

Learning IPython for
Interactive Computing
and Data Visualization

Learn IPython for interactive Python programming,
high-performance numerical computing, and data
visualization

Cyrille Rossant

 BIRMINGHAM - MUMBAI

Learning IPython for Interactive Computing and
Data Visualization

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1150413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-993-2

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

Credits

Author
Cyrille Rossant

Reviewers
Francisco J. Blanco-Silva

Matthias Bussonnier

Acquisition Editor
Kartikey Pandey

Comissioning Editor
Maria D'souza

Sruthi Kutty

Technical Editors
Soumya Kanti

Veena Pagare

Copy Editor
Insiya Morbiwala

Alfida Paiva

Project Coordinator
Sneha Modi

Proofreader
Lauren Tobon

Indexer
Rekha Nair

Graphics
Aditi Gajjar

Ronak Shah

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Cyrille Rossant is a French researcher in quantitative neuroscience. A graduate
of the Ecole Normale Supérieure, Paris, he holds a Master's degree and a Ph.D.
in Mathematics and Computer Science. He uses IPython every day to model and
simulate the brain and to analyze experimental data. He is the creator of a few
scientific Python packages, including Playdoh (parallel computing) and Galry
(high-performance interactive visualization).

I am grateful to the vibrant Python community for developing this
great open platform for computational science. Devoting hard work
to open-source software sometimes requires personal sacrifice, but it's
worth the effort. In particular, I would like to thank Fernando Perez,
creator of IPython, and all the development team for their awesome
work on this library. Also, we regular Matplotlib users are all deeply
grateful to its creator John Hunter, whose untimely passing in 2012 is
a tragedy for the whole community and beyond.

I would also like to thank the reviewers for their helpful comments
and suggestions. Finally, I am grateful to my family and Claire for
their support during the writing of this book.

About the Reviewer

Matthias Bussonnier is a young French physicist working in biophysics. He has
been a core developer of IPython since 2011.

I'd like to thank all my family, colleagues, as well as the IPython core
team for their help and the fun moments spent developing for the
open source community.

Dr. Francisco J. Blanco-Silva, the owner of a scientific consulting company—
Tizona Scientific Solutions—and adjunct faculty in the Department of Mathematics
of the University of South Carolina has obtained his formal training as an applied
mathematician at Purdue University. He enjoys problem solving, learning, and
teaching. An avid programmer and blogger, when it comes to writing he relishes
finding that common denominator among his passions and skills, and making it
available to everyone.

He has written the technical book Learning SciPy for Numerical and Scientific
Computing, Packt Publishing.

He has also co-authored Chapter 5 of the book Modeling Nanoscale Imaging in Electron
Microscopy, Springer 201, Thomas Vogt and Wolfgang Dahmen, Springer.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Getting Started with IPython 5

Installing IPython and the recommended packages 6
Prerequisites for IPython 6
Installing an all-in-one distribution 7
Installing the packages one by one 7

Packages websites 8
Getting binary installers 9
Using the Python packaging system 11

Installing the development versions 12
Ten IPython essentials 13

Running the IPython console 13
Using IPython as a system shell 14
Using the history 15
Tab completion 15
Executing a script with the %run command 16
Quick benchmarking with the %timeit command 17
Quick debugging with the %debug command 17
Interactive computing with Pylab 18
Using the IPython Notebook 19
Customizing IPython 19

Summary 20
Chapter 2: Interactive Work with IPython 21

The extended shell 21
Navigating through the filesystem 22
Accessing the system shell from IPython 24

The extended Python console 25
Exploring the history 26

Table of Contents

[ii]

Import/export of Python code 27
Importing code in IPython 27
Exporting code to a file 29

Dynamic introspection 29
Tab completion 29
Source code introspection 31

Using the interactive debugger 32
Interactive benchmarking and profiling 33

Controlling the execution time of a command 33
Profiling a script 34

Using the IPython notebook 35
Installation 36
The notebook dashboard 36
Working with cells 37
Cell magics 38
Managing notebooks 39
Multimedia and rich text editing 39
Graph plotting 40

Summary 41
Chapter 3: Numerical Computing with IPython 43

A primer to vector computing 44
An example of computation with Python loops 44
What an array is 45
Reimplementing the example with arrays 48

Creating and loading arrays 50
Creating arrays 50

From scratch, element by element 50
From scratch, using predefined templates 51
From random values 52

Loading arrays 53
From a native Python object 53
From a buffer or an external file 53
Using Pandas 54

Working with arrays 56
Selection 56

Using Pandas 57
Using NumPy 58
More indexing possibilities 59

Manipulation 60
Reshaping 60
Repeating and concatenating 61
Broadcasting 62
Permuting 63

Computation 63

Table of Contents

[iii]

Advanced mathematical processing 65
Summary 66

Chapter 4: Interactive Plotting and Graphical Interfaces 67
Figures with Matplotlib 68

Setting up IPython for interactive visualization 68
Using Matplotlib 68
Interactive navigation 69
Matplotlib in the IPython notebook 69

Standard plots 69
Curves 69
Scatter plots 71
Bar graphs 72

Plot customization 72
Styles and colors 73
Grid, axes, and legends 74
Interaction from IPython 75
Drawing multiple plots 76

Advanced figures and graphics 76
Image processing 77

Loading images 77
Showing images 78
Using PIL 79
Advanced image processing – color quantization 79

Maps 81
3D plots 83
Animations 84
Other visualization packages 84

Graphical User Interfaces (GUI) 84
Setting up IPython for interactive GUIs 85
A "Hello World" example 85

Summary 87
Chapter 5: High-Performance and Parallel Computing 89

Interactive task parallelization 90
Parallel computing in Python 90
Distributing tasks on multiple cores 91

Starting the engines 91
Creating a Client instance 92
Using the parallel magic 92
Parallel map 93

A practical example – Monte Carlo simulations 95
Using MPI with IPython 96
Advanced parallel computing features of IPython 98

Table of Contents

[iv]

Using C in IPython with Cython 99
Installing and configuring Cython 99
Using Cython from IPython 100
Accelerating a pure Python algorithm with Cython 101

Pure Python version 101
Naïve Cython conversion 102
Adding C types 102

Using NumPy and Cython 103
Python version 103
Cython version 104

More advanced options for accelerating Python code 106
Summary 107

Chapter 6: Customizing IPython 109
IPython profiles 109

Profile locations 110
The IPython configuration files 110
Loading scripts when IPython starts 111

IPython extensions 111
Example – line-by-line profiling 111
Creating new extensions 113

Example – executing C++ code in IPython 113
Rich representations in the frontend 115
Embedding IPython 117
Final words 117
Summary 118

Index 119

Preface
You are a programmer using Python as a scripting language, maybe for software
development. Learning IPython will let you use Python interactively in a highly
efficient way, for example, when exploring algorithms or analyzing data. In addition,
it is the best way to be introduced to the most advanced capabilities of the platform,
namely numerical computing, interactive visualization, and parallel programming.

What this book covers
Chapter 1, Getting Started with IPython, is a short, hands-on introduction to the key
features of IPython. It will give you a broad overview of what IPython offers. All
features introduced in this chapter will be covered in the subsequent chapters.

Chapter 2, Interactive Work with IPython, will show you how to use Python
interactively from the IPython command-line interface, and how the numerous magic
commands will help you considerably improve your productivity. This chapter will
also introduce you to the IPython notebook, a modern tool for reproducible and
collaborative interactive programming.

Chapter 3, Numerical Computing with IPython, contains an introduction to the numerical
computing features of Numpy and Pandas, which can be conveniently used from
IPython. These tools are essential as soon as you need to analyze large amounts of
data, or more generally when you need to perform efficient numerical computations.

Chapter 4, Interactive Plotting and Graphical Interfaces, covers the graphical capabilities
of Matplotlib, and shows how they integrate smoothly in IPython. Matplotlib is a
very powerful graphical library, which allows you to either generate high-quality
figures or to visualize data interactively.

Preface

[2]

Chapter 5, High-Performance and Parallel Computing, is an advanced chapter detailing
various ways by which you can accelerate your code, such as parallel computing
and dynamic C compilation. The former method consists in distributing tasks across
cores or computers, which is particularly easy to do with IPython. The latter method
lets you write code in a superset of Python (using the Cython library), which is then
dynamically compiled in C for dramatic speed improvements.

Chapter 6, Customizing IPython, shows you how you can customize IPython, create
new magic commands, and use custom representations in the IPython notebook.

What you need for this book
This book assumes familiarity with the Python language. In addition, you will need
to have a Python installation on your computer (Windows, OS X, or Linux). You will
also need to install IPython as well as a few other external libraries. The installation
procedures are detailed in Chapter 1, Getting Started with IPython.

Who this book is for
This book is intended for Python programmers who want to learn IPython for the
advanced console, the notebook, and the interactive computing facilities offered
by the platform. Students, hackers, scientists, and hobbyists who are interested in
interactive computing, data analysis, and visualization will also be interested in this
book, but will need to learn the basics of Python first. Fortunately, Python is a very
accessible language, and a lot of books, courses, and tutorials are available.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For instance, the standard Unix
commands pwd, ls, cd are available in IPython."

A block of code is set as follows:

print("Running script.")
x = 12
print("'x' is now equal to {0:d}.".format(x))

Preface

[3]

Any command-line input or output is written as follows:

In [1]: run script.py

Running script.

'x' is now equal to 12.

In [2]: x

Out[2]: 12

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the New Notebook button at the top right of the page".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. In addition, all examples can be downloaded from
the author's website: http://ipython.rossant.net.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with IPython
In this chapter, we will first go through the IPython installation process and give an
overview of the possibilities offered by IPython. IPython brings a highly improved
Python console and the Notebook. In addition, it is an essential tool for interactive
computing when it is combined with third-party specialized packages, such as
NumPy and Matplotlib. These packages bring high-performance computing and
interactive visualization facilities to the Python universe, with IPython being its
cornerstone. At the end of this chapter, you will have IPython installed and the
required packages on your computer, and you will have been through a short,
hands-on overview of the most important features of IPython that we will detail in
the subsequent chapters, such as:

• Running the IPython console
• Using IPython as a system shell
• Using the history
• Tab completion
• Executing a script with the %run command
• Quick benchmarking with the %timeit command
• Quick debugging with the %pdb command
• Interactive computing with Pylab
• Using the IPython Notebook
• Customizing IPython

Getting Started with IPython

[6]

Installing IPython and the recommended
packages
In this section, we will see how you can install IPython and the other packages that
we will be using in this book. For the most up-to-date information about the IPython
installation, you should check the official website of IPython (http://ipython.org).

Prerequisites for IPython
First things first, what do you need to have on your computer before installing
IPython? The good news is that IPython, and more generally all Python packages,
can run, in principle, on most platforms (that is, Linux, Apple OS X, and Microsoft
Windows). You also need to have a valid Python distribution installed on your
system before installing and running IPython. The latest stable version of IPython at
the time of writing is 0.13.1, and it officially requires Python 2.6, 2.7, 3.1, or 3.2.

Python 2.x and 3.x
The 3.x branch of Python is not backward compatible with
the 2.x branch, which explains why the 2.7 version is still
maintained. Even if most external Python packages used in
this book are compatible with Python 3.x, some packages
are still not compatible with this branch. At this time, the
choice between Python 2.x and Python 3.x for a new project
is typically dictated by the Python 3 support of the required
external Python packages. The setups of the targeted users
is also an important point to consider. In this book, we will
use Python 2.7 and try to minimize the incompatibilities
with Python 3.x. This issue is beyond the scope of this book,
and we encourage you to search for information about
how to write code for Python 2.x that is as compatible with
Python 3.x as possible. This official web page is a good
starting point:
http://wiki.python.org/moin/Python2orPython3

We will use Python 2.7 in this book. The 2.6 version is no longer maintained and,
if you choose to stick with the 2.x branch, you should only use Python 2.7 as far
as possible.

We will use other Python packages in this book that are typically used with IPython.
These packages are mainly NumPy, SciPy, and Matplotlib, but there are additional
packages we will use in some examples. Details about how to install them are
provided in the next section Installing an all-in-one distribution.

Chapter 1

[7]

There are several ways of installing IPython and the recommended packages. From
the easiest to the hardest, you can do either of the following:

• Install a standalone, all-in-one Python distribution with a large variety of
built-in Python packages

• Install separately only the packages you need

In the latter case, you can use binary installers or install the packages directly from
the source code.

Installing an all-in-one distribution
This solution is by far the easiest. You can download a single binary installer that
comes with a full Python distribution and a lot of widely used external packages,
including IPython. Popular distributions include:

• The Enthought Python Distribution (EPD) and the new Canopy
by Enthought:
http://www.enthought.com/

• Anaconda by Continuum Analytics:
http://www.continuum.io/

• Python(x,y), an open source project:
http://code.google.com/p/pythonxy/

• ActivePython by ActiveState:
http://www.activestate.com/activepython

All these distributions support Linux, OS X, and Windows, except Python(x,y) which
only supports Windows. They all offer a free edition (and possibly a commercial
edition) and they all contain IPython. ActivePython and EPD also ship with their
own packaging systems; this makes it easy to install additional packages. These
distributions contain most of the external packages we will be using in this book.

Installing the packages one by one
Sometimes you may prefer to install only the packages you need instead of installing
a large all-in-one package. Fortunately, this should be straightforward on most
recent systems. Binary installers are indeed available for Windows, OS X, and most
common Linux distributions. Otherwise, there is always the possibility to install the
packages from the source, which is generally easier than it sounds.

Getting Started with IPython

[8]

Packages websites
Here is a list of Python packages that we will mention in this book, along with their
respective websites where you can find the most up-to-date information:

• IPython:
http://ipython.org

• NumPy, for high-performance and vectorized computations on
multidimensional arrays:
http://www.numpy.org

• SciPy, for advanced numerical algorithms:

http://www.scipy.org

• Matplotlib, for plotting and interactive visualization:
http://matplotlib.org

• Matplotlib-basemap, a mapping toolbox for Matplotlib:
http://matplotlib.org/basemap/

• NetworkX, for handling graphs:
http://networkx.lanl.gov

• Pandas, for dealing with any kind of tabular data:
http://pandas.pydata.org

• Python Imaging Library (PIL), for image-processing algorithms:
http://www.pythonware.com/products/pil

• PySide, a wrapper around Qt for graphical user interfaces (GUIs):
http://qt-project.org/wiki/PySide

• PyQt, similar to PySide but with a different license:
http://www.riverbankcomputing.co.uk/software/pyqt/intro

• Cython, for using C code in Python:
http://cython.org

Chapter 1

[9]

PyQt or PySide?
Qt is a cross-platform application framework widely used
for software with GUI. It has a complex history; originally
developed by Trolltech, it was then acquired by Nokia and
now owned by Digia. Both commercial and open source
licenses exist. PyQt is a Qt wrapper in Python developed
by Riverbank Computing. The open source version of PyQt
is GPL licensed, which prevents using it in commercial
products. Therefore, Nokia decided to create its own LGPL-
licensed package called PySide. It is now maintained by
the Qt Project. Today, both packages coexist and have
an extremely similar API so that it is possible to write Qt
graphical applications in Python that support both libraries.

These websites propose to download binary installers for various systems as well as
the source code for manual compilation and installation.

There is also an online repository of Python packages called the Python Package
Index (PyPI) available at http://pypi.python.org. It contains tarballs, and
sometimes Windows installers, for most existing Python packages.

Getting binary installers
You may find a binary installer for your system on the official website of the
packages you are interested in. If official binary installers are not available, unofficial
ones may have been created by the community. We will give some advice here about
where binary installers can be found on the different operating systems.

Windows
Official Windows installers may be found on the package websites or on PyPI for
some packages. Unofficial Windows installers for hundreds of Python packages
(including IPython and all the packages used in this book) can be found on the
personal webpage of Christoph Gohlke at http://www.lfd.uci.edu/~gohlke/
pythonlibs/. These files are provided without warranty of any kind. However,
they are generally quite stable, and this makes it extremely easy to install almost any
Python package on Windows. There are versions of all packages for Python 2.x and
3.x and for 32-bit and 64-bit Python distributions.

Getting Started with IPython

[10]

OS X
Official OS X installers can be found on the websites of some packages, and unofficial
installers can be found on the MacPorts project (http://www.macports.org) and
Homebrew (http://mxcl.github.com/homebrew/).

Linux
Most Linux distributions (including Ubuntu) ship with a packaging system that may
contain the Python version you need along with most Python packages we will be
using here. For example, to install IPython on Ubuntu, type the following command
in a shell:

$ sudo apt-get install ipython-notebook

On Fedora 18 and newer related distributions, type the following command:

$ sudo yum install python-ipython-notebook

The relevant binary package names are sometimes prefixed with python- (for
example, python-numpy or python-matplotlib). Also, PyQt4's package name is
python-qt4, PyOpenGL's package name is python-opengl, PIL's package name is
python-imaging, and so on.

Table of binary packages
We have shown here a table with the availability (at the time of writing) of binary
installers for the packages we will be using in this book in the different Python
distributions and operating systems. All these installers are available for Python 2.7.
In the following table, "(W)" means Windows and "CG:" means Christoph
Gohlke's webpage:

Package EPD
7.3

Anaconda
1.2.1

Python
(x,y) 2.7.3

Active
Python
2.7.2

Windows
installer

Ubuntu
installer

OSX
installer
(MacPorts)

NetworkX 1.6 1.7 1.7 1.6 CG: 1.7 1.7 1.7
Pandas 0.9.1 0.9.0 0.9.1 0.7.3 CG:

0.10.0,
PyPI:
0.10.0

0.8.0 0.10.0

NumPy 1.6.1 1.6.2 (W) 1.6.2 1.6.2 CG: 1.6.2,
PyPI:
1.6.2 (32
bits)

1.6.2 1.6.2

SciPy 0.10.1 0.11.0 0.11.0 0.10.1 CG: 0.11.0 0.10.1 0.11.0
PIL 1.1.7 1.1.7 1.1.7 1.1.7 CG: 1.1.7 1.1.7 N/A

Chapter 1

[11]

Package EPD
7.3

Anaconda
1.2.1

Python
(x,y) 2.7.3

Active
Python
2.7.2

Windows
installer

Ubuntu
installer

OSX
installer
(MacPorts)

Matplotlib 1.1.0 1.2.0 1.1.1 1.1.0 CG: 1.2.0 1.1.1 1.2.0
Basemap 1.0.2 N/A 1.0.2

(optional)
1.0
beta

1.0.5 1.0.5 1.0.5

PyOpenGL 3.0.1 N/A 3.0.2 3.0.2 CG: 3.0.2,
PyPI:
3.0.2

3.0.1 3.0.2

PySide 1.1.1 1.1.2 N/A
(PyQt
4.9.5)

N/A
(PyQt
4.8.3)

CG: 1.1.2 1.1.1 1.1.2

Cython 0.16 0.17.1 0.17.2 0.16 CG: 0.17.3 0.16 0.17.3
Numba N/A 0.3.2 N/A N/A CG: 0.3.2 N/A N/A

Using the Python packaging system
When binary packages are not available, the universal way of installing a Python
package is to install it directly from its source code. The Python packaging system is
meant to simplify this step so as to handle dependency management, uninstallation,
and package discovery. However, the packaging system has been chaotic for years.

Distutils, the native Python packaging system, has long been criticized for being
inefficient and bringing too many problems. Its successor Distutils2 is not finished at
the time of writing. Setuptools is an alternative system and offers the easy_install
command-line tool that allows searching (on PyPI) and installing new Python
packages with a single command line. Installing a new package is as simple as
typing in a shell:

$ easy_install ipython

Setuptools has also been criticized and is now being replaced by Distribute. The
easy_install tool is also being replaced by pip, a more powerful tool for searching,
installing, and uninstalling Python packages.

For now, we recommend that you use Distribute and pip. Both can be installed
either from the source tarballs or with easy_install (which requires that you install
Setuptools beforehand). More details about how to install these tools can be found on
The Hitchhiker's Guide to Packaging (http://guide.python-distribute.org/).
To install a new package with pip, type the following command in a shell:

$ pip install ipython

Getting Started with IPython

[12]

Optional dependencies for IPython
IPython has several dependencies:

• pyreadline: This dependency provides line-editing features
• pyzmq: This dependency is needed for IPython's parallel computing

features, such as Qt console and Notebook
• pygments: This dependency highlights syntax in the Qt console
• tornado: This dependency is required by the web-based Notebook

They are all automatically installed when you install IPython from a binary package,
but that is not the case when you install IPython from the source code. On Windows,
pyreadline must be installed using either a binary installer available on PyPI or on
Christoph Gohlke's webpage, or with easy_install or pip.

On OS X, you should also install readline with easy_install or pip.

The other dependencies can automatically be installed with the following command:

$ easy_install ipython[zmq,qtconsole,notebook]

Installing the development versions
The most experienced users may want to use the very latest development versions
of some libraries. Details can be found on the websites of the respective libraries. For
example, to install the development version of IPython, we can type the following
command (the version control system Git needs to be installed):

$ git clone https://github.com/ipython/ipython.git

$ cd ipython

$ python setup.py install

To be able to update IPython easily as it changes on the development branch
(by using git pull), we can just replace the last line with the following command
(the Distribute library needs to be installed):

$ python setupegg.py develop

Chapter 1

[13]

Getting help for IPython
The official IPython documentation webpage at http://
ipython.org/documentation.html is the place to go
to get some help. It contains links to the online manual and
to unofficial tutorials and articles created by the community.
The StackOverflow website at http://stackoverflow.
com/questions/tagged/ipython is also a great place
to request help for IPython. Finally, anyone can subscribe to
the IPython users' mailing list http://mail.scipy.org/
mailman/listinfo/ipython-user.

Ten IPython essentials
In this section, we will take a quick tour of IPython by introducing 10 essential features
of this powerful tool. Although brief, this hands-on visit will cover a wide range of
IPython functionality that will be explored in more detail in the next chapters.

Running the IPython console
If IPython has been installed correctly, you should be able to run it from a system
shell with the ipython command. You can use this prompt like a regular Python
interpreter as shown in the following screenshot:

The IPython console

Getting Started with IPython

[14]

Command-line shell on Windows
If you are on Windows and using the old cmd.exe shell, you
should be aware that this tool is extremely limited. You could
instead use a more powerful interpreter, such as Microsoft
PowerShell, which is integrated by default in Windows 7
and 8. The simple fact that most common filesystem-related
commands (namely, pwd, cd, ls, cp, ps, and so on) have the
same name as in Unix should be a sufficient reason to switch.

Of course, IPython offers much more than that. For example, IPython ships with tens
of little commands that considerably improve productivity. We will see a lot of them
in this book, starting with this section.

Some of these commands help you get information about any Python function or
object. For instance, have you ever had a doubt about how to use the super function
to access parent methods in a derived class? Just type super? (a shortcut for the
command %pinfo super) and you will find all the information regarding the
super function. Appending ? or ?? to any command or variable gives you all the
information you need about it, as shown here:

In [1]: super?

Typical use to call a cooperative superclass method:

class C(B):

 def meth(self, arg):

 super(C, self).meth(arg)

Using IPython as a system shell
You can use the IPython command-line interface as an extended system shell. You
can navigate throughout your filesystem and execute any system command. For
instance, the standard Unix commands pwd, ls, and cd are available in IPython and
work on Windows too, as shown in the following example:

In [1]: pwd

Out[1]: u'C:\\'

In [2]: cd windows

C:\windows

These commands are particular magic commands that are central in the IPython
shell. There are dozens of magic commands and we will use a lot of them throughout
this book. You can get a list of all magic commands with the %lsmagic command.

Chapter 1

[15]

Using the IPython magic commands
Magic commands actually come with a % prefix, but the
automagic system, enabled by default, allows you to
conveniently omit this prefix. Using the prefix is always possible,
particularly when the unprefixed command is shadowed by
a Python variable with the same name. The %automagic
command toggles the automagic system. In this book, we will
generally use the % prefix to refer to magic commands, but keep
in mind that you can omit it most of the time, if you prefer.

Using the history
Like the standard Python console, IPython offers a command history. However,
unlike in Python's console, the IPython history spans your previous interactive
sessions. In addition to this, several key strokes and commands allow you to reduce
repetitive typing.

In an IPython console prompt, use the up and down arrow keys to go through your
whole input history. If you start typing before pressing the arrow keys, only the
commands that match what you have typed so far will be shown.

In any interactive session, your input and output history is kept in the In and Out
variables and is indexed by a prompt number. The _, __, ___ and _i, _ii, _iii
variables contain the last three output and input objects, respectively. The _n and
_in variables return the nth output and input history. For instance, let's type the
following command:

In [4]: a = 12
In [5]: a ** 2
Out[5]: 144
In [6]: print("The result is {0:d}.".format(_))
The result is 144.

In this example, we display the output, that is, 144 of prompt 5 on line 6.

Tab completion
Tab completion is incredibly useful and you will find yourself using it all the time.
Whenever you start typing any command, variable name, or function, press the
Tab key to let IPython either automatically complete what you are typing if there is
no ambiguity, or show you the list of possible commands or names that match what
you have typed so far. It also works for directories and file paths, just like in the
system shell.

Getting Started with IPython

[16]

It is also particularly useful for dynamic object introspection. Type any Python object
name followed by a point and then press the Tab key; IPython will show you the list
of existing attributes and methods, as shown in the following example:

In [1]: import os

In [2]: os.path.split<TAB>

os.path.split os.path.splitdrive os.path.splitext os.path.splitunc

In the second line, as shown in the previous code, we press the Tab key after having
typed os.path.split. IPython then displays all the possible commands.

Tab Completion and Private Variables
Tab completion shows you all the attributes and methods
of an object, except those that begin with an underscore
(_). The reason is that it is a standard convention in Python
programming to prefix private variables with an underscore.
To force IPython to show all private attributes and methods,
type myobject._ before pressing the Tab key. Nothing
is really private or hidden in Python. It is part of a general
Python philosophy, as expressed by the famous saying, "We
are all consenting adults here."

Executing a script with the %run command
Although essential, the interactive console becomes limited when running sequences
of multiple commands. Writing multiple commands in a Python script with the .py
file extension (by convention) is quite common. A Python script can be executed
from within the IPython console with the %run magic command followed by the
script filename. The script is executed in a fresh, new Python namespace unless the
-i option has been used, in which case the current interactive Python namespace
is used for the execution. In all cases, all variables defined in the script become
available in the console at the end of script execution.

Let's write the following Python script in a file called script.py:

print("Running script.")
x = 12
print("'x' is now equal to {0:d}.".format(x))

Chapter 1

[17]

Now, assuming we are in the directory where this file is located, we can execute it in
IPython by entering the following command:

In [1]: %run script.py

Running script.

'x' is now equal to 12.

In [2]: x

Out[2]: 12

When running the script, the standard output of the console displays any print
statement. At the end of execution, the x variable defined in the script is then
included in the interactive namespace, which is quite convenient.

Quick benchmarking with the %timeit
command
You can do quick benchmarks in an interactive session with the %timeit magic
command. It lets you estimate how much time the execution of a single command
takes. The same command is executed multiple times within a loop, and this loop
itself is repeated several times by default. The individual execution time of the
command is then automatically estimated with an average. The -n option controls
the number of executions in a loop, whereas the -r option controls the number of
executed loops. For example, let's type the following command:

In[1]: %timeit [x*x for x in range(100000)]
10 loops, best of 3: 26.1 ms per loop

Here, it took about 26 milliseconds to compute the squares of all integers up to 100000.

Quick debugging with the %debug command
IPython ships with a powerful command-line debugger. Whenever an exception is
raised in the console, use the %debug magic command to launch the debugger at the
exception point. You then have access to all the local variables and to the full stack
traceback in postmortem mode. Navigate up and down through the stack with the
u and d commands and exit the debugger with the q command. See the list of all the
available commands in the debugger by entering the ? command.

You can use the %pdb magic command to activate the automatic execution of the
IPython debugger as soon as an exception is raised.

Getting Started with IPython

[18]

Interactive computing with Pylab
The %pylab magic command enables the scientific computing capabilities of the
NumPy and matplotlib packages, namely efficient operations on vectors and
matrices and plotting and interactive visualization features. It becomes possible to
perform interactive computations in the console and plot graphs dynamically. For
example, let's enter the following command:

In [1]: %pylab

Welcome to pylab, a matplotlib-based Python environment [backend: TkAgg].

For more information, type 'help(pylab)'.

In [2]: x = linspace(-10., 10., 1000)

In [3]: plot(x, sin(x))

In this example, we first define a vector of 1000 values linearly spaced between -10
and 10. Then we plot the graph (x, sin(x)). A window with a plot appears as
shown in the following screenshot, and the console is not blocked while this window
is opened. This allows us to interactively modify the plot while it is open.

A Matplotlib figure

Chapter 1

[19]

Using the IPython Notebook
The Notebook brings the functionality of IPython into the browser for multiline text-
editing features, interactive session reproducibility, and so on. It is a modern and
powerful way of using Python in an interactive and reproducible way.

To use the Notebook, call the ipython notebook command in a shell (make
sure you have installed the required dependencies described in the Installation
section). This will launch a local web server on the default port 8888. Go to
http://127.0.0.1:8888/ in a browser and create a new Notebook.

You can write one or several lines of code in the input cells. Here are some of the
most useful keyboard shortcuts:

• Press the Enter key to create a new line in the cell and not execute the cell
• Press Shift + Enter to execute the cell and go to the next cell
• Press Alt + Enter to execute the cell and append a new empty cell right after it
• Press Ctrl + Enter for quick instant experiments when you do not want to

save the output
• Press Ctrl + M and then the H key to display the list of all the keyboard

shortcuts

We will explore the features of the Notebook more thoroughly in the next chapter.

Customizing IPython
You can save your user preferences in a Python file; this file is called an IPython
profile. To create a default profile, type ipython profile create in a shell. This
will create a folder named profile_default in the ~/.ipython or ~/.config/
ipython directory. The file ipython_config.py in this folder contains preferences
about IPython. You can create different profiles with different names using
ipython profile create profilename, and then launch IPython with ipython
--profile=profilename to use that profile.

The ~ directory is your home directory, for example, something like /home/
yourname on Unix, or C:\Users\yourname or C:\Documents and Settings\
yourname on Windows.

Getting Started with IPython

[20]

Summary
In this chapter, we have detailed the various ways with which you can install
IPython and the recommended external Python packages. The most straightforward
way is to install a standalone Python distribution with all packages built in, such as
Enthought Python Distribution or Canopy, Anaconda, Python(x,y), or ActivePython,
among others. The other solution is to install the different packages manually, either
with binary installers available for most recent platforms, or by using the Python
packaging system, which should be straightforward in most cases.

We have also gone through 10 of the most interesting features offered by IPython.
They essentially concern the Python and shell interactive features, including the
integrated debugger and profiler, and the interactive computing and visualization
features brought by the NumPy and Matplotlib packages. In the following chapter,
we will detail the interactive shell and Python console as well as the Notebook.

Interactive Work with IPython
In this chapter, we will detail the various improvements that IPython brings to the
standard Python console. In particular, we will perform the following tasks:

• Access the system shell from IPython for powerful interactions between the
shell and Python

• Use dynamic introspection to explore Python objects or even a new Python
package without even the need to look at the documentation

• Easily debug and benchmark your code from IPython
• Learn how to use the IPython notebook to improve considerably the way you

interact with Python

The extended shell
IPython is not only an extended Python console, but it also provides several ways
to interact with the operating system during a Python interactive session without
quitting the console. The shell features of IPython are not meant to replace the Unix
shell, and IPython offers far less features. Yet, it is still quite convenient to be able
to navigate through the filesystem during a Python session and to occasionally
call system commands from IPython. Moreover, IPython provides useful magic
commands that considerably improve productivity and reduce repetitive typing
during an interactive session.

Interactive Work with IPython

[22]

Navigating through the filesystem
Here, we will show how we can download and extract compressed files from the
Internet, navigate in a filesystem hierarchy, and open text files from IPython. To
do this, we will use an example with real data about the social networks of
hundreds of anonymous people on Facebook (who volunteered to share their
data anonymously to computer scientists for research purposes). This BSD-licensed
data are provided freely by the SNAP project from Stanford University
(http://snap.stanford.edu/data/).

Downloading the example code
You can download the example code files for all Packt books
that you have purchased from your account at http://
www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you. In addition,
all examples can be downloaded from the author's website:
http://ipython.rossant.net.

First, we need to download the ZIP file containing the data from the author's
webpage. We use the native Python module urllib2 to download the file, and the
zipfile module to extract it. Let's enter the following commands:

In [1]: import urllib2, zipfile

In [2]: url = 'http://ipython.rossant.net/'

In [3]: filename = 'facebook.zip'

In [4]: downloaded = urllib2.urlopen(url + filename)

Here, we downloaded the file http://ipython.rossant.net/facebook.zip in the
memory, and we are going to save it on the hard drive.

Now, we create a new folder named data in the current directory, and we enter
it. The dollar ($) sign allows us to use a Python variable within a system or magic
command. Let's enter the following commands:

In [5]: folder = 'data'

In [6]: mkdir $folder

In [7]: cd $folder

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/

Chapter 2

[23]

Here, mkdir is a particular IPython alias redirecting a magic command to a shell
command. The list of aliases can be obtained with the magic %alias command. In
this folder, we are going to save the file we have just downloaded (in line eight, we
locally save the ZIP file in facebook.zip in the current directory data), and extract it
in the current folder (as shown in line nine, with the extractall method of zip and
a ZipFile object). Let's enter the following commands:

In [8]: with open(filename, 'wb') as f:

 f.write(downloaded.read())

In [9]: with zipfile.ZipFile(filename) as zip:

 zip.extractall('.')

Let's explore what we have just downloaded using the following commands:

In [10]: ls

facebook facebook.zip

In [11]: cd facebook

In [12]: ls

0.circles 0.edges [...]

In this example, each number identifies a Facebook user (called the ego user). The
.edges file contains its social graph, that is, the graph where each node is a friend,
and two friends of the ego user are connected if they are friends of each other. This
graph is stored as an edges list, a text file where each line contains two connected
nodes' identifiers separated by a space. The .circles file contains manually-created
friends' lists, that is, the groups of friends that share common attributes from the ego
user's viewpoint.

Finally, we save the current facebook directory as a bookmark using the following
command so we can easily enter into this directory later:

In [13]: %bookmark fbdata

Now, in any future session with the same IPython profile, we can type cd fbdata to
enter into this directory, whichever directory we call this command from. The -l and
-d options allow to respectively list all defined bookmarks, and delete a specified
bookmark. Typing %bookmark? displays the list of all options. This magic command
can be really helpful when navigating back and forth between several folders.

Interactive Work with IPython

[24]

Another convenient navigation-related function in IPython is tab completion.
IPython can automatically complete the file or folder name we are typing if we
press the Tab key. If several options are possible, IPython will show us the list of
all possible options. It also works with filenames, for instance, in the open built-in
function, as shown in the following example:

In [1]: pwd

/home/me/data/

In [2]: cd fa<TAB>

/home/me/data/facebook/

In [2]: cd facebook

In [3]: with open('0<TAB>

0.circles 0.edges

In [3]: with open('0.edges', 'r') as f:

 print(f.readline())

236 186

Accessing the system shell from IPython
We can also launch commands using the system shell directly from IPython, and
retrieve the result as a list of strings in a Python variable. To do this, we need to
prefix shell commands with !. For example, assuming that we are using a Unix
system, we can type the following commands:

In [1]: cd fbdata

/home/me/data/facebook

In [2]: files = !ls -1 -S | grep edges

The Unix command ls -1 -S lists all files in the current directory, sorted by
decreasing size, and with one file per line. The pipe | grep edges filters only those
files that contain edges (these are the files with social graphs of different networks).
Then, the Python variable files contains the list of all filenames, as shown in the
following example:

In [3]: files

Out[3]: ['1912.edges',

 '107.edges',

 [...]

 '3980.edges']

Chapter 2

[25]

We can also use Python variables in the system command, using either the $ syntax
for single variables, or {} for any Python expression, as follows:

In [4]: !head -n5 {files[0]}

2290 2363

2346 2025

2140 2428

2201 2506

2425 2557

The head -n5 {files[0]} command displays the first five lines of the first file in
the files list, that is, the first five lines of the largest .edges file in the dataset.

If we find ourselves using the same command over and over, we can create an alias
to save some repetitive typing, using the magic %alias command. For instance, in
the following example we create an alias called largest that is used to display on
a single column (-1) all files with their sizes (-hs), filtered with a specified string
(grep) and ordered by their decreasing size (-S):

In [5]: %alias largest ls -1sSh | grep %s

in [6]: largest circles

6.0K 1912.circles

4.0K 1684.circles

[...]

In line five, note the %s positional placeholder for the largest alias, which will be
replaced by any argument given to the alias (as shown in line six).

Note that, by default, this alias will not be saved for future use in the next interactive
sessions (after closing IPython). We need to save it explicitly with the %store magic
command as follows:

In [7]: %store largest

Alias stored: largest (ls -1sSh | grep %s)

In addition, to recover the stored aliases and variables in a later session, we will need
to type %store -r.

The extended Python console
We will now explore the Python-related capabilities of the IPython console.

Interactive Work with IPython

[26]

Exploring the history
IPython keeps track of all our input history across all sessions. Since this history
can become quite large after months or years of working with IPython, there are
convenient ways of navigating through it.

First, we can press the up and down keys at any time in the IPython prompt to
navigate linearly through our recent history. If we type something before pressing
the up and down keys, we only navigate through the input commands that match
what we have typed so far. Pressing Ctrl + R opens a prompt that allows us to search
for a line that contains whatever we type in this prompt.

The %history magic command (and %hist, which is an alias) accepts multiple
convenient options to display the part of the input history we are interested in.
By default, %history displays all our input history in the current session. We can
specify a specific line range with a simple syntax, for example, hist 4-6 8 for
lines four to six and line eight. We can also choose to display our history from the
previous sessions with the syntax hist 243/4-8 for lines four to eight in session 243.
Finally, we can number the sessions relative to the current session using the syntax
%hist ~1/7, which shows line seven of the previous session.

Other useful options for %history include -o, which displays the output in addition
to the input; -n, which displays the line numbers; -f, which saves the history to a file;
and -p, which displays the classic >>> prompt. For example, this can prove to be useful
for automatically creating a doctest file from the history. Also, the -g option allows to
filter the history with a specified string (like grep). Consider the following example:

In [1]: 2 + 3

Out[1]: 5

In [2]: _ * 2

Out[2]: 10

In [3]: %hist -nop 1-2

 1: >>> 2 + 3

5

 2: >>> _ * 2

10

In this example, we display the history of the first two lines with the line number, the
output, and the default Python prompt.

Finally, a related command is %store, which is used to save the content of any
Python variable for later use in any future interactive session. The %store name
command saves the variable name, and %store -d name deletes it. To recover the
stored variables, we need to use %store -r.

Chapter 2

[27]

Import/export of Python code
In the following section, we will first see how to import code from a Python script
in the interactive console, and then how to export code from the history into an
external file.

Importing code in IPython
A first possibility to import code in IPython is to copy and paste code from a file to
IPython. When using the IPython console, the %paste magic command can be used
to import and execute the code contained in the clipboard. IPython automatically
dedents the code and removes the > and + characters at the beginning of the lines,
allowing to paste the diff and doctest files directly from e-mails.

In addition, the %run magic command executes a Python script in the console, by
default, in an empty namespace. It means that any variable defined in the interactive
namespace is not available within the executed script. However, at the end of the
execution, the control returns to IPython's prompt, and the variables defined in the
script are then imported in the interactive namespace. This is very convenient for
exploring the state of all variables at the end of the script's execution. This behavior
can be changed with the -i option, which uses the interactive namespace for the
execution. The variables defined in the interactive namespace before the script's
execution are then available in the script.

For example, let's write a script /home/me/data/egos.py that lists all ego identifiers
in Facebook's data folder. Since each filename is of the form <egoid>.<extension>,
we list all the files, remove the extensions, and take the sorted list of all unique
identifiers. The script should contain the following code:

import sys
import os
we retrieve the folder as the first positional argument
to the command-line call
if len(sys.argv) > 1:
 folder = sys.argv[1]
we list all files in the specified folder
files = os.listdir(folder)
ids contains the sorted list of all unique idenfitiers
ids = sorted(set(map(lambda file: int(file.split('.')[0]), files)))

Interactive Work with IPython

[28]

Here is an explanation of what the last line does. The lambda function takes a
filename as an argument following the template <egoid>.<extension>, and returns
the egoid ID as an integer. It uses the split method of any string, which splits a
string with a given character and returns a list of substrings, which are separated
by this character. Here, the first element of the list is the <egoid> part. The map
built-in Python function applies this lambda function to all filenames. The set
function converts this list to a set object, thereby removing all duplicates and
keeping only a list of unique identifiers (since any identifier appears twice with
two different extensions). Finally, the sorted function converts the set object to
a list, and sorts it in an increasing order.

Assuming the current directory in IPython is /home/me/data, following is the
command to execute this script:

In [1]: %run egos.py facebook

In [2]: ids

Out[2]: [0, 107, ..., 3980]

In the egos.py script, the folder name facebook is retrieved from the command-line
arguments, like in a standard command-line Python script, with sys.argv[1]. After
the script has been executed, the ids variable defined in the script is available in the
interactive namespace, and contains the list of unique ego identifiers.

Now, following is what happens if we do not provide the folder name as an
argument to the script:

In [3]: folder = 'facebook'

In [4]: %run egos.py

NameError: name 'folder' is not defined

In [5]: %run -i egos.py

In [6]: ids

Out[6]: [0, 107, ..., 3980]

An exception is raised in line four since folder is not defined. If we want the script
to use the folder variable defined in the interactive namespace, we need to use the
-i option.

Chapter 2

[29]

Interactive workflow in exploratory research
A standard workflow in exploratory research or in data analysis
is to implement algorithms in one or several Python modules
and write a script that executes the full process. This script
can then be executed with %run and allows further interactive
exploration of the script variables. This iterative process involves
switching between a text editor and the IPython console. A more
modern and practical approach is to use the IPython notebook,
as we will see in the section Using the IPython notebook.

Exporting code to a file
While the %run magic command allows to import code from a file to the interactive
console, the %edit command does the opposite. By default, %edit opens the system's
text editor and executes the code when we close the editor. If we supply an argument
to %edit, this command will try to open the text editor with the code we supplied.
The argument can be as follows:

• A Python script filename
• A string variable containing Python code
• A range of line numbers, with the same syntax of %history, which was

used previously
• Any Python object, in which case IPython will try to open the editor with the

file where this object has been defined

A more modern and powerful way of using a multiline text editor with IPython is to
use the notebook, as we will see in the Using the IPython notebook section.

Dynamic introspection
IPython offers several features for dynamically inspecting Python objects in
the namespace.

Tab completion
At any time, we can type TAB in the console to let IPython either complete or propose
a list of possible names or commands that match what we have typed so far. This
allows, in particular, to dynamically inspect all attributes and methods of any
Python object.

Interactive Work with IPython

[30]

Tab completion also works for global variables in the interactive namespace,
modules, and file paths in the current directory. By default, variables that begin
with _ (underscore) are not shown, because it is a Python convention to prefix
private variables with an underscore. However, typing _ before pressing Tab forces
IPython to display all private variables.

An example of tab completion NetworkX
Here, we will use tab completion to find out how we can load and manipulate a
graph with the NetworkX package. This package is commonly used when working
with graphs. Let's execute the following command to import the package:

In [1]: import networkx as nx

To find the available options for opening a graph, we can look for the possible
methods prefixed with read, as follows:

In [2]: nx.read<TAB>

nx.read_adjlist nx.read_dot nx.read_edgelist [...]

Since the .edges files contain a list of edges, we try the following command
(assuming we are in the fbdata folder):

In [3]: g = nx.read_edgelist('0.edges')

Now that the graph g appears to be loaded, we can explore the methods offered by
this new object, as follows:

In [4]: g.<TAB>

g.add_cycle [...] g.edges [...] g.nodes

In [5]: len(g.nodes()), len(g.edges())

Out[5]: (333, 2519)

The 0 ego user then appears to have 333 friends, and there are 2519 connections
between these friends.

Let's explore the structure of this graph a bit more. How well connected are any two
users in this graph? The theory of small-world graphs predicts that any two persons
are about six links away in a social graph. Here, we can compute the radius and
diameter of the graph, that is, the minimum and maximum path length between any
two nodes. Tab completion shows that there is a radius method in the NetworkX
package. So, we try the following command:

In [6]: nx.radius(g)

[...]

NetworkXError: Graph not connected: infinite path length

Chapter 2

[31]

Our graph appears to be disconnected since the radius and diameter are not well
defined. To work around this problem, we can take a connected component of the
graph, as follows:

In [7]: nx.connected<TAB>

nx.connected nx.connected_component_subgraphs [...]

The second proposition looks like a good choice (hence, the importance of choosing
good names when creating a package!), as shown in the following commands:

In [8]: sg = nx.connected_component_subgraphs(g)

In [9]: [len(s) for s in sg]

Out[9]: [324, 3, 2, 2, 2]

In [10]: sg = sg[0]

In [11]: nx.radius(sg), nx.diameter(sg)

Out[11]: (6, 11)

There are five connected components; we take the largest one and compute its radius
and diameter. Hence, any two friends are connected through less than 11 levels, and
there is one friend that is less than six links away from any other friend.

Tab completion with custom classes
If we define our own classes, we can customize the way their instances work with
IPython tab completion. All we have to do is override the __dir__ method to return
the list of attributes as shown in the following commands:

In [12]: class MyClass(object):

 def __dir__(self):

 return ['attr1', 'attr2']

In [13]: obj = MyClass()

In [14]: obj.<TAB>

obj.attr1 obj.attr2

This feature can be useful in some scenarios where the list of interesting attributes of
an instance is defined dynamically.

Source code introspection
IPython can also display information about the internals of a variable, in particular
about the source code when it is defined in a file. First, typing ? before or after a
variable name prints useful information about it. Typing ?? gives more detailed
information, in particular, the source code of the object, if it is a function defined
in a file.

Interactive Work with IPython

[32]

In addition, several magic commands display specific information about a variable,
such as the source code of the function (%psource) or of the file (%pfile) where it is
defined, the docstring (%pdoc), or the definition header (%pdef).

The %pfile magic command also accepts a Python filename, in which case, it prints
the file's contents with syntax highlighting. With this function, IPython can then act
as a code viewer with syntax highlighting.

Using the interactive debugger
For most of us, debugging is an important part of the programming job. IPython
makes it extremely convenient to debug a script or an entire application. It provides
interactive access to an enhanced version of the Python debugger.

First, when we encounter an exception, we can use the %debug magic command to
launch the IPython debugger at the exact point where the exception was raised. If
we activate the %pdb magic command, the debugger will be automatically launched
upon the very next exception. We can also start IPython with ipython --pdb for the
same behavior. Finally, we can run a whole script under the control of the debugger
with the %run -d command. This command executes the specified script with a
break point at the first line so that we can precisely control the execution flow of the
script. We can also specify explicitly where to put the first breakpoint; typing %run
-d -b29 script.py pauses the program execution on line 29 of script.py. We first
need to type c to start the script execution.

When the debugger launches, the prompt becomes ipdb>. The program execution is
then paused at a given point in the code. We can use the w command to display the
line and the location in the stack traceback where the debugger has paused. At this
point, we have access to all local variables and we can control precisely how we want
to resume the execution. Within the debugger, several commands are available to
navigate into the traceback:

• u/d for going up/down into the call stack
• s to step into the next statement
• n to continue execution until the next line in the current function
• r to continue execution until the current function returns
• c to continue execution until the next breakpoint or exception

Other useful commands include:

• p to evaluate and print any expression
• a to obtain the arguments of the current functions
• The ! prefix to execute any Python command within the debugger

Chapter 2

[33]

The entire list of commands can be found in the documentation of the pdb module
in Python.

Interactive benchmarking and profiling
Donald Knuth said:

"Premature optimization is the root of all evil."

This means that optimization should only occur in case of absolute necessity, and if the
code has been thoroughly profiled so that you know exactly what portion of the code
needs to be optimized. IPython makes this benchmarking and profiling process easy.

Controlling the execution time of a command
First, the %timeit magic function uses the Python's timeit module to estimate
the execution time of any Python statement. If we have defined a function fun(x),
%timeit fun(x) executes this command multiple times and returns an average
of the execution time. The number of calls is determined automatically; there are
r loops of n executions each. These numbers can be specified with the -r and -n
options to %timeit. Also, we can easily estimate the execution time of a script with
the %run -t command.

In the following example, we compute the center of sg, that is, the set of nodes with
eccentricity equal to the radius (that is, the friends in the ego circle who are the most
well connected to all other friends), and estimate the time it takes:

In [19]: %timeit nx.center(sg)

1 loops, best of 3: 377 ms per loop

In [20]: nx.center(sg)

Out[20]: [u'51', u'190', u'83', u'307', u'175', u'237', u'277', u'124']

We can see in the previous example that it took 377 milliseconds for Python and
NetworkX to compute the center of sg. The center function has been called three
times (best of 3 in the output 19), and the smallest time of execution has been
automatically selected (since the very first execution can take longer, due to some
Python imports, for instance).

Interactive Work with IPython

[34]

Profiling a script
To obtain much more detailed information about the execution time of a program,
we can execute it under the control of a profiler, like the one provided natively by the
profile Python module. Profiling is a complex topic, and we are just going to show
a basic usage example here. More details about the profile module can be found in
the official Python documentation.

To run a script under the control of the profiler, we can execute it from IPython with
%run -p or with the equivalent %prun magic command.

Here, we will write a small Python script that computes the center of the graph
without using the built-in NetworkX center function. Let's create a script called
center.py with the following code:

import networkx as nx
g = nx.read_edgelist('0.edges')
sg = nx.connected_component_subgraphs(g)[0]
center = [node for node in sg.nodes() if nx.eccentricity(sg, node) ==
nx.radius(sg)]
print(center)

Now, let's run it and estimate the time it takes using the following commands:

In [21]: %run -t center.py

[u'51', u'190', u'83', u'307', u'175', u'237', u'277', u'124']

IPython CPU timings (estimated):

 User : 128.36 s.

This script took more than two minutes to execute; this looks particularly bad! We
can run the profiler with the command %run –p center.py to find out what is
taking so long.

The profiler outputs details about calls of every Python function used directly or
indirectly in this script. For example, the cumtime column prints the cumulative
time spent within every function. It appears, from the previous example, that
eccentricity and radius are the major bottlenecks, because they are called 648 and
324 times, respectively! Looking more closely at the code shows that we are indeed
doing something stupid; that is, we are calling these two functions repetitively
within the loop. We can considerably improve the performance of this script by
caching the output of these functions. Let's modify the script in center2.py:

import networkx as nx
g = nx.read_edgelist('data/facebook/0.edges')
sg = nx.connected_component_subgraphs(g)[0]
we compute the eccentricity once, for all nodes

Chapter 2

[35]

ecc = nx.eccentricity(sg)
we compute the radius once
r = nx.radius(sg)
center = [node for node in sg.nodes() if ecc[node] == r]
print(center)

Here, we compute the eccentricity of all nodes with a single call to eccentricity
before the loop, and we compute the radius of the graph only once. Let's check the
performance of this improved script by executing the following commands:

In [23]: %run -t center2.py

[u'51', u'190', u'83', u'307', u'175', u'237', u'277', u'124']

IPython CPU timings (estimated):

 User : 0.88 s.

With this modification, our computation takes less than a second instead of two
minutes! Of course, even if this example was a particularly trivial one, this kind of
mistake can be made by any programmer at some point in a long program. Then, it
may not be so obvious to find this bottleneck just by reading the code. The best way to
find such hotspots is to use a profiler, and IPython makes this task particularly easy.

Using a line-by-line profiler
For even more fine-grained profiling, we can use a line-by-line
profiler. This tool analyzes the time taken by every single line
in a set of functions chosen by the programmer. In Python, the
line_profiler package does exactly this. The functions to
profile are indicated with a @profile decorator. Its usage is
less straightforward than the IPython profiler, and we invite
the interested reader to check out the package's website at
http://packages.python.org/line_profiler/. We
will also mention it in Chapter 6, Customizing IPython.

Using the IPython notebook
The IPython notebook is increasingly used in the Python community, in particular
for scientific research and education. It brings both a powerful HTML user interface
to IPython and a way of saving a whole interactive session in a notebook file in a
JSON format. The latter functionality brings reproducibility to interactive computing,
a crucial feature notably in scientific research. Notebooks run in the browser and
can contain, not only Python code, but also text in a markup language, such as
Markdown, as well as images, videos, or rich content media. Notebooks can be
converted into other formats, such as Python scripts, HTML, or PDF. Courses, blog
posts, and books are being written with the notebook.

Interactive Work with IPython

[36]

IPython Qt console
There is another rich IPython frontend similar to the notebook
that is based on Qt instead of HTML. You can find more
information about it at http://ipython.org/ipython-doc/
stable/interactive/qtconsole.html.

Installation
The IPython notebook server requires several dependencies. If you use either a full
distribution, or if you have installed IPython from a binary package, you should
have nothing more to do. If you have installed IPython manually, you will need
PyZMQ and Tornado. PyZMQ is a Python wrapper to the ZMQ socket library,
whereas Tornado is a Python library implementing the HTTP server that the
notebook uses. You can install these packages either with easy_install , pip, or
from the source.

The notebook dashboard
To check that everything is correctly installed, type ipython notebook in a
shell. This will launch a local web server on the 8888 port (by default). Go to
http://127.0.0.1:8888/ in a browser and check if you can see the following page:

The notebook dashboard

Browser compatibility with the notebook
The IPython notebook is compatible with browsers such as
Chrome, Safari, Firefox 6 and later versions, and Internet
Explorer 10 and later versions. These browsers support the
WebSocket protocol, which is used by the notebook.

The page in the previous screenshot is the notebook dashboard; it lists all notebooks
in the directory where we launched ipython notebook from. An IPython notebook
file has a .ipynb extension; it is a text file containing structured data in JSON.

http://localhost:8888/
http://localhost:8888/
http://localhost:8888/

Chapter 2

[37]

This file contains the inputs and outputs of an interaction session, as well as some
metadata used by IPython internally.

Viewing notebooks online
IPython notebooks can be viewed and shared
online on the IPython Notebook Viewer available
at http://nbviewer.ipython.org/.

Let's start and create a new notebook. Click on the New Notebook button at the top-
right of the page.

Working with cells
We are now in a notebook. The user interface is clean and focuses on the essential
features. At the top, the menu and the toolbar offer access to all commands. The main
area below them shows, by default, an empty input cell. Python code can be typed
into this input cell. An important feature of an input cell is that pressing the Enter key
does not execute the cell, but rather inserts a new line. Writing code into a cell is then
closer to what a standard text editor offers, compared to the classic IPython console.

Start typing the command as shown in the following screenshot, and note how tab
completion is implemented:

Tab completion in the notebook

Interactive Work with IPython

[38]

An input cell can be executed in two ways. By pressing Shift + Enter, all the code within
the cell is executed in the current IPython interactive namespace. The output then
appears in an output area right below the input cell, and a new input cell is created
below. By pressing Ctrl + Enter, no new input cell is created and only the output is
shown. Typically, we will use the latter command for quick in-place experiments when
we just need to evaluate some Python expression and we do not want to save the cell's
output in the notebook (although we can always delete cells later).

In the end, a notebook contains a linear succession of input and output cells,
representing a coherent and reproducible interactive session. Typically, a single cell
contains a set of instructions, which perform some high-level action that requires
several consecutive commands.

The interface offers commands to edit, delete, split, and merge cells. These
commands can be accessed through the menu, the toolbar, or keyboard shortcuts.
We can display the list of all keyboard shortcuts by pressing Ctrl + M, then H. Most
notebook commands are executed with a sequence of keystrokes that begin with Ctrl
+ M, followed by a single key press.

Cell magics
Cell magics are special magic commands that are applied to a whole cell instead
of a single line. They are prefixed with %% instead of %, and can be used either in
the IPython console, or in the IPython notebook. The list of all cell magics can be
obtained with the command %lsmagic. Two useful cell magics include %%! for
executing several system shell commands from IPython, and %%file for creating a
text file, as shown in the following example:

In [1]: %%file test.txt

 Hello World!

Writing test.txt

In [2]: %%!

 more test.txt

Out[2]: ['Hello World!']

Chapter 2

[39]

Managing notebooks
We can save the notebook we are working on at any time by clicking on the Save
button or by pressing Ctrl + S or Ctrl + M, then S. By default, the notebook filename
is Untitled0, but we can rename it with the Rename command in the File menu.

We can create a new notebook from an existing Python script by dragging the
Python file from the system explorer to the IPython dashboard. This will create a
new notebook with the same name as our script, but with a .ipynb extension. A
notebook can be downloaded as a Python script or as a .ipynb file.

Multimedia and rich text editing
A very useful feature of the notebook is the possibility to insert rich text in cells
using a popular marker text format called Markdown (described at http://
daringfireball.net/projects/markdown/syntax). Edition features such as bold,
italic, headers, and bullet points can be inserted with a simple syntax. To do this, we
need to convert a cell into a Markdown cell with the Cell > Markdown command.

Then, we can type our text with the Markdown syntax. If we press Shift + Enter,
the text will be automatically formatted, and it can be edited with a double-click.
The following screenshot shows both the Markdown code and the corresponding
formatted text:

Markdown input and output in the notebook

Interactive Work with IPython

[40]

Graph plotting
Let's illustrate the plotting capabilities of the notebook with our social network
example. We are going to draw the graph sg. First, we need to launch the notebook
with the command ipython notebook --pylab inline. This option will be
covered in more detail in Chapter 4, Figures and Graphical Interfaces. It allows to insert
figures within the notebook, thanks to the Matplotlib library. NetworkX offers
several Matplotlib-based commands to plot graphs. In the following example, we use
the draw_networkx function to draw the graph sg, along with several parameters
to improve the readability of the graph (the full list of options can be found on the
NetworkX documentation website):

Drawing a graph in the notebook

Chapter 2

[41]

Summary
We now have a broad overview of the features that IPython offers to simplify and
extend the way we interact with IPython in our day-to-day programming job. From
the powerful Python history to the essential dynamic introspection features, deciding
whether to use IPython or the standard Python console for interactive programming
is a no-brainer. Also, the notebook offers a modern way of using IPython for a
wide variety of uses, such as simply recording an interactive session and creating a
programming course, a presentation, or even a book!

Yet, what IPython offers does not stop here. It really comes into its own when using
it with external packages offering numerical computing and visualization features:
NumPy, SciPy, Matplotlib, and others. These packages can absolutely be used
without IPython. However, using IPython fully makes sense since it then allows
interactive numerical computing and visualization with the Python programming
language. Together, these tools are becoming the platform of choice for open-source
scientific computing, even competing with the widespread commercial solutions of
reference. In the next chapter, we will cover the numerical computing capabilities
of the platform.

Numerical Computing
with IPython

Although IPython's powerful shell and extended console can be advantageously
used by any Python programmer, this package was originally a tool designed for
scientists by scientists. It was indeed meant to provide a convenient way of doing
interactive scientific computing with Python.

IPython does not really provide scientific computing features per se, but rather offers
an interactive interface to powerful external libraries, such as NumPy, SciPy, Pandas,
Matplotlib, and the like. Together, these tools provide a framework for scientific
computing, which can compete with widespread commercial tools in the scientific
community such as Matlab or Mathematica.

NumPy provides a multidimensional array object that supports optimized vector
operations. SciPy offers a wide variety of scientific algorithms (signal processing,
optimization, and so on) that are based on NumPy. Pandas proposes convenient
data structures for tabular data coming from real-world data sets. Matplotlib allows
to plot graphical figures easily so as to visualize interactively any form of data, and
to generate publication-quality figures. IPython provides the adequate interactive
framework for using all these tools in a streamlined way.

Numerical Computing with IPython

[44]

In this section, we will:

• Explore the interactive computing possibilities offered by NumPy
and Pandas

• Understand why multidimensional arrays are well adapted to
high-performance computations

• See how arrays can be used in practical applications
• Find some references containing more advanced examples and applications

A primer to vector computing
In this section we will introduce the notion of vectorized computations. It is an
absolutely crucial notion since it is the easiest way to achieve high performance with
a high-level language such as Python.

An example of computation with Python loops
Today's science and engineering are all about numbers. Most data processing and
numerical simulations are nothing else but a succession of elementary operations on
large amounts of numerical data, and computers are extremely good at it. However,
data has to be structured in some rational way. The generic structure of numerical
data is that of vectors and matrices, and more generally multidimensional arrays.

Before we explain in more detail what a numerical array is, let's take a look at
an example motivating the introduction of these objects. Let's suppose we have
retrieved geographical data with the coordinates (latitude and longitude) of a large
number of locations, and we need to find the location that is the closest to a given
position of interest. For example, we may want to find the closest restaurant from
the GPS position of a smartphone user.

If the positions are stored in a Python list of tuples, we can write something like the
following code:

def closest(position, positions):
 x0, y0 = position
 dbest, ibest = None, None
 for i, (x, y) in enumerate(positions):
 # squared Euclidean distance from every position to the
position of interest
 d = (x - x0) ** 2 + (y - y0) ** 2
 if dbest is None or d < dbest:
 dbest, ibest = d, i
 return ibest

Chapter 3

[45]

Here, we loop through all positions. The variable i keeps the index of the current
position, whereas (x, y) contains the coordinates of this position. The position of
interest is position=(x0, y0). At the first iteration, the current position is recorded
as the best so far, and at the next iterations, the closest position is updated only if the
current position is closer than the closest one so far. At the end of the loop, the index
of the closest location is ibest, the corresponding position is positions[ibest],
and the squared distance from the position of interest to the closest position is
in dbest. To compute the distances, we use here the squared Euclidean distance
formula, D = (x - x0)² + (y - y0)².

This is a standard and basic algorithm. Let's evaluate its performance on a large
dataset. We first generate a list of 10 million random positions as follows:

In [1]: import random

In [2]: positions = [(random.random(), random.random()) for _ in
xrange(10000000)]

We defined a list named positions with pairs of coordinates, each number being
a random number between zero and one. Now, let's set some benchmark using the
following command:

In [3]: %timeit closest((.5, .5), positions)

1 loops, best of 3: 16.4 s per loop.

This algorithm took 16.4 seconds to process 10 million positions. Let's see if that is
close to the theoretical maximum performance of a CPU. This code was executed
on a 2 GHz single core processor. It can theoretically process four floating point
operations per cycle, corresponding to eight billion operations per second. In our
algorithm, each iteration involves five mathematical operations and a comparison,
for a total of 50 million floating point operations (taking only the mathematical
operations into account). The theoretical maximum performance should have been
6.25 ms. This means that our algorithm performed about 2,600 times worse than the
theoretical maximum performance!

Of course, this is a very naive estimation, and the theoretical maximum performance
is always far from being reached, but a discrepancy factor of 2,600 seems particularly
bad. Can we do better? We will find out in the next section.

What an array is
In the previous example, the same computation (computing the distance to a fixed
point) was performed on a lot of numbers. NumPy provides a new type that is
perfectly adapted to this situation: the multidimensional array. So, what is an array?

Numerical Computing with IPython

[46]

An array is a block of data organized into several dimensions. A one-dimensional
array is a vector, which is an ordered sequence of elements (typically numbers) that
are indexed with a single integer. A two-dimensional array is a matrix, containing
elements indexed by a pair of integers, that is, the row index and the column index.
More generally, an n-dimensional array is a set of elements with the same data type
that are indexed by a tuple of n integers.

3x4x2 array
ndim=3
shape=(3,4,2)

A[0,0,0]

A[2,0,0] A[2,3,0]

A[0,3,0]

axis=1
ax

is
=

0

Schematic of a multidimensional NumPy array

All elements in an array must have the same type: it is called the data type (dtype).
There are multiple possible types in NumPy: Booleans, signed/unsigned integers,
single-precision/double-precision floating point numbers, complex numbers, strings,
and so on. Custom data types can also be defined.

Elements in an array are stored internally in a contiguous block of memory.
For example, the elements in a vector of size 10 possess 10 consecutive memory
addresses. When the dimension of the array is two or more, there is more than a
unique choice for the ordering of the elements. For a matrix, the elements can be
stored in row-major order (also known as C-order) or column-major order (also
known as Fortran-order), depending on which index among the horizontal or
vertical indexes moves the fastest as one goes along all elements in the array. This
notion generalizes in three or more dimensions. The default order in NumPy is
the C-order, but that can be changed when creating an array, typically with the
order keyword argument.

Chapter 3

[47]

Row Major
Order (C)

(default in NumPy)

Column Major
Order (Fortran)

How the array is represented in NumPy How the array is stored in memory

Difference between row-major and column-major order in multidimensional arrays

This notion can be extended to any number of dimensions. The stride defines the
number of steps in each dimension that are made as one goes through all elements.
NumPy handles all these low-level details automatically and provides convenient
ways of creating, manipulating, and computing on these arrays. Most of the time,
we do not need to bother about these details and we can think about our variables
as multidimensional arrays. However, knowing how things work internally allows
us to fix certain bugs and to optimize some portions of the code that involve very
large arrays.

The advantage of arrays compared with native Python types is that it is possible to
perform very efficient computations on arrays instead of relying on Python loops.
The difference is that the loop is implemented internally in C by NumPy instead of
Python, so that there is no longer the cost of interpretation within the loop. Indeed,
Python being an interpreted, dynamically-typed language, each iteration involves
various low-level operations performed by Python (type checking and so on). Those
operations generally take negligible time, but they become noxious to performance
when they are repeated millions of times.

In addition, modern CPUs implement vectorized instructions (SSE, AVX, XOP,
and so on) that use large registers (128 bits or 256 bits) and can contain several
single-precision or double-precision floating points. If NumPy is compiled with
the adequate options, array computations can benefit from these vectorized CPU
instructions and can be more than two or four times faster.

Numerical Computing with IPython

[48]

These are the main reasons why vectorized computations with NumPy can
potentially be much more efficient than Python loops. One refers to the Single
Instruction, Multiple Data (SIMD) paradigm of computation, since the same
computation is performed on multiple items in an array operation with NumPy.
We will demonstrate this with the help of our previous example.

Reimplementing the example with arrays
Let's rewrite our example using arrays. First, we need to import NumPy. In IPython,
we can use the %pylab magic command (or start IPython with ipython --pylab),
which loads NumPy and Matplotlib within the interactive namespace (available
as np for numpy and plt for matplotlib.pyplot). It is the most convenient way of
using NumPy in an IPython interactive session. The other possibility is to import
NumPy with import numpy (or import numpy as np for the lazy ones) or from
numpy import *. The former syntax is to be preferred in a script, while the latter
can be used in an interactive session. Here, and in all the following chapters, we will
always assume that the pylab mode has been activated as follows:

In [1]: %pylab

First, we need to generate some random data. NumPy provides an efficient way of
doing this as shown in the following command:

In [2]: positions = rand(10000000,2)

The positions array is a two-dimensional array with 10 million rows and two
columns containing independent uniform random numbers between zero and
one. We note that we do not use a for loop for the array creation. Loops should be
avoided every time it is possible to use a NumPy operation instead. Let's look at
some properties of this object as follows:

In [3]: type(positions)

Out[3]: numpy.ndarray

In [4]: positions.ndim, positions.shape

Out[4]: 2, (10000000, 2)

The shape attribute contains the array shape as a tuple of integers. Other important
attributes of an array include:

• ndim: The number of dimensions, which is also len(positions.shape)
• size: The total number of elements (the product of all values in

positions.shape)
• itemsize: The size in bytes of each element (four for an int32 data type,

eight for float64, and so on)

Chapter 3

[49]

Now, we will compute the squared distance of each position to our position of
interest in two steps. We first enter the following command:

In [5]: x, y = positions[:,0], positions[:,1]

Here, x and y contain the x and y coordinates of all positions. Indeed, the variable
positions[:,0] refers to the first column of positions (indexing is zero-based
in Python). This is a special Python/NumPy syntax for indexing. The brackets []
allow to access elements from a Python-container object. Inside the brackets, the
notation :,0 refers to all pairs of indices with any first element (the colon :) and a
second element equal to zero. Since, in NumPy, the first dimension always refers to
the row and the second dimension to the column, we are precisely referring to the
first column here. Similarly, positions[:,1] refers to the second column, with the y
coordinates of all positions. The variables x and y are one-dimensional vectors. Let's
compute the distances variable with the following command:

In [6]: distances = (x - .5) ** 2 + (y - .5) ** 2

Here, we compute the vector of distances from the position of interest (0.5, 0.5) to all
positions. Indeed, the x - .5 expression subtracts 0.5 from all elements in the first
column of positions. The reason is that x is a one-dimensional vector with 10 million
elements, and 0.5 is simply a floating point number. The convention in NumPy
follows the mathematical convention in vector calculus, that is, the subtraction is
performed on all elements in the array.

In the same way, (x - .5) ** 2 computes the square of all elements in the vector
appearing inside the parentheses. Finally, the + operator performs the point-wise
operations of two 10 million-long vectors.

We see that NumPy allows to perform vector operations with a really simple syntax.
Computing with arrays is a very specific way of programming and requires some
time to master. It is quite different to the standard sequential way of programming
in most languages, but it is far more efficient in Python, as we can see in the
following commands:

In [7]: %timeit exec(In[6])

1 loops, best of 3: 508 ms per loop

When computing the distances variable again with the %timeit magic function,
we find that the computation is much faster than the pure Python version. Even if
we add the computation of the smallest element, which is also easy with NumPy,
we still find a total time that is 30 times faster than the pure Python version, as shown
in the following commands:

In [8]: %timeit ibest = distances.argmin()

1 loops, best of 3: 20 ms per loop

Numerical Computing with IPython

[50]

In conclusion, the raison d'être of multidimensional arrays is to avoid Python loops
as much as possible when performing numerical computations on large amounts of
data. Vectorizing computations in an algorithm can sometimes be difficult, but it is
always worth it in terms of performance improvement.

Creating and loading arrays
In this section, we will see how we can create and load arrays either from scratch or
from existing data. This is the first step when analyzing data with Python.

Creating arrays
There are several ways of creating an array. We will review them in this section.

From scratch, element by element
First, we can create an array by manually specifying its coefficients. This is the most
direct way of creating an array, but it is not used very often in practice. The NumPy
function array takes a list of elements and returns a corresponding NumPy array, as
shown in the following example (the pylab mode of IPython needs to be activated):

In [1]: x = array([1, 2, 3])

In [2]: x.shape

Out[2]: (3,)

In [3]: x.dtype

Out[3]: dtype('int32')

Here, we create a one-dimensional array (that is, a vector) with three 32-bit integers
(the default type of integers on 32-bit systems). The data type of the created array is
automatically inferred from the elements provided in array. We can force the data
type with the dtype keyword argument as follows:

In [4]: x = array([1, 2, 3], dtype=float64)

In [5]: x.dtype

Out[5]: dtype('float64')

To create two-dimensional arrays (matrices), we need to provide a nested list of lists,
each inner list containing one row, as follows:

In [6]: array([[1, 2, 3], [4, 5, 6]])

Out[6]:

array([[1, 2, 3],

 [4, 5, 6]])

Chapter 3

[51]

To create an n-dimensional array, we need to provide a nested list of lists of lists with
n levels of recursion. For example, let's create a multiplication table using two nested
Python lists comprehensions:

def mul1(n):
 return array([[(i + 1) * (j + 1) for i in xrange(n)] for j in
xrange(n)])

This function takes the table size as a parameter, and creates the multiplication table
as an array from a list of rows, as shown in the following example:

In [7]: mul1(4)

Out[7]:

array([[1, 2, 3, 4],

 [2, 4, 6, 8],

 [3, 6, 9, 12],

 [4, 8, 12, 16]])

In [8]: %timeit mul1(100)

100 loops, best of 3: 5.14 ms per loop

We will see later more efficient ways of creating this multiplication table.

From scratch, using predefined templates
Creating arrays by specifying the individual coefficients manually is rarely practical.
One can use any of the several convenient functions defined in NumPy to create
typical arrays with the desired shape. For example, to create a vector filled with 100
zeros, we can use the following command:

In [1]: x = zeros(100)

To create a 2D matrix, we need to provide a tuple with the desired shape as an
argument, hence the double parentheses in the following command:

In [2]: x = zeros((10, 10))

The default data type is float64. Similarly, the ones function creates an array
filled with the value 1. The functions identity, eye, and diag allow to create
diagonal matrices.

There are also several convenient functions that create vectors with regularly spaced
numbers, as shown in the following example:

In [5]: arange(2, 10, 2)

Out[5]:

array([2, 4, 6, 8])

Numerical Computing with IPython

[52]

Here, we create a vector of numbers linearly spaced between 2 and 10 with a step
of two. Note that the first number is included (the first 2), but the last number in
the sequence (10) is excluded. This is a general convention in Python that is actually
more intuitive than what it looks like. Another related function is linspace, which
is similar to arange, except that the size of the output vector, and not the step, is
provided as a third argument. This time, the first and last elements of the sequence
are included.

Function signatures
The function signatures, including the parameter order
and the list of keyword arguments, can be obtained in
IPython with ? or help(). In addition, in the Qt console
and in the notebook, typing linspace(will automatically
open a tooltip with linspace(function's signature. The
tooltip can then be expanded by pressing Tab.

From random values
NumPy provides various random sampling routines for generating arrays with
independent random values following different probability distributions. For
example, to create a 2 x 5 array with random floating numbers uniformly sampled
between 0 and 1, we can use the rand function as follows:

In [1]: rand(2, 5)

Out[1]:

array([[0.925, 0.849, 0.858, 0.269, 0.644],

 [0.796, 0.001, 0.183, 0.397, 0.788]])

Notice the absence of double parentheses when specifying the shape of the array in
rand (NumPy oddity).

Number formatting in IPython
The way numbers are displayed in IPython can be
specified with the %precision magic command. For
example, to display exactly three decimals for floating
point numbers, we can type %precision 3 in IPython.
Actually, any formatting string can be provided, as
explained in the documentation %precision?.

Other functions include randn (random values sampled from a Gaussian
distribution), randint (random integers), exponential (exponential distribution),
and so on. Related functions include shuffle and permutation, which randomly
permute existing arrays.

Chapter 3

[53]

Loading arrays
The main interest of the array structure is the possibility to load existing data from
Python or from an external source. NumPy provides efficient and convenient ways
of loading multidimensional arrays from text (Python strings or text/CSV files) or
from binary buffers or files. In addition, the Pandas package is particularly useful
when loading tabular data, that is, tables that contain heterogeneous data types
instead of just numbers.

From a native Python object
It is quite common to have data in some native Python object and to want to convert
it into a NumPy array. The standard method is to use the array function. When we
created arrays by directly specifying their values, we actually converted Python lists
of numbers into arrays.

From a buffer or an external file
Another common way of creating an array is to load data from a memory buffer or
from a file, with either binary or string elements. From a Python buffer object, which
we know the exact data type of, we can obtain a NumPy array with the function
frombuffer. Similarly, the fromstring function accepts either ASCII text with
values separated by any delimiter or binary data in any data type, as shown in the
following example:

In [1]: np.fromstring('1 2 5 10', dtype=int, sep=' ')

Out[1]: array([1, 2, 5, 10])

The functions fromfile, loadtxt, and genfromtxt allow to load data from text
files or binary files and convert them into NumPy arrays. The function loadtxt is
a simplified version of genfromtxt, useful when the file format is straightforward.
The fromfile function is highly efficient with binary data. For example, to import
data contained in the text files of the Facebook dataset, we can enter the following
commands:

In [1]: cd fbdata

In [2]: loadtxt('0.edges')

Out[2]:

array([[236., 186.],

 ...,

 [291., 339.]])

Numerical Computing with IPython

[54]

Finally, saving arrays in files is as easy as loading NumPy arrays. There are basically
two functions, save and savetxt, which save an array into a binary and text file,
respectively. Relatedly, the loadz and savez functions are also conveniently used
to save dictionaries of variables of any type (including NumPy arrays). All these
functions use platform-independent file formats.

Using Pandas
Pandas is another, more recent Python package that provides convenient and
efficient ways of loading and manipulating data sets from heterogeneous sources.
It is particularly useful when dealing with tabular data sets, in opposition to purely
numerical data (matrices or arrays of numbers). It can handle missing values and
data alignment issues (for example, with time series). The loaded data sets can be
used with NumPy for efficient numerical computations. In brief, Pandas provides
high-level access to tabular data, whereas NumPy provides lower-level access to raw
homogeneous multidimensional arrays.

The future of NumPy
Travis Oliphant, the creator of NumPy, is currently working
on its successor, Blaze. This project will unify many of
the features currently offered by NumPy, Pandas, SciPy,
Numba, Theano, and so on within a single framework.

Here is an example of how we can load a data set with Pandas. We will download
and analyze a data set about a large number of cities around the world and their
population. This data set has been created by MaxMind and is available for free from
http://www.maxmind.com.

Online public data sets
With the open data movement, more and more data is becoming
publicly available. Analyzing interesting data is a good way to
gain experience with the tools described in this book, which are
particularly well adapted for this task. However, it is not always
obvious to find good data sets online. The following are some links
containing pointers to high quality data sets, often maintained by
government agencies, international organizations, universities, or
research institutes, and so on:

• Research-quality data sets, maintained by Hilary Mason, are
available at https://bitly.com/bundles/hmason/1.

• Public data, maintained by Google, is available at http://
www.google.com/publicdata/.

• Data catalogs are available at http://datacatalogs.
org/dataset.

Chapter 3

[55]

We first download the ZIP file and uncompress it in a folder, as shown in the
following commands (the ZIP file is about 40 MB large, so downloading it may
take a while):

In [1]: import urllib2, zipfile

In [2]: url = 'http://ipython.rossant.net/'

In [3]: filename = 'cities.zip'

In [4]: downloaded = urllib2.urlopen(url + filename)

In [5]: folder = 'data'

In [6]: mkdir $folder

In [7]: with open(filename, 'wb') as f:

 f.write(downloaded.read())

In [8]: with zipfile.ZipFile(filename) as zip:

 zip.extractall(folder)

For convenience, we can create an alias to the newly-created folder with the
command %bookmark citiesdata data. Now, we are going to load the CSV file
that has been extracted with Pandas. The read_csv function of Pandas can open any
CSV file, as shown in the following commands:

In [9]: import pandas as pd

In [10]: filename = 'data/worldcitiespop.txt'

In [11]: data = pd.read_csv(filename)

Now, let's explore the newly created data object:

In [12]: type(data)

Out[12]: pandas.core.frame.DataFrame

The data object is a DataFrame object, a Pandas type consisting of a two-dimensional
labeled data structure with columns of potentially different types (like an Excel
spreadsheet). Like a NumPy array, the shape attribute returns the shape of the
table. But unlike NumPy, the DataFrame object has a richer structure, and, in
particular, the keys method returns the names of the different columns, as shown
in the following commands:

In [13]: data.shape, data.keys()

Out[13]: ((3173958, 7),

 Index([Country, City, AccentCity, Region, Population, Latitude,
Longitude], dtype=object))

Numerical Computing with IPython

[56]

We can see that data has more than three million lines and seven columns including
the country, city, population, and geographical coordinates of each city. The head
and tail methods allow to take a quick look at the beginning and the end of the
table respectively. Note that, when using Pandas from the IPython notebook, the
displayed data can be formatted as an HTML table for more convenient reading, as
shown in the following example:

In [14]: data.tail()

The following is the example table:

Displaying a Pandas table in the IPython notebook

We can see that some cities have NaN (Not a Number) values as populations. The
reason is that the population is not available for all cities in the data set, and Pandas
handles those missing values transparently.

We will see in the next sections what manipulations and computations we can
actually perform with this data set to get useful information about it.

Working with arrays
Once NumPy arrays are created or loaded, there are basically three things that we
can do with them:

• Selection
• Manipulation
• Computation

Selection
Selection consists of accessing one or several elements within an array. It can be done
with NumPy or Pandas.

Chapter 3

[57]

Using Pandas
Let's continue with our example data opened with Pandas. Each column of the data
object of DataFrame can be accessed through its name. In IPython, tab completion
proposes the different columns of the data. In the following example, we get the
names of all cities (AccentCity is the full name of the city, with uppercase characters
and accents):

In [15]: data.AccentCity

Out[15]:

0 Aixas

1 Aixirivali

...

3173956 Zuzumba

3173957 Zvishavane

Name: AccentCity, Length: 3173958

This column is an instance of the Series class. We can access certain rows
using indexing. In the following example, we get the name of the 30,001th city
(remembering that indexing is zero-based):

In [16]: data.AccentCity[30000]

Out[16]: 'Howasiyan'

So, we can access an element using its index. But how can we obtain a city from its
name? For example, we would like to obtain the population and GPS coordinates of
New York. A possibility might be to loop through all cities and check their names,
but it would be extremely slow because the Python loops on millions of elements
are not optimized at all. Pandas and NumPy offer a much more elegant and efficient
way called Boolean indexing.

There are two steps that typically occur on the same line of code. First, we create an
array with Boolean values indicating, for each element, whether it satisfies a condition
or not (here, whether the city name is New York). Then, we pass this array of Booleans
as an index to our original array. The result is then a subpart of the full array with
only the elements corresponding to True, as shown in the following example:

In [17]: data[data.AccentCity=='New York']

Out[17]:

 Country City AccentCity Region Population Latitude
Longitude

998166 gb new york New York H7 NaN 53.083333
-0.150000

...

2990572 us new york New York NY 8107916 40.714167
-74.006389

Numerical Computing with IPython

[58]

The same syntax works in NumPy and Pandas. Here, we find a dozen cities named
New York, but only one happens to be in the New York state. To access a single
element with Pandas, we can use the .ix attribute (ix for index) as shown in the
following commands:

In [18]: ny = 2990572

In [19]: data.ix[ny]

Out[19]:

Country us

City new york

AccentCity New York

Region NY

Population 8107916

Latitude 40.71417

Longitude -74.00639

Name: 2990572

Using NumPy
Now, let's turn this series object into a pure NumPy array. We go from the
Pandas world to NumPy (keeping in mind that Pandas is built on top of NumPy).
We will mostly work with the population count of all cities as shown in the
following commands:

In [20]: population = array(data.Population)

In [21]: population.shape

Out[21]: (3173958,)

The population array is a one-dimensional vector with the populations of all cities
(or NaN if the population is not available). The population of New York can be
accessed in NumPy with basic indexing, as follows:

In [22]: population[ny]

Out[22]: 8107916.0

Let's find out how many cities do have an actual population count. To do this, we
will select all elements in the population array that have a value different from NaN.
We can use the NumPy function isnan as follows:

In [23]: isnan(population)

Out[23]: array([True, True, True, ..., True, True, False],
dtype=bool)

Chapter 3

[59]

In [24]: x = population[~_]

In [25]: len(x), len(x) / float(len(population))

Out[25]: (47980, 0.015)

Note that ~_ contains the negative values of isnan(population). We find that there
are roughly 48,000 cities, corresponding to 1.5 percent of all cities in this data set,
which have an actual population count.

More indexing possibilities
More generally, indexing allows us to take any portion of an array. We saw in the
previous section how to filter an array with a Boolean condition. We can also specify
directly the list of indices we want to keep. For instance, if x is a one-dimensional
NumPy array, x[i:j:k] represents a view on x with only those elements having
indices between i (included) and j (excluded) with a step of k. If i is omitted, it
is assumed to be zero. If j is omitted, it is assumed to be the length of the array in
that dimension. Negative values mean we count from the end. Finally, the default
value for k is one. This notation is also valid in multiple dimensions; for example,
M[i:j,k:l] creates a submatrix view on a 2D array M. Also, we can use x[::-1] to
get x in the reverse order.

These conventions, with i included and j excluded, are convenient when working
with consecutive portions of an array. For example, the first and second halves of x,
assuming a size 2n, are simply x[:n] and x[n:]. In addition, the length of x[i:j]
is simply j - i. In the end, there should not be +1 or -1 values hanging around in
indices in general.

An important point to consider with array views is that they point to the same
location in memory. So a view on a large array does not imply memory allocation,
and changing the values of elements in the view also changes the corresponding
values in the original array, as shown in the following example:

In [1]: x = rand(5)

In [2]: x

Out[2]: array([0.5 , 0.633, 0.158, 0.862, 0.35])

In [3]: y = x[::2]

In [4]: y

Out[4]: array([0.5 , 0.158, 0.35])

In [5]: y[0] = 1

In [6]: x

Out[6]: array([1. , 0.633, 0.158, 0.862, 0.35])

Numerical Computing with IPython

[60]

In this example, y contains all elements in x with even indices (here, indices zero,
two, and four). Changing the value of y[0] changes both y[0] and x[0], since y[0]
refers to the first element of x. If this behavior is unwanted, it is possible to force the
creation of a new array with y = x.copy() or y = array(x). In the latter case, it is
also possible to change the data type of x, with the dtype keyword argument.

Finally, another way of selecting a portion of an array consists in passing an array
with explicit integer values for indices. This is called fancy indexing. If x is a one-
dimensional vector, and indices is another one-dimensional vector (or a list) with
positive integers, then x[indices] returns a vector containing x[indices[0]],
x[indices[1]], and so on. Therefore, the length of x[indices] is equal to the
length of indices and not the length of x, as shown here:

In [7]: ind = [0, 1, 0, 2]

In [8]: x[ind]

Out[8]: array([1. , 0.633, 1. , 0.158])

Note that a given index can be repeated several times in the index array.

Manipulation
Arrays can be manipulated and reshaped, which can sometimes be useful when
performing vectorized computations. It is also possible to construct a new array from
identical copies of an original array. The complete list of routines can be found in
the NumPy reference guide at http://docs.scipy.org/doc/numpy/reference/
routines.html.

Reshaping
First, the reshape method allows to change the shape of an array if the total number
of elements is kept constant, as shown in the following example:

In [1]: rand(6)

Out[1]: array([0.872, 0.257, 0.083, 0.788, 0.931, 0.232])

In [2]: x.reshape((2, 3))

array([[0.872, 0.257, 0.083],

 [0.788, 0.931, 0.232]])

It is possible to use -1 in at most one dimension in the argument of reshape to
specify that its value must be automatically inferred; for example, x.reshape((2,
-1)) instead of x.reshape((2, 3)).

Chapter 3

[61]

The number of dimensions can also be changed with ravel (to remove all
multidimensional structures in an array and return a flattened vector), squeeze
(to remove all single-dimensional entries from the shape of an array), and
expand_dims (to insert a new axis in an array).

Repeating and concatenating
The tile and repeat functions allow to create copies of an array, either by
concatenating identical copies of it along a specified axis, or by copying every
coefficient any number of times, as shown in the following example:

In [1]: x = arange(3)

In [2]: tile(x, (2, 1))

Out[2]:

array([[0, 1, 2],

 [0, 1, 2]])

In [3]: repeat(x, 2)

Out[3]:

array([0, 0, 1, 1, 2, 2])

Here, we first create an array with a vertical stack of two identical copies of x, and we
create a new array with each element of x repeated three times. The second argument
of repeat can also be a list reps, in which case the coefficient x[i] is repeated
reps[i] times.

For example, let's create a multiplication table using reshape and tile. The idea is
to first define one row vector and one column vector with all integers between 1 and
n, tile them, and multiply them, knowing that the multiplication occurs element-wise
as shown in the following code snippet:

def mul2(n):
 M = arange(1, n + 1).reshape((-1, 1))
 M = tile(M, (1, n))
 N = arange(1, n + 1).reshape((1, -1))
 N = tile(N, (n, 1))
 return M * N

Let's time the execution of this function using the following commands:

In [1]: %timeit mul2(100)

10000 loops, best of 3: 188 us per loop

This function is about 27 times faster than the previous version mul1, which used
nested Python loops.

Numerical Computing with IPython

[62]

Also, we can use hstack, vstack, dstack, or concatenate to join several arrays into
a single array along the first, second, third, or any dimension, respectively.

Similarly, the hsplit, vsplit, dsplit, or split functions allow to split an
array into several consecutive subarrays along any dimension, as shown in the
following example:

In [1]: x = arange(6)

In [2]: split(x, 2)

Out[2]:

[array([0, 1, 2]), array([3, 4, 5])]

In [3]: split(x, [2,5])

Out[3]:

[array([0, 1]), array([2, 3, 4]), array([5])]

The second argument of split is either an integer, n, in which case the array is split
into n equal arrays, or a list with the indices where the array should be split (that is,
the indices of the first element in each subarray except the first).

Broadcasting
In the previous multiplication table example, we had to repeat identical copies of a
row and a column so that we could multiply the two arrays with identical shapes
(n, n). Actually, the repeat step is unnecessary, as arrays with different shapes can
still be compatible under specific conditions; this is called broadcasting. The general
rule is that two dimensions are compatible when they are equal, or when one of them is 1.
For example, two arrays, M and N, of the shape (1, n) and (n, 1) can be multiplied
together, because in the first dimension, M array's shape is 1, whereas N array's
shape is 1 in the second dimension. The dimension equal to one is transparently and
silently stretched to match the other dimension, and this operation does not involve
memory copy.

Therefore, we can get rid of the tile operation in the multiplication table example
as follows:

def mul3(n):
 M = arange(1, n + 1).reshape((-1, 1))
 N = arange(1, n + 1).reshape((1, -1))
 return M * N

Chapter 3

[63]

The following commands are used:

In [1]: timeit mul3(100)

10000 loops, best of 3: 71.8 us per loop

Finally, mul3 is about 2.6 times faster than mul2, and about 70 times faster than mul1!
The reason is that tile involves array copying and memory allocation, whereas only
multiplications happen in mul3.

Permuting
Several functions allow to permute the axes in an array. For example, the transpose
function permutes the dimensions of an array. The indices describing the
permutation can be provided in the axes keyword argument.

Other transposition functions that may be useful include fliplr and flipud to
flip an array in the left/right or up/down direction, roll to perform a circular
permutation of the elements along a given axis, and rot90 to rotate an array by
90 degrees in the counter-clockwise direction.

Computation
The whole point of creating and manipulating arrays is to perform efficient
vectorized computations with them. The four elementary operations work between
arrays under the condition that they have compatible shapes. In addition, a lot of
mathematical functions are available in the vectorized form for NumPy arrays.

If A and B are two NumPy arrays with compatible shapes, A + B, A - B, A x B, and
A / B are element-wise operations. In particular, when A and B are two-dimensional
matrices, A x B is not the matrix product. The matrix product is rather provided by
the dot function, which more generally computes the dot product of two arrays.

Common unary operations include -A, A ** x (coefficients to power x), abs(A)
(absolute value), sign(A) (an array with -1, 0, or 1 depending on the sign of
each element), floor(A) (floor of each element), sqrt(A) (square root), log(A)
(natural logarithm), exp(A) (exponential), and a lot of other mathematical functions
(trigonometric, hyperbolic, arithmetic functions, and so on).

NumPy also provides functions to compute the sum (sum) or product (prod) of all
elements in an array or in a given dimension. The axis keyword argument specifies
the dimensions on which the sum is to be performed. This function returns an array
with one dimension less than the original array.

Numerical Computing with IPython

[64]

The max and min functions return the largest and lowest values in an array or in a
given dimension. The argmin and argmax functions return the index of the smallest
or largest element of the array. For example, continuing with our cities example
we can have the following commands for the locate function:

In [26]: def locate(x, y):

 # locations is a Ncities x 2 array with the cities positions

 locations = data[['Latitude','Longitude']].as_matrix()

 d = locations - array([x, y])

 # squared distances from every city to the position (x,y)

 distances = d[:,0] ** 2 + d[:,1] ** 2

 # closest in the index of the city achieving the minimum
distance to the position (x,y)

 closest = distances.argmin()

 # we return the name of that city

 return data.AccentCity[closest]

In [27]: print(locate(48.861, 2.3358))

Paris

The locate function takes two coordinates with a position's latitude and longitude,
and returns the closest city's name. The argmin function returns the index of the city
with the smallest distance to the specified position.

Finally, statistical functions such as mean, median, std, and var compute the mean,
median, standard deviation, and variance of the elements along a given dimension
or across the whole array. Also, the describe method of Pandas objects gives several
useful statistics (including the mean, standard deviation, the 50 percent quantile or
median, and the 25 precent and 75 percent quantiles) as follows:

In [28]: population.describe()

count 47980.000000

mean 47719.570634

std 302888.715626

min 7.000000

25% 3732.000000

50% 10779.000000

75% 27990.500000

max 31480498.000000

Chapter 3

[65]

Related functions that can be useful when simulating mathematical models include
diff (discrete difference), cumsum (cumulative sum), and cumprod (cumulative
product). The diff function allows to compute a discrete derivative of a signal (up to
a scalar coefficient), whereas cumsum computes a discrete indefinite integral of a signal.

Advanced mathematical processing
NumPy provides all necessary types and routines for doing efficient numerical
computations with Python. SciPy is built on top of NumPy and implements a large
variety of higher-level mathematical processing algorithms. These algorithms span
several areas of numerical computing, such as optimization, linear algebra, signal
processing, statistics, and the like. Also, the various SciKits packages (scikit-
learn, scikit-image, and so on) are yet more advanced packages implementing
highly specialized algorithms in specific domains (machine learning, image
processing, and so on).

We give here a short overview of the scientific computing features provided by SciPy
and a few other packages. The full list of features can be found on the official reference
guide: http://docs.scipy.org/doc/scipy/reference/. Giving practical examples
and applications is beyond the scope of this book, and the interested reader can find
a wide variety of examples in the NumPy Cookbook, Ivan Idris, Packt Publishing, and
Learning SciPy for Numerical and Scientific Computing, Francisco Blanco-Silva, Packt
Publishing, both by Packt Publishing.

• Linear algebra routines are provided by the scipy.linalg subpackage:
solvers of linear equations, matrix routines, eigenvalue problems, matrix
decomposition, and so on.

• Optimization routines are provided by the scipy.optimize subpackage:
unconstrained or constrained minimization of real-valued functions, global
optimization, curve fitting, and so on.

• Numerical integrators are provided by the scipy.integrate subpackage.
It can be used to solve differential equations, for example, in physics
simulation engines.

• Signal processing algorithms are implemented in the scipy.signal
subpackage: convolutions, linear filters, wavelets, and so on. The scipy.
fftpack subpackage, which implements Fourier transforms routines, and
the scipy.ndimage subpackage, which implements several image processing
algorithms. Finally, other image processing packages of interest include
scikit-image, PIL, and OpenCV (computer vision).

Numerical Computing with IPython

[66]

• Statistical routines are provided by the scipy.stats subpackage:
probability distributions, descriptive statistics and statistical tests, and so on.
SciPy.cluster implements clustering algorithms that can be useful to find
categories in unstructured data. Other statistical packages of interest include
Pandas and scikit-learn (machine learning).

Summary
In this chapter, we described the multidimensional array object offered by NumPy,
and we showed how it can be used for efficient computations on numerical data sets.
In particular, it is well adapted for loading any sort of data, and the Pandas package
makes this task straightforward, even with complex data files. Using advanced
algorithms is possible with IPython with the help of powerful external packages,
such as NumPy, SciPy, and the SciKit libraries. However, this subject is beyond the
scope of this book, and the interested reader can find a variety of examples in the
NumPy Cookbook, Ivan Idris, Packt Publishing and Learning SciPy for Numerical and
Scientific Computing, Francisco Blanco-Silva, Packt Publishing.

In the next chapter, we will present the visualization-related possibilities offered by
IPython and Matplotlib, which are very often used in conjunction with NumPy for
interactive visualization of data.

Interactive Plotting and
Graphical Interfaces

In this chapter, we will show the graphical capabilities of Python and how they can
be used interactively with IPython.

NumPy provides a very efficient way of dealing with large amounts of data
structured as multidimensional arrays. But looking at grids of numbers is often much
less intuitive than looking at plots, such as curves, scatter plots, images, and likewise.
Matplotlib is a particularly rich Python package for generating high-quality figures
from NumPy data. It provides a simple, high-level interface much similar to Matlab,
a commercial product that is popular in the engineering and scientific worlds.
Matplotlib integrates very well with IPython.

We will also introduce Graphical User Interface (GUI) programming. Covering this
rich subject extensively is far beyond the scope of this book. So we will only see basic
examples in this chapter. We will cover the following points:

• Plotting figures with Matplotlib
• Image processing techniques
• Geographical maps
• Introduction to Graphical User Interfaces
• Designing and debugging GUIs with IPython's event loop integration

Interactive Plotting and Graphical Interfaces

[68]

Figures with Matplotlib
There are a lot of Python packages for curve plotting, but the most widely used one,
by far, is Matplotlib. It is one of the most complete and powerful graphical libraries.
It can be used both for interactive visualization and for generating high-quality
figures that can be readily used in scientific publications. In addition, its high-level
interface makes it particularly easy to use.

In this section, we will show some of the possibilities offered by Matplotlib as well as
how it can be advantageously used with IPython.

Setting up IPython for interactive visualization
IPython implements a loop integration system that allows to display graphical
windows from the command-line interface without blocking the console. This is
very useful when using Matplotlib or when creating graphical user interfaces.

Using Matplotlib
Figures can be displayed interactively in IPython using event loop integration. Then,
they can be updated dynamically from the command-line interface. The %pylab
magic command (or the --pylab option to the ipython shell command) activates
this integration automatically. It is possible to choose the backend renderer used for
Matplotlib and IPython, for example, --pylab qt, which requires PyQt or PySide.

We will assume that the %pylab mode is active in IPython throughout this chapter.
When using Matplotlib from a script instead from IPython, we can put the from
pylab import * command at the top of the script. In a Python module, it might be a
better idea to use import matplotlib.pyplot as plt so that the Matplotlib objects
stay within their namespace.

Also, the way of generating plots is slightly different in a script compared to IPython.
In a script, the figure is displayed only when the function show() is called, typically,
at the very end of the script, whereas, in the IPython command-line interface, the
figure is shown and updated at each plot function.

Chapter 4

[69]

Interactive navigation
When showing a figure with Matplotlib, the window contains a few buttons for
navigating interactively within the figure (panning and zooming) and for changing
the figure's options. There is also the possibility to save the figure in a bitmap or
vector format.

Matplotlib in the IPython notebook
Matplotlib can also be used in the notebook. When launching the notebook with
ipython notebook --pylab inline, the plots appear in the output cells as images
and are saved as base64 strings within the IPYNB files. Without this inline option,
figures are displayed in separate windows as usual. It is also possible to activate this
option within the notebook by using the command %pylab inline.

Standard plots
In this section, we will see some examples of standard plots, such as lines, curves,
scatter plots, and bar plots. In the next sections, we will also see images and maps.
But Matplotlib offers far more plot types than what we will cover here, including 3D
plots, geometrical shapes, vector fields, and so on.

Curves
Drawing a curve with Matplotlib actually means drawing small, successive line
segments that give the illusion of a smooth curve when the number of lines is large
enough. To plot a mathematical function, one plots samples of this function within a
given interval just as NumPy represents functions as arrays with sampled values.

Interactive Plotting and Graphical Interfaces

[70]

For example, a time-dependent signal can be represented as a one-dimensional
vector of sampled values at regular time intervals (for example, every 1 millisecond
at a 1 kHz sampling frequency), such that one second of signal is represented as
a 1000-unit long vector. The function plot can be used to draw this signal on the
screen, for example:

Plotting a white noise signal in a notebook

Here, we generate a vector with random values following independent normal
random variables. The resulting signal is a so-called white noise signal, a random
signal with a flat power spectral density. When plotting the figure in the notebook
with the --pylab inline option, Matplotlib generates an image representing this
curve, and the image is then automatically inserted in the output cell.

When the plot function receives a single vector as an argument, it assumes that this
vector contains values on the y axis, whereas values on the x axis are automatically
generated as integers from 0 to len(y) - 1. To explicitly specify the values on the x
axis, we can use the following command: plot(x,y).

Chapter 4

[71]

Scatter plots
Scatter plots represent sets of points in two dimensions, using pixels or any
other marker. Let's continue with our cities example. Assuming we are in the
right directory (the citiesdata alias), we can load the data and try to plot the
geographical coordinates of all the cities:

In [1]: import pandas as pd

In [2]: cd citiesdata

In [3]: filename = 'worldcitiespop.txt'

In [4]: data = pd.read_csv(filename)

In [5]: plot(data.Longitude, data.Latitude, ',')

Displaying the cities' coordinates in the notebook

In this example, we plot the latitude (y axis) versus the longitude (x axis) of all the
cities. The third argument (',') of the plot function specifies the marker type. Here,
it corresponds to a scatter plot where each city is represented by a single pixel. We
can easily recognize the shape of the continents even if they seem a bit distorted. This
is because we plot the geographical coordinates in a Cartesian system, whereas it
would be more appropriate to use a map projection method. We will get back to this
issue later in this chapter.

Interactive Plotting and Graphical Interfaces

[72]

Bar graphs
A bar graph is typically used for histograms, representing the distribution of values
at different intervals. The hist function in Matplotlib accepts a vector of values and
plots a histogram. The bins keyword allows to specify either the number of bins or
the list of bins.

For example, let's plot the histogram of the nodes' degrees in the Facebook
graph example:

In [1]: cd fbdata

In [2]: import networkx as nx

In [3]: g = nx.read_edgelist('0.edges')

In [4]: hist(g.degree().values(), bins=20)

Distribution of the nodes' degrees in a graph

Here, g.degree() is a dictionary with the degree of each node (that is, the number of
other nodes connected to it). The values method returns the list of all the degrees.

There are far more graph types in Matplotlib than what we showed here, and the
plotting possibilities are nearly endless. A wide variety of figure examples can be
found in the Matplotlib Gallery on the official website (http://matplotlib.org/
gallery.html) and in Nicolas Rougier's tutorial (http://www.loria.fr/~rougier/
teaching/matplotlib/).

Plot customization
Matplotlib offers a lot of customization options. Here, we will see how to change
styles and colors in figures, how to configure axes and legends, and how to display
several plots on the same figure.

Chapter 4

[73]

Styles and colors
By default, curves are continuous and have a uniform color. The style and color
of the curves can easily be specified in the plot function.

The third argument of the plot function specifies the style and color of the curve
in a short syntax. For example, '-r' means "continuous and red" while '--g' means
"dashed and green". There are dozens of possible styles such as, ':' for dotted lines,
'-.' for dash-dot, '.' for points, ',' for pixels, 'o' for circle markers, and so on.

Also, there are eight colors with a single-character shortcut, namely b, g, and r
(primary additive colors—blue, greed, and red); c, m, and y (secondary additive
colors—cyan, magenta, and yellow); and k and w (black and white). Any other
color can be specified by its hexadecimal code, RGB or RGBA tuple (values between
0 and 1), and so on.

Using a string for specifying the style and color is only a shortcut to the more general
way of specifying styles and colors of plots, which is to use particular keyword
arguments. These arguments include linestyle (or ls), linewidth (or lw), marker,
markerfacecolor (or mfc), markersize (or ms), and so on. The full list of options
can be found in the reference documentation of Matplotlib.

Also, when displaying several plots on the same figure, the color of each plot cycles
through a predefined set of colors, such as blue, green, red, and so on. This cycle can
be customized:

In [1]: rcParams['axes.color_cycle'] = ['r', 'k', 'c']

Customizing Matplotlib
rcParams is a global, dictionary-like variable in Matplotlib
with custom parameters. Nearly every aspect of Matplotlib can
be configured here. Also, it is possible to specify permanent
custom options by saving them in an ASCII text file called
matplotlibrc, which can be stored either in the current
directory (for local options) or in ~/.matplotlib (for global
options). In this file, each line contains a custom parameter, for
example, axes.color_cycle: ['r', 'k', 'c'].

Interactive Plotting and Graphical Interfaces

[74]

Grid, axes, and legends
A graph would not convey anything useful about the data without legends and axes.
By default, Matplotlib displays axes and ticks automatically. The exact positions of
the ticks can be set with xticks and yticks, and a grid can be added with the grid
function. The extent of the x and y coordinates can be specified with xlim and ylim.
The axes labels can be set with xlabel and ylabel. Also, it is possible to specify the
legend with the legend keyword; the label of each line corresponds to the label
keyword argument of the plot function. Finally, the title command displays the
name of the figure. The following example illustrates how to use these options:

Sine and cosine functions with axes and legends

Chapter 4

[75]

Superposition of plots
Calling different plot functions updates the same figure
in Matplotlib. This is how several plots can be shown on
the same figure. To create a new figure in a new window,
we need to call the function figure(). Finally, it is possible
to display several independent figures within the same
window using subplots, as we will see later in this section.

Interaction from IPython
Creating Matplotlib figures with the IPython console using event loop integration
allows to interact with them programmatically. It is possible to add new plots in a
figure or to update it in real time, as shown in the following example:

In [1]: plot(randn(1000, 2))

Out[1]: [<matplotlib.lines.Line2D at 0x4cf4310>,

 <matplotlib.lines.Line2D at 0x4cf4450>]

We first create a figure with two white noise signals (the plot function displays
every column as an independent curve). Once the window with the figure has
opened, we can return to the IPython console without closing that window.
The output Out[1] contains a list of Line2D objects. Indeed, Matplotlib uses
an object-oriented description of the figure. Let's retrieve the first object
(corresponding to the first curve) as follows:

In [2]: line = _[0]

Tab completion on the line variable then shows the list of methods that we can use
to update the figure. For instance, to change the line color from blue to red, we can
type the following command:

In [3]: line.set_color('r')

The figure is then updated accordingly. It may be necessary to force refresh the
figure, for example, by panning or zooming.

Finally, let's mention the Edit button in the figure window that offers a GUI for
updating some figures' properties.

Interactive Plotting and Graphical Interfaces

[76]

Drawing multiple plots
Multiple independent plots can be displayed on the same figure. We can define a
grid with an arbitrary number of rows and columns and plot figures inside each box.
Boxes can even span several rows or columns (using subplot2grid). For instance,
the following example shows how to plot two figures with different coordinate
systems side by side:

x = linspace(0, 2 * pi, 1000)
y = 1 + 2 * cos(5 * x)
subplot(1,2,1)
plot(x, y)
subplot(1,2,2, polar=True)
polar(x, y)

Cartesian and polar plots in the same figure

The subplot function simultaneously specifies how many columns (first argument)
and rows (second argument) there are, but also the index of the box where the
plot will be rendered (third argument, 1-based indexing, from left to right and top
to bottom). The polar=True keyword argument specifies that the second subplot
contains a polar graph. The polar function is similar to the plot function, but a
polar coordinate system containing the attributes theta, and r is used where theta
is the angle and r is the radius.

Advanced figures and graphics
In this section, we will show more advanced graphical features offered by
Matplotlib that are related to images and maps. We will also take a look at a
few other graphical libraries.

Chapter 4

[77]

Image processing
A colored N x M image can be represented as an N x M x 3 NumPy array
corresponding to three N x M matrices for the red, green, and blue channels. Image
processing algorithms can then be implemented efficiently with NumPy and SciPy
and visualized with Matplotlib. In addition, the PIL package (Python Imaging
Library) implements basic image processing routines for pictures.

Loading images
Matplotlib's imread function opens a PNG image from the hard drive and returns
an N x M x 3 (or N x M x 4 if there is an alpha transparency channel) NumPy array.
It can also read other formats if PIL is installed. PIL also offers the open function for
reading images in any format (BMP, GIF, JPEG, TIFF, and so on).

In the following example, we download a PNG image from a remote URL and load it
with imread:

In [1]: import urllib2

In [2]: png = urllib2.urlopen
('http://ipython.rossant.net/squirrel.png')

In [3]: im = imread(png)

In [4]: im.shape

Out[4]: (300, 300, 3)

The imread function accepts either an image filename or a Python file-like object
(like here, where we use the buffer returned by urlopen). The object returned by
the imread function is a three-dimensional NumPy array.

We can also use PIL for reading images. We can either use Image.open to open
an image file directly, or we can convert a NumPy array into a PIL image with the
Image.fromarray function, as follows:

In [5]: from PIL import Image

In [6]: img = Image.fromarray((im * 255).astype('uint8'))

The fromarray function accepts an array with unsigned 8-bit integers, with values
between 0 and 255. This is the reason why we need to convert the NumPy array with
floating point values to the required data type. Conversely, to convert a PIL image
into a NumPy array, we can use the array function im = array(img).

Interactive Plotting and Graphical Interfaces

[78]

Showing images
The imshow function of Matplotlib displays an image from a NumPy array, as shown
in the following example:

In [7]: imshow(im)

Displaying an image in the notebook with Matplotlib

The imshow function also accepts two-dimensional NumPy arrays (grayscale
images). The mapping from scalar values between 0 and 1 to actual pixel colors
can be specified with the color map. A color map is a linear gradient of colors
defining the color of any value between 0 and 1. A lot of predefined color maps are
available in Matplotlib, and the full list can be found here: http://www.scipy.org/
Cookbook/Matplotlib/Show_colormaps

To specify the color map in imshow, we can use the cmap=get_cmap(name) keyword
argument, where name is the color map's name.

Chapter 4

[79]

Using PIL
Basic image processing routines, such as rotate, crop, filtering, copy and paste,
geometrical transforms, and likewise, are provided by PIL. For example, to rotate
an image, we can use the following command:

In [9]: imshow(array(img.rotate(45.)))

Rotating an image with PIL

Here, we rotate the image 45 degrees counterclockwise, and we convert back the
image from PIL to NumPy to display it.

Advanced image processing – color quantization
PIL provides basic image processing functions, whereas SciPy can be used for more
advanced algorithms.

Here we will show a small example of an advanced image processing algorithm
called color quantization. The principle of this algorithm is to reduce the number of
colors of an image while keeping most of the visual structure of the image. In this
example, we will implement this algorithm with the scipy.cluster package. We
will use the k-means algorithm to group the color values into a small number of
clusters, and we will assign each pixel to its group's color. Here is the code:

In [10]: from scipy.cluster.vq import *
 M = im[:,:,0].ravel()
 centroids, _ = kmeans(M, 4)
 qnt, _ = vq(M, centroids)
 clustered = centroids[reshape(qnt, (300, 300))]

Interactive Plotting and Graphical Interfaces

[80]

We only take the red channel and flatten the image with the ravel function so as
to treat all pixels equally (that is, we get a one-dimensional vector instead of a two-
dimensional matrix). Then, the kmeans function finds the clusters in the color space
and returns the centroid colors. Finally, the vq function assigns each pixel to its
centroid index, and we retrieve the resulting image clustered through fancy indexing
of the centroid indices (in qnt) by the centroid colors (centroids). Since the output
of this algorithm is a grayscale image, we need to specify a color map. We will use a
set of colors that had its heyday some time ago, as shown here:

In [11]: cmap = matplotlib.colors.
ListedColormap([(0,.2,.3),(.85,.1,.13),(.44,.6,.6),
(1.,.9,.65)])

In [12]: imshow(clustered, cmap=cmap)

Color quantization with SciPy

Here, the ListedColormap function creates a custom color map with a discrete set
of colors.

Finally, we can save the resulting image as a PNG file with Matplotlib's imsave
function, as follows:

In [13]: imsave('squirrelama.png', clustered, cmap=cmap)

Chapter 4

[81]

Maps
Maps are a complex but important type of figure. The basemap toolkit (which needs
to be installed separately) brings geographical capabilities to Matplotlib. It is highly
powerful, and we will only scratch the surface in this section. Specifically, we will
continue with our cities example to plot a human density map on a planisphere.

First, we retrieve the locations and populations of the cities as follows:

In [6]: locations = data[['Longitude','Latitude']].as_matrix()

In [7]: population = data.Population

Next, we initialize a world map by specifying the projection type and map
boundaries as follows:

In [8]: from mpl_toolkits.basemap import Basemap

In [9]: m = Basemap(projection='mill', llcrnrlat=-65, urcrnrlat=85,

 llcrnrlon=-180, urcrnrlon=180)

There are a lot of different ways of projecting the surface of the earth on a plane, and
the choice of one projection or another depends on the specific application. Here, we
use the Miller cylindrical projection. The other keyword arguments give the latitude
and longitude of the lower-left and upper-right corners.

The next step is to generate a two-dimensional image with the world population
density. To do this, we will need to project the geographical coordinates of the cities
on our map, as shown here:

In [10]: x, y = m(locations[:,0],locations[:,1])

Calling the function m(long,lat) allows to get the (x,y) coordinates of the
geographical positions with longitudes and latitudes. To generate the density map,
we will also need the coordinates of the map boundaries, as shown here:

In [11]: x0, y0 = m(-180, -65)

In [12]: x1, y1 = m(180, 85)

Now, let's generate the density map. We will use the histogram2d function,
which returns a two-dimensional histogram from a set of points. Here, each point
corresponds to a city. We will also use a weight for each city, which corresponds to
its population. Care must be taken for cities that do not have a population; we will
set the weight to 1000 for these cities, as follows:

In [13]: weights = population.copy()

In [14]: weights[isnan(weights)] = 1000

In [15]: h, _, _ = histogram2d(x, y, weights=weights,
bins=(linspace(x0, x1, 500), linspace(y0, y1, 500)))

Interactive Plotting and Graphical Interfaces

[82]

Now the h variable contains the population count in every small rectangle of a 500 x
500 grid spanning the whole planisphere. To generate a density map, we can apply
a Gaussian filter to log(h) (corresponding to a kind of kernel density estimation)
using SciPy. Using the logarithm can be useful when the values span several orders
of magnitude. We also need to take care of zeros (corresponding to empty zones)
because the logarithm of zero is undefined:

In [16]: h[h == 0] = 1

In [17]: import scipy.ndimage.filters

In [18]: z = scipy.ndimage.filters.gaussian_filter(log(h.T), 1)

The filter is applied to the function log(h.T) because the coordinate system of the h
variable is transposed compared to the coordinate system of the map. Also, we use a
filtering value of 1 here.

Finally, we display the density map as well as the coast lines, as shown here:

In [19]: m.drawcoastlines()

In [20]: m.imshow(z, origin='lower', extent=[x0,x1,y0,y1],
cmap=get_cmap('Reds'))

World map with population density using Matplotlib.basemap

Chapter 4

[83]

3D plots
Matplotlib includes a 3D toolkit called mplot3d that can be used for basic 3D plots,
such as 3D curves, surface plots, and likewise. As an example, let's create a surface
plot. We first need to import the mplot3d toolkit as follows:

In [1]: from mpl_toolkits.mplot3d import Axes3D

Then, we create the x, y, and z coordinates of a surface plot with the
following commands:

In [2]: # we create a (X, Y) grid

 X = linspace(-5, 5, 50)

 Y = X

 X, Y = meshgrid(X, Y)

 # we compute the Z values

 R = sqrt(X**2 + Y**2)

 Z = sin(R)

The NumPy function meshgrid returns the coordinates of all the points in a grid that
spans a rectangle area defined by the X and Y vectors. Finally, we create a 3D canvas
and draw the surface plot as follows:

In [3]: ax = gca(projection='3d')

 surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,

 cmap=mpl.cm.coolwarm, linewidth=0)

The Matplotlib function gca returns the current axis instance, and we specify here
that this instance should use 3D projection. In the plot_surface function, the
rstride and cstride keyword arguments give the row and column strides of the
surface, whereas cmap is the color map and linewidth is the width of the wireframe.
The following screenshot shows the result:

A surface plot with mplot3D

Interactive Plotting and Graphical Interfaces

[84]

Animations
Matplotlib is capable of creating animations and exporting them as MP4 videos
using FFmpeg or MEncoder. The idea is to create a plot and write a function to
update it at regular time intervals. The documentation of the animation module can
be found at http://matplotlib.org/api/animation_api.html. Besides this, a
tutorial made by Jake Vanderplas is available at http://jakevdp.github.com/
blog/2012/08/18/matplotlib-animation-tutorial/.

Other visualization packages
Matplotlib is not the only visualization package in Python. Here are other
similar libraries:

• Chaco: This is an alternative library to Matplotlib
(http://code.enthought.com/chaco/)

• PyQwt: This is a plotting library based on PyQt
(http://pyqwt.sourceforge.net/)

• PyQtGraph: This package is also based on PyQt and offers 2D and 3D
plotting features (http://www.pyqtgraph.org/)

• Visvis: This package is based on OpenGL; it offers an object-oriented plotting
interface (http://code.google.com/p/visvis/)

• Mayavi: This package offers 3D interactive visualization features,
such as curves, surfaces, meshes, volume rendering, and likewise
(http://code.enthought.com/projects/mayavi/)

• PyOpenGL: This Python library gives raw access to the popular OpenGL
library; it offers low-level, hardware-accelerated 2D/3D graphics capabilities
(http://pyopengl.sourceforge.net/)

• Galry: This is a high-performance interactive visualization package based
on PyOpenGL that targets very large datasets with tens or even hundreds
of millions of points (http://rossant.github.com/galry/)

Graphical User Interfaces (GUI)
There was a time when human-computer interaction was only done through a
command-line interface. Today, most regular computer users are much more
confident with a mouse and graphical windows than with a keyboard and black
screen with a blinking cursor. For this reason, any developer may be asked at some
point to write a graphical interface, even the simplest possible, so as to let non-
developer users interact comfortably with the program.

Chapter 4

[85]

A GUI can easily be integrated in any Python package. There are numerous graphical
toolkits for Python, most of them being wrappers to native or C++ graphical
libraries. Famous toolkits include Qt, wxWidgets, Tkinter, GTK, and so on. We will
use Qt in this book's examples.

GUI programming can be a hard subject, requiring in-depth knowledge of low-level
details about the operating system, multithreading programming, as well as some
basic notions about human-computer interactions. In this book, we will show a
"Hello World" example that gives the very basics of PyQt. We will also see how GUIs
can be manipulated interactively with IPython.

Setting up IPython for interactive GUIs
IPython implements a loop integration system that allows the display of graphical
windows from the command-line interface without blocking the console. This is very
useful when creating GUIs because it becomes possible to interact with the windows
dynamically from the command line.

The %gui magic command activates the event loop integration. We need to provide
the name of the graphical library to use. The possible names are wx, qt, gtk, and
tk. Here we will work with Qt. So we can type %gui qt. The main Qt application is
then automatically started in IPython. Another possibility is to launch IPython with
ipython --gui qt.

The examples in this section require either PyQt4 or PySide. We will assume that
PyQt4 is installed, but, if only PySide is installed, it will only be a matter of replacing
PyQt4 with PySide in the imports. The Qt binding API provided by both libraries is
nearly identical.

A "Hello World" example
In this "Hello World" example, we will show a window with a button triggering
a message box. We will also show how to interact with the window from the
IPython console.

To define a window, we need to create a class that is derived from the QWidget base
class. QWidget is the base class of all Qt windows and controls, also called widgets.
Here is the code of the "Hello World" example:

from PyQt4 import QtGui

class HelloWorld(QtGui.QWidget):
 def __init__(self):
 super(HelloWorld, self).__init__()

Interactive Plotting and Graphical Interfaces

[86]

 # create the button
 self.button = QtGui.QPushButton('Click me', self)
 self.button.clicked.connect(self.clicked)
 # create the layout
 vbox = QtGui.QVBoxLayout()
 vbox.addWidget(self.button)
 self.setLayout(vbox)
 # show the window
 self.show()

 def clicked(self):
 msg = QtGui.QMessageBox(self)
 msg.setText("Hello World !")
 msg.show()

Most of the work happens in the HelloWorld widget's constructor. We first need to
call the parent constructor. Then, we perform several steps to display the button:

1. We first create a button, as in the instance of the QPushButton class. The
first argument is the text of the button, and the second one is the parent
widget's instance (self). Every specific control and widget is defined by a
class that is derived from the QWidget base class and can be found in the
QtGui namespace.

2. We define the callback method that is called when the user clicks on the
button. The clicked attribute is a Qt signal emitted as soon as the user clicks
on the button. We connect this signal to the clicked method (called a slot) of
our HelloWorld widget. Signals and slots are Qt's way of making different
widgets communicate with each other. Signals are raised when some events
occur, and slots connected to these signals are called whenever the signals
are raised. Any widget contains a lot of predefined signals. Custom signals
can also be created.

3. Then, we need to put the newly created button somewhere on the window.
We first need to create a QVBoxLayout widget, which is a container widget
containing a vertical stack of widgets. Here we only put the button in it,
using the addWidget method. We also specify that this box is the window's
layout. In this way, the main window contains this box that itself contains
our button.

4. Finally, we need to show the window with the command self.show().

In the clicked method, we create a QMessageBox widget representing, by default, a
dialog with a text and single OK button. The setText method specifies the text, and
the show method displays the window.

Chapter 4

[87]

Now assuming that the event loop integration with Qt has been activated in IPython
either with %gui qt or ipython --gui qt, we can display the window with the
following command:

In [1]: window = HelloWorld()

The window then appears, and the IPython console is still usable while the
window is open.

A basic Qt dialog

Clicking on the button shows a dialog containing Hello World.

Also, we can interact with the window dynamically from the IPython console. For
example, the following command displays the Hello World dialog exactly as if we
had clicked on the button:

In [2]: window.clicked()

This feature is particularly convenient when designing a complex window and for
debugging purposes.

Summary
In this chapter, we discovered the graphical possibilities offered by IPython,
Matplotlib, and a few other packages. We can create plots, charts, histograms,
maps, display and process images, graphical user interfaces, and so on. Figures
can also be integrated very easily in a notebook. All aspects of the figures can be
customized. These reasons explain why these tools are quite popular in the scientific
and engineering communities, where data visualization plays a central role in most
applications.

In the next chapter, we will see some techniques to make Python code faster.

High-Performance and
Parallel Computing

A recurring argument against using Python for high-performance numerical
computing is that this language is slow, because it is dynamic and interpreted. A
compiled lower-level language such as C can often be orders of magnitude faster. We
exposed a first counterargument in Chapter 3, Numerical Computing with IPython, with
the notion of vectorization. Operations on NumPy arrays can be almost as fast as C
because slow Python loops are transparently replaced with fast C loops. Sometimes
though, it may happen that vectorization is impossible or difficult to implement on
some complex algorithms. In these cases, there are fortunately solutions other than
throwing away all Python code and coding everything again in C. We will introduce
some of these solutions in this chapter.

First, one can take advantage of the multiple cores that are now present in any
computer. A standard Python process normally runs on a single core, but it is
possible to distribute tasks across multiple cores and even multiple computers in
parallel. This is particularly easy to do with IPython. MPI can also be easily used
with a few lines of code.

Another popular solution is to first detect the time-critical section of a Python
algorithm and then replace it with C code. Typically, only a very small section of the
Python code is responsible for most of the algorithm's duration, so that it is possible
to keep the rest of the code in Python. Cython is an external package which makes
this task easier than it sounds: it offers a superset of Python that is compiled and that
can be seamlessly integrated within Python code. It is particularly convenient to use
it with IPython.

High-Performance and Parallel Computing

[90]

At the end of this chapter, we will have discussed:

• How to distribute independent functions across several cores from IPython
• How to easily use MPI from IPython
• How to convert Python code in C with Cython using a cell magic
• How to use NumPy arrays in Cython for making your code orders of

magnitude faster

Interactive task parallelization
In this section, we will see how to distribute tasks across different cores
with IPython.

Parallel computing in Python
Python's native support of parallel computing features leaves much to be desired.
A long-standing issue is that CPython implements a Global Interpreter Lock (GIL),
which, as quoted from the official CPython documentation, is:

"...a mutex that prevents multiple native threads from executing Python bytecodes
at once."

The GIL is necessary because CPython's memory management is not thread-safe,
but a major drawback is that it can prevent multithreaded CPython programs from
taking full advantage of multicore processors.

Python's GIL
The interested reader can find more information about Python's GIL in
the following references:

• http://wiki.python.org/moin/GlobalInterpreterLock
• http://www.dabeaz.com/python/UnderstandingGIL.pdf

Some linear algebraic functions in NumPy may take advantage of multicore processors
by releasing the GIL, if NumPy is compiled with the appropriate libraries (ATLAS,
MKL, and so on). Otherwise, distributing tasks across different processes instead
of different threads is the typical way of doing parallel computing with Python.
As processes do not share the same memory space, some kind of inter-process
communication needs to be implemented, for example, using Python's native
multiprocessing module. A more powerful but more complex solution is to use
Message Passing Interface (MPI).

Chapter 5

[91]

IPython is particularly well-adapted to both solutions, and we will discuss them in
this section. It provides a powerful and general architecture for parallel computing.
Several IPython engines can run on different cores and/or different computers.
Independent tasks can be easily and evenly distributed, thanks to load balancing.
Data can be transferred from one engine to the other, making complex distributed
algorithms possible from IPython.

Parallel computing is a particularly hard topic, and we will only cover the most basic
aspects here.

Distributing tasks on multiple cores
The parallel computing features of IPython are extensive and highly customizable,
but we will only show the simplest way of using them here. In addition, we will
focus on the interactive usage of parallel computing, since that is the essence of
IPython.

There are several steps to distribute code across multiple cores on one computer:

1. Launch several IPython engines (typically one per processor).
2. Create a Client object that acts as a proxy to these engines.
3. Use the client to launch tasks on the engines and retrieve the results.

Tasks can be launched synchronously or asynchronously:

1. With synchronous (or blocking) tasks, the client blocks right after the tasks
have started, and returns the tasks' results when they have finished.

2. With asynchronous (non-blocking) tasks, the client returns an ASyncResult
object immediately after the tasks have started. This object can be used to poll
the task statuses asynchronously and to retrieve the results at any time after
they have finished.

Starting the engines
The simplest way of starting the engines is to call in a system shell ipcluster start
command. By default, this command will start one engine per core on the local
machine. The number of engines can be specified with the -n option, for example,
ipcluster start -n 2 to start two engines. You can see the other available options
with ipcluster -h and ipcluster start -h. In addition, the notebook has a panel
named Clusters where you can launch and stop engines through a web interface.

High-Performance and Parallel Computing

[92]

Creating a Client instance
A client is used to send tasks to the engines. In an IPython console or in the
notebook, we first need to import the Client class from the parallel subpackage.

In [1]: from IPython.parallel import Client

The next step is to create a Client instance.

In [2]: rc = Client()

IPython automatically detects the running engines. To check the number of running
engines, we can do the following:

In [3]: rc.ids

Out[3]: [0, 1]

The ids attribute of the client gives the identifiers of the running engines. Here, there
are two running engines on the local machine (it has a dual-core processing unit).

Using the parallel magic
The easiest way of sending tasks to the engines from IPython is to use the %px magic.
It executes a single Python command on the engines.

In [4]: import os

In [5]: %px print(os.getpid())

[stdout:0] 6224

[stdout:1] 3736

By default, the command executes on all running engines and in synchronous mode.
There are several ways to specify which engine(s) to target.

The first possibility is to use the %pxconfig magic command:

In [6]: %pxconfig --targets 1

In [7]: %px print(os.getpid())

3736

The --targets option accepts an index or a slice object, for example, ::2 for all
engines with even indices. Here, we target only the second engine. All subsequent
calls to %px will be executed on the specified targets.

An equivalent method is to use the %%px cell magic:

In [8]: %%px --targets :-1

 print(os.getpid())

[stdout:0] 6224

Chapter 5

[93]

The options of %%px apply to the whole cell, which is particularly convenient in
the notebook.

Another available option is the blocking mode. By default, the %px magic assumes a
blocking mode. To enable the non-blocking mode, we can use the --noblock option.

In [9]: %%px --noblock

 import time

 time.sleep(1)

 os.getpid()

Out[9]: <AsyncResult: execute>

The task then executes asynchronously. The %pxresult magic command blocks the
interpreter until the task has finished, and returns the result.

In [10]: %pxresult

Out[1:12]: 3736

Parallel map
The built-in map function applies a Python function to a sequence element-by-element.
IPython provides a parallel map function, which is semantically equivalent, but
dispatches the different tasks across the different engines. It is the simplest way to
distribute tasks across multiple cores.

Creating a view
To use it, we first need to get a view to the engines, using the Client instance. A
view represents one or several engines, and is obtained with an indexing syntax on
the client. For example, to get a view on all engines, we use the following command:

In [11]: v = rc[:]

The view can then be used to launch tasks on the engines. Also, we can import
packages on the engines with the sync_imports() method:

In [12]: with v.sync_imports():

 import time

importing time on engine(s)

Synchronous map
Let's define the following simple function:

In [13]: def f(x):

 time.sleep(1)

 return x * x

High-Performance and Parallel Computing

[94]

This function accepts a number and waits for one second before returning its square.
To execute the function synchronously on all numbers between zero and nine, and
using our two engines (so, using two CPUs), we can use the v.map_sync() method:

In [14]: v.map_sync(f, range(10))

Out[14]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We obtain a list of results after a few seconds. Here, each engine has processed five
tasks, for a total of 10 tasks:

In [15]: %timeit -n 1 -r 1 v.map_sync(f, range(10))

1 loops, best of 1: 5.02 s per loop

In [16]: %timeit -n 1 -r 1 map(f, range(10))

1 loops, best of 1: 10 s per loop

Asynchronous map
To execute the function asynchronously on the list of arguments, we can use the
v.map() method:

In [17]: r = v.map(f, range(10))

In [18]: r.ready(), r.elapsed

Out[18]: False, 2.135

In [19]: r.get()

Out[19]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In [20]: r.elapsed, r.serial_time

Out[20]: (5.023, 10.008)

The r variable is an ASyncResult object, with several attributes and methods that
can be used to poll information about the progress, the elapsed time, and to get the
tasks' results. The elapsed attribute returns, at any time, the elapsed time since
the tasks began. The serial_time attribute is only available after the tasks have
finished, and returns the cumulative time spent on all tasks across all engines. The
ready() method returns, at any time, a value indicating whether the tasks have
finished or not. The get() method blocks until the tasks have finished, and returns
the results.

Chapter 5

[95]

A practical example – Monte Carlo
simulations
To illustrate the parallel computing possibilities offered by IPython, we will consider
a new example. We want to estimate the Pi constant using Monte Carlo simulations.
The principle is that if n points are randomly and uniformly sampled within a square
of edge 1, the proportion of points that have a distance smaller than 1 from a fixed
corner tends to Pi/4, if the number of points n tends to infinity. The following figure
illustrates this fact:

Estimation of Pi using a Monte-Carlo simulation

This is a particular example of a Monte Carlo simulation, which repeats a random
experiment a large number of times, and takes an average at the end to estimate
some quantity of interest that would be difficult to obtain with a deterministic
method. Monte Carlo simulations are widespread in science, engineering, and
finance. They are particularly convenient to parallelize, as it is generally a matter of
executing the exact same function independently a large number of times.

Here, we will use this random experiment to estimate Pi. The precision obtained
with this method is known to be low, and there are numerous methods that are far
more efficient and precise. But, this example will be sufficient for introducing the
parallel computing features of IPython.

High-Performance and Parallel Computing

[96]

First, we will write the Python code that executes the simulation. The sample
function generates n points in the cube and returns the number of points that lie
within the quarter disc.

In [1]: def sample(n):

 return (rand(n) ** 2 + rand(n) ** 2 <= 1).sum()

Since the n-long vector inside the parentheses is a mask array (that is, it contains
Boolean values), its sum is the number of True values, that is, the number of points
with an Euclidean distance from 0, smaller than 1.

Now, to estimate Pi, we just need to multiply sample(n) by 4/n:

In [2]: n = 1000000.

In [3]: 4 * sample(n) / n

Out[3]: 3.142184

Since the real value of Pi is 3.1415926535..., we see that there are two correct digits
(for this particular code execution) with one million points. We will now distribute
this task on several cores. Assuming several engines have been started, for example,
with ipcluster start, here is how we can parallelize the code:

In [4]: from IPython.parallel import Client

 rc = Client()

 v = rc[:]

 with v.sync_imports():

 from numpy.random import rand

In [5]: 4 * sum(v.map_sync(sample, [n] * len(v))) / (n * len(v))

Out[5]: 3.141353

Here, len(v) is the number of engines. We call the sample function len(v) times
with the same argument n. The sum of all results is the total number of red points,
and the total number of points is n * len(v). Finally, we obtain the estimation of Pi
with the same previous formula.

Using MPI with IPython
MPI is a famous standardized message passing system that is particularly efficient
for parallel computing. We will assume that an MPI implementation is installed
on your system (such as Open-MPI, http://www.open-mpi.org), as well as
the mpi4py package for using MPI from Python (http://mpi4py.scipy.org).
Information about how to install MPI can be found on these websites.

Chapter 5

[97]

MPI on Windows
If you are on Windows, a possibility is to install Microsoft's
MPI implementation available in the HPC Pack (http://
www.microsoft.com/en-us/download/details.
aspx?id=36045). Also, you may be interested in the Python
Tools for Visual Studio (http://pytools.codeplex.com),
which lets you turn Visual Studio into a Python IDE. It offers
native support for IPython, and has been specifically designed
for high-performance computing with MPI.

First, we need to create a specific IPython profile for MPI. Type in the following
command in a shell:

ipython profile create --parallel --profile=mpi

Next, edit the file IPYTHONDIR/profile_mpi/ipcluster_config.py (IPYTHONDIR is
generally ~/.ipython) and add the following line:

c.IPClusterEngines.engine_launcher_class = 'MPIEngineSetLauncher'

Now, to launch the cluster with four engines, type in the following command:

ipcluster start -n 4 --profile=mpi

To use MPI with IPython, we first need to write a function using MPI through
mpi4py. In this example, we will compute the sum of all integers between 1 and 16 in
parallel, across four cores. Let's write, in a file named psum.py, the following code:

from mpi4py import MPI
import numpy as np

This function will be executed on all processes.
def psum(a):
 # "a" only contains a subset of all integers.
 # They are summed locally on this process.
 locsum = np.sum(a)

 # We allocate a variable that will contain the final result,
 that
is the sum of all our integers.
 rcvBuf = np.array(0.0,'d')

 # We use a MPI reduce operation:
 # * locsum is combined from all processes
 # * these local sums are summed with the MPI.SUM operation
 # * the result (total sum) is distributed back to all processes
in

High-Performance and Parallel Computing

[98]

 # the rcvBuf variable
 MPI.COMM_WORLD.Allreduce([locsum, MPI.DOUBLE],
 [rcvBuf, MPI.DOUBLE],
 op=MPI.SUM)
 return rcvBuf

Finally, we can use this function interactively in IPython as follows:

In [1]: from IPython.parallel import Client

In [2]: c = Client(profile='mpi')

In [3]: view = c[:]

In [4]: view.activate() # enable magics

In [5]: view.run('psum.py') # the script is run on all processes

In [6]: view.scatter('a', np.arange(16)) # this array is scattered across
processes

In [7]: %px totalsum = psum(a) # psum is executed on all processes

Parallel execution on engines: [0, 1, 2, 3]

In [8]: view['totalsum']

Out[8]: [120.0, 120.0, 120.0, 120.0]

More details about how to use MPI with IPython can be found on the following
webpage from the official IPython documentation (where this example comes from):

http://ipython.org/ipython-doc/stable/parallel/parallel_mpi.html

Advanced parallel computing features
of IPython
We covered only the very basics of the parallel computing features available in
IPython. More advanced features include the following:

• Dynamic load balancing
• Pushing and pulling objects across engines
• Running engines on different computers, optionally using SSH tunnels
• Using IPython on an Amazon EC2 cluster with StarCluster
• Storing all requests and results in a database
• Managing task dependencies with a Directed Acyclic Graph (DAG)

These features are far beyond the scope of this book. Interested readers can find
details about all those features in the official IPython documentation.

Chapter 5

[99]

Using C in IPython with Cython
Distributing independent tasks across several cores is the easiest way to take
advantage of the parallel capabilities of modern computers, thereby reducing the total
execution time twofold or more. However, some algorithms cannot be easily split
into independent subtasks. In addition, it may happen that the algorithm itself is far
too slow in Python because it involves nested loops that cannot be vectorized. In this
situation, a very interesting option could be to code a small but critical section of the
code in C so as to considerably reduce the Python overhead. This solution does not
involve any parallel computing feature, but it still allows to considerably improve the
efficiency of a Python script. Additionally, nothing prevents using both techniques:
partial C compilation and parallel computing with IPython.

The Cython package allows the compiling of a portion of the Python code without
even converting it explicitly in C; it proposes an extended syntax in Python to call
C functions and to define C types. The code in question is, then, automatically
converted in C, compiled, and can then be used transparently from Python. In some
situations when only pure Python code is possible, and when vectorization with
NumPy is out of reach due to the particular nature of the algorithms, the speed
improvement can be drastic and can reach several orders of magnitude.

In this section, we will see how to use Cython interactively in IPython. We will also
look at an example of a pure Python function implementing a numerical algorithm,
which can be compiled with Cython without too much effort for an execution more
than 300 times faster.

Installing and configuring Cython
The Cython package is a bit more difficult to install than the other packages. The
reason is that using Cython means compiling C code, which obviously requires a C
compiler (for example the popular GNU C Compiler gcc). On Linux, gcc is already
available or easily installable with the package manager, for example with sudo
apt-get install build-essential on Ubuntu or Debian. On OS X, a possibility is
to install Apple XCode. On Windows, you can install MinGW (http://www.mingw.
org), which is an open-source distribution of gcc. Then, Cython can be installed as
the other packages (see Chapter 1, Getting started with IPython). More information can
be found at http://wiki.cython.org/Installing.

High-Performance and Parallel Computing

[100]

Configuring MinGW and Cython on Windows
On Windows, depending on the version of MinGW, error
messages may appear when compiling Cython code. To
fix this bug, you may need to open C:\Python27\Lib\
distutils\cygwinccompiler.py (or a similar path
depending on your specific configuration) and replace all
occurrences of -mno-cygwin with "" (empty string).
Also, make sure that C:\MinGW\bin is in the PATH
environment variable. Finally, you may need to edit
(or create) the file C:\Python27\Lib\distutils\
distutils.cfg and add the following lines of code:

[build]
compiler = mingw32

You can find more information at http://wiki.
cython.org/InstallingOnWindows.

Using Cython from IPython
With Cython, the code is generally written in a .pyx file, which is converted in C by
Cython. Then, the resulting C program is compiled by the C compiler into a .so file
(on Linux) or a .pyd file (on Windows), which can be normally imported in Python.

This process typically involves a distutils setup.py script which specifies the
files to be compiled and also the different compiler options. Because this step is not
particularly difficult, we will not cover it here. Rather, we will show how Cython can
be easily used from IPython. The advantage is that the Cython and C compilations
happen automatically under the hood and do not require a manual setup.py script.
The IPython notebook is particularly useful here, as it is far more convenient to write
multiline code in it than in the console.

Here we will show how to use the %%cython cell magic to execute Cython code from
IPython. The first step is to load the cythonmagic extension.

In [1]: %load_ext cythonmagic

Then, the %%cython cell magic allows to write Cython code that will be automatically
compiled. The functions defined in the cell become available in the interactive
session, and can be used normally from Python.

In [2]: %%cython

 def square(x):

 return x * x

Chapter 5

[101]

In [3]: square(10)

Out[3]: 100

Here, the call to square(10) involves the call to a compiled C function which
computes the square of the number.

Accelerating a pure Python algorithm with
Cython
Here, we will see how a pure Python algorithm involving nested loops can be
converted in Cython for an interesting 10-fold speed improvement. This algorithm
is the Sieve of Eratosthenes, a multi-millennial algorithm for finding all the prime
integers less than a fixed number. This very classic algorithm consists of starting
from all integers between 2 and n, and progressively removing the multiples of the
prime numbers found so far. At the end of the algorithm, only the prime numbers
remain. We will implement this algorithm in Python and show how it can be
converted in Cython.

Pure Python version
The algorithm is a dozen-lines long in pure Python. This implementation could be
improved and shortened in many ways (a one-liner algorithm exists!), but it will be
sufficient for this example as we will mostly be interested in the relative execution
times of the pure Python and Cython versions.

In [1]: def primes1(n):
 primes = [False, False] + [True] * (n - 2)
 i = 2
 # The exact code from here to the end of the function
 # will be referred as #SIEVE# in the next examples.
 while i < n:
 # we do not deal with composite numbers
 if not primes[i]:
 i += 1
 continue
 k = i * i
 # mark multiples of i as composite numbers
 while k < n:
 primes[k] = False
 k += i
 i += 1
 return [i for i in xrange(2, n) if primes[i]]
In [2]: primes(20)
Out[2]: [2, 3, 5, 7, 11, 13, 17, 19]

High-Performance and Parallel Computing

[102]

The primes variable contains Boolean values indicating whether the associated index
is prime or not. We initialize it with only 0 and 1 being composite (non-prime), using
the definition that a positive integer is prime if and only if it has exactly two positive
divisors. Then, at each iteration over i, we will mark more and more numbers as
composite numbers, without changing the prime ones. Every i represents a prime
number, and the iteration over k allows to mark all multiples of i as composite
numbers. At the end, we return the list of indices that are True, that is, all prime
numbers less than n.

Now, let's take a look at the execution time of this function:

In [3]: n = 10000

In [4]: %timeit primes1(n)

100 loops, best of 3: 5.54 ms per loop

We will try to speed up this function using Cython.

Naïve Cython conversion
As a first attempt, we will simply use the exact same code in Cython.

In [5]: %load_ext cythonmagic
In [6]: %%cython
 def primes2(n):
 primes = [False, False] + [True] * (n - 2)
 i = 2
 #SIEVE#: see full code above
In [7]: timeit primes2(n)
100 loops, best of 3: 3.25 ms per loop

We achieve 70 percent speed improvement here just by adding %%cython at the top
of the cell, but we can do much better by giving type information to Cython.

Adding C types
The speed improvement in the previous example was modest because the local
variables are dynamically-typed Python variables. It means that the Python
overhead due to its dynamic nature is still responsible for an important performance
discrepancy as compared to pure C code. We can improve the performance by
converting the Python variables into C variables with the cdef keyword.

In [8]: %%cython
 def primes3(int n):
 primes = [False, False] + [True] * (n - 2)
 cdef int i = 2
 cdef int k = 0
 #SIEVE#: see full code above

Chapter 5

[103]

There are three changes compared to the naïve version: the n argument is statically
declared as an integer, and the local variables i and k are now declared as C integer
variables. The speed improvement is, then, much more interesting:

In [9]: timeit primes3(n)

1000 loops, best of 3: 538 us per loop

This function is now 10 times faster than the pure Python version, just by using the
%%cython magic and a few type declarations. This result might even be improved
with more adequate data structures.

In general, knowing the portion of the code that would be advantageously converted
in Cython for a major speed improvement, requires some knowledge about the Python
internals and, more importantly, requires performing extensive profiling. Python
loops (especially nested loops), Python function calls, and high-level data structure
manipulations inside tight loops are classical targets for Cython optimizations.

Using NumPy and Cython
In this section, we will show how to integrate NumPy arrays with Cython code. We
will also see how calls to Python functions inside tight loops can be vastly optimized
by converting the Python functions into C functions.

Python version
Here, we will use an example of a stochastic process simulation, namely a Brownian
motion. This process describes the trajectory of a particle starting at x=0, and making
random steps of +dx or -dx at each discrete time step, with dx being a small constant.
This type of process appears frequently in finance, economy, physics, biology, and
so on.

This specific process can be simulated very efficiently with NumPy's cumsum() and
rand() functions. However, more complex processes may need to be simulated,
for example, some models require instantaneous jumps when the position reaches
a threshold. In these cases, vectorization is not an option and a manual loop is,
therefore, unavoidable.

In [1]: def step():
 return sign(rand(1) - .5)

 def sim1(n):
 x = zeros(n)
 dx = 1./n
 for i in xrange(n - 1):
 x[i+1] = x[i] + dx * step()
 return x

High-Performance and Parallel Computing

[104]

The step function returns a random +1 or -1 value. It uses NumPy's sign() and
rand() functions. In the sim1() function, the trajectory is first initialized as a
NumPy vector with zeros. Then, at each iteration, a new random step is added to the
trajectory. The then function returns the full trajectory. The following is an example
of a trajectory:

In [2]: plot(sim1(10000))

Simulation of a Brownian motion

Let's take a look to the execution time of this function.

In [3]: n = 10000

In [4]: timeit sim1(n)

1 loops, best of 3: 249 ms per loop

Cython version
For the Cython version, we will do two things. First, we will add C types for all
local variables as well as for the NumPy array containing the trajectory. Also,
we will convert the step() function to a pure C function that does not call any
NumPy function. We will rather call pure C functions that are defined in the C
standard library.

In [4]: %%cython
 import numpy as np
 cimport numpy as np
 DTYPE = np.double
 ctypedef np.double_t DTYPE_t

Chapter 5

[105]

 # We redefine step() as a pure C function, using only
 # the C standard library.
 from libc.stdlib cimport rand, RAND_MAX
 from libc.math cimport round

 cdef double step():
 return 2 * round(float(rand()) / RAND_MAX) - 1

 def sim2(int n):
 # Local variables should be defined as C variables.
 cdef int i
 cdef double dx = 1. / n
 cdef np.ndarray[DTYPE_t, ndim=1] x = np.zeros(n,
dtype=DTYPE)
 for i in range(n - 1):
 x[i+1] = x[i] + dx * step()
 return x

We first need to import the standard NumPy library as well as a special C library,
also called NumPy, which is part of the Cython package, with cimport. We define the
NumPy dtype double and the corresponding C dtype double_t with ctypedef. It
allows to define the exact type of the x array at compile-time rather than execution-
time, resulting in major speed improvements. The number of dimensions of x is also
specified inside the sim2() function. All local variables are defined as C variables
with C types.

The step() function has been entirely rewritten. It is now a pure C function (defined
with cdef). It uses the rand() function of the C standard library, which returns a
random number between 0 and RAND_MAX. The round() function of the math library
is also used to generate a random +1 or -1 value.

Let's check the execution time of the sim2() function:

In [5]: timeit sim2(n)

1000 loops, best of 3: 670 us per loop

The Cython version is 370 times faster than the Python version. The main reason
for this dramatic speed improvement is that the Cython version uses only pure C
code. All variables are C variables, and the calls to step, which previously required
costly calls to a Python function, now only involve calls to a pure C function, thereby
reducing considerably the Python overhead inside the loop.

High-Performance and Parallel Computing

[106]

More advanced options for accelerating
Python code
Cython can also be used to interface existing C code or libraries with Python, but we
won't cover this use case here.

Apart from Cython, there are other packages that accelerate Python code.
SciPy.weave (http://www.scipy.org/Weave) is a SciPy subpackage that allows
the inclusion of C/C++ code within Python code. Numba (http://numba.pydata.
org/) uses just-in-time LLVM compilation to accelerate a pure Python code
considerably by compiling it dynamically and transparently. It integrates nicely
with NumPy arrays. Its installation requires llvmpy and meta.

Related projects include Theano (http://deeplearning.net/software/theano/),
which allows to define, optimize, and evaluate mathematical expressions on arrays
very efficiently by compiling them transparently on the CPU or on the graphics
card. Similarly, Numexpr (https://code.google.com/p/numexpr/) can compile
array expressions and take advantage of vectorized CPU instructions and
multi-core processors.

Blaze (http://blaze.pydata.org/) is a project that is still in early development
at the time of writing, and aims at combining all these dynamic compilation
technologies together into a unified framework. It will also extend the notion of
multidimensional array by allowing type and shape heterogeneity, missing values,
labeled dimensions (such as in Pandas), and so on. Being developed by the creators
of NumPy, it is likely to be a central project in the Python computing community in
the near future.

Finally, PyOpenCL (http://mathema.tician.de/software/pyopencl) and
PyCUDA (http://mathema.tician.de/software/pycuda) are Python wrappers
to OpenCL and CUDA. These libraries implement C-like, low-level languages that
can be compiled on modern graphics cards for taking advantage of their massively
parallel architecture. Indeed, graphics cards contain hundreds of specialized cores
that can process a function very efficiently on a large number of elements (Single
Instruction Multiple Data (SIMD) paradigm). The speed improvement can be
more than one order of magnitude faster compared to pure C code. OpenCL is
an open standard language, whereas CUDA is a proprietary language owned by
Nvidia Corporation. CUDA code runs on Nvidia cards only, whereas OpenCL is
supported by most graphics cards as well as most CPUs. In the latter case, the same
code is compiled on the CPU and takes advantage of multi-core processors and
vectorized instructions.

Chapter 5

[107]

Summary
In this chapter, we introduced two approaches to accelerate Python code: bypassing
the Python overhead by converting the Python code into lower-level C code, or
taking advantage of multi-core processors by distributing Python code across
multiple computing units. Both approaches can even be used simultaneously.
IPython considerably simplifies these techniques. Parallel computing and Cython
can be used without IPython, but they require more boilerplate code.

In the next chapter, we will explore some advanced options to customize IPython.

Customizing IPython
IPython can be customized and extended for advanced uses. At the end of this
chapter, you will know:

• How to create and use custom profiles
• How to use IPython extensions for advanced purposes
• How to use different languages in the notebook
• How to create your own extensions
• How to use rich representations in the frontend
• How to embed IPython in your Python code

IPython profiles
A profile is specific to a user on the local computer, and contains IPython preferences
as well as the history, temporary and log files, and so on. By default, there is a single
profile called the default profile. To create it manually, we can run the following
command in the system shell:

ipython profile create

To specify a profile's name, we can use ipython profile create name.

Customizing IPython

[110]

Profile locations
Profiles are typically stored in ~/.ipython or ~/.config/ipython, where ~ is the
current user's home directory. This directory is typically called the IPython directory
and is sometimes referred to as IPYTHONDIR. To find the exact location of the profiles,
we can run the ipython locate command for the IPython configuration directory,
or ipython locate profile default for a specific profile directory, where
default is the profile's name. A profile name is typically stored in a folder named
profile_name within the IPython configuration folder.

By default, IPython starts with the default profile. To specify a different profile when
running IPython, we can use the --profile command-line argument, for example:

ipython --profile=name

The IPython configuration files
In each profile, there is a special configuration file named ipython_config.py.
This Python script is a placeholder for specifying various options. It contains a full
template containing most possible options and it is fully documented, so that it
should be straightforward to make changes.

For example, to enable the pylab mode automatically in a profile, as well as
the qt event loop integration system, the following lines should appear in the
corresponding ipython_config.py file:

Enable GUI event loop integration ('qt', 'wx', 'gtk', 'glut',
'pyglet','osx').
c.InteractiveShellApp.gui = 'qt'

Pre-load matplotlib and numpy for interactive use, selecting a
particular matplotlib backend and loop integration.
c.InteractiveShellApp.pylab = 'qt'

If true, an 'import *' is done from numpy and pylab, when using #
pylab
c.InteractiveShellApp.pylab_import_all = True

Chapter 6

[111]

Loading scripts when IPython starts
You can have some Python scripts automatically loaded whenever IPython starts,
just put them in IPYTHONDIR/startup/. This can be useful if you want to load
modules or execute some scripts every time IPython starts.

IPython extensions
IPython extensions allow to implement entirely customized behaviors in IPython.
They can be loaded manually with a simple magic command, or automatically when
IPython starts.

Several extensions are natively included in IPython. They essentially allow to execute
non-Python code from IPython. For example, the cythonmagic extension provides
the %%cython cell magic for writing Cython code directly in IPython, as we saw in
Chapter 5, High Performance and Parallel Computing. Similar built-in extensions include
octavemagic and rmagic for executing Octave and R code in IPython. They are
particularly useful in the notebook.

Third-party modules can also implement their own extensions, as we will see in
this section with line-by-line profiling modules. Finally, we will show how to create
new extensions.

Example – line-by-line profiling
The line_profiler and memory_profiler packages are line-by-line profilers that
provide very precise details about the exact portions of the code that take too long
or use too much memory. They provide magic commands that can be manually
integrated with IPython. First, we need to install these packages, for example, using
easy_install, pip, or Christoph Gohlke's web page for Windows users. The psutil
package is required on Windows, and can be found on the same web page.

To activate the magic commands implemented in these two packages, we need to
edit the IPython configuration file and add the following lines:

c.TerminalIPythonApp.extensions = [
 'line_profiler',
 'memory_profiler'
]

Then, the lprun, mprun, and memit magic commands are available. The line-by-line
profilers work best when the function to profile is defined in a file rather than in the
interactive session, because the profilers are then able to show the contents of each
line in the profiling report.

Customizing IPython

[112]

As an example, let's create a script, myscript.py, using the following code:

import numpy as np
import matplotlib.pyplot as plt
def myfun():
 dx = np.random.randn(1000, 10000)
 x = np.sum(dx, axis=0)
 plt.hist(x, bins=np.linspace(-100, 100, 20))

This function simulates 10,000 random walks (Brownian motions) with 1,000 steps
and plots a histogram of the particle position at the end of the simulation.

Now, we are going to load this function in IPython and profile it. The %lprun magic
command accepts a Python statement as well as a list of functions to profile line by
line, specified with a -f option:

In [1]: from myscript import myfun

In [2]: lprun -f myfun myfun()

Timer unit: 5.13284e-07 s

File: myscript.py
Function: myfun at line 3
Total time: 1.26848 s

Line # Hits Time Per Hit % Time Line Contents
==
 3 def myfun():
 4 1 1783801 1783801.0 72.2 dx =
np.random.randn(1000, 1000)
 5 1 262352 262352.0 10.6 x =
np.cumsum(dx, axis=0)
 6 1 425142 425142.0 17.2 t =
np.arange(1000)
 7

np.histogram2d(t, x)

We can observe that most of the execution time happens in the creation of
the dx array.

The %mprun magic command can be used similarly for memory profiling.

These line-by-line profilers are particularly useful when profiling complex Python
applications. It is particularly convenient to do that interactively from IPython with
those simple magic commands.

Chapter 6

[113]

Creating new extensions
To create an extension, we need to create a Python module in a directory, which
is in the Python path. A possibility is to put it in the current directory, or in
IPYTHONDIR/extensions/.

An extension implements a load_ipython_extension(ipython) function, which
takes the current InteractiveShell instance as an argument (and possibly
unload_ipython_extension(ipython), which is called when the extension is
unloaded). This instance can be used to register new magic commands, access the
user namespace, execute code, and so on. This loading function is called when the
extension is loaded, which happens when the %load_ext or %reload_ext magic
command is executed. To automatically load a module when IPython starts, we
need to add the module name to the c.TerminalIPythonApp.extensions list in the
IPython configuration file.

The InteractiveShell instance
The InteractiveShell instance represents the active
IPython interpreter. Useful methods and attributes include
register_magics(), to create new magic commands,
and user_ns, to access the user namespace. You can
explore all the instance's attributes interactively from
IPython with tab completion. For that, you need to execute
the following command to get the current instance:
ip = get_ipython()

Example – executing C++ code in IPython
In this example, we will create a new extension to execute C++ code directly from
IPython. This is only a pedagogical example, and in a real-world project, it might be
a better idea to use Cython or SciPy.weave.

The extension defines a new cell magic named cpp. The idea is that one will be able
to write C++ code directly in the cell, and it will be automatically compiled and
executed. The cell output will contain the standard output of the code. Here is an
explanation of how this extension works:

• We create a new class derived from IPython.core.magic.Magics
• In this class, we create a new method with a cell_magic decorator: it will

implement the cpp cell magic
• This method accepts the cell's code as input, writes this C++ code in a

temporary file, and calls the g++ compiler to create an executable

Customizing IPython

[114]

• The method then calls the newly created executable and returns the output
• In the load_ipython_extension function, we register this magic class

The following code should be written in a cppmagic.py script:

import IPython.core.magic as ipym

@ipym.magics_class
class CppMagics(ipym.Magics):
 @ipym.cell_magic
 def cpp(self, line, cell=None):
 """Compile, execute C++ code, and return the standard
output."""
 # Define the source and executable filenames.
 source_filename = 'temp.cpp'
 program_filename = 'temp.exe'
 # Write the code contained in the cell to the C++ file.
 with open(source_filename, 'w') as f:
 f.write(cell)
 # Compile the C++ code into an executable.
 compile = self.shell.getoutput("g++ {0:s} -o {1:s}".format(
 source_filename, program_filename))
 # Execute the executable and return the output.
 output = self.shell.getoutput(program_filename)
 return output

def load_ipython_extension(ipython):
 ipython.register_magics(CppMagics)

The following screenshot shows how this extension can be conveniently used to
write C++ code in the IPython notebook:

Executing C++ code in the IPython notebook

This code works on Windows and can be easily adapted to Unix systems.

Chapter 6

[115]

Improving this example
This example could be improved in many ways: temporary
files could have unique names and could be stored in a special
temporary directory, compilation errors could be nicely handled
and redirected to IPython, and so on. The interested reader can
take a look at the built-in Cython, Octave, and R magic extensions
in IPython/extensions/ that are somewhat similar to this
example. More generally, the same techniques can be used to run
non-Python code in IPython. It may even be possible to share
variables between Python and the other languages.

The IPython extensions are particularly powerful in the context of the notebook,
because they notably allow the implementation of arbitrarily complex behaviors to
the cells' code.

Extensions index
An index of IPython extensions created by IPython users can
be found at https://github.com/ipython/ipython/
wiki/Extensions-Index. If you have developed your
own extension, do not hesitate to add it here!

Rich representations in the frontend
The notebook and the Qt console can display richer representations of objects. Both
can display bitmap and SVG images, and the notebook also supports videos, HTML
code, and mathematical equations in LaTeX. It is particularly easy to display rich
objects with classes: one just needs to implement a method called _repr_*_ with *
being svg, png, jpeg, html, json, pretty, or latex. For instance, let's define a class,
Disc, with a SVG representation method:

In [1]: class Disc(object):

 def __init__(self, size, color= ared'):

 self.size = size

 self.color = color

 def _repr_svg_(self):

 return """<svg xmlns="http://www.w3.org/2000/svg"
version="1.1">

 <circle cx="{0:d}" cy="{0:d}" r="{0:d}"
fill="{1:s}" />

 </svg>""".format(self.size, self.color)

Customizing IPython

[116]

The constructor of this class accepts a radius size in pixels and a color as a string.
Then, when an instance of this class is directed on the standard output, the SVG
representation is automatically shown in the cell's output as shown in the
following screenshot:

SVG representation in the IPython notebook

Another way of displaying rich representations of objects is to use the IPython.
display module. You can interactively obtain the list of all supported
representations with tab completion. For example, the following screenshot shows
how LaTeX equations can be rendered in the notebook:

LaTeX equations in the IPython notebook

The rich display features of the notebook make it particularly adapted to the creation
of pedagogical contents, presentations, blog posts, books, and so on, as notebooks
can be exported in formats such as HTML or PDF.

Yet richer interactive representations will probably be possible in a future
version of IPython with the support of custom JavaScript extensions and
widgets in the notebook.

Chapter 6

[117]

Embedding IPython
It is possible to launch IPython from any Python script, even when the standard
Python interpreter runs the script. It can be useful in some occasions when you need
to interact with a complex Python program at some point, and where using the
IPython interpreter for the whole program is not possible or unwanted. For example,
in a scientific computing context, you may want to pause the program after some
automatic, computationally-intensive algorithms to look at the data, draw some
plots, and so on, before resuming the program. Another possible use case is the
integration of a widget in a graphical user interface to let the user interact with the
Python environment through the IPython command-line interface.

The easiest way to integrate IPython in a program is to call IPython.embed() at any
point in your Python program (after import IPython). You can also specify custom
options, including the input/output templates in the command-line interface, the
startup/exit messages, and so on. You can find more information at http://ipython.
org/ipython-doc/stable/interactive/reference.html#embedding-ipython.

Final words
At this point, you should be convinced about the great power and flexibility of
IPython. Not only does IPython natively offer an impressive number of useful features,
it also lets you extend and customize it in virtually any aspect. It should be noted,
however, that this project is still evolving. Although it was created more than 10 years
ago, Version 1.0 has still not been released at the time of writing. The core features
of IPython are now quite stable and mature. The notebook, which is the most recent
feature, is expected to evolve importantly in the coming years. The possibility to create
custom interactive widgets in the notebook is planned and is likely to be a major
feature of the whole project. More information about the upcoming developments can
be found at https://github.com/ipython/ipython/wiki/Roadmap:-IPython and
http://ipython.org/_static/sloangrant/sloan-grant.html.

Finally, IPython is an active open source project, meaning that anyone is welcome to
contribute. Contributing can be as simple as reporting or fixing a bug, but it is always
highly useful and greatly appreciated! Relatedly, anyone is welcome to request some
help online, in respect of the common etiquette rules, of course. The developers and
the most active users are always willing to help. Here are some useful links:

• GitHub project page: https://github.com/ipython/ipython
• Wiki: https://github.com/ipython/ipython/wiki
• User mailing list: http://mail.scipy.org/mailman/listinfo/ipython-

user

• Chat room: https://www.hipchat.com/ghSp7E1uY

Customizing IPython

[118]

Summary
In this chapter we described how IPython can be customized and extended, notably
through extensions. Non-Python languages can also be called from IPython, which
is particularly convenient in the notebook where any code can be copied and
pasted in a cell and transparently compiled and evaluated in the current Python
namespace. The notebook also supports rich display features and, soon, interactive
widgets, making it the most advanced tool to date for interactive programming and
computing in Python.

Index
Symbols
__dir__ method 31
%debug command 17
%edit command 29
%gui magic command 85
%history magic command 26
-i option 27
%lsmagic command 14
%mprun magic command 112
! prefix 32
%pylab magic command 18
%run command 16
%timeit command 17

A
a command 32
advanced graphical features

3D plots 83
animations 84
image processing 77
maps 81
visualization packages 84

addWidget method 86
advanced mathematical processing

about 65
Linear algebra 65
numerical integrators 65
numerical optimization 65
signal processing 65

argmax functions 64
arrays

computation 63, 64
creating 50
creating, from scratch element by

element 50
creating from scratch, predefined

templates used 51, 52
from random values 52
indexing possibilities 59
loading 53
loading, from buffer 53
loading, from external file 53
loading, from native Python object 53
manipulating 60
Pandas, using 54, 55
selecting, Numpy used 58
selecting, Pandas used 57
working with 56

arrays manipulation
broadcasting 62
concatenating 61
permuting 63
repeating 61
reshaping 60

B
binary installers

binary packages 10
Linux 10
OSX 10
Windows 9

binary packages 10
Blaze 106
blocking mode 93
Boolean indexing 57

C
C

using, in IPython with Cython 99

[120]

c command 32
cell magics 38
center function 34
Chaco 84
clicked method 86
cmd.exe shell 14
column-major order. See Fortan-order
C-order 46
CUDA 106
cumsum() function 103
Cython

about 89
C in IPython, using 99
configuring 99
installing 99
NumPy 103
pure Python algorithm, accelerating 101
using, from IPython 100

D
data type 46
default profile 109
development versions

installing 12
diff function 65
draw_networkx function 40
dynamic introspection

source code introspection 31, 32
table completion 29
table completion, NetworkX 30
table completion, with custom classes 31

E
Enter key 19
extended Python console

about 25
code, exporting to file 29
code, importing in IPython 27, 28
command execution time, controlling 33
dynamic introspection 29
history 26
interactive debugger, using 32
script, profiling 34, 35

extractall method 23

F
fancy indexing 60
Fortran-order 46
fromarray function 77
frontend representation 115, 116

G
Galry 84
get() method 94
GIL 90
GitHub project page 117
Global Interpreter Lock. See GIL
Graphical User Interface. See GUI
GUI

about 67, 84, 85
Hello World example 85-87
IPython, setting up 85

H
head -n5 {files[0]} command 25
HelloWorld widget 86
histogram2d function 81
H key 19

I
images

color quantization 79
loading 77
PIL, displaying 79
processing 77
showing 78

imread function 77
imsave function 80
imshow function 78
interactive task parallelization

about 90
advanced parallel computing features 98
Monte Carlo simulations 95
MPI, using with IPython 96, 97
multiple cores tasks, distributing 91
parallel computing, in Python 90, 91

IPython
about 43
advanced parallel computing features 98

[121]

customizing 19
Cython, using from 100
embedding 117
essentials 13
extended shell 21
filesystem, navigating through 22, 23
installing 6
MPI, using 96
overview 5
system shell, accessing 24, 25

IPython directory 110
IPython.display module 116
IPython essentials

%debug command 17
history, using 15
interactive computing, Pylab used 18
IPython console, running 13, 14
IPython, customizing 19
IPython Notebook, using 19
%run command, using 16
tab completion 15, 16
%timeit command 17
using as system shell 14, 15

IPython extensions
about 111
C++ code, executing, in IPython 113-115
line-by-line profiling 111, 112
new extensions, creating 113

IPython installation
about 6
all-in-one distribution, installing 7
binary installers 9
development versions, installing 12
packages 7
packages websites 8, 9
prerequisites 6
Python packaging system 11

IPython notebook
about 35, 36
cell magics 38
cells, working with 37, 38
dashboard 36, 37
graph plotting 40
installation 36
managing 39
multimedia 39
rich text editing 39

IPython Notebook
using 19

IPython profiles
about 109
configuration files 110
locations 110
script, preloading 111

IPython Qt console 36
IPython setup, for interactive visualization

interative navigation 69
Matplotlib, using 68
Matplotlib, using in notebook 69

K
kmeans function 80

L
Linear algebra 65
line-by-line profiler

using 35
Linux 10
ListedColormap function 80
load balancing 91
locate function 64

M
Markdown 39
Matplotlib 43

about 68
advanced graphical features 76
customizing 73
IPython, setting up 68
plot customization 72
standard plots 69

MaxMind 54
Mayavi 84
Message Passing Interface. See MPI
MPI 90
mpi4py package 96
mplot3d 83
multidimensional array 45
multiple cores tasks

Client instance, creating 92
distributing 91
engines, starting 91

[122]

launching asynchronously 91
launching synchronously 91
parallel magic, using 92, 93
parallel map 93

multiprocessing module 90

N
n command 32
non-blocking mode 93
notebook dashboard 36
Numba 106
numerical optimization 65
Numexpr 106
NumPy 43
NumPy arrays

integrating, withCython 103
NumPy arrays, integrating withCython

Cython version 104, 105
python version 103

O
OpenCL 106
Open-MPI 96
optional dependencies, IPython

pygments 12
pyzmq 12
readline 12
tornado 12

OS X 10

P
packages website 8
parallel map

about 93
asynchronous map 94
Monte Carlo simulations 95, 96
synchronous map 93, 94
view, creating 93

p command 32
plot customization

axes 74
colors 73
grid 74
IPython, interacting with 75
legends 74

multiple plots, drawing 76
styles 73

plot function 74
plot_surface function 83
population array 58
pure Python algorithm

accelerating, with Cython 101
C types, adding 102
naïve Cython conversion 102
pure Python version 101, 102

PyCUDA 106
pylab mode 110
PyOpenCL 106
PyOpenGL 84
PyPI 9
PyQt 9
PyQtGraph 84
PyQwt 84
Python 2.x 6
Python 3.x 6
Python code acceleration options

Blaze 106
Numba 106
Numexpr 106
PyCUDA 106
PyOpenCL 106
Theano 106

Python Imaging Library (PIL) 8
Python Package Index. See PyPI
Python packaging system

optional dependencies 12
using 11

Q
QMessageBox widget 86
QVBoxLayout widget 86

R
radius method 30
rand() function 103, 105
r command 32
repeat functions 61
round() function 105
row-major order. See C-order

[123]

S
SciKits packages 65
s command 32
setText method 86
Sieve of Eratosthenes 101
Signal processing 65
sim1() function 104
SIMD 48, 106
Single Instruction Multiple Data. See SIMD
split functions 62
standard plots

bar graphs 72
curves 69, 70
scatter plots 71

step() function 104, 105
stochastic process simulation 103
stride 47
subplot function 76
sync_imports() method 93
system shell

accessing, from IPython 24, 25

T
tab completion 16
Tab key 15
Theano 106
transpose function 63

U
u/d command 32
User mailing list 117

V
vectorization 89
vectorized computations

about 44
array 45-48
example reimplementation, arrays

used 48, 49
Python loops computation example 44, 45

visualization packages
Chaco 84
Galry 84
Mayavi 84
PyOpenGL 84
PyQtGraph 84
PyQwt 84
Visvis 84

Visvis 84
v.map_sync() method 94

W
WebSocket protocol 36
Wiki 117
Windows 9

Thank you for buying
Learning IPython for Interactive

Computing and Data Visualization

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Spring Python 1.1
ISBN: 978-1-84951-066-0 Paperback: 264 pages

Create powerful and versatile Spring Python
applications using pragmatic libraries and
useful abstractions

1. Maximize the use of Spring features in
Python and develop impressive Spring
Python applications

2. Explore the versatility of Spring Python
by integrating it with frameworks, libraries,
and tools

3. Discover the non-intrusive Spring way of
wiring together Python components

4. Packed with hands-on-examples, case studies,
and clear explanations for better understanding

Python Geospatial Development
ISBN: 978-1-84951-154-4 Paperback: 508 pages

Build a complete and sophisticated mapping
application from scratch using Python tools for
GIS development

1. Build applications for GIS development
using Python

2. Analyze and visualize Geo-Spatial data

3. Comprehensive coverage of key GIS concepts

4. Recommended best practices for storing spatial
data in a database

5. Draw maps, place data points onto a map,
and interact with maps

Please check www.PacktPub.com for information on our titles

Python Text Processing with
NLTK 2.0 Cookbook
ISBN: 978-1-84951-360-9 Paperback: 272 pages

Over 80 practical recipes for using Python's NLTK
suite of libraries to maximize your Natural Language
Processing capabilities

1. Quickly get to grips with Natural Language
Processing – with Text Analysis, Text Mining,
and beyond

2. Learn how machines and crawlers interpret and
process natural languages

3. Easily work with huge amounts of data and
learn how to handle distributed processing

4. Part of Packt's Cookbook series: Each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible

Instant Django 1.5 Application
Development Starter [Instant]
ISBN: 978-1-78216-356-5 Paperback: 78 pages

Jump into Django with this hands-on guide to
practical web application development with Python

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Work with the database API to create a
data-driven app

3. Learn Django by creating a practical web
application

4. Get started with Django's powerful and
flexible template system

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with IPython
	Installing IPython and the recommended packages
	Prerequisites for IPython
	Installing an all-in-one distribution
	Installing the packages one by one
	Packages websites
	Getting binary installers
	Using the Python packaging system

	Installing the development versions

	Ten IPython essentials
	Running the IPython console
	Using IPython as a system shell
	Using the history
	Tab completion
	Executing a script with the %run command
	Quick benchmarking with the %timeit command
	Quick debugging with the %debug command
	Interactive computing with Pylab
	Using the IPython Notebook
	Customizing IPython

	Summary

	Chapter 2: Interactive Work with IPython
	The extended shell
	Navigating through the filesystem
	Accessing the system shell from IPython

	The extended Python console
	Exploring the history
	Import/export of Python code
	Importing code in IPython
	Exporting code to a file

	Dynamic introspection
	Tab completion
	Source code introspection

	Using the interactive debugger
	Interactive benchmarking and profiling
	Controlling the execution time of a command
	Profiling a script

	Using the IPython notebook
	Installation
	The notebook dashboard
	Working with cells
	Cell magics
	Managing notebooks
	Multimedia and rich text editing
	Graph plotting

	Summary

	Chapter 3: Numerical Computing
with IPython
	A primer to vector computing
	An example of computation with Python loops
	What an array is
	Reimplementing the example with arrays

	Creating and loading arrays
	Creating arrays
	From scratch, element by element
	From scratch, using predefined templates
	From random values

	Loading arrays
	From a native Python object
	From a buffer or an external file
	Using Pandas

	Working with arrays
	Selection
	Using Pandas
	Using NumPy
	More indexing possibilities

	Manipulation
	Reshaping
	Repeating and concatenating
	Broadcasting
	Permuting

	Computation

	Advanced mathematical processing
	Summary

	Chapter 4: Interactive Plotting and Graphical Interfaces
	Figures with Matplotlib
	Setting up IPython for interactive visualization
	Using Matplotlib
	Interactive navigation
	Matplotlib in the IPython notebook

	Standard plots
	Curves
	Scatter plots
	Bar graphs

	Plot customization
	Styles and colors
	Grid, axes, and legends
	Interaction from IPython
	Drawing multiple plots

	Advanced figures and graphics
	Image processing
	Loading images
	Showing images
	Using PIL
	Advanced image processing – color quantization

	Maps
	3D plots
	Animations
	Other visualization packages

	Graphical User Interfaces (GUI)
	Setting up IPython for interactive GUIs
	A "Hello World" example

	Summary

	Chapter 5: High-Performance and Parallel Computing
	Interactive task parallelization
	Parallel computing in Python
	Distributing tasks on multiple cores
	Starting the engines
	Creating a Client instance
	Using the parallel magic
	Parallel map

	A practical example – Monte Carlo simulations
	Using MPI with IPython
	Advanced parallel computing features
of IPython

	Using C in IPython with Cython
	Installing and configuring Cython
	Using Cython from IPython
	Accelerating a pure Python algorithm with Cython
	Pure Python version
	Naïve Cython conversion
	Adding C types

	Using NumPy and Cython
	Python version
	Cython version

	More advanced options for accelerating Python code

	Summary

	Chapter 6: Customizing IPython
	IPython profiles
	Profile locations
	The IPython configuration files
	Loading scripts when IPython starts

	IPython extensions
	Example – line-by-line profiling
	Creating new extensions
	Example – executing C++ code in IPython

	Rich representations in the frontend
	Embedding IPython
	Final words
	Summary

	Index

