log 1 − D G z

To train the GAN generator G, we calculate the loss when comparing predictions for
generated images pi=D(G(zi)) to the response yi=1. Therefore for the GAN generator,
minimizing the loss function can be written as follows:

GAN generator loss minimization

minG − �z ∼ pZ
log D G z

Now let’s compare this to the Wasserstein loss function.

First, the Wasserstein loss requires that we use yi=1 and yi=-1 as labels, rather than 1
and 0. We also remove the sigmoid activation from the final layer of the discrimina‐
tor, so that predictions pi are no longer constrained to fall in the range [0,1], but
instead can now be any number in the range [–∞, ∞]. For this reason, the discrimina‐
tor in a WGAN is usually referred to as a critic. The Wasserstein loss function is then
defined as follows:

Wasserstein loss

− 1
n ∑i = 1

n yipi

To train the WGAN critic D, we calculate the loss when comparing predictions for a
real images pi=D(xi) to the response yi=1 and predictions for generated images
pi=D(G(zi)) to the response yi=-1. Therefore for the WGAN critic, minimizing the
loss function can be written as follows:

116 | Chapter 4: Generative Adversarial Networks

WGAN critic loss minimization

minD − �x ∼ pX
D x − �z ∼ pZ

D G z

In other words, the WGAN critic tries to maximise the difference between its predic‐
tions for real images and generated images, with real images scoring higher.

To train the WGAN generator, we calculate the loss when comparing predictions for
generated images pi=D(G(zi)) to the response yi=1. Therefore for the WGAN genera‐
tor, minimizing the loss function can be written as follows:

WGAN generator loss minimization

minG − �z ∼ pZ
D G z

When we compile the models that train the WGAN critic and generator, we can spec‐
ify that we want to use the Wasserstein loss instead of the binary cross-entropy, as
shown in Example 4-6. We also tend to use smaller learning rates for WGANs.

Example 4-6. Compiling the models that train the critic and generator

def wasserstein(y_true, y_pred):
 return -K.mean(y_true * y_pred)

critic.compile(
 optimizer= RMSprop(lr=0.00005)
 , loss = wasserstein
)

model.compile(
 optimizer= RMSprop(lr=0.00005)
 , loss = wasserstein
)

The Lipschitz Constraint
It may surprise you that we are now allowing the critic to output any number in the
range [–∞, ∞], rather than applying a sigmoid function to restrict the output to the
usual [0, 1] range. The Wasserstein loss can therefore be very large, which is unset‐
tling—usually, large numbers in neural networks are to be avoided!

In fact, the authors of the WGAN paper show that for the Wasserstein loss function
to work, we also need to place an additional constraint on the critic. Specifically, it is

Wasserstein GAN | 117

5 Source: Wikipedia, http://bit.ly/2Xufwd8.

required that the critic is a 1-Lipschitz continuous function. Let’s pick this apart to
understand what it means in more detail.

The critic is a function D that converts an image into a prediction. We say that this
function is 1-Lipschitz if it satisfies the following inequality for any two input images,
x1 and x2:

D x1 − D x2
x1 − x2

≤ 1

Here, x1 – x2 is the average pixelwise absolute difference between two images and
D x1 − D x2 is the absolute difference between the critic predictions. Essentially,

we require a limit on the rate at which the predictions of the critic can change
between two images (i.e., the absolute value of the gradient must be at most 1 every‐
where). We can see this applied to a Lipschitz continuous 1D function in Figure 4-13
—at no point does the line enter the cone, wherever you place the cone on the line. In
other words, there is a limit on the rate at which the line can rise or fall at any point.

Figure 4-13. A Lipschitz continuous function—there exists a double cone such that
wherever it is placed on the line, the function always remains entirely outside the cone5

For those who want to delve deeper into the mathematical rationale behind why the
Wasserstein loss only works when this constraint is enforced, Jonathan Hui offers an
excellent explanation.

Weight Clipping
In the WGAN paper, the authors show how it is possible to enforce the Lipschitz con‐
straint by clipping the weights of the critic to lie within a small range, [–0.01, 0.01],
after each training batch.

118 | Chapter 4: Generative Adversarial Networks

http://bit.ly/2Xufwd8
http://bit.ly/2MwS8rc
http://bit.ly/2MwS8rc

We can include this clipping process in our WGAN critic training function shown in
Example 4-7.

Example 4-7. Training the critic of the WGAN

def train_critic(x_train, batch_size, clip_threshold):

 valid = np.ones((batch_size,1))
 fake = -np.ones((batch_size,1))

 # TRAIN ON REAL IMAGES
 idx = np.random.randint(0, x_train.shape[0], batch_size)
 true_imgs = x_train[idx]
 self.critic.train_on_batch(true_imgs, valid)

 # TRAIN ON GENERATED IMAGES
 noise = np.random.normal(0, 1, (batch_size, self.z_dim))
 gen_imgs = self.generator.predict(noise)
 self.critic.train_on_batch(gen_imgs, fake)

 for l in critic.layers:
 weights = l.get_weights()
 weights = [np.clip(w, -clip_threshold, clip_threshold) for w in weights]
 l.set_weights(weights)

Training the WGAN
When using the Wasserstein loss function, we should train the critic to convergence
to ensure that the gradients for the generator update are accurate. This is in contrast
to a standard GAN, where it is important not to let the discriminator get too strong,
to avoid vanishing gradients.

Therefore, using the Wasserstein loss removes one of the key difficulties of training
GANs—how to balance the training of the discriminator and generator. With
WGANs, we can simply train the critic several times between generator updates, to
ensure it is close to convergence. A typical ratio used is five critic updates to one gen‐
erator update.

The training loop of the WGAN is shown in Example 4-8.

Example 4-8. Training the WGAN

for epoch in range(epochs):

 for _ in range(5):
 train_critic(x_train, batch_size = 128, clip_threshold = 0.01)

 train_generator(batch_size)

Wasserstein GAN | 119

We have now covered all of the key differences between a standard GAN and a
WGAN. To recap:

• A WGAN uses the Wasserstein loss.
• The WGAN is trained using labels of 1 for real and –1 for fake.
• There is no need for the sigmoid activation in the final layer of the WGAN critic.
• Clip the weights of the critic after each update.
• Train the critic multiple times for each update of the generator.

Analysis of the WGAN
You can train your own WGAN using code from the Jupyter notebook
04_02_wgan_cifar_train.ipynb in the book repository. This will train a WGAN to
generate images of horses from the CIFAR-10 dataset, which we used in Chapter 2.

In Figure 4-14 we show some of the samples generated by the WGAN.

Figure 4-14. Examples from the generator of a WGAN trained on images of horses

Clearly, this is a much more difficult task than our previous ganimal example, but the
WGAN has done a good job of establishing the key features of horse images (legs, sky,
grass, brownness, shadow, etc.). As well as the images being in color, there are also
many varying angles, shapes, and backgrounds for the WGAN to deal with in the
training set. Therefore while the image quality isn’t yet perfect, we should be encour‐
aged by the fact that our WGAN is clearly learning the high-level features that make
up a color photograph of a horse.

One of the main criticisms of the WGAN is that since we are clipping the weights in
the critic, its capacity to learn is greatly diminished. In fact, even in the original

120 | Chapter 4: Generative Adversarial Networks

6 Ishaan Gulrajani et al., “Improved Training of Wasserstein GANs,” 31 March 2017, https://arxiv.org/abs/
1704.00028.

WGAN paper the authors write, “Weight clipping is a clearly terrible way to enforce a
Lipschitz constraint.”

A strong critic is pivotal to the success of a WGAN, since without accurate gradients,
the generator cannot learn how to adapt its weights to produce better samples.

Therefore, other researchers have looked for alternative ways to enforce the Lipschitz
constraint and improve the capacity of the WGAN to learn complex features. We
shall explore one such breakthrough in the next section.

WGAN-GP
One of the most recent extensions to the WGAN literature is the Wasserstein GAN–
Gradient Penalty (WGAN-GP) framework.6

The WGAN-GP generator is defined and compiled in exactly the same way as the
WGAN generator. It is only the definition and compilation of the critic that we need
to change.

In total, there are three changes we need to make to our WGAN critic to convert it to
a WGAN-GP critic:

• Include a gradient penalty term in the critic loss function.
• Don’t clip the weights of the critic.
• Don’t use batch normalization layers in the critic.

Let’s start by seeing how we can build the gradient penalty term into our loss func‐
tion. In the paper introducing this variant, the authors propose an alternative way to
enforce the Lipschitz constraint on the critic. Rather than clipping the weights of the
critic, they show how the constraint can be enforced directly by including a term in
the loss function that penalizes the model if the gradient norm of the critic deviates
from 1. This is a much more natural way to achieve the constraint and results in a far
more stable training process.

The Gradient Penalty Loss
Figure 4-15 is a diagram of the training process for the critic. If we compare this to
the original discriminator training process from Figure 4-7, we can see that the key
addition is the gradient penalty loss included as part of the overall loss function,
alongside the Wasserstein loss from the real and fake images.

WGAN-GP | 121

https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028

Figure 4-15. The WGAN-GP critic training process

The gradient penalty loss measures the squared difference between the norm of the
gradient of the predictions with respect to the input images and 1. The model will
naturally be inclined to find weights that ensure the gradient penalty term is mini‐
mized, thereby encouraging the model to conform to the Lipschitz constraint.

It is intractable to calculate this gradient everywhere during the training process, so
instead the WGAN-GP evaluates the gradient at only a handful of points. To ensure a
balanced mix, we use a set of interpolated images that lie at randomly chosen points
along lines connecting the batch of real images to the batch of fake images pairwise,
as shown in Figure 4-16.

Figure 4-16. Interpolating between images

In Keras, we can create a RandomWeightedAverage layer to perform this interpolating
operation, by inheriting from the built-in _Merge layer:

class RandomWeightedAverage(_Merge):
 def __init__(self, batch_size):
 super().__init__()
 self.batch_size = batch_size

122 | Chapter 4: Generative Adversarial Networks

 def _merge_function(self, inputs):
 alpha = K.random_uniform((self.batch_size, 1, 1, 1))
 return (alpha * inputs[0]) + ((1 - alpha) * inputs[1])

Each image in the batch gets a random number, between 0 and 1, stored as the
vector alpha.

The layer returns the set of pixelwise interpolated images that lie along the lines
connecting the real images (inputs[0]) to the fake images (inputs[1]), pairwise,
weighted by the alpha value for each pair.

The gradient_penalty_loss function shown in Example 4-9 returns the squared
difference between the gradient calculated at the interpolated points and 1.

Example 4-9. The gradient penalty loss function

def gradient_penalty_loss(y_true, y_pred, interpolated_samples):

 gradients = K.gradients(y_pred, interpolated_samples)[0]

 gradient_l2_norm = K.sqrt(
 K.sum(
 K.square(gradients),
 axis=[1:len(gradients.shape)]
)
)
)
 gradient_penalty = K.square(1 - gradient_l2_norm)
 return K.mean(gradient_penalty)

The Keras gradients function calculates the gradients of the predictions for the
interpolated images (y_pred) with respect to the input (interpolated_samples).

We calculate the L2 norm of this vector (i.e., its Euclidean length).

The function returns the squared distance between the L2 norm and 1.

Now that we have the RandomWeightedAverage layer that can interpolate between two
images and the gradient_penalty_loss function that can calculate the gradient loss
for the interpolated images, we can use both of these in the model compilation of the
critic.

In the WGAN example, we compiled the critic directly, to predict if a given image
was real or fake. To compile the WGAN-GP critic, we need to use the interpolated
images in the loss function—however, Keras only permits a custom loss function with
two parameters, the predictions and the true labels. To get around this issue, we use
the Python partial function.

WGAN-GP | 123

Example 4-10 shows the full compilation of the WGAN-GP critic in code.

Example 4-10. Compiling the WGAN-GP critic

from functools import partial

COMPILE CRITIC MODEL

self.generator.trainable = False

real_img = Input(shape=self.input_dim)
z_disc = Input(shape=(self.z_dim,))
fake_img = self.generator(z_disc)

fake = self.critic(fake_img)
valid = self.critic(real_img)

interpolated_img = RandomWeightedAverage(self.batch_size)([real_img, fake_img])
validity_interpolated = self.critic(interpolated_img)

partial_gp_loss = partial(self.gradient_penalty_loss,
 interpolated_samples = interpolated_img)
partial_gp_loss.__name__ = 'gradient_penalty'

self.critic_model = Model(inputs=[real_img, z_disc],
 outputs=[valid, fake, validity_interpolated])

self.critic_model.compile(
 loss=[self.wasserstein,self.wasserstein, partial_gp_loss]
 ,optimizer=Adam(lr=self.critic_learning_rate, beta_1=0.5)
 ,loss_weights=[1, 1, self.grad_weight]
)

Freeze the weights of the generator. The generator forms part of the model that
we are using to train the critic, as the interpolated images are now actively
involved in the loss function, so this is required.

There are two inputs to the model: a batch of real images and a set of randomly
generated numbers that are used to generate a batch of fake images.

The real and fake images are passed through the critic in order to calculate the
Wasserstein loss.

The RandomWeightedAverage layer creates the interpolated images, which are
then also passed through the critic.

Keras is expecting a loss function with only two inputs—the predictions and true
labels—so we define a custom loss function, partial_gp_loss, using the Python

124 | Chapter 4: Generative Adversarial Networks

partial function to pass the interpolated images through to our gradient_pen
alty_loss function.

Keras requires the function to be named.

The model that trains the critic is defined to have two inputs: the batch of real
images and the random input that will generate the batch of fake images. The
model has three outputs: 1 for the real images, –1 for the fake images, and a
dummy 0 vector, which isn’t actually used but is required by Keras as every loss
function must map to an output. Therefore we create the dummy 0 vector to map
to the partial_gp_loss function.

We compile the critic with three loss functions: two Wasserstein losses for the
real and fake images, and the gradient penalty loss. The overall loss is the sum of
these three losses, with the gradient loss weighted by a factor of 10, in line with
the recommendations from the original paper. We use the Adam optimizer,
which is generally regarded to be the best optimizer for WGAN-GP models.

Batch Normalization in WGAN-GP
One last consideration we should note before building a WGAN-GP is that batch
normalization shouldn’t be used in the critic. This is because batch normalization cre‐
ates correlation between images in the same batch, which makes the gradient penalty
loss less effective. Experiments have shown that WGAN-GPs can still produce excel‐
lent results even without batch normalization in the critic.

Analysis of WGAN-GP
Running the Jupyter notebook 04_03_wgangp_faces_train.ipynb in the book reposi‐
tory will train a WGAN-GP model on the CelebA dataset of celebrity faces.

First, let’s take a look at some uncurated example outputs from the generator, after
3,000 training batches (Figure 4-17).

WGAN-GP | 125

Figure 4-17. WGAN-GP CelebA examples

Clearly the model has learned the significant high-level attributes of a face, and there
is no sign of mode collapse.

We can also see how the loss functions of the model evolve over time (Figure 4-18)—
the loss functions of both the discriminator and generator are highly stable and con‐
vergent.

Figure 4-18. WGAN-GP loss

If we compare the WGAN-GP output to the VAE output from the previous chapter,
we can see that the GAN images are generally sharper—especially the definition
between the hair and the background. This is true in general; VAEs tend to produce

126 | Chapter 4: Generative Adversarial Networks

softer images that blur color boundaries, whereas GANs are known to produce
sharper, more well-defined images.

It is also true that GANs are generally more difficult to train than VAEs and take
longer to reach a satisfactory quality. However, most of the state-of-the-art generative
models today are GAN-based, as the rewards for training large-scale GANs on GPUs
over a longer period of time are significant.

Summary
In this chapter we have explored three distinct flavors of generative adversarial net‐
works, from the most fundamental vanilla GANs, through the Wasserstein GAN
(WGAN), to the current state-of-the-art WGAN-GP models.

All GANs are characterized by a generator versus discriminator (or critic) architec‐
ture, with the discriminator trying to “spot the difference” between real and fake
images and the generator aiming to fool the discriminator. By balancing how these
two adversaries are trained, the GAN generator can gradually learn how to produce
similar observations to those in the training set.

We saw how vanilla GANs can suffer from several problems, including mode collapse
and unstable training, and how the Wasserstein loss function remedied many of these
problems and made GAN training more predictable and reliable. The natural exten‐
sion of the WGAN is the WGAN-GP, which places the 1-Lipschitz requirement at the
heart of the training process by including a term in the loss function to pull the gradi‐
ent norm toward 1.

Finally, we applied our new technique to the problem of face generation and saw how
by simply choosing points from a standard normal distribution, we can generate new
faces. This sampling process is very similar to a VAE, though the faces produced by a
GAN are quite different—often sharper, with greater distinction between different
parts of the image. When trained on a large number of GPUs, this property allows
GANs to produce extremely impressive results and has taken the field of generative
modeling to ever greater heights.

Overall, we have seen how the GAN framework is extremely flexible and able to be
adapted to many interesting problem domains. We’ll look at one such application in
the next chapter and explore how we can teach machines to paint.

Summary | 127

PART II

Teaching Machines to Paint, Write,
Compose, and Play

Part I introduced the field of generative deep learning and analyzed two of the most
important advancements in recent years, variational autoencoders and generative
adversarial networks. The rest of this book presents a set of case studies showing how
generative modeling techniques can be applied to particular tasks. The next three
chapters focus on three core pillars of human creativity: painting, writing, and musi‐
cal composition.

In Chapter 5, we shall examine two techniques relating to machine painting. First we
will look at CycleGAN, which as the name suggests is an adaptation of the GAN
architecture that allows the model to learn how to convert a photograph into a paint‐
ing in a particular style (or vice versa). Then we will also explore the neural style
transfer technique contained within many photo editing apps that allows you to
transfer the style of a painting onto a photograph, to give the impression that it is a
painting by the same artist.

In Chapter 6, we shall turn our attention to machine writing, a task that presents dif‐
ferent challenges to image generation. This chapter introduces the recurrent neural
network (RNN) architecture that allows us to tackle problems involving sequential
data. We shall also see how the encoder–decoder architecture works and build a sim‐
ple question-answer generator.

Chapter 7 looks at music generation, which, while also a sequential generation prob‐
lem, presents additional challenges such as modeling musical pitch and rhythm. We’ll
see that many of the techniques that worked for text generation can still be applied in

this domain, but we’ll also explore a deep learning architecture known as MuseGAN
that applies ideas from Chapter 4 (on GANs) to musical data.

Chapter 8 shows how generative models can be used within other machine learning
domains, such as reinforcement learning. This chapter presents one of the most excit‐
ing papers published in recent years, in which the authors show how a generative
model can be used as the environment in which the agent trains, thus essentially
allowing the agent to dream of possible future scenarios and imagine what might hap‐
pen if it were to take certain actions, entirely within its own conceptual model of the
environment.

Finally, Chapter 9 summarizes the current landscape of generative modeling and
looks back on the techniques that have been presented in this book. We will also look
to the future and explore how the most cutting-edge techniques available today might
change the way in which we view creativity, and whether we will ever be able to create
an artificial entity that can produce content that is creatively indistinguishable from
works created by the human pioneers of art, literature, and music.

CHAPTER 5

Paint

So far, we have explored various ways in which we can train a model to generate new
samples, given only a training set of data we wish to imitate. We’ve applied this to sev‐
eral datasets and seen how in each case, VAEs and GANs are able to learn a mapping
between an underlying latent space and the original pixel space. By sampling from a
distribution in the latent space, we can use the generative model to map this vector to
a novel image in the pixel space.

Notice that all of the examples we have seen so far produce novel observations from
scratch—that is, there is no input apart from the random latent vector sampled from
the latent space that is used to generate the images.

A different application of generative models is in the field of style transfer. Here, our
aim is to build a model that can transform an input base image in order to give the
impression that it comes from the same collection as a given set of style images. This
technique has clear commercial applications and is now being used in computer
graphics software, computer game design, and mobile phone applications. Some
examples of this are shown in Figure 5-1.

With style transfer, our aim isn’t to model the underlying distribution of the style
images, but instead to extract only the stylistic components from these images and
embed these into the base image. We clearly cannot just merge the style images with
the base image through interpolation, as the content of the style images would show
through and the colors would become muddy and blurred. Moreover, it may be the
style image set as a whole rather than one single image that captures the artist’s style,
so we need to find a way to allow the model to learn about style across a whole collec‐
tion of images. We want to give the impression that the artist has used the base image
as a guide to produce an original piece of artwork, complete with the same stylistic
flair as other works in their collection.

131

1 Jun-Yan Zhu et al., “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks,” 30
March 2017, https://arxiv.org/pdf/1703.10593.pdf.

Figure 5-1. Style transfer examples1

In this chapter you’ll learn how to build two different kinds of style transfer model
(CycleGAN and Neural Style Transfer) and apply the techniques to your own photos
and artwork.

We’ll start by visiting a fruit and vegetable shop where all is not as it seems…

Apples and Organges
Granny Smith and Florida own a greengrocers together. To ensure the shop is run as
efficiently as possible, they each look after different areas—specifically, Granny Smith
takes great pride in her apple selection and Florida spends hours ensuring the
oranges are perfectly arranged.

Both are so convinced that they have the better fruit display that they agree to a deal:
the profits from the sales of apples will go entirely to Granny Smith and the profits
from the sales of oranges will go entirely to Florida.

Unfortunately, neither Granny Smith nor Florida plans on making this a fair contest.
When Florida isn’t looking, Granny Smith sneaks into the orange section and starts
painting the oranges red to look like apples! Florida has exactly the same plan, and
tries to make Granny Smith’s apples more orange-like with a suitably colored spray
when her back is turned.

When customers bring their fruit to the self-checkout tills, they sometimes errone‐
ously select the wrong option on the machine. Customers who took apples sometimes

132 | Chapter 5: Paint

https://arxiv.org/pdf/1703.10593.pdf

put them through as oranges due to Florida’s fluorescent spray, and customers who
took oranges wrongly pay for apples due to their clever disguise, courtesy of Granny
Smith.

At the end of the day, the profits for each fruit are summed and split accordingly—
Granny Smith loses money every time one of her apples is sold as an orange, and
Florida loses every time one of her oranges is sold as an apple.

After closing time, both of the disgruntled greengrocers do their best to clean up their
own fruit stocks. However, instead of trying to undo the other’s mischievous adjust‐
ments, they both simply apply their own tampering process to their own fruit, to try
to make it appear as it did before it was sabotaged. It’s important that they get this
right, because if the fruit doesn’t look right, they won’t be able to sell it the next day
and will again lose profits.

To ensure consistency over time, they also test their techniques out on their own
fruit. Florida checks that if she sprays her oranges orange, they’ll look exactly as they
did originally. Granny Smith tests her apple painting skills on her apples for the same
reason. If they find that there are obvious discrepancies, they’ll have to spend their
hard-earned profits on learning better techniques.

The overall process is shown in Figure 5-2.

At first, customers are inclined to make somewhat random selections at the newly
installed self-checkout tills because of their inexperience with the machines. However,
over time they become more adept at using the technology, and learn how to identify
which fruit has been tampered with.

This forces Granny Smith and Florida to improve at sabotaging each other’s fruit,
while also always ensuring that they are still able to use the same process to clean up
their own fruit after it has been altered. Moreover, they must also make sure that the
technique they use doesn’t affect the appearance of their own fruit.

Apples and Organges | 133

Figure 5-2. Diagram of the greengrocers’ tampering, restoration, and testing process

After many days and weeks of this ridiculous game, they realize something amazing
has happened. Customers are thoroughly confused and now can’t tell the difference
between real and fake apples and real and fake oranges. Figure 5-3 shows the state of
the fruit after tampering and restoration, as well as after testing.

134 | Chapter 5: Paint

2 Jun-Yan Zhu et al., “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks,” 30
March 2017, https://arxiv.org/pdf/1703.10593.

3 Phillip Isola et al., “Image-to-Image Translation with Conditional Adversarial Networks,” 2016, https://
arxiv.org/abs/1611.07004.

Figure 5-3. Examples of the oranges and apples in the greengrocers’ store

CycleGAN
The preceding story is an allegory for a key development in generative modeling and,
in particular, style transfer: the cycle-consistent adversarial network, or CycleGAN.
The original paper represented a significant step forward in the field of style transfer
as it showed how it was possible to train a model that could copy the style from a
reference set of images onto a different image, without a training set of paired
examples.2

Previous style transfer models, such as pix2pix,3 required each image in the training
set to exist in both the source and target domain. While it is possible to manufacture
this kind of dataset for some style problem settings (e.g., black and white to color
photos, maps to satellite images), for others it is impossible. For example, we do not
have original photographs of the pond where Monet painted his Water Lilies series,
nor do we have a Picasso painting of the Empire State Building. It would also take

CycleGAN | 135

https://arxiv.org/pdf/1703.10593
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004

enormous effort to arrange photos of horses and zebras standing in identical
positions.

The CycleGAN paper was released only a few months after the pix2pix paper and
shows how it is possible to train a model to tackle problems where we do not have
pairs of images in the source and target domains. Figure 5-4 shows the difference
between the paired and unpaired datasets of pix2pix and CycleGAN, respectively.

Figure 5-4. pix2pix dataset and domain mapping example

While pix2pix only works in one direction (from source to target), CycleGAN trains
the model in both directions simultaneously, so that the model learns to translate
images from target to source as well as source to target. This is a consequence of the
model architecture, so you get the reverse direction for free.

Let’s now see how we can build a CycleGAN model in Keras. To begin with, we shall
be using the apples and oranges example from earlier to walk through each part of
the CycleGAN and experiment with the architecture. We’ll then apply the same tech‐
nique to build a model that can apply a given artist’s style to a photo of your choice.

136 | Chapter 5: Paint

Your First CycleGAN
Much of the following code has been inspired by and adapted from the amazing
Keras-GAN repository maintained by Erik Linder-Norén. This is an excellent
resource for many Keras examples of important GANs from the literature.

To begin, you’ll first need to download the data that we’ll be using to train the Cycle‐
GAN. From inside the folder where you cloned the book’s repository, run the follow‐
ing command:

bash ./scripts/download_cyclegan_data.sh apple2orange

This will download the dataset of images of apples and oranges that we will be using.
The data is split into four folders: trainA and testA contain images of apples and
trainB and testB contain images of oranges. Thus domain A is the space of apple
images and domain B is the space of orange images. Our goal is to train a model
using the train datasets to convert images from domain A into domain B and vice
versa. We will test our model using the test datasets.

Overview
A CycleGAN is actually composed of four models, two generators and two discrimi‐
nators. The first generator, G_AB, converts images from domain A into domain B. The
second generator, G_BA, converts images from domain B into domain A.

As we do not have paired images on which to train our generators, we also need to
train two discriminators that will determine if the images produced by the generators
are convincing. The first discriminator, d_A, is trained to be able to identify the differ‐
ence between real images from domain A and fake images that have been produced
by generator G_BA. Conversely, discriminator d_B is trained to be able to identify the
difference between real images from domain B and fake images that have been pro‐
duced by generator G_AB. The relationship between the four models is shown in
Figure 5-5.

Your First CycleGAN | 137

http://bit.ly/2Za68J2

4 Source: Zhu et al., 2017, https://arxiv.org/pdf/1703.10593.pdf.
5 Isola et al., 2016, https://arxiv.org/abs/1611.07004.
6 Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-Net: Convolutional Networks for Biomedical Image

Segmentation,” 18 May 2015, https://arxiv.org/abs/1505.04597.

Figure 5-5. Diagram of the four CycleGAN models4

Running the notebook 05_01_cyclegan_train.ipynb in the book repository will start
training the CycleGAN. As in previous chapters, you can instantiate a CycleGAN
object in the notebook, as shown in Example 5-1, and play around with the parame‐
ters to see how it affects the model.

Example 5-1. Defining the CycleGAN

gan = CycleGAN(
 input_dim = (128,128,3)
 , learning_rate = 0.0002
 , lambda_validation = 1
 , lambda_reconstr = 10
 , lambda_id = 2
 , generator_type = 'u-net'
 , gen_n_filters = 32
 , disc_n_filters = 32
)

Let’s first take a look at the architecture of the generators. Typically, CycleGAN gener‐
ators take one of two forms: U-Net or ResNet (residual network). In their earlier
pix2pix paper,5 the authors used a U-Net architecture, but they switched to a ResNet
architecture for CycleGAN. We’ll be building both architectures in this chapter, start‐
ing with U-Net.6

138 | Chapter 5: Paint

https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1505.04597

7 Ronneberger et al., 2015, https://arxiv.org/abs/1505.04597.

The Generators (U-Net)
Figure 5-6 shows the architecture of the U-Net we will be using—no prizes for guess‐
ing why it’s called a U-Net!7

Figure 5-6. The U-Net architecture diagram

In a similar manner to a variational autoencoder, a U-Net consists of two halves: the
downsampling half, where input images are compressed spatially but expanded
channel-wise, and an upsampling half, where representations are expanded spatially
while the number of channels is reduced.

However, unlike in a VAE, there are also skip connections between equivalently shaped
layers in the upsampling and downsampling parts of the network. A VAE is linear;
data flows through the network from input to the output, one layer after another. A
U-Net is different, because it contains skip connections that allow information to
shortcut parts of the network and flow through to later layers.

Your First CycleGAN | 139

https://arxiv.org/abs/1505.04597

8 Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, “Instance Normalization: The Missing Ingredient for
Fast Stylization,” 27 July 2016, https://arxiv.org/pdf/1607.08022.pdf.

The intuition here is that with each subsequent layer in the downsampling part of the
network, the model increasingly captures the what of the images and loses informa‐
tion on the where. At the apex of the U, the feature maps will have learned a contex‐
tual understanding of what is in the image, with little understanding of where it is
located. For predictive classification models, this is all we require, so we could con‐
nect this to a final Dense layer to output the probability of a particular class being
present in the image. However, for the original U-Net application (image segmenta‐
tion) and also for style transfer, it is critical that when we upsample back to the origi‐
nal image size, we pass back into each layer the spatial information that was lost
during downsampling. This is exactly why we need the skip connections. They allow
the network to blend high-level abstract information captured during the downsam‐
pling process (i.e., the image style) with the specific spatial information that is being
fed back in from previous layers in the network (i.e., the image content).

To build in the skip connections, we will need to introduce a new type of layer:
`Concatenate`.

Concatenate Layer
The Concatenate layer simply joins a set of layers together along a particular axis (by
default, the last axis). For example, in Keras, we can join two previous layers, x and y
together as follows:

Concatenate()([x,y])

In the U-Net, we use Concatenate layers to connect upsampling layers to the equiva‐
lently sized layer in the downsampling part of the network. The layers are joined
together along the channels dimension so the number of channels increases from k to
2k, while the number of spatial dimensions remains the same.

Note that there are no weights to be learned in a Concatenate layer; they are just used
to “glue” previous layers together.

The generator also contains another new layer type, InstanceNormalization.

Instance Normalization Layer
The generator of this CycleGAN uses InstanceNormalization layers rather than
BatchNormalization layers, which in style transfer problems can lead to more satis‐
fying results.8

140 | Chapter 5: Paint

https://arxiv.org/pdf/1607.08022.pdf

9 Source: Yuxin Wu and Kaiming He, “Group Normalization,” 22 March 2018, https://arxiv.org/pdf/
1803.08494.pdf.

An InstanceNormalization layer normalizes every single observation individually,
rather than as a batch. Unlike a BatchNormalization layer, it doesn’t require mu and
sigma parameters to be calculated as a running average during training, since at test
time the layer can normalize per instance in the same way as it does at train time. The
means and standard deviations used to normalize each layer are calculated per chan‐
nel and per observation.

Also, for the InstanceNormalization layers in this network, there are no weights to
learn since we do not use scaling (gamma) or shift (beta) parameters.

Figure 5-7 shows the difference between batch normalization and instance normal‐
ization, as well as two other normalization methods (layer and group normalization).

Figure 5-7. Four different normalization methods.9

Here, N is the batch axis, C is the channel axis, and (H, W) represent the spatial axes.
The cube therefore represents the input tensor to the normalization layer. Pixels col‐
ored blue are normalized by the same mean and variance (calculated over the values
of these pixels).

We now have everything we need to build a U-Net generator in Keras, as shown in
Example 5-2.

Example 5-2. Building the U-Net generator

def build_generator_unet(self):

 def downsample(layer_input, filters, f_size=4):
 d = Conv2D(filters, kernel_size=f_size
 , strides=2, padding='same')(layer_input)
 d = InstanceNormalization(axis = -1, center = False, scale = False)(d)
 d = Activation('relu')(d)

Your First CycleGAN | 141

https://arxiv.org/pdf/1803.08494.pdf
https://arxiv.org/pdf/1803.08494.pdf

 return d

 def upsample(layer_input, skip_input, filters, f_size=4, dropout_rate=0):
 u = UpSampling2D(size=2)(layer_input)
 u = Conv2D(filters, kernel_size=f_size, strides=1, padding='same')(u)
 u = InstanceNormalization(axis = -1, center = False, scale = False)(u)
 u = Activation('relu')(u)
 if dropout_rate:
 u = Dropout(dropout_rate)(u)

 u = Concatenate()([u, skip_input])
 return u

 # Image input
 img = Input(shape=self.img_shape)

 # Downsampling
 d1 = downsample(img, self.gen_n_filters)
 d2 = downsample(d1, self.gen_n_filters*2)
 d3 = downsample(d2, self.gen_n_filters*4)
 d4 = downsample(d3, self.gen_n_filters*8)

 # Upsampling
 u1 = upsample(d4, d3, self.gen_n_filters*4)
 u2 = upsample(u1, d2, self.gen_n_filters*2)
 u3 = upsample(u2, d1, self.gen_n_filters)

 u4 = UpSampling2D(size=2)(u3)

 output = Conv2D(self.channels, kernel_size=4, strides=1
 , padding='same', activation='tanh')(u4)

 return Model(img, output)

The generator consists of two halves. First, we downsample the image, using
Conv2D layers with stride 2.

Then we upsample, to return the tensor to the same size as the original image.
The upsampling blocks contain Concatenate layers, which give the network the
U-Net architecture.

The Discriminators
The discriminators that we have seen so far have output a single number: the predic‐
ted probability that the input image is “real.” The discriminators in the CycleGAN
that we will be building output an 8 × 8 single-channel tensor rather than a single
number.

142 | Chapter 5: Paint

The reason for this is that the CycleGAN inherits its discriminator architecture from
a model known as a PatchGAN, where the discriminator divides the image into
square overlapping “patches” and guesses if each patch is real or fake, rather than pre‐
dicting for the image as a whole. Therefore the output of the discriminator is a tensor
that contains the predicted probability for each patch, rather than just a single
number.

Note that the patches are predicted simultaneously as we pass an image through the
network—we do not divide up the image manually and pass each patch through the
network one by one. The division of the image into patches arises naturally as a result
of the discriminator’s convolutional architecture.

The benefit of using a PatchGAN discriminator is that the loss function can then
measure how good the discriminator is at distinguishing images based on their style
rather than their content. Since each individual element of the discriminator predic‐
tion is based only on a small square of the image, it must use the style of the patch,
rather than its content, to make its decision. This is exactly what we require; we
would rather our discriminator is good at identifying when two images differ in style
than content.

The Keras code to build the discriminators is provided in Example 5-3.

Example 5-3. Building the discriminators

def build_discriminator(self):

 def conv4(layer_input,filters, stride = 2, norm=True):
 y = Conv2D(filters, kernel_size=4, strides=stride
 , padding='same')(layer_input)

 if norm:
 y = InstanceNormalization(axis = -1, center = False, scale = False)(y)

 y = LeakyReLU(0.2)(y)

 return y

 img = Input(shape=self.img_shape)

 y = conv4(img, self.disc_n_filters, stride = 2, norm = False)
 y = conv4(y, self.disc_n_filters*2, stride = 2)
 y = conv4(y, self.disc_n_filters*4, stride = 2)
 y = conv4(y, self.disc_n_filters*8, stride = 1)

 output = Conv2D(1, kernel_size=4, strides=1, padding='same')(y)

 return Model(img, output)

Your First CycleGAN | 143

A CycleGAN discriminator is a series of convolutional layers, all with instance
normalization (except the first layer).

The final layer is a convolutional layer with only one filter and no activation.

Compiling the CycleGAN
To recap, we aim to build a set of models that can convert images that are in domain
A (e.g., images of apples) to domain B (e.g., images of oranges) and vice versa. We
therefore need to compile four distinct models, two generators and two discrimina‐
tors, as follows:

g_AB

Learns to convert an image from domain A to domain B.

g_BA

Learns to convert an image from domain B to domain A.

d_A

Learns the difference between real images from domain A and fake images gen‐
erated by g_BA.

d_B

Learns the difference between real images from domain B and fake images gener‐
ated by g_AB.

We can compile the two discriminators directly, as we have the inputs (images from
each domain) and outputs (binary responses: 1 if the image was from the domain or
0 if it was a generated fake). This is shown in Example 5-4.

Example 5-4. Compiling the discriminator

self.d_A = self.build_discriminator()
self.d_B = self.build_discriminator()
self.d_A.compile(loss='mse',
 optimizer=Adam(self.learning_rate, 0.5),
 metrics=['accuracy'])
self.d_B.compile(loss='mse',
 optimizer=Adam(self.learning_rate, 0.5),
 metrics=['accuracy'])

144 | Chapter 5: Paint

However, we cannot compile the generators directly, as we do not have paired images
in our dataset. Instead, we judge the generators simultaneously on three criteria:

1. Validity. Do the images produced by each generator fool the relevant discrimina‐
tor? (For example, does output from g_BA fool d_A and does output from g_AB
fool d_B?)

2. Reconstruction. If we apply the two generators one after the other (in both direc‐
tions), do we return to the original image? The CycleGAN gets its name from
this cyclic reconstruction criterion.

3. Identity. If we apply each generator to images from its own target domain, does
the image remain unchanged?

Example 5-5 shows how we can compile a model to enforce these three criteria (the
numeric markers in the code correspond to the preceding list).

Example 5-5. Building the combined model to train the generators

self.g_AB = self.build_generator_unet()
self.g_BA = self.build_generator_unet()

self.d_A.trainable = False
self.d_B.trainable = False

img_A = Input(shape=self.img_shape)
img_B = Input(shape=self.img_shape)
fake_A = self.g_BA(img_B)
fake_B = self.g_AB(img_A)

valid_A = self.d_A(fake_A)
valid_B = self.d_B(fake_B)

reconstr_A = self.g_BA(fake_B)
reconstr_B = self.g_AB(fake_A)

img_A_id = self.g_BA(img_A)
img_B_id = self.g_AB(img_B)

self.combined = Model(inputs=[img_A, img_B],
 outputs=[valid_A, valid_B,
 reconstr_A, reconstr_B,
 img_A_id, img_B_id])

self.combined.compile(loss=['mse', 'mse',
 'mae', 'mae',
 'mae', 'mae'],
 loss_weights=[
 self.lambda_validation
 , self.lambda_validation

Your First CycleGAN | 145

 , self.lambda_reconstr
 , self.lambda_reconstr
 , self.lambda_id
 , self.lambda_id
],
 optimizer=optimizer)

The combined model accepts a batch of images from each domain as input and pro‐
vides three outputs (to match the three criteria) for each domain—so, six outputs in
total. Notice how we freeze the weights in the discriminator, as is typical with GANs,
so that the combined model only trains the generator weights, even though the dis‐
criminator is involved in the model.

The overall loss is the weighted sum of the loss for each criterion. Mean squared error
is used for the validity criterion—checking the output from the discriminator against
the real (1) or fake (0) response—and mean absolute error is used for the image-to-
image-based criteria (reconstruction and identity).

Training the CycleGAN
With our discriminators and combined model compiled, we can now train our mod‐
els. This follows the standard GAN practice of alternating the training of the discrim‐
inators with the training of the generators (through the combined model).

In Keras, the code in Example 5-6 describes the training loop.

Example 5-6. Training the CycleGAN

batch_size = 1
patch = int(self.img_rows / 2**4)
self.disc_patch = (patch, patch, 1)

valid = np.ones((batch_size,) + self.disc_patch)
fake = np.zeros((batch_size,) + self.disc_patch)

for epoch in range(self.epoch, epochs):
 for batch_i, (imgs_A, imgs_B) in enumerate(data_loader.load_batch(batch_size)):

 fake_B = self.g_AB.predict(imgs_A)
 fake_A = self.g_BA.predict(imgs_B)

 dA_loss_real = self.d_A.train_on_batch(imgs_A, valid)
 dA_loss_fake = self.d_A.train_on_batch(fake_A, fake)
 dA_loss = 0.5 * np.add(dA_loss_real, dA_loss_fake)

 dB_loss_real = self.d_B.train_on_batch(imgs_B, valid)
 dB_loss_fake = self.d_B.train_on_batch(fake_B, fake)
 dB_loss = 0.5 * np.add(dB_loss_real, dB_loss_fake)

146 | Chapter 5: Paint

 d_loss = 0.5 * np.add(dA_loss, dB_loss)

 g_loss = self.combined.train_on_batch([imgs_A, imgs_B],
 [valid, valid,
 imgs_A, imgs_B,
 imgs_A, imgs_B])

We use a response of 1 for real images and 0 for generated images. Notice how
there is one response per patch, as we are using a PatchGAN discriminator.

To train the discriminators, we first use the respective generator to create a batch
of fake images, then we train each discriminator on this fake set and a batch of
real images. Typically, for a CycleGAN the batch size is 1 (a single image).

The generators are trained together in one step, through the combined model
compiled earlier. See how the six outputs match to the six loss functions defined
earlier during compilation.

Analysis of the CycleGAN
Let’s see how the CycleGAN performs on our simple dataset of apples and oranges
and observe how changing the weighting parameters in the loss function can have
dramatic effects on the results.

We have already seen an example of the output from the CycleGAN model in
Figure 5-3. Now that you are familiar with the CycleGAN architecture, you might
recognize that this image represents the three criteria through which the combined
model is judged: validity, reconstruction, and identity.

Let’s relabel this image with the appropriate functions from the codebase, so that we
can see this more explicitly (Figure 5-8).

We can see that the training of the network has been successful, because each genera‐
tor is visibly altering the input picture to look more like a valid image from the oppo‐
site domain. Moreover, when the generators are applied one after the other, the
difference between the input image and the reconstructed image is minimal. Finally,
when each generator is applied to an image from its own input domain, the image
doesn’t change significantly.

Your First CycleGAN | 147

Figure 5-8. Outputs from the combined model used to calculated the overall loss
function

In the original CycleGAN paper, the identity loss was included as an optional addi‐
tion to the necessary reconstruction loss and validity loss. To demonstrate the impor‐
tance of the identity term in the loss function, let’s see what happens if we remove it,
by setting the identity loss weighting parameter to zero in the loss function
(Figure 5-9).

148 | Chapter 5: Paint

Figure 5-9. Output from the CycleGAN when the identity loss weighting is set to zero

The CycleGAN has still managed to translate the oranges into apples but the color of
the tray holding the oranges has flipped from black to white, as there is now no iden‐
tity loss term to prevent this shift in background colors. The identity term helps regu‐
late the generator to ensure that it only adjust parts of the image that are necessary to
complete the transformation and no more.

This highlights the importance of ensuring the weightings of the three loss functions
are well balanced—too little identity loss and the color shift problem appears; too
much identity loss and the CycleGAN isn’t sufficiently incentivized to change the
input to look like an image from the opposite domain.

Creating a CycleGAN to Paint Like Monet
Now that we have explored the fundamental structure of a CycleGAN, we can turn
our attention to more interesting and impressive applications of the technique.

In the original CycleGAN paper, one of the standout achievements was the ability for
the model to learn how to convert a given photo into a painting in the style of a par‐
ticular artist. As this is a CycleGAN, the model is also able to translate the other way,
converting an artist’s paintings into realistic-looking photographs.

To download the Monet-to-photo dataset, run the following command from inside
the book repository:

bash ./scripts/download_cyclegan_data.sh monet2photo

This time we will use the parameter set shown in Example 5-7 to build the model:

Example 5-7. Defining the Monet CycleGAN

gan = CycleGAN(
 input_dim = (256,256,3)
 , learning_rate = 0.0002
 , lambda_validation = 1
 , lambda_reconstr = 10
 , lambda_id = 5

Creating a CycleGAN to Paint Like Monet | 149

10 Kaiming He et al., “Deep Residual Learning for Image Recognition,” 10 December 2015, https://arxiv.org/abs/
1512.03385.

 , generator_type = 'resnet'
 , gen_n_filters = 32
 , disc_n_filters = 64
)

The Generators (ResNet)
In this example, we shall introduce a new type of generator architecture: a residual
network, or ResNet.10 The ResNet architecture is similar to a U-Net in that it allows
information from previous layers in the network to skip ahead one or more layers.
However, rather than creating a U shape by connecting layers from the downsam‐
pling part of the network to corresponding upsampling layers, a ResNet is built of
residual blocks stacked on top of each other, where each block contains a skip con‐
nection that sums the input and output of the block, before passing this on to the
next layer. A single residual block is shown in Figure 5-10.

Figure 5-10. A single residual block

In our CycleGAN, the “weight layers” in the diagram are convolutional layers with
instance normalization. In Keras, a residual block can be coded as shown in
Example 5-8.

Example 5-8. A residual block in Keras

from keras.layers.merge import add

def residual(layer_input, filters):
 shortcut = layer_input
 y = Conv2D(filters, kernel_size=(3, 3), strides=1, padding='same')(layer_input)
 y = InstanceNormalization(axis = -1, center = False, scale = False)(y)
 y = Activation('relu')(y)

150 | Chapter 5: Paint

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

 y = Conv2D(filters, kernel_size=(3, 3), strides=1, padding='same')(y)
 y = InstanceNormalization(axis = -1, center = False, scale = False)(y)

 return add([shortcut, y])

On either side of the residual blocks, our ResNet generator also contains downsam‐
pling and upsampling layers. The overall architecture of the ResNet is shown in
Figure 5-11.

Figure 5-11. A ResNet generator

It has been shown that ResNet architectures can be trained to hundreds and even
thousands of layers deep and not suffer from the vanishing gradient problem, where
the gradients at early layers are tiny and therefore train very slowly. This is due to the
fact that the error gradients can backpropagate freely through the network through
the skip connections that are part of the residual blocks. Furthermore, it is believed
that adding additional layers never results in a drop in model accuracy, as the skip
connections ensure that it is always possible to pass through the identity mapping
from the previous layer, if no further informative features can be extracted.

Analysis of the CycleGAN
In the original CycleGAN paper, the model was trained for 200 epochs to achieve
state-of-the-art results for artist-to-photograph style transfer. In Figure 5-12 we show
the output from each generator at various stages of the early training process, to show
the progression as the model begins to learn how to convert Monet paintings into
photographs and vice versa.

In the top row, we can see that gradually the distinctive colors and brushstrokes used
by Monet are transformed into the more natural colors and smooth edges that would
be expected in a photograph. Similarly, the reverse is happening in the bottom row, as
the generator learns how to convert a photograph into a scene that Monet might have
painted himself.

Creating a CycleGAN to Paint Like Monet | 151

11 Source: Zhu et al., 2017, https://junyanz.github.io/CycleGAN.

Figure 5-12. Output at various stages of the training process

Figure 5-13 shows some of the results from the original paper achieved by the model
after it was trained for 200 epochs.

Figure 5-13. Output after 200 epochs of training11

152 | Chapter 5: Paint

https://junyanz.github.io/CycleGAN

12 Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge, “A Neural Algorithm of Artistic Style,” 26 August
2015, https://arxiv.org/abs/1508.06576.

13 Source: Gatys, et al. 2015, https://arxiv.org/abs/1508.06576.

Neural Style Transfer
So far, we have seen how a CycleGAN can transpose images between two domains,
where the images in the training set are not necessarily paired. Now we shall look at a
different application of style transfer, where we do not have a training set at all, but
instead wish to transfer the style of one single image onto another, as shown in
Figure 5-14. This is known as neural style transfer.12

Figure 5-14. An example of neural style transfer13

The idea works on the premise that we want to minimize a loss function that is a
weighted sum of three distinct parts:

Content loss
We would like the combined image to contain the same content as the base
image.

Style loss
We would like the combined image to have the same general style as the style
image.

Total variance loss
We would like the combined image to appear smooth rather than pixelated.

We minimize this loss via gradient descent—that is, we update each pixel value by an
amount proportional to the negative gradient of the loss function, over many

Neural Style Transfer | 153

https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1508.06576

iterations. This way, the loss gradually decreases with each iteration and we end up
with an image that merges the content of one image with the style of another.

Optimizing the generated output via gradient descent is different to how we have
tackled generative modeling problems thus far. Previously we have trained a deep
neural network such as a VAE or GAN by backpropagating the error through the
entire network to learn from a training set of data and generalize the information
learned to generate new images. Here, we cannot take this approach as we only have
two images to work with, the base image and the style image. However, as we shall
see, we can still make use of a pretrained deep neural network to provide vital infor‐
mation about each image inside the loss functions.

We’ll start by defining the three individual loss functions, as they are the core of the
neural style transfer engine.

Content Loss
The content loss measures how different two images are in terms of the subject mat‐
ter and overall placement of their content. Two images that contain similar-looking
scenes (e.g., a photo of a row of buildings and another photo of the same buildings
taken in different light from a different angle) should have a smaller loss than two
images that contain completely different scenes. Simply comparing the pixel values of
the two images won’t do, because even in two distinct images of the same scene, we
wouldn’t expect individual pixel values to be similar. We don’t really want the content
loss to care about the values of individual pixels; we’d rather that it scores images
based on the presence and approximate position of higher-level features such as
buildings, sky, or river.

We’ve seen this concept before. It’s the whole premise behind deep learning—a neural
network trained to recognize the content of an image naturally learns higher-level
features at deeper layers of the network by combining simpler features from previous
layers. Therefore, what we need is a deep neural network that has already been suc‐
cessfully trained to identify the content of an image, so that we can tap into a deep
layer of the network to extract the high-level features of a given input image. If we
measure the mean squared error between this output for the base image and the cur‐
rent combined image, we have our content loss function!

The pretrained network that we shall be using is called VGG19. This is a 19-layer
convolutional neural network that has been trained to classify images into one thou‐
sand object categories on more than one million images from the ImageNet dataset.
A diagram of the network is shown in Figure 5-15.

154 | Chapter 5: Paint

Figure 5-15. The VGG19 model

Example 5-9 is a code snippet that calculates the content loss between two images,
adapted from the neural style transfer example in the official Keras repository. If you
want to re-create this technique and experiment with the parameters, I suggest work‐
ing from this repository as a starting point.

Example 5-9. The content loss function

from keras.applications import vgg19
from keras import backend as K

base_image_path = '/path_to_images/base_image.jpg'
style_reference_image_path = '/path_to_images/styled_image.jpg'

content_weight = 0.01

base_image = K.variable(preprocess_image(base_image_path))
style_reference_image = K.variable(preprocess_image(style_reference_image_path))
combination_image = K.placeholder((1, img_nrows, img_ncols, 3))

input_tensor = K.concatenate([base_image,
 style_reference_image,
 combination_image], axis=0)

model = vgg19.VGG19(input_tensor=input_tensor,
 weights='imagenet', include_top=False)

Neural Style Transfer | 155

http://bit.ly/2FlVU0P

outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
layer_features = outputs_dict['block5_conv2']

base_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]

def content_loss(content, gen):
 return K.sum(K.square(gen - content))

content_loss = content_weight * content_loss(base_image_features
 , combination_features)

The Keras library contains a pretrained VGG19 model that can be imported.

We define two Keras variables to hold the base image and style image and a
placeholder that will contain the generated combined image.

The input tensor to the VGG19 model is a concatenation of the three images.

Here we create an instance of the VGG19 model, specifying the input tensor and
the weights that we would like to preload. The include_top = False parameter
specifies that we do not need to load the weights for the final dense layers of the
networks that result in the classification of the image. This is because we are only
interested in the preceding convolutional layers, which capture the high-level fea‐
tures of an input image, not the actual probabilities that the original model was
trained to output.

The layer that we use to calculate the content loss is the second convolutional
layer of the fifth block. Choosing a layer at a shallower or deeper point in the net‐
work affects how the loss function defines “content” and therefore alters the
properties of the generated combined image.

Here we extract the base image features and combined image features from the
input tensor that has been fed through the VGG19 network.

The content loss is the sum of squares distance between the outputs of the chosen
layer for both images, multiplied by a weighting parameter.

Style Loss
Style loss is slightly more difficult to quantify—how can we measure the similarity in
style between two images?

The solution given in the neural style transfer paper is based on the idea that images
that are similar in style typically have the same pattern of correlation between feature
maps in a given layer. We can see this more clearly with an example.

156 | Chapter 5: Paint

14 To calculate the dot product between two vectors, multiply the values of the two vectors in each position and
sum the results.

Suppose in the VGG19 network we have some layer where one channel has learned to
identify parts of the image that are colored green, another channel has learned to
identify spikiness, and another has learned to identify parts of the image that are
brown.

The output from these channels (feature maps) for three inputs is shown in
Figure 5-16.

Figure 5-16. The output from three channels (feature maps) for three given input images
—the darker orange colors represent larger values

We can see that A and B are similar in style—both are grassy. Image C is slightly dif‐
ferent in style to images A and B. If we look at the feature maps, we can see that the
green and spikiness channels often fire strongly together at the same spatial point in
images A and B, but not in image C. Conversely, the brown and spikiness channels are
often activated together at the same point in image C, but not in images A and B. To
numerically measure how much two feature maps are jointly activated together, we
can flatten them and calculate the dot product.14 If the resulting value is high, the fea‐
ture maps are highly correlated; if the value is low, the feature maps are not
correlated.

Neural Style Transfer | 157

We can define a matrix that contains the dot product between all possible pairs of fea‐
tures in the layer. This is called a Gram matrix. Figure 5-17 shows the Gram matrices
for the three features, for each of the images.

Figure 5-17. Parts of the Gram matrices for the three images—the darker blue colors rep‐
resent larger values

It is clear that images A and B, which are similar in style, have similar Gram matrices
for this layer. Even though their content may be very different, the Gram matrix—a
measure of correlation between all pairs of features in the layer—is similar.

Therefore to calculate the style loss, all we need to do is calculate the Gram matrix
(GM) for a set of layers throughout the network for both the base image and the com‐
bined image and compare their similarity using sum of squared errors. Algebraically,
the style loss between the base image (S) and the generated image (G) for a given
layer (l) of size Ml (height x width) with Nl channels can be written as follows:

LGM S, G, l = 1
4Nl

2Ml
2 ∑

i j
GM l S i j − GM l G i j

2

Notice how this is scaled to account for the number of channels (Nl) and size of the
layer (Ml). This is because we calculate the overall style loss as a weighted sum across

158 | Chapter 5: Paint

15 Source: GitHub, http://bit.ly/2FlVU0P.

several layers, all of which have different sizes. The total style loss is then calculated as
follows:

Lstyle S, G = ∑
l = 0

L
wlLGM S, G, l

In Keras, the style loss calculations can be coded as shown in Example 5-10.15

Example 5-10. The style loss function

style_loss = 0.0

def gram_matrix(x):
 features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
 gram = K.dot(features, K.transpose(features))
 return gram

def style_loss(style, combination):
 S = gram_matrix(style)
 C = gram_matrix(combination)
 channels = 3
 size = img_nrows * img_ncols
 return K.sum(K.square(S - C)) / (4.0 * (channels ** 2) * (size ** 2))

feature_layers = ['block1_conv1', 'block2_conv1',
 'block3_conv1', 'block4_conv1',
 'block5_conv1']

for layer_name in feature_layers:
 layer_features = outputs_dict[layer_name]
 style_reference_features = layer_features[1, :, :, :]
 combination_features = layer_features[2, :, :, :]
 sl = style_loss(style_reference_features, combination_features)
 style_loss += (style_weight / len(feature_layers)) * sl

The style loss is calculated over five layers—the first convolutional layer in each
of the five blocks of the VGG19 model.

Here we extract the style image features and combined image features from the
input tensor that has been fed through the VGG19 network.

The style loss is scaled by a weighting parameter and the number of layers that it
is calculated over.

Neural Style Transfer | 159

http://bit.ly/2FlVU0P

16 Source: GitHub, http://bit.ly/2FlVU0P.

Total Variance Loss
The total variance loss is simply a measure of noise in the combined image. To judge
how noisy an image is, we can shift it one pixel to the right and calculate the sum of
the squared difference between the translated and original images. For balance, we
can also do the same procedure but shift the image one pixel down. The sum of these
two terms is the total variance loss.

Example 5-11 shows how we can code this in Keras.16

Example 5-11. The variance loss function

def total_variation_loss(x):
 a = K.square(
 x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :])
 b = K.square(
 x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :])
 return K.sum(K.pow(a + b, 1.25))

tv_loss = total_variation_weight * total_variation_loss(combination_image)

loss = content_loss + style_loss + tv_loss

The squared difference between the image and the same image shifted one pixel
down.

The squared difference between the image and the same image shifted one pixel
to the right.

The total variance loss is scaled by a weighting parameter.

The overall loss is the sum of the content, style, and total variance losses.

Running the Neural Style Transfer
The learning process involves running gradient descent to minimize this loss func‐
tion, with respect to the pixels in the combined image. The full code for this is
included in the, neural_style_transfer.py script included as part of the official Keras
repository. Example 5-12 is a code snippet showing the training loop.

160 | Chapter 5: Paint

http://bit.ly/2FlVU0P
http://bit.ly/2FlVU0P

Example 5-12. The training loop for the neural style transfer model

from scipy.optimize import fmin_l_bfgs_b

iterations = 1000
x = preprocess_image(base_image_path)

for i in range(iterations):
 x, min_val, info = fmin_l_bfgs_b(
 evaluator.loss
 , x.flatten()
 , fprime=evaluator.grads
 , maxfun=20
)

The process is initialized with the base image as the starting combined image.

At each iteration we pass the current combined image (flattened) into a optimiza‐
tion function, fmin_l_bfgs_b from the scipy.optimize package, that performs
one gradient descent step according to the L-BFGS-B algorithm.

Here, evaluator is an object that contains methods that calculate the overall loss,
as described previously, and gradients of the loss with respect to the input image.

Analysis of the Neural Style Transfer Model
Figure 5-18 shows the output of the neural style transfer process at three different
stages in the learning process, with the following parameters:

• content_weight: 1
• style_weight: 100
• total_variation_weight: 20

Neural Style Transfer | 161

Figure 5-18. Output from the neural style transfer process at 1, 200, and 400 iterations

We can see that with each training step, the algorithm becomes stylistically closer to
the style image and loses the detail of the base image, while retaining the overall con‐
tent structure.

There are many ways to experiment with this architecture. You can try changing the
weighting parameters in the loss function or the layer that is used to determine the
content similarity, to see how this affects the combined output image and training
speed. You can also try decaying the weight given to each layer in the style loss func‐
tion, to bias the model toward transferring finer or coarser style features.

Summary
In this chapter, we have explored two different ways to generate novel artwork: Cycle‐
GAN and neural style transfer.

The CycleGAN methodology allows us to train a model to learn the general style of
an artist and transfer this over to a photograph, to generate output that looks as if the
artist had painted the scene in the photo. The model also gives us the reverse process
for free, converting paintings into realistic photographs. Crucially, paired images
from each domain aren’t required for a CycleGAN to work, making it an extremely
powerful and flexible technique.

162 | Chapter 5: Paint

The neural style transfer technique allows us to transfer the style of a single image
onto a base image, using a cleverly chosen loss function that penalizes the model for
straying too far from the content of the base image and artistic style of the style
image, while retaining a degree of smoothness to the output. This technique has been
commercialized by many high-profile apps to blend a user’s photographs with a given
set of stylistic paintings.

In the next chapter we shall move away from image-based generative modeling to a
domain that presents new challenges: text-based generative modeling.

Summary | 163

CHAPTER 6

Write

In this chapter we shall explore methods for building generative models on text data.
There are several key differences between text and image data that mean that many of
the methods that work well for image data are not so readily applicable to text data.
In particular:

• Text data is composed of discrete chunks (either characters or words), whereas
pixels in an image are points in a continuous color spectrum. We can easily make
a green pixel more blue, but it is not obvious how we should go about making the
word cat more like the word dog, for example. This means we can easily apply
backpropagation to image data, as we can calculate the gradient of our loss func‐
tion with respect to individual pixels to establish the direction in which pixel col‐
ors should be changed to minimize the loss. With discrete text data, we can’t
apply backpropagation in the usual manner, so we need to find a way around this
problem.

• Text data has a time dimension but no spatial dimension, whereas image data has
two spatial dimensions but no time dimension. The order of words is highly
important in text data and words wouldn’t make sense in reverse, whereas images
can usually be flipped without affecting the content. Furthermore, there are often
long-term sequential dependencies between words that need to be captured by
the model: for example, the answer to a question or carrying forward the context
of a pronoun. With image data, all pixels can be processed simultaneously.

• Text data is highly sensitive to small changes in the individual units (words or
characters). Image data is generally less sensitive to changes in individual pixel
units—a picture of a house would still be recognizable as a house even if some
pixels were altered. However, with text data, changing even a few words can dras‐
tically alter the meaning of the passage, or make it nonsensical. This makes it

165

very difficult to train a model to generate coherent text, as every word is vital to
the overall meaning of the passage.

• Text data has a rules-based grammatical structure, whereas image data doesn’t
follow set rules about how the pixel values should be assigned. For example, it
wouldn’t make grammatical sense in any content to write “The cat sat on the hav‐
ing.” There are also semantic rules that are extremely difficult to model; it
wouldn’t make sense to say “I am in the beach,” even though grammatically, there
is nothing wrong with this statement.

Good progress has been made in text modeling, but solutions to the above problems
are still ongoing areas of research. We’ll start by looking at one of the most utilized
and established models for generating sequential data such as text, the recurrent neu‐
ral network (RNN), and in particular, the long short-term memory (LSTM) layer. In
this chapter we will also explore some new techniques that have led to promising
results in the field of question-answer pair generation.

First, a trip to the local prison, where the inmates have formed a literary society…

The Literary Society for Troublesome Miscreants
Edward Sopp hated his job as a prison warden. He spent his days watching over the
prisoners and had no time to follow his true passion of writing short stories. He was
running low on inspiration and needed to find a way to generate new content.

One day, he came up with a brilliant idea that would allow him to produce new works
of fiction in his style, while also keeping the inmates occupied—he would get the
inmates to collectively write the stories for him! He branded the new society the
LSTM (Literary Society for Troublesome Miscreants).

The prison is particularly strange because it only consists of one large cell, containing
256 prisoners. Each prisoner has an opinion on how Edward’s current story should
continue. Every day, Edward posts the latest word from his novel into the cell, and it
is the job of the inmates to individually update their opinions on the current state of
the story, based on the new word and the opinions of the inmates from the previous
day.

Each prisoner uses a specific thought process to update their own opinion, which
involves balancing information from the new incoming word and other prisoners’
opinions with their own prior beliefs. First, they decide how much of yesterday’s
opinion they wish to forget, using the information from the new word and the opin‐
ions of other prisoners in the cell. They also use this information to form new
thoughts and decide how much of this they want to mix into the old beliefs that they
have chosen to carry forward from the previous day. This then forms the prisoner’s
new opinion for the day.

166 | Chapter 6: Write

1 Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory,” Neural Computation 9 (1997): 1735–
1780, http://bit.ly/2In7NnH.

However, the prisoners are secretive and don’t always tell their fellow inmates every‐
thing that they believe. They also use the latest chosen word and the opinions of the
other inmates to decide how much of their opinion they wish to disclose.

When Edward wants the cell to generate the next word in the sequence, the prisoners
tell their disclosable opinions to the somewhat dense guard at the door, who com‐
bines this information to ultimately decide on the next word to be appended to the
end of the novel. This new word is then fed back into the cell as usual, and the pro‐
cess continues until the full story is completed.

To train the inmates and the guard, Edward feeds short sequences of words that he
has written previously into the cell and monitors if the inmates’ chosen next word is
correct. He updates them on their accuracy, and gradually they begin to learn how to
write stories in his own unique style.

After many iterations of this process, Edward finds that the system has become quite
accomplished at generating realistic-looking text. While it is somewhat lacking in
semantic structure, it certainly displays similar characteristics to his previous stories.

Satisfied with the results, he publishes a collection of the generated tales in his new
book, entitled E. Sopp’s Fables.

Long Short-Term Memory Networks
The story of Mr. Sopp and his crowdsourced fables is an analogy for one of the most
utilized and successful deep learning techniques for sequential data such as text: the
long short-term memory (LSTM) network.

An LSTM network is a particular type of recurrent neural network (RNN). RNNs con‐
tain a recurrent layer (or cell) that is able to handle sequential data by making its own
output at a particular timestep form part of the input to the next timestep, so that
information from the past can affect the prediction at the current timestep. We say
LSTM network to mean a neural network with an LSTM recurrent layer.

When RNNs were first introduced, recurrent layers were very simple and consisted
solely of a tanh operator that ensured that the information passed between timesteps
was scaled between –1 and 1. However, this was shown to suffer from the vanishing
gradient problem and didn’t scale well to long sequences of data.

LSTM cells were first introduced in 1997 in a paper by Sepp Hochreiter and Jürgen
Schmidhuber.1 In the paper, the authors describe how LSTMs do not suffer from the
same vanishing gradient problem experienced by vanilla RNNs and can be trained on

Long Short-Term Memory Networks | 167

http://bit.ly/2In7NnH

sequences that are hundreds of timesteps long. Since then, the LSTM architecture has
been adapted and improved, and variations such as gated recurrent units (GRUs) are
now widely utilized and available as layers in Keras.

Let’s begin by taking a look at how to build a very simple LSTM network in Keras that
can generate text in the style of Aesop’s Fables.

Your First LSTM Network
As usual, you first need to get set up with the data.

You can download a collection of Aesop’s Fables from Project Gutenberg. This is a
collection of free ebooks that can be downloaded as plain text files. This is a great
resource for sourcing data that can be used to train text-based deep learning models.

To download the data, from inside the book repository run the following command:

bash ./scripts/download_gutenburg_data.sh 11339 aesop

Let’s now take a look at the steps we need to take in order to get the data in the right
shape to train an LSTM network. The code is contained in the
06_01_lstm_text_train.ipynb notebook in the book repository.

Tokenization
The first step is to clean up and tokenize the text. Tokenization is the process of split‐
ting the text up into individual units, such as words or characters.

How you tokenize your text will depend on what you are trying to achieve with your
text generation model. There are pros and cons to using both word and character
tokens, and your choice will affect how you need to clean the text prior to modeling
and the output from your model.

If you use word tokens:

• All text can be converted to lowercase, to ensure capitalized words at the start of
sentences are tokenized the same way as the same words appearing in the middle
of a sentence. In some cases, however, this may not be desirable; for example,
some proper nouns, such as names or places, may benefit from remaining capi‐
talized so that they are tokenized independently.

• The text vocabulary (the set of distinct words in the training set) may be very
large, with some words appearing very sparsely or perhaps only once. It may be
wise to replace sparse words with a token for unknown word, rather than includ‐
ing them as separate tokens, to reduce the number of weights the neural network
needs to learn.

168 | Chapter 6: Write

http://bit.ly/2QQEf5T
http://www.gutenberg.net

• Words can be stemmed, meaning that they are reduced to their simplest form, so
that different tenses of a verb remained tokenized together. For example, browse,
browsing, browses, and browsed would all be stemmed to brows.

• You will need to either tokenize the punctuation, or remove it altogether.
• Using word tokenization means that the model will never be able to predict

words outside of the training vocabulary.

If you use character tokens:

• The model may generate sequences of characters that form new words outside of
the training vocabulary—this may be desirable in some contexts, but not in
others.

• Capital letters can either be converted to their lowercase counterparts, or remain
as separate tokens.

• The vocabulary is usually much smaller when using character tokenization. This
is beneficial for model training speed as there are fewer weights to learn in the
final output layer.

For this example, we’ll use lowercase word tokenization, without word stemming.
We’ll also tokenize punctuation marks, as we would like the model to predict when it
should end sentences or open/close speech marks, for example. Finally, we’ll replace
the multiple newlines between stories with a block of new story characters,
||||||||||||||||||||. This way, when we generate text using the model, we can seed the
model with this block of characters, so that the model knows to start a new story
from scratch.

The code in Example 6-1 cleans and tokenizes the text.

Example 6-1. Tokenization

import re
from keras.preprocessing.text import Tokenizer

filename = "./data/aesop/data.txt"

with open(filename, encoding='utf-8-sig') as f:
 text = f.read()

seq_length = 20
start_story = '| ' * seq_length

CLEANUP
text = text.lower()
text = start_story + text
text = text.replace('\n\n\n\n\n', start_story)

Your First LSTM Network | 169

text = text.replace('\n', ' ')
text = re.sub(' +', '. ', text).strip()
text = text.replace('..', '.')

text = re.sub('([!"#$%&()*+,-./:;<=>?@[\]^_`{|}~])', r' \1 ', text)
text = re.sub('\s{2,}', ' ', text)

TOKENIZATION
tokenizer = Tokenizer(char_level = False, filters = '')
tokenizer.fit_on_texts([text])
total_words = len(tokenizer.word_index) + 1
token_list = tokenizer.texts_to_sequences([text])[0]

An extract of the raw text after cleanup is shown in Figure 6-1.

Figure 6-1. The text after cleanup

In Figure 6-2, we can see the dictionary of tokens mapped to their respective indices
and also a snippet of tokenized text, with the corresponding words shown in green.

170 | Chapter 6: Write

Figure 6-2. The mapping dictionary between words and indices (left) and the text after
tokenization (right)

Building the Dataset
Our LSTM network will be trained to predict the next word in a sequence, given a
sequence of words preceding this point. For example, we could feed the model the
tokens for the greedy cat and the and would expect the model to output a suitable next
word (e.g., dog, rather than in).

The sequence length that we use to train the model is a parameter of the training pro‐
cess. In this example we choose to use a sequence length of 20, so we split the text
into 20-word chunks. A total of 50,416 such sequences can be constructed, so our
training dataset X is an array of shape [50416, 20].

The response variable for each sequence is the subsequent word, one-hot encoded
into a vector of length 4,169 (the number of distinct words in the vocabulary). There‐
fore, our response y is a binary array of shape [50416, 4169].

The dataset generation step can be achieved with the code in Example 6-2.

Example 6-2. Generating the dataset

import numpy as np
from keras.utils import np_utils

def generate_sequences(token_list, step):

 X = []
 y = []

Your First LSTM Network | 171

 for i in range(0, len(token_list) - seq_length, step):
 X.append(token_list[i: i + seq_length])
 y.append(token_list[i + seq_length])

 y = np_utils.to_categorical(y, num_classes = total_words)

 num_seq = len(X)
 print('Number of sequences:', num_seq, "\n")

 return X, y, num_seq

step = 1
seq_length = 20
X, y, num_seq = generate_sequences(token_list, step)

X = np.array(X)
y = np.array(y)

The LSTM Architecture
The architecture of the overall model is shown in Figure 6-3. The input to the model
is a sequence of integer tokens and the output is the probability of each word in the
vocabulary appearing next in the sequence. To understand how this works in detail,
we need to introduce two new layer types, Embedding and LSTM.

Figure 6-3. LSTM model architecture

The Embedding Layer
An embedding layer is essentially a lookup table that converts each token into a vec‐
tor of length embedding_size (Figure 6-4). The number of weights learned by this
layer is therefore equal to the size of the vocabulary, multiplied by embedding_size.

172 | Chapter 6: Write

Figure 6-4. An embedding layer is a lookup table for each integer token

The Input layer passes a tensor of integer sequences of shape [batch_size,
seq_length] to the Embedding layer, which outputs a tensor of shape [batch_size,
seq_length, embedding_size]. This is then passed on to the LSTM layer (Figure 6-5).

Figure 6-5. A single sequence as it flows through an embedding layer

We embed each integer token into a continuous vector because it enables the model
to learn a representation for each word that is able to be updated through backpropa‐
gation. We could also just one-hot encode each input token, but using an embedding
layer is preferred because it makes the embedding itself trainable, thus giving the
model more flexibility in deciding how to embed each token to improve model
performance.

Your First LSTM Network | 173

The LSTM Layer
To understand the LSTM layer, we must first look at how a general recurrent layer
works.

A recurrent layer has the special property of being able to process sequential input
data [x1,…,xn]. It consists of a cell that updates its hidden state, ht, as each element of
the sequence xt is passed through it, one timestep at a time. The hidden state is a vec‐
tor with length equal to the number of units in the cell—it can be thought of as the
cell’s current understanding of the sequence. At timestep t, the cell uses the previous
value of the hidden state ht–1 together with the data from the current timestep xt to
produce an updated hidden state vector ht. This recurrent process continues until the
end of the sequence. Once the sequence is finished, the layer outputs the final hidden
state of the cell, hn, which is then passed on to the next layer of the network. This
process is shown in Figure 6-6.

Figure 6-6. A simple diagram of a recurrent layer

To explain this in more detail, let’s unroll the process so that we can see exactly how a
single sequence is fed through the layer (Figure 6-7).

174 | Chapter 6: Write

Figure 6-7. How a single sequence flows through a recurrent layer

Here, we represent the recurrent process by drawing a copy of the cell at each time‐
step and show how the hidden state is constantly being updated as it flows through
the cells. We can clearly see how the previous hidden state is blended with the current
sequential data point (i.e., the current embedded word vector) to produce the next
hidden state. The output from the layer is the final hidden state of the cell, after each
word in the input sequence has been processed. It’s important to remember that all of
the cells in this diagram share the same weights (as they are really the same cell).
There is no difference between this diagram and Figure 6-6; it’s just a different way of
drawing the mechanics of a recurrent layer.

Your First LSTM Network | 175

The fact that the output from the cell is called a hidden state is an
unfortunate naming convention—it’s not really hidden, and you
shouldn’t think of it as such. Indeed, the last hidden state is the
overall output from the layer, and we will be making use of the fact
that we can access the hidden state at each individual timestep later
in this chapter.

The LSTM Cell
Now that we have seen how a generic recurrent layer works, let’s take a look inside an
individual LSTM cell.

The job of the LSTM cell is to output a new hidden state, ht, given its previous hidden
state, ht–1, and the current word embedding, xt. To recap, the length of ht is equal to
the number of units in the LSTM. This is a parameter that is set when you define the
layer and has nothing to do with the length of the sequence. Make sure you do not
confuse the term cell with unit. There is one cell in an LSTM layer that is defined by
the number of units it contains, in the same way that the prisoner cell from our ear‐
lier story contained many prisoners. We often draw a recurrent layer as a chain of
cells unrolled, as it helps to visualize how the hidden state is updated at each timestep.

An LSTM cell maintains a cell state, Ct, which can be thought of as the cell’s internal
beliefs about the current status of the sequence. This is distinct from the hidden state,
ht, which is ultimately output by the cell after the final timestep. The cell state is the
same length as the hidden state (the number of units in the cell).

Let’s look more closely at a single cell and how the hidden state is updated
(Figure 6-8).

176 | Chapter 6: Write

Figure 6-8. An LSTM cell

The hidden state is updated in six steps:

1. The hidden state of the previous timestep, ht–1, and the current word embedding,
xt, are concatenated and passed through the forget gate. This gate is simply a
dense layer with weights matrix Wf, bias bf, and a sigmoid activation function.
The resulting vector, ft, has a length equal to the number of units in the cell and
contains values between 0 and 1 that determine how much of the previous cell
state, Ct–1, should be retained.

2. The concatenated vector is also passed through an input gate which, like the for‐
get gate, is a dense layer with weights matrix Wi, bias bi, and a sigmoid activation
function. The output from this gate, it, has length equal to the number of units in

Your First LSTM Network | 177

the cell and contains values between 0 and 1 that determine how much new
information will be added to the previous cell state, Ct–1.

3. The concatenated vector is passed through a dense layer with weights matrix WC,
bias bC, and a tanh activation function to generate a vector Ct that contains the
new information that the cell wants to consider keeping. It also has length equal
to the number of units in the cell and contains values between –1 and 1.

4. ft and Ct–1 are multiplied element-wise and added to the element-wise multiplica‐
tion of it and Ct. This represents forgetting parts of the previous cell state and
then adding new relevant information to produce the updated cell state, Ct.

5. The original concatenated vector is also passed through an output gate: a dense
layer with weights matrix Wo, bias bo, and a sigmoid activation. The resulting vec‐
tor, ot, has a length equal to the number of units in the cell and stores values
between 0 and 1 that determine how much of the updated cell state, Ct, to output
from the cell.

6. ot is multiplied element-wise with the updated cell state Ct after a tanh activation
has been applied to produce the new hidden state, ht.

The code to build the LSTM network is given in Example 6-3.

Example 6-3. Building the LSTM network

from keras.layers import Dense, LSTM, Input, Embedding, Dropout
from keras.models import Model
from keras.optimizers import RMSprop

n_units = 256
embedding_size = 100

text_in = Input(shape = (None,))
x = Embedding(total_words, embedding_size)(text_in)
x = LSTM(n_units)(x)
x = Dropout(0.2)(x)
text_out = Dense(total_words, activation = 'softmax')(x)

model = Model(text_in, text_out)

opti = RMSprop(lr = 0.001)
model.compile(loss='categorical_crossentropy', optimizer=opti)

epochs = 100
batch_size = 32
model.fit(X, y, epochs=epochs, batch_size=batch_size, shuffle = True)

178 | Chapter 6: Write

Generating New Text
Now that we have compiled and trained the LSTM network, we can start to use it to
generate long strings of text by applying the following process:

1. Feed the network with an existing sequence of words and ask it to predict the fol‐
lowing word.

2. Append this word to the existing sequence and repeat.

The network will output a set of probabilities for each word that we can sample from.
Therefore, we can make the text generation stochastic, rather than deterministic.
Moreover, we can introduce a temperature parameter to the sampling process to
indicate how deterministic we would like the process to be.

This is achieved with the code in Example 6-4.

Example 6-4. Generating text with an LSTM network

def sample_with_temp(preds, temperature=1.0):
 # helper function to sample an index from a probability array
 preds = np.asarray(preds).astype('float64')
 preds = np.log(preds) / temperature
 exp_preds = np.exp(preds)
 preds = exp_preds / np.sum(exp_preds)
 probs = np.random.multinomial(1, preds, 1)
 return np.argmax(probs)

def generate_text(seed_text, next_words, model, max_sequence_len, temp):
 output_text = seed_text
 seed_text = start_story + seed_text

 for _ in range(next_words):
 token_list = tokenizer.texts_to_sequences([seed_text])[0]
 token_list = token_list[-max_sequence_len:]
 token_list = np.reshape(token_list, (1, max_sequence_len))

 probs = model.predict(token_list, verbose=0)[0]
 y_class = sample_with_temp(probs, temperature = temp)

 output_word = tokenizer.index_word[y_class] if y_class > 0 else ''

 if output_word == "|":
 break

 seed_text += output_word + ' '
 output_text += output_word + ' '

 return output_text

Generating New Text | 179

This function weights the logits with a temperature scaling factor before reap‐
plying the softmax function. A temperature close to zero makes the sampling
more deterministic (i.e., the word with highest probability is very likely to be
chosen), whereas a temperature of 1 means each word is chosen with the proba‐
bility output by the model.

The seed text is a string of words that you would like to give the model to start
the generation process (it can be blank). This is prepended with the block of
characters we use to indicate the start of a story (||||||||||||||||||||).

The words are converted to a list of tokens.

Only the last max_sequence_len tokens are kept. The LSTM layer can accept any
length of sequence as input, but the longer the sequence is the more time it will
take to generate the next word, so the sequence length should be capped.

The model outputs the probabilities of each word being next in the sequence.

The probabilities are passed through the sampler to output the next word, para‐
meterized by temperature.

If the output word is the start story token, we stop generating any more words as
this is the model telling us it wants to end this story and start the next one!

Otherwise, we append the new word to the seed text, ready for the next iteration
of the generative process.

Let’s take a look at this in action, at two different temperature values (Figure 6-9).

180 | Chapter 6: Write

Figure 6-9. Example of LSTM-generated passages, at two different temperature values

There are a few things to note about these two passages. First, both are stylistically
similar to a fable from the original training set. They both open with the familiar
statement of the characters in the story, and generally the text within speech marks is
more dialogue-like, using personal pronouns and prepared by the occurrence of the
word said.

Second, the text generated at temperature = 0.2 is less adventurous but more coher‐
ent in its choice of words than the text generated at temperature = 1.0, as lower
temperature values result in more deterministic sampling.

Last, it is clear that neither flows particularly well as a story across multiple sentences,
because the LSTM network cannot grasp the semantic meaning of the words that it is
generating. In order to generate passages that have greater chance of being semanti‐
cally reasonable, we can build a human-assisted text generator, where the model out‐
puts the top 10 words with the highest probabilities and it is then ultimately up to a
human to choose the next word from among this list. This is similar to predictive text
on your mobile phone, where you are given the choice of a few words that might fol‐
low on from what you have already typed.

To demonstrate this, Figure 6-10 shows the top 10 words with the highest probabili‐
ties to follow various sequences (not from the training set).

Generating New Text | 181

Figure 6-10. Distribution of word probabilities following various sequences

The model is able to generate a suitable distribution for the next most likely word
across a range of contexts. For example, even though the model was never told about
parts of speech such as nouns, verbs, adjectives, and prepositions, it is generally able
to separate words into these classes and use them in a way that is grammatically cor‐
rect. It can also guess that the article that begins a story about an eagle is more likely
to be an, rather than a.

The punctuation example from Figure 6-10 shows how the model is also sensitive to
subtle changes in the input sequence. In the first passage (the lion said ,), the model
guesses that speech marks follow with 98% likelihood, so that the clause precedes the
spoken dialogue. However, if we instead input the next word as and, it is able to
understand that speech marks are now unlikely, as the clause is more likely to have
superseded the dialogue and the sentence will more likely continue as descriptive
prose.

182 | Chapter 6: Write

RNN Extensions
The network in the preceding section is a simple example of how an LSTM network
can be trained to learn how to generate text in a given style. In this section we will
explore several extensions to this idea.

Stacked Recurrent Networks
The network we just looked at contained a single LSTM layer, but we can also train
networks with stacked LSTM layers, so that deeper features can be learned from the
text.

To achieve this, we set the return_sequences parameter within the first LSTM layer
to True. This makes the layer output the hidden state from every timestep, rather
than just the final timestep. The second LSTM layer can then use the hidden states
from the first layer as its input data. This is shown in Figure 6-11, and the overall
model architecture is shown in Figure 6-12.

RNN Extensions | 183

Fi
gu

re
 6

-1
1.

 D
ia

gr
am

 o
f a

 m
ul

til
ay

er
 R

N
N

: g
t d

en
ot

es
 h

id
de

n
sta

te
s o

f t
he

 fi
rs

t l
ay

er
 a

nd
 h

t d
en

ot
es

 h
id

de
n

sta
te

s o
f t

he
 se

co
nd

 la
ye

r

184 | Chapter 6: Write

2 Kyunghyun Cho et al., “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical
Machine Translation,” 3 June 2014, https://arxiv.org/abs/1406.1078.

Figure 6-12. A stacked LSTM network

The code to build the stacked LSTM network is given in Example 6-5.

Example 6-5. Building a stacked LSTM network

text_in = Input(shape = (None,))
 embedding = Embedding(total_words, embedding_size)
 x = embedding(text_in)
 x = LSTM(n_units, return_sequences = True)(x)
 x = LSTM(n_units)(x)
 x = Dropout(0.2)(x)
 text_out = Dense(total_words, activation = 'softmax')(x)

 model = Model(text_in, text_out)

Gated Recurrent Units
Another type of commonly used RNN layer is the gated recurrent unit (GRU).2 The
key differences from the LSTM unit are as follows:

1. The forget and input gates are replaced by reset and update gates.

RNN Extensions | 185

https://arxiv.org/abs/1406.1078

2. There is no cell state or output gate, only a hidden state that is output from the
cell.

The hidden state is updated in four steps, as illustrated in Figure 6-13.

Figure 6-13. A single GRU cell

The process is as follows:

1. The hidden state of the previous timestep, ht–1, and the current word embedding,
xt, are concatenated and used to create the reset gate. This gate is a dense layer,
with weights matrix Wr and a sigmoid activation function. The resulting vector,
rt, has a length equal to the number of units in the cell and stores values between
0 and 1 that determine how much of the previous hidden state, ht–1, should be
carried forward into the calculation for the new beliefs of the cell.

2. The reset gate is applied to the hidden state, ht–1, and concatenated with the cur‐
rent word embedding, xt. This vector is then fed to a dense layer with weights
matrix W and a tanh activation function to generate a vector, ht, that stores the

186 | Chapter 6: Write

new beliefs of the cell. It has length equal to the number of units in the cell and
stores values between –1 and 1.

3. The concatenation of the hidden state of the previous timestep, ht–1, and the cur‐
rent word embedding, xt, are also used to create the update gate. This gate is a
dense layer with weights matrix Wz and a sigmoid activation. The resulting vec‐
tor, zt, has length equal to the number of units in the cell and stores values
between 0 and 1, which are used to determine how much of the new beliefs, ht, to
blend into the current hidden state, ht–1.

4. The new beliefs of the cell ht and the current hidden state, ht–1, are blended in a
proportion determined by the update gate, zt, to produce the updated hidden
state, ht, that is output from the cell.

Bidirectional Cells
For prediction problems where the entire text is available to the model at inference
time, there is no reason to process the sequence only in the forward direction—it
could just as well be processed backwards. A bidirectional layer takes advantage of
this by storing two sets of hidden states: one that is produced as a result of the
sequence being processed in the usual forward direction and another that is pro‐
duced when the sequence is processed backwards. This way, the layer can learn from
information both preceding and succeeding the given timestep.

In Keras, this is implemented as a wrapper around a recurrent layer, as shown here:

layer = Bidirectional(GRU(100))

The hidden states in the resulting layer are vectors of length equal to double the num‐
ber of units in the wrapped cell (a concatenation of the forward and backward hidden
states). Thus, in this example the hidden states of the layer are vectors of length 200.

Encoder–Decoder Models
So far, we have looked at using LSTM networks for generating the continuation of an
existing text sequence. We have seen how a single LSTM layer can process the data
sequentially to update a hidden state that represents the layer’s current understanding
of the sequence. By connecting the final hidden state to a dense layer, the network can
output a probability distribution for the next word.

For some tasks, the goal isn’t to predict the single next word in the existing sequence;
instead we wish to predict a completely different sequence of words that is in some
way related to the input sequence. Some examples of this style of task are:

Encoder–Decoder Models | 187

Language translation
The network is fed a text string in the source language and the goal is to output
the text translated into a target language.

Question generation
The network is fed a passage of text and the goal is to generate a viable question
that could be asked about the text.

Text summarization
The network is fed a long passage of text and the goal is to generate a short sum‐
mary of the passage.

For these kinds of problems, we can use a type of network known as an encoder–
decoder. We have already seen one type of encoder–decoder network in the context of
image generation: the variational autoencoder. For sequential data, the encoder–
decoder process works as follows:

1. The original input sequence is summarized into a single vector by the encoder
RNN.

2. This vector is used to initialize the decoder RNN.
3. The hidden state of the decoder RNN at each timestep is connected to a dense

layer that outputs a probability distribution over the vocabulary of words. This
way, the decoder can generate a novel sequence of text, having been initialized
with a representation of the input data produced by the encoder.

This process is shown in Figure 6-14, in the context of translation between English
and German.

188 | Chapter 6: Write

Fi
gu

re
 6

-1
4.

 A
n

en
co

de
r–

de
co

de
r n

et
wo

rk

Encoder–Decoder Models | 189

3 Tong Wang, Xingdi Yuan, and Adam Trischler, “A Joint Model for Question Answering and Question Genera‐
tion,” 5 July 2017, https://arxiv.org/abs/1706.01450.

The final hidden state of the encoder can be thought of as a representation of the
entire input document. The decoder then transforms this representation into sequen‐
tial output, such as the translation of the text into another language, or a question
relating to the document.

During training, the output distribution produced by the decoder at each timestep is
compared against the true next word, to calculate the loss. The decoder doesn’t need
to sample from these distributions to generate words during the training process, as
the subsequent cell is fed with the ground-truth next word, rather than a word sam‐
pled from the previous output distribution. This way of training encoder–decoder
networks is known as teacher forcing. We can imagine that the network is a student
sometimes making erroneous distribution predictions, but no matter what the net‐
work outputs at each timestep, the teacher provides the correct response as input to
the network for the attempt at the next word.

A Question and Answer Generator
We’re now going to put everything together and build a model that can generate
question and answer pairs from a block of text. This project is inspired by the qgen-
workshop TensorFlow codebase and the model proposed by Tong Wang, Xingdi
Yuan, and Adam Trischler.3

The model consists of two parts:

• An RNN that identifies candidate answers from the block of text
• An encoder–decoder network that generates a suitable question, given one of the

candidate answers highlighted by the RNN

For example, consider the following opening to a passage of text about a football
match:

The winning goal was scored by 23-year-old striker Joe Bloggs during the match
between Arsenal and Barcelona .
Arsenal recently signed the striker for 50 million pounds . The next match is in
two weeks time, on July 31st 2005 . "

We would like our first network to be able to identify potential answers such as:

"Joe Bloggs"
"Arsenal"
"Barcelona"
"50 million pounds"
"July 31st 2005"

190 | Chapter 6: Write

https://arxiv.org/abs/1706.01450
http://bit.ly/2EUkIg8
http://bit.ly/2EUkIg8

And our second network should be able to generate a question, given each of the
answers, such as:

"Who scored the winning goal?"
"Who won the match?"
"Who were Arsenal playing?"
"How much did the striker cost?"
"When is the next match?"

Let’s first take a look at the dataset we shall be using in more detail.

A Question-Answer Dataset
We’ll be using the Maluuba NewsQA dataset, which you can download by following
the set of instructions on GitHub.

The resulting train.csv, test.csv, and dev.csv files should be placed in the ./data/qa/
folder inside the book repository. These files all have the same column structure, as
follows:

story_id

A unique identifier for the story.

story_text

The text of the story (e.g., “The winning goal was scored by 23-year-old striker
Joe Bloggs during the match…”).

question

A question that could be asked about the story text (e.g., “How much did the
striker cost?”).

answer_token_ranges

The token positions of the answer in the story text (e.g., 24:27). There might be
multiple ranges (comma separated) if the answer appears multiple times in the
story.

This raw data is processed and tokenized so that is it able to be used as input to our
model. After this transformation, each observation in the training set consists of the
following five features:

document_tokens

The tokenized story text (e.g., [1, 4633, 7, 66, 11, ...]), clipped/padded
with zeros to be of length max_document_length (a parameter).

question_input_tokens

The tokenized question (e.g., [2, 39, 1, 52, ...]), padded with zeros to be of
length max_question_length (another parameter).

A Question and Answer Generator | 191

http://bit.ly/2Ky7uJq

question_output_tokens

The tokenized question, offset by one timestep (e.g., [39, 1, 52, 1866, ...],
padded with zeros to be of length max_question_length.

answer_masks

A binary mask matrix having shape [max_answer_length, max_docu

ment_length]. The [i, j] value of the matrix is 1 if the ith word of the answer
to the question is located at the jth word of the document and 0 otherwise.

answer_labels

A binary vector of length max_document_length (e.g., [0, 1, 1, 0, ...]). The
ith element of the vector is 1 if the ith word of the document could be consid‐
ered part of an answer and 0 otherwise.

Let’s now take a look at the model architecture that is able to generate question-
answer pairs from a given block of text.

Model Architecture
Figure 6-15 shows the overall model architecture that we will be building. Don’t
worry if this looks intimidating! It’s only built from elements that we have seen
already and we will be walking through the architecture step by step in this section.

192 | Chapter 6: Write

Fi
gu

re
 6

-1
5.

 Th
e a

rc
hi

te
ct

ur
e f

or
 ge

ne
ra

tin
g q

ue
sti

on
–a

ns
we

r p
ai

rs
; i

np
ut

 d
at

a
is

sh
ow

n
in

 gr
ee

n
bo

rd
er

ed
 b

ox
es

A Question and Answer Generator | 193

Let’s start by taking a look at the Keras code that builds the part of the model at the
top of the diagram, which predicts if each word in the document is part of an answer
or not. This code is shown in Example 6-6. You can also follow along with the accom‐
panying notebook in the book repository, 06_02_qa_train.ipynb.

Example 6-6. Model architecture for generating question–answer pairs

from keras.layers import Input, Embedding, GRU, Bidirectional, Dense, Lambda
from keras.models import Model, load_model
import keras.backend as K
from qgen.embedding import glove

PARAMETERS

VOCAB_SIZE = glove.shape[0] # 9984
EMBEDDING_DIMENS = glove.shape[1] # 100

GRU_UNITS = 100
DOC_SIZE = None
ANSWER_SIZE = None
Q_SIZE = None

document_tokens = Input(shape=(DOC_SIZE,), name="document_tokens")

embedding = Embedding(input_dim = VOCAB_SIZE, output_dim = EMBEDDING_DIMENS
 , weights=[glove], mask_zero = True, name = 'embedding')
document_emb = embedding(document_tokens)

answer_outputs = Bidirectional(GRU(GRU_UNITS, return_sequences=True)
 , name = 'answer_outputs')(document__emb)
answer_tags = Dense(2, activation = 'softmax'
 , name = 'answer_tags')(answer_outputs)

The document tokens are provided as input to the model. Here, we use the vari‐
able DOC_SIZE to describe the size of this input, but the variable is actually set to
None. This is because the architecture of the model isn’t dependent on the length
of the input sequence—the number of cells in the layer will adapt to equal the
length of the input sequence, so we don’t need to specify it explicitly.

The embedding layer is initialized with GloVe word vectors (explained in the fol‐
lowing sidebar).

The recurrent layer is a bidirectional GRU that returns the hidden state at each
timestep.

194 | Chapter 6: Write

The output Dense layer is connected to the hidden state at each timestep and has
only two units, with a softmax activation, representing the probability that each
word is part of an answer (1) or is not part of an answer (0).

GloVe Word Vectors
The embedding layer is initialized with a set of pretrained word embeddings, rather
than random vectors as we have seen previously. These word vectors have been cre‐
ated as part of the Stanford GloVe (“Global Vectors”) project, which uses unsuper‐
vised learning to obtain representative vectors for a large set of words.

These vectors have many beneficial properties, such as the similarity of vectors
between connected words. For example, the vector between embeddings for the
words man and woman is approximately the same as the vector between the words
king and queen. It is as if the gender of the word is encoded into the latent space in
which the word vectors exist. Initializing an embedding layer with GloVe is often bet‐
ter than training from scratch because a lot of the hard work of capturing the repre‐
sentation of a word has already been achieved by the GloVe training process. Your
algorithm can then tweak the word embeddings to suit the particular context of your
machine learning problem.

To work with the GloVe word vectors within this project, download the file glove.6B.
100d.txt (6 billion words each with an embedding of length 100) from the GloVe
project website and then run the following Python script from the book repository to
trim this file to only include words that are present in the training corpus:

python ./utils/write.py

The second part of the model is the encoder–decoder network that takes a given
answer and tries to formulate a matching question (the bottom part of Figure 6-15).

The Keras code for this part of the network is given in Example 6-7.

Example 6-7. Model architecture for the encoder–decoder network that formulates a
question given an answer

encoder_input_mask = Input(shape=(ANSWER_SIZE, DOC_SIZE)
 , name="encoder_input_mask")
encoder_inputs = Lambda(lambda x: K.batch_dot(x[0], x[1])
 , name="encoder_inputs")([encoder_input_mask, answer_outputs])
encoder_cell = GRU(2 * GRU_UNITS, name = 'encoder_cell')(encoder_inputs)

decoder_inputs = Input(shape=(Q_SIZE,), name="decoder_inputs")
decoder_emb = embedding(decoder_inputs)
decoder_emb.trainable = False
decoder_cell = GRU(2 * GRU_UNITS, return_sequences = True, name = 'decoder_cell')

A Question and Answer Generator | 195

https://stanford.io/2Wh3Ndv

decoder_states = decoder_cell(decoder_emb, initial_state = [encoder_cell])

decoder_projection = Dense(VOCAB_SIZE, name = 'decoder_projection'
 , activation = 'softmax', use_bias = False)
decoder_outputs = decoder_projection(decoder_states)

total_model = Model([document_tokens, decoder_inputs, encoder_input_mask]
 , [answer_tags, decoder_outputs])
answer_model = Model(document_tokens, [answer_tags])
decoder_initial_state_model = Model([document_tokens, encoder_input_mask]
 , [encoder_cell])

The answer mask is passed as an input to the model—this allows us to pass the
hidden states from a single answer range through to the encoder–decoder. This is
achieved using a Lambda layer.

The encoder is a GRU layer that is fed the hidden states for the given answer range
as input data.

The input data to the decoder is the question matching the given answer range.

The question word tokens are passed through the same embedding layer used in
the answer identification model.

The decoder is a GRU layer and is initialized with the final hidden state from the
encoder.

The hidden states of the decoder are passed through a Dense layer to generate a
distribution over the entire vocabulary for the next word in the sequence.

This completes our network for question–answer pair generation. To train the net‐
work, we pass the document text, question text, and answer masks as input data in
batches and minimize the cross-entropy loss on both the answer position prediction
and question word generation, weighted equally.

Inference
To test the model on an input document sequence that it has never seen before, we
need to run the following process:

1. Feed the document string to the answer generator to produce sample positions
for answers in the document.

2. Choose one of these answer blocks to carry forward to the encoder–decoder
question generator (i.e., create the appropriate answer mask).

196 | Chapter 6: Write

3. Feed the document and answer mask to the encoder to generate the initial state
for the decoder.

4. Initialize the decoder with this initial state and feed in the <START> token to gen‐
erate the first word of the question. Continue this process, feeding in generated
words one by one until the <END> token is predicted by the model.

As discussed previously, during training the model uses teacher forcing to feed the
ground-truth words (rather than the predicted next words) back into the decoder
cell. However during inference the model must generate a question by itself, so we
want to be able to feed the predicted words back into the decoder cell while retaining
its hidden state.

One way we can achieve this is by defining an additional Keras model
(question_model) that accepts the current word token and current decoder hidden
state as input, and outputs the predicted next word distribution and updated decoder
hidden state. This is shown in Example 6-8.

Example 6-8. Inference models

decoder_inputs_dynamic = Input(shape=(1,), name="decoder_inputs_dynamic")
decoder_emb_dynamic = embedding(decoder_inputs_dynamic)
decoder_init_state_dynamic = Input(shape=(2 * GRU_UNITS,)
 , name = 'decoder_init_state_dynamic')
decoder_states_dynamic = decoder_cell(decoder_emb_dynamic
 , initial_state = [decoder_init_state_dynamic])
decoder_outputs_dynamic = decoder_projection(decoder_states_dynamic)

question_model = Model([decoder_inputs_dynamic, decoder_init_state_dynamic]
 , [decoder_outputs_dynamic, decoder_states_dynamic])

We can then use this model in a loop to generate the output question word by word,
as shown in Example 6-9.

Example 6-9. Generating question–answer pairs from a given document

test_data_gen = test_data()
batch = next(test_data_gen)
answer_preds = answer_model.predict(batch["document_tokens"])

idx = 0
start_answer = 37
end_answer = 39

answers = [[0] * len(answer_preds[idx])]
for i in range(start_answer, end_answer + 1):
 answers[idx][i] = 1

A Question and Answer Generator | 197

answer_batch = expand_answers(batch, answers)

next_decoder_init_state = decoder_initial_state_model.predict(
 [answer_batch['document_tokens'][[idx]], answer_batch['answer_masks'][[idx]]])

word_tokens = [START_TOKEN]
questions = [look_up_token(START_TOKEN)]

ended = False

while not ended:

 word_preds, next_decoder_init_state = question_model.predict(
 [word_tokens, next_decoder_init_state])

 next_decoder_init_state = np.squeeze(next_decoder_init_state, axis = 1)
 word_tokens = np.argmax(word_preds, 2)[0]

 questions.append(look_up_token(word_tokens[0]))

 if word_tokens[0] == END_TOKEN:
 ended = True

questions = ' '.join(questions)

Model Results
Sample results from the model are shown in Figure 6-16 (see also the accompanying
notebook in the book repository, 06_03_qa_analysis.ipynb). The chart on the right
shows the probability of each word in the document forming part of an answer,
according to the model. These answer phrases are then fed to the question generator
and the output of this model is shown on the lefthand side of the diagram (“Predicted
Question”).

First, notice how the answer generator is able to accurately identify which words in
the document are most likely to be contained in an answer. This is already quite
impressive given that it has never seen this text before and also may not have seen
certain words from the document that are included in the answer, such as Bloggs. It is
able to understand from the context that this is likely to be the surname of a person
and therefore likely to form part of an answer.

198 | Chapter 6: Write

Figure 6-16. Sample results from the model

The encoder extracts the context from each of these possible answers, so that the
decoder is able to generate suitable questions. It is remarkable that the encoder is able
to capture that the person mentioned in the first answer, 23-year-old striker Joe Bloggs,
would probably have a matching question relating to his goal-scoring abilities, and is
able to pass this context on to the decoder so that it can generate the question “who
scored the <UNK> ?” rather than, for example, “who is the president ?”

The decoder has finished this question with the tag <UNK>, but not because it
doesn’t know what to do next—it is predicting that the word that follows is likely to
be from outside the core vocabulary. We shouldn’t be surprised that the model resorts
to using the tag <UNK> in this context, as many of the niche words in the original
corpus would be tokenized this way.

We can see that in each case, the decoder chooses the correct “type” of question—
who, how much, or when—depending on the type of answer. There are still some
problems though, such as asking how much money did he lose ? rather than how much

A Question and Answer Generator | 199

4 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly, “Pointer Networks,” 9 July 2015, https://arxiv.org/abs/
1506.03134.

5 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural Machine Translation by Jointly Learning to
Align and Translate,” 1 September 2014, https://arxiv.org/abs/1409.0473.

money was paid for the striker ?. This is understandable, as the decoder only has the
final encoder state to work with and cannot reference the original document for extra
information.

There are several extensions to encoder–decoder networks that improve the accuracy
and generative power of the model. Two of the most widely used are pointer networks4

and attention mechanisms.5 Pointer networks give the model the ability to “point” at
specific words in the input text to include in the generated question, rather than only
relying on the words in the known vocabulary. This helps to solve the <UNK> prob‐
lem mentioned earlier. We shall explore attention mechanisms in detail in the next
chapter.

Summary
In this chapter we have seen how recurrent neural networks can be applied to gener‐
ate text sequences that mimic a particular style of writing, and also generate plausible
question–answer pairs from a given document.

We explored two different types of recurrent layer, long short-term memory and
GRU, and saw how these cells can be stacked or made bidirectional to form more
complex network architectures. The encoder–decoder architecture introduced in this
chapter is an important generative tool as it allows sequence data to be condensed
into a single vector that can then be decoded into another sequence. This is applicable
to a range of problems aside from question–answer pair generation, such as transla‐
tion and text summarization.

In both cases we have seen how it is important to understand how to transform
unstructured text data to a structured format that can be used with recurrent neural
network layers. A good understanding of how the shape of the tensor changes as data
flows through the network is also pivotal to building successful networks, and recur‐
rent layers require particular care in this regard as the time dimension of sequential
data adds additional complexity to the transformation process.

In the next chapter we will see how many of the same ideas around RNNs can be
applied to another type of sequential data: music.

200 | Chapter 6: Write

https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/1506.03134
https://arxiv.org/abs/1409.0473

CHAPTER 7

Compose

Alongside visual art and creative writing, musical composition is another core act of
creativity that we consider to be uniquely human.

For a machine to compose music that is pleasing to our ear, it must master many of
the same technical challenges that we saw in the previous chapter in relation to text.
In particular, our model must be able to learn from and re-create the sequential struc‐
ture of music and must also be able to choose from a discrete set of possibilities for
subsequent notes.

However, musical generation presents additional challenges that are not required for
text generation, namely pitch and rhythm. Music is often polyphonic—that is, there
are several streams of notes played simultaneously on different instruments, which
combine to create harmonies that are either dissonant (clashing) or consonant (har‐
monious). Text generation only requires us to handle a single stream of text, rather
than the parallel streams of chords that are present in music.

Also, text generation can be handled one word at a time. We must consider carefully
if this is an appropriate way to process musical data, as much of the interest that
stems from listening to music is in the interplay between different rhythms across the
ensemble. A guitarist might play a flurry of quicker notes while the pianist holds a
longer sustained chord, for example. Therefore, generating music note by note is
complex, because we often do not want all the instruments to change note
simultaneously.

We will start this chapter by simplifying the problem to focus on music generation for
a single (monophonic) line of music. We will see that many of the RNN techniques
from the previous chapter on text generation can also be used for music generation as
the two tasks share many common themes. This chapter will also introduce the atten‐
tion mechanism that will allow us to build RNNs that are able to choose which

201

previous notes to focus on in order to predict which notes will appear next. Lastly,
we’ll tackle the task of polyphonic music generation and explore how we can deploy
an architecture based around GANs to create music for multiple voices.

Preliminaries
Anyone tackling the task of music generation must first have a basic understanding of
musical theory. In this section we’ll go through the essential notation required to read
music and how we can represent this numerically, in order to transform music into
the input data required to train a generative model.

We’ll work through the notebook 07_01_notation_compose.ipynb in the book reposi‐
tory. Another excellent resource for getting started with music generation using
Python is Sigurður Skúli’s blog post and accompanying GitHub repository.

The raw dataset that we shall be using is a set of MIDI files for the Cello Suites by J.S.
Bach. You can use any dataset you wish, but if you want to work with this dataset, you
can find instructions for downloading the MIDI files in the notebook.

To view and listen to the music generated by the model, you’ll need some software
that can produce musical notation. MuseScore is a great tool for this purpose and can
be downloaded for free.

Musical Notation
We’ll be using the Python library music21 to load the MIDI files into Python for pro‐
cessing. Example 7-1 shows how to load a MIDI file and visualize it (Figure 7-1), both
as a score and as structured data.

Example 7-1. Importing a MIDI file

from music21 import converter

dataset_name = 'cello'
filename = 'cs1-2all'
file = "./data/{}/{}.mid".format(dataset_name, filename)

original_score = converter.parse(file).chordify()

202 | Chapter 7: Compose

http://bit.ly/2XtmRXr
http://bit.ly/2I07hgv
https://musescore.org

Fi
gu

re
 7

-1
. M

us
ica

l n
ot

at
io

n

Preliminaries | 203

We use the chordify method to squash all simultaneously played notes into chords
within a single part, rather than them being split between many parts. Since this piece
is performed by one instrument (a cello), we are justified in doing this, though some‐
times we may wish to keep the parts separate to generate music that is polyphonic in
nature. This presents additional challenges that we shall tackle later on in this chapter.

The code in Example 7-2 loops through the score and extracts the pitch and duration
for each note (and rest) in the piece into two lists. Individual notes in chords are sep‐
arated by a dot, so that the whole chord can be stored as a single string. The number
after each note name indicates the octave that the note is in—since the note names (A
to G) repeat, this is needed to uniquely identify the pitch of the note. For example, G2
is an octave below G3.

Example 7-2. Extracting the data

notes = []
durations = []

for element in original_score.flat:

 if isinstance(element, chord.Chord):
 notes.append('.'.join(n.nameWithOctave for n in element.pitches))
 durations.append(element.duration.quarterLength)

 if isinstance(element, note.Note):
 if element.isRest:
 notes.append(str(element.name))
 durations.append(element.duration.quarterLength)
 else:
 notes.append(str(element.nameWithOctave))
 durations.append(element.duration.quarterLength)

The output from this process is shown in Table 7-1.

The resulting dataset now looks a lot more like the text data that we have dealt with
previously. The words are the pitches, and we should try to build a model that pre‐
dicts the next pitch, given a sequence of previous pitches. The same idea can also be
applied to the list of durations. Keras gives us the flexibility to be able to build a
model that can handle the pitch and duration prediction simultaneously.

204 | Chapter 7: Compose

Table 7-1. The pitch and duration of each note, stored as lists

Duration Pitch
0.25 B3
1.0 G2.D3.B3
0.25 B3
0.25 A3
0.25 G3
0.25 F#3
0.25 G3
0.25 D3
0.25 E3
0.25 F#3
0.25 G3
0.25 A3

Your First Music-Generating RNN
To create the dataset that will train the model, we first need to give each pitch and
duration an integer value (Figure 7-2), exactly as we have done previously for each
word in a text corpus. It doesn’t matter what these values are as we shall be using an
embedding layer to transform the integer lookup values into vectors.

Figure 7-2. The integer lookup dictionaries for pitch and duration

We then create the training set by splitting the data into small chunks of 32 notes,
with a response variable of the next note in the sequence (one-hot encoded), for both
pitch and duration. One example of this is shown in Figure 7-3.

Your First Music-Generating RNN | 205

1 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural Machine Translation by Jointly Learning to
Align and Translate,” 1 September 2014, https://arxiv.org/abs/1409.0473.

Figure 7-3. The inputs and outputs for the musical generative model

The model we will be building is a stacked LSTM network with an attention mecha‐
nism. In the previous chapter, we saw how we are able to stack LSTM layers by pass‐
ing the hidden states of the previous layer as input to the next LSTM layer. Stacking
layers in this way gives the model freedom to learn more sophisticated features from
the data. In this section we will introduce the attention mechanism1 that now forms
an integral part of most sophisticated sequential generative models. It has ultimately
given rise to the transformer, a type of model based entirely on attention that doesn’t
even require recurrent or convolutional layers. We will introduce the transformer
architecture in more detail in Chapter 9.

For now, let’s focus on incorporating attention into a stacked LSTM network to try to
predict the next note, given a sequence of previous notes.

Attention
The attention mechanism was originally applied to text translation problems—in par‐
ticular, translating English sentences into French.

In the previous chapter, we saw how encoder–decoder networks can solve this kind of
problem, by first passing the input sequence through an encoder to generate a

206 | Chapter 7: Compose

https://arxiv.org/abs/1409.0473

context vector, then passing this vector through the decoder network to output the
translated text. One observed problem with this approach is that the context vector
can become a bottleneck. Information from the start of the source sentence can
become diluted by the time it reaches the context vector, especially for long sentences.
Therefore these kinds of encoder–decoder networks sometimes struggle to retain all
the required information for the decoder to accurately translate the source.

As an example, suppose we want the model to translate the following sentence into
German: I scored a penalty in the football match against England.

Clearly, the meaning of the entire sentence would be changed by replacing the word
scored with missed. However, the final hidden state of the encoder may not be able to
sufficiently retain this information, as the word scored appears early in the sentence.

The correct translation of the sentence is: Ich habe im Fußballspiel gegen England
einen Elfmeter erzielt.

If we look at the correct German translation, we can see that the word for scored
(erzielt) actually appears right at the end of the sentence! So not only would the model
have to retain the fact that the penalty was scored rather than missed through the
encoder, but also all the way through the decoder as well.

Exactly the same principle is true in music. To understand what note or sequence of
notes is likely to follow from a particular given passage of music, it may be crucial to
use information from far back in the sequence, not just the most recent information.
For example, take the opening passage of the Prelude to Bach’s Cello Suite No. 1
(Figure 7-4).

Figure 7-4. The opening of Bach’s Cello Suite No. 1 (Prelude)

What note do you think comes next? Even if you have no musical training you may
still be able to guess. If you said G (the same as the very first note of the piece), then
you’d be correct. How did you know this? You may have been able to see that every
bar and half bar starts with the same note and used this information to inform your
decision. We want our model to be able to perform the same trick—in particular, we
want it to not only care about the hidden state of the network now, but also to pay

Your First Music-Generating RNN | 207

particular attention to the hidden state of the network eight notes ago, when the pre‐
vious low G was registered.

The attention mechanism was proposed to solve this problem. Rather than only using
the final hidden state of the encoder RNN as the context vector, the attention mecha‐
nism allows the model to create the context vector as a weighted sum of the hidden
states of the encoder RNN at each previous timestep. The attention mechanism is just
a set of layers that converts the previous encoder hidden states and current decoder
hidden state into the summation weights that generate the context vector.

If this sounds confusing, don’t worry! We’ll start by seeing how to apply an attention
mechanism after a simple recurrent layer (i.e., to solve the problem of predicting the
next note of Bach’s Cello Suite No. 1), before we see how this extends to encoder–
decoder networks, where we want to predict a whole sequence of subsequent notes,
rather than just one.

Building an Attention Mechanism in Keras
First, let’s remind ourselves of how a standard recurrent layer can be used to predict
the next note given a sequence of previous notes. Figure 7-5 shows how the input
sequence (x1,…,xn) is fed to the layer one step at a time, continually updating the hid‐
den state of the layer. The input sequence could be the note embeddings, or the hid‐
den state sequence from a previous recurrent layer. The output from the recurrent
layer is the final hidden state, a vector with the same length as the number of units.
This can then be fed to a Dense layer with softmax output to predict a distribution for
the next note in the sequence.

Figure 7-5. A recurrent layer for predicting the next note in a sequence, without
attention

Figure 7-6 shows the same network, but this time with an attention mechanism
applied to the hidden states of the recurrent layer.

208 | Chapter 7: Compose

Figure 7-6. A recurrent layer for predicting the next note in a sequence, with attention

Let’s walk through this process step by step:

1. First, each hidden state hj (a vector of length equal to the number of units in the
recurrent layer) is passed through an alignment function a to generate a scalar, ej.
In this example, this function is simply a densely connected layer with one output
unit and a tanh activation function.

2. Next, the softmax function is applied to the vector e1,…,en to produce the vector
of weights α1,…,αn.

Your First Music-Generating RNN | 209

3. Lastly, each hidden state vector hj is multiplied by its respective weight αj, and the
results are then summed to give the context vector c (thus c has the same length
as a hidden state vector).

The context vector can then be passed to a Dense layer with softmax output as usual,
to output a distribution for the potential next note.

This network can be built in Keras as shown in Example 7-3.

Example 7-3. Building the RNN with attention

notes_in = Input(shape = (None,))
durations_in = Input(shape = (None,))

x1 = Embedding(n_notes, embed_size)(notes_in)
x2 = Embedding(n_durations, embed_size)(durations_in)

x = Concatenate()([x1,x2])

x = LSTM(rnn_units, return_sequences=True)(x)
x = LSTM(rnn_units, return_sequences=True)(x)

e = Dense(1, activation='tanh')(x)
e = Reshape([-1])(e)

alpha = Activation('softmax')(e)

c = Permute([2, 1])(RepeatVector(rnn_units)(alpha))
c = Multiply()([x, c])
c = Lambda(lambda xin: K.sum(xin, axis=1), output_shape=(rnn_units,))(c)

notes_out = Dense(n_notes, activation = 'softmax', name = 'pitch')(c)
durations_out = Dense(n_durations, activation = 'softmax', name = 'duration')(c)

model = Model([notes_in, durations_in], [notes_out, durations_out])

att_model = Model([notes_in, durations_in], alpha)

opti = RMSprop(lr = 0.001)
model.compile(loss=['categorical_crossentropy', 'categorical_crossentropy'],
 optimizer=opti)

There are two inputs to the network: the sequence of previous note names and
duration values. Notice how the sequence length isn’t specified—the attention
mechanism does not require a fixed-length input, so we can leave this as variable.

The Embedding layers convert the integer values of the note names and durations
into vectors.

210 | Chapter 7: Compose

The vectors are concatenated to form one long vector that will be used as input
into the recurrent layers.

Two stacked LSTM layers are used as the recurrent part of the network. Notice
how we set return_sequences to True to make each layer pass the full sequence
of hidden states to the next layer, rather than just the final hidden state.

The alignment function is just a Dense layer with one output unit and tanh acti‐
vation. We can use a Reshape layer to squash the output to a single vector, of
length equal to the length of the input sequence (seq_length).

The weights are calculated through applying a softmax activation to the align‐
ment values.

To get the weighted sum of the hidden states, we need to use a RepeatVector
layer to copy the weights rnn_units times to form a matrix of shape
[rnn_units, seq_length], then transpose this matrix using a Permute layer to
get a matrix of shape [seq_length, rnn_units]. We can then multiply this
matrix pointwise with the hidden states from the final LSTM layer, which also
has shape [seq_length, rnn_units]. Finally, we use a Lambda layer to perform
the summation along the seq_length axis, to give the context vector of length
rnn_units.

The network has a double-headed output, one for the next note name and one
for the next note length.

The final model accepts the previous note names and note durations as input and
outputs a distribution for the next note name and next note duration.

We also create a model that outputs the alpha layer vector, so that we will be able
to understand how the network is attributing weights to previous hidden states.

The model is compiled using categorical_crossentropy for both the note
name and note duration output heads, as this is a multiclass classification
problem.

A diagram of the full model built in Keras is shown in Figure 7-7.

Your First Music-Generating RNN | 211

Figure 7-7. The LSTM model with attention for predicting the next note in a sequence

You can train this LSTM with attention by running the notebook called
07_02_lstm_compose_train.ipynb in the book repository.

212 | Chapter 7: Compose

Analysis of the RNN with Attention
The following analysis can be produced by running the notebook 07_03_lstm_com‐
pose_analysis.ipynb from the book repository, once you have trained your network.

We’ll start by generating some music from scratch, by seeding the network with only
a sequence of <START> tokens (i.e., we are telling the model to assume it is starting
from the beginning of the piece). Then we can generate a musical passage using the
same iterative technique we used in Chapter 6 for generating text sequences, as
follows:

1. Given the current sequence (of note names and note durations), the model pre‐
dicts two distributions, for the next note name and duration.

2. We sample from both of these distributions, using a temperature parameter to
control how much variation we would like in the sampling process.

3. The chosen note is stored and its name and duration are appended to the respec‐
tive sequences.

4. If the length of the sequence is now greater than the sequence length that the
model was trained on, we remove one element from the start of the sequence.

5. The process repeats with the new sequence, and so on, for as many notes as we
wish to generate.

Figure 7-8 shows examples of music generated from scratch by the model at various
epochs of the training process.

Most of our analysis in this section will focus on the note pitch predictions, rather
than rhythms, as for Bach’s Cello Suites the harmonic intricacies are more difficult to
capture and therefore more worthy of investigation. However, you can also apply the
same analysis to the rhythmic predictions of the model, which may be particularly
relevant for other styles of music that you could use to train this model (such as a
drum track).

There are several points to note about the generated passages in Figure 7-8. First, see
how the music is becoming more sophisticated as training progresses. To begin with,
the model plays it safe by sticking to the same group of notes and rhythms. By epoch
10, the model has begun to generate small runs of notes, and by epoch 20 it is pro‐
ducing interesting rhythms and is firmly established in a set key (E-flat major).

Your First Music-Generating RNN | 213

Figure 7-8. Some examples of passages generated by the model when seeded only with a
sequence of <START> tokens; here we use a temperature of 0.5 for the note names and
durations

Second, we can analyze the distribution of note pitches over time by plotting the pre‐
dicted distribution at each timestep as a heatmap. Figure 7-9 shows this heatmap for
the example from epoch 20 in Figure 7-8.

214 | Chapter 7: Compose

Figure 7-9. The distribution of possible next notes over time (at epoch 20): the darker the
square, the more certain the model is that the next note is at this pitch

An interesting point to note here is that the model has clearly learned which notes
belong to particular keys, as there are gaps in the distribution at notes that do not
belong to the key. For example, there is a gray gap along the row for note 54 (corre‐
sponding to Gb/F#). This note is highly unlikely to appear in a piece of music in the
key of E-flat major. Early on in the generation process (the lefthand side of the dia‐
gram) the key is not yet firmly established and therefore there is more uncertainty in
how to choose the next note. As the piece progresses, the model settles on a key and
certain notes become almost certain not to appear. What is remarkable is that the
model hasn’t explicitly decided to set the music in a certain key at the beginning, but
instead is literally making it up as it goes along, trying to choose the note that best fits
with those it has chosen previously.

It is also worth pointing out that the model has learned Bach’s characteristic style of
dropping to a low note on the cello to end a phrase and bouncing back up again to
start the next. See how around note 20, the phrase ends on a low E-flat—it is com‐
mon in the Bach Cello Suites to then return to a higher, more sonorous range of the
instrument for the start of next phrase, which is exactly what the model predicts.
There is a large gray gap between the low E-flat (pitch number 39) and the next note,
which is predicted to be around pitch number 50, rather than continuing to rumble
around the depths of the instrument.

Your First Music-Generating RNN | 215

Lastly, we should check to see if our attention mechanism is working as expected.
Figure 7-10 shows the values of the alpha vector elements calculated by the network
at each point in the generated sequence. The horizontal axis shows the generated
sequence of notes; the vertical axis shows where the attention of the network was
aimed when predicting each note along the horizontal axis (i.e., the alpha vector).
The darker the square, the greater the attention placed on the hidden state corre‐
sponding to this point in the sequence.

Figure 7-10. Each square in the matrix indicates the amount of attention given to the
hidden state of the network corresponding to the note on the vertical axis, at the point of
predicting the note on the horizontal axis; the more red the square, the more attention
was given

216 | Chapter 7: Compose

We can see that for the second note of the piece (B-3 = B-flat), the network chose to
place almost all of its attention on the fact that the first note of the piece was also B-3.
This makes sense; if you know that the first note is a B-flat, you will probably use this
information to inform your decision about the next note.

As we move through the next few notes, the network spreads its attention roughly
equally among previous notes—however, it rarely places any weight on notes more
than six notes ago. Again, this makes sense; there is probably enough information
contained in the previous six hidden states to understand how the phrase should
continue.

There are also examples of where the network has chosen to ignore a certain note
nearby, as it doesn’t add any additional information to its understanding of the
phrase. For example, take a look inside the white box marked in the center of the dia‐
gram, and note how there is a strip of boxes in the middle that cuts through the usual
pattern of looking back at the previous four to six notes. Why would the network
willingly choose to ignore this note when deciding how to continue the phrase?

If you look across to see which note this corresponds to, you can see that it is the first
of three E-3 (E-flat) notes. The model has chosen to ignore this because the note
prior to this is also an E-flat, an octave lower (E-2). The hidden state of the network
at this point will provide ample information for the model to understand that E-flat is
an important note in this passage, and therefore the model does not need to pay
attention to the subsequent higher E-flat, as it doesn’t add any extra information.

Additional evidence that the model has started to understand the concept of an
octave can be seen inside the green box below and to the right. Here the model has
chosen to ignore the low G (G2) because the note prior to this was also a G (G3), an
octave higher. Remember we haven’t told the model anything about which notes are
related through octaves—it has worked this out for itself just by studying the music of
J.S. Bach, which is remarkable.

Attention in Encoder–Decoder Networks
The attention mechanism is a powerful tool that helps the network decide which pre‐
vious states of the recurrent layer are important for predicting the continuation of a
sequence. So far, we have seen this for one-note-ahead predictions. However, we may
also wish to build attention into encoder–decoder networks, where we predict a
sequence of future notes by using an RNN decoder, rather than building up sequen‐
ces one note at a time.

To recap, Figure 7-11 shows how a standard encoder–decoder model for music gen‐
eration might look, without attention—the kind that we introduced in Chapter 6.

Figure 7-12 shows the same network, but with an attention mechanism between the
encoder and the decoder.

Your First Music-Generating RNN | 217

Fi
gu

re
 7

-1
1.

 Th
e s

ta
nd

ar
d

en
co

de
r–

de
co

de
r m

od
el

218 | Chapter 7: Compose

Fi
gu

re
 7

-1
2.

 A
n

en
co

de
r–

de
co

de
r m

od
el

w
ith

 a
tte

nt
io

n

Your First Music-Generating RNN | 219

The attention mechanism works in exactly the same way as we have seen previously,
with one alteration: the hidden state of the decoder is also rolled into the mechanism
so that the model is able to decide where to focus its attention not only through the
previous encoder hidden states, but also from the current decoder hidden state.
Figure 7-13 shows the inner workings of an attention module within an encoder–
decoder framework.

Figure 7-13. An attention mechanism within the context of an encoder-decoder network,
connected to decoder cell i

While there are many copies of the attention mechanism within the encoder–decoder
network, they all share the same weights, so there is no extra overhead in the number
of parameters to be learned. The only change is that now, the decoder hidden state is
rolled into the attention calculations (the red lines in the diagram). This slightly

220 | Chapter 7: Compose

changes the equations to incorporate an extra index (i) to specify the step of the
decoder.

Also notice how in Figure 7-11 we use the final state of the encoder to initialize the
hidden state of the decoder. In an encoder–decoder with attention, we instead initial‐
ize the decoder using the built-in standard initializers for a recurrent layer. The con‐
text vector ci is concatenated with the incoming data yi–1 to form an extended vector
of data into each cell of the decoder. Thus, we treat the context vectors as additional
data to be fed into the decoder.

Generating Polyphonic Music
The RNN with attention mechanism framework that we have explored in this section
works well for single-line (monophonic) music, but could it be adapted to multiline
(polyphonic) music?

The RNN framework is certainly flexible enough to conceive of an architecture
whereby multiple lines of music are generated simultaneously, through a recurrent
mechanism. But as it stands, our current dataset isn’t well set up for this, as we are
storing chords as single entities rather than parts that consist of multiple individual
notes. There is no way for our current RNN to know, for example, that a C-major
chord (C, E, and G) is actually very close to an A-minor chord (A, C, and E)—only
one note would need to change, the G to an A. Instead, it treats both as two distinct
elements to be predicted independently.

Ideally, we would like to design a network that can accept multiple channels of music
as individual streams and learn how these streams should interact with each other to
generate beautiful-sounding music, rather than disharmonious noise.

Doesn’t this sound a bit like generating images? For image generation we have three
channels (red, green, and blue), and we want the network to learn how to combine
these channels to generate beautiful-looking images, rather than random pixelated
noise.

In fact, as we shall see in the next section, we can treat music generation directly as an
image generation problem. This means that instead of using recurrent networks we
can apply the same convolutional-based techniques that worked so well for image
generation problems to music—in particular, GANs.

Before we explore this new architecture, there is just enough time to visit the concert
hall, where a performance is about to begin…

The Musical Organ
The conductor taps his baton twice on the podium. The performance is about to
begin. In front of him sits an orchestra. However, this orchestra isn’t about to launch

The Musical Organ | 221

into a Beethoven symphony or a Tchaikovsky overture. This orchestra composes
original music live during the performance and is powered entirely by a set of players
giving instructions to a huge Musical Organ (MuseGAN for short) in the middle of
the stage, which converts these instructions into beautiful music for the pleasure of
the audience. The orchestra can be trained to generate music in a particular style, and
no two performances are ever the same.

The 128 players in the orchestra are divided into 4 equal sections of 32 players. Each
section gives instructions to the MuseGAN and has a distinct responsibility within
the orchestra.

The style section is in charge of producing the overall musical stylistic flair of the per‐
formance. In many ways, it has the easiest job of all the sections as each player simply
has to generate a single instruction at the start of the concert that is then continually
fed to the MuseGAN throughout the performance.

The groove section has a similar job, but each player produces several instructions:
one for each of the distinct musical tracks that are output by the MuseGAN. For
example, in one concert, each member of the groove section produced five instruc‐
tions, one for each of the vocal, piano, string, bass, and drum tracks. Thus, their job is
to provide the groove for each individual instrumental sound that is then constant
throughout the performance.

The style and groove sections do not change their instructions throughout the piece.
The dynamic element of the performance is provided by the final two sections, which
ensure that the music is constantly changing with each bar that goes by. A bar (or
measure) is a small unit of music that contains a fixed, small number of beats. For
example, if you can count 1, 2, 1, 2 along to a piece of music, then there are two beats
in each bar and you’re probably listening to a march. If you can count 1, 2, 3, 1, 2, 3,
then there are three beats to each bar and you may be listening to a waltz.

The players in the chords section change their instructions at the start of each bar.
This has the effect of giving each bar a distinct musical character, for example,
through a change of chord. The players in the chords section only produce one
instruction per bar that then applies to every instrumental track.

The players in the melody section have the most exhausting job, because they give dif‐
ferent instructions to each instrumental track at the start of every bar throughout the
piece. These players have the most fine-grained control over the music, and this can
therefore be thought of as the section that provides the melodic interest.

This completes the description of the orchestra. We can summarize the responsibili‐
ties of each section as shown in Table 7-2.

222 | Chapter 7: Compose

2 Hao-Wen Dong et al., “MuseGAN: Multi-Track Sequential Generative Adversarial Networks for Symbolic
Music Generation and Accompaniment,” 19 September 2017, https://arxiv.org/abs/1709.06298.

Table 7-2. Sections of the MuseGAN orchestra

Instructions change with each bar? Different instruction per track?
Style Ｘ Ｘ
Groove Ｘ ✓
Chords ✓ Ｘ
Melody ✓ ✓

It is up to the MuseGAN to generate the next bar of music, given the current set of
128 instructions (one from each player). Training the MuseGAN to do this isn’t easy.
Initially the instrument only produces horrendous noise, as it has no way to under‐
stand how it should interpret the instructions to produce bars that are indistinguisha‐
ble from genuine music.

This is where the conductor comes in. The conductor tells the MuseGAN when the
music it is producing is clearly distinguishable from real music, and the MuseGAN
then adapts its internal wiring to be more likely to fool the conductor the next time
around. The conductor and the MuseGAN use exactly the same process as we saw in
Chapter 4, when Di and Gene worked together to continuously improve the photos
of ganimals taken by Gene.

The MuseGAN players tour the world giving concerts in any style where there is suf‐
ficient existing music to train the MuseGAN. In the next section we’ll see how we can
build a MuseGAN using Keras, to learn how to generate realistic polyphonic music.

Your First MuseGAN
The MuseGAN was introduced in the 2017 paper “MuseGAN: Multi-Track Sequential
Generative Adversarial Networks for Symbolic Music Generation and Accompani‐
ment.”2 The authors show how it is possible to train a model to generate polyphonic,
multitrack, multibar music through a novel GAN framework. Moreover, they show
how, by dividing up the responsibilities of the noise vectors that feed the generator,
they are able to maintain fine-grained control over the high-level temporal and track-
based features of the music.

To begin this project, you’ll first need to download the MIDI files that we’ll be using
to train the MuseGAN. We’ll use a dataset of 229 J.S. Bach chorales for four voices,
available on GitHub. Download this dataset and place it inside the data folder of the
book repository, in a folder called chorales. The dataset consists of an array of four
numbers for each timestep: the MIDI note pitches of each of the four voices. A time‐
step in this dataset is equal to a 16th note (a semiquaver). So, for example, in a single

Your First MuseGAN | 223

https://arxiv.org/abs/1709.06298
http://bit.ly/2HYISrC

3 We are making the assumption here that each chorale in the dataset has four beats in each bar, which is rea‐
sonable, and even if this were not the case it would not adversely affect the training of the model.

bar of 4 quarter (crotchet) beats, there would be 16 timesteps. Also, the dataset is
automatically split into train, validation, and test sets. We will be using the train data‐
set to train the MuseGAN.

We first need to get the data into the correct shape to feed the GAN. In this example,
we’ll generate two bars of music, so we’ll first extract only the first two bars of each
chorale. Figure 7-14 shows how two bars of raw data are converted into the trans‐
formed dataset that will feed the GAN with the corresponding musical notation.

Each bar consists of 16 timesteps and there are a potential 84 pitches across the 4
tracks. Therefore, a suitable shape for the transformed data is:

[batch_size, n_bars, n_steps_per_bar, n_pitches, n_tracks]

where

n_bars = 2
n_steps_per_bar = 16
n_pitches = 84
n_tracks = 4

To get the data into this shape, we one-hot encode the pitch numbers into a vector of
length 84 and split each sequence of notes into two groups of 16, to replicate 2 bars.3

Now that we have transformed our dataset, let’s take a look at the overall structure of
the MuseGAN, starting with the generator.

224 | Chapter 7: Compose

Figure 7-14. Example of MuseGAN raw data

Your First MuseGAN | 225

The MuseGAN Generator
Like all GANs, the MuseGAN consists of a generator and a critic. The generator tries
to fool the critic with its musical creations, and the critic tries to prevent this from
happening by ensuring it is able to tell the difference between the generator’s forged
Bach chorales and the real thing.

Where the MuseGAN is different is the fact that the generator doesn’t just accept a
single noise vector as input, but instead has four separate inputs, which correspond to
the four sections of the orchestra in the story—chords, style, melody, and groove. By
manipulating each of these inputs independently we can change high-level properties
of the generated music.

A high-level view of the generator is shown in Figure 7-15.

Figure 7-15. High-level diagram of the MuseGAN generator

The diagram shows how the chords and melody inputs are first passed through a
temporal network that outputs a tensor with one of the dimensions equal to the num‐
ber of bars to be generated. The style and groove inputs are not stretched temporally
in this way, as they remain constant through the piece.

Then, to generate a particular bar for a particular track, the relevant vectors from the
chords, style, melody, and groove parts of the network are concatenated to form a
longer vector. This is then passed to a bar generator, which ultimately outputs the
specified bar for the specified track.

By concatenating the generated bars for all tracks, we create a score that can be com‐
pared with real scores by the critic. You can start training the MuseGAN using the
notebook 07_04_musegan_train.ipynb in the book repository. The parameters to the
model are given in Example 7-4.

226 | Chapter 7: Compose

Example 7-4. Defining the MuseGAN

BATCH_SIZE = 64
n_bars = 2
n_steps_per_bar = 16
n_pitches = 84
n_tracks = 4
z_dim = 32

gan = MuseGAN(input_dim = data_binary.shape[1:]
, critic_learning_rate = 0.001
, generator_learning_rate = 0.001
, optimiser = 'adam'
, grad_weight = 10
, z_dim = 32
, batch_size = 64
, n_tracks = 4
, n_bars = 2
, n_steps_per_bar = 16
, n_pitches = 84
)

Chords, Style, Melody, and Groove
Let’s now take a closer look at the four different inputs that feed the generator.

Chords

The chords input is a vector of length 32 (z_dim). We need to output a different vec‐
tor for every bar, as its job is to control the general dynamic nature of the music over
time. Note that while this is labeled chords_input, it really could control anything
about the music that changes per bar, such as general rhythmic style, without being
specific to any particular track.

The way this is achieved is with a neural network consisting of convolutional trans‐
pose layers that we call the temporal network. The Keras code to build this is shown in
Example 7-5.

Example 7-5. Building the temporal network

def conv_t(self, x, f, k, s, a, p, bn):
 x = Conv2DTranspose(
 filters = f
 , kernel_size = k
 , padding = p
 , strides = s
 , kernel_initializer = self.weight_init
)(x)

 if bn:

The MuseGAN Generator | 227

 x = BatchNormalization(momentum = 0.9)(x)

 if a == 'relu':
 x = Activation(a)(x)
 elif a == 'lrelu':
 x = LeakyReLU()(x)

 return x

def TemporalNetwork(self):

 input_layer = Input(shape=(self.z_dim,), name='temporal_input')

 x = Reshape([1,1,self.z_dim])(input_layer)
 x = self.conv_t(x, f=1024, k=(2,1), s=(1,1), a= 'relu',
 p = 'valid', bn = True)
 x = self.conv_t(x, f=self.z_dim, k=(self.n_bars - 1,1)
 , s=(1,1), a= 'relu', p = 'valid', bn = True)

 output_layer = Reshape([self.n_bars, self.z_dim])(x)

 return Model(input_layer, output_layer)

The input to the temporal network is a vector of length 32 (z_dim).

We reshape this vector to a 1 × 1 tensor with 32 channels, so that we can apply
convolutional transpose operations to it.

We apply Conv2DTranspose layers to expand the size of the tensor along one axis,
so that it is the same length as n_bars.

We remove the unnecessary extra dimension with a Reshape layer.

The reason we use convolutional operations rather than requiring two independent
chord vectors into the network is because we would like the network to learn how
one bar should follow on from another in a consistent way. Using a neural network to
expand the input vector along the time axis means the model has a chance to learn
how music flows across bars, rather than treating each bar as completely independent
of the last.

Style

The style input is also a vector of length z_dim. This is carried across to the bar gener‐
ator without any change, as it is independent of the track and bar. In other words, the
bar generator should use this vector to establish consistency between bars and tracks.

228 | Chapter 7: Compose

Melody

The melody input is an array of shape [n_tracks, z_dim]—that is, we provide the
model with a random noise vector of length z_dim for each track.

Each of these vectors is passed through its own copy of the temporal network speci‐
fied previously. Note that the weights of these copies are not shared. The output is
therefore a vector of length z_dim for every track of every bar. This way, the bar gen‐
erator will be able to use this vector to fine-tune the content of every single bar and
track independently.

Groove

The groove input is also an array of shape [n_tracks, z_dim]—a random noise vec‐
tor of length z_dim for each track. Unlike the melody input, these are not passed
through the temporal network but instead are fed straight through to the bar genera‐
tor unchanged, just like the style vector. However, unlike in the style vector there is a
distinct groove input for every track, meaning that we can use these vectors to adjust
the overall output for each track independently.

The Bar Generator
The bar generator converts a vector of length 4 * z_dim to a single bar for a single
track—i.e., a tensor of shape [1, n_steps_per_bar, n_pitches, 1]. The input vec‐
tor is created through the concatenation of the four relevant chord, style, melody, and
groove vectors, each of length z_dim.

The bar generator is a neural network that uses convolutional transpose layers to
expand the time and pitch dimensions. We will be creating one bar generator for
every track, and weights are not shared. The Keras code to build a bar generator is
given in Example 7-6.

Example 7-6. Building the bar generator

def BarGenerator(self):

 input_layer = Input(shape=(self.z_dim * 4,), name='bar_generator_input')

 x = Dense(1024)(input_layer)
 x = BatchNormalization(momentum = 0.9)(x)
 x = Activation('relu')(x)

 x = Reshape([2,1,512])(x)
 x = self.conv_t(x, f=512, k=(2,1), s=(2,1), a= 'relu', p = 'same', bn = True)
 x = self.conv_t(x, f=256, k=(2,1), s=(2,1), a= 'relu', p = 'same', bn = True)
 x = self.conv_t(x, f=256, k=(2,1), s=(2,1), a= 'relu', p = 'same', bn = True)
 x = self.conv_t(x, f=256, k=(1,7), s=(1,7), a= 'relu', p = 'same',bn = True)

The MuseGAN Generator | 229

 x = self.conv_t(x, f=1, k=(1,12), s=(1,12), a= 'tanh', p = 'same', bn = False)

 output_layer = Reshape([1, self.n_steps_per_bar , self.n_pitches ,1])(x)

 return Model(input_layer, output_layer)

The input to the bar generator is a vector of length 4 * z_dim.

After passing through a Dense layer, we reshape the tensor to prepare it for the
convolutional transpose operations.

First we expand the tensor along the timestep axis…

…then along the pitch axis.

The final layer has a tanh activation applied, as we will be using a WGAN-GP
(which requires tanh output activation) to train the network.

The tensor is reshaped to add two extra dimensions of size 1, to prepare it for
concatenation with other bars and tracks.

Putting It All Together
Ultimately the MuseGAN has one single generator that incorporates all of the tempo‐
ral networks and bar generators. This network takes the four input tensors and con‐
verts them into a multitrack, multibar score. The Keras code to build the overall
generator is provided in Example 7-7.

Example 7-7. Building the MuseGAN generator

chords_input = Input(shape=(self.z_dim,), name='chords_input')
style_input = Input(shape=(self.z_dim,), name='style_input')
melody_input = Input(shape=(self.n_tracks, self.z_dim), name='melody_input')
groove_input = Input(shape=(self.n_tracks, self.z_dim), name='groove_input')

CHORDS -> TEMPORAL NETWORK
self.chords_tempNetwork = self.TemporalNetwork()
self.chords_tempNetwork.name = 'temporal_network'
chords_over_time = self.chords_tempNetwork(chords_input) # [n_bars, z_dim]

MELODY -> TEMPORAL NETWORK
melody_over_time = [None] * self.n_tracks # list of n_tracks [n_bars, z_dim] tensors
self.melody_tempNetwork = [None] * self.n_tracks
for track in range(self.n_tracks):
 self.melody_tempNetwork[track] = self.TemporalNetwork()
 melody_track = Lambda(lambda x: x[:,track,:])(melody_input)
 melody_over_time[track] = self.melody_tempNetwork[track](melody_track)

230 | Chapter 7: Compose

CREATE BAR GENERATOR FOR EACH TRACK
self.barGen = [None] * self.n_tracks
for track in range(self.n_tracks):
 self.barGen[track] = self.BarGenerator()

CREATE OUTPUT FOR EVERY TRACK AND BAR
bars_output = [None] * self.n_bars
for bar in range(self.n_bars):
 track_output = [None] * self.n_tracks

 c = Lambda(lambda x: x[:,bar,:]
 , name = 'chords_input_bar_' + str(bar))(chords_over_time)
 s = style_input

 for track in range(self.n_tracks):

 m = Lambda(lambda x: x[:,bar,:])(melody_over_time[track])
 g = Lambda(lambda x: x[:,track,:])(groove_input)

 z_input = Concatenate(axis = 1
 , name = 'total_input_bar_{}_track_{}'.format(bar, track)
)([c,s,m,g])

 track_output[track] = self.barGen[track](z_input)

 bars_output[bar] = Concatenate(axis = -1)(track_output)

generator_output = Concatenate(axis = 1, name = 'concat_bars')(bars_output)

self.generator = Model([chords_input, style_input, melody_input, groove_input]
 , generator_output)

The inputs to the generator are defined.

Pass the chords input through the temporal network.

Pass the melody input through the temporal network.

Create an independent bar generator network for every track.

Loop over the tracks and bars, creating a generated bar for each combination.

Concatenate everything together to form a single output tensor.

The MuseGAN model takes four distinct noise tensors as input and outputs a
generated multitrack, multibar score.

The MuseGAN Generator | 231

The Critic
In comparison to the generator, the critic architecture is much more straightforward
(as is often the case with GANs).

The critic tries to distinguish full multitrack, multibar scores created by the generator
from real excepts from the Bach chorales. It is a convolutional neural network, con‐
sisting mostly of Conv3D layers that collapse the score into a single output prediction.
So far, we have only worked with Conv2D layers, applicable to three-dimensional input
images (width, height, channels). Here we have to use Conv3D layers, which are analo‐
gous to Conv2D layers but accept four-dimensional input tensors (n_bars,
n_steps_per_bar, n_pitches, n_tracks).

Also, we do not use batch normalization layers in the critic as we will be using the
WGAN-GP framework for training the GAN, which forbids this.

The Keras code to build the critic is given in Example 7-8.

Example 7-8. Building the MuseGAN critic

def conv(self, x, f, k, s, a, p):
 x = Conv3D(
 filters = f
 , kernel_size = k
 , padding = p
 , strides = s
 , kernel_initializer = self.weight_init
)(x)

 if a =='relu':
 x = Activation(a)(x)
 elif a== 'lrelu':
 x = LeakyReLU()(x)

 return x

critic_input = Input(shape=self.input_dim, name='critic_input')

x = critic_input
x = self.conv(x, f=128, k = (2,1,1), s = (1,1,1), a = 'lrelu', p = 'valid')
x = self.conv(x, f=128, k = (self.n_bars - 1,1,1)
 , s = (1,1,1), a = 'lrelu', p = 'valid')

x = self.conv(x, f=128, k = (1,1,12), s = (1,1,12), a = 'lrelu', p = 'same')
x = self.conv(x, f=128, k = (1,1,7), s = (1,1,7), a = 'lrelu', p = 'same')
x = self.conv(x, f=128, k = (1,2,1), s = (1,2,1), a = 'lrelu', p = 'same')
x = self.conv(x, f=128, k = (1,2,1), s = (1,2,1), a = 'lrelu', p = 'same')
x = self.conv(x, f=256, k = (1,4,1), s = (1,2,1), a = 'lrelu', p = 'same')

232 | Chapter 7: Compose

x = self.conv(x, f=512, k = (1,3,1), s = (1,2,1), a = 'lrelu', p = 'same')

x = Flatten()(x)

x = Dense(1024, kernel_initializer = self.weight_init)(x)
x = LeakyReLU()(x)
critic_output = Dense(1, activation=None
 , kernel_initializer = self.weight_init)(x)

self.critic = Model(critic_input, critic_output)

The input to the critic is an array of multitrack, multibar scores, each of shape
[n_bars, n_steps_per_bar, n_pitches, n_tracks].

First, we collapse the tensor along the bar axis. We apply Conv3D layers through‐
out the critic as we are working with 4D tensors.

Next, we collapse the tensor along the pitch axis.

Finally, we collapse the tensor along the timesteps axis.

The output is a Dense layer with a single unit and no activation function, as
required by the WGAN-GP framework.

Analysis of the MuseGAN
We can perform some experiments with our MuseGAN by generating a score, then
tweaking some of the input noise parameters to see the effect on the output.

The output from the generator is an array of values in the range [–1, 1] (due to the
tanh activation function of the final layer). To convert this to a single note for each
track, we choose the note with the maximum value over all 84 pitches for each time‐
step. In the original MuseGAN paper the authors use a threshold of 0, as each track
can contain multiple notes; however, in this setting we can simply take the maximum,
to guarantee exactly one note per timestep per track, as is the case for the Bach
chorales.

Figure 7-16 shows a score that has been generated by the model from random nor‐
mally distributed noise vectors (top left). We can find the closest score in the dataset
(by Euclidean distance) and check that our generated score isn’t a copy of a piece of
music that already exists in the dataset—the closest score is shown just below it, and
we can see that it does not resemble our generated score.

Analysis of the MuseGAN | 233

Figure 7-16. Example of a MuseGAN predicted score, showing the closest real score in
the training data and how the generated score is affected by changing the input noise

Let’s now play around with the input noise to tweak our generated score. First, we can
try changing the noise vector—the bottom-left score in Figure 7-16 shows the result.
We can see that every track has changed, as expected, and also that the two bars
exhibit different properties. In the second bar, the baseline is more dynamic and the
top line is higher in pitch than in the first bar.

When we change the style vector (top right), both bars change in a similar way. There
is no great difference in style between the two bars, but the whole passage has
changed from the original generated score.

We can also alter tracks individually, through the melody and groove inputs. In
Figure 7-16 we can see the effect of changing just the melody noise input for the top
line of music. All other parts remain unaffected, but the top-line notes change signifi‐
cantly. Also, we can see a rhythmic change between the two bars in the top line: the
second bar is more dynamic, containing faster notes than the first bar.

234 | Chapter 7: Compose

Lastly, the bottom-right score in the diagram shows the predicted score when we alter
the groove input parameter for only the baseline. Again, all other parts remain unaf‐
fected, but the baseline is different. Moreover, the overall pattern of the baseline
remains similar between bars, as we would expect.

This shows how each of the input parameters can be used to directly influence high-
level features of the generated musical sequence, in much the same way as we were
able to adjust the latent vectors of VAEs and GANs in previous chapters to alter the
appearance of a generated image. One drawback to the model is that the number of
bars to generate must be specified up front. The tackle this, the authors show a exten‐
sion to the model that allows previous bars to be fed in as input, therefore allowing
the model to generate long-form scores by continually feeding the most recent pre‐
dicted bars back into the model as additional input.

Summary
In this chapter we have explored two different kinds of model for music generation: a
stacked LSTM with attention and a MuseGAN.

The stacked LSTM is similar in design to the networks we saw in Chapter 6 for text
generation. Music and text generation share a lot of features in common, and often
similar techniques can be used for both. We enhanced the recurrent network with an
attention mechanism that allows the model to focus on specific previous timesteps in
order to predict the next note and saw how the model was able to learn about con‐
cepts such as octaves and keys, simply by learning to accurately generate the music of
Bach.

Then we saw that generating sequential data does not always require a recurrent
model—the MuseGAN uses convolutions to generate polyphonic musical scores with
multiple tracks, by treating the score as a kind of image where the tracks are individ‐
ual channels of the image. The novelty of the MuseGAN lies in the way the four input
noise vectors (chords, style, melody, and groove) are organized so that it is possible to
maintain full control over high-level features of the music. While the underlying har‐
monization is still not as perfect or varied as Bach, it is a good attempt at what is an
extremely difficult problem to master and highlights the power of GANs to tackle a
wide variety of problems.

In the next chapter we shall introduce one of the most remarkable models developed
in recent years, the world model. In their groundbreaking paper describing it, the
authors show how it possible to build a model that enables a car to drive around a
simulated racetrack by first testing out strategies in its own generated “dream” of the
environment. This allows the car to excel at driving around the track without ever
having attempted the task, as it has already imagined how to do this successfully in its
own imagined world model.

Summary | 235

1 David Ha and Jürgen Schmidhuber, “World Models,” 27 March 2018, https://arxiv.org/abs/1803.10122.

CHAPTER 8

Play

In March 2018, David Ha and Jürgen Schmidhuber published their “World Models”
paper.1 The paper showed how it is possible to train a model that can learn how to
perform a particular task through experimentation within its own generative halluci‐
nated dreams, rather than inside the environment itself. It is an excellent example of
how generative modeling can be used to solve practical problems, when applied
alongside other machine learning techniques such as reinforcement learning.

A key component of the architecture is a generative model that can construct a prob‐
ability distribution for the next possible state, given the current state and action. Hav‐
ing built up an understanding of the underlying physics of the environment through
random movements, the model is then able to train itself from scratch on a new task,
entirely within its own internal representation of the environment. This approach led
to world-best scores for both of the tasks on which it was tested.

In this chapter, we will explore the model in detail and show how it is possible to cre‐
ate your own version of this amazing cutting-edge technology.

Based on the original paper, we will be building a reinforcement learning algorithm
that learns how to drive a car around a racetrack as fast as possible. While we will be
using a 2D computer simulation as our environment, the same technique could also
be applied to real-world scenarios where testing strategies in the live environment is
expensive or infeasible.

Before we start building the model, however, we need to take a closer look at the con‐
cept of reinforcement learning and the OpenAI Gym platform.

237

https://arxiv.org/abs/1803.10122

Reinforcement Learning
Reinforcement learning can be defined as follows:

Reinforcement learning (RL) is a field of machine learning that aims to train an agent
to perform optimally within a given environment, with respect to a particular goal.

While both discriminative modeling and generative modeling aim to minimize a loss
function over a dataset of observations, reinforcement learning aims to maximize the
long-term reward of an agent in a given environment. It is often described as one of
the three major branches of machine learning, alongside supervised learning (predict‐
ing using labeled data) and unsupervised learning (learning structure from unlabeled
data).

Let’s first introduce some key terminology relating to reinforcement learning:

Environment
The world in which the agent operates. It defines the set of rules that govern the
game state update process and reward allocation, given the agent’s previous
action and current game state. For example, if we were teaching a reinforcement
learning algorithm to play chess, the environment would consist of the rules that
govern how a given action (e.g., the move e4) affects the next game state (the new
positions of the pieces on the board) and would also specify how to assess if a
given position is checkmate and allocate the winning player a reward of 1 after
the winning move.

Agent
The entity that takes actions in the environment.

Game state
The data that represents a particular situation that the agent may encounter (also
just called a state), for example, a particular chessboard configuration with
accompanying game information such as which player will make the next move.

Action
A feasible move that an agent can make.

Reward
The value given back to the agent by the environment after an action has been
taken. The agent aims to maximize the long-term sum of its rewards. For exam‐
ple, in a game of chess, checkmating the opponent’s king has a reward of 1 and
every other move has a reward of 0. Other games have rewards constantly awar‐
ded throughout the episode (e.g., points in a game of Space Invaders).

Episode
One run of an agent in the environment; this is also called a rollout.

238 | Chapter 8: Play

Timestep
For a discrete event environment, all states, actions, and rewards are subscripted
to show their value at timestep t.

The relationship between these definitions is shown in Figure 8-1.

Figure 8-1. Reinforcement learning diagram

The environment is first initialized with a current game state, s0. At timestep t, the
agent receives the current game state st and uses this to decide its next best action at,
which it then performs. Given this action, the environment then calculates the next
state st + 1 and reward rt + 1 and passes these back to the agent, for the cycle to begin
again. The cycle continues until the end criterion of the episode is met (e.g., a given
number of timesteps elapse or the agent wins/loses).

How can we design an agent to maximize the sum of rewards in a given environ‐
ment? We could build an agent that contains a set of rules for how to respond to any
given game state. However, this quickly becomes infeasible as the environment
becomes more complex and doesn’t ever allow us to build an agent that has superhu‐
man ability in a particular task, as we are hardcoding the rules. Reinforcement learn‐
ing involves creating an agent that can learn optimal strategies by itself in complex
environments through repeated play—this is what we will be using in this chapter to
build our agent.

I’ll now introduce OpenAI Gym, home of the CarRacing environment that we will
use to simulate a car driving around a track.

OpenAI Gym
OpenAI Gym is a toolkit for developing reinforcement learning algorithms that is
available as a Python library.

Contained within the library are several classic reinforcement learning environments,
such as CartPole and Pong, as well as environments that present more complex chal‐
lenges, such as training an agent to walk on uneven terrain or win an Atari game. All
of the environments provide a step method through which you can submit a given
action; the environment will return the next state and the reward. By repeatedly

Reinforcement Learning | 239

https://gym.openai.com

calling the step method with the actions chosen by the agent, you can play out an
episode in the environment.

In addition to the abstract mechanics of each environment, OpenAI Gym also pro‐
vides graphics that allow you to watch your agent perform in a given environment.
This is useful for debugging and finding areas where your agent could improve.

We will make use of the CarRacing environment within OpenAI Gym. Let’s see how
the game state, action, reward, and episode are defined for this environment:

Game state
A 64 × 64–pixel RGB image depicting an overhead view of the track and car.

Action
A set of three values: the steering direction (–1 to 1), acceleration (0 to 1), and
braking (0 to 1). The agent must set all three values at each timestep.

Reward
A negative penalty of –0.1 for each timestep taken and a positive reward of
1000/N if a new track tile is visited, where N is the total number of tiles that make
up the track.

Episode
The episode ends when either the car completes the track, drives off the edge of
the environment, or 3,000 timesteps have elapsed.

These concepts are shown on a graphical representation of a game state in Figure 8-2.
Note that the car doesn’t see the track from its point of view, but instead we should
imagine an agent floating above the track controlling the car from a bird’s-eye view.

240 | Chapter 8: Play

Figure 8-2. A graphical representation of one game state in the CarRacing environment

World Model Architecture
We’ll now cover a high-level overview of the entire architecture that we will be using
to build the agent that learns through reinforcement learning, before we explore the
detailed steps required to build each component.

The solution consists of three distinct parts, as shown in Figure 8-3, that are trained
separately:

V
A variational autoencoder.

M
A recurrent neural network with a mixture density network (MDN-RNN).

C
A controller.

World Model Architecture | 241

Figure 8-3. World model architecture diagram

The Variational Autoencoder
When you make decisions while driving, you don’t actively analyze every single pixel
in your view—instead, you condense the visual information into a smaller number of
latent entities, such as the straightness of the road, upcoming bends, and your posi‐
tion relative to the road, to inform your next action.

We saw in Chapter 3 how a VAE can take a high-dimensional input image and con‐
dense it into a latent random variable that approximately follows a standard multi‐
variate normal distribution, through minimization of the reconstruction error and
KL divergence. This ensures that the latent space is continuous and that we are able to
easily sample from it to to generate meaningful new observations.

In the car racing example, the VAE condenses the 64 × 64 × 3 (RGB) input image into
a 32-dimensional normally distributed random variable, parameterized by two vari‐
ables, mu and log_var. Here, log_var is the logarithm of the variance of the
distribution.

We can sample from this distribution to produce a latent vector z that represents the
current state. This is passed on to the next part of the network, the MDN-RNN.

242 | Chapter 8: Play

The MDN-RNN
As you drive, each subsequent observation isn’t a complete surprise to you. If the cur‐
rent observation suggests a left turn in the road ahead and you turn the wheel to the
left, you expect the next observation to show that you are still in line with the road.

If you didn’t have this ability, your driving would probably snake all over the road as
you wouldn’t be able see that a slight deviation from the center is going to be worse in
the next timestep unless you do something about it now.

This forward thinking is the job of the MDN-RNN, a network that tries to predict the
distribution of the next latent state based on the previous latent state and the previous
action.

Specifically, the MDN-RNN is an LSTM layer with 256 hidden units followed by a
mixture density network (MDN) output layer that allows for the fact that the next
latent state could actually be drawn from any one of several normal distributions.

The same technique was applied by one of the authors of the “World Models” paper,
David Ha, to a handwriting generation task, as shown in Figure 8-4, to describe the
fact that the next pen point could land in any one of the distinct red areas.

Figure 8-4. MDN for handwriting generation

In the car racing example, we allow for each element of the next observed latent state
to be drawn from any one of five normal distributions.

The Controller
Until this point, we haven’t mentioned anything about choosing an action. That
responsibility lies with the controller.

The controller is a densely connected neural network, where the input is a concatena‐
tion of z (the current latent state sampled from the distribution encoded by the VAE)
and the hidden state of the RNN. The three output neurons correspond to the three
actions (turn, accelerate, brake) and are scaled to fall in the appropriate ranges.

World Model Architecture | 243

http://bit.ly/2Wm9X01

We will need to train the controller using reinforcement learning as there is no train‐
ing dataset that will tell us that a certain action is good and another is bad. Instead, the
agent will need to discover this for itself through repeated experimentation.

As we shall see later in the chapter, the crux of the “World Models” paper is that it
demonstrates how this reinforcement learning can take place within the agent’s own
generative model of the environment, rather than the OpenAI Gym environment. In
other words, it takes place in the agent’s hallucinated version of how the environment
behaves, rather than the real thing.

To understand the different roles of the three components and how they work
together, we can imagine a dialogue between them:

VAE (looking at latest 64 × 64 × 3 observation): This looks like a straight road, with a
slight left bend approaching, with the car facing in the direction of the road (z).

RNN: Based on that description (z) and the fact that the controller chose to accelerate
hard at the last timestep (action), I will update my hidden state so that the next obser‐
vation is predicted to still be a straight road, but with slightly more left turn in view.

Controller: Based on the description from the VAE (z) and the current hidden state
from the RNN (h), my neural network outputs [0.34, 0.8, 0] as the next action.

The action from the controller is then passed to the environment, which returns an
updated observation, and the cycle begins again.

For further information on the model, there is also an excellent interactive explana‐
tion available online.

Setup
We are now ready to start exploring how to build and train this model in Keras. If
you’ve got a high-spec laptop, you can run the solution locally, but I’d recommend
using cloud resources such as Google Cloud Compute Engine for access to powerful
machines that you can use in short bursts.

The following code has been tested on Ubuntu 16.04, so it is spe‐
cific to a Linux terminal.

First install the following libraries:

sudo apt-get install cmake swig python3-dev \
 zlib1g-dev python-opengl mpich xvfb \
 xserver-xephyr vnc4server

Then clone the following repository:

244 | Chapter 8: Play

https://worldmodels.github.io
https://cloud.google.com/compute

git clone https://github.com/AppliedDataSciencePartners/WorldModels.git

As the codebase for this project is stored separately from the book repository, I sug‐
gest creating a separate virtual environment to work in:

mkvirtualenv worldmodels
cd WorldModels
pip install -r requirements.txt

Now you’re good to go!

Training Process Overview
Here’s an overview of the five-step training process:

1. Collect random rollout data Here, the agent does not care about the given task,
but instead simply explores the environment at random. This will be conducted
using OpenAI Gym to simulate multiple episodes and store the observed state,
action, and reward at each timestep. The idea here is to build up a dataset of how
the physics of the environment works, which the VAE can then learn from to
capture the states efficiently as latent vectors. The MDN-RNN can then subse‐
quently learn how the latent vectors evolve over time.

2. Train the VAE Using the randomly collected data, we train a VAE on the observa‐
tion images.

3. Collect data to train the MDN-RNN Once we have a trained VAE, we use it to
encode each of the collected observations into mu and log_var vectors, which are
saved alongside the current action and reward.

4. Train the MDN-RNN We take batches of 100 episodes and load the correspond‐
ing mu, log_var, action, and reward variables at each timestep that were gener‐
ated in step 3. We then sample a z vector from the mu and log_var vectors. Given
the current z vector, action, and reward, the MDN-RNN is then trained to pre‐
dict the subsequent z vector and reward.

5. Train the controller With a trained VAE and RNN, we can now train the control‐
ler to output an action given the current z and hidden state, h, of the RNN. The
controller uses an evolutionary algorithm, CMA-ES (Covariance Matrix Adapta‐
tion Evolution Strategy), as its optimizer. The algorithm rewards matrix weight‐
ings that generate actions that lead to overall high scores on the task, so that
future generations are also likely to inherit this desired behavior.

Let’s now take a closer look at each of these steps in more detail.

Collecting Random Rollout Data
To start collecting data, run the following command from your terminal:

Training Process Overview | 245

bash 01_generate_data.sh <env_name> <parallel_process> <episodes_per_process> \
<render> <action_refresh_rate>

where the parameters are as follows:

<env_name>

The name of the environment used by the make_env function (e.g., car_racing).

<parallel_process>

The number of processes to run (e.g., 8 for an 8-core machine).

<episodes_per_process>

How many episodes each process should run (e.g., 125, so 8 processes would cre‐
ate 1,000 episodes overall).

<max_timesteps>

The maximum number of timesteps per episode (e.g., 300).

<render>

1 to render the rollout process in a window (otherwise 0).

<action_refresh_rate>

The number of timesteps to freeze the current action for before changing. This
prevents the action from changing too rapidly for the car to make progress.

For example, on an 8-core machine, you could run:

bash 01_generate_data.sh car_racing 8 125 300 0 5

This would start 8 processes running in parallel, each simulating 125 episodes, with a
maximum of 300 timesteps each and an action refresh rate of 5 timesteps.

Each process calls the Python file 01_generate_data.py. The key part of the script is
outlined in Example 8-1.

Example 8-1. 01_generate_data.py excerpt

...

DIR_NAME = './data/rollout/'

env = make_env(current_env_name)
s = 0
while s < total_episodes:
 episode_id = random.randint(0, 2**31-1)
 filename = DIR_NAME + str(episode_id)+".npz"
 observation = env.reset()
 env.render()
 t = 0
 obs_sequence = []

246 | Chapter 8: Play

 action_sequence = []
 reward_sequence = []
 done_sequence = []
 reward = -0.1
 done = False

 while t < time_steps:
 if t % action_refresh_rate == 0:
 action = config.generate_data_action(t, env)
 observation = config.adjust_obs(observation)
 obs_sequence.append(observation)
 action_sequence.append(action)
 reward_sequence.append(reward)
 done_sequence.append(done)
 observation, reward, done, info = env.step(action)
 t = t + 1

 print("Episode {} finished after {} timesteps".format(s, t))
 np.savez_compressed(filename
 , obs=obs_sequence
 , action=action_sequence
 , reward = reward_sequence
 , done = done_sequence)
 s = s + 1
env.close()

make_env is a custom function in the repository that creates the appropriate
OpenAI Gym environment. In this case, we are creating the CarRacing environ‐
ment, with a few tweaks. The environment file is stored in the custom_envs
folder.

generate_data_action is a custom function that stores the rules for generating
random actions.

The observations that are returned by the environment are scaled between 0 and
255. We want observations that are scaled between 0 and 1, so this function is
simply a division by 255.

Every OpenAI Gym environment includes a step method. This returns the next
observation, reward, and done flag, given an action.

We save each episode as an individual file inside the ./data/rollout/ directory.

Figure 8-5 shows an excerpt from frames 40 to 59 of one episode, as the car
approaches a corner, alongside the randomly chosen action and reward. Note how
the reward changes to 3.22 as the car rolls over new track tiles but is otherwise –0.1.
Also, the action changes every five frames as the action_refresh_rate is 5.

Collecting Random Rollout Data | 247

Figure 8-5. Frames 40 to 59 of one episode

Training the VAE
We can now build a generative model (a VAE) on this collected data.

Remember, the aim of the VAE is to allow us to collapse one 64 × 64 × 3 image into a
normally distributed random variable, whose distribution is parameterized by two
vectors, mu and log_var. Each of these vectors is of length 32.

To start training the VAE, run the following command from your terminal:

python 02_train_vae.py --new_model [--N] [--epochs]

248 | Chapter 8: Play

where the parameters are as follows:

--new_model

Whether the model should be trained from scratch. Set this flag initially; if it’s not
set, the code will look for a ./vae/vae.json file and continue training a previous
model.

--N (optional)
The number of episodes to use when training the VAE (e.g., 1000—the VAE does
not need to use all the episodes to achieve good results, so to speed up training
you can use only a sample of the episodes).

--epochs (optional)
The number of training epochs (e.g., 3).

The output of the training process should be as shown in Figure 8-6. A file storing the
weights of the trained network is saved to ./vae/vae.json every epoch.

Figure 8-6. Training the VAE

The VAE Architecture
As we have seen previously, the Keras functional API allows us to not only define the
full VAE model that will be trained, but also additional models that reference the
encoder and decoder parts of the trained network separately. These will be useful
when we want to encode a specific image, or decode a given z vector, for example.

In this example, we define four different models on the VAE:

full_model

This is the full end-to-end model that is trained.

encoder

This accepts a 64 × 64 × 3 observation as input and outputs a sampled z vector. If
you run the predict method of this model for the same input multiple times, you

Training the VAE | 249

will get different output, since even though the mu and log_var values are con‐
stant, the randomly sampled z vector will be different each time.

encoder_mu_log_var

This accepts a 64 × 64 × 3 observation as input and outputs the mu and log_var
vectors corresponding to this input. Unlike with the vae_encoder model, if you
run the predict method of this model multiple times, you will always get the
same output: a mu vector of length 32 and a log_var vector of length 32.

decoder

This accepts a z vector as input and returns the reconstructed 64 × 64 × 3 obser‐
vation.

A diagram of the VAE is given in Figure 8-7. You can play around with the VAE
architecture by editing the ./vae/arch.py file. This is where the VAE class and parame‐
ters of the neural network are defined.

250 | Chapter 8: Play

Figure 8-7. The VAE architecture for the “World Models” paper

Training the VAE | 251

Exploring the VAE
We’ll now take a look at the output from the predict methods of the different models
built on the VAE to see how they differ, and then see how the VAE can be used to
generate completely new track observations.

The full model

If we feed the full_model with an observation, it is able to reconstruct an accurate
representation of the image, as shown in Figure 8-8. This is useful to visually check
that the VAE is working correctly.

Figure 8-8. The input and output from the full VAE model

The encoder models

If we feed the encoder_mu_log_var model with an observation, the output is the gen‐
erated mu and log_var vectors describing a multivariate normal distribution.

The encoder model goes one step further by sampling a particular z vector from this
distribution.

The output from the two encoder models is shown in Figure 8-9.

252 | Chapter 8: Play

Figure 8-9. The output from the encoder models

It is interesting to plot the value of mu and log_var for each of the 32 dimensions
(Figure 8-10), for a particular observation. Notice how only 12 of the 32 dimensions
differ significantly from the standard normal distribution (mu = 0, log_var = 0).
This is because the VAE is trying to minimize the KL divergence, so it tries to differ
from the standard normal distribution in as few dimensions as possible. It has deci‐
ded that 12 dimensions are enough to capture sufficient information about the obser‐
vations for accurate reconstruction.

Training the VAE | 253

Figure 8-10. A plot of mu (blue line) and log_var (orange line) for each of the 32 dimen‐
sions of a particular observation

The decoder model

The decoder model accepts a z vector as input and reconstructs the original image. In
Figure 8-11 we linearly interpolate two of the dimensions of z to show how each
dimension appears to encode a particular aspect of the track—for example, z[4] con‐
trols the immediate left/right direction of the track nearest the car and z[7] controls
the sharpness of the approaching left turn.

254 | Chapter 8: Play

Figure 8-11. A linear interpolation of two dimensions of z

This shows that the latent space that the VAE has learned is continuous and can be
used to generate new track segments that have never before been observed by the
agent.

Collecting Data to Train the RNN
Now that we have a trained VAE, we can use this to generate training data for our
RNN.

In this step, we pass all of the random rollout data through the encoder_mu_log_var
model and store the mu and log_var vectors corresponding to each observation. This

Collecting Data to Train the RNN | 255

encoded data, along with the already collected actions and rewards, will be used to
train the MDN-RNN.

To start collecting data, run the following command from your terminal:

python 03_generate_rnn_data.py

Example 8-2 contains an excerpt from the 03_generate_data.py file that shows how
the MDN-RNN training data is generated.

Example 8-2. Excerpt from 03_generate_data.py

def encode_episode(vae, episode):

 obs = episode['obs']
 action = episode['action']
 reward = episode['reward']
 done = episode['done']

 mu, log_var = vae.encoder_mu_log_var.predict(obs)

 done = done.astype(int)
 reward = np.where(reward>0, 1, 0) * np.where(done==0, 1, 0)

 initial_mu = mu[0, :]
 initial_log_var = log_var[0, :]

 return (mu, log_var, action, reward, done, initial_mu, initial_log_var)

vae = VAE()
vae.set_weights('./vae/weights.h5')

for file in filelist:
 rollout_data = np.load(ROLLOUT_DIR_NAME + file)
 mu, log_var, action, reward, done, initial_mu
 , initial_log_var = encode_episode(vae, rollout_data)

 np.savez_compressed(SERIES_DIR_NAME + file, mu=mu, log_var=log_var
 , action = action, reward = reward, done = done)
 initial_mus.append(initial_mu)
 initial_log_vars.append(initial_log_var)

np.savez_compressed(ROOT_DIR_NAME + 'initial_z.npz', initial_mu=initial_mus
 , initial_log_var=initial_log_vars)

Here, we’re using the encoder_mu_log_var model of the VAE to get the mu and
log_var vectors for a particular observation.

The reward value is transformed to be either 0 or 1, so that it can be used as input
into the MDN-RNN.

256 | Chapter 8: Play

We also save the initial mu and log_var vectors into a separate file—this will be
useful later, for initializing the dream environment.

Training the MDN-RNN
We can now train the MDN-RNN to predict the distribution of the next z vector and
reward, given the current z value, current action, and previous reward.

The aim of the MDN-RNN is to predict one timestep ahead into the future—we can
then use the internal hidden state of the LSTM as part of the input into the controller.

To start training the MDN-RNN, run the following command from your terminal:

python 04_train_rnn.py (--new_model) (--batch_size) (--steps)

where the parameters are as follows:

new_model

Whether the model should be trained from scratch. Set this flag initially; if it’s not
set, the code will look for a ./rnn/rnn.json file and continue training a previous
model.

batch_size

The number of episodes fed to the MDN-RNN in each training iteration.

steps

The total number of training iterations.

The output of the training process is shown in Figure 8-12. A file storing the weights
of the trained network is saved to ./rnn/rnn.json every 10 steps.

Figure 8-12. Training the MDN-RNN

Training the MDN-RNN | 257

The MDN-RNN Architecture
The architecture of the MDN-RNN is shown in Figure 8-13.

Figure 8-13. The MDN-RNN architecture

It consists of an LSTM layer (the RNN), followed by a densely connected layer (the
MDN) that transforms the hidden state of the LSTM into the parameters of mixture
distribution. Let’s walk through the network step by step.

The input to the LSTM layer is a vector of length 36—a concatenation of the encoded
z vector (length 32) from the VAE, the current action (length 3), and the previous
reward (length 1).

The output from the LSTM layer is a vector of length 256—one value for each LSTM
cell in the layer. This is passed to the MDN, which is just a densely connected layer
that transforms the vector of length 256 into a vector of length 481.

Why 481? Figure 8-14 explains the composition of the output from the MDN-RNN.
Remember, the aim of a mixture density network is to model the fact that our next z
could be drawn from one of several possible distributions with a certain probability.
In the car racing example, we choose five normal distributions. How many parame‐
ters do we need to define these distributions? For each of the five mixtures, we need a
mu and a log_sigma (to define the distribution) and a probability of this mixture
being chosen (log_pi), for each of the 32 dimensions of z. This makes 5 × 3 × 32 =
480 parameters. The one extra parameter is for the reward prediction—more specifi‐
cally, the log odds of reward at the next timestep.

258 | Chapter 8: Play

Figure 8-14. The output from the mixture density network

Sampling the Next z and Reward from the MDN-RNN
We can sample from the MDN output to generate a prediction for the next z and
reward at the following timestep, through the following process:

1. Split the 481-dimensional output vector into the 3 variables (log_pi, mu,
log_sigma) and the reward value.

2. Exponentiate and scale log_pi so that it can be interpreted as 32 probability dis‐
tributions over the 5 mixture indices.

3. For each of the 32 dimensions of z, sample from the distributions created from
log_pi (i.e., choose which of the 5 distributions should be used for each dimen‐
sion of z).

4. Fetch the corresponding values of mu and log_sigma for this distribution.
5. Sample a value for each dimension of z from the normal distribution parameter‐

ized by the chosen parameters of mu and log_sigma for this dimension.
6. If the reward log odds value is greater than 0, predict 1 for the reward; otherwise,

predict 0.

The MDN-RNN Loss Function
The loss function for the MDN-RNN is the sum of the z vector reconstruction loss
and the reward loss.

The excerpt from the rnn/arch.py file for the MDN-RNN in Example 8-3 shows how
we construct the custom loss function in Keras.

Example 8-3. Excerpt from rnn/arch.py

def get_responses(self, y_true):

 z_true = y_true[:,:,:Z_DIM]
 rew_true = y_true[:,:,-1]

Training the MDN-RNN | 259

 return z_true, rew_true

def get_mixture_coef(self, z_pred):

 log_pi, mu, log_sigma = tf.split(z_pred, 3, 1)
 log_pi = log_pi - K.log(K.sum(K.exp(log_pi), axis = 1, keepdims = True))
 return log_pi, mu, log_sigma

def tf_lognormal(self, z_true, mu, log_sigma):

 logSqrtTwoPI = np.log(np.sqrt(2.0 * np.pi))
 return -0.5 * ((z_true - mu) / K.exp(log_sigma)) ** 2 - log_sigma - logSqrtTwoPI

def rnn_z_loss(y_true, y_pred):

 z_true, rew_true = self.get_responses(y_true)

 d = normal distribution_MIXTURES * Z_DIM
 z_pred = y_pred[:,:,:(3*d)]
 z_pred = K.reshape(z_pred, [-1, normal distribution_MIXTURES * 3])

 log_pi, mu, log_sigma = self.get_mixture_coef(z_pred)

 flat_z_true = K.reshape(z_true,[-1, 1])

 z_loss = log_pi + self.tf_lognormal(flat_z_true, mu, log_sigma)
 z_loss = -K.log(K.sum(K.exp(z_loss), 1, keepdims=True))

 z_loss = K.mean(z_loss)

 return z_loss

def rnn_rew_loss(y_true, y_pred):

 z_true, rew_true = self.get_responses(y_true) #, done_true

 d = normal distribution_MIXTURES * Z_DIM
 reward_pred = y_pred[:,:,-1]

 rew_loss = K.binary_crossentropy(rew_true, reward_pred, from_logits = True)

 rew_loss = K.mean(rew_loss)

 return rew_loss

def rnn_loss(y_true, y_pred):

 z_loss = rnn_z_loss(y_true, y_pred)
 rew_loss = rnn_rew_loss(y_true, y_pred)

260 | Chapter 8: Play

 return Z_FACTOR * z_loss + REWARD_FACTOR * rew_loss

opti = Adam(lr=LEARNING_RATE)
model.compile(loss=rnn_loss, optimizer=opti, metrics = [rnn_z_loss, rnn_rew_loss])

Split the 481-dimensional output vector into the 3 variables (log_pi, mu,
log_sigma) and the reward value.

This is the calculation of the z vector reconstruction loss: the negative log-
likelihood of observing the true z, under the mixture distribution parameterized
by the output from the MDN-RNN. We want this value to be as large as possible,
or equivalently, we seek to minimize the negative log likelihood.

For the reward loss, we simply use the binary cross entropy between the true
reward and the predicted log odds from the network.

The loss is the sum of the z reconstruction loss and the reward loss—we set the
weighting parameters Z_FACTOR and REWARD_FACTOR both to 1, though these can
be adjusted to prioritize reconstruction loss or reward loss.

Notice that to train the MDN-RNN, we do not need to sample specific z vectors from
the MDN output, but instead calculate the loss directly using the 481-dimensional
output vector.

Training the Controller
The final step is to train the controller (the network that outputs the chosen action)
using an evolutionary algorithm called CMA-ES (Covariance Matrix Adaptation Evo‐
lution Strategy).

To start training the controller, run the following command from your terminal (all
on one line):

xvfb-run -a -s "-screen 0 1400x900x24" python 05_train_controller.py car_racing
 -n 16 -t 2 -e 4 --max_length 1000

where the parameters are as follows:

n

The number of workers that will test solutions in parallel (this should be no
greater than the number of cores on your machine)

t

The number of solutions that each worker will be given to test at each generation

Training the Controller | 261

e

The number of episodes that each solution will be tested against to calculate the
average reward

max_length

The maximum number of timeframes in each episode

eval_steps

The number of generations between evaluations of the current best parameter set

The above command uses a virtual frame buffer (xvfb) to render the frames, so that
the code can run on a Linux machine without a physical screen. The population size,
pop_size = n * t.

The Controller Architecture
The architecture of the controller is very simple. It is a densely connected neural net‐
work with no hidden layer; it connects the input vector directly to the action vector.

The input vector is a concatenation of the current z vector (length 32) and the current
hidden state of the LSTM (length 256), giving a vector of length 288. Since we are
connecting each input unit directly to the 3 output action units, the total number of
weights to tune is 288 × 3 = 864, plus 3 bias weights, giving 867 in total.

How should we train this network? Notice that this is not a supervised learning prob‐
lem—we are not trying to predict the correct action. There is no training set of correct
actions, as we do not know what the optimal action is for a given state of the environ‐
ment. This is what distinguishes this as a reinforcement learning problem. We need
the agent to discover the optimal values for the weights itself by experimenting within
the environment and updating its weights based on received feedback.

Evolutionary strategies are becoming a popular choice for solving reinforcement
learning problems, due to their simplicity, efficiency, and scalability. We shall use one
particular strategy, known as CMA-ES.

CMA-ES
Evolutionary strategies generally adhere to the following process:

1. Create a population of agents and randomly initialize the parameters to be opti‐
mized for each agent.

2. Loop over the following:
a. Evaluate each agent in the environment, returning the average reward over

multiple episodes.

262 | Chapter 8: Play

2 Reproduced with permission from David Ha, 2017, http://bit.ly/2XufRwq.

b. Breed the agents with the best scores to create new members of the popula‐
tion.

c. Add randomness to the parameters of the new members.
d. Update the population pool by adding the newly created agents and removing

poorly performing agents.

This is similar to the process through which animals evolve in nature—hence the
name evolutionary strategies. “Breeding” in this context simply means combining the
existing best-scoring agents such that the next generation are more likely to produce
high-quality results, similar to their parents. As with all reinforcement learning solu‐
tions, there is a balance to be found between greedily searching for locally optimal
solutions and exploring unknown areas of the parameter space for potentially better
solutions. This is why it is important to add randomness to the population, to ensure
we are not too narrow in our search field.

CMA-ES is just one form of evolutionary strategy. In short, it works by maintaining a
normal distribution from which it can sample the parameters of new agents. At each
generation, it updates the mean of the distribution to maximize the likelihood of
sampling the high-scoring agents from the previous timestep. At the same time, it
updates the covariance matrix of the distribution to maximize the likelihood of sam‐
pling the high-scoring agents, given the previous mean. It can be thought of as a form
of naturally arising gradient descent, but with the added benefit that it is derivative-
free, meaning that we do not need to calculate or estimate costly gradients.

One generation of the algorithm demonstrated on a toy example is shown in
Figure 8-15. Here we are trying to find the minimum point of a highly nonlinear
function in two dimensions—the value of the function in the red/black areas of the
image is greater than the value of the function in the white/yellow parts of the image.

Figure 8-15. One update step from the CMA-ES algorithm2

Training the Controller | 263

http://bit.ly/2XufRwq

The steps are as follows:

1. We start with a randomly generated 2D normal distribution and sample a popu‐
lation of candidates, shown in blue.

2. We then calculate the value of the function for each candidate and isolate the best
25%, shown in purple—we’ll call this set of points P.

3. We set the mean of the new normal distribution to be the mean of the points in P.
This can be thought of as the breeding stage, wherein we only use the best candi‐
dates to generate a new mean for the distribution. We also set the covariance
matrix of the new normal distribution to be the covariance matrix of the points
in P, but use the existing mean in the covariance calculation rather than the cur‐
rent mean of the points in P. The larger the difference between the existing mean
and the mean of the points in P, the wider the variance of the next normal distri‐
bution. This has the effect of naturally creating momentum in the search for the
optimal parameters.

4. We can then sample a new population of candidates from our new normal distri‐
bution with an updated mean and covariance matrix.

Figure 8-16 shows several generations of the process. See how the covariance widens
as the mean moves in large steps toward the minimum, but narrows as the mean set‐
tles into the true minimum.

264 | Chapter 8: Play

3 Source: https://en.wikipedia.org/wiki/CMA-ES.

Figure 8-16. CMA-ES3

For the car racing task, we do not have a well-defined function to maximize, but
instead an environment where the 867 parameters to be optimized determine how
well the agent scores. Initially, some sets of parameters will, by random chance, gen‐
erate scores that are higher than others and the algorithm will gradually move the
normal distribution in the direction of those parameters that score highest in the
environment.

Parallelizing CMA-ES
One of the great benefits of CMA-ES is that it can be easily parallelized using a
Python library created by David Ha called es.py. The most time-consuming part of
the algorithm is calculating the score for a given set of parameters, since it needs to
simulate an agent with these parameters in the environment. However, this process
can be parallelized, since there are no dependencies between individual simulations.
In the codebase, we use a master/slave setup, where there is a master process that
sends out parameter sets to be tested to many slave processes in parallel. The slave
nodes return the results to the master, which accumulates the results and then passes
the overall result of the generation to the CMA-ES object. This object updates the

Training the Controller | 265

https://en.wikipedia.org/wiki/CMA-ES

mean and covariance matrix of the normal distribution as per Figure 8-15 and pro‐
vides the master with a new population to test. The loop then starts again.
Figure 8-17 explains this in a diagram.

Figure 8-17. Parallelizing CMA-ES—here there is a population size of 8 and 4 slave
nodes (so t = 2, the number of trials that each slave is responsible for)

The master asks the CMA-ES object (es) for a set of parameters to trial.

The master divides the parameters into the number of slave nodes available.
Here, each of the four slave processes gets two parameter sets to trial.

The slave nodes run a worker process that loops over each set of parameters and
runs several episodes for each. Here we run three episodes for each set of
parameters.

266 | Chapter 8: Play

The rewards from each episode are averaged to give a single score for each set of
parameters.

The slave node returns the list of scores to the master.

The master groups all the scores together and sends this list to the es object.

The es object uses this list of rewards to calculate the new normal distribution as
per Figure 8-15.

Output from the Controller Training
The output of the training process is shown in Figure 8-18. A file storing the weights
of the trained network is saved every eval_steps generations.

Figure 8-18. Training the controller

Each line of the output represents one generation of training. The reported statistics
for each generation are as follows:

1. Environment name (e.g., car_racing)
2. Generation number (e.g., 16)
3. Current elapsed time in seconds (e.g., 2395)
4. Average reward of the generation (e.g., 136.44)
5. Minimum reward of the generation (e.g., 33.28)
6. Maximum reward of the generation (e.g., 246.12)
7. Standard deviation of the rewards (e.g., 62.78)
8. Current standard deviation factor of the ES process (initialized at 0.5 and decays

each timestep; e.g., 0.4604)

Training the Controller | 267

9. Minimum timesteps taken before termination (e.g., 1000.0)
10. Maximum timesteps taken before termination (e.g., 1000)

After eval_steps timesteps, each slave node evaluates the current best-scoring
parameter set and returns the average rewards across several episodes. These rewards
are again averaged to return the overall score for the parameter set.

After around 200 timesteps, the training process achieves an average reward score of
840 for the car racing task.

In-Dream Training
So far, the controller training has been conducted using the OpenAI Gym CarRacing
environment to implement the step method that moves the simulation from one
state to the next. This function calculates the next state and reward, given the current
state of the environment and chosen action.

Notice how the step method performs a very similar function to the MDN-RNN in
our model. Sampling from the MDN-RNN outputs a prediction for the next z and
reward, given the current z and chosen action.

In fact, the MDN-RNN can be thought of as an environment in its own right, but
operating in z-space rather than in the original image space. Incredibly, this means
that we can actually substitute the real environment with a copy of the MDN-RNN
and train the controller entirely within an MDN-RNN-inspired dream of how the
environment should behave.

In other words, the MDN-RNN has learned enough about the general physics of the
real environment from the original random movement dataset that it can be used as a
proxy for the real environment when training the controller. This is quite remarkable
—it means that the agent can train itself to learn a new task by thinking about how it
can maximize reward in its dream environment, without ever having to test out
strategies in the real world. It can then perform well at the task first time, having
never attempted the task in reality.

This is one reason why the “World Models” paper is highly important and why gener‐
ative modeling will almost certainly form a key component of artificial intelligence in
the future.

A comparison of the architectures for training in the real environment and the dream
environment follows: the real-world architecture is shown in Figure 8-19 and the in-
dream training setup is illustrated in Figure 8-20.

268 | Chapter 8: Play

Figure 8-19. Training the controller in the OpenAI Gym environment

Notice how in the dream architecture, the training of the controller is performed
entirely in z-space without the need to ever decode the z vectors back into recogniza‐
ble track images. We can of course do so, in order to visually inspect the performance
of the agent, but it is not required for training.

In-Dream Training | 269

Figure 8-20. Training the controller in the MDN-RNN dream environment

In-Dream Training the Controller
To train the controller using the dream environment, run the following command
from your terminal (on one line):

xvfb-run -a -s "-screen 0 1400x900x24" python 05_train_controller.py car_racing
 -n 16 -t 2 -e 4 --max_length 1000 --dream_mode 1

This is the same command used to train the controller in the real environment, but
with the added flag --dream_mode 1.

The output of the training process is shown in Figure 8-21.

270 | Chapter 8: Play

Figure 8-21. Output from in-dream training

When training in the dream environment, the scores of each generation are given in
terms of the average sum of the dream rewards (i.e., 0 or 1 at each timestep). How‐
ever, the evaluation performed after every 10 generations is still conducted in the real
environment and is therefore scored based on the sum of rewards from the OpenAI
Gym environment, so that we can compare training methods.

After just 10 generations of training in the dream environment, the agent scores an
average of 586.6 in the real environment. The car is able to drive accurately around
the track and can handle most corners, except those that are especially sharp.

This is an amazing achievement—remember, when the controller was evaluated after
10 generations it had never attempted the task of driving fast around the track in the
real environment. It had only ever driven around the environment randomly (to train
the VAE and MDN-RNN) and then in its own dream environment to train the
controller.

As a comparison, after 10 generations the agent trained in the real environment is
barely able to move off the start line. Moreover, each generation of training in the
dream environment is around 3–4 times faster than training in the real environment,
since z and reward prediction by the MDN-RNN is faster than z and reward calcula‐
tion by the OpenAI Gym environment.

In-Dream Training | 271

4 Source: Ha and Schmidhuber, 2018.

Challenges of In-Dream Training
One of the challenges of training agents entirely within the MDN-RNN dream envi‐
ronment is overfitting. This occurs when the agent finds a strategy that is rewarding
in the dream environment, but does not generalize well to the real environment, due
to the MDN-RNN not fully capturing how the true environment behaves under cer‐
tain conditions.

We can see this happening in Figure 8-21: after 20 generations, even though the in-
dream scores continue to rise, the agent only scores 363.7 in the real environment,
which is worse than its score after 10 generations.

The authors of the original “World Models” paper highlight this challenge and show
how including a temperature parameter to control model uncertainty can help alle‐
viate the problem. Increasing this parameter magnifies the variance when sampling z
through the MDN-RNN, leading to more volatile rollouts when training in the dream
environment. The controller receives higher rewards for safer strategies that
encounter well-understood states and therefore tend to generalize better to the real
environment. Increased temperature, however, needs to be balanced against not
making the environment so volatile that the controller cannot learn any strategy, as
there is not enough consistency in how the dream environment evolves over time.

In the original paper, the authors show this technique successfully applied to a differ‐
ent environment: DoomTakeCover, based around the computer game Doom.
Figure 8-22 shows how changing the temperature parameter affects both the virtual
(dream) score and the actual score in the real environment.

Figure 8-22. Using temperature to control dream environment volatility4

272 | Chapter 8: Play

Summary
In this chapter we have seen how a generative model (a VAE) can be utilized within a
reinforcement learning setting to enable an agent to learn an effective strategy by test‐
ing policies within its own generated dreams, rather than within the real
environment.

The VAE is trained to learn a latent representation of the environment, which is then
used as input to a recurrent neural network that forecasts future trajectories within
the latent space.

Amazingly, the agent can then use this generative model as a pseudoenvironment to
iteratively test policies, using an evolutionary methodology, which generalize well to
the real environment.

Summary | 273

CHAPTER 9

The Future of Generative Modeling

I started writing this book in May 2018, shortly after the “World Models” paper dis‐
cussed in Chapter 8 was published. I knew at the time that I wanted this paper to be
the focus of the final core chapter of the book, as it is the first practical example of
how generative models can facilitate a deeper form of learning that takes place inside
the agent’s own world model of the environment. To this day, I still find this example
completely astonishing. It is a glimpse into a future where agents learn not only
through maximizing a single reward in an environment of our choice, but by generat‐
ing their own internal representation of an environment and therefore having the
capability to create their own reward functions to optimize. In this chapter, we will
run with this idea and see where it takes us.

First, we must place ourselves at the very edge of the generative modeling landscape,
among the most radical, innovative, and leading ideas in the field. Since the inception
of this book, significant advancements in GAN and attention-based methodologies
have taken us to the point where we can now generate images, text, and music that is
practically indistinguishable from human-generated content. We shall start by fram‐
ing these advancements alongside examples that we have already explored and walk‐
ing through the most cutting-edge architectures available today.

Five Years of Progress
The history of generative modeling in its current form is short in comparison to the
more widely studied discriminative modeling—the invention of the GAN in 2014 can
perhaps be thought of as the spark that lit the touchpaper. Figure 9-1 shows a sum‐
mary of the key developments in generative modeling, many of which we have
already explored together in this book.

275

Figure 9-1. A brief history of generative modeling: green marks represent ideas that are
covered in this book and red marks are ideas that we shall explore in this chapter

276 | Chapter 9: The Future of Generative Modeling

1 Ashish Vaswani et al., “Attention Is All You Need,” 12 June 2017, https://arxiv.org/abs/1706.03762.

This is by no means an exhaustive list; there are dozens of GAN flavors that are
groundbreaking in their own fields (e.g., video generation or text-to-image genera‐
tion). Here, I show a selection of the most recent developments that have pushed the
boundaries of generative modeling in general.

Since mid-2018 there has been a flurry of remarkable developments in both sequence
and image-based generative modeling. Sequence modeling has primarily been driven
by the invention of the Transformer, an attention-based module that removes the
need for recurrent or convolutional neural networks entirely and now powers most
state-of-the-art sequential models, such as BERT, GPT-2, and MuseNet. Image gener‐
ation has reached new heights through the development of new GAN-based techni‐
ques such as ProGAN, SAGAN, BigGAN, and StyleGAN.

Explaining these developments and their repercussions in detail could easily fill
another book. In this chapter, we will simply explore each in enough detail to under‐
stand the fundamental ideas behind the current state of the art in generative model‐
ing. Armed with this knowledge, we will then hypothesize how the field will continue
to develop in the near future, providing a tantalizing view of what might be possible
in the years to come.

The Transformer
The Transformer was first introduced in the 2017 paper “Attention is All You Need,”1

where the authors show how it is possible to create powerful neural networks for
sequential modeling that do not require complex recurrent or convolutional architec‐
tures but instead only rely on attention mechanisms. The architecture now powers
some of the most impressive practical examples of generative modeling, such as Goo‐
gle’s BERT and GPT-2 for language tasks and MuseNet for music generation.

The overall architecture of the Transformer is shown in Figure 9-2.

The Transformer | 277

https://arxiv.org/abs/1706.03762

2 Source: Vaswani et al., 2017.

Figure 9-2. The Transformer model architecture2

The authors apply the Transformer to English–German and English–French transla‐
tion datasets. As is common for translation models, the Transformer has an encoder–
decoder architecture (described in Chapter 6). The difference here is that instead of
using a recurrent layer such as an LSTM inside the encoder and decoder, the Trans‐
former uses stacked attention layers.

In the lefthand half of Figure 9-2, a set of N = 6 stacked attention layers encodes the
input sentence � = x1, . . . xn to a sequence of representations. The decoder in the
righthand half of the diagram then uses this encoding to generate output words one
at a time, using previous words as additional input into the model.

278 | Chapter 9: The Future of Generative Modeling

To understand how this works in practice, let’s follow a sample input sequence
through the model, step by step.

Positional Encoding
The words are first passed through an embedding layer to convert each into a vector
of length dmodel = 512. Now that we are not using a recurrent layer, we also need to
encode the position of each word in the sentence. To achieve this, we use the follow‐
ing positional encoding function that converts the position pos of the word in the
sentence into a vector of length dmodel:

PEpos, 2i = sin pos

10000
2i/dmodel

PEpos, 2i + 1 = cos pos

10000
2i + 1 /dmodel

For small i, the wavelength of this function is short and therefore the function value
changes rapidly along the position axis. Larger values of i create a longer wavelength,
and therefore nearby words are given approximately the same value. Each position
thus has its own unique encoding, and since the function can be applied to any value
of pos it can be used to encode any position, no matter what the sequence length of
the input is.

To construct the input into the first encoder layer, the matrix of positional encodings
is added to the word embedding matrix, as shown in Figure 9-3. This way, both the
meaning and position for each word in the sequence are captured in a single vector,
of length dmodel.

The Transformer | 279

Figure 9-3. The input embedding matrix is added to the positional encoding matrix to
give the input into the first encoder layer

Multihead Attention
This tensor then flows through to the first of six encoder layers. Each encoder layer
consists of several sublayers, starting with the multihead attention layer.

The same multihead attention architecture is used in both the encoder and decoder,
with a few small changes. The general architecture is shown in Figure 9-4.

280 | Chapter 9: The Future of Generative Modeling

Figure 9-4. Diagram of a multihead attention module, followed by the add & norm layer

The multihead attention layer requires two inputs: the query input, xQ, and the key–
value input, xKV. The job of the layer is to learn which positions in the key–value
input it should attend to, for every position of the query input. None of the layer’s
weight matrices are dependent on the sequence length of the query input (nQ) or the
key–value input (nKV), so the layer can handle sequences of arbitrary length.

The encoder uses self-attention—that is, the query input and key–value input are the
same (the output from the previous layer in the encoder). For example, in the first

The Transformer | 281

encoder layer, both inputs are the positionally encoded embedding of the input
sequence. In the decoder, the query input comes from the previous layer in the
decoder and the key–value input comes from the final output from the encoder.

The first step of the layer is to create three matrices, the query Q, key K, and value V,
through multiplication of the input with three weight matrices, WQ, WK, and WV, as
follows:

Q = xQWQ

K = xKVWK

V = xKVWV

Q and K are representations of the query input and key–value input, respectively. We
want to measure the similarity of these representations across each position in the
query input and key–value input.

We can achieve this by performing a matrix multiplication of Q with KT and scaling
by a factor dk. This is known as scaled dot-product attention. Scaling is important, to
ensure that the dot product between vectors in Q and K does not grow too large.

We then apply a softmax function to ensure all rows sum to 1. This matrix is of shape
nQ × nKV and is the equivalent of the attention matrix in Figure 7-10.

The final step to complete the single attention head is to matrix multiply the attention
matrix with the value matrix V. In other words, the head outputs a weighted sum of
the value representations V for each position in the query, where the weights are
determined by the attention matrix.

There’s no reason to only stop at one attention head! In the paper, the authors choose
eight heads that are trained in parallel, each outputting an nQ × dv matrix. Incorpo‐
rating multiple heads allows each to learn a distinct attention and value mechanism,
therefore enriching the output from the multihead attention layer.

The output matrices from the multiple heads are concatenated and passed through
one final matrix multiplication with a weights matrix WO. This is then added point‐
wise to the original query input through a skip connection, and layer normalization
(see Figure 5-7) is applied to the result.

The final part of the encoder consists of a feed-forward (densely connected) layer
applied to each position separately. The weights are shared across positions, but not
between layers of the encoder–decoder. The encoder concludes with one final skip
connection and normalization layer. Notice that the output from the layer is the same
shape as the query input (nQ × dmodel). This allows us to stack several encoder layers
on top of each other, allowing the model to learn deeper features.

282 | Chapter 9: The Future of Generative Modeling

The Decoder
The decoder layers are very similar to the encoder layers, with two key differences:

1. The initial self-attention layer is masked, so that information from subsequent
timesteps cannot be attended to during training. This is achieved by setting the
appropriate elements of the input to the softmax to –∞.

2. The output from the encoder layer is also incorporated into each layer of the
decoder, after the initial self-attention mechanism. Here, the query input comes
from the previous layer of the decoder and the key–value input comes from the
encoder.

Each position in the output from the final decoder layer is fed through one final
dense layer with a softmax activation function to give next word probabilities.

Analysis of the Transformer
The Tensorflow GitHub repository contains a Colab notebook where you can play
around with a trained Transformer model and see how the attention mechanisms of
the encoder and decoder impact the translation of a given sentence into German.

For example, Figure 9-5 shows how two attention heads of the decoder layer are able
to work together to provide the correct German translation for the word the, when
used in the context of the street. In German, there are three definite articles (der, die,
das) depending on the gender of the noun, but the Transformer knows to choose die
because one attention head is able to attend to the word street (a feminine word in
German), while another attends to the word to translate (the).

The Transformer | 283

http://bit.ly/2HPw4Cw

Figure 9-5. An example of how one attention head attends to the word “the” and another
attends to the word “street” in order to correctly translate the word “the” to the German
word “die” as the feminine definite article to “Straße”

This gives the Transformer the ability to translate extremely complex and long sen‐
tences, as it can incorporate information from several places across the input sentence
and current translation to form its decision about the next word.

The Transformer architecture has inspired several subsequent models that make use
of the multihead attention mechanism. We’ll look at some of these briefly next.

284 | Chapter 9: The Future of Generative Modeling

3 Jacob Devlin et al., “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding,” 11
October 2018, https://arxiv.org/abs/1810.04805v1.

BERT
BERT (Bidirectional Encoder Representations from Transformers)3 is a model devel‐
oped by Google that predicts missing words from a sentence, given context from both
before and after the missing word in all layers. It achieves this through a masked lan‐
guage model: during training, 15% of words are randomly masked out and the model
must try to re-create the original sentence, given the masked input. Crucially, 10% of
the tokens marked for masking are actually swapped with another word, rather than
the <MASK> token, so not only must the model learn how to replace the <MASK> tokens
with actual words, but also it should be looking out for words in the input sentence
that do not seem to fit, as they could be words that have been switched.

The word representations learned by BERT are superior to counterparts such as
GloVe because they change depending on the context of the word. For example, the
word water can be used either as a verb (I need to water the plant) or as a noun (The
ocean is full of water). GloVe vectors allocate exactly the same representation to the
word water regardless of the context, whereas BERT incorporates surrounding infor‐
mation to create a bespoke representation for the word in context.

BERT can be built upon by appending output layers that are specific to a given down‐
stream task. For example, classification tasks such as sentiment analysis can be con‐
structed by adding a classification layer on top of the Transformer output, and
question answering tasks can be tackled by marking the answer in the input sequence
using a pointer network as the output layer to BERT. By starting from a pretrained
BERT model and fine-tuning the appended output layers, it is therefore possible to
quickly train extremely sophisticated language models for a variety of modeling tasks.

GPT-2
GPT-2 is a model developed by OpenAI that is trained to predict the next word in a
passage of text. Whereas BERT was Google’s response to OpenAI’s earlier GPT
model, GPT-2 is a direct response to BERT. The key difference between the models is
that while BERT is bidirectional, GPT-2 is unidirectional. This means that GPT-2
does not use information from subsequent words to form representations of the cur‐
rent word and therefore is set up for sentence generation tasks, such as the Aesop’s
Fables task that we explored in Chapter 6. An example of the output from GPT-2,
given a system prompt sentence, is shown in Figure 9-6.

The Transformer | 285

https://arxiv.org/abs/1810.04805v1
http://bit.ly/2wDwtDb

4 Source: “Better Language Models and Their Implications”, 2019, https://openai.com/blog/better-language-
models.

5 As of May 2019, a 1.5B parameter version of GPT-2 has also been released to trusted partners who are
researching the potential impact of such sophisticated models and how to counteract misuse of GPT-2.

Figure 9-6. An example of how GPT-2 can extend a given system prompt4

If you are slightly terrified at how realistic this appears, you are not alone. Due to
concerns about how this model could be abused by malicious parties, for example to
generate fake news, forged essays, fake accounts on social media, or impersonations
of people online, OpenAI has decided to not release the dataset, code, or GPT-2
model weights. Instead, only small (117M parameter) and medium (345M parame‐
ter) versions of GPT-2 have been released officially.5

MuseNet
MuseNet is a model also released by OpenAI that applies the Transformer architec‐
ture to music generation. Like GPT-2, it is unidirectional, trained to predict the next
note given a sequence of previous notes.

In music generation tasks, the length of the sequence N grows large as the music pro‐
gresses, and this means that the N × N attention matrix for each head becomes expen‐

286 | Chapter 9: The Future of Generative Modeling

https://openai.com/blog/better-language-models
https://openai.com/blog/better-language-models
http://bit.ly/2WShm7t
http://bit.ly/2WShm7t
http://bit.ly/31hT2vl

6 Tero Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation,” 27 October
2017, https://arxiv.org/abs/1710.10196

sive to store and compute. We cannot just clip the input sequence, as we would like
the model to construct the piece around a long-term structure and recapitulate motifs
and phrases from several minutes ago, as would be the case with a human composer.

To tackle this problem, MuseNet utilizes a form of Transformer known as a Sparse
Transformer. Each output position in the attention matrix only computes weights for
a subset of input positions, thereby reducing the computational complexity and
memory required to train the model. MuseNet can therefore operate with full atten‐
tion over 4,096 tokens and can learn long-term structure and melodic structure
across a range of styles. (See, for example, OpenAI’s Chopin and Mozart recordings
on SoundCloud.)

Advances in Image Generation
In recent years, image-based generative modeling has been revolutionized by several
significant advancements in the architecture and training of GAN-based models, in
the same way that the Transformer has been pivotal to the progression of sequential
generative modeling. In this section we will introduce four such developments—Pro‐
GAN, SAGAN, BigGAN, and StlyeGAN.

ProGAN
ProGAN is a new technique developed by NVIDIA Labs to improve both the speed
and stability of GAN training.6 Instead of immediately training a GAN on full-
resolution images, the paper suggests first training the generator and discriminator
on low-resolution images of, say, 4 × 4 pixels and then incrementally adding layers
throughout the training process to increase the resolution. This process is shown in
Figure 9-7.

Advances in Image Generation | 287

https://arxiv.org/abs/1710.10196
http://bit.ly/2ESY8Ve
http://bit.ly/2ESY8Ve
http://bit.ly/2IX0JOW
http://bit.ly/2Zyt5pp
http://bit.ly/2Zyt5pp

7 Source: Karras et al., 2017.

Figure 9-7. The Progressive GAN training mechanism, and some example generated
faces7

The earlier layers are not frozen as training progresses, but remain fully trainable.
The new training mechanism was also applied to images from the LSUN dataset with
excellent results, as shown in Figure 9-8.

288 | Chapter 9: The Future of Generative Modeling

8 Source: Karras et al., 2017.
9 Han Zhang et al., “Self-Attention Generative Adversarial Networks,” 21 May 2018, https://arxiv.org/abs/

1805.08318.

Figure 9-8. Generated examples from a GAN trained progressively on the LSUN dataset
at 256 × 256 resolution8

Self-Attention GAN (SAGAN)
The Self-Attention GAN (SAGAN)9 is a key development for GANs as it shows how
the attention mechanism that powers sequential models such as the Transformer can
also be incorporated into GAN-based models for image generation. Figure 9-9 shows
the self-attention mechanism from the paper. Note the similarity with the Trans‐
former attention head architecture in Figure 9-2.

Advances in Image Generation | 289

https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318

10 Source: Zhang et al., 2018.
11 Source: Zhang et al., 2018.

Figure 9-9. The self-attention mechanism within the SAGAN model10

The problem with GAN-based models that do not incorporate attention is that con‐
volutional feature maps are only able to process information locally. Connecting pixel
information from one side of an image to the other requires multiple convolutional
layers that reduce the spatial dimension of the image, while increasing the number of
channels. Precise positional information is reduced throughout this process in favor
of capturing higher-level features, making it computationally inefficient for the model
to learn long-range dependencies between distantly connected pixels. SAGAN solves
this problem by incorporating the attention mechanism that we explored earlier in
this chapter into the GAN. The effect of this inclusion is shown in Figure 9-10.

Figure 9-10. A SAGAN-generated image of a bird (leftmost cell) and the attention maps
of the final attention-based generator layer for the pixels covered by the three colored
dots (rightmost cells)11

The red dot is a pixel that is part of the bird’s body, and so attention naturally falls on
surrounding body cells. The green dot is part of the background, and here the atten‐

290 | Chapter 9: The Future of Generative Modeling

12 Andrew Brock, Jeff Donahue, and Karen Simonyan, “Large Scale GAN Training for High Fidelity Natural
Image Synthesis,” 28 September 2018, https://arxiv.org/abs/1809.11096.

13 Source: Brock et al., 2018.

tion actually falls on the other side of the bird’s head, on other background pixels.
The blue dot is part of the bird’s long tail and so attention falls on other tail pixels,
some of which are distant from the blue dot. It would be difficult to maintain this
long-range dependency for pixels without attention, especially for long, thin struc‐
tures in the image (such as the tail in this case).

BigGAN
BigGAN,12 developed at DeepMind, extends the ideas from the SAGAN paper with
extraordinary results. Figure 9-11 shows some of the images generated by BigGAN,
trained on the ImageNet dataset.

Figure 9-11. Examples of images generated by BigGAN, trained on the ImageNet dataset
at 128 × 128 resolution13

BigGAN is currently the state-of-the-art model for image generation on the Image‐
Net dataset. As well as some incremental changes to the base SAGAN model, there
are also several innovations outlined in the paper that take the model to the next level
of sophistication.

One such innovation is the so-called truncation trick. This is where the latent distri‐
bution used for sampling is different from the z N 0, 1 distribution used during
training. Specifically, the distribution used during sampling is a truncated normal dis‐
tribution (resampling z that have magnitude greater than a certain threshold). The
smaller the truncation threshold, the greater the believability of generated samples, at
the expense of reduced variability. This concept is shown in Figure 9-12.

Advances in Image Generation | 291

https://arxiv.org/abs/1809.11096

14 Source: Brock, Donahue, and Simonyan, 2018.
15 Tero Karras, Samuli Laine, and Timo Aila, “A Style-Based Generator Architecture for Generative Adversarial

Networks,” 12 December 2018, https://arxiv.org/abs/1812.04948.

Figure 9-12. The truncation trick: from left to right, the threshold is set to 2, 1, 0.5, and
0.0414

Also, as the name suggests, BigGAN is an improvement over SAGAN in part simply
by being bigger. BigGAN uses a batch size of 2,048—8 times larger than the batch size
of 256 used in SAGAN—and a channel size that is increased by 50% in each layer.
However, BigGAN additionally shows that SAGAN can be improved structurally by
the inclusion of a shared embedding, by orthogonal regularization, and by incorpo‐
rating the latent vector z into each layer of the generator, rather than just the initial
layer.

For a full description of the innovations introduced by BigGAN, I recommend read‐
ing the original paper and accompanying presentation material.

StyleGAN
One of the most recent additions to the GAN literature is StyleGAN,15 from NVIDIA
Labs. This builds upon two techniques that we have already explored in this book,
ProGAN and neural style transfer (from Chapter 5). Often when training GANs it is
difficult to separate out vectors in the latent space corresponding to high-level
attributes—they are frequently entangled, meaning that adjusting an image in the
latent space to give a face more freckles, for example, might also inadvertently change
the background color. While ProGAN generates fantastically realistic images, it is no
exception to this general rule. We would ideally like to have full control of the style of
the image, and this requires a disentangled separation of high-level features in the
latent space.

The overall architecture of the StyleGAN generator is shown in Figure 9-13.

292 | Chapter 9: The Future of Generative Modeling

https://arxiv.org/abs/1812.04948
http://bit.ly/31g3tza

16 Source: Karras, Laine, and Aila, 2018.
17 Xun Huang and Serge Belongie, “Arbitrary Style Transfer in Real-Time with Adaptive Instance Normaliza‐

tion,” 20 March 2017, https://arxiv.org/abs/1703.06868.

Figure 9-13. The StyleGAN generator architecture16

StyleGAN solves the entanglement problem by borrowing ideas from the style trans‐
fer literature. In particular, StyleGAN utilizes a method called adaptive instance nor‐
malization.17 This is a type of neural network layer that adjusts the mean and variance
of each feature map �i output from a given layer in the synthesis network with a ref‐
erence style bias �b, i and scale �s, i, respectively. The equation for adaptive instance
normalization is as follows:

AdaIN �i, � = �s, i
�i − μ �i

σ �i
+ �b, i

Advances in Image Generation | 293

https://arxiv.org/abs/1703.06868

The style parameters are calculated by first passing a latent vector z through a map‐
ping network f to produce an intermediate vector �. This is then transformed
through a densely connected layer (A) to generate the �b, i and �s, i vectors, both of
length n (the number of channels output from the convolutional layer in the synthesis
network). The point of doing this is to separate out the process of choosing a style for
the image (the mapping network) from the generation of an image with a given style
(the synthesis network). The adaptive instance normalization layers ensure that the
style vectors that are injected into each layer only affect features at that layer, by pre‐
venting any style information from leaking through between layers. The authors
show that this results in the latent vectors � being significantly more disentangled
than the original z vectors.

Since the synthesis network is based on the ProGAN architecture, the style vectors at
earlier layers in the synthesis network (when the resolution of the image is lowest—4
× 4, 8 × 8) will affect coarser features than those later in the network (64 × 64 to 1,024
× 1,024 resolution). This means that not only do we have complete control over the
generated image through the latent vector �, but we can also switch the � vector at
different points in the synthesis network to change the style at a variety of levels of
detail.

Figure 9-14 shows this in action. Here, two images, source A and source B, are gener‐
ated from two different � vectors. To generate a merged image, the source A � vector
is passed through the synthesis network but, at some point, switched for the source B
� vector. If this switch happens early on (4 × 4 or 8 × 8 resolution), coarse styles such
as pose, face shape, and glasses from source B are carried across onto source A. How‐
ever, if the switch happens later, only fine-grained detail is carried across from source
B, such as colors and microstructure of the face, while the coarse features from source
A are preserved.

Finally, the StyleGAN architecture adds noise after each convolution to account for
stochastic details such as the placement of individual hairs, or the background behind
the face. Again, the depth at which the noise is injected affects the coarseness of the
impact on the image.

294 | Chapter 9: The Future of Generative Modeling

18 Source: Karras, Laine, and Aila, 2018.

Figure 9-14. Merging styles between two generated images at different levels of detail18

Advances in Image Generation | 295

Applications of Generative Modeling
As is clear from the preceding examples, generative modeling has come a long way in
the last five years. The field has developed to the point where is it not unreasonable to
suggest that the next generation will be just as comfortable marveling at computer-
generated art as human art, reading computer-generated novels, and listening to
computer-generated music in their favorite style. This movement has already started
to gather momentum, particularly among artists and musicians.

AI Art
I recently attended a meetup in London entitled “Form, Figures and BigGAN,” featur‐
ing presentations by artist Scott Eaton and BigGAN creator Andrew Brock, organized
by AI art curator Luba Elliott. One facet of Scott’s work centers around using pix2pix
models to create art of the human form. The model is trained on color photographs
of dancers and matching grayscale edge-highlighted images. He is able to create new
forms by producing a line drawing (i.e., in the edge-highlighted space) and allowing
the model to convert back to the color photograph domain. These line drawings need
not be realistic human forms; the model will find a way to make the drawing look as
human as possible, as this is what it has been trained to do. Two examples of his work
are shown in Figure 9-15. You can find more about his artistic process on YouTube.

296 | Chapter 9: The Future of Generative Modeling

http://bit.ly/2F7zkcf

19 Source: Scott Eaton, 2018, http://www.scott-eaton.com.

Figure 9-15. Two examples of Scott Eaton’s work, generated through a pix2pix model
trained on photographs of dancers19

AI Music
As well as producing aesthetically interesting and evocative images, generative mod‐
eling has practical application in the field of music generation, especially for video
games and films. We have already seen how MuseNet is able to generate endless
amounts of music in a given style and therefore could be adapted to provide the back‐
ground mood music for a film or video game.

In fact, on April 25, 2019, OpenAI live-streamed an experimental concert in which
MuseNet generated music across a range of styles that no human had ever heard
before. Could it be that before long, we will be able to tune into a radio station that
plays music in our favorite style nonstop, so that we never hear the same thing twice?
Perhaps we could have the option of saving passages that we particularly like to listen
to again, or exploring new music generated on the fly by the model. We are not yet at
the stage where text and music can be convincingly combined to produce pop songs
with long-term structure, but given the impressive progress in both text and music
generation in recent years it surely won’t be long before this is a reality.

Applications of Generative Modeling | 297

http://www.scott-eaton.com

CHAPTER 10

Conclusion

In this book, we have taken a journey through the last half-decade of generative mod‐
eling research, starting out with the basic ideas behind variational autoencoders,
GANs, and recurrent neural networks and building upon these foundations to under‐
stand how state-of-the-art models such as the Transformer, advanced GAN architec‐
tures, and world models are now pushing the boundaries of what generative models
are capable of achieving, across a variety of tasks.

I believe that in the future, generative modeling may be the key to a deeper form of
artificial intelligence that transcends any one particular task and instead allows
machines to organically formulate their own rewards, strategies, and ultimately
awareness within their environment.

As babies, we are constantly exploring our surroundings, building up a mental model
of possible futures with no apparent aim other than to develop a deeper understand‐
ing of the world. There are no labels on the data that we receive—a seemingly ran‐
dom stream of light and sound waves that bombard our senses from the moment we
are born. Even when our mother or father points to an apple and says apple, there is
no reason for our young brains to associate the two and learn that the way in which
light entered our eye at that particular moment is in any way related to the way the
sound waves entered our ear. There is no training set of sounds and images, no train‐
ing set of smells and tastes, and no training set of actions and rewards. Just an endless
stream of extremely noisy data.

And yet here you are now, reading this sentence, perhaps enjoying the taste of a cup
of coffee in a noisy cafe. You pay no attention to the background noise as you concen‐
trate on converting the absence of light on a tiny proportion of your retina into a
sequence of abstract concepts that convey almost no meaning individually but, when
combined, trigger a wave of parallel representations in your mind’s eye—images,

299

emotions, ideas, beliefs, and potential actions all flood your consciousness, awaiting
your recognition.

The same noisy stream of data that was essentially meaningless to your infant brain is
not so noisy any more. Everything makes sense to you. You see structure everywhere.
You are never surprised by the physics of everyday life. The world is the way that it is,
because your brain decided it should be that way.

In this sense, your brain is an extremely sophisticated generative model, equipped
with the ability to attend to particular parts of the input data, form representations of
concepts within a latent space of neural pathways, and process sequential data over
time. But what exactly is it generating?

At this point, I must switch into pure speculation mode as we are close to the edge of
what we currently understand about the human brain (and certainly at the very edge
of what I understand about the human brain). However, we can conduct a thought
experiment to understand the links between generative modeling and the brain.

Suppose that the brain is a near-perfect generative model of the input stream of data
that it is subjected to. In other words, it can generate the likely sequence of input data
that would follow from receiving the cue of an egg-shaped region of light falling
through the visual field to the sound of a splat as the egg-shaped region stops moving
abruptly. It does this by creating representations of the key aspects of the visual and
auditory fields and modeling how these latent representations will evolve over time.
There is one fallacy in this view, however: the brain is not a passive observer of
events. It’s attached to a neck and a set of legs that can put its core input sensors in
any myriad of positions relative to the source of the input data. The generated
sequence of possible futures is not only dependent on its understanding of the phys‐
ics of the environment, but also on its understanding of itself and how it acts.

This is the core idea that I believe will propel generative modeling into the spotlight
in the next decade, as one of the keys to unlocking artificial general intelligence.
Imagine if we could build a generative model that doesn’t model possible futures of
the environment given an action, as per the world models example, but instead
includes its own action-generating process as part of the environment to be modeled.

If actions are random to begin with, why would the model learn anything except to
predict random actions from the body in which it resides? The answer is simple:
because nonrandom actions make the stream of environmental data easier to gener‐
ate. If the sole goal of a brain is to minimize the amount of surprise between the
actual input stream of data and the model of the future input stream, then the brain
must find a way to make its actions create the future that it expects.

This may seem backward—wouldn’t it make more sense for the brain to act accord‐
ing to some policy that tries to maximize a reward? The problem with this is that
nature does not provide us with rewards; it just provides data. The only true reward is

300 | Chapter 10: Conclusion

staying alive, and this can hardly be used to explain every action of an intelligent
being. Instead, if we flip this on its head and require that the action is part of the envi‐
ronment to be generated and that the sole goal of intelligence is to generate actions
and futures that match the reality of the input data, then perhaps we avoid the need
for any external reward function from the environment. However, whether this setup
would generate actions that could be classed as intelligent remains to be seen.

As I stated, this is purely a speculative view, but it is fun to speculate, so I will con‐
tinue doing so. I encourage you to do the same and to continue learning more about
generative models from all the great material that is available online and in other
books. Thank you for taking the time to read to the end of this book—I hope you
have enjoyed reading it as much as I have enjoyed generating it. <END>

Conclusion | 301

Index

Symbols
1-Lipschitz continuous function, 117

A
activation functions, 38
Adam optimizer, 42
AI art, 296

(see also style transfer)
AI music, 297

(see also music generation)
Anaconda, 27
artifacts, 105
artificial neural networks (ANNs), 33
arXiv, xi
attention mechanisms

analysis of, 213-217
building in Keras, 208-212
in encoder-decoder networks, 217-221
examples in language translation, 206
generating polyphonic music, 221
multihead attention module, 280

autoencoders
analysis of, 72-75
building, 66
decoder architecture, 68-71
encoder architecture, 66
joining encoder to decoder, 71
parts of, 64
process used by, 65
representation vectors in, 65
uses for, 65

B
backpropagation, 34

batch normalization, 51-53, 55, 125
BERT (Bidirectional Encoder Representations

from Transformers), 285
BigGAN, 291
binary cross-entropy loss, 42, 71, 107

C
categorical cross-entropy loss, 42
CelebFaces Attributes (CelebA) dataset, 86
character tokens, 169
CIFAR-10 dataset, 35, 120
CMA-ES (covariance matrix adaptation evolu‐

tion strategy), 261-268
CNTK, 34
code examples, obtaining and using, x, xii, 27
comments and questions, xiii
composition (see music generation)
concatenate layer, 140
content loss, 154-156
convolutional layers in neural networks, 46-51,

59
convolutional transpose layers, 68-69
covariate shift, 52
CycleGAN (cycle-consistent adversarial net‐

work)
analysis of, 147
benefits of, 135
compiling, 144-146
CycleGAN versus pix2pix, 135
discriminators, 142
generators (ResNet), 150-151
generators (U-Net), 139-142
Keras-GAN code repository, 137
Monet-style transfer example, 149-153

303

overview of, 137
published paper on, 135
training, 146
training data, 137

D
DCGAN (deep convolutional generative adver‐

sarial network), 101
deep learning

deep neural networks, 33, 59
defined, 31
Keras and TensorFlow for, 34
model creation, 35-46
model improvement, 46-58
premise behind, 154
structured versus unstructured data, 31

dense layers, 33
density function, 11
discriminative modeling, 2
dropout layers, 54

E
encoder-decoder models, 187-190, 217-221
environment setup, 27-29
evolutionary strategies, 262
exploding gradient problem, 51

F
facial image generation

dataset used, 86
encoder and decoder architecture, 88
generating new faces, 92
latent space arithmetic, 93
morphing between faces, 94
progress in, 5
VAE analysis, 91
VAE training, 87

features, 2
fit_generator method, 88
Functional API (Keras), 37-41

G
gated recurrent units (GRUs), 168, 185
generative adversarial networks (GANs)

challenges of, 112-115
defining, 100-106
discriminators, 101, 142
"ganimal" example, 97-99

published paper on, 97
theory underlying, 99
training, 107-112
Wasserstein GAN, 115-121
WGAN-GP, 121-127

generative deep learning
additional resources, xi
advances in generative modeling, 5-7,

277-297
challenges of, 22-27
future of, 299-301
Generative modeling framework, 7-10
history of generative modeling, 275-277
introduction to, 1-5
learning objectives and approach, x
learning prerequisites, x
probabilistic generative models, 10-21

generators
attention-based, 290
bar generator, 229
in GANs, 103-106
MuseGAN generator, 226
question-answer generators, 190-200
ResNet generators, 150-151
StyleGAN generator, 292
U-Net generators, 139

GloVe (“Global Vectors”), 195, 285
Goodfellow, Ian, 97
Google Colaboratory, xi
GPT-2 language model, 5, 285
gradient descent, 153
Gram matrices, 158

H
Ha, David, 237, 243, 265
Hello Wrodl! example, 13-21
hidden layers, 34
hidden state, 174, 176
Hinton, Geoffrey, 4, 54
Hochreiter, Sepp, 167
Hou, Xianxu, 91
Hull, Jonathan, 118
hyperparameters, 114

I
identity, 145
image generation (see also facial image genera‐

tion; neural style transfer technique)
BigGAN, 291

304 | Index

CIFAR-10 dataset for, 35
generative modeling process, 1
generative versus discriminative modeling,

2
key breakthrough in, 4
ProGAN, 287
progress in facial image generation, 5
representation learning for, 23
rise of generative modeling for, 5
Self-Attention GAN (SAGAN), 289
StyleGAN, 292

ImageNet dataset, 154
ImageNet Large Scale Visual Recognition Chal‐

lenge (ILSVRC), 4
in-dream training, 268-272
inference, 196
instance normalization layers, 140

K
Keras

attention mechanisms in, 208-212
autoencoder creation in, 67
backends for, 34
benefits of, 34
content loss calculation in, 155
Conv2DTranspose layer, 70, 105
custom loss function creation, 259
CycleGAN creation and training, 137-149
data loading, 35
decoder creation in, 70
documentation, 43
fit_generator method, 88
GAN discriminator creation in, 102
importing, 28
inference model in, 197
LSTM in, 168
model building, 37-41
model compilation, 41
model evaluation, 44
model improvement, 46-58
model training, 43
MuseGAN generator in, 230
PatchGAN discriminators in, 143
residual blocks in, 150
U-Net generators in, 141
VAE creation in, 81

Keras layers
Activation, 56
Batch Normalization, 51

Bidirectional, 187
Concatenate, 140
Conv2D, 47
Conv2DTranspose, 70
Conv3D, 232
Dense, 38
Dropout, 54
Embedding, 172
Flatten, 38
GRU, 168
Input, 38
Lambda, 82
LeakyReLU, 56
LSTM, 174
Reshape, 211
Upsampling2D layer, 104

Kingma, Diederik, 61
Kullback–Leibler (KL) divergence, 84

L
L-BFGS-B algorithm, 161
labels, 3
language translation, 188, 206
layers, 33
LeakyReLU, 38
likelihood, 12
Lipschitz constraint, 117, 121
loss functions, 41
LSTM (long short-term memory) networks

with attention mechanism, 206
dataset used, 168
embedding layer, 172
generating datasets, 171
generating new text, 179-182
history of, 167
LSTM architecture, 172
LSTM cell, 176-178
LSTM layer, 174-176
published paper on, 167
tokenizing the text, 168-170

M
machine learning

advances in, 4
major branches of, 238

machine painting (see style transfer)
machine writing (see text data generation)
Machine-Learning-as-a-Service (MLaaS), 5
Maluuba NewsQA dataset, 191

Index | 305

masked language model, 285
maximum likelihood estimation, 13
MDN (mixture density network), 243, 255-261
mean squared error loss, 42
MIDI files, 202
mode collapse, 113
models

CycleGAN, 135-152
deep neural networks, 35-58
encoder-decoder models, 187-190
generative adversarial networks (GANs),

97-115
generative modeling, 1-10
generative versus discriminative modeling,

2
improving models, 46-58
LSTM (long short-term memory) networks,

168-178
neural style transfer, 153-162
parametric modeling, 11
probabilistic generative models, 10-21
probabilistic versus deterministic, 2
question-answer generators, 190-200
RNNs (recurrent neural networks), 205-221
variational autoencoders (VAEs), 61-96
Wasserstein GAN, 115-121
WGAN-GP, 121-127
World Model architecture, 241-244

Monet-to-photo dataset, 149
multihead attention module, 280
multilayer RNNs, 183
MuseGAN, 223-235

analysis of, 233
creation, 223-231

MuseNet, 286, 297
MuseScore, 202
music generation

challenges of, 201
data extraction, 204
dataset used, 202
generating polyphonic music, 221
importing MIDI files, 202
MuseGAN analysis, 233
MuseGAN creation, 223-231
MuseGAN critic, 232
MuseGAN example, 221
music versus text generation, 201
musical notation, 204
prerequisites to, 202

RNN (recurrent neural network) for,
205-221

music21 library, 202

N
Naive Bayes parametric model, 17-20
neural style transfer technique

analysis of, 161
content loss, 154-156
definition of, 153
premise of, 153
running, 160
style loss, 156-159
total variance loss, 160

nontrainable parameters, 53
normal distribution, 79

O
observations, 1
OpenAI Gym, 239
optimizers, 41
oscillating loss, 112
overfitting, 54

P
padding, 48
painting (see style transfer)
Papers with Code, xi
parameters, trainable and nontrainable, 53
parametric modeling, 11
PatchGAN discriminators, 143
pix2pix, 135
positional encoding, 279
probabilistic generative models

challenges of, 22
Hello Wrodl! example, 13, 20
model construction, 14-17
Naive Bayes parametric model, 17-20
probabilistic theory behind, 10-13

probability density function, 11, 79
ProGAN, 287
Project Gutenberg, 168
Python, 27

Q
qgen-workshop TensorFlow codebase, 190
question-answer generators

dataset used, 191

306 | Index

encoder-decoder models, 188
inference, 196
model architecture, 192-196
model parts, 190
model results, 198-200

questions and comments, xiii

R
reconstruction loss, 84
regularization techniques, 54
reinforcement learning (RL)

defined, 238
key terminology, 238
OpenAI Gym toolkit for, 239
process of, 239

ReLU (rectified linear unit), 38
representation learning, 23-27
representation vectors, 65
residual networks (ResNets), 150-151
RMSProp optimizer, 43
RNNs (recurrent neural networks)

bidirectional cells, 187
gated recurrent units (GRUs), 185
history of, 167, 167
LSTM (long short-term memory) networks,

167-182
MDN-RNN World Model architecture, 243
for music generation, 205-221
stacked recurrent networks, 183, 206

root mean squared error (RMSE), 71

S
sample space, 11
scaled dot-product attention, 282
Schmidhuber, Jurgen, 167, 237
self-attention, 281
Self-Attention GAN (SAGAN), 289
sequence modeling, 277
Sequential models (Keras), 37-41
sigmoid activation, 39
skip connections, 139
softmax activation, 39
stacked recurrent networks, 183
standard deviation, 79
standard normal curves, 79
stemming, 169
stochastic (random) elements, 2
strides parameter (Keras), 48
structured data, 31

style loss, 156-159
style transfer

aim of, 131
apples and organges example, 132-134
CycleGAN analysis, 147
CycleGAN creation and training, 137-147
CycleGAN introduction, 135
CycleGAN Monet example, 149-152
neural style transfer technique, 153-162
uses for, 131

StyleGAN, 5, 292
supervised learning, 3

T
TensorFlow, 34
text data generation

encoder-decoder models, 187-190
LSTM (long short-term memory) networks,

167-182
question-answer generators, 190-200
RNN (recurrent neural network) exten‐

sions, 183-187
short story generation example, 166
text versus image data, 165
text versus music generation, 201

text summarization, 188
Theano, 34
tokenization, 168-170
total variance loss, 160
trainable parameters, 53
training data, 1
training process, 34
Transformer

analysis of, 283
BERT model, 285
decoder layers, 283
GPT-2 language model, 285
history of, 206
models architecture, 277
multihead attention layer, 280
MuseNet model, 286
positional encoding function, 279
published paper on, 277

truncation trick, 291

U
U-Net, 139-142
uninformative loss, 114
units, 33, 174

Index | 307

unstructured data, 31
upsampling, 104

V
validity, 145
vanishing gradient problem, 151, 167
variance, 79
variational autoencoders (VAEs)

autoencoder analysis, 72-75
autoencoder example, 66-72
autoencoder parts, 64
decoders, 68-71
encoders, 66-68
facial image generation using, 86-95
generative art example, 61-64, 75-77
published paper on, 61, 91
VAE analysis, 85
VAE build in Keras, 81
VAE diagram, 82
VAE loss function, 84
VAE parts, 78-85
World Model architecture, 242
World Model training, 248-255

VGG19 network, 154
virtual environments, 27

W
Wasserstein GANs (WGANs)

analysis of, 120
benefits of, 115
Lipschitz constraint, 117
training, 119
Wasserstein loss, 115-117
weight clipping, 118

Wasserstein GAN–Gradient Penalty (WGAN-
GP)
analysis of, 125
converting WGAN to WGAN-GP, 121
gradient penalty loss, 121-125

weight clipping, 118, 121
weights, 33
Welling, Max, 61
World Models

collecting random rollout data, 245
collecting RNN training data, 255
model setup, 244
published paper on, 237
training in-dream, 268-272
training overview, 245
training the controller, 261-268
training the MDN-RNN, 257-261
training the VAE, 248-255
World Model architecture, 241-244

World Models paper, 237, 243, 275
Wrodl!, 13

308 | Index

About the Author
David Foster is the cofounder of Applied Data Science, a data science consultancy
delivering bespoke solutions for clients. He holds an MA in mathematics from Trinity
College, Cambridge, UK, and an MSc in operational research from the University of
Warwick.

David has won several international machine learning competitions, including the
InnoCentive Predicting Product Purchase challenge, and was awarded first prize for a
visualization that enables a pharmaceutical company in the US to optimize site selec‐
tion for clinical trials.

He is an active participant in the online data science community and has authored
several successful blog posts on deep reinforcement learning including “How To
Build Your Own AlphaZero AI Using Python and Keras”.

Colophon
The animal on the cover of Generative Deep Learning is a painted parakeet (Pyrrhura
picta). The Pyrrhura genus falls under the family Psittacidae, one of three families of
parrots. Within its subfamily Arinae are several macaw and parakeet species of the
Western Hemisphere. The painted parakeet inhabits the coastal forest and mountains
of northeastern South America.

Bright green feathers cover most of a painted parakeet, but they are blue above the
beak, brown in the face, and reddish in the breast and tail. Most strikingly, the feath‐
ers on the painted parakeet’s neck look like scales; the brown center is outlined in off-
white. This combination of colors camouflages the birds in the rainforest.

Painted parakeets tend to feed in the forest canopy, where their green plumage masks
them best. They forage in flocks of 5 to 12 birds for a wide variety of fruits, seeds, and
flowers. Occasionally, when feeding below the canopy, painted parakeets will eat algae
from forest pools. They grow to about 9 inches in length and live for 13 to 15 years. A
clutch of painted parakeet chicks is usually around five eggs, which are less than one
inch wide at hatching.

Many of the animals on O’Reilly’s covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Shaw’s Zoology. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

http://bit.ly/2J6fGhU
http://bit.ly/2J6fGhU

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Cover
	Copyright
	Table of Contents
	Preface
	Objective and Approach
	Prerequisites
	Other Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Introduction to Generative Deep Learning
	Chapter 1. Generative Modeling
	What Is Generative Modeling?
	Generative Versus Discriminative Modeling
	Advances in Machine Learning
	The Rise of Generative Modeling
	The Generative Modeling Framework

	Probabilistic Generative Models
	Hello Wrodl!
	Your First Probabilistic Generative Model
	Naive Bayes
	Hello Wrodl! Continued

	The Challenges of Generative Modeling
	Representation Learning

	Setting Up Your Environment
	Summary

	Chapter 2. Deep Learning
	Structured and Unstructured Data
	Deep Neural Networks
	Keras and TensorFlow

	Your First Deep Neural Network
	Loading the Data
	Building the Model
	Compiling the Model
	Training the Model
	Evaluating the Model

	Improving the Model
	Convolutional Layers
	Batch Normalization
	Dropout Layers
	Putting It All Together

	Summary

	Chapter 3. Variational Autoencoders
	The Art Exhibition
	Autoencoders
	Your First Autoencoder
	The Encoder
	The Decoder
	Joining the Encoder to the Decoder
	Analysis of the Autoencoder

	The Variational Art Exhibition
	Building a Variational Autoencoder
	The Encoder
	The Loss Function
	Analysis of the Variational Autoencoder

	Using VAEs to Generate Faces
	Training the VAE
	Analysis of the VAE
	Generating New Faces
	Latent Space Arithmetic
	Morphing Between Faces

	Summary

	Chapter 4. Generative Adversarial Networks
	Ganimals
	Introduction to GANs
	Your First GAN
	The Discriminator
	The Generator
	Training the GAN

	GAN Challenges
	Oscillating Loss
	Mode Collapse
	Uninformative Loss
	Hyperparameters
	Tackling the GAN Challenges

	Wasserstein GAN
	Wasserstein Loss
	The Lipschitz Constraint
	Weight Clipping
	Training the WGAN
	Analysis of the WGAN

	WGAN-GP
	The Gradient Penalty Loss
	Analysis of WGAN-GP

	Summary

	Part II. Teaching Machines to Paint, Write, Compose, and Play
	Chapter 5. Paint
	Apples and Organges
	CycleGAN
	Your First CycleGAN
	Overview
	The Generators (U-Net)
	The Discriminators
	Compiling the CycleGAN
	Training the CycleGAN
	Analysis of the CycleGAN

	Creating a CycleGAN to Paint Like Monet
	The Generators (ResNet)
	Analysis of the CycleGAN

	Neural Style Transfer
	Content Loss
	Style Loss
	Total Variance Loss
	Running the Neural Style Transfer
	Analysis of the Neural Style Transfer Model

	Summary

	Chapter 6. Write
	The Literary Society for Troublesome Miscreants
	Long Short-Term Memory Networks
	Your First LSTM Network
	Tokenization
	Building the Dataset
	The LSTM Architecture
	The Embedding Layer
	The LSTM Layer
	The LSTM Cell

	Generating New Text
	RNN Extensions
	Stacked Recurrent Networks
	Gated Recurrent Units
	Bidirectional Cells

	Encoder–Decoder Models
	A Question and Answer Generator
	A Question-Answer Dataset
	Model Architecture
	Inference
	Model Results

	Summary

	Chapter 7. Compose
	Preliminaries
	Musical Notation

	Your First Music-Generating RNN
	Attention
	Building an Attention Mechanism in Keras
	Analysis of the RNN with Attention
	Attention in Encoder–Decoder Networks
	Generating Polyphonic Music

	The Musical Organ
	Your First MuseGAN
	The MuseGAN Generator
	Chords, Style, Melody, and Groove
	The Bar Generator
	Putting It All Together

	The Critic
	Analysis of the MuseGAN
	Summary

	Chapter 8. Play
	Reinforcement Learning
	OpenAI Gym

	World Model Architecture
	The Variational Autoencoder
	The MDN-RNN
	The Controller

	Setup
	Training Process Overview
	Collecting Random Rollout Data
	Training the VAE
	The VAE Architecture
	Exploring the VAE

	Collecting Data to Train the RNN
	Training the MDN-RNN
	The MDN-RNN Architecture
	Sampling the Next z and Reward from the MDN-RNN
	The MDN-RNN Loss Function

	Training the Controller
	The Controller Architecture
	CMA-ES
	Parallelizing CMA-ES
	Output from the Controller Training

	In-Dream Training
	In-Dream Training the Controller
	Challenges of In-Dream Training

	Summary

	Chapter 9. The Future of Generative Modeling
	Five Years of Progress
	The Transformer
	Positional Encoding
	Multihead Attention
	The Decoder
	Analysis of the Transformer
	BERT
	GPT-2
	MuseNet

	Advances in Image Generation
	ProGAN
	Self-Attention GAN (SAGAN)
	BigGAN
	StyleGAN

	Applications of Generative Modeling
	AI Art
	AI Music

	Chapter 10. Conclusion

	Index
	About the Author
	Colophon

