


Praise for Natural Language Processing with Transformers

Pretrained transformer language models have taken the NLP world by
storm, while libraries such as  Transformers have made them much
easier to use. Who better to teach you how to leverage the latest
breakthroughs in NLP than the creators of said library? Natural
Language Processing with Transformers is a tour de force, reflecting the
deep subject matter expertise of its authors in both engineering and
research. It is the rare book that offers both substantial breadth and
depth of insight and deftly mixes research advances with real-world
applications in an accessible way. The book gives informed coverage of
the most important methods and applications in current NLP, from
multilingual to efficient models and from question answering to text
generation. Each chapter provides a nuanced overview grounded in rich
code examples that highlights best practices as well as practical
considerations and enables you to put research-focused models to
impactful real-world use. Whether you’re new to NLP or a veteran, this
book will improve your understanding and fast-track your development
and deployment of state-of-the-art models.

—Sebastian Ruder, Google DeepMind

Transformers have changed how we do NLP, and Hugging Face has
pioneered how we use transformers in product and research. Lewis
Tunstall, Leandro von Werra, and Thomas Wolf from Hugging Face have
written a timely volume providing a convenient and hands-on
introduction to this critical topic. The book offers a solid conceptual
grounding of transformer mechanics, a tour of the transformer
menagerie, applications of transformers, and practical issues in training
and bringing transformers to production. Having read chapters in this
book, with the depth of its content and lucid presentation, I am confident
that this will be the number one resource for anyone interested in
learning transformers, particularly for natural language processing.

—Delip Rao, Author of Natural Language Processing and
Deep Learning with PyTorch



Complexity made simple. This is a rare and precious book about NLP,
transformers, and the growing ecosystem around them, Hugging Face.
Whether these are still buzzwords to you or you already have a solid
grasp of it all, the authors will navigate you with humor, scientific rigor,
and plenty of code examples into the deepest secrets of the coolest
technology around. From “off-the-shelf pretrained” to “from-scratch
custom” models, and from performance to missing labels issues, the
authors address practically every real-life struggle of a ML engineer and
provide state-of-the-art solutions, making this book destined to dictate
the standards in the field for years to come.

—Luca Perrozzi, PhD, Data Science and Machine
Learning Associate Manager at Accenture
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Foreword
A miracle is taking place as you read these lines: the squiggles on this page
are transforming into words and concepts and emotions as they navigate
their way through your cortex. My thoughts from November 2021 have
now successfully invaded your brain. If they manage to catch your attention
and survive long enough in this harsh and highly competitive environment,
they may have a chance to reproduce again as you share these thoughts with
others. Thanks to language, thoughts have become airborne and highly
contagious brain germs—and no vaccine is coming.

Luckily, most brain germs are harmless,  and a few are wonderfully useful.
In fact, humanity’s brain germs constitute two of our most precious
treasures: knowledge and culture. Much as we can’t digest properly without
healthy gut bacteria, we cannot think properly without healthy brain germs.
Most of your thoughts are not actually yours: they arose and grew and
evolved in many other brains before they infected you. So if we want to
build intelligent machines, we will need to find a way to infect them too.

The good news is that another miracle has been unfolding over the last few
years: several breakthroughs in deep learning have given birth to powerful
language models. Since you are reading this book, you have probably seen
some astonishing demos of these language models, such as GPT-3, which
given a short prompt such as “a frog meets a crocodile” can write a whole
story. Although it’s not quite Shakespeare yet, it’s sometimes hard to
believe that these texts were written by an artificial neural network. In fact,
GitHub’s Copilot system is helping me write these lines: you’ll never know
how much I really wrote.

The revolution goes far beyond text generation. It encompasses the whole
realm of natural language processing (NLP), from text classification to
summarization, translation, question answering, chatbots, natural language
understanding (NLU), and more. Wherever there’s language, speech or text,
there’s an application for NLP. You can already ask your phone for
tomorrow’s weather, or chat with a virtual help desk assistant to
troubleshoot a problem, or get meaningful results from search engines that
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seem to truly understand your query. But the technology is so new that the
best is probably yet to come.

Like most advances in science, this recent revolution in NLP rests upon the
hard work of hundreds of unsung heroes. But three key ingredients of its
success do stand out:

The transformer is a neural network architecture proposed in 2017
in a groundbreaking paper called “Attention Is All You Need”,
published by a team of Google researchers. In just a few years it
swept across the field, crushing previous architectures that were
typically based on recurrent neural networks (RNNs). The
Transformer architecture is excellent at capturing patterns in long
sequences of data and dealing with huge datasets—so much so that
its use is now extending well beyond NLP, for example to image
processing tasks.

In most projects, you won’t have access to a huge dataset to train a
model from scratch. Luckily, it’s often possible to download a
model that was pretrained on a generic dataset: all you need to do
then is fine-tune it on your own (much smaller) dataset. Pretraining
has been mainstream in image processing since the early 2010s,
but in NLP it was restricted to contextless word embeddings (i.e.,
dense vector representations of individual words). For example, the
word “bear” had the same pretrained embedding in “teddy bear”
and in “to bear.” Then, in 2018, several papers proposed full-blown
language models that could be pretrained and fine-tuned for a
variety of NLP tasks; this completely changed the game.

Model hubs like Hugging Face’s have also been a game-changer. In
the early days, pretrained models were just posted anywhere, so it
wasn’t easy to find what you needed. Murphy’s law guaranteed
that PyTorch users would only find TensorFlow models, and vice
versa. And when you did find a model, figuring out how to fine-
tune it wasn’t always easy. This is where Hugging Face’s
Transformers library comes in: it’s open source, it supports both
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TensorFlow and PyTorch, and it makes it easy to download a state-
of-the-art pretrained model from the Hugging Face Hub, configure
it for your task, fine-tune it on your dataset, and evaluate it. Use of
the library is growing quickly: in Q4 2021 it was used by over five
thousand organizations and was installed using pip over four
million times per month. Moreover, the library and its ecosystem
are expanding beyond NLP: image processing models are available
too. You can also download numerous datasets from the Hub to
train or evaluate your models.

So what more can you ask for? Well, this book! It was written by open
source developers at Hugging Face—including the creator of the
Transformers library!—and it shows: the breadth and depth of the
information you will find in these pages is astounding. It covers everything
from the Transformer architecture itself, to the Transformers library and the
entire ecosystem around it. I particularly appreciated the hands-on
approach: you can follow along in Jupyter notebooks, and all the code
examples are straight to the point and simple to understand. The authors
have extensive experience in training very large transformer models, and
they provide a wealth of tips and tricks for getting everything to work
efficiently. Last but not least, their writing style is direct and lively: it reads
like a novel.

In short, I thoroughly enjoyed this book, and I’m certain you will too.
Anyone interested in building products with state-of-the-art language-
processing features needs to read it. It’s packed to the brim with all the right
brain germs!

Aurélien Géron
November 2021, Auckland, NZ

1  For brain hygiene tips, see CGP Grey’s excellent video on memes.

https://youtu.be/rE3j_RHkqJc


Preface

Since their introduction in 2017, transformers have become the de facto
standard for tackling a wide range of natural language processing (NLP)
tasks in both academia and industry. Without noticing it, you probably
interacted with a transformer today: Google now uses BERT to enhance its
search engine by better understanding users’ search queries. Similarly, the
GPT family of models from OpenAI have repeatedly made headlines in
mainstream media for their ability to generate human-like text and images.
These transformers now power applications like GitHub’s Copilot, which,
as shown in Figure P-1, can convert a comment into source code that
automatically creates a neural network for you!

So what is it about transformers that changed the field almost overnight?
Like many great scientific breakthroughs, it was the synthesis of several
ideas, like attention, transfer learning, and scaling up neural networks, that
were percolating in the research community at the time.

But however useful it is, to gain traction in industry any fancy new method
needs tools to make it accessible. The  Transformers library and its
surrounding ecosystem answered that call by making it easy for
practitioners to use, train, and share models. This greatly accelerated the
adoption of transformers, and the library is now used by over five thousand
organizations. Throughout this book we’ll guide you on how to train and
optimize these models for practical applications.
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Figure P-1. An example from GitHub Copilot where, given a brief description of the task, the
application provides a suggestion for the entire class (everything following class is autogenerated)



Who Is This Book For?
This book is written for data scientists and machine learning engineers who
may have heard about the recent breakthroughs involving transformers, but
are lacking an in-depth guide to help them adapt these models to their own
use cases. The book is not meant to be an introduction to machine learning,
and we assume you are comfortable programming in Python and has a basic
understanding of deep learning frameworks like PyTorch and TensorFlow.
We also assume you have some practical experience with training models
on GPUs. Although the book focuses on the PyTorch API of 
Transformers, Chapter 2 shows you how to translate all the examples to
TensorFlow.

The following resources provide a good foundation for the topics covered in
this book. We assume your technical knowledge is roughly at their level:

Hands-On Machine Learning with Scikit-Learn and TensorFlow,
by Aurélien Géron (O’Reilly)

Deep Learning for Coders with fastai and PyTorch, by Jeremy
Howard and Sylvain Gugger (O’Reilly)

Natural Language Processing with PyTorch, by Delip Rao and
Brian McMahan (O’Reilly)

The Hugging Face Course, by the open source team at Hugging
Face

What You Will Learn
The goal of this book is to enable you to build your own language
applications. To that end, it focuses on practical use cases, and delves into
theory only where necessary. The style of the book is hands-on, and we
highly recommend you experiment by running the code examples yourself.

https://pytorch.org/
https://www.tensorflow.org/
https://oreil.ly/n3MaR


The book covers all the major applications of transformers in NLP by
having each chapter (with a few exceptions) dedicated to one task,
combined with a realistic use case and dataset. Each chapter also introduces
some additional concepts. Here’s a high-level overview of the tasks and
topics we’ll cover:

Chapter 1, Hello Transformers, introduces transformers and puts
them into context. It also provides an introduction to the Hugging
Face ecosystem.

Chapter 2, Text Classification, focuses on the task of sentiment
analysis (a common text classification problem) and introduces the
Trainer API.

Chapter 3, Transformer Anatomy, dives into the Transformer
architecture in more depth, to prepare you for the chapters that
follow.

Chapter 4, Multilingual Named Entity Recognition, focuses on the
task of identifying entities in texts in multiple languages (a token
classification problem).

Chapter 5, Text Generation, explores the ability of transformer
models to generate text, and introduces decoding strategies and
metrics.

Chapter 6, Summarization, digs into the complex sequence-to-
sequence task of text summarization and explores the metrics used
for this task.

Chapter 7, Question Answering, focuses on building a review-
based question answering system and introduces retrieval with
Haystack.

Chapter 8, Making Transformers Efficient in Production, focuses
on model performance. We’ll look at the task of intent detection (a
type of sequence classification problem) and explore techniques
such a knowledge distillation, quantization, and pruning.



Chapter 9, Dealing with Few to No Labels, looks at ways to
improve model performance in the absence of large amounts of
labeled data. We’ll build a GitHub issues tagger and explore
techniques such as zero-shot classification and data augmentation.

Chapter 10, Training Transformers from Scratch, shows you how
to build and train a model for autocompleting Python source code
from scratch. We’ll look at dataset streaming and large-scale
training, and build our own tokenizer.

Chapter 11, Future Directions, explores the challenges
transformers face and some of the exciting new directions that
research in this area is going into.

 Transformers offers several layers of abstraction for using and training
transformer models. We’ll start with the easy-to-use pipelines that allow us
to pass text examples through the models and investigate the predictions in
just a few lines of code. Then we’ll move on to tokenizers, model classes,
and the Trainer API, which allow us to train models for our own use cases.
Later, we’ll show you how to replace the Trainer with the  Accelerate
library, which gives us full control over the training loop and allows us to
train large-scale transformers entirely from scratch! Although each chapter
is mostly self-contained, the difficulty of the tasks increases in the later
chapters. For this reason, we recommend starting with Chapters 1 and 2,
before branching off into the topic of most interest.

Besides  Transformers and  Accelerate, we will also make extensive
use of ⁠ ⁠Datasets, which seamlessly integrates with other libraries. ⁠
⁠Datasets offers similar functionality for data processing as Pandas but is
designed from the ground up for tackling large datasets and machine
learning.

With these tools, you have everything you need to tackle almost any NLP
challenge!



Software and Hardware Requirements
Due to the hands-on approach of this book, we highly recommend that you
run the code examples while you read each chapter. Since we’re dealing
with transformers, you’ll need access to a computer with an NVIDIA GPU
to train these models. Fortunately, there are several free online options that
you can use, including:

Google Colaboratory

Kaggle Notebooks

Paperspace Gradient Notebooks

To run the examples, you’ll need to follow the installation guide that we
provide in the book’s GitHub repository. You can find this guide and the
code examples at https://github.com/nlp-with-transformers/notebooks.

TIP
We developed most of the chapters using NVIDIA Tesla P100 GPUs, which have 16GB
of memory. Some of the free platforms provide GPUs with less memory, so you may
need to reduce the batch size when training the models.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data

https://oreil.ly/jyXgA
https://oreil.ly/RnMP3
https://oreil.ly/mZEKy
https://github.com/nlp-with-transformers/notebooks


types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/nlp-with-transformers/notebooks.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re

https://github.com/nlp-with-transformers/notebooks
mailto:bookquestions@oreilly.com


reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Natural Language Processing with Transformers by Lewis Tunstall,
Leandro von Werra, and Thomas Wolf (O’Reilly). Copyright 2022 Lewis
Tunstall, Leandro von Werra, and Thomas Wolf, 978-1-098-10324-8.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/


How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/nlp-with-
transformers.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Writing a book about one of the fastest-moving fields in machine learning
would not have been possible without the help of many people. We thank
the wonderful O’Reilly team, and especially Melissa Potter, Rebecca

https://oreil.ly/nlp-with-transformers
https://oreil.ly/nlp-with-transformers
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia


Novack, and Katherine Tozer for their support and advice. The book has
also benefited from amazing reviewers who spent countless hours to
provide us with invaluable feedback. We are especially grateful to Luca
Perozzi, Hamel Husain, Shabie Iqbal, Umberto Lupo, Malte Pietsch, Timo
Möller, and Aurélien Géron for their detailed reviews. We thank Branden
Chan at deepset for his help with extending the Haystack library to support
the use case in Chapter 7. The beautiful illustrations in this book are due to
the amazing Christa Lanz—thank you for making this book extra special.
We were also fortunate enough to have the support of the whole Hugging
Face team. Many thanks to Quentin Lhoest for answering countless
questions on  Datasets, to Lysandre Debut for help on everything related
to the Hugging Face Hub, Sylvain Gugger for his help with  Accelerate,
and Joe Davison for his inspiration for Chapter 9 with regard to zero-shot
learning. We also thank Sidd Karamcheti and the whole Mistral team for
adding stability tweaks for GPT-2 to make Chapter 10 possible. This book
was written entirely in Jupyter Notebooks, and we thank Jeremy Howard
and Sylvain Gugger for creating delightful tools like fastdoc that made this
possible.

Lewis
To Sofia, thank you for being a constant source of support and
encouragement—without both, this book would not exist. After a long
stretch of writing, we can finally enjoy our weekends again!

Leandro
Thank you Janine, for your patience and encouraging support during this
long year with many late nights and busy weekends.

Thomas
I would like to thank first and foremost Lewis and Leandro for coming up
with the idea of this book and pushing strongly to produce it in such a
beautiful and accessible format. I would also like to thank all the Hugging

https://www.deepset.ai/
https://christalanz.ch/
https://oreil.ly/aOYLt
https://oreil.ly/yVCfT


Face team for believing in the mission of AI as a community effort, and the
whole NLP/AI community for building and using the libraries and research
we describe in this book together with us.

More than what we build, the journey we take is what really matters, and
we have the privilege to travel this path with thousands of community
members and readers like you today. Thank you all from the bottom of our
hearts.

1  NLP researchers tend to name their creations after characters in Sesame Street. We’ll explain
what all these acronyms mean in Chapter 1.



Chapter 1. Hello Transformers

In 2017, researchers at Google published a paper that proposed a novel
neural network architecture for sequence modeling.  Dubbed the
Transformer, this architecture outperformed recurrent neural networks
(RNNs) on machine translation tasks, both in terms of translation quality
and training cost.

In parallel, an effective transfer learning method called ULMFiT showed
that training long short-term memory (LSTM) networks on a very large and
diverse corpus could produce state-of-the-art text classifiers with little
labeled data.

These advances were the catalysts for two of today’s most well-known
transformers: the Generative Pretrained Transformer (GPT)  and
Bidirectional Encoder Representations from Transformers (BERT).  By
combining the Transformer architecture with unsupervised learning, these
models removed the need to train task-specific architectures from scratch
and broke almost every benchmark in NLP by a significant margin. Since
the release of GPT and BERT, a zoo of transformer models has emerged; a
timeline of the most prominent entries is shown in Figure 1-1.

Figure 1-1. The transformers timeline

But we’re getting ahead of ourselves. To understand what is novel about
transformers, we first need to explain:

The encoder-decoder framework

1

2

3
4



Attention mechanisms

Transfer learning

In this chapter we’ll introduce the core concepts that underlie the
pervasiveness of transformers, take a tour of some of the tasks that they
excel at, and conclude with a look at the Hugging Face ecosystem of tools
and libraries.

Let’s start by exploring the encoder-decoder framework and the
architectures that preceded the rise of transformers.

The Encoder-Decoder Framework
Prior to transformers, recurrent architectures such as LSTMs were the state
of the art in NLP. These architectures contain a feedback loop in the
network connections that allows information to propagate from one step to
another, making them ideal for modeling sequential data like text. As
illustrated on the left side of Figure 1-2, an RNN receives some input
(which could be a word or character), feeds it through the network, and
outputs a vector called the hidden state. At the same time, the model feeds
some information back to itself through the feedback loop, which it can
then use in the next step. This can be more clearly seen if we “unroll” the
loop as shown on the right side of Figure 1-2: the RNN passes information
about its state at each step to the next operation in the sequence. This allows
an RNN to keep track of information from previous steps, and use it for its
output predictions.



Figure 1-2. Unrolling an RNN in time

These architectures were (and continue to be) widely used for NLP tasks,
speech processing, and time series. You can find a wonderful exposition of
their capabilities in Andrej Karpathy’s blog post, “The Unreasonable
Effectiveness of Recurrent Neural Networks”.

One area where RNNs played an important role was in the development of
machine translation systems, where the objective is to map a sequence of
words in one language to another. This kind of task is usually tackled with
an encoder-decoder or sequence-to-sequence architecture,  which is well
suited for situations where the input and output are both sequences of
arbitrary length. The job of the encoder is to encode the information from
the input sequence into a numerical representation that is often called the
last hidden state. This state is then passed to the decoder, which generates
the output sequence.

In general, the encoder and decoder components can be any kind of neural
network architecture that can model sequences. This is illustrated for a pair
of RNNs in Figure 1-3, where the English sentence “Transformers are
great!” is encoded as a hidden state vector that is then decoded to produce
the German translation “Transformer sind grossartig!” The input words are
fed sequentially through the encoder and the output words are generated
one at a time, from top to bottom.
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Figure 1-3. An encoder-decoder architecture with a pair of RNNs (in general, there are many more
recurrent layers than those shown here)

Although elegant in its simplicity, one weakness of this architecture is that
the final hidden state of the encoder creates an information bottleneck: it
has to represent the meaning of the whole input sequence because this is all
the decoder has access to when generating the output. This is especially
challenging for long sequences, where information at the start of the
sequence might be lost in the process of compressing everything to a single,
fixed representation.

Fortunately, there is a way out of this bottleneck by allowing the decoder to
have access to all of the encoder’s hidden states. The general mechanism for
this is called attention,  and it is a key component in many modern neural
network architectures. Understanding how attention was developed for
RNNs will put us in good shape to understand one of the main building
blocks of the Transformer architecture. Let’s take a deeper look.

Attention Mechanisms
The main idea behind attention is that instead of producing a single hidden
state for the input sequence, the encoder outputs a hidden state at each step
that the decoder can access. However, using all the states at the same time
would create a huge input for the decoder, so some mechanism is needed to
prioritize which states to use. This is where attention comes in: it lets the
decoder assign a different amount of weight, or “attention,” to each of the
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encoder states at every decoding timestep. This process is illustrated in
Figure 1-4, where the role of attention is shown for predicting the third
token in the output sequence.

Figure 1-4. An encoder-decoder architecture with an attention mechanism for a pair of RNNs

By focusing on which input tokens are most relevant at each timestep, these
attention-based models are able to learn nontrivial alignments between the
words in a generated translation and those in a source sentence. For
example, Figure 1-5 visualizes the attention weights for an English to
French translation model, where each pixel denotes a weight. The figure
shows how the decoder is able to correctly align the words “zone” and
“Area”, which are ordered differently in the two languages.



Figure 1-5. RNN encoder-decoder alignment of words in English and the generated translation in
French (courtesy of Dzmitry Bahdanau)

Although attention enabled the production of much better translations, there
was still a major shortcoming with using recurrent models for the encoder
and decoder: the computations are inherently sequential and cannot be
parallelized across the input sequence.

With the transformer, a new modeling paradigm was introduced: dispense
with recurrence altogether, and instead rely entirely on a special form of
attention called self-attention. We’ll cover self-attention in more detail in
Chapter 3, but the basic idea is to allow attention to operate on all the states
in the same layer of the neural network. This is shown in Figure 1-6, where
both the encoder and the decoder have their own self-attention mechanisms,
whose outputs are fed to feed-forward neural networks (FF NNs). This
architecture can be trained much faster than recurrent models and paved the
way for many of the recent breakthroughs in NLP.



Figure 1-6. Encoder-decoder architecture of the original Transformer

In the original Transformer paper, the translation model was trained from
scratch on a large corpus of sentence pairs in various languages. However,
in many practical applications of NLP we do not have access to large
amounts of labeled text data to train our models on. A final piece was
missing to get the transformer revolution started: transfer learning.

Transfer Learning in NLP
It is nowadays common practice in computer vision to use transfer learning
to train a convolutional neural network like ResNet on one task, and then
adapt it to or fine-tune it on a new task. This allows the network to make
use of the knowledge learned from the original task. Architecturally, this
involves splitting the model into of a body and a head, where the head is a
task-specific network. During training, the weights of the body learn broad
features of the source domain, and these weights are used to initialize a new
model for the new task.  Compared to traditional supervised learning, this
approach typically produces high-quality models that can be trained much
more efficiently on a variety of downstream tasks, and with much less
labeled data. A comparison of the two approaches is shown in Figure 1-7.

7



Figure 1-7. Comparison of traditional supervised learning (left) and transfer learning (right)

In computer vision, the models are first trained on large-scale datasets such
as ImageNet, which contain millions of images. This process is called
pretraining and its main purpose is to teach the models the basic features of
images, such as edges or colors. These pretrained models can then be fine-
tuned on a downstream task such as classifying flower species with a
relatively small number of labeled examples (usually a few hundred per
class). Fine-tuned models typically achieve a higher accuracy than
supervised models trained from scratch on the same amount of labeled data.

Although transfer learning became the standard approach in computer
vision, for many years it was not clear what the analogous pretraining
process was for NLP. As a result, NLP applications typically required large
amounts of labeled data to achieve high performance. And even then, that
performance did not compare to what was achieved in the vision domain.

https://image-net.org/


In 2017 and 2018, several research groups proposed new approaches that
finally made transfer learning work for NLP. It started with an insight from
researchers at OpenAI who obtained strong performance on a sentiment
classification task by using features extracted from unsupervised
pretraining.  This was followed by ULMFiT, which introduced a general
framework to adapt pretrained LSTM models for various tasks.

As illustrated in Figure 1-8, ULMFiT involves three main steps:

Pretraining

The initial training objective is quite simple: predict the next word
based on the previous words. This task is referred to as language
modeling. The elegance of this approach lies in the fact that no labeled
data is required, and one can make use of abundantly available text from
sources such as Wikipedia.

Domain adaptation

Once the language model is pretrained on a large-scale corpus, the next
step is to adapt it to the in-domain corpus (e.g., from Wikipedia to the
IMDb corpus of movie reviews, as in Figure 1-8). This stage still uses
language modeling, but now the model has to predict the next word in
the target corpus.

Fine-tuning

In this step, the language model is fine-tuned with a classification layer
for the target task (e.g., classifying the sentiment of movie reviews in
Figure 1-8).

Figure 1-8. The ULMFiT process (courtesy of Jeremy Howard)
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By introducing a viable framework for pretraining and transfer learning in
NLP, ULMFiT provided the missing piece to make transformers take off. In
2018, two transformers were released that combined self-attention with
transfer learning:

GPT

Uses only the decoder part of the Transformer architecture, and the
same language modeling approach as ULMFiT. GPT was pretrained on
the BookCorpus,  which consists of 7,000 unpublished books from a
variety of genres including Adventure, Fantasy, and Romance.

BERT

Uses the encoder part of the Transformer architecture, and a special
form of language modeling called masked language modeling. The
objective of masked language modeling is to predict randomly masked
words in a text. For example, given a sentence like “I looked at my
[MASK] and saw that [MASK] was late.” the model needs to predict the
most likely candidates for the masked words that are denoted by
[MASK]. BERT was pretrained on the BookCorpus and English
Wikipedia.

GPT and BERT set a new state of the art across a variety of NLP
benchmarks and ushered in the age of transformers.

However, with different research labs releasing their models in
incompatible frameworks (PyTorch or TensorFlow), it wasn’t always easy
for NLP practitioners to port these models to their own applications. With
the release of  Transformers, a unified API across more than 50
architectures was progressively built. This library catalyzed the explosion of
research into transformers and quickly trickled down to NLP practitioners,
making it easy to integrate these models into many real-life applications
today. Let’s have a look!
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Hugging Face Transformers: Bridging the
Gap
Applying a novel machine learning architecture to a new task can be a
complex undertaking, and usually involves the following steps:

1. Implement the model architecture in code, typically based on
PyTorch or TensorFlow.

2. Load the pretrained weights (if available) from a server.

3. Preprocess the inputs, pass them through the model, and apply
some task-specific postprocessing.

4. Implement dataloaders and define loss functions and optimizers to
train the model.

Each of these steps requires custom logic for each model and task.
Traditionally (but not always!), when research groups publish a new article,
they will also release the code along with the model weights. However, this
code is rarely standardized and often requires days of engineering to adapt
to new use cases.

This is where  Transformers comes to the NLP practitioner’s rescue! It
provides a standardized interface to a wide range of transformer models as
well as code and tools to adapt these models to new use cases. The library
currently supports three major deep learning frameworks (PyTorch,
TensorFlow, and JAX) and allows you to easily switch between them. In
addition, it provides task-specific heads so you can easily fine-tune
transformers on downstream tasks such as text classification, named entity
recognition, and question answering. This reduces the time it takes a
practitioner to train and test a handful of models from a week to a single
afternoon!

You’ll see this for yourself in the next section, where we show that with just
a few lines of code,  Transformers can be applied to tackle some of the
most common NLP applications that you’re likely to encounter in the wild.



A Tour of Transformer Applications
Every NLP task starts with a piece of text, like the following made-up
customer feedback about a certain online order:

text = """Dear Amazon, last week I ordered an Optimus Prime action figure

from your online store in Germany. Unfortunately, when I opened the package,

I discovered to my horror that I had been sent an action figure of Megatron

instead! As a lifelong enemy of the Decepticons, I hope you can understand my

dilemma. To resolve the issue, I demand an exchange of Megatron for the

Optimus Prime figure I ordered. Enclosed are copies of my records concerning

this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

Depending on your application, the text you’re working with could be a
legal contract, a product description, or something else entirely. In the case
of customer feedback, you would probably like to know whether the
feedback is positive or negative. This task is called sentiment analysis and
is part of the broader topic of text classification that we’ll explore in
Chapter 2. For now, let’s have a look at what it takes to extract the
sentiment from our piece of text using  Transformers.

Text Classification
As we’ll see in later chapters,  Transformers has a layered API that
allows you to interact with the library at various levels of abstraction. In
this chapter we’ll start with pipelines, which abstract away all the steps
needed to convert raw text into a set of predictions from a fine-tuned model.

In  Transformers, we instantiate a pipeline by calling the pipeline()
function and providing the name of the task we are interested in:

from transformers import pipeline

classifier = pipeline("text-classification")

The first time you run this code you’ll see a few progress bars appear
because the pipeline automatically downloads the model weights from the
Hugging Face Hub. The second time you instantiate the pipeline, the library
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will notice that you’ve already downloaded the weights and will use the
cached version instead. By default, the text-classification pipeline
uses a model that’s designed for sentiment analysis, but it also supports
multiclass and multilabel classification.

Now that we have our pipeline, let’s generate some predictions! Each
pipeline takes a string of text (or a list of strings) as input and returns a list
of predictions. Each prediction is a Python dictionary, so we can use Pandas
to display them nicely as a Data⁠Frame:

import pandas as pd

outputs = classifier(text)

pd.DataFrame(outputs)

label score

0 NEGATIVE 0.901546

In this case the model is very confident that the text has a negative
sentiment, which makes sense given that we’re dealing with a complaint
from an angry customer! Note that for sentiment analysis tasks the pipeline
only returns one of the POSITIVE or NEGATIVE labels, since the other can be
inferred by computing 1-score.

Let’s now take a look at another common task, identifying named entities in
text.

Named Entity Recognition
Predicting the sentiment of customer feedback is a good first step, but you
often want to know if the feedback was about a particular item or service. In
NLP, real-world objects like products, places, and people are called named
entities, and extracting them from text is called named entity recognition
(NER). We can apply NER by loading the corresponding pipeline and
feeding our customer review to it:



ner_tagger = pipeline("ner", aggregation_strategy="simple")

outputs = ner_tagger(text)

pd.DataFrame(outputs)

entity_group score word start

0 ORG 0.879010 Amazon 5

1 MISC 0.990859 Optimus Prime 36

2 LOC 0.999755 Germany 90

3 MISC 0.556569 Mega 208

4 PER 0.590256 ##tron 212

5 ORG 0.669692 Decept 253

6 MISC 0.498350 ##icons 259

7 MISC 0.775361 Megatron 350

8 MISC 0.987854 Optimus Prime 367

9 PER 0.812096 Bumblebee 502

You can see that the pipeline detected all the entities and also assigned a
category such as ORG (organization), LOC (location), or PER (person) to each
of them. Here we used the aggregation_strategy argument to group the
words according to the model’s predictions. For example, the entity
“Optimus Prime” is composed of two words, but is assigned a single
category: MISC (miscellaneous). The scores tell us how confident the model
was about the entities it identified. We can see that it was least confident
about “Decepticons” and the first occurrence of “Megatron”, both of which
it failed to group as a single entity.

NOTE
See those weird hash symbols (#) in the word column in the previous table? These are
produced by the model’s tokenizer, which splits words into atomic units called tokens.
You’ll learn all about tokenization in Chapter 2.



Extracting all the named entities in a text is nice, but sometimes we would
like to ask more targeted questions. This is where we can use question
answering.

Question Answering
In question answering, we provide the model with a passage of text called
the context, along with a question whose answer we’d like to extract. The
model then returns the span of text corresponding to the answer. Let’s see
what we get when we ask a specific question about our customer feedback:

reader = pipeline("question-answering")

question = "What does the customer want?"

outputs = reader(question=question, context=text)

pd.DataFrame([outputs])

score start end answer

0
0.631291 335 358 an exchange of

Megatron

We can see that along with the answer, the pipeline also returned start and
end integers that correspond to the character indices where the answer span
was found (just like with NER tagging). There are several flavors of
question answering that we will investigate in Chapter 7, but this particular
kind is called extractive question answering because the answer is extracted
directly from the text.

With this approach you can read and extract relevant information quickly
from a customer’s feedback. But what if you get a mountain of long-winded
complaints and you don’t have the time to read them all? Let’s see if a
summarization model can help!



Summarization
The goal of text summarization is to take a long text as input and generate a
short version with all the relevant facts. This is a much more complicated
task than the previous ones since it requires the model to generate coherent
text. In what should be a familiar pattern by now, we can instantiate a
summarization pipeline as follows:

summarizer = pipeline("summarization")

outputs = summarizer(text, max_length=45, clean_up_tokenization_spaces=True)

print(outputs[0]['summary_text'])

 Bumblebee ordered an Optimus Prime action figure from your online store in

Germany. Unfortunately, when I opened the package, I discovered to my horror

that I had been sent an action figure of Megatron instead.

This summary isn’t too bad! Although parts of the original text have been
copied, the model was able to capture the essence of the problem and
correctly identify that “Bumblebee” (which appeared at the end) was the
author of the complaint. In this example you can also see that we passed
some keyword arguments like max_length and
clean_up_tokenization_spaces to the pipeline; these allow us to tweak
the outputs at runtime.

But what happens when you get feedback that is in a language you don’t
understand? You could use Google Translate, or you can use your very own
transformer to translate it for you!

Translation
Like summarization, translation is a task where the output consists of
generated text. Let’s use a translation pipeline to translate an English text to
German:

translator = pipeline("translation_en_to_de",

                      model="Helsinki-NLP/opus-mt-en-de")

outputs = translator(text, clean_up_tokenization_spaces=True, min_length=100)

print(outputs[0]['translation_text'])



Sehr geehrter Amazon, letzte Woche habe ich eine Optimus Prime Action Figur 

aus

Ihrem Online-Shop in Deutschland bestellt. Leider, als ich das Paket öffnete,

entdeckte ich zu meinem Entsetzen, dass ich stattdessen eine Action Figur von

Megatron geschickt worden war! Als lebenslanger Feind der Decepticons, Ich

hoffe, Sie können mein Dilemma verstehen. Um das Problem zu lösen, Ich fordere

einen Austausch von Megatron für die Optimus Prime Figur habe ich bestellt.

Anbei sind Kopien meiner Aufzeichnungen über diesen Kauf. Ich erwarte, bald 

von

Ihnen zu hören. Aufrichtig, Bumblebee.

Again, the model produced a very good translation that correctly uses
German’s formal pronouns, like “Ihrem” and “Sie.” Here we’ve also shown
how you can override the default model in the pipeline to pick the best one
for your application—and you can find models for thousands of language
pairs on the Hugging Face Hub. Before we take a step back and look at the
whole Hugging Face ecosystem, let’s examine one last application.

Text Generation
Let’s say you would like to be able to provide faster replies to customer
feedback by having access to an autocomplete function. With a text
generation model you can do this as follows:

generator = pipeline("text-generation")

response = "Dear Bumblebee, I am sorry to hear that your order was mixed up."

prompt = text + "\n\nCustomer service response:\n" + response

outputs = generator(prompt, max_length=200)

print(outputs[0]['generated_text'])

Dear Amazon, last week I ordered an Optimus Prime action figure from your 

online

store in Germany. Unfortunately, when I opened the package, I discovered to my

horror that I had been sent an action figure of Megatron instead! As a 

lifelong

enemy of the Decepticons, I hope you can understand my dilemma. To resolve the

issue, I demand an exchange of Megatron for the Optimus Prime figure I 

ordered.

Enclosed are copies of my records concerning this purchase. I expect to hear

from you soon. Sincerely, Bumblebee.

Customer service response:



Dear Bumblebee, I am sorry to hear that your order was mixed up. The order was

completely mislabeled, which is very common in our online store, but I can

appreciate it because it was my understanding from this site and our customer

service of the previous day that your order was not made correct in our mind 

and

that we are in a process of resolving this matter. We can assure you that your

order

OK, maybe we wouldn’t want to use this completion to calm Bumblebee
down, but you get the general idea.

Now that you’ve seen a few cool applications of transformer models, you
might be wondering where the training happens. All of the models that
we’ve used in this chapter are publicly available and already fine-tuned for
the task at hand. In general, however, you’ll want to fine-tune models on
your own data, and in the following chapters you will learn how to do just
that.

But training a model is just a small piece of any NLP project—being able to
efficiently process data, share results with colleagues, and make your work
reproducible are key components too. Fortunately,  Transformers is
surrounded by a big ecosystem of useful tools that support much of the
modern machine learning workflow. Let’s take a look.

The Hugging Face Ecosystem
What started with  Transformers has quickly grown into a whole
ecosystem consisting of many libraries and tools to accelerate your NLP
and machine learning projects. The Hugging Face ecosystem consists of
mainly two parts: a family of libraries and the Hub, as shown in Figure 1-9.
The libraries provide the code while the Hub provides the pretrained model
weights, datasets, scripts for the evaluation metrics, and more. In this
section we’ll have a brief look at the various components. We’ll skip 
Transformers, as we’ve already discussed it and we will see a lot more of it
throughout the course of the book.



Figure 1-9. An overview of the Hugging Face ecosystem

The Hugging Face Hub
As outlined earlier, transfer learning is one of the key factors driving the
success of transformers because it makes it possible to reuse pretrained
models for new tasks. Consequently, it is crucial to be able to load
pretrained models quickly and run experiments with them.

The Hugging Face Hub hosts over 20,000 freely available models. As
shown in Figure 1-10, there are filters for tasks, frameworks, datasets, and



more that are designed to help you navigate the Hub and quickly find
promising candidates. As we’ve seen with the pipelines, loading a
promising model in your code is then literally just one line of code away.
This makes experimenting with a wide range of models simple, and allows
you to focus on the domain-specific parts of your project.

Figure 1-10. The Models page of the Hugging Face Hub, showing filters on the left and a list of
models on the right

In addition to model weights, the Hub also hosts datasets and scripts for
computing metrics, which let you reproduce published results or leverage
additional data for your application.

The Hub also provides model and dataset cards to document the contents of
models and datasets and help you make an informed decision about whether
they’re the right ones for you. One of the coolest features of the Hub is that
you can try out any model directly through the various task-specific
interactive widgets as shown in Figure 1-11.



Figure 1-11. An example model card from the Hugging Face Hub: the inference widget, which allows
you to interact with the model, is shown on the right

Let’s continue our tour with  Tokenizers.

NOTE
PyTorch and TensorFlow also offer hubs of their own and are worth checking out if a
particular model or dataset is not available on the Hugging Face Hub.

Hugging Face Tokenizers
Behind each of the pipeline examples that we’ve seen in this chapter is a
tokenization step that splits the raw text into smaller pieces called tokens.
We’ll see how this works in detail in Chapter 2, but for now it’s enough to
understand that tokens may be words, parts of words, or just characters like
punctuation. Transformer models are trained on numerical representations
of these tokens, so getting this step right is pretty important for the whole
NLP project!

 Tokenizers provides many tokenization strategies and is extremely fast at
tokenizing text thanks to its Rust backend.  It also takes care of all the pre-
and postprocessing steps, such as normalizing the inputs and transforming
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the model outputs to the required format. With  Tokenizers, we can load a
tokenizer in the same way we can load pretrained model weights with​ ⁠
Transformers.

We need a dataset and metrics to train and evaluate models, so let’s take a
look at ​ ⁠ Datasets, which is in charge of that aspect.

Hugging Face Datasets
Loading, processing, and storing datasets can be a cumbersome process,
especially when the datasets get too large to fit in your laptop’s RAM. In
addition, you usually need to implement various scripts to download the
data and transform it into a standard format.

 Datasets simplifies this process by providing a standard interface for
thousands of datasets that can be found on the Hub. It also provides smart
caching (so you don’t have to redo your preprocessing each time you run
your code) and avoids RAM limitations by leveraging a special mechanism
called memory mapping that stores the contents of a file in virtual memory
and enables multiple processes to modify a file more efficiently. The library
is also interoperable with popular frameworks like Pandas and NumPy, so
you don’t have to leave the comfort of your favorite data wrangling tools.

Having a good dataset and powerful model is worthless, however, if you
can’t reliably measure the performance. Unfortunately, classic NLP metrics
come with many different implementations that can vary slightly and lead
to deceptive results. By providing the scripts for many metrics,  Datasets
helps make experiments more reproducible and the results more
trustworthy.

With the  Transformers,  Tokenizers, and  Datasets libraries we have
everything we need to train our very own transformer models! However, as
we’ll see in Chapter 10 there are situations where we need fine-grained
control over the training loop. That’s where the last library of the ecosystem
comes into play:  Accelerate.
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Hugging Face Accelerate
If you’ve ever had to write your own training script in PyTorch, chances are
that you’ve had some headaches when trying to port the code that runs on
your laptop to the code that runs on your organization’s cluster. 
Accelerate adds a layer of abstraction to your normal training loops that
takes care of all the custom logic necessary for the training infrastructure.
This literally accelerates your workflow by simplifying the change of
infrastructure when necessary.

This sums up the core components of Hugging Face’s open source
ecosystem. But before wrapping up this chapter, let’s take a look at a few of
the common challenges that come with trying to deploy transformers in the
real world.

Main Challenges with Transformers
In this chapter we’ve gotten a glimpse of the wide range of NLP tasks that
can be tackled with transformer models. Reading the media headlines, it can
sometimes sound like their capabilities are limitless. However, despite their
usefulness, transformers are far from being a silver bullet. Here are a few
challenges associated with them that we will explore throughout the book:

Language

NLP research is dominated by the English language. There are several
models for other languages, but it is harder to find pretrained models for
rare or low-resource languages. In Chapter 4, we’ll explore multilingual
transformers and their ability to perform zero-shot cross-lingual transfer.

Data availability

Although we can use transfer learning to dramatically reduce the
amount of labeled training data our models need, it is still a lot
compared to how much a human needs to perform the task. Tackling
scenarios where you have little to no labeled data is the subject of
Chapter 9.
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Working with long documents

Self-attention works extremely well on paragraph-long texts, but it
becomes very expensive when we move to longer texts like whole
documents. Approaches to mitigate this are discussed in Chapter 11.

Opacity

As with other deep learning models, transformers are to a large extent
opaque. It is hard or impossible to unravel “why” a model made a
certain prediction. This is an especially hard challenge when these
models are deployed to make critical decisions. We’ll explore some
ways to probe the errors of transformer models in Chapters 2 and 4.

Bias

Transformer models are predominantly pretrained on text data from the
internet. This imprints all the biases that are present in the data into the
models. Making sure that these are neither racist, sexist, or worse is a
challenging task. We discuss some of these issues in more detail in
Chapter 10.

Although daunting, many of these challenges can be overcome. As well as
in the specific chapters mentioned, we will touch on these topics in almost
every chapter ahead.

Conclusion
Hopefully, by now you are excited to learn how to start training and
integrating these versatile models into your own applications! You’ve seen
in this chapter that with just a few lines of code you can use state-of-the-art
models for classification, named entity recognition, question answering,
translation, and summarization, but this is really just the “tip of the
iceberg.”



In the following chapters you will learn how to adapt transformers to a wide
range of use cases, such as building a text classifier, or a lightweight model
for production, or even training a language model from scratch. We’ll be
taking a hands-on approach, which means that for every concept covered
there will be accompanying code that you can run on Google Colab or your
own GPU machine.

Now that we’re armed with the basic concepts behind transformers, it’s
time to get our hands dirty with our first application: text classification.
That’s the topic of the next chapter!

1  A. Vaswani et al., “Attention Is All You Need”, (2017). This title was so catchy that no less
than 50 follow-up papers have included “all you need” in their titles!
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Chapter 2. Text Classification

Text classification is one of the most common tasks in NLP; it can be used
for a broad range of applications, such as tagging customer feedback into
categories or routing support tickets according to their language. Chances
are that your email program’s spam filter is using text classification to
protect your inbox from a deluge of unwanted junk!

Another common type of text classification is sentiment analysis, which (as
we saw in Chapter 1) aims to identify the polarity of a given text. For
example, a company like Tesla might analyze Twitter posts like the one in
Figure 2-1 to determine whether people like its new car roofs or not.

Figure 2-1. Analyzing Twitter content can yield useful feedback from customers (courtesy of Aditya
Veluri)

Now imagine that you are a data scientist who needs to build a system that
can automatically identify emotional states such as “anger” or “joy” that
people express about your company’s product on Twitter. In this chapter,



we’ll tackle this task using a variant of BERT called DistilBERT.  The main
advantage of this model is that it achieves comparable performance to
BERT, while being significantly smaller and more efficient. This enables us
to train a classifier in a few minutes, and if you want to train a larger BERT
model you can simply change the checkpoint of the pretrained model. A
checkpoint corresponds to the set of weights that are loaded into a given
transformer architecture.

This will also be our first encounter with three of the core libraries from the
Hugging Face ecosystem:  Datasets,  Tokenizers, and  Transformers.
As shown in Figure 2-2, these libraries will allow us to quickly go from raw
text to a fine-tuned model that can be used for inference on new tweets. So,
in the spirit of Optimus Prime, let’s dive in, “transform, and roll out!”

Figure 2-2. A typical pipeline for training transformer models with the  Datasets,  Tokenizers,
and  Transformers libraries

The Dataset
To build our emotion detector we’ll use a great dataset from an article that
explored how emotions are represented in English Twitter messages.
Unlike most sentiment analysis datasets that involve just “positive” and
“negative” polarities, this dataset contains six basic emotions: anger,
disgust, fear, joy, sadness, and surprise. Given a tweet, our task will be to
train a model that can classify it into one of these emotions.

A First Look at Hugging Face Datasets
We will use  Datasets to download the data from the Hugging Face Hub.
We can use the list_datasets() function to see what datasets are
available on the Hub:

1
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from datasets import list_datasets

all_datasets = list_datasets()

print(f"There are {len(all_datasets)} datasets currently available on the 

Hub")

print(f"The first 10 are: {all_datasets[:10]}")

There are 1753 datasets currently available on the Hub

The first 10 are: ['acronym_identification', 'ade_corpus_v2', 

'adversarial_qa',

'aeslc', 'afrikaans_ner_corpus', 'ag_news', 'ai2_arc', 'air_dialogue',

'ajgt_twitter_ar', 'allegro_reviews']

We see that each dataset is given a name, so let’s load the emotion dataset
with the load_dataset() function:

from datasets import load_dataset

emotions = load_dataset("emotion")

If we look inside our emotions object:

emotions

DatasetDict({

    train: Dataset({

        features: ['text', 'label'],

        num_rows: 16000

    })

    validation: Dataset({

        features: ['text', 'label'],

        num_rows: 2000

    })

    test: Dataset({

        features: ['text', 'label'],

        num_rows: 2000

    })

})

we see it is similar to a Python dictionary, with each key corresponding to a
different split. And we can use the usual dictionary syntax to access an
individual split:



train_ds = emotions["train"]

train_ds

Dataset({

    features: ['text', 'label'],

    num_rows: 16000

})

which returns an instance of the Dataset class. The Dataset object is one
of the core data structures in  Datasets, and we’ll be exploring many of its
features throughout the course of this book. For starters, it behaves like an
ordinary Python array or list, so we can query its length:

len(train_ds)

16000

or access a single example by its index:

train_ds[0]

{'label': 0, 'text': 'i didnt feel humiliated'}

Here we see that a single row is represented as a dictionary, where the keys
correspond to the column names:

train_ds.column_names

['text', 'label']

and the values are the tweet and the emotion. This reflects the fact that 
Datasets is based on Apache Arrow, which defines a typed columnar format
that is more memory efficient than native Python. We can see what data
types are being used under the hood by accessing the features attribute of
a Dataset object:

print(train_ds.features)

https://arrow.apache.org/


{'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=6,

names=['sadness', 'joy', 'love', 'anger', 'fear', 'surprise'], 

names_file=None,

id=None)}

In this case, the data type of the text column is string, while the label
column is a special ClassLabel object that contains information about the
class names and their mapping to integers. We can also access several rows
with a slice:

print(train_ds[:5])

{'text': ['i didnt feel humiliated', 'i can go from feeling so hopeless to so

damned hopeful just from being around someone who cares and is awake', 'im

grabbing a minute to post i feel greedy wrong', 'i am ever feeling nostalgic

about the fireplace i will know that it is still on the property', 'i am 

feeling

grouchy'], 'label': [0, 0, 3, 2, 3]}

Note that in this case, the dictionary values are now lists instead of
individual elements. We can also get the full column by name:

print(train_ds["text"][:5])

['i didnt feel humiliated', 'i can go from feeling so hopeless to so damned

hopeful just from being around someone who cares and is awake', 'im grabbing a

minute to post i feel greedy wrong', 'i am ever feeling nostalgic about the

fireplace i will know that it is still on the property', 'i am feeling 

grouchy']

Now that we’ve seen how to load and inspect data with  Datasets, let’s do
a few checks about the content of our tweets.



WHAT IF MY DATASET IS NOT ON THE HUB?
We’ll be using the Hugging Face Hub to download datasets for most of
the examples in this book. But in many cases, you’ll find yourself
working with data that is either stored on your laptop or on a remote
server in your organization.  Datasets provides several loading scripts
to handle local and remote datasets. Examples for the most common
data formats are shown in Table 2-1.

Table 2-1. How to load datasets in various formats

Data format Loading script Example

CSV csv load_dataset("csv", data_files="my_file.c

sv")

Text text load_dataset("text", data_files="my_file.

txt")

JSON json load_dataset("json", data_files="my_file.

jsonl")

As you can see, for each data format, we just need to pass the relevant
loading script to the load_dataset() function, along with a
data_files argument that specifies the path or URL to one or more
files. For example, the source files for the emotion dataset are actually
hosted on Dropbox, so an alternative way to load the dataset is to first
download one of the splits:

dataset_url = "https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt"

!wget {dataset_url}

If you’re wondering why there’s a ! character in the preceding shell
command, that’s because we’re running the commands in a Jupyter
notebook. Simply remove the prefix if you want to download and unzip



the dataset within a terminal. Now, if we peek at the first row of the
train.txt file:

!head -n 1 train.txt

i didnt feel humiliated;sadness

we can see that here are no column headers and each tweet and emotion
are separated by a semicolon. Nevertheless, this is quite similar to a
CSV file, so we can load the dataset locally by using the csv script and
pointing the data_files argument to the train.txt file:

emotions_local = load_dataset("csv", data_files="train.txt", sep=";",

                              names=["text", "label"])

Here we’ve also specified the type of delimiter and the names of the
columns. An even simpler approach is to just point the data_files
argument to the URL itself:

dataset_url = "https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1"

emotions_remote = load_dataset("csv", data_files=dataset_url, sep=";",

                               names=["text", "label"])

which will automatically download and cache the dataset for you. As
you can see, the load_dataset() function is very versatile. We
recommend checking out the  Datasets documentation to get a
complete overview.

From Datasets to DataFrames
Although  Datasets provides a lot of low-level functionality to slice and
dice our data, it is often convenient to convert a Dataset object to a Pandas
DataFrame so we can access high-level APIs for data visualization. To
enable the conversion,  Datasets provides a set_format() method that
allows us to change the output format of the Dataset. Note that this does

https://oreil.ly/Jodu4


not change the underlying data format (which is an Arrow table), and you
can switch to another format later if needed:

import pandas as pd

emotions.set_format(type="pandas")

df = emotions["train"][:]

df.head()

text label

0 i didnt feel humiliated 0

1 i can go from feeling so hopeless to so damned... 0

2 im grabbing a minute to post i feel greedy wrong 3

3 i am ever feeling nostalgic about the fireplac... 2

4 i am feeling grouchy 3

As you can see, the column headers have been preserved and the first few
rows match our previous views of the data. However, the labels are
represented as integers, so let’s use the int2str() method of the label
feature to create a new column in our DataFrame with the corresponding
label names:

def label_int2str(row):

    return emotions["train"].features["label"].int2str(row)

df["label_name"] = df["label"].apply(label_int2str)

df.head()



text label label_name

0 i didnt feel humiliated 0 sadness

1
i can go from feeling so hopeless to
so damned...

0 sadness

2
im grabbing a minute to post i feel
greedy wrong

3 anger

3
i am ever feeling nostalgic about
the fireplac...

2 love

4 i am feeling grouchy 3 anger

Before diving into building a classifier, let’s take a closer look at the
dataset. As Andrej Karpathy notes in his famous blog post “A Recipe for
Training Neural Networks”, becoming “one with the data” is an essential
step for training great models!

Looking at the Class Distribution
Whenever you are working on text classification problems, it is a good idea
to examine the distribution of examples across the classes. A dataset with a
skewed class distribution might require a different treatment in terms of the
training loss and evaluation metrics than a balanced one.

With Pandas and Matplotlib, we can quickly visualize the class distribution
as follows:

import matplotlib.pyplot as plt

df["label_name"].value_counts(ascending=True).plot.barh()

plt.title("Frequency of Classes")

plt.show()

https://oreil.ly/bNayo
https://oreil.ly/bNayo


In this case, we can see that the dataset is heavily imbalanced; the joy and
sadness classes appear frequently, whereas love and surprise are about
5–10 times rarer. There are several ways to deal with imbalanced data,
including:

Randomly oversample the minority class.

Randomly undersample the majority class.

Gather more labeled data from the underrepresented classes.

To keep things simple in this chapter, we’ll work with the raw, unbalanced
class frequencies. If you want to learn more about these sampling
techniques, we recommend checking out the Imbalanced-learn library. Just
make sure that you don’t apply sampling methods before creating your
train/test splits, or you’ll get plenty of leakage between them!

Now that we’ve looked at the classes, let’s take a look at the tweets
themselves.

https://oreil.ly/5XBhb


How Long Are Our Tweets?
Transformer models have a maximum input sequence length that is referred
to as the maximum context size. For applications using DistilBERT, the
maximum context size is 512 tokens, which amounts to a few paragraphs of
text. As we’ll see in the next section, a token is an atomic piece of text; for
now, we’ll treat a token as a single word. We can get a rough estimate of
tweet lengths per emotion by looking at the distribution of words per tweet:

df["Words Per Tweet"] = df["text"].str.split().apply(len)

df.boxplot("Words Per Tweet", by="label_name", grid=False,

          showfliers=False, color="black")

plt.suptitle("")

plt.xlabel("")

plt.show()

From the plot we see that for each emotion, most tweets are around 15
words long and the longest tweets are well below DistilBERT’s maximum
context size. Texts that are longer than a model’s context size need to be



truncated, which can lead to a loss in performance if the truncated text
contains crucial information; in this case, it looks like that won’t be an
issue.

Let’s now figure out how we can convert these raw texts into a format
suitable for ​ ⁠ Transformers! While we’re at it, let’s also reset the output
format of our dataset since we don’t need the DataFrame format anymore:

emotions.reset_format()

From Text to Tokens
Transformer models like DistilBERT cannot receive raw strings as input;
instead, they assume the text has been tokenized and encoded as numerical
vectors. Tokenization is the step of breaking down a string into the atomic
units used in the model. There are several tokenization strategies one can
adopt, and the optimal splitting of words into subunits is usually learned
from the corpus. Before looking at the tokenizer used for DistilBERT, let’s
consider two extreme cases: character and word tokenization.

Character Tokenization
The simplest tokenization scheme is to feed each character individually to
the model. In Python, str objects are really arrays under the hood, which
allows us to quickly implement character-level tokenization with just one
line of code:

text = "Tokenizing text is a core task of NLP."

tokenized_text = list(text)

print(tokenized_text)

['T', 'o', 'k', 'e', 'n', 'i', 'z', 'i', 'n', 'g', ' ', 't', 'e', 'x', 't', ' 

',

'i', 's', ' ', 'a', ' ', 'c', 'o', 'r', 'e', ' ', 't', 'a', 's', 'k', ' ', 

'o',

'f', ' ', 'N', 'L', 'P', '.']



This is a good start, but we’re not done yet. Our model expects each
character to be converted to an integer, a process sometimes called
numericalization. One simple way to do this is by encoding each unique
token (which are characters in this case) with a unique integer:

token2idx = {ch: idx for idx, ch in enumerate(sorted(set(tokenized_text)))}

print(token2idx)

{' ': 0, '.': 1, 'L': 2, 'N': 3, 'P': 4, 'T': 5, 'a': 6, 'c': 7, 'e': 8, 'f': 

9,

'g': 10, 'i': 11, 'k': 12, 'n': 13, 'o': 14, 'r': 15, 's': 16, 't': 17, 'x': 

18,

'z': 19}

This gives us a mapping from each character in our vocabulary to a unique
integer. We can now use token2idx to transform the tokenized text to a list
of integers:

input_ids = [token2idx[token] for token in tokenized_text]

print(input_ids)

[5, 14, 12, 8, 13, 11, 19, 11, 13, 10, 0, 17, 8, 18, 17, 0, 11, 16, 0, 6, 0, 

7,

14, 15, 8, 0, 17, 6, 16, 12, 0, 14, 9, 0, 3, 2, 4, 1]

Each token has now been mapped to a unique numerical identifier (hence
the name input_ids). The last step is to convert input_ids to a 2D tensor
of one-hot vectors. One-hot vectors are frequently used in machine learning
to encode categorical data, which can be either ordinal or nominal. For
example, suppose we wanted to encode the names of characters in the
Transformers TV series. One way to do this would be to map each name to
a unique ID, as follows:

categorical_df = pd.DataFrame(

    {"Name": ["Bumblebee", "Optimus Prime", "Megatron"], "Label ID": [0,1,2]})

categorical_df



Name Label ID

0 Bumblebee 0

1 Optimus Prime 1

2 Megatron 2

The problem with this approach is that it creates a fictitious ordering
between the names, and neural networks are really good at learning these
kinds of relationships. So instead, we can create a new column for each
category and assign a 1 where the category is true, and a 0 otherwise. In
Pandas, this can be implemented with the get_dummies() function as
follows:

pd.get_dummies(categorical_df["Name"])

Bumblebee Megatron Optimus Prime

0 1 0 0

1 0 0 1

2 0 1 0

The rows of this DataFrame are the one-hot vectors, which have a single
“hot” entry with a 1 and 0s everywhere else. Now, looking at our
input_ids, we have a similar problem: the elements create an ordinal
scale. This means that adding or subtracting two IDs is a meaningless
operation, since the result is a new ID that represents another random token.

On the other hand, the result of adding two one-hot encodings can easily be
interpreted: the two entries that are “hot” indicate that the corresponding
tokens co-occur. We can create the one-hot encodings in PyTorch by
converting input_ids to a tensor and applying the one_hot() function as
follows:

import torch

import torch.nn.functional as F



input_ids = torch.tensor(input_ids)

one_hot_encodings = F.one_hot(input_ids, num_classes=len(token2idx))

one_hot_encodings.shape

torch.Size([38, 20])

For each of the 38 input tokens we now have a one-hot vector with 20
dimensions, since our vocabulary consists of 20 unique characters.

WARNING
It’s important to always set num_classes in the one_hot() function because otherwise
the one-hot vectors may end up being shorter than the length of the vocabulary (and
need to be padded with zeros manually). In TensorFlow, the equivalent function is
tf.one_hot(), where the depth argument plays the role of num_classes.

By examining the first vector, we can verify that a 1 appears in the location
indicated by input_ids[0]:

print(f"Token: {tokenized_text[0]}")

print(f"Tensor index: {input_ids[0]}")

print(f"One-hot: {one_hot_encodings[0]}")

Token: T

Tensor index: 5

One-hot: tensor([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

From our simple example we can see that character-level tokenization
ignores any structure in the text and treats the whole string as a stream of
characters. Although this helps deal with misspellings and rare words, the
main drawback is that linguistic structures such as words need to be learned
from the data. This requires significant compute, memory, and data. For this
reason, character tokenization is rarely used in practice. Instead, some
structure of the text is preserved during the tokenization step. Word
tokenization is a straightforward approach to achieve this, so let’s take a
look at how it works.



Word Tokenization
Instead of splitting the text into characters, we can split it into words and
map each word to an integer. Using words from the outset enables the
model to skip the step of learning words from characters, and thereby
reduces the complexity of the training process.

One simple class of word tokenizers uses whitespace to tokenize the text.
We can do this by applying Python’s split() function directly on the raw
text (just like we did to measure the tweet lengths):

tokenized_text = text.split()

print(tokenized_text)

['Tokenizing', 'text', 'is', 'a', 'core', 'task', 'of', 'NLP.']

From here we can take the same steps we took for the character tokenizer to
map each word to an ID. However, we can already see one potential
problem with this tokenization scheme: punctuation is not accounted for, so
NLP. is treated as a single token. Given that words can include declinations,
conjugations, or misspellings, the size of the vocabulary can easily grow
into the millions!

NOTE
Some word tokenizers have extra rules for punctuation. One can also apply stemming or
lemmatization, which normalizes words to their stem (e.g., “great”, “greater”, and
“greatest” all become “great”), at the expense of losing some information in the text.

Having a large vocabulary is a problem because it requires neural networks
to have an enormous number of parameters. To illustrate this, suppose we
have 1 million unique words and want to compress the 1-million-
dimensional input vectors to 1-thousand-dimensional vectors in the first
layer of our neural network. This is a standard step in most NLP
architectures, and the resulting weight matrix of this first layer would



contain 1 million × 1 thousand = 1 billion weights. This is already
comparable to the largest GPT-2 model,  which has around 1.5 billion
parameters in total!

Naturally, we want to avoid being so wasteful with our model parameters
since models are expensive to train, and larger models are more difficult to
maintain. A common approach is to limit the vocabulary and discard rare
words by considering, say, the 100,000 most common words in the corpus.
Words that are not part of the vocabulary are classified as “unknown” and
mapped to a shared UNK token. This means that we lose some potentially
important information in the process of word tokenization, since the model
has no information about words associated with UNK.

Wouldn’t it be nice if there was a compromise between character and word
tokenization that preserved all the input information and some of the input
structure? There is: subword tokenization.

Subword Tokenization
The basic idea behind subword tokenization is to combine the best aspects
of character and word tokenization. On the one hand, we want to split rare
words into smaller units to allow the model to deal with complex words and
misspellings. On the other hand, we want to keep frequent words as unique
entities so that we can keep the length of our inputs to a manageable size.
The main distinguishing feature of subword tokenization (as well as word
tokenization) is that it is learned from the pretraining corpus using a mix of
statistical rules and algorithms.

There are several subword tokenization algorithms that are commonly used
in NLP, but let’s start with WordPiece,  which is used by the BERT and
DistilBERT tokenizers. The easiest way to understand how WordPiece
works is to see it in action.  Transformers provides a convenient
AutoTokenizer class that allows you to quickly load the tokenizer
associated with a pretrained model—we just call its from_pretrained()
method, providing the ID of a model on the Hub or a local file path. Let’s
start by loading the tokenizer for DistilBERT:
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from transformers import AutoTokenizer

model_ckpt = "distilbert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

The AutoTokenizer class belongs to a larger set of “auto” classes whose
job is to automatically retrieve the model’s configuration, pretrained
weights, or vocabulary from the name of the checkpoint. This allows you to
quickly switch between models, but if you wish to load the specific class
manually you can do so as well. For example, we could have loaded the
DistilBERT tokenizer as follows:

from transformers import DistilBertTokenizer

distilbert_tokenizer = DistilBertTokenizer.from_pretrained(model_ckpt)

NOTE
When you run the AutoTokenizer.from_pretrained() method for the first time you
will see a progress bar that shows which parameters of the pretrained tokenizer are
loaded from the Hugging Face Hub. When you run the code a second time, it will load
the tokenizer from the cache, usually at ~/.cache/huggingface.

Let’s examine how this tokenizer works by feeding it our simple
“Tokenizing text is a core task of NLP.” example text:

encoded_text = tokenizer(text)

print(encoded_text)

{'input_ids': [101, 19204, 6026, 3793, 2003, 1037, 4563, 4708, 1997, 17953,

2361, 1012, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

Just as with character tokenization, we can see that the words have been
mapped to unique integers in the input_ids field. We’ll discuss the role of
the attention_mask field in the next section. Now that we have the

https://oreil.ly/h4YPz


input_ids, we can convert them back into tokens by using the tokenizer’s
convert_ids_to_tokens() method:

tokens = tokenizer.convert_ids_to_tokens(encoded_text.input_ids)

print(tokens)

['[CLS]', 'token', '##izing', 'text', 'is', 'a', 'core', 'task', 'of', 'nl',

'##p', '.', '[SEP]']

We can observe three things here. First, some special [CLS] and [SEP]
tokens have been added to the start and end of the sequence. These tokens
differ from model to model, but their main role is to indicate the start and
end of a sequence. Second, the tokens have each been lowercased, which is
a feature of this particular checkpoint. Finally, we can see that “tokenizing”
and “NLP” have been split into two tokens, which makes sense since they
are not common words. The ## prefix in ##izing and ##p means that the
preceding string is not whitespace; any token with this prefix should be
merged with the previous token when you convert the tokens back to a
string. The AutoTokenizer class has a convert_tokens_to_string()
method for doing just that, so let’s apply it to our tokens:

print(tokenizer.convert_tokens_to_string(tokens))

[CLS] tokenizing text is a core task of nlp. [SEP]

The AutoTokenizer class also has several attributes that provide
information about the tokenizer. For example, we can inspect the
vocabulary size:

tokenizer.vocab_size

30522

and the corresponding model’s maximum context size:

tokenizer.model_max_length



512

Another interesting attribute to know about is the names of the fields that
the model expects in its forward pass:

tokenizer.model_input_names

['input_ids', 'attention_mask']

Now that we have a basic understanding of the tokenization process for a
single string, let’s see how we can tokenize the whole dataset!

WARNING
When using pretrained models, it is really important to make sure that you use the same
tokenizer that the model was trained with. From the model’s perspective, switching the
tokenizer is like shuffling the vocabulary. If everyone around you started swapping
random words like “house” for “cat,” you’d have a hard time understanding what was
going on too!

Tokenizing the Whole Dataset
To tokenize the whole corpus, we’ll use the map() method of our
DatasetDict object. We’ll encounter this method many times throughout
this book, as it provides a convenient way to apply a processing function to
each element in a dataset. As we’ll soon see, the map() method can also be
used to create new rows and columns.

To get started, the first thing we need is a processing function to tokenize
our examples with:

def tokenize(batch):

    return tokenizer(batch["text"], padding=True, truncation=True)

This function applies the tokenizer to a batch of examples; padding=True
will pad the examples with zeros to the size of the longest one in a batch,



and truncation=True will truncate the examples to the model’s maximum
context size. To see tokenize() in action, let’s pass a batch of two
examples from the training set:

print(tokenize(emotions["train"][:2]))

{'input_ids': [[101, 1045, 2134, 2102, 2514, 26608, 102, 0, 0, 0, 0, 0, 0, 0, 

0,

0, 0, 0, 0, 0, 0, 0, 0], [101, 1045, 2064, 2175, 2013, 3110, 2061, 20625, 

2000,

2061, 9636, 17772, 2074, 2013, 2108, 2105, 2619, 2040, 14977, 1998, 2003, 

8300,

102]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0,

0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1,

1, 1]]}

Here we can see the result of padding: the first element of input_ids is
shorter than the second, so zeros have been added to that element to make
them the same length. These zeros have a corresponding [PAD] token in the
vocabulary, and the set of special tokens also includes the [CLS] and [SEP]
tokens that we encountered earlier:

Special Token [PAD] [UNK] [CLS] [SEP]

Special Token ID 0 100 101 102

Also note that in addition to returning the encoded tweets as input_ids, the
tokenizer returns a list of attention_mask arrays. This is because we do
not want the model to get confused by the additional padding tokens: the
attention mask allows the model to ignore the padded parts of the input.
Figure 2-3 provides a visual explanation of how the input IDs and attention
masks are padded.



Figure 2-3. For each batch, the input sequences are padded to the maximum sequence length in the
batch; the attention mask is used in the model to ignore the padded areas of the input tensors

Once we’ve defined a processing function, we can apply it across all the
splits in the corpus in a single line of code:

emotions_encoded = emotions.map(tokenize, batched=True, batch_size=None)

By default, the map() method operates individually on every example in the
corpus, so setting batched=True will encode the tweets in batches. Because
we’ve set batch_size=None, our tokenize() function will be applied on
the full dataset as a single batch. This ensures that the input tensors and
attention masks have the same shape globally, and we can see that this
operation has added new input_ids and attention_mask columns to the
dataset:

print(emotions_encoded["train"].column_names)

['attention_mask', 'input_ids', 'label', 'text']

NOTE
In later chapters, we’ll see how data collators can be used to dynamically pad the
tensors in each batch. Padding globally will come in handy in the next section, where
we extract a feature matrix from the whole corpus.



Training a Text Classifier
As discussed in Chapter 1, models like DistilBERT are pretrained to predict
masked words in a sequence of text. However, we can’t use these language
models directly for text classification; we need to modify them slightly. To
understand what modifications are necessary, let’s take a look at the
architecture of an encoder-based model like DistilBERT, which is depicted
in Figure 2-4.

Figure 2-4. The architecture used for sequence classification with an encoder-based transformer; it
consists of the model’s pretrained body combined with a custom classification head

First, the text is tokenized and represented as one-hot vectors called token
encodings. The size of the tokenizer vocabulary determines the dimension
of the token encodings, and it usually consists of 20k–200k unique tokens.
Next, these token encodings are converted to token embeddings, which are
vectors living in a lower-dimensional space. The token embeddings are then
passed through the encoder block layers to yield a hidden state for each
input token. For the pretraining objective of language modeling,⁠  each
hidden state is fed to a layer that predicts the masked input tokens. For the
classification task, we replace the language modeling layer with a
classification layer.
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NOTE
In practice, PyTorch skips the step of creating one-hot vectors for token encodings
because multiplying a matrix with a one-hot vector is the same as selecting a column
from the matrix. This can be done directly by getting the column with the token ID from
the matrix. We’ll see this in Chapter 3 when we use the nn.Embedding class.

We have two options to train such a model on our Twitter dataset:

Feature extraction

We use the hidden states as features and just train a classifier on them,
without modifying the pretrained model.

Fine-tuning

We train the whole model end-to-end, which also updates the
parameters of the pretrained model.

In the following sections we explore both options for DistilBERT and
examine their trade-offs.

Transformers as Feature Extractors
Using a transformer as a feature extractor is fairly simple. As shown in
Figure 2-5, we freeze the body’s weights during training and use the hidden
states as features for the classifier. The advantage of this approach is that we
can quickly train a small or shallow model. Such a model could be a neural
classification layer or a method that does not rely on gradients, such as a
random forest. This method is especially convenient if GPUs are
unavailable, since the hidden states only need to be precomputed once.



Figure 2-5. In the feature-based approach, the DistilBERT model is frozen and just provides features
for a classifier

Using pretrained models
We will use another convenient auto class from  Transformers called
AutoModel. Similar to the AutoTokenizer class, AutoModel has a
from_pretrained() method to load the weights of a pretrained model.
Let’s use this method to load the DistilBERT checkpoint:

from transformers import AutoModel

model_ckpt = "distilbert-base-uncased"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = AutoModel.from_pretrained(model_ckpt).to(device)

Here we’ve used PyTorch to check whether a GPU is available or not, and
then chained the PyTorch nn.Module.to() method to the model loader.
This ensures that the model will run on the GPU if we have one. If not, the
model will run on the CPU, which can be considerably slower.

The AutoModel class converts the token encodings to embeddings, and then
feeds them through the encoder stack to return the hidden states. Let’s take
a look at how we can extract these states from our corpus.



INTEROPERABILITY BETWEEN FRAMEWORKS
Although the code in this book is mostly written in PyTorch, 
Transformers provides tight interoperability with TensorFlow and JAX.
This means that you only need to change a few lines of code to load a
pretrained model in your favorite deep learning framework! For
example, we can load DistilBERT in TensorFlow by using the
TFAutoModel class as follows:

from transformers import TFAutoModel

tf_model = TFAutoModel.from_pretrained(model_ckpt)

This interoperability is especially useful when a model is only released
in one framework, but you’d like to use it in another. For example, the
XLM-RoBERTa model that we’ll encounter in Chapter 4 only has
PyTorch weights, so if you try to load it in TensorFlow as we did
before:

tf_xlmr = TFAutoModel.from_pretrained("xlm-roberta-base")

you’ll get an error. In these cases, you can specify a from_pt=True
argument to the TfAutoModel.from_pretrained() function, and the
library will automatically download and convert the PyTorch weights
for you:

tf_xlmr = TFAutoModel.from_pretrained("xlm-roberta-base", from_pt=True)

As you can see, it is very simple to switch between frameworks in 
Transformers! In most cases, you can just add a “TF” prefix to the
classes and you’ll get the equivalent TensorFlow 2.0 classes. When we
use the "pt" string (e.g., in the following section), which is short for
PyTorch, just replace it with "tf", which is short for TensorFlow.

https://oreil.ly/OUMvG


Extracting the last hidden states
To warm up, let’s retrieve the last hidden states for a single string. The first
thing we need to do is encode the string and convert the tokens to PyTorch
tensors. This can be done by providing the return_tensors="pt"
argument to the tokenizer as follows:

text = "this is a test"

inputs = tokenizer(text, return_tensors="pt")

print(f"Input tensor shape: {inputs['input_ids'].size()}")

Input tensor shape: torch.Size([1, 6])

As we can see, the resulting tensor has the shape [batch_size,
n_tokens]. Now that we have the encodings as a tensor, the final step is to
place them on the same device as the model and pass the inputs as follows:

inputs = {k:v.to(device) for k,v in inputs.items()}

with torch.no_grad():

    outputs = model(**inputs)

print(outputs)

BaseModelOutput(last_hidden_state=tensor([[[-0.1565, -0.1862,  0.0528,  ...,

-0.1188,  0.0662,  0.5470],

         [-0.3575, -0.6484, -0.0618,  ..., -0.3040,  0.3508,  0.5221],

         [-0.2772, -0.4459,  0.1818,  ..., -0.0948, -0.0076,  0.9958],

         [-0.2841, -0.3917,  0.3753,  ..., -0.2151, -0.1173,  1.0526],

         [ 0.2661, -0.5094, -0.3180,  ..., -0.4203,  0.0144, -0.2149],

         [ 0.9441,  0.0112, -0.4714,  ...,  0.1439, -0.7288, -0.1619]]],

       device='cuda:0'), hidden_states=None, attentions=None)

Here we’ve used the torch.no_grad() context manager to disable the
automatic calculation of the gradient. This is useful for inference since it
reduces the memory footprint of the computations. Depending on the model
configuration, the output can contain several objects, such as the hidden
states, losses, or attentions, arranged in a class similar to a namedtuple in
Python. In our example, the model output is an instance of
BaseModelOutput, and we can simply access its attributes by name. The



current model returns only one attribute, which is the last hidden state, so
let’s examine its shape:

outputs.last_hidden_state.size()

torch.Size([1, 6, 768])

Looking at the hidden state tensor, we see that it has the shape
[batch_size, n_tokens, hidden_dim]. In other words, a 768-
dimensional vector is returned for each of the 6 input tokens. For
classification tasks, it is common practice to just use the hidden state
associated with the [CLS] token as the input feature. Since this token
appears at the start of each sequence, we can extract it by simply indexing
into outputs.last_hidden_state as follows:

outputs.last_hidden_state[:,0].size()

torch.Size([1, 768])

Now we know how to get the last hidden state for a single string; let’s do
the same for the whole dataset by creating a new hidden_state column
that stores all these vectors. As we did with the tokenizer, we’ll use the
map() method of DatasetDict to extract all the hidden states in one go.
The first thing we need to do is wrap the previous steps in a processing
function:

def extract_hidden_states(batch):

    # Place model inputs on the GPU

    inputs = {k:v.to(device) for k,v in batch.items()

              if k in tokenizer.model_input_names}

    # Extract last hidden states

    with torch.no_grad():

        last_hidden_state = model(**inputs).last_hidden_state

    # Return vector for [CLS] token

    return {"hidden_state": last_hidden_state[:,0].cpu().numpy()}



The only difference between this function and our previous logic is the final
step where we place the final hidden state back on the CPU as a NumPy
array. The map() method requires the processing function to return Python
or NumPy objects when we’re using batched inputs.

Since our model expects tensors as inputs, the next thing to do is convert
the input_ids and attention_mask columns to the "torch" format, as
follows:

emotions_encoded.set_format("torch",

                            columns=["input_ids", "attention_mask", "label"])

We can then go ahead and extract the hidden states across all splits in one
go:

emotions_hidden = emotions_encoded.map(extract_hidden_states, batched=True)

Notice that we did not set batch_size=None in this case, which means the
default batch_size=1000 is used instead. As expected, applying the
extract_​hid⁠den_​states() function has added a new hidden_state
column to our dataset:

emotions_hidden["train"].column_names

['attention_mask', 'hidden_state', 'input_ids', 'label', 'text']

Now that we have the hidden states associated with each tweet, the next
step is to train a classifier on them. To do that, we’ll need a feature matrix—
let’s take a look.

Creating a feature matrix
The preprocessed dataset now contains all the information we need to train
a classifier on it. We will use the hidden states as input features and the
labels as targets. We can easily create the corresponding arrays in the well-
known Scikit-learn format as follows:



import numpy as np

X_train = np.array(emotions_hidden["train"]["hidden_state"])

X_valid = np.array(emotions_hidden["validation"]["hidden_state"])

y_train = np.array(emotions_hidden["train"]["label"])

y_valid = np.array(emotions_hidden["validation"]["label"])

X_train.shape, X_valid.shape

((16000, 768), (2000, 768))

Before we train a model on the hidden states, it’s good practice to perform a
quick check to ensure that they provide a useful representation of the
emotions we want to classify. In the next section, we’ll see how visualizing
the features provides a fast way to achieve this.

Visualizing the training set
Since visualizing the hidden states in 768 dimensions is tricky to say the
least, we’ll use the powerful UMAP algorithm to project the vectors down
to 2D.  Since UMAP works best when the features are scaled to lie in the
[0,1] interval, we’ll first apply a MinMaxScaler and then use the UMAP
implementation from the umap-learn library to reduce the hidden states:

from umap import UMAP

from sklearn.preprocessing import MinMaxScaler

# Scale features to [0,1] range

X_scaled = MinMaxScaler().fit_transform(X_train)

# Initialize and fit UMAP

mapper = UMAP(n_components=2, metric="cosine").fit(X_scaled)

# Create a DataFrame of 2D embeddings

df_emb = pd.DataFrame(mapper.embedding_, columns=["X", "Y"])

df_emb["label"] = y_train

df_emb.head()
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X Y label

0 4.358075 6.140816 0

1 -3.134567 5.329446 0

2 5.152230 2.732643 3

3 -2.519018 3.067250 2

4 -3.364520 3.356613 3

The result is an array with the same number of training samples, but with
only 2 features instead of the 768 we started with! Let’s investigate the
compressed data a little bit further and plot the density of points for each
category separately:

fig, axes = plt.subplots(2, 3, figsize=(7,5))

axes = axes.flatten()

cmaps = ["Greys", "Blues", "Oranges", "Reds", "Purples", "Greens"]

labels = emotions["train"].features["label"].names

for i, (label, cmap) in enumerate(zip(labels, cmaps)):

    df_emb_sub = df_emb.query(f"label == {i}")

    axes[i].hexbin(df_emb_sub["X"], df_emb_sub["Y"], cmap=cmap,

                   gridsize=20, linewidths=(0,))

    axes[i].set_title(label)

    axes[i].set_xticks([]), axes[i].set_yticks([])

plt.tight_layout()

plt.show()



NOTE
These are only projections onto a lower-dimensional space. Just because some
categories overlap does not mean that they are not separable in the original space.
Conversely, if they are separable in the projected space they will be separable in the
original space.

From this plot we can see some clear patterns: the negative feelings such as
sadness, anger, and fear all occupy similar regions with slightly varying
distributions. On the other hand, joy and love are well separated from the
negative emotions and also share a similar space. Finally, surprise is
scattered all over the place. Although we may have hoped for some
separation, this is in no way guaranteed since the model was not trained to
know the difference between these emotions. It only learned them implicitly
by guessing the masked words in texts.



Now that we’ve gained some insight into the features of our dataset, let’s
finally train a model on it!

Training a simple classifier
We’ve seen that the hidden states are somewhat different between the
emotions, although for several of them there is no obvious boundary. Let’s
use these hidden states to train a logistic regression model with Scikit-learn.
Training such a simple model is fast and does not require a GPU:

from sklearn.linear_model import LogisticRegression

# We increase `max_iter` to guarantee convergence

lr_clf = LogisticRegression(max_iter=3000)

lr_clf.fit(X_train, y_train)

lr_clf.score(X_valid, y_valid)

0.633

Looking at the accuracy, it might appear that our model is just a bit better
than random—but since we are dealing with an unbalanced multiclass
dataset, it’s actually significantly better. We can examine whether our model
is any good by comparing it against a simple baseline. In Scikit-learn there
is a DummyClassifier that can be used to build a classifier with simple
heuristics such as always choosing the majority class or always drawing a
random class. In this case the best-performing heuristic is to always choose
the most frequent class, which yields an accuracy of about 35%:

from sklearn.dummy import DummyClassifier

dummy_clf = DummyClassifier(strategy="most_frequent")

dummy_clf.fit(X_train, y_train)

dummy_clf.score(X_valid, y_valid)

0.352

So, our simple classifier with DistilBERT embeddings is significantly better
than our baseline. We can further investigate the performance of the model



by looking at the confusion matrix of the classifier, which tells us the
relationship between the true and predicted labels:

from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix

def plot_confusion_matrix(y_preds, y_true, labels):

    cm = confusion_matrix(y_true, y_preds, normalize="true")

    fig, ax = plt.subplots(figsize=(6, 6))

    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)

    disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)

    plt.title("Normalized confusion matrix")

    plt.show()

y_preds = lr_clf.predict(X_valid)

plot_confusion_matrix(y_preds, y_valid, labels)



We can see that anger and fear are most often confused with sadness,
which agrees with the observation we made when visualizing the
embeddings. Also, love and surprise are frequently mistaken for joy.

In the next section we will explore the fine-tuning approach, which leads to
superior classification performance. It is, however, important to note that
doing this requires more computational resources, such as GPUs, that might
not be available in your organization. In cases like these, a feature-based
approach can be a good compromise between doing traditional machine
learning and deep learning.



Fine-Tuning Transformers
Let’s now explore what it takes to fine-tune a transformer end-to-end. With
the fine-tuning approach we do not use the hidden states as fixed features,
but instead train them as shown in Figure 2-6. This requires the
classification head to be differentiable, which is why this method usually
uses a neural network for classification.

Figure 2-6. When using the fine-tuning approach the whole DistilBERT model is trained along with
the classification head

Training the hidden states that serve as inputs to the classification model
will help us avoid the problem of working with data that may not be well
suited for the classification task. Instead, the initial hidden states adapt
during training to decrease the model loss and thus increase its
performance.

We’ll be using the Trainer API from  Transformers to simplify the
training loop. Let’s look at the ingredients we need to set one up!



Loading a pretrained model
The first thing we need is a pretrained DistilBERT model like the one we
used in the feature-based approach. The only slight modification is that we
use the AutoModelForSequenceClassification model instead of
AutoModel. The difference is that the
AutoModelForSequenceClassification model has a classification head
on top of the pretrained model outputs, which can be easily trained with the
base model. We just need to specify how many labels the model has to
predict (six in our case), since this dictates the number of outputs the
classification head has:

from transformers import AutoModelForSequenceClassification

num_labels = 6

model = (AutoModelForSequenceClassification

         .from_pretrained(model_ckpt, num_labels=num_labels)

         .to(device))

You will see a warning that some parts of the model are randomly
initialized. This is normal since the classification head has not yet been
trained. The next step is to define the metrics that we’ll use to evaluate our
model’s performance during fine-tuning.

Defining the performance metrics
To monitor metrics during training, we need to define a
compute_metrics() function for the Trainer. This function receives an
EvalPrediction object (which is a named tuple with predictions and
label_ids attributes) and needs to return a dictionary that maps each
metric’s name to its value. For our application, we’ll compute the F -score
and the accuracy of the model as follows:

from sklearn.metrics import accuracy_score, f1_score

def compute_metrics(pred):

    labels = pred.label_ids

    preds = pred.predictions.argmax(-1)
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    f1 = f1_score(labels, preds, average="weighted")

    acc = accuracy_score(labels, preds)

    return {"accuracy": acc, "f1": f1}

With the dataset and metrics ready, we just have two final things to take
care of before we define the Trainer class:

1. Log in to our account on the Hugging Face Hub. This will allow us
to push our fine-tuned model to our account on the Hub and share
it with the community.

2. Define all the hyperparameters for the training run.

We’ll tackle these steps in the next section.

Training the model
If you’re running this code in a Jupyter notebook, you can log in to the Hub
with the following helper function:

from huggingface_hub import notebook_login

notebook_login()

This will display a widget in which you can enter your username and
password, or an access token with write privileges. You can find details on
how to create access tokens in the Hub documentation. If you’re working in
the terminal, you can log in by running the following command:

$ huggingface-cli login

To define the training parameters, we use the TrainingArguments class.
This class stores a lot of information and gives you fine-grained control
over the training and evaluation. The most important argument to specify is
output_dir, which is where all the artifacts from training are stored. Here
is an example of TrainingArguments in all its glory:

https://oreil.ly/IRkN1


from transformers import Trainer, TrainingArguments

batch_size = 64

logging_steps = len(emotions_encoded["train"]) // batch_size

model_name = f"{model_ckpt}-finetuned-emotion"

training_args = TrainingArguments(output_dir=model_name,

                                  num_train_epochs=2,

                                  learning_rate=2e-5,

                                  per_device_train_batch_size=batch_size,

                                  per_device_eval_batch_size=batch_size,

                                  weight_decay=0.01,

                                  evaluation_strategy="epoch",

                                  disable_tqdm=False,

                                  logging_steps=logging_steps,

                                  push_to_hub=True,

                                  log_level="error")

Here we also set the batch size, learning rate, and number of epochs, and
specify to load the best model at the end of the training run. With this final
ingredient, we can instantiate and fine-tune our model with the Trainer:

from transformers import Trainer

trainer = Trainer(model=model, args=training_args,

                  compute_metrics=compute_metrics,

                  train_dataset=emotions_encoded["train"],

                  eval_dataset=emotions_encoded["validation"],

                  tokenizer=tokenizer)

trainer.train();

Epoch Training Loss Validation Loss Accuracy F1

1 0.840900 0.327445 0.896500 0.892285

2 0.255000 0.220472 0.922500 0.922550

Looking at the logs, we can see that our model has an F -score on the
validation set of around 92%—this is a significant improvement over the
feature-based approach!

We can take a more detailed look at the training metrics by calculating the
confusion matrix. To visualize the confusion matrix, we first need to get the
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predictions on the validation set. The predict() method of the Trainer
class returns several useful objects we can use for evaluation:

preds_output = trainer.predict(emotions_encoded["validation"])

The output of the predict() method is a PredictionOutput object that
contains arrays of predictions and label_ids, along with the metrics we
passed to the trainer. For example, the metrics on the validation set can be
accessed as follows:

preds_output.metrics

{'test_loss': 0.22047173976898193,

 'test_accuracy': 0.9225,

 'test_f1': 0.9225500751072866,

 'test_runtime': 1.6357,

 'test_samples_per_second': 1222.725,

 'test_steps_per_second': 19.564}

It also contains the raw predictions for each class. We can decode the
predictions greedily using np.argmax(). This yields the predicted labels
and has the same format as the labels returned by the Scikit-learn models in
the feature-based approach:

y_preds = np.argmax(preds_output.predictions, axis=1)

With the predictions, we can plot the confusion matrix again:

plot_confusion_matrix(y_preds, y_valid, labels)



This is much closer to the ideal diagonal confusion matrix. The love
category is still often confused with joy, which seems natural. surprise is
also frequently mistaken for joy, or confused with fear. Overall the
performance of the model seems quite good, but before we call it a day,
let’s dive a little deeper into the types of errors our model is likely to make.



FINE-TUNING WITH KERAS
If you are using TensorFlow, it’s also possible to fine-tune your models
using the Keras API. The main difference from the PyTorch API is that
there is no Trainer class, since Keras models already provide a built-in
fit() method. To see how this works, let’s first load DistilBERT as a
TensorFlow model:

from transformers import TFAutoModelForSequenceClassification

tf_model = (TFAutoModelForSequenceClassification

            .from_pretrained(model_ckpt, num_labels=num_labels))

Next, we’ll convert our datasets into the tf.data.Dataset format.
Because we have already padded our tokenized inputs, we can do this
conversion easily by applying the to_tf_dataset() method to
emotions_encoded:

# The column names to convert to TensorFlow tensors

tokenizer_columns = tokenizer.model_input_names

tf_train_dataset = emotions_encoded["train"].to_tf_dataset(

    columns=tokenizer_columns, label_cols=["label"], shuffle=True,

    batch_size=batch_size)

tf_eval_dataset = emotions_encoded["validation"].to_tf_dataset(

    columns=tokenizer_columns, label_cols=["label"], shuffle=False,

    batch_size=batch_size)

Here we’ve also shuffled the training set, and defined the batch size for
it and the validation set. The last thing to do is compile and train the
model:

import tensorflow as tf

tf_model.compile(

    optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5),

    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

    metrics=tf.metrics.SparseCategoricalAccuracy())



tf_model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=2)

Error analysis
Before moving on, we should investigate our model’s predictions a little bit
further. A simple yet powerful technique is to sort the validation samples by
the model loss. When we pass the label during the forward pass, the loss is
automatically calculated and returned. Here’s a function that returns the loss
along with the predicted label:

from torch.nn.functional import cross_entropy

def forward_pass_with_label(batch):

    # Place all input tensors on the same device as the model

    inputs = {k:v.to(device) for k,v in batch.items()

              if k in tokenizer.model_input_names}

    with torch.no_grad():

        output = model(**inputs)

        pred_label = torch.argmax(output.logits, axis=-1)

        loss = cross_entropy(output.logits, batch["label"].to(device),

                             reduction="none")

    # Place outputs on CPU for compatibility with other dataset columns

    return {"loss": loss.cpu().numpy(),

            "predicted_label": pred_label.cpu().numpy()}

Using the map() method once more, we can apply this function to get the
losses for all the samples:

# Convert our dataset back to PyTorch tensors

emotions_encoded.set_format("torch",

                            columns=["input_ids", "attention_mask", "label"])

# Compute loss values

emotions_encoded["validation"] = emotions_encoded["validation"].map(

    forward_pass_with_label, batched=True, batch_size=16)

Finally, we create a DataFrame with the texts, losses, and predicted/true
labels:



emotions_encoded.set_format("pandas")

cols = ["text", "label", "predicted_label", "loss"]

df_test = emotions_encoded["validation"][:][cols]

df_test["label"] = df_test["label"].apply(label_int2str)

df_test["predicted_label"] = (df_test["predicted_label"]

                              .apply(label_int2str))

We can now easily sort emotions_encoded by the losses in either
ascending or descending order. The goal of this exercise is to detect one of
the following:

Wrong labels

Every process that adds labels to data can be flawed. Annotators can
make mistakes or disagree, while labels that are inferred from other
features can be wrong. If it was easy to automatically annotate data,
then we would not need a model to do it. Thus, it is normal that there
are some wrongly labeled examples. With this approach, we can quickly
find and correct them.

Quirks of the dataset

Datasets in the real world are always a bit messy. When working with
text, special characters or strings in the inputs can have a big impact on
the model’s predictions. Inspecting the model’s weakest predictions can
help identify such features, and cleaning the data or injecting similar
examples can make the model more robust.

Let’s first have a look at the data samples with the highest losses:

df_test.sort_values("loss", ascending=False).head(10)



text label predicted_label loss

i feel that he was being
overshadowed by the supporting
characters

love sadness 5.704531

i called myself pro life and voted
for perry without knowing this
information i would feel betrayed
but moreover i would feel that i
had betrayed god by supporting a
man who mandated a barely year
old vaccine for little girls putting
them in danger to financially
support people close to him

joy sadness 5.484461

i guess i feel betrayed because i
admired him so much and for
someone to do this to his wife and
kids just goes beyond the pale

joy sadness 5.434768

i feel badly about reneging on my
commitment to bring donuts to the
faithful at holy family catholic
church in columbus ohio

love sadness 5.257482

i as representative of everything
thats wrong with corporate america
and feel that sending him to
washington is a ludicrous idea

surprise sadness 4.827708

i guess this is a memoir so it feels
like that should be fine too except i
dont know something about such a
deep amount of self absorption
made me feel uncomfortable

joy fear 4.713047

i am going to several holiday
parties and i can t wait to feel super
awkward i am going to several
holiday parties and i can t wait to
feel super awkward a href http
badplaydate

joy sadness 4.704955

i felt ashamed of these feelings and
was scared because i knew that
something wrong with me and
thought i might be gay

fear sadness 4.656096

i guess we would naturally feel a
sense of loneliness even the people

anger sadness 4.593202



text label predicted_label loss
who said unkind things to you
might be missed

im lazy my characters fall into
categories of smug and or blas
people and their foils people who
feel inconvenienced by smug and
or blas people

joy fear 4.311287

We can clearly see that the model predicted some of the labels incorrectly.
On the other hand, it seems that there are quite a few examples with no
clear class, which might be either mislabeled or require a new class
altogether. In particular, joy seems to be mislabeled several times. With this
information we can refine the dataset, which often can lead to as big a
performance gain (or more) as having more data or larger models!

When looking at the samples with the lowest losses, we observe that the
model seems to be most confident when predicting the sadness class. Deep
learning models are exceptionally good at finding and exploiting shortcuts
to get to a prediction. For this reason, it is also worth investing time into
looking at the examples that the model is most confident about, so that we
can be confident that the model does not improperly exploit certain features
of the text. So, let’s also look at the predictions with the smallest loss:

df_test.sort_values("loss", ascending=True).head(10)



text label predicted_label loss

i feel try to tell me im ungrateful
tell me im basically the worst
daughter sister in the world

sadness sadness 0.017331

im kinda relieve but at the same
time i feel disheartened

sadness sadness 0.017392

i and feel quite ungrateful for it but
i m looking forward to summer and
warmth and light nights

sadness sadness 0.017400

i remember feeling disheartened
one day when we were studying a
poem really dissecting it verse by
verse stanza by stanza

sadness sadness 0.017461

i feel like an ungrateful asshole sadness sadness 0.017485

i leave the meeting feeling more
than a little disheartened

sadness sadness 0.017670

i am feeling a little disheartened sadness sadness 0.017685

i feel like i deserve to be broke
with how frivolous i am

sadness sadness 0.017888

i started this blog with pure
intentions i must confess to starting
to feel a little disheartened lately
by the knowledge that there doesnt
seem to be anybody reading it

sadness sadness 0.017899

i feel so ungrateful to be wishing
this pregnancy over now

sadness sadness 0.017913

We now know that the joy is sometimes mislabeled and that the model is
most confident about predicting the label sadness. With this information
we can make targeted improvements to our dataset, and also keep an eye on
the class the model seems to be very confident about.

The last step before serving the trained model is to save it for later usage.
 Transformers allows us to do this in a few steps, which we’ll show you

in the next section.



Saving and sharing the model
The NLP community benefits greatly from sharing pretrained and fine-
tuned models, and everybody can share their models with others via the
Hugging Face Hub. Any community-generated model can be downloaded
from the Hub just like we downloaded the DistilBERT model. With the
Trainer API, saving and sharing a model is simple:

trainer.push_to_hub(commit_message="Training completed!")

We can also use the fine-tuned model to make predictions on new tweets.
Since we’ve pushed our model to the Hub, we can now use it with the
pipeline() function, just like we did in Chapter 1. First, let’s load the
pipeline:

from transformers import pipeline

# Change `transformersbook` to your Hub username

model_id = "transformersbook/distilbert-base-uncased-finetuned-emotion"

classifier = pipeline("text-classification", model=model_id)

Then let’s test the pipeline with a sample tweet:

custom_tweet = "I saw a movie today and it was really good."

preds = classifier(custom_tweet, return_all_scores=True)

Finally, we can plot the probability for each class in a bar plot. Clearly, the
model estimates that the most likely class is joy, which appears to be
reasonable given the tweet:

preds_df = pd.DataFrame(preds[0])

plt.bar(labels, 100 * preds_df["score"], color='C0')

plt.title(f'"{custom_tweet}"')

plt.ylabel("Class probability (%)")

plt.show()



Conclusion
Congratulations, you now know how to train a transformer model to
classify the emotions in tweets! We have seen two complementary
approaches based on features and fine-tuning, and investigated their
strengths and weaknesses.

However, this is just the first step in building a real-world application with
transformer models, and we have a lot more ground to cover. Here’s a list of
challenges you’re likely to experience in your NLP journey:

My boss wants my model in production yesterday!

In most applications, your model doesn’t just sit somewhere gathering
dust—you want to make sure it’s serving predictions! When a model is
pushed to the Hub, an inference endpoint is automatically created that
can be called with HTTP requests. We recommend checking out the
documentation of the Inference API if you want to learn more.

https://oreil.ly/XACF5


My users want faster predictions!

We’ve already seen one approach to this problem: using DistilBERT. In
Chapter 8 we’ll dive into knowledge distillation (the process by which
DistilBERT was created), along with other tricks to speed up your
transformer models.

Can your model also do X?

As we’ve alluded to in this chapter, transformers are extremely
versatile. In the rest of the book we will be exploring a range of tasks,
like question answering and named entity recognition, all using the
same basic architecture.

None of my texts are in English!

It turns out that transformers also come in a multilingual variety, and
we’ll use them in Chapter 4 to tackle several languages at once.

I don’t have any labels!

If there is very little labeled data available, fine-tuning may not be an
option. In Chapter 9, we’ll explore some techniques to deal with this
situation.

Now that we’ve seen what’s involved in training and sharing a transformer,
in the next chapter we’ll explore implementing our very own transformer
model from scratch.
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Chapter 3. Transformer
Anatomy

In Chapter 2, we saw what it takes to fine-tune and evaluate a transformer.
Now let’s take a look at how they work under the hood. In this chapter we’ll
explore the main building blocks of transformer models and how to
implement them using PyTorch. We’ll also provide guidance on how to do
the same in TensorFlow. We’ll first focus on building the attention
mechanism, and then add the bits and pieces necessary to make a
transformer encoder work. We’ll also have a brief look at the architectural
differences between the encoder and decoder modules. By the end of this
chapter you will be able to implement a simple transformer model yourself!

While a deep technical understanding of the Transformer architecture is
generally not necessary to use  Transformers and fine-tune models for
your use case, it can be helpful for comprehending and navigating the
limitations of transformers and using them in new domains.

This chapter also introduces a taxonomy of transformers to help you
understand the zoo of models that have emerged in recent years. Before
diving into the code, let’s start with an overview of the original architecture
that kick-started the transformer revolution.

The Transformer Architecture
As we saw in Chapter 1, the original Transformer is based on the encoder-
decoder architecture that is widely used for tasks like machine translation,
where a sequence of words is translated from one language to another. This
architecture consists of two components:

Encoder



Converts an input sequence of tokens into a sequence of embedding
vectors, often called the hidden state or context

Decoder

Uses the encoder’s hidden state to iteratively generate an output
sequence of tokens, one token at a time

As illustrated in Figure 3-1, the encoder and decoder are themselves
composed of several building blocks.

Figure 3-1. Encoder-decoder architecture of the transformer, with the encoder shown in the upper
half of the figure and the decoder in the lower half

We’ll look at each of the components in detail shortly, but we can already
see a few things in Figure 3-1 that characterize the Transformer
architecture:

The input text is tokenized and converted to token embeddings
using the techniques we encountered in Chapter 2. Since the
attention mechanism is not aware of the relative positions of the
tokens, we need a way to inject some information about token
positions into the input to model the sequential nature of text. The



token embeddings are thus combined with positional embeddings
that contain positional information for each token.

The encoder is composed of a stack of encoder layers or “blocks,”
which is analogous to stacking convolutional layers in computer
vision. The same is true of the decoder, which has its own stack of
decoder layers.

The encoder’s output is fed to each decoder layer, and the decoder
then generates a prediction for the most probable next token in the
sequence. The output of this step is then fed back into the decoder
to generate the next token, and so on until a special end-of-
sequence (EOS) token is reached. In the example from Figure 3-1,
imagine the decoder has already predicted “Die” and “Zeit”. Now
it gets these two as an input as well as all the encoder’s outputs to
predict the next token, “fliegt”. In the next step the decoder gets
“fliegt” as an additional input. We repeat the process until the
decoder predicts the EOS token or we reached a maximum length.

The Transformer architecture was originally designed for sequence-to-
sequence tasks like machine translation, but both the encoder and decoder
blocks were soon adapted as standalone models. Although there are
hundreds of different transformer models, most of them belong to one of
three types:

Encoder-only

These models convert an input sequence of text into a rich numerical
representation that is well suited for tasks like text classification or
named entity recognition. BERT and its variants, like RoBERTa and
DistilBERT, belong to this class of architectures. The representation
computed for a given token in this architecture depends both on the left
(before the token) and the right (after the token) contexts. This is often
called bidirectional attention.

Decoder-only



Given a prompt of text like “Thanks for lunch, I had a…” these models
will auto-complete the sequence by iteratively predicting the most
probable next word. The family of GPT models belong to this class. The
representation computed for a given token in this architecture depends
only on the left context. This is often called causal or autoregressive
attention.

Encoder-decoder

These are used for modeling complex mappings from one sequence of
text to another; they’re suitable for machine translation and
summarization tasks. In addition to the Transformer architecture, which
as we’ve seen combines an encoder and a decoder, the BART and T5
models belong to this class.

NOTE
In reality, the distinction between applications for decoder-only versus encoder-only
architectures is a bit blurry. For example, decoder-only models like those in the GPT
family can be primed for tasks like translation that are conventionally thought of as
sequence-to-sequence tasks. Similarly, encoder-only models like BERT can be applied
to summarization tasks that are usually associated with encoder-decoder or decoder-only
models.

Now that you have a high-level understanding of the Transformer
architecture, let’s take a closer look at the inner workings of the encoder.

The Encoder
As we saw earlier, the transformer’s encoder consists of many encoder
layers stacked next to each other. As illustrated in Figure 3-2, each encoder
layer receives a sequence of embeddings and feeds them through the
following sublayers:

A multi-head self-attention layer

1



A fully connected feed-forward layer that is applied to each input
embedding

The output embeddings of each encoder layer have the same size as the
inputs, and we’ll soon see that the main role of the encoder stack is to
“update” the input embeddings to produce representations that encode some
contextual information in the sequence. For example, the word “apple” will
be updated to be more “company-like” and less “fruit-like” if the words
“keynote” or “phone” are close to it.

Figure 3-2. Zooming into the encoder layer

Each of these sublayers also uses skip connections and layer normalization,
which are standard tricks to train deep neural networks effectively. But to
truly understand what makes a transformer work, we have to go deeper.
Let’s start with the most important building block: the self-attention layer.



Self-Attention
As we discussed in Chapter 1, attention is a mechanism that allows neural
networks to assign a different amount of weight or “attention” to each
element in a sequence. For text sequences, the elements are token
embeddings like the ones we encountered in Chapter 2, where each token is
mapped to a vector of some fixed dimension. For example, in BERT each
token is represented as a 768-dimensional vector. The “self” part of self-
attention refers to the fact that these weights are computed for all hidden
states in the same set—for example, all the hidden states of the encoder. By
contrast, the attention mechanism associated with recurrent models involves
computing the relevance of each encoder hidden state to the decoder hidden
state at a given decoding timestep.

The main idea behind self-attention is that instead of using a fixed
embedding for each token, we can use the whole sequence to compute a
weighted average of each embedding. Another way to formulate this is to
say that given a sequence of token embeddings x1, ..., xn, self-attention
produces a sequence of new embeddings x′

1, ..., x′
n where each x′

i is a linear
combination of all the xj:

x′
i =

n

∑
j=1

wjixj

The coefficients wji are called attention weights and are normalized so that
∑j wji = 1. To see why averaging the token embeddings might be a good
idea, consider what comes to mind when you see the word “flies”. You
might think of annoying insects, but if you were given more context, like
“time flies like an arrow”, then you would realize that “flies” refers to the
verb instead. Similarly, we can create a representation for “flies” that
incorporates this context by combining all the token embeddings in
different proportions, perhaps by assigning a larger weight wji to the token
embeddings for “time” and “arrow”. Embeddings that are generated in this
way are called contextualized embeddings and predate the invention of
transformers in language models like ELMo.  A diagram of the process is2



shown in Figure 3-3, where we illustrate how, depending on the context,
two different representations for “flies” can be generated via self-attention.

Figure 3-3. Diagram showing how self-attention updates raw token embeddings (upper) into
contextualized embeddings (lower) to create representations that incorporate information from the

whole sequence

Let’s now take a look at how we can calculate the attention weights.

Scaled dot-product attention
There are several ways to implement a self-attention layer, but the most
common one is scaled dot-product attention, from the paper introducing the
Transformer architecture.  There are four main steps required to implement
this mechanism:

1. Project each token embedding into three vectors called query, key,
and value.

2. Compute attention scores. We determine how much the query and
key vectors relate to each other using a similarity function. As the
name suggests, the similarity function for scaled dot-product

3



attention is the dot product, computed efficiently using matrix
multiplication of the embeddings. Queries and keys that are similar
will have a large dot product, while those that don’t share much in
common will have little to no overlap. The outputs from this step
are called the attention scores, and for a sequence with n input
tokens there is a corresponding n × n matrix of attention scores.

3. Compute attention weights. Dot products can in general produce
arbitrarily large numbers, which can destabilize the training
process. To handle this, the attention scores are first multiplied by a
scaling factor to normalize their variance and then normalized with
a softmax to ensure all the column values sum to 1. The resulting n
× n matrix now contains all the attention weights, wji.

4. Update the token embeddings. Once the attention weights are
computed, we multiply them by the value vector v1, ..., vn to
obtain an updated representation for embedding x′

i = ∑j wjivj.

We can visualize how the attention weights are calculated with a nifty
library called BertViz for Jupyter. This library provides several functions
that can be used to visualize different aspects of attention in transformer
models. To visualize the attention weights, we can use the neuron_view
module, which traces the computation of the weights to show how the query
and key vectors are combined to produce the final weight. Since BertViz
needs to tap into the attention layers of the model, we’ll instantiate our
BERT checkpoint with the model class from BertViz and then use the
show() function to generate the interactive visualization for a specific
encoder layer and attention head. Note that you need to click the “+” on the
left to activate the attention visualization:

from transformers import AutoTokenizer

from bertviz.transformers_neuron_view import BertModel

from bertviz.neuron_view import show

model_ckpt = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

model = BertModel.from_pretrained(model_ckpt)

https://oreil.ly/eQK3I
https://oreil.ly/eQK3I


text = "time flies like an arrow"

show(model, "bert", tokenizer, text, display_mode="light", layer=0, head=8)

From the visualization, we can see the values of the query and key vectors
are represented as vertical bands, where the intensity of each band
corresponds to the magnitude. The connecting lines are weighted according
to the attention between the tokens, and we can see that the query vector for
“flies” has the strongest overlap with the key vector for “arrow”.

DEMYSTIFYING QUERIES, KEYS, AND VALUES
The notion of query, key, and value vectors may seem a bit cryptic the
first time you encounter them. Their names were inspired by
information retrieval systems, but we can motivate their meaning with a
simple analogy. Imagine that you’re at the supermarket buying all the
ingredients you need for your dinner. You have the dish’s recipe, and
each of the required ingredients can be thought of as a query. As you
scan the shelves, you look at the labels (keys) and check whether they
match an ingredient on your list (similarity function). If you have a
match, then you take the item (value) from the shelf.

In this analogy, you only get one grocery item for every label that
matches the ingredient. Self-attention is a more abstract and “smooth”
version of this: every label in the supermarket matches the ingredient to
the extent to which each key matches the query. So if your list includes
a dozen eggs, then you might end up grabbing 10 eggs, an omelette, and
a chicken wing.

Let’s take a look at this process in more detail by implementing the diagram
of operations to compute scaled dot-product attention, as shown in



Figure 3-4.

Figure 3-4. Operations in scaled dot-product attention

We will use PyTorch to implement the Transformer architecture in this
chapter, but the steps in TensorFlow are analogous. We provide a mapping
between the most important functions in the two frameworks in Table 3-1.

Table 3-1. PyTorch and TensorFlow (Keras) classes and methods used in
this chapter

PyTorch TensorFlow (Keras) Creates/implements

nn.Linear keras.layers.Dense A dense neural network layer

nn.Module keras.layers.Layer The building blocks of models

nn.Dropout keras.layers.Dropout A dropout layer

nn.LayerNorm keras.layers.LayerNormaliz

ation

Layer normalization

nn.Embedding keras.layers.Embedding An embedding layer

nn.GELU keras.activations.gelu The Gaussian Error Linear Unit activation
function

nn.bmm tf.matmul Batched matrix multiplication

model.forward model.call The model’s forward pass

The first thing we need to do is tokenize the text, so let’s use our tokenizer
to extract the input IDs:

inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False)

inputs.input_ids



tensor([[ 2051, 10029,  2066,  2019,  8612]])

As we saw in Chapter 2, each token in the sentence has been mapped to a
unique ID in the tokenizer’s vocabulary. To keep things simple, we’ve also
excluded the [CLS] and [SEP] tokens by setting
add_special_tokens=False. Next, we need to create some dense
embeddings. Dense in this context means that each entry in the embeddings
contains a nonzero value. In contrast, the one-hot encodings we saw in
Chapter 2 are sparse, since all entries except one are zero. In PyTorch, we
can do this by using a torch.nn.Embedding layer that acts as a lookup
table for each input ID:

from torch import nn

from transformers import AutoConfig

config = AutoConfig.from_pretrained(model_ckpt)

token_emb = nn.Embedding(config.vocab_size, config.hidden_size)

token_emb

Embedding(30522, 768)

Here we’ve used the AutoConfig class to load the config.json file
associated with the bert-base-uncased checkpoint. In  Transformers,
every checkpoint is assigned a configuration file that specifies various
hyperparameters like vocab_size and hidden_size, which in our example
shows us that each input ID will be mapped to one of the 30,522 embedding
vectors stored in nn.Embedding, each with a size of 768. The AutoConfig
class also stores additional metadata, such as the label names, which are
used to format the model’s predictions.

Note that the token embeddings at this point are independent of their
context. This means that homonyms (words that have the same spelling but
different meaning), like “flies” in the previous example, have the same
representation. The role of the subsequent attention layers will be to mix
these token embeddings to disambiguate and inform the representation of
each token with the content of its context.



Now that we have our lookup table, we can generate the embeddings by
feeding in the input IDs:

inputs_embeds = token_emb(inputs.input_ids)

inputs_embeds.size()

torch.Size([1, 5, 768])

This has given us a tensor of shape [batch_size, seq_len,
hidden_dim], just like we saw in Chapter 2. We’ll postpone the positional
encodings, so the next step is to create the query, key, and value vectors and
calculate the attention scores using the dot product as the similarity
function:

import torch

from math import sqrt

query = key = value = inputs_embeds

dim_k = key.size(-1)

scores = torch.bmm(query, key.transpose(1,2)) / sqrt(dim_k)

scores.size()

torch.Size([1, 5, 5])

This has created a 5 × 5 matrix of attention scores per sample in the batch.
We’ll see later that the query, key, and value vectors are generated by
applying independent weight matrices WQ,K,V  to the embeddings, but for
now we’ve kept them equal for simplicity. In scaled dot-product attention,
the dot products are scaled by the size of the embedding vectors so that we
don’t get too many large numbers during training that can cause the softmax
we will apply next to saturate.



NOTE
The torch.bmm() function performs a batch matrix-matrix product that simplifies the
computation of the attention scores where the query and key vectors have the shape
[batch_size, seq_len, hidden_dim]. If we ignored the batch dimension we could
calculate the dot product between each query and key vector by simply transposing the
key tensor to have the shape [hidden_dim, seq_len] and then using the matrix
product to collect all the dot products in a [seq_len, seq_len] matrix. Since we want
to do this for all sequences in the batch independently, we use torch.bmm(), which
takes two batches of matrices and multiplies each matrix from the first batch with the
corresponding matrix in the second batch.

Let’s apply the softmax now:

import torch.nn.functional as F

weights = F.softmax(scores, dim=-1)

weights.sum(dim=-1)

tensor([[1., 1., 1., 1., 1.]], grad_fn=<SumBackward1>)

The final step is to multiply the attention weights by the values:

attn_outputs = torch.bmm(weights, value)

attn_outputs.shape

torch.Size([1, 5, 768])

And that’s it—we’ve gone through all the steps to implement a simplified
form of self-attention! Notice that the whole process is just two matrix
multiplications and a softmax, so you can think of “self-attention” as just a
fancy form of averaging.

Let’s wrap these steps into a function that we can use later:

def scaled_dot_product_attention(query, key, value):

    dim_k = query.size(-1)

    scores = torch.bmm(query, key.transpose(1, 2)) / sqrt(dim_k)



    weights = F.softmax(scores, dim=-1)

    return torch.bmm(weights, value)

Our attention mechanism with equal query and key vectors will assign a
very large score to identical words in the context, and in particular to the
current word itself: the dot product of a query with itself is always 1. But in
practice, the meaning of a word will be better informed by complementary
words in the context than by identical words—for example, the meaning of
“flies” is better defined by incorporating information from “time” and
“arrow” than by another mention of “flies”. How can we promote this
behavior?

Let’s allow the model to create a different set of vectors for the query, key,
and value of a token by using three different linear projections to project
our initial token vector into three different spaces.

Multi-headed attention
In our simple example, we only used the embeddings “as is” to compute the
attention scores and weights, but that’s far from the whole story. In practice,
the self-attention layer applies three independent linear transformations to
each embedding to generate the query, key, and value vectors. These
transformations project the embeddings and each projection carries its own
set of learnable parameters, which allows the self-attention layer to focus on
different semantic aspects of the sequence.

It also turns out to be beneficial to have multiple sets of linear projections,
each one representing a so-called attention head. The resulting multi-head
attention layer is illustrated in Figure 3-5. But why do we need more than
one attention head? The reason is that the softmax of one head tends to
focus on mostly one aspect of similarity. Having several heads allows the
model to focus on several aspects at once. For instance, one head can focus
on subject-verb interaction, whereas another finds nearby adjectives.
Obviously we don’t handcraft these relations into the model, and they are
fully learned from the data. If you are familiar with computer vision models
you might see the resemblance to filters in convolutional neural networks,



where one filter can be responsible for detecting faces and another one finds
wheels of cars in images.

Figure 3-5. Multi-head attention

Let’s implement this layer by first coding up a single attention head:

class AttentionHead(nn.Module):

    def __init__(self, embed_dim, head_dim):

        super().__init__()

        self.q = nn.Linear(embed_dim, head_dim)

        self.k = nn.Linear(embed_dim, head_dim)

        self.v = nn.Linear(embed_dim, head_dim)

    def forward(self, hidden_state):

        attn_outputs = scaled_dot_product_attention(

            self.q(hidden_state), self.k(hidden_state), self.v(hidden_state))

        return attn_outputs

Here we’ve initialized three independent linear layers that apply matrix
multiplication to the embedding vectors to produce tensors of shape
[batch_size, seq_len, head_dim], where head_dim is the number of
dimensions we are projecting into. Although head_dim does not have to be
smaller than the number of embedding dimensions of the tokens
(embed_dim), in practice it is chosen to be a multiple of embed_dim so that
the computation across each head is constant. For example, BERT has 12
attention heads, so the dimension of each head is 768/12 = 64.



Now that we have a single attention head, we can concatenate the outputs of
each one to implement the full multi-head attention layer:

class MultiHeadAttention(nn.Module):

    def __init__(self, config):

        super().__init__()

        embed_dim = config.hidden_size

        num_heads = config.num_attention_heads

        head_dim = embed_dim // num_heads

        self.heads = nn.ModuleList(

            [AttentionHead(embed_dim, head_dim) for _ in range(num_heads)]

        )

        self.output_linear = nn.Linear(embed_dim, embed_dim)

    def forward(self, hidden_state):

        x = torch.cat([h(hidden_state) for h in self.heads], dim=-1)

        x = self.output_linear(x)

        return x

Notice that the concatenated output from the attention heads is also fed
through a final linear layer to produce an output tensor of shape
[batch_size, seq_len, hidden_dim] that is suitable for the feed-
forward network downstream. To confirm, let’s see if the multi-head
attention layer produces the expected shape of our inputs. We pass the
configuration we loaded earlier from the pretrained BERT model when
initializing the MultiHeadAttention module. This ensures that we use the
same settings as BERT:

multihead_attn = MultiHeadAttention(config)

attn_output = multihead_attn(inputs_embeds)

attn_output.size()

torch.Size([1, 5, 768])

It works! To wrap up this section on attention, let’s use BertViz again to
visualize the attention for two different uses of the word “flies”. Here we
can use the head_view() function from BertViz by computing the
attentions of a pretrained checkpoint and indicating where the sentence
boundary lies:



from bertviz import head_view

from transformers import AutoModel

model = AutoModel.from_pretrained(model_ckpt, output_attentions=True)

sentence_a = "time flies like an arrow"

sentence_b = "fruit flies like a banana"

viz_inputs = tokenizer(sentence_a, sentence_b, return_tensors='pt')

attention = model(**viz_inputs).attentions

sentence_b_start = (viz_inputs.token_type_ids == 0).sum(dim=1)

tokens = tokenizer.convert_ids_to_tokens(viz_inputs.input_ids[0])

head_view(attention, tokens, sentence_b_start, heads=[8])

This visualization shows the attention weights as lines connecting the token
whose embedding is getting updated (left) with every word that is being
attended to (right). The intensity of the lines indicates the strength of the
attention weights, with dark lines representing values close to 1, and faint
lines representing values close to 0.

In this example, the input consists of two sentences and the [CLS] and
[SEP] tokens are the special tokens in BERT’s tokenizer that we
encountered in Chapter 2. One thing we can see from the visualization is
that the attention weights are strongest between words that belong to the
same sentence, which suggests BERT can tell that it should attend to words
in the same sentence. However, for the word “flies” we can see that BERT
has identified “arrow” as important in the first sentence and “fruit” and
“banana” in the second. These attention weights allow the model to



distinguish the use of “flies” as a verb or noun, depending on the context in
which it occurs!

Now that we’ve covered attention, let’s take a look at implementing the
missing piece of the encoder layer: position-wise feed-forward networks.

The Feed-Forward Layer
The feed-forward sublayer in the encoder and decoder is just a simple two-
layer fully connected neural network, but with a twist: instead of processing
the whole sequence of embeddings as a single vector, it processes each
embedding independently. For this reason, this layer is often referred to as a
position-wise feed-forward layer. You may also see it referred to as a one-
dimensional convolution with a kernel size of one, typically by people with
a computer vision background (e.g., the OpenAI GPT codebase uses this
nomenclature). A rule of thumb from the literature is for the hidden size of
the first layer to be four times the size of the embeddings, and a GELU
activation function is most commonly used. This is where most of the
capacity and memorization is hypothesized to happen, and it’s the part that
is most often scaled when scaling up the models. We can implement this as
a simple nn.Module as follows:

class FeedForward(nn.Module):

    def __init__(self, config):

        super().__init__()

        self.linear_1 = nn.Linear(config.hidden_size, 

config.intermediate_size)

        self.linear_2 = nn.Linear(config.intermediate_size, 

config.hidden_size)

        self.gelu = nn.GELU()

        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, x):

        x = self.linear_1(x)

        x = self.gelu(x)

        x = self.linear_2(x)

        x = self.dropout(x)

        return x



Note that a feed-forward layer such as nn.Linear is usually applied to a
tensor of shape (batch_size, input_dim), where it acts on each element
of the batch dimension independently. This is actually true for any
dimension except the last one, so when we pass a tensor of shape
(batch_size, seq_len, hidden_dim) the layer is applied to all token
embeddings of the batch and sequence independently, which is exactly what
we want. Let’s test this by passing the attention outputs:

feed_forward = FeedForward(config)

ff_outputs = feed_forward(attn_outputs)

ff_outputs.size()

torch.Size([1, 5, 768])

We now have all the ingredients to create a fully fledged transformer
encoder layer! The only decision left to make is where to place the skip
connections and layer normalization. Let’s take a look at how this affects
the model architecture.

Adding Layer Normalization
As mentioned earlier, the Transformer architecture makes use of layer
normalization and skip connections. The former normalizes each input in
the batch to have zero mean and unity variance. Skip connections pass a
tensor to the next layer of the model without processing and add it to the
processed tensor. When it comes to placing the layer normalization in the
encoder or decoder layers of a transformer, there are two main choices
adopted in the literature:

Post layer normalization

This is the arrangement used in the Transformer paper; it places layer
normalization in between the skip connections. This arrangement is
tricky to train from scratch as the gradients can diverge. For this reason,
you will often see a concept known as learning rate warm-up, where the



learning rate is gradually increased from a small value to some
maximum value during training.

Pre layer normalization

This is the most common arrangement found in the literature; it places
layer normalization within the span of the skip connections. This tends
to be much more stable during training, and it does not usually require
any learning rate warm-up.

The difference between the two arrangements is illustrated in Figure 3-6.

Figure 3-6. Different arrangements of layer normalization in a transformer encoder layer

We’ll use the second arrangement, so we can simply stick together our
building blocks as follows:

class TransformerEncoderLayer(nn.Module):

    def __init__(self, config):

        super().__init__()

        self.layer_norm_1 = nn.LayerNorm(config.hidden_size)

        self.layer_norm_2 = nn.LayerNorm(config.hidden_size)

        self.attention = MultiHeadAttention(config)

        self.feed_forward = FeedForward(config)

    def forward(self, x):

        # Apply layer normalization and then copy input into query, key, value



        hidden_state = self.layer_norm_1(x)

        # Apply attention with a skip connection

        x = x + self.attention(hidden_state)

        # Apply feed-forward layer with a skip connection

        x = x + self.feed_forward(self.layer_norm_2(x))

        return x

Let’s now test this with our input embeddings:

encoder_layer = TransformerEncoderLayer(config)

inputs_embeds.shape, encoder_layer(inputs_embeds).size()

(torch.Size([1, 5, 768]), torch.Size([1, 5, 768]))

We’ve now implemented our very first transformer encoder layer from
scratch! However, there is a caveat with the way we set up the encoder
layers: they are totally invariant to the position of the tokens. Since the
multi-head attention layer is effectively a fancy weighted sum, the
information on token position is lost.

Luckily, there is an easy trick to incorporate positional information using
positional embeddings. Let’s take a look.

Positional Embeddings
Positional embeddings are based on a simple, yet very effective idea:
augment the token embeddings with a position-dependent pattern of values
arranged in a vector. If the pattern is characteristic for each position, the
attention heads and feed-forward layers in each stack can learn to
incorporate positional information into their transformations.

There are several ways to achieve this, and one of the most popular
approaches is to use a learnable pattern, especially when the pretraining
dataset is sufficiently large. This works exactly the same way as the token
embeddings, but using the position index instead of the token ID as input.
With that approach, an efficient way of encoding the positions of tokens is
learned during pretraining.
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Let’s create a custom Embeddings module that combines a token
embedding layer that projects the input_ids to a dense hidden state
together with the positional embedding that does the same for
position_ids. The resulting embedding is simply the sum of both
embeddings:

class Embeddings(nn.Module):

    def __init__(self, config):

        super().__init__()

        self.token_embeddings = nn.Embedding(config.vocab_size,

                                             config.hidden_size)

        self.position_embeddings = 

nn.Embedding(config.max_position_embeddings,

                                                config.hidden_size)

        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)

        self.dropout = nn.Dropout()

    def forward(self, input_ids):

        # Create position IDs for input sequence

        seq_length = input_ids.size(1)

        position_ids = torch.arange(seq_length, dtype=torch.long).unsqueeze(0)

        # Create token and position embeddings

        token_embeddings = self.token_embeddings(input_ids)

        position_embeddings = self.position_embeddings(position_ids)

        # Combine token and position embeddings

        embeddings = token_embeddings + position_embeddings

        embeddings = self.layer_norm(embeddings)

        embeddings = self.dropout(embeddings)

        return embeddings

embedding_layer = Embeddings(config)

embedding_layer(inputs.input_ids).size()

torch.Size([1, 5, 768])

We see that the embedding layer now creates a single, dense embedding for
each token.

While learnable position embeddings are easy to implement and widely
used, there are some alternatives:

Absolute positional representations



Transformer models can use static patterns consisting of modulated sine
and cosine signals to encode the positions of the tokens. This works
especially well when there are not large volumes of data available.

Relative positional representations

Although absolute positions are important, one can argue that when
computing an embedding, the surrounding tokens are most important.
Relative positional representations follow that intuition and encode the
relative positions between tokens. This cannot be set up by just
introducing a new relative embedding layer at the beginning, since the
relative embedding changes for each token depending on where from
the sequence we are attending to it. Instead, the attention mechanism
itself is modified with additional terms that take the relative position
between tokens into account. Models such as DeBERTa use such
representations.

Let’s put all of this together now by building the full transformer encoder
combining the embeddings with the encoder layers:

class TransformerEncoder(nn.Module):

    def __init__(self, config):

        super().__init__()

        self.embeddings = Embeddings(config)

        self.layers = nn.ModuleList([TransformerEncoderLayer(config)

                                     for _ in 

range(config.num_hidden_layers)])

    def forward(self, x):

        x = self.embeddings(x)

        for layer in self.layers:

            x = layer(x)

        return x

Let’s check the output shapes of the encoder:

encoder = TransformerEncoder(config)

encoder(inputs.input_ids).size()
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torch.Size([1, 5, 768])

We can see that we get a hidden state for each token in the batch. This
output format makes the architecture very flexible, and we can easily adapt
it for various applications such as predicting missing tokens in masked
language modeling or predicting the start and end position of an answer in
question answering. In the following section we’ll see how we can build a
classifier like the one we used in Chapter 2.

Adding a Classification Head
Transformer models are usually divided into a task-independent body and a
task-specific head. We’ll encounter this pattern again in Chapter 4 when we
look at the design pattern of  Transformers. What we have built so far is
the body, so if we wish to build a text classifier, we will need to attach a
classification head to that body. We have a hidden state for each token, but
we only need to make one prediction. There are several options to approach
this. Traditionally, the first token in such models is used for the prediction
and we can attach a dropout and a linear layer to make a classification
prediction. The following class extends the existing encoder for sequence
classification:

class TransformerForSequenceClassification(nn.Module):

    def __init__(self, config):

        super().__init__()

        self.encoder = TransformerEncoder(config)

        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, x):

        x = self.encoder(x)[:, 0, :] # select hidden state of [CLS] token

        x = self.dropout(x)

        x = self.classifier(x)

        return x

Before initializing the model we need to define how many classes we would
like to predict:



config.num_labels = 3

encoder_classifier = TransformerForSequenceClassification(config)

encoder_classifier(inputs.input_ids).size()

torch.Size([1, 3])

That is exactly what we have been looking for. For each example in the
batch we get the unnormalized logits for each class in the output. This
corresponds to the BERT model that we used in Chapter 2 to detect
emotions in tweets.

This concludes our analysis of the encoder and how we can combine it with
a task-specific head. Let’s now cast our attention (pun intended!) to the
decoder.

The Decoder
As illustrated in Figure 3-7, the main difference between the decoder and
encoder is that the decoder has two attention sublayers:

Masked multi-head self-attention layer

Ensures that the tokens we generate at each timestep are only based on
the past outputs and the current token being predicted. Without this, the
decoder could cheat during training by simply copying the target
translations; masking the inputs ensures the task is not trivial.

Encoder-decoder attention layer

Performs multi-head attention over the output key and value vectors of
the encoder stack, with the intermediate representations of the decoder
acting as the queries.  This way the encoder-decoder attention layer
learns how to relate tokens from two different sequences, such as two
different languages. The decoder has access to the encoder keys and
values in each block.
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Let’s take a look at the modifications we need to make to include masking
in our self-attention layer, and leave the implementation of the encoder-
decoder attention layer as a homework problem. The trick with masked self-
attention is to introduce a mask matrix with ones on the lower diagonal and
zeros above:

seq_len = inputs.input_ids.size(-1)

mask = torch.tril(torch.ones(seq_len, seq_len)).unsqueeze(0)

mask[0]

tensor([[1., 0., 0., 0., 0.],

        [1., 1., 0., 0., 0.],

        [1., 1., 1., 0., 0.],

        [1., 1., 1., 1., 0.],

        [1., 1., 1., 1., 1.]])

Here we’ve used PyTorch’s tril() function to create the lower triangular
matrix. Once we have this mask matrix, we can prevent each attention head
from peeking at future tokens by using Tensor.masked_fill() to replace
all the zeros with negative infinity:

scores.masked_fill(mask == 0, -float("inf"))

tensor([[[26.8082,    -inf,    -inf,    -inf,    -inf],

         [-0.6981, 26.9043,    -inf,    -inf,    -inf],

         [-2.3190,  1.2928, 27.8710,    -inf,    -inf],

         [-0.5897,  0.3497, -0.3807, 27.5488,    -inf],

         [ 0.5275,  2.0493, -0.4869,  1.6100, 29.0893]]],

       grad_fn=<MaskedFillBackward0>)



Figure 3-7. Zooming into the transformer decoder layer

By setting the upper values to negative infinity, we guarantee that the
attention weights are all zero once we take the softmax over the scores
because e−∞ = 0 (recall that softmax calculates the normalized
exponential). We can easily include this masking behavior with a small
change to our scaled dot-product attention function that we implemented
earlier in this chapter:

def scaled_dot_product_attention(query, key, value, mask=None):

    dim_k = query.size(-1)

    scores = torch.bmm(query, key.transpose(1, 2)) / sqrt(dim_k)

    if mask is not None:

        scores = scores.masked_fill(mask == 0, float("-inf"))

    weights = F.softmax(scores, dim=-1)

    return weights.bmm(value)

From here it is a simple matter to build up the decoder layer; we point the
reader to the excellent implementation of minGPT by Andrej Karpathy for
details.

https://oreil.ly/kwsOP


We’ve given you a lot of technical information here, but now you should
have a good understanding of how every piece of the Transformer
architecture works. Before we move on to building models for tasks more
advanced than text classification, let’s round out the chapter by stepping
back a bit and looking at the landscape of different transformer models and
how they relate to each other.

DEMYSTIFYING ENCODER-DECODER ATTENTION
Let’s see if we can shed some light on the mysteries of encoder-decoder
attention. Imagine you (the decoder) are in class taking an exam. Your
task is to predict the next word based on the previous words (decoder
inputs), which sounds simple but is incredibly hard (try it yourself and
predict the next words in a passage of this book). Fortunately, your
neighbor (the encoder) has the full text. Unfortunately, they’re a foreign
exchange student and the text is in their mother tongue. Cunning
students that you are, you figure out a way to cheat anyway. You draw a
little cartoon illustrating the text you already have (the query) and give
it to your neighbor. They try to figure out which passage matches that
description (the key), draw a cartoon describing the word following that
passage (the value), and pass that back to you. With this system in
place, you ace the exam.

Meet the Transformers
As you’ve seen in this chapter, there are three main architectures for
transformer models: encoders, decoders, and encoder-decoders. The initial
success of the early transformer models triggered a Cambrian explosion in
model development as researchers built models on various datasets of
different size and nature, used new pretraining objectives, and tweaked the
architecture to further improve performance. Although the zoo of models is
still growing fast, they can still be divided into these three categories.



In this section we’ll provide a brief overview of the most important
transformer models in each class. Let’s start by taking a look at the
transformer family tree.

The Transformer Tree of Life
Over time, each of the three main architectures has undergone an evolution
of its own. This is illustrated in Figure 3-8, which shows a few of the most
prominent models and their descendants.

Figure 3-8. An overview of some of the most prominent transformer architectures



With over 50 different architectures included in  Transformers, this
family tree by no means provides a complete overview of all the ones that
exist: it simply highlights a few of the architectural milestones. We’ve
covered the original Transformer architecture in depth in this chapter, so
let’s take a closer look at some of the key descendants, starting with the
encoder branch.

The Encoder Branch
The first encoder-only model based on the Transformer architecture was
BERT. At the time it was published, it outperformed all the state-of-the-art
models on the popular GLUE benchmark,  which measures natural
language understanding (NLU) across several tasks of varying difficulty.
Subsequently, the pretraining objective and the architecture of BERT have
been adapted to further improve performance. Encoder-only models still
dominate research and industry on NLU tasks such as text classification,
named entity recognition, and question answering. Let’s have a brief look at
the BERT model and its variants:

BERT

BERT is pretrained with the two objectives of predicting masked tokens
in texts and determining if one text passage is likely to follow another.
The former task is called masked language modeling (MLM) and the
latter next sentence prediction (NSP).

DistilBERT

Although BERT delivers great results, it’s size can make it tricky to
deploy in environments where low latencies are required. By using a
technique known as knowledge distillation during pretraining,
DistilBERT achieves 97% of BERT’s performance while using 40% less
memory and being 60% faster.  You can find more details on
knowledge distillation in Chapter 8.

RoBERTa
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A study following the release of BERT revealed that its performance
can be further improved by modifying the pretraining scheme.
RoBERTa is trained longer, on larger batches with more training data,
and it drops the NSP task.  Together, these changes significantly
improve its performance compared to the original BERT model.

XLM

Several pretraining objectives for building multilingual models were
explored in the work on the cross-lingual language model (XLM),
including the autoregressive language modeling from GPT-like models
and MLM from BERT. In addition, the authors of the paper on XLM
pretraining introduced translation language modeling (TLM), which is
an extension of MLM to multiple language inputs. Experimenting with
these pretraining tasks, they achieved state-of-the-art results on several
multilingual NLU benchmarks as well as on translation tasks.

XLM-RoBERTa

Following the work of XLM and RoBERTa, the XLM-RoBERTa or
XLM-R model takes multilingual pretraining one step further by
massively upscaling the training data.  Using the Common Crawl
corpus, its developers created a dataset with 2.5 terabytes of text; they
then trained an encoder with MLM on this dataset. Since the dataset
only contains data without parallel texts (i.e., translations), the TLM
objective of XLM was dropped. This approach beats XLM and
multilingual BERT variants by a large margin, especially on low-
resource languages.

ALBERT

The ALBERT model introduced three changes to make the encoder
architecture more efficient.  First, it decouples the token embedding
dimension from the hidden dimension, thus allowing the embedding
dimension to be small and thereby saving parameters, especially when
the vocabulary gets large. Second, all layers share the same parameters,
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which decreases the number of effective parameters even further.
Finally, the NSP objective is replaced with a sentence-ordering
prediction: the model needs to predict whether or not the order of two
consecutive sentences was swapped rather than predicting if they belong
together at all. These changes make it possible to train even larger
models with fewer parameters and reach superior performance on NLU
tasks.

ELECTRA

One limitation of the standard MLM pretraining objective is that at each
training step only the representations of the masked tokens are updated,
while the other input tokens are not. To address this issue, ELECTRA
uses a two-model approach:  the first model (which is typically small)
works like a standard masked language model and predicts masked
tokens. The second model, called the discriminator, is then tasked to
predict which of the tokens in the first model’s output were originally
masked. Therefore, the discriminator needs to make a binary
classification for every token, which makes training 30 times more
efficient. For downstream tasks the discriminator is fine-tuned like a
standard BERT model.

DeBERTa

The DeBERTa model introduces two architectural changes.  First, each
token is represented as two vectors: one for the content, the other for
relative position. By disentangling the tokens’ content from their
relative positions, the self-attention layers can better model the
dependency of nearby token pairs. On the other hand, the absolute
position of a word is also important, especially for decoding. For this
reason, an absolute position embedding is added just before the softmax
layer of the token decoding head. DeBERTa is the first model (as an
ensemble) to beat the human baseline on the SuperGLUE benchmark,
a more difficult version of GLUE consisting of several subtasks used to
measure NLU performance.
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Now that we’ve highlighted some of the major encoder-only architectures,
let’s take a look at the decoder-only models.

The Decoder Branch
The progress on transformer decoder models has been spearheaded to a
large extent by OpenAI. These models are exceptionally good at predicting
the next word in a sequence and are thus mostly used for text generation
tasks (see Chapter 5 for more details). Their progress has been fueled by
using larger datasets and scaling the language models to larger and larger
sizes. Let’s have a look at the evolution of these fascinating generation
models:

GPT

The introduction of GPT combined two key ideas in NLP:  the novel
and efficient transformer decoder architecture, and transfer learning. In
that setup, the model was pretrained by predicting the next word based
on the previous ones. The model was trained on the BookCorpus and
achieved great results on downstream tasks such as classification.

GPT-2

Inspired by the success of the simple and scalable pretraining approach,
the original model and training set were upscaled to produce GPT-2.
This model is able to produce long sequences of coherent text. Due to
concerns about possible misuse, the model was released in a staged
fashion, with smaller models being published first and the full model
later.

CTRL

Models like GPT-2 can continue an input sequence (also called a
prompt). However, the user has little control over the style of the
generated sequence. The Conditional Transformer Language (CTRL)
model addresses this issue by adding “control tokens” at the beginning
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of the sequence.  These allow the style of the generated text to be
controlled, which allows for diverse generation.

GPT-3

Following the success of scaling GPT up to GPT-2, a thorough analysis
on the behavior of language models at different scales revealed that
there are simple power laws that govern the relation between compute,
dataset size, model size, and the performance of a language model.
Inspired by these insights, GPT-2 was upscaled by a factor of 100 to
yield GPT-3,  with 175 billion parameters. Besides being able to
generate impressively realistic text passages, the model also exhibits
few-shot learning capabilities: with a few examples of a novel task such
as translating text to code, the model is able to accomplish the task on
new examples. OpenAI has not open-sourced this model, but provides
an interface through the OpenAI API.

GPT-Neo/GPT-J-6B

GPT-Neo and GPT-J-6B are GPT-like models that were trained by
EleutherAI, a collective of researchers who aim to re-create and release
GPT-3 scale models.  The current models are smaller variants of the
full 175-billion-parameter model, with 1.3, 2.7, and 6 billion
parameters, and are competitive with the smaller GPT-3 models OpenAI
offers.

The final branch in the transformers tree of life is the encoder-decoder
models. Let’s take a look.

The Encoder-Decoder Branch
Although it has become common to build models using a single encoder or
decoder stack, there are several encoder-decoder variants of the
Transformer architecture that have novel applications across both NLU and
NLG domains:

T5

19

20

21

22

https://oreil.ly/SEGRW
https://eleuther.ai/


The T5 model unifies all NLU and NLG tasks by converting them into
text-to-text tasks.  All tasks are framed as sequence-to-sequence tasks,
where adopting an encoder-decoder architecture is natural. For text
classification problems, for example, this means that the text is used as
the encoder input and the decoder has to generate the label as normal
text instead of a class. We will look at this in more detail in Chapter 6.
The T5 architecture uses the original Transformer architecture. Using
the large crawled C4 dataset, the model is pretrained with masked
language modeling as well as the SuperGLUE tasks by translating all of
them to text-to-text tasks. The largest model with 11 billion parameters
yielded state-of-the-art results on several benchmarks.

BART

BART combines the pretraining procedures of BERT and GPT within
the encoder-decoder architecture.  The input sequences undergo one of
several possible transformations, from simple masking to sentence
permutation, token deletion, and document rotation. These modified
inputs are passed through the encoder, and the decoder has to
reconstruct the original texts. This makes the model more flexible as it
is possible to use it for NLU as well as NLG tasks, and it achieves state-
of-the-art-performance on both.

M2M-100

Conventionally a translation model is built for one language pair and
translation direction. Naturally, this does not scale to many languages,
and in addition there might be shared knowledge between language
pairs that could be leveraged for translation between rare languages.
M2M-100 is the first translation model that can translate between any of
100 languages.  This allows for high-quality translations between rare
and underrepresented languages. The model uses prefix tokens (similar
to the special [CLS] token) to indicate the source and target language.

BigBird
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One main limitation of transformer models is the maximum context
size, due to the quadratic memory requirements of the attention
mechanism. BigBird addresses this issue by using a sparse form of
attention that scales linearly.  This allows for the drastic scaling of
contexts from 512 tokens in most BERT models to 4,096 in BigBird.
This is especially useful in cases where long dependencies need to be
conserved, such as in text summarization.

Pretrained checkpoints of all models that we have seen in this section are
available on the Hugging Face Hub and can be fine-tuned to your use case
with  Transformers, as described in the previous chapter.

Conclusion
In this chapter we started at the heart of the Transformer architecture with a
deep dive into self-attention, and we subsequently added all the necessary
parts to build a transformer encoder model. We added embedding layers for
tokens and positional information, we built in a feed-forward layer to
complement the attention heads, and finally we added a classification head
to the model body to make predictions. We also had a look at the decoder
side of the Transformer architecture, and concluded the chapter with an
overview of the most important model architectures.

Now that you have a better understanding of the underlying principles, let’s
go beyond simple classification and build a multilingual named entity
recognition model.
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Chapter 4. Multilingual Named
Entity Recognition

So far in this book we have applied transformers to solve NLP tasks on
English corpora—but what do you do when your documents are written in
Greek, Swahili, or Klingon? One approach is to search the Hugging Face
Hub for a suitable pretrained language model and fine-tune it on the task at
hand. However, these pretrained models tend to exist only for “high-
resource” languages like German, Russian, or Mandarin, where plenty of
webtext is available for pretraining. Another common challenge arises when
your corpus is multilingual: maintaining multiple monolingual models in
production will not be any fun for you or your engineering team.

Fortunately, there is a class of multilingual transformers that come to the
rescue. Like BERT, these models use masked language modeling as a
pretraining objective, but they are trained jointly on texts in over one
hundred languages. By pretraining on huge corpora across many languages,
these multilingual transformers enable zero-shot cross-lingual transfer. This
means that a model that is fine-tuned on one language can be applied to
others without any further training! This also makes these models well
suited for “code-switching,” where a speaker alternates between two or
more languages or dialects in the context of a single conversation.

In this chapter we will explore how a single transformer model called
XLM-RoBERTa (introduced in Chapter 3)  can be fine-tuned to perform
named entity recognition (NER) across several languages. As we saw in
Chapter 1, NER is a common NLP task that identifies entities like people,
organizations, or locations in text. These entities can be used for various
applications such as gaining insights from company documents, augmenting
the quality of search engines, or simply building a structured database from
a corpus.

1



For this chapter let’s assume that we want to perform NER for a customer
based in Switzerland, where there are four national languages (with English
often serving as a bridge between them). Let’s start by getting a suitable
multilingual corpus for this problem.

NOTE
Zero-shot transfer or zero-shot learning usually refers to the task of training a model on
one set of labels and then evaluating it on a different set of labels. In the context of
transformers, zero-shot learning may also refer to situations where a language model
like GPT-3 is evaluated on a downstream task that it wasn’t even fine-tuned on.

The Dataset
In this chapter we will be using a subset of the Cross-lingual TRansfer
Evaluation of Multilingual Encoders (XTREME) benchmark called
WikiANN or PAN-X.  This dataset consists of Wikipedia articles in many
languages, including the four most commonly spoken languages in
Switzerland: German (62.9%), French (22.9%), Italian (8.4%), and English
(5.9%). Each article is annotated with LOC (location), PER (person), and ORG
(organization) tags in the “inside-outside-beginning” (IOB2) format. In this
format, a B- prefix indicates the beginning of an entity, and consecutive
tokens belonging to the same entity are given an I- prefix. An O tag
indicates that the token does not belong to any entity. For example, the
following sentence:

Jeff Dean is a computer scientist at Google in California

would be labeled in IOB2 format as shown in Table 4-1.

Table 4-1. An example of a sequence annotated with named entities
Tokens Jeff Dean is a

Tags B-PER I-PER O O

2
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To load one of the PAN-X subsets in XTREME, we’ll need to know which
dataset configuration to pass the load_dataset() function. Whenever
you’re dealing with a dataset that has multiple domains, you can use the
get_dataset_config_names() function to find out which subsets are
available:

from datasets import get_dataset_config_names

xtreme_subsets = get_dataset_config_names("xtreme")

print(f"XTREME has {len(xtreme_subsets)} configurations")

XTREME has 183 configurations

Whoa, that’s a lot of configurations! Let’s narrow the search by just looking
for the configurations that start with “PAN”:

panx_subsets = [s for s in xtreme_subsets if s.startswith("PAN")]

panx_subsets[:3]

['PAN-X.af', 'PAN-X.ar', 'PAN-X.bg']

OK, it seems we’ve identified the syntax of the PAN-X subsets: each one
has a two-letter suffix that appears to be an ISO 639-1 language code. This
means that to load the German corpus, we pass the de code to the name
argument of load_dataset() as follows:

from datasets import load_dataset

load_dataset("xtreme", name="PAN-X.de")

To make a realistic Swiss corpus, we’ll sample the German (de), French
(fr), Italian (it), and English (en) corpora from PAN-X according to their
spoken proportions. This will create a language imbalance that is very
common in real-world datasets, where acquiring labeled examples in a
minority language can be expensive due to the lack of domain experts who
are fluent in that language. This imbalanced dataset will simulate a common

https://oreil.ly/R8XNu


situation when working on multilingual applications, and we’ll see how we
can build a model that works on all languages.

To keep track of each language, let’s create a Python defaultdict that
stores the language code as the key and a PAN-X corpus of type
DatasetDict as the value:

from collections import defaultdict

from datasets import DatasetDict

langs = ["de", "fr", "it", "en"]

fracs = [0.629, 0.229, 0.084, 0.059]

# Return a DatasetDict if a key doesn't exist

panx_ch = defaultdict(DatasetDict)

for lang, frac in zip(langs, fracs):

    # Load monolingual corpus

    ds = load_dataset("xtreme", name=f"PAN-X.{lang}")

    # Shuffle and downsample each split according to spoken proportion

    for split in ds:

        panx_ch[lang][split] = (

            ds[split]

            .shuffle(seed=0)

            .select(range(int(frac * ds[split].num_rows))))

Here we’ve used the shuffle() method to make sure we don’t accidentally
bias our dataset splits, while select() allows us to downsample each
corpus according to the values in fracs. Let’s have a look at how many
examples we have per language in the training sets by accessing the
Dataset.num_rows attribute:

import pandas as pd

pd.DataFrame({lang: [panx_ch[lang]["train"].num_rows] for lang in langs},

             index=["Number of training examples"])

de fr it en

Number of training
examples

12580 4580 1680 1180



By design, we have more examples in German than all other languages
combined, so we’ll use it as a starting point from which to perform zero-
shot cross-lingual transfer to French, Italian, and English. Let’s inspect one
of the examples in the German corpus:

element = panx_ch["de"]["train"][0]

for key, value in element.items():

    print(f"{key}: {value}")

langs: ['de', 'de', 'de', 'de', 'de', 'de', 'de', 'de', 'de', 'de', 'de', 

'de']

ner_tags: [0, 0, 0, 0, 5, 6, 0, 0, 5, 5, 6, 0]

tokens: ['2.000', 'Einwohnern', 'an', 'der', 'Danziger', 'Bucht', 'in', 'der',

'polnischen', 'Woiwodschaft', 'Pommern', '.']

As with our previous encounters with Dataset objects, the keys of our
example correspond to the column names of an Arrow table, while the
values denote the entries in each column. In particular, we see that the
ner_tags column corresponds to the mapping of each entity to a class ID.
This is a bit cryptic to the human eye, so let’s create a new column with the
familiar LOC, PER, and ORG tags. To do this, the first thing to notice is that
our Dataset object has a features attribute that specifies the underlying
data types associated with each column:

for key, value in panx_ch["de"]["train"].features.items():

    print(f"{key}: {value}")

tokens: Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)

ner_tags: Sequence(feature=ClassLabel(num_classes=7, names=['O', 'B-PER',

'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'], names_file=None, id=None),

length=-1, id=None)

langs: Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)

The Sequence class specifies that the field contains a list of features, which
in the case of ner_tags corresponds to a list of ClassLabel features. Let’s
pick out this feature from the training set as follows:



tags = panx_ch["de"]["train"].features["ner_tags"].feature

print(tags)

ClassLabel(num_classes=7, names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG',

'B-LOC', 'I-LOC'], names_file=None, id=None)

We can use the ClassLabel.int2str() method that we encountered in
Chapter 2 to create a new column in our training set with class names for
each tag. We’ll use the map() method to return a dict with the key
corresponding to the new column name and the value as a list of class
names:

def create_tag_names(batch):

    return {"ner_tags_str": [tags.int2str(idx) for idx in batch["ner_tags"]]}

panx_de = panx_ch["de"].map(create_tag_names)

Now that we have our tags in human-readable format, let’s see how the
tokens and tags align for the first example in the training set:

de_example = panx_de["train"][0]

pd.DataFrame([de_example["tokens"], de_example["ner_tags_str"]],

['Tokens', 'Tags'])

0 1 2 3

Tokens 2.000 Einwohnern an der

Tags O O O O

The presence of the LOC tags make sense since the sentence “2,000
Einwohnern an der Danziger Bucht in der polnischen Woiwodschaft
Pommern” means “2,000 inhabitants at the Gdansk Bay in the Polish
voivodeship of Pomerania” in English, and Gdansk Bay is a bay in the
Baltic sea, while “voivodeship” corresponds to a state in Poland.

As a quick check that we don’t have any unusual imbalance in the tags, let’s
calculate the frequencies of each entity across each split:



from collections import Counter

split2freqs = defaultdict(Counter)

for split, dataset in panx_de.items():

    for row in dataset["ner_tags_str"]:

        for tag in row:

            if tag.startswith("B"):

                tag_type = tag.split("-")[1]

                split2freqs[split][tag_type] += 1

pd.DataFrame.from_dict(split2freqs, orient="index")

ORG LOC PER

validation 2683 3172 2893

test 2573 3180 3071

train 5366 6186 5810

This looks good—the distributions of the PER, LOC, and ORG frequencies are
roughly the same for each split, so the validation and test sets should
provide a good measure of our NER tagger’s ability to generalize. Next,
let’s look at a few popular multilingual transformers and how they can be
adapted to tackle our NER task.

Multilingual Transformers
Multilingual transformers involve similar architectures and training
procedures as their monolingual counterparts, except that the corpus used
for pretraining consists of documents in many languages. A remarkable
feature of this approach is that despite receiving no explicit information to
differentiate among the languages, the resulting linguistic representations
are able to generalize well across languages for a variety of downstream
tasks. In some cases, this ability to perform cross-lingual transfer can
produce results that are competitive with those of monolingual models,
which circumvents the need to train one model per language!

To measure the progress of cross-lingual transfer for NER, the CoNLL-
2002 and CoNLL-2003 datasets are often used as a benchmark for English,
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Dutch, Spanish, and German. This benchmark consists of news articles
annotated with the same LOC, PER, and ORG categories as PAN-X, but it
contains an additional MISC label for miscellaneous entities that do not
belong to the previous three groups. Multilingual transformer models are
usually evaluated in three different ways:

en

Fine-tune on the English training data and then evaluate on each
language’s test set.

each

Fine-tune and evaluate on monolingual test data to measure per-
language performance.

all

Fine-tune on all the training data to evaluate on all on each language’s
test set.

We will adopt a similar evaluation strategy for our NER task, but first we
need to select a model to evaluate. One of the first multilingual transformers
was mBERT, which uses the same architecture and pretraining objective as
BERT but adds Wikipedia articles from many languages to the pretraining
corpus. Since then, mBERT has been superseded by XLM-RoBERTa (or
XLM-R for short), so that’s the model we’ll consider in this chapter.

As we saw in Chapter 3, XLM-R uses only MLM as a pretraining objective
for 100 languages, but is distinguished by the huge size of its pretraining
corpus compared to its predecessors: Wikipedia dumps for each language
and 2.5 terabytes of Common Crawl data from the web. This corpus is
several orders of magnitude larger than the ones used in earlier models and
provides a significant boost in signal for low-resource languages like
Burmese and Swahili, where only a small number of Wikipedia articles
exist.



The RoBERTa part of the model’s name refers to the fact that the
pretraining approach is the same as for the monolingual RoBERTa models.
RoBERTa’s developers improved on several aspects of BERT, in particular
by removing the next sentence prediction task altogether.  XLM-R also
drops the language embeddings used in XLM and uses SentencePiece to
tokenize the raw texts directly.  Besides its multilingual nature, a notable
difference between XLM-R and RoBERTa is the size of the respective
vocabularies: 250,000 tokens versus 55,000!

XLM-R is a great choice for multilingual NLU tasks. In the next section,
we’ll explore how it can efficiently tokenize across many languages.

A Closer Look at Tokenization
Instead of using a WordPiece tokenizer, XLM-R uses a tokenizer called
SentencePiece that is trained on the raw text of all one hundred languages.
To get a feel for how SentencePiece compares to WordPiece, let’s load the
BERT and XLM-R tokenizers in the usual way with  Transformers:

from transformers import AutoTokenizer

bert_model_name = "bert-base-cased"

xlmr_model_name = "xlm-roberta-base"

bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name)

xlmr_tokenizer = AutoTokenizer.from_pretrained(xlmr_model_name)

By encoding a small sequence of text we can also retrieve the special tokens
that each model used during pretraining:

text = "Jack Sparrow loves New York!"

bert_tokens = bert_tokenizer(text).tokens()

xlmr_tokens = xlmr_tokenizer(text).tokens()

BERT [CLS] Jack Spa ##rrow

XLM-R <s> ▁Jack ▁Spar row
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Here we see that instead of the [CLS] and [SEP] tokens that BERT uses for
sentence classification tasks, XLM-R uses <s> and <\s> to denote the start
and end of a sequence. These tokens are added in the final stage of
tokenization, as we’ll see next.

The Tokenizer Pipeline
So far we have treated tokenization as a single operation that transforms
strings to integers we can pass through the model. This is not entirely
accurate, and if we take a closer look we can see that it is actually a full
processing pipeline that usually consists of four steps, as shown in Figure 4-
1.

Figure 4-1. The steps in the tokenization pipeline

Let’s take a closer look at each processing step and illustrate their effect
with the example sentence “Jack Sparrow loves New York!”:

Normalization

This step corresponds to the set of operations you apply to a raw string
to make it “cleaner.” Common operations include stripping whitespace
and removing accented characters. Unicode normalization is another
common normalization operation applied by many tokenizers to deal
with the fact that there often exist various ways to write the same
character. This can make two versions of the “same” string (i.e., with
the same sequence of abstract characters) appear different; Unicode
normalization schemes like NFC, NFD, NFKC, and NFKD replace the
various ways to write the same character with standard forms. Another
example of normalization is lowercasing. If the model is expected to
only accept and use lowercase characters, this technique can be used to
reduce the size of the vocabulary it requires. After normalization, our
example string would look like “jack sparrow loves new york!”.

https://oreil.ly/2cp3w


Pretokenization

This step splits a text into smaller objects that give an upper bound to
what your tokens will be at the end of training. A good way to think of
this is that the pretokenizer will split your text into “words,” and your
final tokens will be parts of those words. For the languages that allow
this (English, German, and many Indo-European languages), strings can
typically be split into words on whitespace and punctuation. For
example, this step might transform our ["jack", "sparrow",
"loves", "new", "york", "!"]. These words are then simpler to
split into subwords with Byte-Pair Encoding (BPE) or Unigram
algorithms in the next step of the pipeline. However, splitting into
“words” is not always a trivial and deterministic operation, or even an
operation that makes sense. For instance, in languages like Chinese,
Japanese, or Korean, grouping symbols in semantic units like Indo-
European words can be a nondeterministic operation with several
equally valid groups. In this case, it might be best to not pretokenize the
text and instead use a language-specific library for pretokenization.

Tokenizer model

Once the input texts are normalized and pretokenized, the tokenizer
applies a subword splitting model on the words. This is the part of the
pipeline that needs to be trained on your corpus (or that has been trained
if you are using a pretrained tokenizer). The role of the model is to split
the words into subwords to reduce the size of the vocabulary and try to
reduce the number of out-of-vocabulary tokens. Several subword
tokenization algorithms exist, including BPE, Unigram, and WordPiece.
For instance, our running example might look like [jack, spa, rrow,
loves, new, york, !] after the tokenizer model is applied. Note that
at this point we no longer have a list of strings but a list of integers
(input IDs); to keep the example illustrative, we’ve kept the words but
dropped the quotes to indicate the transformation.

Postprocessing



This is the last step of the tokenization pipeline, in which some
additional transformations can be applied on the list of tokens—for
instance, adding special tokens at the beginning or end of the input
sequence of token indices. For example, a BERT-style tokenizer would
add classifications and separator tokens: [CLS, jack, spa, rrow,
loves, new, york, !, SEP]. This sequence (recall that this will be a
sequence of integers, not the tokens you see here) can then be fed to the
model.

Going back to our comparison of XLM-R and BERT, we now understand
that SentencePiece adds <s> and <\s> instead of [CLS] and [SEP] in the
postprocessing step (as a convention, we’ll continue to use [CLS] and
[SEP] in the graphical illustrations). Let’s go back to the SentencePiece
tokenizer to see what makes it special.

The SentencePiece Tokenizer
The SentencePiece tokenizer is based on a type of subword segmentation
called Unigram and encodes each input text as a sequence of Unicode
characters. This last feature is especially useful for multilingual corpora
since it allows SentencePiece to be agnostic about accents, punctuation, and
the fact that many languages, like Japanese, do not have whitespace
characters. Another special feature of SentencePiece is that whitespace is
assigned the Unicode symbol U+2581, or the ▁ character, also called the
lower one quarter block character. This enables SentencePiece to detokenize
a sequence without ambiguities and without relying on language-specific
pretokenizers. In our example from the previous section, for instance, we
can see that WordPiece has lost the information that there is no whitespace
between “York” and “!”. By contrast, SentencePiece preserves the
whitespace in the tokenized text so we can convert back to the raw text
without ambiguity:

"".join(xlmr_tokens).replace(u"\u2581", " ")



'<s> Jack Sparrow loves New York!</s>'

Now that we understand how SentencePiece works, let’s see how we can
encode our simple example in a form suitable for NER. The first thing to do
is load the pretrained model with a token classification head. But instead of
loading this head directly from  Transformers, we will build it ourselves!
By diving deeper into the  Transformers API, we can do this with just a
few steps.

Transformers for Named Entity Recognition
In Chapter 2, we saw that for text classification BERT uses the special
[CLS] token to represent an entire sequence of text. This representation is
then fed through a fully connected or dense layer to output the distribution
of all the discrete label values, as shown in Figure 4-2.



Figure 4-2. Fine-tuning an encoder-based transformer for sequence classification

BERT and other encoder-only transformers take a similar approach for
NER, except that the representation of each individual input token is fed
into the same fully connected layer to output the entity of the token. For this
reason, NER is often framed as a token classification task. The process
looks something like the diagram in Figure 4-3.



Figure 4-3. Fine-tuning an encoder-based transformer for named entity recognition

So far, so good, but how should we handle subwords in a token
classification task? For example, the first name “Christa” in Figure 4-3 is
tokenized into the subwords “Chr” and “##ista”, so which one(s) should be
assigned the B-PER label?

In the BERT paper,  the authors assigned this label to the first subword
(“Chr” in our example) and ignored the following subword (“##ista”). This
is the convention we’ll adopt here, and we’ll indicate the ignored subwords
with IGN. We can later easily propagate the predicted label of the first
subword to the subsequent subwords in the postprocessing step. We could
also have chosen to include the representation of the “##ista” subword by
assigning it a copy of the B-LOC label, but this violates the IOB2 format.
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Fortunately, all the architecture aspects we’ve seen in BERT carry over to
XLM-R since its architecture is based on RoBERTa, which is identical to
BERT! Next we’ll see how  Transformers supports many other tasks with
minor modifications.

The Anatomy of the Transformers Model
Class

 Transformers is organized around dedicated classes for each architecture
and task. The model classes associated with different tasks are named
according to a <ModelName>For<Task> convention, or
AutoModelFor<Task> when using the AutoModel classes.

However, this approach has its limitations, and to motivate going deeper
into the ​ ⁠ Transformers API, consider the following scenario. Suppose you
have a great idea to solve an NLP problem that has been on your mind for a
long time with a transformer model. So you set up a meeting with your boss
and, with an artfully crafted PowerPoint presentation, you pitch that you
could increase the revenue of your department if you can finally solve the
problem. Impressed with your colorful presentation and talk of profits, your
boss generously agrees to give you one week to build a proof-of-concept.
Happy with the outcome, you start working straight away. You fire up your
GPU and open a notebook. You execute from transformers import
BertForTaskXY (note that TaskXY is the imaginary task you would like to
solve) and color escapes your face as the dreaded red color fills your screen:
ImportEr⁠ror:​ can⁠not import name BertForTaskXY. Oh no, there is no
BERT model for your use case! How can you complete the project in one
week if you have to implement the whole model yourself?! Where should
you even start?

Don’t panic!  Transformers is designed to enable you to easily extend
existing models for your specific use case. You can load the weights from
pretrained models, and you have access to task-specific helper functions.
This lets you build custom models for specific objectives with very little



overhead. In this section, we’ll see how we can implement our own custom
model.

Bodies and Heads
The main concept that makes  Transformers so versatile is the split of the
architecture into a body and head (as we saw in Chapter 1). We have
already seen that when we switch from the pretraining task to the
downstream task, we need to replace the last layer of the model with one
that is suitable for the task. This last layer is called the model head; it’s the
part that is task-specific. The rest of the model is called the body; it includes
the token embeddings and transformer layers that are task-agnostic. This
structure is reflected in the  Transformers code as well: the body of a
model is implemented in a class such as BertModel or GPT2Model that
returns the hidden states of the last layer. Task-specific models such as
BertForMaskedLM or BertForSequenceClassification use the base
model and add the necessary head on top of the hidden states, as shown in
Figure 4-4.

Figure 4-4. The BertModel class only contains the body of the model, while the BertFor<Task>
classes combine the body with a dedicated head for a given task

As we’ll see next, this separation of bodies and heads allows us to build a
custom head for any task and just mount it on top of a pretrained model.



Creating a Custom Model for Token Classification
Let’s go through the exercise of building a custom token classification head
for XLM-R. Since XLM-R uses the same model architecture as RoBERTa,
we will use RoBERTa as the base model, but augmented with settings
specific to XLM-R. Note that this is an educational exercise to show you
how to build a custom model for your own task. For token classification, an
XLMRobertaForTokenClassification class already exists that you can
import from  Transformers. If you want, you can skip to the next section
and simply use that one.

To get started, we need a data structure that will represent our XLM-R NER
tagger. As a first guess, we’ll need a configuration object to initialize the
model and a forward() function to generate the outputs. Let’s go ahead
and build our XLM-R class for token classification:

import torch.nn as nn

from transformers import XLMRobertaConfig

from transformers.modeling_outputs import TokenClassifierOutput

from transformers.models.roberta.modeling_roberta import RobertaModel

from transformers.models.roberta.modeling_roberta import 

RobertaPreTrainedModel

class XLMRobertaForTokenClassification(RobertaPreTrainedModel):

    config_class = XLMRobertaConfig

    def __init__(self, config):

        super().__init__(config)

        self.num_labels = config.num_labels

        # Load model body

        self.roberta = RobertaModel(config, add_pooling_layer=False)

        # Set up token classification head

        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # Load and initialize weights

        self.init_weights()

    def forward(self, input_ids=None, attention_mask=None, 

token_type_ids=None,

                labels=None, **kwargs):

        # Use model body to get encoder representations

        outputs = self.roberta(input_ids, attention_mask=attention_mask,

                               token_type_ids=token_type_ids, **kwargs)



        # Apply classifier to encoder representation

        sequence_output = self.dropout(outputs[0])

        logits = self.classifier(sequence_output)

        # Calculate losses

        loss = None

        if labels is not None:

            loss_fct = nn.CrossEntropyLoss()

            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

        # Return model output object

        return TokenClassifierOutput(loss=loss, logits=logits,

                                     hidden_states=outputs.hidden_states,

                                     attentions=outputs.attentions)

The config_class ensures that the standard XLM-R settings are used
when we initialize a new model. If you want to change the default
parameters, you can do this by overwriting the default settings in the
configuration. With the super() method we call the initialization function
of the RobertaPreTrainedModel class. This abstract class handles the
initialization or loading of pretrained weights. Then we load our model
body, which is RobertaModel, and extend it with our own classification
head consisting of a dropout and a standard feed-forward layer. Note that
we set add_​pool⁠ing_layer=False to ensure all hidden states are returned
and not only the one associated with the [CLS] token. Finally, we initialize
all the weights by calling the init_weights() method we inherit from
RobertaPreTrainedModel, which will load the pretrained weights for the
model body and randomly initialize the weights of our token classification
head.

The only thing left to do is to define what the model should do in a forward
pass with a forward() method. During the forward pass, the data is first
fed through the model body. There are a number of input variables, but the
only ones we need for now are input_ids and attention_mask. The
hidden state, which is part of the model body output, is then fed through the
dropout and classification layers. If we also provide labels in the forward
pass, we can directly calculate the loss. If there is an attention mask we
need to do a little bit more work to make sure we only calculate the loss of
the unmasked tokens. Finally, we wrap all the outputs in a



TokenClassifierOutput object that allows us to access elements in a the
familiar named tuple from previous chapters.

By just implementing two functions of a simple class, we can build our own
custom transformer model. And since we inherit from a PreTrainedModel,
we instantly get access to all the useful  Transformer utilities, such as
from_pretrained()! Let’s have a look how we can load pretrained
weights into our custom model.

Loading a Custom Model
Now we are ready to load our token classification model. We’ll need to
provide some additional information beyond the model name, including the
tags that we will use to label each entity and the mapping of each tag to an
ID and vice versa. All of this information can be derived from our tags
variable, which as a ClassLabel object has a names attribute that we can
use to derive the mapping:

index2tag = {idx: tag for idx, tag in enumerate(tags.names)}

tag2index = {tag: idx for idx, tag in enumerate(tags.names)}

We’ll store these mappings and the tags.num_classes attribute in the
AutoConfig object that we encountered in Chapter 3. Passing keyword
arguments to the from_pretrained() method overrides the default values:

from transformers import AutoConfig

xlmr_config = AutoConfig.from_pretrained(xlmr_model_name,

                                         num_labels=tags.num_classes,

                                         id2label=index2tag, 

label2id=tag2index)

The AutoConfig class contains the blueprint of a model’s architecture.
When we load a model with AutoModel.from_pretrained(model_ckpt),
the configuration file associated with that model is downloaded
automatically. However, if we want to modify something like the number of



classes or label names, then we can load the configuration first with the
parameters we would like to customize.

Now, we can load the model weights as usual with the from_pretrained()
function with the additional config argument. Note that we did not
implement loading pretrained weights in our custom model class; we get
this for free by inheriting from RobertaPreTrainedModel:

import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

xlmr_model = (XLMRobertaForTokenClassification

              .from_pretrained(xlmr_model_name, config=xlmr_config)

              .to(device))

As a quick check that we have initialized the tokenizer and model correctly,
let’s test the predictions on our small sequence of known entities:

input_ids = xlmr_tokenizer.encode(text, return_tensors="pt")

pd.DataFrame([xlmr_tokens, input_ids[0].numpy()], index=["Tokens", "Input 

IDs"])

0 1 2 3

Tokens <s> ▁Jack ▁Spar row

Input IDs 0 21763 37456 15555

As you can see here, the start <s> and end </s> tokens are given the IDs 0
and 2, respectively.

Finally, we need to pass the inputs to the model and extract the predictions
by taking the argmax to get the most likely class per token:

outputs = xlmr_model(input_ids.to(device)).logits

predictions = torch.argmax(outputs, dim=-1)

print(f"Number of tokens in sequence: {len(xlmr_tokens)}")

print(f"Shape of outputs: {outputs.shape}")



Number of tokens in sequence: 10

Shape of outputs: torch.Size([1, 10, 7])

Here we see that the logits have the shape [batch_size, num_tokens,
num_tags], with each token given a logit among the seven possible NER
tags. By enumerating over the sequence, we can quickly see what the
pretrained model predicts:

preds = [tags.names[p] for p in predictions[0].cpu().numpy()]

pd.DataFrame([xlmr_tokens, preds], index=["Tokens", "Tags"])

0 1 2 3

Tokens <s> ▁Jack ▁Spar row

Tags O I-LOC B-LOC B-LOC

Unsurprisingly, our token classification layer with random weights leaves a
lot to be desired; let’s fine-tune on some labeled data to make it better!
Before doing so, let’s wrap the preceding steps into a helper function for
later use:

def tag_text(text, tags, model, tokenizer):

    # Get tokens with special characters

    tokens = tokenizer(text).tokens()

    # Encode the sequence into IDs

    input_ids = xlmr_tokenizer(text, return_tensors="pt").input_ids.to(device)

    # Get predictions as distribution over 7 possible classes

    outputs = model(inputs)[0]

    # Take argmax to get most likely class per token

    predictions = torch.argmax(outputs, dim=2)

    # Convert to DataFrame

    preds = [tags.names[p] for p in predictions[0].cpu().numpy()]

    return pd.DataFrame([tokens, preds], index=["Tokens", "Tags"])

Before we can train the model, we also need to tokenize the inputs and
prepare the labels. We’ll do that next.



Tokenizing Texts for NER
Now that we’ve established that the tokenizer and model can encode a
single example, our next step is to tokenize the whole dataset so that we can
pass it to the XLM-R model for fine-tuning. As we saw in Chapter 2, 
Datasets provides a fast way to tokenize a Dataset object with the map()
operation. To achieve this, recall that we first need to define a function with
the minimal signature:

function(examples: Dict[str, List]) -> Dict[str, List]

where examples is equivalent to a slice of a Dataset, e.g.,
panx_de['train'][:10]. Since the XLM-R tokenizer returns the input
IDs for the model’s inputs, we just need to augment this information with
the attention mask and the label IDs that encode the information about
which token is associated with each NER tag.

Following the approach taken in the  Transformers documentation, let’s
look at how this works with our single German example by first collecting
the words and tags as ordinary lists:

words, labels = de_example["tokens"], de_example["ner_tags"]

Next, we tokenize each word and use the is_split_into_words argument
to tell the tokenizer that our input sequence has already been split into
words:

tokenized_input = xlmr_tokenizer(de_example["tokens"], 

is_split_into_words=True)

tokens = xlmr_tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])

pd.DataFrame([tokens], index=["Tokens"])

0 1 2 3

Tokens <s> ▁2.000 ▁Einwohner n

https://oreil.ly/lGPgh


In this example we can see that the tokenizer has split “Einwohnern” into
two subwords, “▁Einwohner” and “n”. Since we’re following the
convention that only “▁Einwohner” should be associated with the B-LOC
label, we need a way to mask the subword representations after the first
subword. Fortunately, tokenized_input is a class that contains a
word_ids() function that can help us achieve this:

word_ids = tokenized_input.word_ids()

pd.DataFrame([tokens, word_ids], index=["Tokens", "Word IDs"])

0 1 2 3

Tokens <s> ▁2.000 ▁Einwohner n

Word IDs None 0 1 1

Here we can see that word_ids has mapped each subword to the
corresponding index in the words sequence, so the first subword, “▁2.000”,
is assigned the index 0, while “▁Einwohner” and “n” are assigned the index
1 (since “Einwohnern” is the second word in words). We can also see that
special tokens like <s> and <\s> are mapped to None. Let’s set –100 as the
label for these special tokens and the subwords we wish to mask during
training:

previous_word_idx = None

label_ids = []

for word_idx in word_ids:

    if word_idx is None or word_idx == previous_word_idx:

        label_ids.append(-100)

    elif word_idx != previous_word_idx:

        label_ids.append(labels[word_idx])

    previous_word_idx = word_idx

labels = [index2tag[l] if l != -100 else "IGN" for l in label_ids]

index = ["Tokens", "Word IDs", "Label IDs", "Labels"]

pd.DataFrame([tokens, word_ids, label_ids, labels], index=index)



0 1 2 3

Tokens <s> ▁2.000 ▁Einwohner n

Word IDs None 0 1 1

Label IDs -100 0 0 -100

Labels IGN O O IGN

NOTE
Why did we choose –100 as the ID to mask subword representations? The reason is that
in PyTorch the cross-entropy loss class torch.nn.CrossEntropyLoss has an attribute
called ignore_index whose value is –100. This index is ignored during training, so we
can use it to ignore the tokens associated with consecutive subwords.

And that’s it! We can clearly see how the label IDs align with the tokens, so
let’s scale this out to the whole dataset by defining a single function that
wraps all the logic:

def tokenize_and_align_labels(examples):

    tokenized_inputs = xlmr_tokenizer(examples["tokens"], truncation=True,

                                      is_split_into_words=True)

    labels = []

    for idx, label in enumerate(examples["ner_tags"]):

        word_ids = tokenized_inputs.word_ids(batch_index=idx)

        previous_word_idx = None

        label_ids = []

        for word_idx in word_ids:

            if word_idx is None or word_idx == previous_word_idx:

                label_ids.append(-100)

            else:

                label_ids.append(label[word_idx])

            previous_word_idx = word_idx

        labels.append(label_ids)

    tokenized_inputs["labels"] = labels

    return tokenized_inputs

We now have all the ingredients we need to encode each split, so let’s write
a function we can iterate over:



def encode_panx_dataset(corpus):

    return corpus.map(tokenize_and_align_labels, batched=True,

                      remove_columns=['langs', 'ner_tags', 'tokens'])

By applying this function to a DatasetDict object, we get an encoded
Dataset object per split. Let’s use this to encode our German corpus:

panx_de_encoded = encode_panx_dataset(panx_ch["de"])

Now that we have a model and a dataset, we need to define a performance
metric.

Performance Measures
Evaluating a NER model is similar to evaluating a text classification model,
and it is common to report results for precision, recall, and F -score. The
only subtlety is that all words of an entity need to be predicted correctly in
order for a prediction to be counted as correct. Fortunately, there is a nifty
library called seqeval that is designed for these kinds of tasks. For example,
given some placeholder NER tags and model predictions, we can compute
the metrics via seqeval’s classification_report() function:

from seqeval.metrics import classification_report

y_true = [["O", "O", "O", "B-MISC", "I-MISC", "I-MISC", "O"],

          ["B-PER", "I-PER", "O"]]

y_pred = [["O", "O", "B-MISC", "I-MISC", "I-MISC", "I-MISC", "O"],

          ["B-PER", "I-PER", "O"]]

print(classification_report(y_true, y_pred))

              precision    recall  f1-score   support

        MISC       0.00      0.00      0.00         1

         PER       1.00      1.00      1.00         1

   micro avg       0.50      0.50      0.50         2

   macro avg       0.50      0.50      0.50         2

weighted avg       0.50      0.50      0.50         2

1
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As we can see, seqeval expects the predictions and labels as lists of lists,
with each list corresponding to a single example in our validation or test
sets. To integrate these metrics during training, we need a function that can
take the outputs of the model and convert them into the lists that seqeval
expects. The following does the trick by ensuring we ignore the label IDs
associated with subsequent subwords:

import numpy as np

def align_predictions(predictions, label_ids):

    preds = np.argmax(predictions, axis=2)

    batch_size, seq_len = preds.shape

    labels_list, preds_list = [], []

    for batch_idx in range(batch_size):

        example_labels, example_preds = [], []

        for seq_idx in range(seq_len):

            # Ignore label IDs = -100

            if label_ids[batch_idx, seq_idx] != -100:

                example_labels.append(index2tag[label_ids[batch_idx]

[seq_idx]])

                example_preds.append(index2tag[preds[batch_idx][seq_idx]])

        labels_list.append(example_labels)

        preds_list.append(example_preds)

    return preds_list, labels_list

Equipped with a performance metric, we can move on to actually training
the model.

Fine-Tuning XLM-RoBERTa
We now have all the ingredients to fine-tune our model! Our first strategy
will be to fine-tune our base model on the German subset of PAN-X and
then evaluate its zero-shot cross-lingual performance on French, Italian, and
English. As usual, we’ll use the  Transformers Trainer to handle our
training loop, so first we need to define the training attributes using the
TrainingArguments class:



from transformers import TrainingArguments

num_epochs = 3

batch_size = 24

logging_steps = len(panx_de_encoded["train"]) // batch_size

model_name = f"{xlmr_model_name}-finetuned-panx-de"

training_args = TrainingArguments(

    output_dir=model_name, log_level="error", num_train_epochs=num_epochs,

    per_device_train_batch_size=batch_size,

    per_device_eval_batch_size=batch_size, evaluation_strategy="epoch",

    save_steps=1e6, weight_decay=0.01, disable_tqdm=False,

    logging_steps=logging_steps, push_to_hub=True)

Here we evaluate the model’s predictions on the validation set at the end of
every epoch, tweak the weight decay, and set save_steps to a large number
to disable checkpointing and thus speed up training.

This is also a good point to make sure we are logged in to the Hugging Face
Hub (if you’re working in a terminal, you can execute the command
huggingface-cli login instead):

from huggingface_hub import notebook_login

notebook_login()

We also need to tell the Trainer how to compute metrics on the validation
set, so here we can use the align_predictions() function that we defined
earlier to extract the predictions and labels in the format needed by seqeval
to calculate the F -score:

from seqeval.metrics import f1_score

def compute_metrics(eval_pred):

    y_pred, y_true = align_predictions(eval_pred.predictions,

                                       eval_pred.label_ids)

    return {"f1": f1_score(y_true, y_pred)}

The final step is to define a data collator so we can pad each input sequence
to the largest sequence length in a batch.  Transformers provides a
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dedicated data collator for token classification that will pad the labels along
with the inputs:

from transformers import DataCollatorForTokenClassification

data_collator = DataCollatorForTokenClassification(xlmr_tokenizer)

Padding the labels is necessary because, unlike in a text classification task,
the labels are also sequences. One important detail here is that the label
sequences are padded with the value –100, which, as we’ve seen, is ignored
by PyTorch loss functions.

We will train several models in the course of this chapter, so we’ll avoid
initializing a new model for every Trainer by creating a model_init()
method. This method loads an untrained model and is called at the
beginning of the train() call:

def model_init():

    return (XLMRobertaForTokenClassification

            .from_pretrained(xlmr_model_name, config=xlmr_config)

            .to(device))

We can now pass all this information together with the encoded datasets to
the Trainer:

from transformers import Trainer

trainer = Trainer(model_init=model_init, args=training_args,

                  data_collator=data_collator, 

compute_metrics=compute_metrics,

                  train_dataset=panx_de_encoded["train"],

                  eval_dataset=panx_de_encoded["validation"],

                  tokenizer=xlmr_tokenizer)

and then run the training loop as follows and push the final model to the
Hub:

trainer.train() trainer.push_to_hub(commit_message="Training completed!")



Epoch Training Loss Validation Loss F1

1 0.2652 0.160244 0.822974

2 0.1314 0.137195 0.852747

3 0.0806 0.138774 0.864591

These F1 scores are quite good for a NER model. To confirm that our
model works as expected, let’s test it on the German translation of our
simple example:

text_de = "Jeff Dean ist ein Informatiker bei Google in Kalifornien"

tag_text(text_de, tags, trainer.model, xlmr_tokenizer)

0 1 2 3

Tokens <s> ▁Jeff ▁De an

Tags O B-PER I-PER I-PER

It works! But we should never get too confident about performance based
on a single example. Instead, we should conduct a proper and thorough
investigation of the model’s errors. In the next section we explore how to do
this for the NER task.

Error Analysis
Before we dive deeper into the multilingual aspects of XLM-R, let’s take a
minute to investigate the errors of our model. As we saw in Chapter 2, a
thorough error analysis of your model is one of the most important aspects
when training and debugging transformers (and machine learning models in
general). There are several failure modes where it might look like the model
is performing well, while in practice it has some serious flaws. Examples
where training can fail include:

We might accidentally mask too many tokens and also mask some
of our labels to get a really promising loss drop.



The compute_metrics() function might have a bug that
overestimates the true performance.

We might include the zero class or O entity in NER as a normal
class, which will heavily skew the accuracy and F -score since it is
the majority class by a large margin.

When the model performs much worse than expected, looking at the errors
can yield useful insights and reveal bugs that would be hard to spot by just
looking at the code. And even if the model performs well and there are no
bugs in the code, error analysis is still a useful tool to understand the
model’s strengths and weaknesses. These are aspects we always need to
keep in mind when we deploy a model in a production environment.

For our analysis we will again use one of the most powerful tools at our
disposal, which is to look at the validation examples with the highest loss.
We can reuse much of the function we built to analyze the sequence
classification model in Chapter 2, but we’ll now calculate a loss per token
in the sample sequence.

Let’s define a method that we can apply to the validation set:

from torch.nn.functional import cross_entropy

def forward_pass_with_label(batch):

    # Convert dict of lists to list of dicts suitable for data collator

    features = [dict(zip(batch, t)) for t in zip(*batch.values())]

    # Pad inputs and labels and put all tensors on device

    batch = data_collator(features)

    input_ids = batch["input_ids"].to(device)

    attention_mask = batch["attention_mask"].to(device)

    labels = batch["labels"].to(device)

    with torch.no_grad():

        # Pass data through model

        output = trainer.model(input_ids, attention_mask)

        # logit.size: [batch_size, sequence_length, classes]

        # Predict class with largest logit value on classes axis

        predicted_label = torch.argmax(output.logits, axis=-1).cpu().numpy()

    # Calculate loss per token after flattening batch dimension with view

    loss = cross_entropy(output.logits.view(-1, 7),

                         labels.view(-1), reduction="none")

    # Unflatten batch dimension and convert to numpy array
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    loss = loss.view(len(input_ids), -1).cpu().numpy()

    return {"loss":loss, "predicted_label": predicted_label}

We can now apply this function to the whole validation set using map() and
load all the data into a DataFrame for further analysis:

valid_set = panx_de_encoded["validation"]

valid_set = valid_set.map(forward_pass_with_label, batched=True, 

batch_size=32)

df = valid_set.to_pandas()

The tokens and the labels are still encoded with their IDs, so let’s map the
tokens and labels back to strings to make it easier to read the results. For the
padding tokens with label –100 we assign a special label, IGN, so we can
filter them later. We also get rid of all the padding in the loss and
predicted_label fields by truncating them to the length of the inputs:

index2tag[-100] = "IGN"

df["input_tokens"] = df["input_ids"].apply(

    lambda x: xlmr_tokenizer.convert_ids_to_tokens(x))

df["predicted_label"] = df["predicted_label"].apply(

    lambda x: [index2tag[i] for i in x])

df["labels"] = df["labels"].apply(

    lambda x: [index2tag[i] for i in x])

df['loss'] = df.apply(

    lambda x: x['loss'][:len(x['input_ids'])], axis=1)

df['predicted_label'] = df.apply(

    lambda x: x['predicted_label'][:len(x['input_ids'])], axis=1)

df.head(1)

attention_mask input_ids labels loss

0

[1, 1, 1, 1, 1, 1, 1] [0, 10699, 11, 15,
16104, 1388, 2]

[IGN, B-ORG,
IGN, I-ORG, I-
ORG, I-ORG, IGN]

[0.0, 0.0146798
0.0, 0.0094694
0.010393422,
0.01293836, 0.

Each column contains a list of tokens, labels, predicted labels, and so on for
each sample. Let’s have a look at the tokens individually by unpacking



these lists. The pan⁠das.Series.explode() function allows us to do
exactly that in one line by creating a row for each element in the original
rows list. Since all the lists in one row have the same length, we can do this
in parallel for all columns. We also drop the padding tokens we named IGN,
since their loss is zero anyway. Finally, we cast the losses, which are still
numpy.Array objects, to standard floats:

df_tokens = df.apply(pd.Series.explode)

df_tokens = df_tokens.query("labels != 'IGN'")

df_tokens["loss"] = df_tokens["loss"].astype(float).round(2)

df_tokens.head(7)

attention_mask input_ids labels loss predicted_lab

1 10699 B-ORG 0.01 B-ORG

1 15 I-ORG 0.01 I-ORG

1 16104 I-ORG 0.01 I-ORG

1 1388 I-ORG 0.01 I-ORG

1 56530 O 0.00 O

1 83982 B-ORG 0.34 B-ORG

1 10 I-ORG 0.45 I-ORG

With the data in this shape, we can now group it by the input tokens and
aggregate the losses for each token with the count, mean, and sum. Finally,
we sort the aggregated data by the sum of the losses and see which tokens
have accumulated the most loss in the validation set:

(

    df_tokens.groupby("input_tokens")[["loss"]]

    .agg(["count", "mean", "sum"])

    .droplevel(level=0, axis=1)  # Get rid of multi-level columns

    .sort_values(by="sum", ascending=False)

    .reset_index()

    .round(2)

    .head(10)

    .T

)



0 1 2 3

input_tokens ▁ ▁der ▁in ▁von

count 6066 1388 989 808

mean 0.03 0.1 0.14 0.14

sum 200.71 138.05 137.33 114.92

We can observe several patterns in this list:

The whitespace token has the highest total loss, which is not
surprising since it is also the most common token in the list.
However, its mean loss is much lower than the other tokens in the
list. This means that the model doesn’t struggle to classify it.

Words like “in”, “von”, “der”, and “und” appear relatively
frequently. They often appear together with named entities and are
sometimes part of them, which explains why the model might mix
them up.

Parentheses, slashes, and capital letters at the beginning of words
are rarer but have a relatively high average loss. We will
investigate them further.

We can also group the label IDs and look at the losses for each class:

(

    df_tokens.groupby("labels")[["loss"]]

    .agg(["count", "mean", "sum"])

    .droplevel(level=0, axis=1)

    .sort_values(by="mean", ascending=False)

    .reset_index()

    .round(2)

    .T

)



0 1 2 3

labels B-ORG I-LOC I-ORG B-LOC

count 2683 1462 3820 3172

mean 0.66 0.64 0.48 0.35

sum 1769.47 930.94 1850.39 1111.03

We see that B⁠-⁠ORG has the highest average loss, which means that
determining the beginning of an organization poses a challenge to our
model.

We can break this down further by plotting the confusion matrix of the
token classification, where we see that the beginning of an organization is
often confused with the subsequent I-ORG token:

from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix

def plot_confusion_matrix(y_preds, y_true, labels):

    cm = confusion_matrix(y_true, y_preds, normalize="true")

    fig, ax = plt.subplots(figsize=(6, 6))

    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)

    disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)

    plt.title("Normalized confusion matrix")

    plt.show()

plot_confusion_matrix(df_tokens["labels"], df_tokens["predicted_label"],

                      tags.names)



From the plot, we can see that our model tends to confuse the B-ORG and I-
ORG entities the most. Otherwise, it is quite good at classifying the
remaining entities, which is clear by the near diagonal nature of the
confusion matrix.

Now that we’ve examined the errors at the token level, let’s move on and
look at sequences with high losses. For this calculation, we’ll revisit our
“unexploded” DataFrame and calculate the total loss by summing over the
loss per token. To do this, let’s first write a function that helps us display the
token sequences with the labels and the losses:

def get_samples(df):

    for _, row in df.iterrows():

        labels, preds, tokens, losses = [], [], [], []

        for i, mask in enumerate(row["attention_mask"]):

            if i not in {0, len(row["attention_mask"])}:

                labels.append(row["labels"][i])

                preds.append(row["predicted_label"][i])

                tokens.append(row["input_tokens"][i])



                losses.append(f"{row['loss'][i]:.2f}")

        df_tmp = pd.DataFrame({"tokens": tokens, "labels": labels,

                               "preds": preds, "losses": losses}).T

        yield df_tmp

df["total_loss"] = df["loss"].apply(sum)

df_tmp = df.sort_values(by="total_loss", ascending=False).head(3)

for sample in get_samples(df_tmp):

    display(sample)

0 1 2 3

tokens ▁'' 8 . ▁Juli

labels B-ORG IGN IGN I-ORG

preds O O O O

losses 7.89 0.00 0.00 6.88

0 1 2 3

tokens ▁' ▁'' ▁Τ Κ

labels O O O IGN

preds O O B-ORG O

losses 0.00 0.00 3.59 0.00

0 1 2 3

tokens ▁United ▁Nations ▁Multi dimensional

labels B-PER I-PER I-PER IGN

preds B-ORG I-ORG I-ORG I-ORG

losses 6.46 5.59 5.51 0.00

It is apparent that something is wrong with the labels of these samples; for
example, the United Nations and the Central African Republic are each
labeled as a person! At the same time, “8. Juli” in the first example is
labeled as an organization. It turns out the annotations for the PAN-X



dataset were generated through an automated process. Such annotations are
often referred to as “silver standard” (in contrast to the “gold standard” of
human-generated annotations), and it is no surprise that there are cases
where the automated approach failed to produce sensible labels. In fact,
such failure modes are not unique to automatic approaches; even when
humans carefully annotate data, mistakes can occur when the concentration
of the annotators fades or they simply misunderstand the sentence.

Another thing we noticed earlier was that parentheses and slashes had a
relatively high loss. Let’s look at a few examples of sequences with an
opening parenthesis:

df_tmp = df.loc[df["input_tokens"].apply(lambda x: u"\u2581(" in x)].head(2)

for sample in get_samples(df_tmp):

    display(sample)

0 1 2 3

tokens ▁Ham a ▁( ▁Unternehmen

labels B-ORG IGN I-ORG I-ORG

preds B-ORG I-ORG I-ORG I-ORG

losses 0.01 0.00 0.01 0.01

0 1 2 3

tokens ▁Kesk kül a ▁(

labels B-LOC IGN IGN I-LOC

preds B-LOC I-LOC I-LOC I-LOC

losses 0.02 0.00 0.00 0.01

In general we would not include the parentheses and their contents as part
of the named entity, but this seems to be the way the automatic extraction
annotated the documents. In the other examples, the parentheses contain a
geographic specification. While this is indeed a location as well, we might
want disconnect it from the original location in the annotations. This dataset



consists of Wikipedia articles in different languages, and the article titles
often contain some sort of explanation in parentheses. For instance, in the
first example the text in parentheses indicates that Hama is an
“Unternehmen,” or company in English. These are important details to
know when we roll out the model, as they might have implications on the
downstream performance of the whole pipeline the model is part of.

With a relatively simple analysis, we’ve identified some weaknesses in both
our model and the dataset. In a real use case we would iterate on this step,
cleaning up the dataset, retraining the model, and analyzing the new errors
until we were satisfied with the performance.

Here we analyzed the errors on a single language, but we are also interested
in the performance across languages. In the next section we’ll perform
some experiments to see how well the cross-lingual transfer in XLM-R
works.

Cross-Lingual Transfer
Now that we have fine-tuned XLM-R on German, we can evaluate its
ability to transfer to other languages via the predict() method of the
Trainer. Since we plan to evaluate multiple languages, let’s create a simple
function that does this for us:

def get_f1_score(trainer, dataset):

    return trainer.predict(dataset).metrics["test_f1"]

We can use this function to examine the performance on the test set and
keep track of our scores in a dict:

f1_scores = defaultdict(dict)

f1_scores["de"]["de"] = get_f1_score(trainer, panx_de_encoded["test"])

print(f"F1-score of [de] model on [de] dataset: {f1_scores['de']['de']:.3f}")

F1-score of [de] model on [de] dataset: 0.868



These are pretty good results for a NER task. Our metrics are in the ballpark
of 85%, and we can see that the model seems to struggle the most on the
ORG entities, probably because these are the least common in the training
data and many organization names are rare in XLM-R’s vocabulary. How
about the other languages? To warm up, let’s see how our model fine-tuned
on German fares on French:

text_fr = "Jeff Dean est informaticien chez Google en Californie"

tag_text(text_fr, tags, trainer.model, xlmr_tokenizer)

0 1 2 3

Tokens <s> ▁Jeff ▁De an

Tags O B-PER I-PER I-PER

Not bad! Although the name and organization are the same in both
languages, the model did manage to correctly label the French translation of
“Kalifornien”. Next, let’s quantify how well our German model fares on the
whole French test set by writing a simple function that encodes a dataset
and generates the classification report on it:

def evaluate_lang_performance(lang, trainer):

    panx_ds = encode_panx_dataset(panx_ch[lang])

    return get_f1_score(trainer, panx_ds["test"])

f1_scores["de"]["fr"] = evaluate_lang_performance("fr", trainer)

print(f"F1-score of [de] model on [fr] dataset: {f1_scores['de']['fr']:.3f}")

F1-score of [de] model on [fr] dataset: 0.714

Although we see a drop of about 15 points in the micro-averaged metrics,
remember that our model has not seen a single labeled French example! In
general, the size of the performance drop is related to how “far away” the
languages are from each other. Although German and French are grouped as
Indo-European languages, they technically belong to different language
families: Germanic and Romance, respectively.



Next, let’s evaluate the performance on Italian. Since Italian is also a
Romance language, we expect to get a similar result as we found on French:

f1_scores["de"]["it"] = evaluate_lang_performance("it", trainer)

print(f"F1-score of [de] model on [it] dataset: {f1_scores['de']['it']:.3f}")

F1-score of [de] model on [it] dataset: 0.692

Indeed, our expectations are borne out by the F -scores. Finally, let’s
examine the performance on English, which belongs to the Germanic
language family:

f1_scores["de"]["en"] = evaluate_lang_performance("en", trainer)

print(f"F1-score of [de] model on [en] dataset: {f1_scores['de']['en']:.3f}")

F1-score of [de] model on [en] dataset: 0.589

Surprisingly, our model fares worst on English, even though we might
intuitively expect German to be more similar to English than French.
Having fine-tuned on German and performed zero-shot transfer to French
and English, let’s next examine when it makes sense to fine-tune directly on
the target language.

When Does Zero-Shot Transfer Make Sense?
So far we’ve seen that fine-tuning XLM-R on the German corpus yields an
F -score of around 85%, and without any additional training the model is
able to achieve modest performance on the other languages in our corpus.
The question is, how good are these results and how do they compare
against an XLM-R model fine-tuned on a monolingual corpus?

In this section we will explore this question for the French corpus by fine-
tuning XLM-R on training sets of increasing size. By tracking the
performance this way, we can determine at which point zero-shot cross-
lingual transfer is superior, which in practice can be useful for guiding
decisions about whether to collect more labeled data.

1
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For simplicity, we’ll keep the same hyperparameters from the fine-tuning
run on the German corpus, except that we’ll tweak the logging_steps
argument of Training​Ar⁠guments to account for the changing training set
sizes. We can wrap this all together in a simple function that takes a
DatasetDict object corresponding to a monolingual corpus, downsamples
it by num_samples, and fine-tunes XLM-R on that sample to return the
metrics from the best epoch:

def train_on_subset(dataset, num_samples):

    train_ds = dataset["train"].shuffle(seed=42).select(range(num_samples))

    valid_ds = dataset["validation"]

    test_ds = dataset["test"]

    training_args.logging_steps = len(train_ds) // batch_size

    trainer = Trainer(model_init=model_init, args=training_args,

        data_collator=data_collator, compute_metrics=compute_metrics,

        train_dataset=train_ds, eval_dataset=valid_ds, 

tokenizer=xlmr_tokenizer)

    trainer.train()

    if training_args.push_to_hub:

        trainer.push_to_hub(commit_message="Training completed!")

    f1_score = get_f1_score(trainer, test_ds)

    return pd.DataFrame.from_dict(

        {"num_samples": [len(train_ds)], "f1_score": [f1_score]})

As we did with fine-tuning on the German corpus, we also need to encode
the French corpus into input IDs, attention masks, and label IDs:

panx_fr_encoded = encode_panx_dataset(panx_ch["fr"])

Next let’s check that our function works by running it on a small training
set of 250 examples:

training_args.push_to_hub = False

metrics_df = train_on_subset(panx_fr_encoded, 250)

metrics_df



num_samples f1_score

0 250 0.137329

We can see that with only 250 examples, fine-tuning on French
underperforms the zero-shot transfer from German by a large margin. Let’s
now increase our training set sizes to 500, 1,000, 2,000, and 4,000 examples
to get an idea of how the performance increases:

for num_samples in [500, 1000, 2000, 4000]:

    metrics_df = metrics_df.append(

        train_on_subset(panx_fr_encoded, num_samples), ignore_index=True)

We can compare how fine-tuning on French samples compares to zero-shot
cross-lingual transfer from German by plotting the F -scores on the test set
as a function of increasing training set size:

fig, ax = plt.subplots()

ax.axhline(f1_scores["de"]["fr"], ls="--", color="r")

metrics_df.set_index("num_samples").plot(ax=ax)

plt.legend(["Zero-shot from de", "Fine-tuned on fr"], loc="lower right")

plt.ylim((0, 1))

plt.xlabel("Number of Training Samples")

plt.ylabel("F1 Score")

plt.show()
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From the plot we can see that zero-shot transfer remains competitive until
about 750 training examples, after which fine-tuning on French reaches a
similar level of performance to what we obtained when fine-tuning on
German. Nevertheless, this result is not to be sniffed at! In our experience,
getting domain experts to label even hundreds of documents can be costly,
especially for NER, where the labeling process is fine-grained and time-
consuming.

There is one final technique we can try to evaluate multilingual learning:
fine-tuning on multiple languages at once! Let’s see how we can do this.

Fine-Tuning on Multiple Languages at Once
So far we’ve seen that zero-shot cross-lingual transfer from German to
French or Italian produces a drop of around 15 points in performance. One
way to mitigate this is by fine-tuning on multiple languages at the same
time. To see what type of gains we can get, let’s first use the



concatenate_datasets() function from  Datasets to concatenate the
German and French corpora together:

from datasets import concatenate_datasets

def concatenate_splits(corpora):

    multi_corpus = DatasetDict()

    for split in corpora[0].keys():

        multi_corpus[split] = concatenate_datasets(

            [corpus[split] for corpus in corpora]).shuffle(seed=42)

    return multi_corpus

panx_de_fr_encoded = concatenate_splits([panx_de_encoded, panx_fr_encoded])

For training, we’ll again use the same hyperparameters from the previous
sections, so we can simply update the logging steps, model, and datasets in
the trainer:

training_args.logging_steps = len(panx_de_fr_encoded["train"]) // batch_size

training_args.push_to_hub = True

training_args.output_dir = "xlm-roberta-base-finetuned-panx-de-fr"

trainer = Trainer(model_init=model_init, args=training_args,

    data_collator=data_collator, compute_metrics=compute_metrics,

    tokenizer=xlmr_tokenizer, train_dataset=panx_de_fr_encoded["train"],

    eval_dataset=panx_de_fr_encoded["validation"])

trainer.train()

trainer.push_to_hub(commit_message="Training completed!")

Let’s have a look at how the model performs on the test set of each
language:

for lang in langs:

    f1 = evaluate_lang_performance(lang, trainer)

    print(f"F1-score of [de-fr] model on [{lang}] dataset: {f1:.3f}")

F1-score of [de-fr] model on [de] dataset: 0.866

F1-score of [de-fr] model on [fr] dataset: 0.868

F1-score of [de-fr] model on [it] dataset: 0.815

F1-score of [de-fr] model on [en] dataset: 0.677



It performs much better on the French split than before, matching the
performance on the German test set. Interestingly, its performance on the
Italian and English splits also improves by roughly 10 points! So, even
adding training data in another language improves the performance of the
model on unseen languages.

Let’s round out our analysis by comparing the performance of fine-tuning
on each language separately against multilingual learning on all the corpora.
Since we have already fine-tuned on the German corpus, we can fine-tune
on the remaining languages with our train_on_subset() function, with
num_samples equal to the number of examples in the training set:

corpora = [panx_de_encoded]

# Exclude German from iteration

for lang in langs[1:]:

    training_args.output_dir = f"xlm-roberta-base-finetuned-panx-{lang}"

    # Fine-tune on monolingual corpus

    ds_encoded = encode_panx_dataset(panx_ch[lang])

    metrics = train_on_subset(ds_encoded, ds_encoded["train"].num_rows)

    # Collect F1-scores in common dict

    f1_scores[lang][lang] = metrics["f1_score"][0]

    # Add monolingual corpus to list of corpora to concatenate

    corpora.append(ds_encoded)

Now that we’ve fine-tuned on each language’s corpus, the next step is to
concatenate all the splits together to create a multilingual corpus of all four
languages. As with the previous German and French analysis, we can use
the concatenate_splits() function to do this step for us on the list of
corpora we generated in the previous step:

corpora_encoded = concatenate_splits(corpora)

Now that we have our multilingual corpus, we run the familiar steps with
the trainer:

training_args.logging_steps = len(corpora_encoded["train"]) // batch_size

training_args.output_dir = "xlm-roberta-base-finetuned-panx-all"



trainer = Trainer(model_init=model_init, args=training_args,

    data_collator=data_collator, compute_metrics=compute_metrics,

    tokenizer=xlmr_tokenizer, train_dataset=corpora_encoded["train"],

    eval_dataset=corpora_encoded["validation"])

trainer.train()

trainer.push_to_hub(commit_message="Training completed!")

The final step is to generate the predictions from the trainer on each
language’s test set. This will give us an insight into how well multilingual
learning is really working. We’ll collect the F -scores in our f1_scores
dictionary and then create a DataFrame that summarizes the main results
from our multilingual experiments:

for idx, lang in enumerate(langs):

    f1_scores["all"][lang] = get_f1_score(trainer, corpora[idx]["test"])

scores_data = {"de": f1_scores["de"],

               "each": {lang: f1_scores[lang][lang] for lang in langs},

               "all": f1_scores["all"]}

f1_scores_df = pd.DataFrame(scores_data).T.round(4)

f1_scores_df.rename_axis(index="Fine-tune on", columns="Evaluated on",

                         inplace=True)

f1_scores_df

Evaluated on de fr it en

Fine-tune on

de 0.8677 0.7141 0.6923 0.5890

each 0.8677 0.8505 0.8192 0.7068

all 0.8682 0.8647 0.8575 0.7870

From these results we can draw a few general conclusions:

Multilingual learning can provide significant gains in performance,
especially if the low-resource languages for cross-lingual transfer
belong to similar language families. In our experiments we can see
that German, French, and Italian achieve similar performance in
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the all category, suggesting that these languages are more similar
to each other than to English.

As a general strategy, it is a good idea to focus attention on cross-
lingual transfer within language families, especially when dealing
with different scripts like Japanese.

Interacting with Model Widgets
In this chapter, we’ve pushed quite a few fine-tuned models to the Hub.
Although we could use the pipeline() function to interact with them on
our local machine, the Hub provides widgets that are great for this kind of
workflow. An example is shown in Figure 4-5 for our
transformersbook/xlm-roberta-base-finetuned-panx-all

checkpoint, which as you can see has done a good job at identifying all the
entities of a German text.

Figure 4-5. Example of a widget on the Hugging Face Hub

Conclusion
In this chapter we saw how to tackle an NLP task on a multilingual corpus
using a single transformer pretrained on 100 languages: XLM-R. Although
we were able to show that cross-lingual transfer from German to French is



competitive when only a small number of labeled examples are available
for fine-tuning, this good performance generally does not occur if the target
language is significantly different from the one the base model was fine-
tuned on or was not one of the 100 languages used during pretraining.
Recent proposals like MAD-X are designed precisely for these low-
resource scenarios, and since MAD-X is built on top of  Transformers
you can easily adapt the code in this chapter to work with it!

So far we have looked at two tasks: sequence classification and token
classification. These both fall into the domain of natural language
understanding, where text is synthesized into predictions. In the next
chapter we have our first look at text generation, where not only the input
but also the output of the model is text.
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Chapter 5. Text Generation

One of the most uncanny features of transformer-based language models is
their ability to generate text that is almost indistinguishable from text
written by humans. A famous example is OpenAI’s GPT-2, which when
given the prompt:

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

was able to generate a compelling news article about talking unicorns:

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously
unknown to science. Now, after almost two centuries, the mystery of what
sparked this odd phenomenon is finally solved. Dr. Jorge Pérez, an
evolutionary biologist from the University of La Paz, and several
companions, were exploring the Andes Mountains when they found a
small valley, with no other animals or humans. Pérez noticed that the
valley had what appeared to be a natural fountain, surrounded by two
peaks of rock and silver snow. Pérez and the others then ventured further
into the valley. “By the time we reached the top of one peak, the water
looked blue, with some crystals on top,” said Pérez. Pérez and his friends
were astonished to see the unicorn herd. These creatures could be seen
from the air without having to move too much to see them—they were so
close they could touch their horns. While examining these bizarre
creatures the scientists discovered that the creatures also spoke some
fairly regular English …

What makes this example so remarkable is that it was generated without
any explicit supervision! By simply learning to predict the next word in the
text of millions of web pages, GPT-2 and its more powerful descendants
like GPT-3 are able to acquire a broad set of skills and pattern recognition

1



abilities that can be activated with different kinds of input prompts.
Figure 5-1 shows how language models are sometimes exposed during
pretraining to sequences of tasks where they need to predict the following
tokens based on the context alone, like addition, unscrambling words, and
translation. This allows them to transfer this knowledge effectively during
fine-tuning or (if the model is large enough) at inference time. These tasks
are not chosen ahead of time, but occur naturally in the huge corpora used
to train billion-parameter language models.

Figure 5-1. During pretraining, language models are exposed to sequences of tasks that can be
adapted during inference (courtesy of Tom B. Brown)

The ability of transformers to generate realistic text has led to a diverse
range of applications, like InferKit, Write With Transformer, AI Dungeon,
and conversational agents like Google’s Meena that can even tell corny
jokes, as shown in Figure 5-2!2

https://oreil.ly/I4adh
https://oreil.ly/ipkap
https://oreil.ly/8ubC1
https://oreil.ly/gMegC


Figure 5-2. Meena on the left telling a corny joke to a human on the right (courtesy of Daniel
Adiwardana and Thang Luong)

In this chapter we’ll use GPT-2 to illustrate how text generation works for
language models and explore how different decoding strategies impact the
generated texts.

The Challenge with Generating Coherent
Text
So far in this book, we have focused on tackling NLP tasks via a
combination of pretraining and supervised fine-tuning. As we’ve seen, for
task-specific heads like sequence or token classification, generating
predictions is fairly straightforward; the model produces some logits and we
either take the maximum value to get the predicted class, or apply a softmax
function to obtain the predicted probabilities per class. By contrast,
converting the model’s probabilistic output to text requires a decoding



method, which introduces a few challenges that are unique to text
generation:

The decoding is done iteratively and thus involves significantly
more compute than simply passing inputs once through the forward
pass of a model.

The quality and diversity of the generated text depend on the
choice of decoding method and associated hyperparameters.

To understand how this decoding process works, let’s start by examining
how GPT-2 is pretrained and subsequently applied to generate text.

Like other autoregressive or causal language models, GPT-2 is pretrained
to estimate the probability P(y|x) of a sequence of tokens y = y1, y2, ...yt

occurring in the text, given some initial prompt or context sequence
x = x1, x2, ...xk. Since it is impractical to acquire enough training data to
estimate P(y|x) directly, it is common to use the chain rule of probability
to factorize it as a product of conditional probabilities:

P (y1, ..., yt|x) =
N

∏
t=1

P (yt|y<t, x)

where y<t is a shorthand notation for the sequence y1, ..., yt−1. It is from
these conditional probabilities that we pick up the intuition that
autoregressive language modeling amounts to predicting each word given
the preceding words in a sentence; this is exactly what the probability on
the righthand side of the preceding equation describes. Notice that this
pretraining objective is quite different from BERT’s, which utilizes both
past and future contexts to predict a masked token.

By now you may have guessed how we can adapt this next token prediction
task to generate text sequences of arbitrary length. As shown in Figure 5-3,
we start with a prompt like “Transformers are the” and use the model to
predict the next token. Once we have determined the next token, we append
it to the prompt and then use the new input sequence to generate another



token. We do this until we have reached a special end-of-sequence token or
a predefined maximum length.

Figure 5-3. Generating text from an input sequence by adding a new word to the input at each step

NOTE
Since the output sequence is conditioned on the choice of input prompt, this type of text
generation is often called conditional text generation.

At the heart of this process lies a decoding method that determines which
token is selected at each timestep. Since the language model head produces
a logit zt,i per token in the vocabulary at each step, we can get the
probability distribution over the next possible token wi by taking the
softmax:

P (yt = wi|y<t, x) = softmax (zt,i)

The goal of most decoding methods is to search for the most likely overall
sequence by picking a ŷ such that:

ŷ =argmax
y

P (y|x)



Finding ŷ directly would involve evaluating every possible sequence with
the language model. Since there does not exist an algorithm that can do this
in a reasonable amount of time, we rely on approximations instead. In this
chapter we’ll explore a few of these approximations and gradually build up
toward smarter and more complex algorithms that can be used to generate
high-quality texts.

Greedy Search Decoding
The simplest decoding method to get discrete tokens from a model’s
continuous output is to greedily select the token with the highest probability
at each timestep:

ŷt =argmax
yt

P (yt|y<t, x)

To see how greedy search works, let’s start by loading the 1.5-billion-
parameter version of GPT-2 with a language modeling head:

import torch

from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda" if torch.cuda.is_available() else "cpu"

model_name = "gpt2-xl"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name).to(device)

Now let’s generate some text! Although  Transformers provides a
generate() function for autoregressive models like GPT-2, we’ll
implement this decoding method ourselves to see what goes on under the
hood. To warm up, we’ll take the same iterative approach shown in
Figure 5-3: we’ll use “Transformers are the” as the input prompt and run
the decoding for eight timesteps. At each timestep, we pick out the model’s
logits for the last token in the prompt and wrap them with a softmax to get a
probability distribution. We then pick the next token with the highest
probability, add it to the input sequence, and run the process again. The

3



following code does the job, and also stores the five most probable tokens
at each timestep so we can visualize the alternatives:

import pandas as pd

input_txt = "Transformers are the"

input_ids = tokenizer(input_txt, return_tensors="pt")["input_ids"].to(device)

iterations = []

n_steps = 8

choices_per_step = 5

with torch.no_grad():

    for _ in range(n_steps):

        iteration = dict()

        iteration["Input"] = tokenizer.decode(input_ids[0])

        output = model(input_ids=input_ids)

        # Select logits of the first batch and the last token and apply 

softmax

        next_token_logits = output.logits[0, -1, :]

        next_token_probs = torch.softmax(next_token_logits, dim=-1)

        sorted_ids = torch.argsort(next_token_probs, dim=-1, descending=True)

        # Store tokens with highest probabilities

        for choice_idx in range(choices_per_step):

            token_id = sorted_ids[choice_idx]

            token_prob = next_token_probs[token_id].cpu().numpy()

            token_choice = (

                f"{tokenizer.decode(token_id)} ({100 * token_prob:.2f}%)"

            )

            iteration[f"Choice {choice_idx+1}"] = token_choice

        # Append predicted next token to input

        input_ids = torch.cat([input_ids, sorted_ids[None, 0, None]], dim=-1)

        iterations.append(iteration)

pd.DataFrame(iterations)



Input Choice 1 Choice 2 Choice 3

0
Transformers are
the

most (8.53%) only (4.96%) best (4.65%)

1
Transformers are
the most

popular (16.78%) powerful (5.37%) common (4.96%

2
Transformers are
the most popular

toy (10.63%) toys (7.23%) Transformers
(6.60%)

3

Transformers are
the most popular
toy

line (34.38%) in (18.20%) of (11.71%)

4

Transformers are
the most popular
toy line

in (46.28%) of (15.09%) , (4.94%)

5

Transformers are
the most popular
toy line in

the (65.99%) history (12.42%) America (6.91%

6

Transformers are
the most popular
toy line in the

world (69.26%) United (4.55%) history (4.29%)

7

Transformers are
the most popular
toy line in the
world

, (39.73%) . (30.64%) and (9.87%)

With this simple method we were able to generate the sentence
“Transformers are the most popular toy line in the world”. Interestingly, this
indicates that GPT-2 has internalized some knowledge about the
Transformers media franchise, which was created by two toy companies
(Hasbro and Takara Tomy). We can also see the other possible continuations
at each step, which shows the iterative nature of text generation. Unlike
other tasks such as sequence classification where a single forward pass
suffices to generate the predictions, with text generation we need to decode
the output tokens one at a time.

Implementing greedy search wasn’t too hard, but we’ll want to use the
built-in generate() function from  Transformers to explore more
sophisticated decoding methods. To reproduce our simple example, let’s



make sure sampling is switched off (it’s off by default, unless the specific
configuration of the model you are loading the checkpoint from states
otherwise) and specify the max_new_tokens for the number of newly
generated tokens:

input_ids = tokenizer(input_txt, return_tensors="pt")["input_ids"].to(device)

output = model.generate(input_ids, max_new_tokens=n_steps, do_sample=False)

print(tokenizer.decode(output[0]))

Transformers are the most popular toy line in the world,

Now let’s try something a bit more interesting: can we reproduce the
unicorn story from OpenAI? As we did previously, we’ll encode the prompt
with the tokenizer, and we’ll specify a larger value for max_length to
generate a longer sequence of text:

max_length = 128

input_txt = """In a shocking finding, scientist discovered \

a herd of unicorns living in a remote, previously unexplored \

valley, in the Andes Mountains. Even more surprising to the \

researchers was the fact that the unicorns spoke perfect English.\n\n

"""

input_ids = tokenizer(input_txt, return_tensors="pt")["input_ids"].to(device)

output_greedy = model.generate(input_ids, max_length=max_length,

                               do_sample=False)

print(tokenizer.decode(output_greedy[0]))

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect

English.

The researchers, from the University of California, Davis, and the University 

of

Colorado, Boulder, were conducting a study on the Andean cloud forest, which 

is

home to the rare species of cloud forest trees.

The researchers were surprised to find that the unicorns were able to

communicate with each other, and even with humans.



The researchers were surprised to find that the unicorns were able

Well, the first few sentences are quite different from the OpenAI example
and amusingly involve different universities being credited with the
discovery! We can also see one of the main drawbacks with greedy search
decoding: it tends to produce repetitive output sequences, which is certainly
undesirable in a news article. This is a common problem with greedy search
algorithms, which can fail to give you the optimal solution; in the context of
decoding, they can miss word sequences whose overall probability is higher
just because high-probability words happen to be preceded by low-
probability ones.

Fortunately, we can do better—let’s examine a popular method known as
beam search decoding.

NOTE
Although greedy search decoding is rarely used for text generation tasks that require
diversity, it can be useful for producing short sequences like arithmetic where a
deterministic and factually correct output is preferred.  For these tasks, you can
condition GPT-2 by providing a few line-separated examples in the format "5 + 8 =>
13 \n 7 + 2 => 9 \n 1 + 0 =>" as the input prompt.

Beam Search Decoding
Instead of decoding the token with the highest probability at each step,
beam search keeps track of the top-b most probable next tokens, where b is
referred to as the number of beams or partial hypotheses. The next set of
beams are chosen by considering all possible next-token extensions of the
existing set and selecting the b most likely extensions. The process is
repeated until we reach the maximum length or an EOS token, and the most
likely sequence is selected by ranking the b beams according to their log
probabilities. An example of beam search is shown in Figure 5-4.
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Figure 5-4. Beam search with two beams

Why do we score the sequences using log probabilities instead of the
probabilities themselves? That calculating the overall probability of a
sequence P(y1, y2, ..., yt|x) involves calculating a product of conditional
probabilities P(yt|y<t, x) is one reason. Since each conditional probability
is typically a small number in the range [0, 1], taking their product can lead
to an overall probability that can easily underflow. This means that the
computer can no longer precisely represent the result of the calculation. For
example, suppose we have a sequence of t = 1024 tokens and generously
assume that the probability for each token is 0.5. The overall probability for
this sequence is an extremely small number:

0.5 ** 1024

5.562684646268003e-309

which leads to numerical instability as we run into underflow. We can avoid
this by calculating a related term, the log probability. If we apply the
logarithm to the joint and conditional probabilities, then with the help of the
product rule for logarithms we get:

log P (y1, ...yt|x) =
N

∑
t=1

log P (yt|y<t, x)



In other words, the product of probabilities we saw earlier becomes a sum
of log probabilities, which is much less likely to run into numerical
instabilities. For example, calculating the log probability of the same
example as before gives:

import numpy as np

sum([np.log(0.5)] * 1024)

-709.7827128933695

This is a number we can easily deal with, and this approach still works for
much smaller numbers. Since we only want to compare relative
probabilities, we can do this directly with log probabilities.

Let’s calculate and compare the log probabilities of the texts generated by
greedy and beam search to see if beam search can improve the overall
probability. Since  Transformers models return the unnormalized logits
for the next token given the input tokens, we first need to normalize the
logits to create a probability distribution over the whole vocabulary for each
token in the sequence. We then need to select only the token probabilities
that were present in the sequence. The following function implements these
steps:

import torch.nn.functional as F

def log_probs_from_logits(logits, labels):

    logp = F.log_softmax(logits, dim=-1)

    logp_label = torch.gather(logp, 2, labels.unsqueeze(2)).squeeze(-1)

    return logp_label

This gives us the log probability for a single token, so to get the total log
probability of a sequence we just need to sum the log probabilities for each
token:

def sequence_logprob(model, labels, input_len=0):

    with torch.no_grad():

        output = model(labels)

        log_probs = log_probs_from_logits(



            output.logits[:, :-1, :], labels[:, 1:])

        seq_log_prob = torch.sum(log_probs[:, input_len:])

    return seq_log_prob.cpu().numpy()

Note that we ignore the log probabilities of the input sequence because they
are not generated by the model. We can also see that it is important to align
the logits and the labels; since the model predicts the next token, we do not
get a logit for the first label, and we don’t need the last logit because we
don’t have a ground truth token for it.

Let’s use these functions to first calculate the sequence log probability of
the greedy decoder on the OpenAI prompt:

logp = sequence_logprob(model, output_greedy, input_len=len(input_ids[0]))

print(tokenizer.decode(output_greedy[0]))

print(f"\nlog-prob: {logp:.2f}")

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect

English.

The researchers, from the University of California, Davis, and the University 

of

Colorado, Boulder, were conducting a study on the Andean cloud forest, which 

is

home to the rare species of cloud forest trees.

The researchers were surprised to find that the unicorns were able to

communicate with each other, and even with humans.

The researchers were surprised to find that the unicorns were able

log-prob: -87.43

Now let’s compare this to a sequence that is generated with beam search. To
activate beam search with the generate() function we just need to specify
the number of beams with the num_beams parameter. The more beams we
choose, the better the result potentially gets; however, the generation



process becomes much slower since we generate parallel sequences for
each beam:

output_beam = model.generate(input_ids, max_length=max_length, num_beams=5,

                             do_sample=False)

logp = sequence_logprob(model, output_beam, input_len=len(input_ids[0]))

print(tokenizer.decode(output_beam[0]))

print(f"\nlog-prob: {logp:.2f}")

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect

English.

The discovery of the unicorns was made by a team of scientists from the

University of California, Santa Cruz, and the National Geographic Society.

The scientists were conducting a study of the Andes Mountains when they

discovered a herd of unicorns living in a remote, previously unexplored 

valley,

in the Andes Mountains. Even more surprising to the researchers was the fact

that the unicorns spoke perfect English

log-prob: -55.23

We can see that we get a better log probability (higher is better) with beam
search than we did with simple greedy decoding. However, we can see that
beam search also suffers from repetitive text. One way to address this is to
impose an n-gram penalty with the no_repeat_ngram_size parameter that
tracks which n-grams have been seen and sets the next token probability to
zero if it would produce a previously seen n-gram:

output_beam = model.generate(input_ids, max_length=max_length, num_beams=5,

                             do_sample=False, no_repeat_ngram_size=2)

logp = sequence_logprob(model, output_beam, input_len=len(input_ids[0]))

print(tokenizer.decode(output_beam[0]))

print(f"\nlog-prob: {logp:.2f}")

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more



surprising to the researchers was the fact that the unicorns spoke perfect

English.

The discovery was made by a team of scientists from the University of

California, Santa Cruz, and the National Geographic Society.

According to a press release, the scientists were conducting a survey of the

area when they came across the herd. They were surprised to find that they 

were

able to converse with the animals in English, even though they had never seen 

a

unicorn in person before. The researchers were

log-prob: -93.12

This isn’t too bad! We’ve managed to stop the repetitions, and we can see
that despite producing a lower score, the text remains coherent. Beam
search with n-gram penalty is a good way to find a trade-off between
focusing on high-probability tokens (with beam search) while reducing
repetitions (with n-gram penalty), and it’s commonly used in applications
such as summarization or machine translation where factual correctness is
important. When factual correctness is less important than the diversity of
generated output, for instance in open-domain chitchat or story generation,
another alternative to reduce repetitions while improving diversity is to use
sampling. Let’s round out our exploration of text generation by examining a
few of the most common sampling methods.

Sampling Methods
The simplest sampling method is to randomly sample from the probability
distribution of the model’s outputs over the full vocabulary at each
timestep:

P (yt = wi|y<t, x) = softmax (zt,i) =
exp (zt,i)

∑
|V |
j=1 exp (zt,j)



where |V | denotes the cardinality of the vocabulary. We can easily control
the diversity of the output by adding a temperature parameter T that rescales
the logits before taking the softmax:

P (yt = wi|y<t, x) =
exp (zt,i/T )

∑
|V |
j=1 exp (zt,j/T )

By tuning T we can control the shape of the probability distribution.  When
T ≪ 1, the distribution becomes peaked around the origin and the rare
tokens are suppressed. On the other hand, when T ≫ 1, the distribution
flattens out and each token becomes equally likely. The effect of
temperature on token probabilities is shown in Figure 5-5.

Figure 5-5. Distribution of randomly generated token probabilities for three selected temperatures

To see how we can use temperature to influence the generated text, let’s
sample with T = 2 by setting the temperature parameter in the
generate() function (we’ll explain the meaning of the top_k parameter in
the next section):
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output_temp = model.generate(input_ids, max_length=max_length, do_sample=True,

                             temperature=2.0, top_k=0)

print(tokenizer.decode(output_temp[0]))

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect

English.
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We can clearly see that a high temperature has produced mostly gibberish;
by accentuating the rare tokens, we’ve caused the model to create strange
grammar and quite a few made-up words! Let’s see what happens if we cool
down the temperature:

output_temp = model.generate(input_ids, max_length=max_length, do_sample=True,

                             temperature=0.5, top_k=0)

print(tokenizer.decode(output_temp[0]))

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect

English.

The scientists were searching for the source of the mysterious sound, which 

was

making the animals laugh and cry.

The unicorns were living in a remote valley in the Andes mountains

'When we first heard the noise of the animals, we thought it was a lion or a

tiger,' said Luis Guzman, a researcher from the University of Buenos Aires,

Argentina.



'But when

This is significantly more coherent, and even includes a quote from yet
another university being credited with the discovery! The main lesson we
can draw from temperature is that it allows us to control the quality of the
samples, but there’s always a trade-off between coherence (low
temperature) and diversity (high temperature) that one has to tune to the use
case at hand.

Another way to adjust the trade-off between coherence and diversity is to
truncate the distribution of the vocabulary. This allows us to adjust the
diversity freely with the temperature, but in a more limited range that
excludes words that would be too strange in the context (i.e., low-
probability words). There are two main ways to do this: top-k and nucleus
(or top-p) sampling. Let’s take a look.

Top-k and Nucleus Sampling
Top-k and nucleus (top-p) sampling are two popular alternatives or
extensions to using temperature. In both cases, the basic idea is to restrict
the number of possible tokens we can sample from at each timestep. To see
how this works, let’s first visualize the cumulative probability distribution
of the model’s outputs at T = 1 as seen in Figure 5-6.

Let’s tease apart these plots, since they contain a lot of information. In the
upper plot we can see a histogram of the token probabilities. It has a peak
around 10−8 and a second, smaller peak around 10−4, followed by a sharp
drop with just a handful of tokens occurring with probability between 10−2

and 10−1. Looking at this diagram, we can see that the probability of
picking the token with the highest probability (the isolated bar at 10−1) is 1
in 10.



Figure 5-6. Probability distribution of next token prediction (upper) and cumulative distribution of
descending token probabilities (lower)

In the lower plot, we’ve ordered the tokens by descending probability and
calculated the cumulative sum of the first 10,000 tokens (in total, there are
50,257 tokens in GPT-2’s vocabulary). The curved line represents the
probability of picking any of the preceding tokens. For example, there is
roughly a 96% chance of picking any of the 1,000 tokens with the highest
probability. We see that the probability rises quickly above 90% but
saturates to close to 100% only after several thousand tokens. The plot
shows that there is a 1 in 100 chance of not picking any of the tokens that
are not even in the top 2,000.



Although these numbers might appear small at first sight, they become
important because we sample once per token when generating text. So even
if there is only a 1 in 100 or 1,000 chance, if we sample hundreds of times
there is a significant chance of picking an unlikely token at some point—
and picking such tokens when sampling can badly influence the quality of
the generated text. For this reason, we generally want to avoid these very
unlikely tokens. This is where top-k and top-p sampling come into play.

The idea behind top-k sampling is to avoid the low-probability choices by
only sampling from the k tokens with the highest probability. This puts a
fixed cut on the long tail of the distribution and ensures that we only sample
from likely choices. Going back to Figure 5-6, top-k sampling is equivalent
to defining a vertical line and sampling from the tokens on the left. Again,
the generate() function provides an easy method to achieve this with the
top_k argument:

output_topk = model.generate(input_ids, max_length=max_length, do_sample=True,

                             top_k=50)

print(tokenizer.decode(output_topk[0]))

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect

English.

The wild unicorns roam the Andes Mountains in the region of Cajamarca, on the

border with Argentina (Picture: Alamy/Ecole Nationale Supérieure d'Histoire

Naturelle)

The researchers came across about 50 of the animals in the valley. They had

lived in such a remote and isolated area at that location for nearly a 

thousand

years that

This is arguably the most human-looking text we’ve generated so far. But
how do we choose k? The value of k is chosen manually and is the same for
each choice in the sequence, independent of the actual output distribution.
We can find a good value for k by looking at some text quality metrics,



which we will explore in the next chapter—but that fixed cutoff might not
be very satisfactory.

An alternative is to use a dynamic cutoff. With nucleus or top-p sampling,
instead of choosing a fixed cutoff value, we set a condition of when to cut
off. This condition is when a certain probability mass in the selection is
reached. Let’s say we set that value to 95%. We then order all tokens in
descending order by probability and add one token after another from the
top of the list until the sum of the probabilities of the selected tokens is
95%. Returning to Figure 5-6, the value for p defines a horizontal line on
the cumulative sum of probabilities plot, and we sample only from tokens
below the line. Depending on the output distribution, this could be just one
(very likely) token or a hundred (more equally likely) tokens. At this point,
you are probably not surprised that the generate() function also provides
an argument to activate top-p sampling. Let’s try it out:

output_topp = model.generate(input_ids, max_length=max_length, do_sample=True,

                             top_p=0.90)

print(tokenizer.decode(output_topp[0]))

In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect

English.

The scientists studied the DNA of the animals and came to the conclusion that

the herd are descendants of a prehistoric herd that lived in Argentina about

50,000 years ago.

According to the scientific analysis, the first humans who migrated to South

America migrated into the Andes Mountains from South Africa and Australia, 

after

the last ice age had ended.

Since their migration, the animals have been adapting to



Top-p sampling has also produced a coherent story, and this time with a
new twist about migrations from Australia to South America. You can even
combine the two sampling approaches to get the best of both worlds.
Setting top_k=50 and top_p=0.9 corresponds to the rule of choosing
tokens with a probability mass of 90%, from a pool of at most 50 tokens.

NOTE
We can also apply beam search when we use sampling. Instead of selecting the next
batch of candidate tokens greedily, we can sample them and build up the beams in the
same way.

Which Decoding Method Is Best?
Unfortunately, there is no universally “best” decoding method. Which
approach is best will depend on the nature of the task you are generating
text for. If you want your model to perform a precise task like arithmetic or
providing an answer to a specific question, then you should lower the
temperature or use deterministic methods like greedy search in combination
with beam search to guarantee getting the most likely answer. If you want
the model to generate longer texts and even be a bit creative, then you
should switch to sampling methods and increase the temperature or use a
mix of top-k and nucleus sampling.

Conclusion
In this chapter we looked at text generation, which is a very different task
from the NLU tasks we encountered previously. Generating text requires at
least one forward pass per generated token, and even more if we use beam
search. This makes text generation computationally demanding, and one
needs the right infrastructure to run a text generation model at scale. In
addition, a good decoding strategy that transforms the model’s output
probabilities into discrete tokens can improve the text quality. Finding the



best decoding strategy requires some experimentation and a subjective
evaluation of the generated texts.

In practice, however, we don’t want to make these decisions based on gut
feeling alone! Like with other NLP tasks, we should choose a model
performance metric that reflects the problem we want to solve.
Unsurprisingly, there are a wide range of choices, and we will encounter the
most common ones in the next chapter, where we have a look at how to
train and evaluate a model for text summarization. Or, if you can’t wait to
learn how to train a GPT-type model from scratch, you can skip right to
Chapter 10, where we collect a large dataset of code and then train an
autoregressive language model on it.

1  This example comes from OpenAI’s blog post on GPT-2.

2  However, as Delip Rao points out, whether Meena intends to tell corny jokes is a subtle
question.

3  If you run out of memory on your machine, you can load a smaller GPT-2 version by
replacing model_name = "gpt-xl" with model_name = "gpt".

4  N.S. Keskar et al., “CTRL: A Conditional Transformer Language Model for Controllable
Generation”, (2019).

5  If you know some physics, you may recognize a striking resemblance to the Boltzmann
distribution.

https://openai.com/blog/better-language-models
https://oreil.ly/mOM3V
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
https://oreil.ly/ZsMmx
https://oreil.ly/ZsMmx


Chapter 6. Summarization

At one point or another, you’ve probably needed to summarize a document,
be it a research article, a financial earnings report, or a thread of emails. If
you think about it, this requires a range of abilities, such as understanding
long passages, reasoning about the contents, and producing fluent text that
incorporates the main topics from the original document. Moreover,
accurately summarizing a news article is very different from summarizing a
legal contract, so being able to do so requires a sophisticated degree of
domain generalization. For these reasons, text summarization is a difficult
task for neural language models, including transformers. Despite these
challenges, text summarization offers the prospect for domain experts to
significantly speed up their workflows and is used by enterprises to
condense internal knowledge, summarize contracts, automatically generate
content for social media releases, and more.

To help you understand the challenges involved, this chapter will explore
how we can leverage pretrained transformers to summarize documents.
Summarization is a classic sequence-to-sequence (seq2seq) task with an
input text and a target text. As we saw in Chapter 1, this is where encoder-
decoder transformers excel.

In this chapter we will build our own encoder-decoder model to condense
dialogues between several people into a crisp summary. But before we get
to that, let’s begin by taking a look at one of the canonical datasets for
summarization: the CNN/DailyMail corpus.

The CNN/DailyMail Dataset
The CNN/DailyMail dataset consists of around 300,000 pairs of news
articles and their corresponding summaries, composed from the bullet
points that CNN and the DailyMail attach to their articles. An important
aspect of the dataset is that the summaries are abstractive and not



extractive, which means that they consist of new sentences instead of
simple excerpts. The dataset is available on the Hub; we’ll use version
3.0.0, which is a nonanonymized version set up for summarization. We can
select versions in a similar manner as splits, we saw in Chapter 4, with a
version keyword. So let’s dive in and have a look at it:

from datasets import load_dataset

dataset = load_dataset("cnn_dailymail", version="3.0.0")

print(f"Features: {dataset['train'].column_names}")

Features: ['article', 'highlights', 'id']

The dataset has three columns: article, which contains the news articles,
highlights with the summaries, and id to uniquely identify each article.
Let’s look at an excerpt from an article:

sample = dataset["train"][1]

print(f"""

Article (excerpt of 500 characters, total length: {len(sample["article"])}):

""")

print(sample["article"][:500])

print(f'\nSummary (length: {len(sample["highlights"])}):')

print(sample["highlights"])

Article (excerpt of 500 characters, total length: 3192):

(CNN) -- Usain Bolt rounded off the world championships Sunday by claiming his

third gold in Moscow as he anchored Jamaica to victory in the men's 4x100m

relay. The fastest man in the world charged clear of United States rival 

Justin

Gatlin as the Jamaican quartet of Nesta Carter, Kemar Bailey-Cole, Nickel

Ashmeade and Bolt won in 37.36 seconds. The U.S finished second in 37.56 

seconds

with Canada taking the bronze after Britain were disqualified for a faulty

handover. The 26-year-old Bolt has n

Summary (length: 180):

Usain Bolt wins third gold of world championship .

Anchors Jamaica to 4x100m relay victory .

Eighth gold at the championships for Bolt .

Jamaica double up in women's 4x100m relay .

https://oreil.ly/jcRmb


We see that the articles can be very long compared to the target summary;
in this particular case the difference is 17-fold. Long articles pose a
challenge to most transformer models since the context size is usually
limited to 1,000 tokens or so, which is equivalent to a few paragraphs of
text. The standard, yet crude way to deal with this for summarization is to
simply truncate the texts beyond the model’s context size. Obviously there
could be important information for the summary toward the end of the text,
but for now we need to live with this limitation of the model architectures.

Text Summarization Pipelines
Let’s see how a few of the most popular transformer models for
summarization perform by first looking qualitatively at the outputs for the
preceding example. Although the model architectures we will be exploring
have varying maximum input sizes, let’s restrict the input text to 2,000
characters to have the same input for all models and thus make the outputs
more comparable:

sample_text = dataset["train"][1]["article"][:2000]

# We'll collect the generated summaries of each model in a dictionary

summaries = {}

A convention in summarization is to separate the summary sentences by a
newline. We could add a newline token after each full stop, but this simple
heuristic would fail for strings like “U.S.” or “U.N.” The Natural Language
Toolkit (NLTK) package includes a more sophisticated algorithm that can
differentiate the end of a sentence from punctuation that occurs in
abbreviations:

import nltk

from nltk.tokenize import sent_tokenize

nltk.download("punkt")

string = "The U.S. are a country. The U.N. is an organization."

sent_tokenize(string)



['The U.S. are a country.', 'The U.N. is an organization.']

WARNING
In the following sections we will load several large models. If you run out of memory,
you can either replace the large models with smaller checkpoints (e.g., “gpt”, “t5-
small”) or skip this section and jump to “Evaluating PEGASUS on the CNN/DailyMail
Dataset”.

Summarization Baseline
A common baseline for summarizing news articles is to simply take the first
three sentences of the article. With NLTK’s sentence tokenizer, we can
easily implement such a baseline:

def three_sentence_summary(text):

    return "\n".join(sent_tokenize(text)[:3])

summaries["baseline"] = three_sentence_summary(sample_text)

GPT-2
We’ve already seen in Chapter 5 how GPT-2 can generate text given some
prompt. One of the model’s surprising features is that we can also use it to
generate summaries by simply appending “TL;DR” at the end of the input
text. The expression “TL;DR” (too long; didn’t read) is often used on
platforms like Reddit to indicate a short version of a long post. We will start
our summarization experiment by re-creating the procedure of the original
paper with the pipeline() function from  Transformers.  We create a
text generation pipeline and load the large GPT-2 model:

from transformers import pipeline, set_seed

set_seed(42)

pipe = pipeline("text-generation", model="gpt2-xl")

gpt2_query = sample_text + "\nTL;DR:\n"

pipe_out = pipe(gpt2_query, max_length=512, clean_up_tokenization_spaces=True)

1



summaries["gpt2"] = "\n".join(

    sent_tokenize(pipe_out[0]["generated_text"][len(gpt2_query) :]))

Here we just store the summaries of the generated text by slicing off the
input query and keep the result in a Python dictionary for later comparison.

T5
Next let’s try the T5 transformer. As we saw in Chapter 3, the developers of
this model performed a comprehensive study of transfer learning in NLP
and found they could create a universal transformer architecture by
formulating all tasks as text-to-text tasks. The T5 checkpoints are trained on
a mixture of unsupervised data (to reconstruct masked words) and
supervised data for several tasks, including summarization. These
checkpoints can thus be directly used to perform summarization without
fine-tuning by using the same prompts used during pretraining. In this
framework, the input format for the model to summarize a document is
"summarize: <ARTICLE>", and for translation it looks like "translate
English to German: <TEXT>". As shown in Figure 6-1, this makes T5
extremely versatile and allows you to solve many tasks with a single model.

We can directly load T5 for summarization with the pipeline() function,
which also takes care of formatting the inputs in the text-to-text format so
we don’t need to prepend them with "summarize":

pipe = pipeline("summarization", model="t5-large")

pipe_out = pipe(sample_text)

summaries["t5"] = "\n".join(sent_tokenize(pipe_out[0]["summary_text"]))



Figure 6-1. Diagram of T5’s text-to-text framework (courtesy of Colin Raffel); besides translation
and summarization, the CoLA (linguistic acceptability) and STSB (semantic similarity) tasks are

shown

BART
BART also uses an encoder-decoder architecture and is trained to
reconstruct corrupted inputs. It combines the pretraining schemes of BERT
and GPT-2.  We’ll use the facebook/bart-large-ccn checkpoint, which
has been specifically fine-tuned on the CNN/DailyMail dataset:

pipe = pipeline("summarization", model="facebook/bart-large-cnn")

pipe_out = pipe(sample_text)

summaries["bart"] = "\n".join(sent_tokenize(pipe_out[0]["summary_text"]))

PEGASUS
Like BART, PEGASUS is an encoder-decoder transformer.  As shown in
Figure 6-2, its pretraining objective is to predict masked sentences in
multisentence texts. The authors argue that the closer the pretraining
objective is to the downstream task, the more effective it is. With the aim of
finding a pretraining objective that is closer to summarization than general
language modeling, they automatically identified, in a very large corpus,
sentences containing most of the content of their surrounding paragraphs
(using summarization evaluation metrics as a heuristic for content overlap)
and pretrained the PEGASUS model to reconstruct these sentences, thereby
obtaining a state-of-the-art model for text summarization.

2

3



Figure 6-2. Diagram of PEGASUS architecture (courtesy of Jingqing Zhang et al.)

This model has a special token for newlines, which is why we don’t need
the sent_tokenize() function:

pipe = pipeline("summarization", model="google/pegasus-cnn_dailymail")

pipe_out = pipe(sample_text)

summaries["pegasus"] = pipe_out[0]["summary_text"].replace(" .<n>", ".\n")

Comparing Different Summaries
Now that we have generated summaries with four different models, let’s
compare the results. Keep in mind that one model has not been trained on
the dataset at all (GPT-2), one model has been fine-tuned on this task
among others (T5), and two models have exclusively been fine-tuned on
this task (BART and PEGASUS). Let’s have a look at the summaries these
models have generated:

print("GROUND TRUTH")

print(dataset["train"][1]["highlights"])

print("")

for model_name in summaries:

    print(model_name.upper())

    print(summaries[model_name])

    print("")



GROUND TRUTH

Usain Bolt wins third gold of world championship .

Anchors Jamaica to 4x100m relay victory .

Eighth gold at the championships for Bolt .

Jamaica double up in women's 4x100m relay .

BASELINE

(CNN) -- Usain Bolt rounded off the world championships Sunday by claiming his

third gold in Moscow as he anchored Jamaica to victory in the men's 4x100m

relay.

The fastest man in the world charged clear of United States rival Justin 

Gatlin

as the Jamaican quartet of Nesta Carter, Kemar Bailey-Cole, Nickel Ashmeade 

and

Bolt won in 37.36 seconds.

The U.S finished second in 37.56 seconds with Canada taking the bronze after

Britain were disqualified for a faulty handover.

GPT2

Nesta, the fastest man in the world.

Gatlin, the most successful Olympian ever.

Kemar, a Jamaican legend.

Shelly-Ann, the fastest woman ever.

Bolt, the world's greatest athlete.

The team sport of pole vaulting

T5

usain bolt wins his third gold medal of the world championships in the men's

4x100m relay .

the 26-year-old anchored Jamaica to victory in the event in the Russian 

capital

.

he has now collected eight gold medals at the championships, equaling the 

record

.

BART

Usain Bolt wins his third gold of the world championships in Moscow.

Bolt anchors Jamaica to victory in the men's 4x100m relay.

The 26-year-old has now won eight gold medals at world championships.

Jamaica's women also win gold in the relay, beating France in the process.

PEGASUS

Usain Bolt wins third gold of world championships.

Anchors Jamaica to victory in men's 4x100m relay.

Eighth gold at the championships for Bolt.

Jamaica also win women's 4x100m relay .



The first thing we notice by looking at the model outputs is that the
summary generated by GPT-2 is quite different from the others. Instead of
giving a summary of the text, it summarizes the characters. Often the GPT-2
model “hallucinates” or invents facts, since it was not explicitly trained to
generate truthful summaries. For example, at the time of writing, Nesta is
not the fastest man in the world, but sits in ninth place. Comparing the other
three model summaries against the ground truth, we see that there is
remarkable overlap, with PEGASUS’s output bearing the most striking
resemblance.

Now that we have inspected a few models, let’s try to decide which one we
would use in a production setting. All four models seem to provide
qualitatively reasonable results, and we could generate a few more
examples to help us decide. However, this is not a systematic way of
determining the best model! Ideally, we would define a metric, measure it
for all models on some benchmark dataset, and choose the one with the best
performance. But how do you define a metric for text generation? The
standard metrics that we’ve seen, like accuracy, recall, and precision, are
not easy to apply to this task. For each “gold standard” summary written by
a human, dozens of other summaries with synonyms, paraphrases, or a
slightly different way of formulating the facts could be just as acceptable.

In the next section we will look at some common metrics that have been
developed for measuring the quality of generated text.

Measuring the Quality of Generated Text
Good evaluation metrics are important, since we use them to measure the
performance of models not only when we train them but also later, in
production. If we have bad metrics we might be blind to model degradation,
and if they are misaligned with the business goals we might not create any
value.

Measuring performance on a text generation task is not as easy as with
standard classification tasks such as sentiment analysis or named entity
recognition. Take the example of translation; given a sentence like “I love



dogs!” in English and translating it to Spanish there can be multiple valid
possibilities, like “¡Me encantan los perros!” or “¡Me gustan los perros!”
Simply checking for an exact match to a reference translation is not
optimal; even humans would fare badly on such a metric because we all
write text slightly differently from each other (and even from ourselves,
depending on the time of the day or year!). Fortunately, there are
alternatives.

Two of the most common metrics used to evaluate generated text are BLEU
and ROUGE. Let’s take a look at how they’re defined.

BLEU
The idea of BLEU is simple:  instead of looking at how many of the tokens
in the generated texts are perfectly aligned with the reference text tokens,
we look at words or n-grams. BLEU is a precision-based metric, which
means that when we compare the two texts we count the number of words
in the generation that occur in the reference and divide it by the length of
the reference.

However, there is an issue with this vanilla precision. Assume the generated
text just repeats the same word over and over again, and this word also
appears in the reference. If it is repeated as many times as the length of the
reference text, then we get perfect precision! For this reason, the authors of
the BLEU paper introduced a slight modification: a word is only counted as
many times as it occurs in the reference. To illustrate this point, suppose we
have the reference text “the cat is on the mat” and the generated text “the
the the the the the”.

From this simple example, we can calculate the precision values as follows:

pvanilla =
6

6

pmod =
2

6

4



and we can see that the simple correction has produced a much more
reasonable value. Now let’s extend this by not only looking at single words,
but n-grams as well. Let’s assume we have one generated sentence, snt,
that we want to compare against a reference sentence, snt′. We extract all
possible n-grams of degree n and do the accounting to get the precision pn:

pn =
∑n-gram∈snt Countclip (n-gram)

∑n-gram∈snt′ Count (n-gram)

In order to avoid rewarding repetitive generations, the count in the
numerator is clipped. What this means is that the occurrence count of an n-
gram is capped at how many times it appears in the reference sentence. Also
note that the definition of a sentence is not very strict in this equation, and if
you had a generated text spanning multiple sentences you would treat it as
one sentence.

In general we have more than one sample in the test set we want to
evaluate, so we need to slightly extend the equation by summing over all
samples in the corpus C:

pn =
∑snt∈C ∑n-gram∈snt Countclip (n-gram)

∑sntâ€™∈C ∑n-gram∈snt′ Count (n-gram)

We’re almost there. Since we are not looking at recall, all generated
sequences that are short but precise have a benefit compared to sentences
that are longer. Therefore, the precision score favors short generations. To
compensate for that the authors of BLEU introduced an additional term, the
brevity penalty:

BR =min (1, e1−ℓref/ℓgen)

By taking the minimum, we ensure that this penalty never exceeds 1 and the
exponential term becomes exponentially small when the length of the
generated text lgen is smaller than the reference text lref . At this point you
might ask, why don’t we just use something like an F -score to account for1



recall as well? The answer is that often in translation datasets there are
multiple reference sentences instead of just one, so if we also measured
recall we would incentivize translations that used all the words from all the
references. Therefore, it’s preferable to look for high precision in the
translation and make sure the translation and reference have a similar
length.

Finally, we can put everything together and get the equation for the BLEU
score:

BLEU-N = BR × (
N

∏
n=1

pn)

1/N

The last term is the geometric mean of the modified precision up to n-gram
N. In practice, the BLEU-4 score is often reported. However, you can
probably already see that this metric has many limitations; for instance, it
doesn’t take synonyms into account, and many steps in the derivation seem
like ad hoc and rather fragile heuristics. You can find a wonderful
exposition of BLEU’s flaws in Rachel Tatman’s blog post “Evaluating Text
Output in NLP: BLEU at Your Own Risk”.

In general, the field of text generation is still looking for better evaluation
metrics, and finding ways to overcome the limits of metrics like BLEU is
an active area of research. Another weakness of the BLEU metric is that it
expects the text to already be tokenized. This can lead to varying results if
the exact same method for text tokenization is not used. The SacreBLEU
metric addresses this issue by internalizing the tokenization step; for this
reason, it is the preferred metric for benchmarking.

We’ve now worked through some theory, but what we really want to do is
calculate the score for some generated text. Does that mean we need to
implement all this logic in Python? Fear not,  Datasets also provides
metrics! Loading a metric works just like loading a dataset:

from datasets import load_metric

https://oreil.ly/nMXRh
https://oreil.ly/nMXRh


bleu_metric = load_metric("sacrebleu")

The bleu_metric object is an instance of the Metric class, and works like
an aggregator: you can add single instances with add() or whole batches
via add_batch(). Once you have added all the samples you need to
evaluate, you then call compute() and the metric is calculated. This returns
a dictionary with several values, such as the precision for each n-gram, the
length penalty, as well as the final BLEU score. Let’s look at the example
from before:

import pandas as pd

import numpy as np

bleu_metric.add(

    prediction="the the the the the the", reference=["the cat is on the mat"])

results = bleu_metric.compute(smooth_method="floor", smooth_value=0)

results["precisions"] = [np.round(p, 2) for p in results["precisions"]]

pd.DataFrame.from_dict(results, orient="index", columns=["Value"])

Value

score 0.0

counts [2, 0, 0, 0]

totals [6, 5, 4, 3]

precisions [33.33, 0.0, 0.0, 0.0]

bp 1.0

sys_len 6

ref_len 6

NOTE
The BLEU score also works if there are multiple reference translations. This is why
reference is passed as a list. To make the metric smoother for zero counts in the n-
grams, BLEU integrates methods to modify the precision calculation. One method is to
add a constant to the numerator. That way, a missing n-gram does not cause the score to
automatically go to zero. For the purpose of explaining the values, we turn it off by
setting smooth_value=0.



We can see the precision of the 1-gram is indeed 2/6, whereas the precisions
for the 2/3/4-grams are all 0. (For more information about the individual
metrics, like counts and bp, see the SacreBLEU repository.) This means the
geometric mean is zero, and thus also the BLEU score. Let’s look at another
example where the prediction is almost correct:

bleu_metric.add(

    prediction="the cat is on mat", reference=["the cat is on the mat"])

results = bleu_metric.compute(smooth_method="floor", smooth_value=0)

results["precisions"] = [np.round(p, 2) for p in results["precisions"]]

pd.DataFrame.from_dict(results, orient="index", columns=["Value"])

Value

score 57.893007

counts [5, 3, 2, 1]

totals [5, 4, 3, 2]

precisions [100.0, 75.0, 66.67, 50.0]

bp 0.818731

sys_len 5

ref_len 6

We observe that the precision scores are much better. The 1-grams in the
prediction all match, and only in the precision scores do we see that
something is off. For the 4-gram there are only two candidates, ["the",
"cat", "is", "on"] and ["cat", "is", "on", "mat"], where the last
one does not match, hence the precision of 0.5.

The BLEU score is widely used for evaluating text, especially in machine
translation, since precise translations are usually favored over translations
that include all possible and appropriate words.

There are other applications, such as summarization, where the situation is
different. There, we want all the important information in the generated
text, so we favor high recall. This is where the ROUGE score is usually
used.

https://oreil.ly/kiZPl


ROUGE
The ROUGE score was specifically developed for applications like
summarization where high recall is more important than just precision.  The
approach is very similar to the BLEU score in that we look at different n-
grams and compare their occurrences in the generated text and the reference
texts. The difference is that with ROUGE we check how many n-grams in
the reference text also occur in the generated text. For BLEU we looked at
how many n-grams in the generated text appear in the reference, so we can
reuse the precision formula with the minor modification that we count the
(unclipped) occurrence of reference n-grams in the generated text in the
numerator:

ROUGE-N =
∑snt’€™∈C ∑n-gram∈snt′ Countmatch (n-gram)

∑snt’€™∈C ∑n-gram∈snt′ Count (n-gram)

This was the original proposal for ROUGE. Subsequently, researchers have
found that fully removing precision can have strong negative effects. Going
back to the BLEU formula without the clipped counting, we can measure
precision as well, and we can then combine both precision and recall
ROUGE scores in the harmonic mean to get an F -score. This score is the
metric that is nowadays commonly reported for ROUGE.

There is a separate score in ROUGE to measure the longest common
substring (LCS), called ROUGE-L. The LCS can be calculated for any pair
of strings. For example, the LCS for “abab” and “abc” would be “ab”, and
its the length would be 2. If we want to compare this value between two
samples we need to somehow normalize it because otherwise a longer text
would be at an advantage. To achieve this, the inventor of ROUGE came up
with an F -score-like scheme where the LCS is normalized with the length
of the reference and generated text, then the two normalized scores are
mixed together:

RLCS =
LCS(X,Y )

m

( )

5

1



PLCS =
LCS(X,Y )

n

FLCS =
(1 + β2)RLCSPLCS

RLCS + βPLCS

, where β = PLCS/RLCS

That way the LCS score is properly normalized and can be compared across
samples. In the  Datasets implementation, two variations of ROUGE are
calculated: one calculates the score per sentence and averages it for the
summaries (ROUGE-L), and the other calculates it directly over the whole
summary (ROUGE-Lsum).

We can load the metric as follows:

rouge_metric = load_metric("rouge")

We already generated a set of summaries with GPT-2 and the other models,
and now we have a metric to compare the summaries systematically. Let’s
apply the ROUGE score to all the summaries generated by the models:

reference = dataset["train"][1]["highlights"]

records = []

rouge_names = ["rouge1", "rouge2", "rougeL", "rougeLsum"]

for model_name in summaries:

    rouge_metric.add(prediction=summaries[model_name], reference=reference)

    score = rouge_metric.compute()

    rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)

    records.append(rouge_dict)

pd.DataFrame.from_records(records, index=summaries.keys())

rouge1 rouge2 rougeL rougeLsum

baseline 0.303571 0.090909 0.214286 0.232143

gpt2 0.187500 0.000000 0.125000 0.187500

t5 0.486486 0.222222 0.378378 0.486486

bart 0.582278 0.207792 0.455696 0.506329

pegasus 0.866667 0.655172 0.800000 0.833333



NOTE
The ROUGE metric in the  Datasets library also calculates confidence intervals (by
default, the 5th and 95th percentiles). The average value is stored in the attribute mid
and the interval can be retrieved with low and high.

These results are obviously not very reliable as we only looked at a single
sample, but we can compare the quality of the summary for that one
example. The table confirms our observation that of the models we
considered, GPT-2 performs worst. This is not surprising since it is the only
model of the group that was not explicitly trained to summarize. It is
striking, however, that the simple first-three-sentence baseline doesn’t fare
too poorly compared to the transformer models that have on the order of a
billion parameters! PEGASUS and BART are the best models overall
(higher ROUGE scores are better), but T5 is slightly better on ROUGE-1
and the LCS scores. These results place T5 and PEGASUS as the best
models, but again these results should be treated with caution as we only
evaluated the models on a single example. Looking at the results in the
PEGASUS paper, we would expect the PEGASUS to outperform T5 on the
CNN/DailyMail dataset.

Let’s see if we can reproduce those results with PEGASUS.

Evaluating PEGASUS on the CNN/DailyMail
Dataset
We now have all the pieces in place to evaluate the model properly: we
have a dataset with a test set from CNN/DailyMail, we have a metric with
ROUGE, and we have a summarization model. We just need to put the
pieces together. Let’s first evaluate the performance of the three-sentence
baseline:

def evaluate_summaries_baseline(dataset, metric,

                                column_text="article",



                                column_summary="highlights"):

    summaries = [three_sentence_summary(text) for text in 

dataset[column_text]]

    metric.add_batch(predictions=summaries,

                     references=dataset[column_summary])

    score = metric.compute()

    return score

Now we’ll apply the function to a subset of the data. Since the test fraction
of the CNN/DailyMail dataset consists of roughly 10,000 samples,
generating summaries for all these articles takes a lot of time. Recall from
Chapter 5 that every generated token requires a forward pass through the
model; generating just 100 tokens for each sample will thus require 1
million forward passes, and if we use beam search this number is multiplied
by the number of beams. For the purpose of keeping the calculations
relatively fast, we’ll subsample the test set and run the evaluation on 1,000
samples instead. This should give us a much more stable score estimation
while completing in less than one hour on a single GPU for the PEGASUS
model:

test_sampled = dataset["test"].shuffle(seed=42).select(range(1000))

score = evaluate_summaries_baseline(test_sampled, rouge_metric)

rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)

pd.DataFrame.from_dict(rouge_dict, orient="index", columns=["baseline"]).T

rouge1 rouge2 rougeL rougeLsum

baseline 0.396061 0.173995 0.245815 0.361158

The scores are mostly worse than on the previous example, but still better
than those achieved by GPT-2! Now let’s implement the same evaluation
function for evaluating the PEGASUS model:

from tqdm import tqdm

import torch

device = "cuda" if torch.cuda.is_available() else "cpu"



def chunks(list_of_elements, batch_size):

    """Yield successive batch-sized chunks from list_of_elements."""

    for i in range(0, len(list_of_elements), batch_size):

        yield list_of_elements[i : i + batch_size]

def evaluate_summaries_pegasus(dataset, metric, model, tokenizer,

                               batch_size=16, device=device,

                               column_text="article",

                               column_summary="highlights"):

    article_batches = list(chunks(dataset[column_text], batch_size))

    target_batches = list(chunks(dataset[column_summary], batch_size))

    for article_batch, target_batch in tqdm(

        zip(article_batches, target_batches), total=len(article_batches)):

        inputs = tokenizer(article_batch, max_length=1024,  truncation=True,

                        padding="max_length", return_tensors="pt")

        summaries = model.generate(input_ids=inputs["input_ids"].to(device),

                         attention_mask=inputs["attention_mask"].to(device),

                         length_penalty=0.8, num_beams=8, max_length=128)

        decoded_summaries = [tokenizer.decode(s, skip_special_tokens=True,

                                clean_up_tokenization_spaces=True)

               for s in summaries]

        decoded_summaries = [d.replace("<n>", " ") for d in decoded_summaries]

        metric.add_batch(predictions=decoded_summaries, 

references=target_batch)

    score = metric.compute()

    return score

Let’s unpack this evaluation code a bit. First we split the dataset into
smaller batches that we can process simultaneously. Then for each batch we
tokenize the input articles and feed them to the generate() function to
produce the summaries using beam search. We use the same generation
parameters as proposed in the paper. The new parameter for length penalty
ensures that the model does not generate sequences that are too long.
Finally, we decode the generated texts, replace the <n> token, and add the
decoded texts with the references to the metric. At the end, we compute and
return the ROUGE scores. Let’s now load the model again with the
AutoModelForSeq2SeqLM class, used for seq2seq generation tasks, and
evaluate it:



from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

model_ckpt = "google/pegasus-cnn_dailymail"

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

model = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt).to(device)

score = evaluate_summaries_pegasus(test_sampled, rouge_metric,

                                   model, tokenizer, batch_size=8)

rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)

pd.DataFrame(rouge_dict, index=["pegasus"])

rouge1 rouge2 rougeL rougeLsum

pegasus 0.434381 0.210883 0.307195 0.373231

These numbers are very close to the published results. One thing to note
here is that the loss and per-token accuracy are decoupled to some degree
from the ROUGE scores. The loss is independent of the decoding strategy,
whereas the ROUGE score is strongly coupled.

Since ROUGE and BLEU correlate better with human judgment than loss
or accuracy, we should focus on them and carefully explore and choose the
decoding strategy when building text generation models. These metrics are
far from perfect, however, and one should always consider human
judgments as well.

Now that we’re equipped with an evaluation function, it’s time to train our
own model for summarization.

Training a Summarization Model
We’ve worked through a lot of details on text summarization and
evaluation, so let’s put this to use to train a custom text summarization
model! For our application, we’ll use the SAMSum dataset developed by
Samsung, which consists of a collection of dialogues along with brief
summaries. In an enterprise setting, these dialogues might represent the
interactions between a customer and the support center, so generating

https://oreil.ly/n1ggq


accurate summaries can help improve customer service and detect common
patterns among customer requests. Let’s load it and look at an example:

dataset_samsum = load_dataset("samsum")

split_lengths = [len(dataset_samsum[split])for split in dataset_samsum]

print(f"Split lengths: {split_lengths}")

print(f"Features: {dataset_samsum['train'].column_names}")

print("\nDialogue:")

print(dataset_samsum["test"][0]["dialogue"])

print("\nSummary:")

print(dataset_samsum["test"][0]["summary"])

Split lengths: [14732, 819, 818]

Features: ['id', 'dialogue', 'summary']

Dialogue:

Hannah: Hey, do you have Betty's number?

Amanda: Lemme check

Hannah: <file_gif>

Amanda: Sorry, can't find it.

Amanda: Ask Larry

Amanda: He called her last time we were at the park together

Hannah: I don't know him well

Hannah: <file_gif>

Amanda: Don't be shy, he's very nice

Hannah: If you say so..

Hannah: I'd rather you texted him

Amanda: Just text him 

Hannah: Urgh.. Alright

Hannah: Bye

Amanda: Bye bye

Summary:

Hannah needs Betty's number but Amanda doesn't have it. She needs to contact

Larry.

The dialogues look like what you would expect from a chat via SMS or
WhatsApp, including emojis and placeholders for GIFs. The dialogue field
contains the full text and the summary the summarized dialogue. Could a
model that was fine-tuned on the CNN/DailyMail dataset deal with that?
Let’s find out!



Evaluating PEGASUS on SAMSum
First we’ll run the same summarization pipeline with PEGASUS to see
what the output looks like. We can reuse the code we used for the
CNN/DailyMail summary generation:

pipe_out = pipe(dataset_samsum["test"][0]["dialogue"])

print("Summary:")

print(pipe_out[0]["summary_text"].replace(" .<n>", ".\n"))

Summary:

Amanda: Ask Larry Amanda: He called her last time we were at the park 

together.

Hannah: I'd rather you texted him.

Amanda: Just text him .

We can see that the model mostly tries to summarize by extracting the key
sentences from the dialogue. This probably worked relatively well on the
CNN/DailyMail dataset, but the summaries in SAMSum are more abstract.
Let’s confirm this by running the full ROUGE evaluation on the test set:

score = evaluate_summaries_pegasus(dataset_samsum["test"], rouge_metric, 

model,

                                   tokenizer, column_text="dialogue",

                                   column_summary="summary", batch_size=8)

rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)

pd.DataFrame(rouge_dict, index=["pegasus"])

rouge1 rouge2 rougeL rougeLsum

pegasus 0.296168 0.087803 0.229604 0.229514

Well, the results aren’t great, but this is not unexpected since we’ve moved
quite a bit away from the CNN/DailyMail data distribution. Nevertheless,
setting up the evaluation pipeline before training has two advantages: we
can directly measure the success of training with the metric and we have a
good baseline. Fine-tuning the model on our dataset should result in an



immediate improvement in the ROUGE metric, and if that is not the case
we’ll know something is wrong with our training loop.

Fine-Tuning PEGASUS
Before we process the data for training, let’s have a quick look at the length
distribution of the input and outputs:

d_len = [len(tokenizer.encode(s)) for s in dataset_samsum["train"]

["dialogue"]]

s_len = [len(tokenizer.encode(s)) for s in dataset_samsum["train"]["summary"]]

fig, axes = plt.subplots(1, 2, figsize=(10, 3.5), sharey=True)

axes[0].hist(d_len, bins=20, color="C0", edgecolor="C0")

axes[0].set_title("Dialogue Token Length")

axes[0].set_xlabel("Length")

axes[0].set_ylabel("Count")

axes[1].hist(s_len, bins=20, color="C0", edgecolor="C0")

axes[1].set_title("Summary Token Length")

axes[1].set_xlabel("Length")

plt.tight_layout()

plt.show()



We see that most dialogues are much shorter than the CNN/DailyMail
articles, with 100–200 tokens per dialogue. Similarly, the summaries are
much shorter, with around 20–40 tokens (the average length of a tweet).

Let’s keep those observations in mind as we build the data collator for the
Trainer. First we need to tokenize the dataset. For now, we’ll set the
maximum lengths to 1024 and 128 for the dialogues and summaries,
respectively:

def convert_examples_to_features(example_batch):

    input_encodings = tokenizer(example_batch["dialogue"], max_length=1024,

                                truncation=True)



    with tokenizer.as_target_tokenizer():

        target_encodings = tokenizer(example_batch["summary"], max_length=128,

                                     truncation=True)

    return {"input_ids": input_encodings["input_ids"],

            "attention_mask": input_encodings["attention_mask"],

            "labels": target_encodings["input_ids"]}

dataset_samsum_pt = dataset_samsum.map(convert_examples_to_features,

                                       batched=True)

columns = ["input_ids", "labels", "attention_mask"]

dataset_samsum_pt.set_format(type="torch", columns=columns)

A new thing in the use of the tokenization step is the
tokenizer.as_target_tokenizer() context. Some models require
special tokens in the decoder inputs, so it’s important to differentiate
between the tokenization of encoder and decoder inputs. In the with
statement (called a context manager), the tokenizer knows that it is
tokenizing for the decoder and can process sequences accordingly.

Now, we need to create the data collator. This function is called in the
Trainer just before the batch is fed through the model. In most cases we
can use the default collator, which collects all the tensors from the batch
and simply stacks them. For the summarization task we need to not only
stack the inputs but also prepare the targets on the decoder side. PEGASUS
is an encoder-decoder transformer and thus has the classic seq2seq
architecture. In a seq2seq setup, a common approach is to apply “teacher
forcing” in the decoder. With this strategy, the decoder receives input tokens
(like in decoder-only models such as GPT-2) that consists of the labels
shifted by one in addition to the encoder output; so, when making the
prediction for the next token the decoder gets the ground truth shifted by
one as an input, as illustrated in the following table:



decoder_input label

step

1 [PAD] Transformers

2 [PAD, Transformers] are

3 [PAD, Transformers, are] awesome

4 [PAD, Transformers, are, awesome] for

5 [PAD, Transformers, are, awesome, for] text

6 [PAD, Transformers, are, awesome, for, text] summarization

We shift it by one so that the decoder only sees the previous ground truth
labels and not the current or future ones. Shifting alone suffices since the
decoder has masked self-attention that masks all inputs at present and in the
future.

So, when we prepare our batch, we set up the decoder inputs by shifting the
labels to the right by one. After that, we make sure the padding tokens in the
labels are ignored by the loss function by setting them to –100. We actually
don’t have to do this manually, though, since the
DataCollatorForSeq2Seq comes to the rescue and takes care of all these
steps for us:

from transformers import DataCollatorForSeq2Seq

seq2seq_data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

Then, as usual, we set up a the TrainingArguments for training:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(

    output_dir='pegasus-samsum', num_train_epochs=1, warmup_steps=500,

    per_device_train_batch_size=1, per_device_eval_batch_size=1,

    weight_decay=0.01, logging_steps=10, push_to_hub=True,

    evaluation_strategy='steps', eval_steps=500, save_steps=1e6,

    gradient_accumulation_steps=16)



One thing that is different from the previous settings is that new argument,
gradient_accumulation_steps. Since the model is quite big, we had to
set the batch size to 1. However, a batch size that is too small can hurt
convergence. To resolve that issue, we can use a nifty technique called
gradient accumulation. As the name suggests, instead of calculating the
gradients of the full batch all at once, we make smaller batches and
aggregate the gradients. When we have aggregated enough gradients, we
run the optimization step. Naturally this is a bit slower than doing it in one
pass, but it saves us a lot of GPU memory.

Let’s now make sure that we are logged in to Hugging Face so we can push
the model to the Hub after training:

from huggingface_hub import notebook_login

notebook_login()

We have now everything we need to initialize the trainer with the model,
tokenizer, training arguments, and data collator, as well as the training and
evaluation sets:

trainer = Trainer(model=model, args=training_args,

                  tokenizer=tokenizer, data_collator=seq2seq_data_collator,

                  train_dataset=dataset_samsum_pt["train"],

                  eval_dataset=dataset_samsum_pt["validation"])

We are ready for training. After training, we can directly run the evaluation
function on the test set to see how well the model performs:

trainer.train()

score = evaluate_summaries_pegasus(

    dataset_samsum["test"], rouge_metric, trainer.model, tokenizer,

    batch_size=2, column_text="dialogue", column_summary="summary")

rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)

pd.DataFrame(rouge_dict, index=[f"pegasus"])



rouge1 rouge2 rougeL rougeLsum

pegasus 0.427614 0.200571 0.340648 0.340738

We see that the ROUGE scores improved considerably over the model
without fine-tuning, so even though the previous model was also trained for
summarization, it was not well adapted for the new domain. Let’s push our
model to the Hub:

trainer.push_to_hub("Training complete!")

In the next section we’ll use the model to generate a few summaries for us.

TIP
You can also evaluate the generations as part of the training loop: use the extension of
TrainingArguments called Seq2Seq​Trainin⁠g​Arguments and specify
predict_with_generate=True. Pass it to the dedicated Trainer called
Seq2SeqTrainer, which then uses the generate() function instead of the model’s
forward pass to create predictions for evaluation. Give it a try!

Generating Dialogue Summaries
Looking at the losses and ROUGE scores, it seems the model is showing a
significant improvement over the original model trained on CNN/DailyMail
only. Let’s see what a summary generated on a sample from the test set
looks like:

gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128}

sample_text = dataset_samsum["test"][0]["dialogue"]

reference = dataset_samsum["test"][0]["summary"]

pipe = pipeline("summarization", model="transformersbook/pegasus-samsum")

print("Dialogue:")

print(sample_text)

print("\nReference Summary:")

print(reference)



print("\nModel Summary:")

print(pipe(sample_text, **gen_kwargs)[0]["summary_text"])

Dialogue:

Hannah: Hey, do you have Betty's number?

Amanda: Lemme check

Hannah: <file_gif>

Amanda: Sorry, can't find it.

Amanda: Ask Larry

Amanda: He called her last time we were at the park together

Hannah: I don't know him well

Hannah: <file_gif>

Amanda: Don't be shy, he's very nice

Hannah: If you say so..

Hannah: I'd rather you texted him

Amanda: Just text him 

Hannah: Urgh.. Alright

Hannah: Bye

Amanda: Bye bye

Reference Summary:

Hannah needs Betty's number but Amanda doesn't have it. She needs to contact

Larry.

Model Summary:

Amanda can't find Betty's number. Larry called Betty last time they were at 

the

park together. Hannah wants Amanda to text Larry instead of calling Betty.

That looks much more like the reference summary. It seems the model has
learned to synthesize the dialogue into a summary without just extracting
passages. Now, the ultimate test: how well does the model work on a
custom input?

custom_dialogue = """\

Thom: Hi guys, have you heard of transformers?

Lewis: Yes, I used them recently!

Leandro: Indeed, there is a great library by Hugging Face.

Thom: I know, I helped build it ;)

Lewis: Cool, maybe we should write a book about it. What do you think?

Leandro: Great idea, how hard can it be?!

Thom: I am in!

Lewis: Awesome, let's do it together!

"""

print(pipe(custom_dialogue, **gen_kwargs)[0]["summary_text"])



Thom, Lewis and Leandro are going to write a book about transformers. Thom

helped build a library by Hugging Face. They are going to do it together.

The generated summary of the custom dialogue makes sense. It summarizes
well that all the people in the discussion want to write the book together and
does not simply extract single sentences. For example, it synthesizes the
third and fourth lines into a logical combination.

Conclusion
Text summarization poses some unique challenges compared to other tasks
that can be framed as classification tasks, like sentiment analysis, named
entity recognition, or question answering. Conventional metrics such as
accuracy do not reflect the quality of the generated text. As we saw, the
BLEU and ROUGE metrics can better evaluate generated texts; however,
human judgment remains the best measure.

A common question when working with summarization models is how we
can summarize documents where the texts are longer than the model’s
context length. Unfortunately, there is no single strategy to solve this
problem, and to date this is still an open and active research question. For
example, recent work by OpenAI showed how to scale summarization by
applying it recursively to long documents and using human feedback in the
loop.

In the next chapter we’ll look at question answering, which is the task of
providing an answer to a question based on a text passage. In contrast to
summarization, with this task there exist good strategies to deal with long or
many documents, and we’ll show you how to scale question answering to
thousands of documents.
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Chapter 7. Question Answering

Whether you’re a researcher, analyst, or data scientist, chances are that at
some point you’ve needed to wade through oceans of documents to find the
information you’re looking for. To make matters worse, you’re constantly
reminded by Google and Bing that there exist better ways to search! For
instance, if we search for “When did Marie Curie win her first Nobel
Prize?” on Google, we immediately get the correct answer of “1903,” as
illustrated in Figure 7-1.

Figure 7-1. A Google search query and corresponding answer snippet

In this example, Google first retrieved around 319,000 documents that were
relevant to the query, and then performed an additional processing step to
extract the answer snippet with the corresponding passage and web page.
It’s not hard to see why these answer snippets are useful. For example, if we
search for a trickier question like “Which guitar tuning is the best?” Google



doesn’t provide an answer, and instead we have to click on one of the web
pages returned by the search engine to find it ourselves.

The general approach behind this technology is called question answering
(QA). There are many flavors of QA, but the most common is extractive
QA, which involves questions whose answer can be identified as a span of
text in a document, where the document might be a web page, legal
contract, or news article. The two-stage process of first retrieving relevant
documents and then extracting answers from them is also the basis for
many modern QA systems, including semantic search engines, intelligent
assistants, and automated information extractors. In this chapter, we’ll apply
this process to tackle a common problem facing ecommerce websites:
helping consumers answer specific queries to evaluate a product. We’ll see
that customer reviews can be used as a rich and challenging source of
information for QA, and along the way we’ll learn how transformers act as
powerful reading comprehension models that can extract meaning from
text. Let’s begin by fleshing out the use case.

NOTE
This chapter focuses on extractive QA, but other forms of QA may be more suitable for
your use case. For example, community QA involves gathering question-answer pairs
that are generated by users on forums like Stack Overflow, and then using semantic
similarity search to find the closest matching answer to a new question. There is also
long-form QA, which aims to generate complex paragraph-length answers to open-
ended questions like “Why is the sky blue?” Remarkably, it is also possible to do QA
over tables, and transformer models like TAPAS can even perform aggregations to
produce the final answer!

Building a Review-Based QA System
If you’ve ever purchased a product online, you probably relied on customer
reviews to help inform your decision. These reviews can often help answer
specific questions like “Does this guitar come with a strap?” or “Can I use
this camera at night?” that may be hard to answer from the product
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description alone. However, popular products can have hundreds to
thousands of reviews, so it can be a major drag to find one that is relevant.
One alternative is to post your question on the community QA platforms
provided by websites like Amazon, but it usually takes days to get an
answer (if you get one at all). Wouldn’t it be nice if we could get an
immediate answer, like in the Google example from Figure 7-1? Let’s see if
we can do this using transformers!

The Dataset
To build our QA system we’ll use the SubjQA dataset,  which consists of
more than 10,000 customer reviews in English about products and services
in six domains: TripAdvisor, Restaurants, Movies, Books, Electronics, and
Grocery. As illustrated in Figure 7-2, each review is associated with a
question that can be answered using one or more sentences from the
review.

2

3



Figure 7-2. A question about a product and the corresponding review (the answer span is underlined)

The interesting aspect of this dataset is that most of the questions and
answers are subjective; that is, they depend on the personal experience of
the users. The example in Figure 7-2 shows why this feature makes the task
potentially more difficult than finding answers to factual questions like
“What is the currency of the United Kingdom?” First, the query is about
“poor quality,” which is subjective and depends on the user’s definition of
quality. Second, important parts of the query do not appear in the review at
all, which means it cannot be answered with shortcuts like keyword search
or paraphrasing the input question. These features make SubjQA a realistic
dataset to benchmark our review-based QA models on, since user-generated
content like that shown in Figure 7-2 resembles what we might encounter in
the wild.



NOTE
QA systems are usually categorized by the domain of data that they have access to when
responding to a query. Closed-domain QA deals with questions about a narrow topic
(e.g., a single product category), while open-domain QA deals with questions about
almost anything (e.g., Amazon’s whole product catalog). In general, closed-domain QA
involves searching through fewer documents than the open-domain case.

To get started, let’s download the dataset from the Hugging Face Hub. As
we did in Chapter 4, we can use the get_dataset_config_names()
function to find out which subsets are available:

from datasets import get_dataset_config_names

domains = get_dataset_config_names("subjqa")

domains

['books', 'electronics', 'grocery', 'movies', 'restaurants', 'tripadvisor']

For our use case, we’ll focus on building a QA system for the Electronics
domain. To download the electronics subset, we just need to pass this
value to the name argument of the load_dataset() function:

from datasets import load_dataset

subjqa = load_dataset("subjqa", name="electronics")

Like other question answering datasets on the Hub, SubjQA stores the
answers to each question as a nested dictionary. For example, if we inspect
one of the rows in the answers column:

print(subjqa["train"]["answers"][1])

{'text': ['Bass is weak as expected', 'Bass is weak as expected, even with EQ

adjusted up'], 'answer_start': [1302, 1302], 'answer_subj_level': [1, 1],

'ans_subj_score': [0.5083333253860474, 0.5083333253860474], 

'is_ans_subjective':

[True, True]}

https://oreil.ly/iO0s5


we can see that the answers are stored in a text field, while the starting
character indices are provided in answer_start. To explore the dataset
more easily, we’ll flatten these nested columns with the flatten() method
and convert each split to a Pandas DataFrame as follows:

import pandas as pd

dfs = {split: dset.to_pandas() for split, dset in subjqa.flatten().items()}

for split, df in dfs.items():

    print(f"Number of questions in {split}: {df['id'].nunique()}")

Number of questions in train: 1295

Number of questions in test: 358

Number of questions in validation: 255

Notice that the dataset is relatively small, with only 1,908 examples in total.
This simulates a real-world scenario, since getting domain experts to label
extractive QA datasets is labor-intensive and expensive. For example, the
CUAD dataset for extractive QA on legal contracts is estimated to have a
value of $2 million to account for the legal expertise needed to annotate its
13,000 examples!

There are quite a few columns in the SubjQA dataset, but the most
interesting ones for building our QA system are shown in Table 7-1.
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Table 7-1. Column names and their descriptions from the SubjQA dataset

Column name Description

title The Amazon Standard Identification Number (ASIN) associated with
each product

question The question

answers.answer_text The span of text in the review labeled by the annotator

answers.answer_star

t

The start character index of the answer span

context The customer review

Let’s focus on these columns and take a look at a few of the training
examples. We can use the sample() method to select a random sample:

qa_cols = ["title", "question", "answers.text",

           "answers.answer_start", "context"]

sample_df = dfs["train"][qa_cols].sample(2, random_state=7)

sample_df



title question answers.text answers.answer_start context

B005DKZTMG Does the keyboard
lightweight?

[this keyboard is
compact]

[215] I really li
keyboard
4 stars be
doesn’t h
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really suf
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compact,
no compl

B00AAIPT76 How is the battery? [] [] I bought 
the first s
gopro bat
bought w
hold a ch
have very
expectati
sort of pr
am skept
amazing 
charge tim
battery li
expect th
to hold a 
a couple 
at least an
charger t
like a cha
this I was
disappoin
a river ra
found tha
gopro bu
through p
hurry so 
purchase
that issue
batteries 
charge, o
trips the e



title question answers.text answers.answer_start context
batteries 
enough a
longer tri
use my fr
JOOS Or
recharge 
bought a 
xtreme p
and expe
able to ch
with that 
not run o
power ag

From these examples we can make a few observations. First, the questions
are not grammatically correct, which is quite common in the FAQ sections
of ecommerce websites. Second, an empty answers.text entry denotes
“unanswerable” questions whose answer cannot be found in the review.
Finally, we can use the start index and length of the answer span to slice out
the span of text in the review that corresponds to the answer:

start_idx = sample_df["answers.answer_start"].iloc[0][0]

end_idx = start_idx + len(sample_df["answers.text"].iloc[0][0])

sample_df["context"].iloc[0][start_idx:end_idx]

'this keyboard is compact'

Next, let’s get a feel for what types of questions are in the training set by
counting the questions that begin with a few common starting words:

counts = {}

question_types = ["What", "How", "Is", "Does", "Do", "Was", "Where", "Why"]

for q in question_types:

    counts[q] = dfs["train"]["question"].str.startswith(q).value_counts()

[True]

pd.Series(counts).sort_values().plot.barh()



plt.title("Frequency of Question Types")

plt.show()

We can see that questions beginning with “How”, “What”, and “Is” are the
most common ones, so let’s have a look at some examples:

for question_type in ["How", "What", "Is"]:

    for question in (

        dfs["train"][dfs["train"].question.str.startswith(question_type)]

        .sample(n=3, random_state=42)['question']):

        print(question)

How is the camera?

How do you like the control?

How fast is the charger?

What is direction?

What is the quality of the construction of the bag?

What is your impression of the product?

Is this how zoom works?

Is sound clear?

Is it a wireless keyboard?



THE STANFORD QUESTION ANSWERING DATASET
The (question, review, [answer sentences]) format of SubjQA is
commonly used in extractive QA datasets, and was pioneered in the
Stanford Question Answering Dataset (SQuAD).  This is a famous
dataset that is often used to test the ability of machines to read a
passage of text and answer questions about it. The dataset was created
by sampling several hundred English articles from Wikipedia,
partitioning each article into paragraphs, and then asking crowdworkers
to generate a set of questions and answers for each paragraph. In the
first version of SQuAD, each answer to a question was guaranteed to
exist in the corresponding passage. But it wasn’t long before sequence
models started performing better than humans at extracting the correct
span of text with the answer. To make the task more difficult, SQuAD
2.0 was created by augmenting SQuAD 1.1 with a set of adversarial
questions that are relevant to a given passage but cannot be answered
from the text alone.  The state of the art as of this book’s writing is
shown in Figure 7-3, with most models since 2019 surpassing human
performance.

Figure 7-3. Progress on the SQuAD 2.0 benchmark (image from Papers with Code)
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However, this superhuman performance does not appear to reflect
genuine reading comprehension, since answers to the “unanswerable”
questions can usually be identified through patterns in the passages like
antonyms. To address these problems Google released the Natural
Questions (NQ) dataset,  which involves fact-seeking questions
obtained from Google Search users. The answers in NQ are much
longer than in SQuAD and present a more challenging benchmark.

Now that we’ve explored our dataset a bit, let’s dive into understanding
how transformers can extract answers from text.

Extracting Answers from Text
The first thing we’ll need for our QA system is to find a way to identify a
potential answer as a span of text in a customer review. For example, if a
we have a question like “Is it waterproof?” and the review passage is “This
watch is waterproof at 30m depth”, then the model should output
“waterproof at 30m”. To do this we’ll need to understand how to:

Frame the supervised learning problem.

Tokenize and encode text for QA tasks.

Deal with long passages that exceed a model’s maximum context
size.

Let’s start by taking a look at how to frame the problem.

Span classification
The most common way to extract answers from text is by framing the
problem as a span classification task, where the start and end tokens of an
answer span act as the labels that a model needs to predict. This process is
illustrated in Figure 7-4.
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Figure 7-4. The span classification head for QA tasks

Since our training set is relatively small, with only 1,295 examples, a good
strategy is to start with a language model that has already been fine-tuned
on a large-scale QA dataset like SQuAD. In general, these models have
strong reading comprehension capabilities and serve as a good baseline
upon which to build a more accurate system. This is a somewhat different
approach to that taken in previous chapters, where we typically started with
a pretrained model and fine-tuned the task-specific head ourselves. For
example, in Chapter 2, we had to fine-tune the classification head because
the number of classes was tied to the dataset at hand. For extractive QA, we
can actually start with a fine-tuned model since the structure of the labels
remains the same across datasets.

You can find a list of extractive QA models by navigating to the Hugging
Face Hub and searching for “squad” on the Models tab (Figure 7-5).
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Figure 7-5. A selection of extractive QA models on the Hugging Face Hub

As you can see, at the time of writing, there are more than 350 QA models
to choose from—so which one should you pick? In general, the answer
depends on various factors like whether your corpus is mono- or
multilingual and the constraints of running the model in a production
environment. Table 7-2 lists a few models that provide a good foundation to
build on.



Table 7-2. Baseline transformer models that are fine-tuned on SQuAD 2.0

Transformer Description
Number of
parameters

F -score on
SQuAD 2.0

MiniLM A distilled version of BERT-base
that preserves 99% of the
performance while being twice as
fast

66M 79.5

RoBERTa-base RoBERTa models have better
performance than their BERT
counterparts and can be fine-
tuned on most QA datasets using
a single GPU

125M 83.0

ALBERT-XXL State-of-the-art performance on
SQuAD 2.0, but computationally
intensive and difficult to deploy

235M 88.1

XLM-RoBERTa-
large

Multilingual model for 100
languages with strong zero-shot
performance

570M 83.8

For the purposes of this chapter, we’ll use a fine-tuned MiniLM model
since it is fast to train and will allow us to quickly iterate on the techniques
that we’ll be exploring.  As usual, the first thing we need is a tokenizer to
encode our texts, so let’s take a look at how this works for QA tasks.

Tokenizing text for QA
To encode our texts, we’ll load the MiniLM model checkpoint from the
Hugging Face Hub as usual:

from transformers import AutoTokenizer

model_ckpt = "deepset/minilm-uncased-squad2"

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

To see the model in action, let’s first try to extract an answer from a short
passage of text. In extractive QA tasks, the inputs are provided as (question,

1

8

https://oreil.ly/df5Cu


context) pairs, so we pass them both to the tokenizer as follows:

question = "How much music can this hold?"

context = """An MP3 is about 1 MB/minute, so about 6000 hours depending on \

file size."""

inputs = tokenizer(question, context, return_tensors="pt")

Here we’ve returned PyTorch Tensor objects, since we’ll need them to run
the forward pass through the model. If we view the tokenized inputs as a
table:

input_ids 101 2129 2172 2189

token_type_ids 0 0 0 0

attention_mask 1 1 1 1

we can see the familiar input_ids and attention_mask tensors, while the
token_type_ids tensor indicates which part of the inputs corresponds to
the question and context (a 0 indicates a question token, a 1 indicates a
context token).

To understand how the tokenizer formats the inputs for QA tasks, let’s
decode the input_ids tensor:

print(tokenizer.decode(inputs["input_ids"][0]))

[CLS] how much music can this hold? [SEP] an mp3 is about 1 mb / minute, so

about 6000 hours depending on file size. [SEP]

We see that for each QA example, the inputs take the format:

[CLS] question tokens [SEP] context tokens [SEP]

where the location of the first [SEP] token is determined by the
token_type_ids. Now that our text is tokenized, we just need to instantiate
the model with a QA head and run the inputs through the forward pass:
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import torch

from transformers import AutoModelForQuestionAnswering

model = AutoModelForQuestionAnswering.from_pretrained(model_ckpt)

with torch.no_grad():

    outputs = model(**inputs)

print(outputs)

QuestionAnsweringModelOutput(loss=None, start_logits=tensor([[-0.9862, 

-4.7750,

         -5.4025, -5.2378, -5.2863, -5.5117, -4.9819, -6.1880,

         -0.9862,  0.2596, -0.2144, -1.7136,  3.7806,  4.8561, -1.0546, 

-3.9097,

         -1.7374, -4.5944, -1.4278,  3.9949,  5.0390, -0.2018, -3.0193, 

-4.8549,

         -2.3107, -3.5110, -3.5713, -0.9862]]), end_logits=tensor([[-0.9623,

         -5.4733, -5.0326, -5.1639, -5.4278, -5.5151, -5.1749, -4.6233,

         -0.9623, -3.7855, -0.8715, -3.7745, -3.0161, -1.1780,  0.1758, 

-2.7365,

          4.8934,  0.3046, -3.1761, -3.2762,  0.8937,  5.6606, -0.3623, 

-4.9554,

         -3.2531, -0.0914,  1.6211, -0.9623]]), hidden_states=None,

attentions=None)

Here we can see that we get a QuestionAnsweringModelOutput object as
the output of the QA head. As illustrated in Figure 7-4, the QA head
corresponds to a linear layer that takes the hidden states from the encoder
and computes the logits for the start and end spans.  This means that we
treat QA as a form of token classification, similar to what we encountered
for named entity recognition in Chapter 4. To convert the outputs into an
answer span, we first need to get the logits for the start and end tokens:

start_logits = outputs.start_logits

end_logits = outputs.end_logits

If we compare the shapes of these logits to the input IDs:

print(f"Input IDs shape: {inputs.input_ids.size()}")

print(f"Start logits shape: {start_logits.size()}")

print(f"End logits shape: {end_logits.size()}")
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Input IDs shape: torch.Size([1, 28])

Start logits shape: torch.Size([1, 28])

End logits shape: torch.Size([1, 28])

we see that there are two logits (a start and end) associated with each input
token. As illustrated in Figure 7-6, larger, positive logits correspond to more
likely candidates for the start and end tokens. In this example we can see
that the model assigns the highest start token logits to the numbers “1” and
“6000”, which makes sense since our question is asking about a quantity.
Similarly, we see that the end tokens with the highest logits are “minute”
and “hours”.

Figure 7-6. Predicted logits for the start and end tokens; the token with the highest score is colored in
orange

To get the final answer, we can compute the argmax over the start and end
token logits and then slice the span from the inputs. The following code
performs these steps and decodes the result so we can print the resulting
text:



import torch

start_idx = torch.argmax(start_logits)

end_idx = torch.argmax(end_logits) + 1

answer_span = inputs["input_ids"][0][start_idx:end_idx]

answer = tokenizer.decode(answer_span)

print(f"Question: {question}")

print(f"Answer: {answer}")

Question: How much music can this hold?

Answer: 6000 hours

Great, it worked! In  Transformers, all of these preprocessing and
postprocessing steps are conveniently wrapped in a dedicated pipeline. We
can instantiate the pipeline by passing our tokenizer and fine-tuned model
as follows:

from transformers import pipeline

pipe = pipeline("question-answering", model=model, tokenizer=tokenizer)

pipe(question=question, context=context, topk=3)

[{'score': 0.26516005396842957,

  'start': 38,

  'end': 48,

  'answer': '6000 hours'},

 {'score': 0.2208300083875656,

  'start': 16,

  'end': 48,

  'answer': '1 MB/minute, so about 6000 hours'},

 {'score': 0.10253632068634033,

  'start': 16,

  'end': 27,

  'answer': '1 MB/minute'}]

In addition to the answer, the pipeline also returns the model’s probability
estimate in the score field (obtained by taking a softmax over the logits).
This is handy when we want to compare multiple answers within a single
context. We’ve also shown that we can have the model predict multiple
answers by specifying the topk parameter. Sometimes, it is possible to have
questions for which no answer is possible, like the empty



answers.answer_start examples in SubjQA. In these cases the model
will assign a high start and end score to the [CLS] token, and the pipeline
maps this output to an empty string:

pipe(question="Why is there no data?", context=context,

     handle_impossible_answer=True)

{'score': 0.9068416357040405, 'start': 0, 'end': 0, 'answer': ''}

NOTE
In our simple example, we obtained the start and end indices by taking the argmax of the
corresponding logits. However, this heuristic can produce out-of-scope answers by
selecting tokens that belong to the question instead of the context. In practice, the
pipeline computes the best combination of start and end indices subject to various
constraints such as being in-scope, requiring the start indices to precede the end indices,
and so on.

Dealing with long passages
One subtlety faced by reading comprehension models is that the context
often contains more tokens than the maximum sequence length of the model
(which is usually a few hundred tokens at most). As illustrated in Figure 7-
7, a decent portion of the SubjQA training set contains question-context
pairs that won’t fit within MiniLM’s context size of 512 tokens.



Figure 7-7. Distribution of tokens for each question-context pair in the SubjQA training set

For other tasks, like text classification, we simply truncated long texts under
the assumption that enough information was contained in the embedding of
the [CLS] token to generate accurate predictions. For QA, however, this
strategy is problematic because the answer to a question could lie near the
end of the context and thus would be removed by truncation. As illustrated
in Figure 7-8, the standard way to deal with this is to apply a sliding
window across the inputs, where each window contains a passage of tokens
that fit in the model’s context.



Figure 7-8. How the sliding window creates multiple question-context pairs for long documents—the
first bar corresponds to the question, while the second bar is the context captured in each window

In  Transformers, we can set return_overflowing_tokens=True in the
tokenizer to enable the sliding window. The size of the sliding window is
controlled by the max_seq_length argument, and the size of the stride is
controlled by doc_stride. Let’s grab the first example from our training
set and define a small window to illustrate how this works:

example = dfs["train"].iloc[0][["question", "context"]]

tokenized_example = tokenizer(example["question"], example["context"],

                              return_overflowing_tokens=True, max_length=100,

                              stride=25)

In this case we now get a list of input_ids, one for each window. Let’s
check the number of tokens we have in each window:

for idx, window in enumerate(tokenized_example["input_ids"]):

    print(f"Window #{idx} has {len(window)} tokens")

Window #0 has 100 tokens

Window #1 has 88 tokens

Finally, we can see where two windows overlap by decoding the inputs:



for window in tokenized_example["input_ids"]:

    print(f"{tokenizer.decode(window)} \n")

[CLS] how is the bass? [SEP] i have had koss headphones in the past, pro 4aa 

and

qz - 99. the koss portapro is portable and has great bass response. the work

great with my android phone and can be " rolled up " to be carried in my

motorcycle jacket or computer bag without getting crunched. they are very 

light

and don't feel heavy or bear down on your ears even after listening to music

with them on all day. the sound is [SEP]

[CLS] how is the bass? [SEP] and don't feel heavy or bear down on your ears 

even

after listening to music with them on all day. the sound is night and day 

better

than any ear - bud could be and are almost as good as the pro 4aa. they are "

open air " headphones so you cannot match the bass to the sealed types, but it

comes close. for $ 32, you cannot go wrong. [SEP]

Now that we have some intuition about how QA models can extract
answers from text, let’s look at the other components we need to build an
end-to-end QA pipeline.

Using Haystack to Build a QA Pipeline
In our simple answer extraction example, we provided both the question
and the context to the model. However, in reality our system’s users will
only provide a question about a product, so we need some way of selecting
relevant passages from among all the reviews in our corpus. One way to do
this would be to concatenate all the reviews of a given product together and
feed them to the model as a single, long context. Although simple, the
drawback of this approach is that the context can become extremely long
and thereby introduce an unacceptable latency for our users’ queries. For
example, let’s suppose that on average, each product has 30 reviews and
each review takes 100 milliseconds to process. If we need to process all the
reviews to get an answer, this would result in an average latency of 3
seconds per user query—much too long for ecommerce websites!



To handle this, modern QA systems are typically based on the retriever-
reader architecture, which has two main components:

Retriever

Responsible for retrieving relevant documents for a given query.
Retrievers are usually categorized as sparse or dense. Sparse retrievers
use word frequencies to represent each document and query as a sparse
vector.  The relevance of a query and a document is then determined
by computing an inner product of the vectors. On the other hand, dense
retrievers use encoders like transformers to represent the query and
document as contextualized embeddings (which are dense vectors).
These embeddings encode semantic meaning, and allow dense retrievers
to improve search accuracy by understanding the content of the query.

Reader

Responsible for extracting an answer from the documents provided by
the retriever. The reader is usually a reading comprehension model,
although at the end of the chapter we’ll see examples of models that can
generate free-form answers.

As illustrated in Figure 7-9, there can also be other components that apply
post-processing to the documents fetched by the retriever or to the answers
extracted by the reader. For example, the retrieved documents may need
reranking to eliminate noisy or irrelevant ones that can confuse the reader.
Similarly, postprocessing of the reader’s answers is often needed when the
correct answer comes from various passages in a long document.

11



Figure 7-9. The retriever-reader architecture for modern QA systems

To build our QA system, we’ll use the Haystack library developed by
deepset, a German company focused on NLP. Haystack is based on the
retriever-reader architecture, abstracts much of the complexity involved in
building these systems, and integrates tightly with  Transformers.

In addition to the retriever and reader, there are two more components
involved when building a QA pipeline with Haystack:

Document store

A document-oriented database that stores documents and metadata
which are provided to the retriever at query time

Pipeline

Combines all the components of a QA system to enable custom query
flows, merging documents from multiple retrievers, and more

In this section we’ll look at how we can use these components to quickly
build a prototype QA pipeline. Later, we’ll examine how we can improve its
performance.

https://haystack.deepset.ai/
https://haystack.deepset.ai/
https://deepset.ai/


WARNING
This chapter was written using version 0.9.0 of the Haystack library. In version 0.10.0,
the pipeline and evaluation APIs were redesigned to make it easier to inspect whether
the retriever or reader are impacting performance. To see what this chapter’s code looks
like with the new API, check out the GitHub repository.

Initializing a document store
In Haystack, there are various document stores to choose from and each one
can be paired with a dedicated set of retrievers. This is illustrated in
Table 7-3, where the compatibility of sparse (TF-IDF, BM25) and dense
(Embedding, DPR) retrievers is shown for each of the available document
stores. We’ll explain what all these acronyms mean later in this chapter.

Table 7-3. Compatibility of Haystack retrievers and document stores

In memory Elasticsearch FAISS Milvus

TF-IDF Yes Yes No No

BM25 No Yes No No

Embedding Yes Yes Yes Yes

DPR Yes Yes Yes Yes

Since we’ll be exploring both sparse and dense retrievers in this chapter,
we’ll use the ElasticsearchDocumentStore, which is compatible with
both retriever types. Elasticsearch is a search engine that is capable of
handling a diverse range of data types, including textual, numerical,
geospatial, structured, and unstructured. Its ability to store huge volumes of
data and quickly filter it with full-text search features makes it especially
well suited for developing QA systems. It also has the advantage of being
the industry standard for infrastructure analytics, so there’s a good chance
your company already has a cluster that you can work with.

https://oreil.ly/qbqgv
https://github.com/nlp-with-transformers/notebooks


To initialize the document store, we first need to download and install
Elasticsearch. By following Elasticsearch’s guide,  we can grab the latest
release for Linux with wget and unpack it with the tar shell command:

url = """https://artifacts.elastic.co/downloads/elasticsearch/\

elasticsearch-7.9.2-linux-x86_64.tar.gz"""

!wget -nc -q {url}

!tar -xzf elasticsearch-7.9.2-linux-x86_64.tar.gz

Next we need to start the Elasticsearch server. Since we’re running all the
code in this book within Jupyter notebooks, we’ll need to use Python’s
Popen() function to spawn a new process. While we’re at it, let’s also run
the subprocess in the background using the chown shell command:

import os

from subprocess import Popen, PIPE, STDOUT

# Run Elasticsearch as a background process

!chown -R daemon:daemon elasticsearch-7.9.2

es_server = Popen(args=['elasticsearch-7.9.2/bin/elasticsearch'],

                  stdout=PIPE, stderr=STDOUT, preexec_fn=lambda: os.setuid(1))

# Wait until Elasticsearch has started

!sleep 30

In the Popen() function, the args specify the program we wish to execute,
while stdout=PIPE creates a new pipe for the standard output and
stderr=STDOUT collects the errors in the same pipe. The preexec_fn
argument specifies the ID of the subprocess we wish to use. By default,
Elasticsearch runs locally on port 9200, so we can test the connection by
sending an HTTP request to localhost:

!curl -X GET "localhost:9200/?pretty"

{

  "name" : "96938eee37cd",

  "cluster_name" : "docker-cluster",

  "cluster_uuid" : "ABGDdvbbRWmMb9Umz79HbA",

  "version" : {

    "number" : "7.9.2",
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    "build_flavor" : "default",

    "build_type" : "docker",

    "build_hash" : "d34da0ea4a966c4e49417f2da2f244e3e97b4e6e",

    "build_date" : "2020-09-23T00:45:33.626720Z",

    "build_snapshot" : false,

    "lucene_version" : "8.6.2",

    "minimum_wire_compatibility_version" : "6.8.0",

    "minimum_index_compatibility_version" : "6.0.0-beta1"

  },

  "tagline" : "You Know, for Search"

}

Now that our Elasticsearch server is up and running, the next thing to do is
instantiate the document store:

from haystack.document_store.elasticsearch import ElasticsearchDocumentStore

# Return the document embedding for later use with dense retriever

document_store = ElasticsearchDocumentStore(return_embedding=True)

By default, ElasticsearchDocumentStore creates two indices on
Elasticsearch: one called document for (you guessed it) storing documents,
and another called label for storing the annotated answer spans. For now,
we’ll just populate the document index with the SubjQA reviews, and
Haystack’s document stores expect a list of dictionaries with text and meta
keys as follows:

{

    "text": "<the-context>",

    "meta": {

        "field_01": "<additional-metadata>",

        "field_02": "<additional-metadata>",

        ...

    }

}

The fields in meta can be used for applying filters during retrieval. For our
purposes we’ll include the item_id and q_review_id columns of SubjQA
so we can filter by product and question ID, along with the corresponding



training split. We can then loop through the examples in each DataFrame
and add them to the index with the write_documents() method as follows:

for split, df in dfs.items():

    # Exclude duplicate reviews

    docs = [{"text": row["context"],

             "meta":{"item_id": row["title"], "question_id": row["id"],

                     "split": split}}

        for _,row in df.drop_duplicates(subset="context").iterrows()]

    document_store.write_documents(docs, index="document")

print(f"Loaded {document_store.get_document_count()} documents")

Loaded 1615 documents

Great, we’ve loaded all our reviews into an index! To search the index we’ll
need a retriever, so let’s look at how we can initialize one for Elasticsearch.

Initializing a retriever
The Elasticsearch document store can be paired with any of the Haystack
retrievers, so let’s start by using a sparse retriever based on BM25 (short for
“Best Match 25”). BM25 is an improved version of the classic Term
Frequency-Inverse Document Frequency (TF-IDF) algorithm and
represents the question and context as sparse vectors that can be searched
efficiently on Elasticsearch. The BM25 score measures how much matched
text is about a search query and improves on TF-IDF by saturating TF
values quickly and normalizing the document length so that short
documents are favored over long ones.

In Haystack, the BM25 retriever is used by default in
ElasticsearchRetriever, so let’s initialize this class by specifying the
document store we wish to search over:

from haystack.retriever.sparse import ElasticsearchRetriever

es_retriever = ElasticsearchRetriever(document_store=document_store)
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Next, let’s look at a simple query for a single electronics product in the
training set. For review-based QA systems like ours, it’s important to
restrict the queries to a single item because otherwise the retriever would
source reviews about products that are not related to a user’s query. For
example, asking “Is the camera quality any good?” without a product filter
could return reviews about phones, when the user might be asking about a
specific laptop camera instead. By themselves, the ASIN values in our
dataset are a bit cryptic, but we can decipher them with online tools like
amazon ASIN or by simply appending the value of item_id to the
www.amazon.com/dp/ URL. The following item ID corresponds to one of
Amazon’s Fire tablets, so let’s use the retriever’s retrieve() method to
ask if it’s any good for reading with:

item_id = "B0074BW614"

query = "Is it good for reading?"

retrieved_docs = es_retriever.retrieve(

    query=query, top_k=3, filters={"item_id":[item_id], "split":["train"]})

Here we’ve specified how many documents to return with the top_k
argument and applied a filter on both the item_id and split keys that were
included in the meta field of our documents. Each element of
retrieved_docs is a Haystack Document object that is used to represent
documents and includes the retriever’s query score along with other
metadata. Let’s have a look at one of the retrieved documents:

print(retrieved_docs[0])

{'text': 'This is a gift to myself.  I have been a kindle user for 4 years and

this is my third one.  I never thought I would want a fire for I mainly use it

for book reading.  I decided to try the fire for when I travel I take my 

laptop,

my phone and my iPod classic.  I love my iPod but watching movies on the plane

with it can be challenging because it is so small. Laptops battery life is not

as good as the Kindle.  So the Fire combines for me what I needed all three to

do. So far so good.', 'score': 6.243799, 'probability': 0.6857824513476455,

'question': None, 'meta': {'item_id': 'B0074BW614', 'question_id':

'868e311275e26dbafe5af70774a300f3', 'split': 'train'}, 'embedding': None, 

https://amazon-asin.com/


'id':

'252e83e25d52df7311d597dc89eef9f6'}

In addition to the document’s text, we can see the score that Elasticsearch
computed for its relevance to the query (larger scores imply a better match).
Under the hood, Elasticsearch relies on Lucene for indexing and search, so
by default it uses Lucene’s practical scoring function. You can find the
nitty-gritty details behind the scoring function in the Elasticsearch
documentation, but in brief terms it first filters the candidate documents by
applying a Boolean test (does the document match the query?), and then
applies a similarity metric that’s based on representing both the document
and the query as vectors.

Now that we have a way to retrieve relevant documents, the next thing we
need is a way to extract answers from them. This is where the reader comes
in, so let’s take a look at how we can load our MiniLM model in Haystack.

Initializing a reader
In Haystack, there are two types of readers one can use to extract answers
from a given context:

FARMReader

Based on deepset’s FARM framework for fine-tuning and deploying
transformers. Compatible with models trained using  Transformers
and can load models directly from the Hugging Face Hub.

TransformersReader

Based on the QA pipeline from  Transformers. Suitable for running
inference only.

Although both readers handle a model’s weights in the same way, there are
some differences in the way the predictions are converted to produce
answers:

https://lucene.apache.org/
https://oreil.ly/b1Seu
https://oreil.ly/b1Seu
https://farm.deepset.ai/
https://farm.deepset.ai/


In  Transformers, the QA pipeline normalizes the start and end
logits with a softmax in each passage. This means that it is only
meaningful to compare answer scores between answers extracted
from the same passage, where the probabilities sum to 1. For
example, an answer score of 0.9 from one passage is not
necessarily better than a score of 0.8 in another. In FARM, the
logits are not normalized, so inter-passage answers can be
compared more easily.

The TransformersReader sometimes predicts the same answer
twice, but with different scores. This can happen in long contexts if
the answer lies across two overlapping windows. In FARM, these
duplicates are removed.

Since we will be fine-tuning the reader later in the chapter, we’ll use the
FARMReader. As with  Transformers, to load the model we just need to
specify the MiniLM checkpoint on the Hugging Face Hub along with some
QA-specific arguments:

from haystack.reader.farm import FARMReader

model_ckpt = "deepset/minilm-uncased-squad2"

max_seq_length, doc_stride = 384, 128

reader = FARMReader(model_name_or_path=model_ckpt, progress_bar=False,

                    max_seq_len=max_seq_length, doc_stride=doc_stride,

                    return_no_answer=True)

NOTE
It is also possible to fine-tune a reading comprehension model directly in 
Transformers and then load it in TransformersReader to run inference. For details on
how to do the fine-tuning step, see the question answering tutorial in the library’s
documentation.

In FARMReader, the behavior of the sliding window is controlled by the
same max_seq_length and doc_stride arguments that we saw for the

https://oreil.ly/VkhIQ
https://oreil.ly/VkhIQ


tokenizer. Here we’ve used the values from the MiniLM paper. To confirm,
let’s now test the reader on our simple example from earlier:

print(reader.predict_on_texts(question=question, texts=[context], top_k=1))

{'query': 'How much music can this hold?', 'no_ans_gap': 12.648084878921509,

'answers': [{'answer': '6000 hours', 'score': 10.69961929321289, 

'probability':

0.3988136053085327, 'context': 'An MP3 is about 1 MB/minute, so about 6000 

hours

depending on file size.', 'offset_start': 38, 'offset_end': 48,

'offset_start_in_doc': 38, 'offset_end_in_doc': 48, 'document_id':

'e344757014e804eff50faa3ecf1c9c75'}]}

Great, the reader appears to be working as expected—so next, let’s tie
together all our components using one of Haystack’s pipelines.

Putting it all together

Haystack provides a Pipeline abstraction that allows us to combine
retrievers, readers, and other components together as a graph that can be
easily customized for each use case. There are also predefined pipelines
analogous to those in  Transformers, but specialized for QA systems. In
our case, we’re interested in extracting answers, so we’ll use the
ExtractiveQAPipeline, which takes a single retriever-reader pair as its
arguments:

from haystack.pipeline import ExtractiveQAPipeline

pipe = ExtractiveQAPipeline(reader, es_retriever)

Each Pipeline has a run() method that specifies how the query flow
should be executed. For the ExtractiveQAPipeline we just need to pass
the query, the number of documents to retrieve with top_k_retriever,
and the number of answers to extract from these documents with
top_k_reader. In our case, we also need to specify a filter over the item
ID, which can be done using the filters argument as we did with the



retriever earlier. Let’s run a simple example using our question about the
Amazon Fire tablet again, but this time returning the extracted answers:

n_answers = 3

preds = pipe.run(query=query, top_k_retriever=3, top_k_reader=n_answers,

                 filters={"item_id": [item_id], "split":["train"]})

print(f"Question: {preds['query']} \n")

for idx in range(n_answers):

    print(f"Answer {idx+1}: {preds['answers'][idx]['answer']}")

    print(f"Review snippet: ...{preds['answers'][idx]['context']}...")

    print("\n\n")

Question: Is it good for reading?

Answer 1: I mainly use it for book reading

Review snippet: ... is my third one.  I never thought I would want a fire for 

I

mainly use it for book reading.  I decided to try the fire for when I travel I

take my la...

Answer 2: the larger screen compared to the Kindle makes for easier reading

Review snippet: ...ght enough that I can hold it to read, but the larger 

screen

compared to the Kindle makes for easier reading. I love the color, something I

never thou...

Answer 3: it is great for reading books when no light is available

Review snippet: ...ecoming addicted to hers! Our son LOVES it and it is great

for reading books when no light is available. Amazing sound but I suggest good

headphones t...

Great, we now have an end-to-end QA system for Amazon product reviews!
This is a good start, but notice that the second and third answers are closer
to what the question is actually asking. To do better, we’ll need some
metrics to quantify the performance of the retriever and reader. We’ll take a
look at that next.



Improving Our QA Pipeline
Although much of the recent research on QA has focused on improving
reading comprehension models, in practice it doesn’t matter how good your
reader is if the retriever can’t find the relevant documents in the first place!
In particular, the retriever sets an upper bound on the performance of the
whole QA system, so it’s important to make sure it’s doing a good job. With
this in mind, let’s start by introducing some common metrics to evaluate the
retriever so that we can compare the performance of sparse and dense
representations.

Evaluating the Retriever
A common metric for evaluating retrievers is recall, which measures the
fraction of all relevant documents that are retrieved. In this context,
“relevant” simply means whether the answer is present in a passage of text
or not, so given a set of questions, we can compute recall by counting the
number of times an answer appears in the top k documents returned by the
retriever.

In Haystack, there are two ways to evaluate retrievers:

Use the retriever’s in-built eval() method. This can be used for
both open- and closed-domain QA, but not for datasets like
SubjQA where each document is paired with a single product and
we need to filter by product ID for every query.

Build a custom Pipeline that combines a retriever with the
EvalRetriever class. This enables the implementation of custom
metrics and query flows.

NOTE
A complementary metric to recall is mean average precision (mAP), which rewards
retrievers that can place the correct answers higher up in the document ranking.



Since we need to evaluate the recall per product and then aggregate across
all products, we’ll opt for the second approach. Each node in the Pipeline
graph represents a class that takes some inputs and produces some outputs
via a run() method:

class PipelineNode:

    def __init__(self):

        self.outgoing_edges = 1

    def run(self, **kwargs):

        ...

        return (outputs, "outgoing_edge_name")

Here kwargs corresponds to the outputs from the previous node in the
graph, which is manipulated within the run() method to return a tuple of
the outputs for the next node, along with a name for the outgoing edge. The
only other requirement is to include an outgoing_edges attribute that
indicates the number of outputs from the node (in most cases
outgoing_edges=1, unless you have branches in the pipeline that route the
inputs according to some criterion).

In our case, we need a node to evaluate the retriever, so we’ll use the
EvalRetriever class whose run() method keeps track of which
documents have answers that match the ground truth. With this class we can
then build up a Pipeline graph by adding the evaluation node after a node
that represents the retriever itself:

from haystack.pipeline import Pipeline

from haystack.eval import EvalDocuments

class EvalRetrieverPipeline:

    def __init__(self, retriever):

        self.retriever = retriever

        self.eval_retriever = EvalDocuments()

        pipe = Pipeline()

        pipe.add_node(component=self.retriever, name="ESRetriever",

                      inputs=["Query"])

        pipe.add_node(component=self.eval_retriever, name="EvalRetriever",

                      inputs=["ESRetriever"])

        self.pipeline = pipe



pipe = EvalRetrieverPipeline(es_retriever)

Notice that each node is given a name and a list of inputs. In most cases,
each node has a single outgoing edge, so we just need to include the name
of the previous node in inputs.

Now that we have our evaluation pipeline, we need to pass some queries
and their corresponding answers. To do this, we’ll add the answers to a
dedicated label index on our document store. Haystack provides a Label
object that represents the answer spans and their metadata in a standardized
fashion. To populate the label index, we’ll first create a list of Label
objects by looping over each question in the test set and extracting the
matching answers and additional metadata:

from haystack import Label

labels = []

for i, row in dfs["test"].iterrows():

    # Metadata used for filtering in the Retriever

    meta = {"item_id": row["title"], "question_id": row["id"]}

    # Populate labels for questions with answers

    if len(row["answers.text"]):

        for answer in row["answers.text"]:

            label = Label(

                question=row["question"], answer=answer, id=i, 

origin=row["id"],

                meta=meta, is_correct_answer=True, is_correct_document=True,

                no_answer=False)

            labels.append(label)

    # Populate labels for questions without answers

    else:

        label = Label(

            question=row["question"], answer="", id=i, origin=row["id"],

            meta=meta, is_correct_answer=True, is_correct_document=True,

            no_answer=True)

        labels.append(label)

If we peek at one of these labels:

print(labels[0])



{'id': 'e28f5e62-85e8-41b2-8a34-fbff63b7a466', 'created_at': None, 

'updated_at':

None, 'question': 'What is the tonal balance of these headphones?', 'answer': 

'I

have been a headphone fanatic for thirty years', 'is_correct_answer': True,

'is_correct_document': True, 'origin': 'd0781d13200014aa25860e44da9d5ea7',

'document_id': None, 'offset_start_in_doc': None, 'no_answer': False,

'model_id': None, 'meta': {'item_id': 'B00001WRSJ', 'question_id':

'd0781d13200014aa25860e44da9d5ea7'}}

we can see the question-answer pair, along with an origin field that
contains the unique question ID so we can filter the document store per
question. We’ve also added the product ID to the meta field so we can filter
the labels by product. Now that we have our labels, we can write them to
the label index on Elasticsearch as follows:

document_store.write_labels(labels, index="label")

print(f"""Loaded {document_store.get_label_count(index="label")} \

question-answer pairs""")

Loaded 358 question-answer pairs

Next, we need to build up a mapping between our question IDs and
corresponding answers that we can pass to the pipeline. To get all the labels,
we can use the get_all_labels_aggregated() method from the
document store that will aggregate all question-answer pairs associated with
a unique ID. This method returns a list of MultiLabel objects, but in our
case we only get one element since we’re filtering by question ID. We can
build up a list of aggregated labels as follows:

labels_agg = document_store.get_all_labels_aggregated(

    index="label",

    open_domain=True,

    aggregate_by_meta=["item_id"]

)

print(len(labels_agg))
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By peeking at one of these labels we can see that all the answers associated
with a given question are aggregated together in a multiple_answers
field:

print(labels_agg[109])

{'question': 'How does the fan work?', 'multiple_answers': ['the fan is really

really good', "the fan itself isn't super loud. There is an adjustable dial to

change fan speed"], 'is_correct_answer': True, 'is_correct_document': True,

'origin': '5a9b7616541f700f103d21f8ad41bc4b', 'multiple_document_ids': [None,

None], 'multiple_offset_start_in_docs': [None, None], 'no_answer': False,

'model_id': None, 'meta': {'item_id': 'B002MU1ZRS'}}

We now have all the ingredients for evaluating the retriever, so let’s define a
function that feeds each question-answer pair associated with each product
to the evaluation pipeline and tracks the correct retrievals in our pipe
object:

def run_pipeline(pipeline, top_k_retriever=10, top_k_reader=4):

    for l in labels_agg:

        _ = pipeline.pipeline.run(

            query=l.question,

            top_k_retriever=top_k_retriever,

            top_k_reader=top_k_reader,

            top_k_eval_documents=top_k_retriever,

            labels=l,

            filters={"item_id": [l.meta["item_id"]], "split": ["test"]})

run_pipeline(pipe, top_k_retriever=3)

print(f"Recall@3: {pipe.eval_retriever.recall:.2f}")

Recall@3: 0.95

Great, it works! Notice that we picked a specific value for
top_k_retriever to specify the number of documents to retrieve. In
general, increasing this parameter will improve the recall, but at the expense
of providing more documents to the reader and slowing down the end-to-
end pipeline. To guide our decision on which value to pick, we’ll create a



function that loops over several k values and compute the recall across the
whole test set for each k:

def evaluate_retriever(retriever, topk_values = [1,3,5,10,20]):

    topk_results = {}

    for topk in topk_values:

        # Create Pipeline

        p = EvalRetrieverPipeline(retriever)

        # Loop over each question-answers pair in test set

        run_pipeline(p, top_k_retriever=topk)

        # Get metrics

        topk_results[topk] = {"recall": p.eval_retriever.recall}

    return pd.DataFrame.from_dict(topk_results, orient="index")

es_topk_df = evaluate_retriever(es_retriever)

If we plot the results, we can see how the recall improves as we increase k:

def plot_retriever_eval(dfs, retriever_names):

    fig, ax = plt.subplots()

    for df, retriever_name in zip(dfs, retriever_names):

        df.plot(y="recall", ax=ax, label=retriever_name)

    plt.xticks(df.index)

    plt.ylabel("Top-k Recall")

    plt.xlabel("k")

    plt.show()

plot_retriever_eval([es_topk_df], ["BM25"])



From the plot, we can see that there’s an inflection point around k = 5 and
we get almost perfect recall from k = 10 onwards. Let’s now take a look at
retrieving documents with dense vector techniques.

Dense Passage Retrieval
We’ve seen that we get almost perfect recall when our sparse retriever
returns k = 10 documents, but can we do better at smaller values of k? The
advantage of doing so is that we can pass fewer documents to the reader
and thereby reduce the overall latency of our QA pipeline. A well-known
limitation of sparse retrievers like BM25 is that they can fail to capture the
relevant documents if the user query contains terms that don’t match
exactly those of the review. One promising alternative is to use dense
embeddings to represent the question and document, and the current state of
the art is an architecture known as Dense Passage Retrieval (DPR).  The
main idea behind DPR is to use two BERT models as encoders for the
question and the passage. As illustrated in Figure 7-10, these encoders map
the input text into a d-dimensional vector representation of the [CLS] token.
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Figure 7-10. DPR’s bi-encoder architecture for computing the relevance of a document and query

In Haystack, we can initialize a retriever for DPR in a similar way to what
we did for BM25. In addition to specifying the document store, we also
need to pick the BERT encoders for the question and passage. These
encoders are trained by giving them questions with relevant (positive)
passages and irrelevant (negative) passages, where the goal is to learn that
relevant question-passage pairs have a higher similarity. For our use case,
we’ll use encoders that have been fine-tuned on the NQ corpus in this way:



from haystack.retriever.dense import DensePassageRetriever

dpr_retriever = DensePassageRetriever(document_store=document_store,

    query_embedding_model="facebook/dpr-question_encoder-single-nq-base",

    passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",

    embed_title=False)

Here we’ve also set embed_title=False since concatenating the
document’s title (i.e., item_id) doesn’t provide any additional information
because we filter per product. Once we’ve initialized the dense retriever, the
next step is to iterate over all the indexed documents in our Elasticsearch
index and apply the encoders to update the embedding representation. This
can be done as follows:

document_store.update_embeddings(retriever=dpr_retriever)

We’re now set to go! We can evaluate the dense retriever in the same way
we did for BM25 and compare the top-k recall:

dpr_topk_df = evaluate_retriever(dpr_retriever)

plot_retriever_eval([es_topk_df, dpr_topk_df], ["BM25", "DPR"])



Here we can see that DPR does not provide a boost in recall over BM25 and
saturates around k = 3.

TIP
Performing similarity search of the embeddings can be sped up by using Facebook’s
FAISS library as the document store. Similarly, the performance of the DPR retriever
can be improved by fine-tuning on the target domain. If you’d like to learn how to fine-
tune DPR, check out the Haystack tutorial.

Now that we’ve explored the evaluation of the retriever, let’s turn to
evaluating the reader.

Evaluating the Reader
In extractive QA, there are two main metrics that are used for evaluating
readers:

https://oreil.ly/1E8Z0
https://oreil.ly/eXyro


Exact Match (EM)

A binary metric that gives EM = 1 if the characters in the predicted and
ground truth answers match exactly, and EM = 0 otherwise. If no
answer is expected, the model gets EM = 0 if it predicts any text at all.

F -score

Measures the harmonic mean of the precision and recall.

Let’s see how these metrics work by importing some helper functions from
FARM and applying them to a simple example:

from farm.evaluation.squad_evaluation import compute_f1, compute_exact

pred = "about 6000 hours"

label = "6000 hours"

print(f"EM: {compute_exact(label, pred)}")

print(f"F1: {compute_f1(label, pred)}")

EM: 0

F1: 0.8

Under the hood, these functions first normalize the prediction and label by
removing punctuation, fixing whitespace, and converting to lowercase. The
normalized strings are then tokenized as a bag-of-words, before finally
computing the metric at the token level. From this simple example we can
see that EM is a much stricter metric than the F -score: adding a single
token to the prediction gives an EM of zero. On the other hand, the F -score
can fail to catch truly incorrect answers. For example, if our predicted
answer span is “about 6000 dollars”, then we get:

pred = "about 6000 dollars"

print(f"EM: {compute_exact(label, pred)}")

print(f"F1: {compute_f1(label, pred)}")

EM: 0

F1: 0.4

1

1
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Relying on just the F -score is thus misleading, and tracking both metrics is
a good strategy to balance the trade-off between underestimating (EM) and
overestimating (F -score) model performance.

Now in general, there are multiple valid answers per question, so these
metrics are calculated for each question-answer pair in the evaluation set,
and the best score is selected over all possible answers. The overall EM and
F  scores for the model are then obtained by averaging over the individual
scores of each question-answer pair.

To evaluate the reader we’ll create a new pipeline with two nodes: a reader
node and a node to evaluate the reader. We’ll use the EvalReader class that
takes the predictions from the reader and computes the corresponding EM
and F  scores. To compare with the SQuAD evaluation, we’ll take the best
answers for each query with the top_1_em and top_1_f1 metrics that are
stored in EvalAnswers:

from haystack.eval import EvalAnswers

def evaluate_reader(reader):

    score_keys = ['top_1_em', 'top_1_f1']

    eval_reader = EvalAnswers(skip_incorrect_retrieval=False)

    pipe = Pipeline()

    pipe.add_node(component=reader, name="QAReader", inputs=["Query"])

    pipe.add_node(component=eval_reader, name="EvalReader", inputs=

["QAReader"])

    for l in labels_agg:

        doc = document_store.query(l.question,

                                   filters={"question_id":[l.origin]})

        _ = pipe.run(query=l.question, documents=doc, labels=l)

    return {k:v for k,v in eval_reader.__dict__.items() if k in score_keys}

reader_eval = {}

reader_eval["Fine-tune on SQuAD"] = evaluate_reader(reader)

Notice that we specified skip_incorrect_retrieval=False. This is to
ensure that the retriever always passes the context to the reader (as in the

1

1

1

1



SQuAD evaluation). Now that we’ve run every question through the reader,
let’s print the scores:

def plot_reader_eval(reader_eval):

    fig, ax = plt.subplots()

    df = pd.DataFrame.from_dict(reader_eval)

    df.plot(kind="bar", ylabel="Score", rot=0, ax=ax)

    ax.set_xticklabels(["EM", "F1"])

    plt.legend(loc='upper left')

    plt.show()

plot_reader_eval(reader_eval)

OK, it seems that the fine-tuned model performs significantly worse on
SubjQA than on SQuAD 2.0, where MiniLM achieves EM and F  scores of
76.1 and 79.5, respectively. One reason for the performance drop is that
customer reviews are quite different from the Wikipedia articles the SQuAD
2.0 dataset is generated from, and the language they use is often informal.
Another factor is likely the inherent subjectivity of our dataset, where both
questions and answers differ from the factual information contained in
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Wikipedia. Let’s look at how to fine-tune a model on a dataset to get better
results with domain adaptation.

Domain Adaptation
Although models that are fine-tuned on SQuAD will often generalize well
to other domains, we’ve seen that for SubjQA the EM and F  scores of our
model were much worse than for SQuAD. This failure to generalize has
also been observed in other extractive QA datasets and is understood as
evidence that transformer models are particularly adept at overfitting to
SQuAD.  The most straightforward way to improve the reader is by fine-
tuning our MiniLM model further on the SubjQA training set. The
FARMReader has a train() method that is designed for this purpose and
expects the data to be in SQuAD JSON format, where all the question-
answer pairs are grouped together for each item as illustrated in Figure 7-
11.

1
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Figure 7-11. Visualization of the SQuAD JSON format

This is quite a complex data format, so we’ll need a few functions and some
Pandas magic to help us do the conversion. The first thing we need to do is
implement a function that can create the paragraphs array associated with
each product ID. Each element in this array contains a single context (i.e.,
review) and a qas array of question-answer pairs. Here’s a function that
builds up the paragraphs array:

def create_paragraphs(df):

    paragraphs = []

    id2context = dict(zip(df["review_id"], df["context"]))

    for review_id, review in id2context.items():



        qas = []

        # Filter for all question-answer pairs about a specific context

        review_df = df.query(f"review_id == '{review_id}'")

        id2question = dict(zip(review_df["id"], review_df["question"]))

        # Build up the qas array

        for qid, question in id2question.items():

            # Filter for a single question ID

            question_df = df.query(f"id == '{qid}'").to_dict(orient="list")

            ans_start_idxs = question_df["answers.answer_start"][0].tolist()

            ans_text = question_df["answers.text"][0].tolist()

            # Fill answerable questions

            if len(ans_start_idxs):

                answers = [

                    {"text": text, "answer_start": answer_start}

                    for text, answer_start in zip(ans_text, ans_start_idxs)]

                is_impossible = False

            else:

                answers = []

                is_impossible = True

            # Add question-answer pairs to qas

            qas.append({"question": question, "id": qid,

                        "is_impossible": is_impossible, "answers": answers})

        # Add context and question-answer pairs to paragraphs

        paragraphs.append({"qas": qas, "context": review})

    return paragraphs

Now, when we apply to the rows of a DataFrame associated with a single
product ID, we get the SQuAD format:

product = dfs["train"].query("title == 'B00001P4ZH'")

create_paragraphs(product)

[{'qas': [{'question': 'How is the bass?',

    'id': '2543d296da9766d8d17d040ecc781699',

    'is_impossible': True,

    'answers': []}],

  'context': 'I have had Koss headphones ...',

    'id': 'd476830bf9282e2b9033e2bb44bbb995',

    'is_impossible': False,

    'answers': [{'text': 'Bass is weak as expected', 'answer_start': 1302},

     {'text': 'Bass is weak as expected, even with EQ adjusted up',

      'answer_start': 1302}]}],

  'context': 'To anyone who hasn\'t tried all ...'},

 {'qas': [{'question': 'How is the bass?',

    'id': '455575557886d6dfeea5aa19577e5de4',



    'is_impossible': False,

    'answers': [{'text': 'The only fault in the sound is the bass',

      'answer_start': 650}]}],

  'context': "I have had many sub-$100 headphones ..."}]

The final step is to then apply this function to each product ID in the
DataFrame of each split. The following convert_to_squad() function
does this trick and stores the result in an electronics-{split}.json file:

import json

def convert_to_squad(dfs):

    for split, df in dfs.items():

        subjqa_data = {}

        # Create `paragraphs` for each product ID

        groups = (df.groupby("title").apply(create_paragraphs)

            .to_frame(name="paragraphs").reset_index())

        subjqa_data["data"] = groups.to_dict(orient="records")

        # Save the result to disk

        with open(f"electronics-{split}.json", "w+", encoding="utf-8") as f:

            json.dump(subjqa_data, f)

convert_to_squad(dfs)

Now that we have the splits in the right format, let’s fine-tune our reader by
specifying the locations of the train and dev splits, along with where to save
the fine-tuned model:

train_filename = "electronics-train.json"

dev_filename = "electronics-validation.json"

reader.train(data_dir=".", use_gpu=True, n_epochs=1, batch_size=16,

             train_filename=train_filename, dev_filename=dev_filename)

With the reader fine-tuned, let’s now compare its performance on the test
set against our baseline model:

reader_eval["Fine-tune on SQuAD + SubjQA"] = evaluate_reader(reader)

plot_reader_eval(reader_eval)



Wow, domain adaptation has increased our EM score by a factor of six and
more than doubled the F -score! At this point, you might be wondering why
we didn’t just fine-tune a pretrained language model directly on the SubjQA
training set. One reason is that we only have 1,295 training examples in
SubjQA while SQuAD has over 100,000, so we might run into challenges
with overfitting. Nevertheless, let’s take a look at what naive fine-tuning
produces. For a fair comparison, we’ll use the same language model that
was used for fine-tuning our baseline on SQuAD. As before, we’ll load up
the model with the FARMReader:

minilm_ckpt = "microsoft/MiniLM-L12-H384-uncased"

minilm_reader = FARMReader(model_name_or_path=minilm_ckpt, progress_bar=False,

                           max_seq_len=max_seq_length, doc_stride=doc_stride,

                           return_no_answer=True)

Next, we fine-tune for one epoch:

minilm_reader.train(data_dir=".", use_gpu=True, n_epochs=1, batch_size=16,

             train_filename=train_filename, dev_filename=dev_filename)
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and include the evaluation on the test set:

reader_eval["Fine-tune on SubjQA"] = evaluate_reader(minilm_reader)

plot_reader_eval(reader_eval)

We can see that fine-tuning the language model directly on SubjQA results
in considerably worse performance than fine-tuning on SQuAD and
SubjQA.

WARNING
When dealing with small datasets, it is best practice to use cross-validation when
evaluating transformers as they can be prone to overfitting. You can find an example of
how to perform cross-validation with SQuAD-formatted datasets in the FARM
repository.

https://oreil.ly/K3nK8
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Evaluating the Whole QA Pipeline
Now that we’ve seen how to evaluate the reader and retriever components
individually, let’s tie them together to measure the overall performance of
our pipeline. To do so, we’ll need to augment our retriever pipeline with
nodes for the reader and its evaluation. We’ve seen that we get almost
perfect recall at k = 10, so we can fix this value and assess the impact this
has on the reader’s performance (since it will now receive multiple contexts
per query compared to the SQuAD-style evaluation):

# Initialize retriever pipeline

pipe = EvalRetrieverPipeline(es_retriever)

# Add nodes for reader

eval_reader = EvalAnswers()

pipe.pipeline.add_node(component=reader, name="QAReader",

              inputs=["EvalRetriever"])

pipe.pipeline.add_node(component=eval_reader, name="EvalReader",

              inputs=["QAReader"])

# Evaluate!

run_pipeline(pipe)

# Extract metrics from reader

reader_eval["QA Pipeline (top-1)"] = {

    k:v for k,v in eval_reader.__dict__.items()

    if k in ["top_1_em", "top_1_f1"]}

We can then compare the top 1 EM and F  scores for the model to predict
an answer in the documents returned by the retriever in Figure 7-12.
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Figure 7-12. Comparison of EM and F  scores for the reader against the whole QA pipeline

From this plot we can see the effect that the retriever has on the overall
performance. In particular, there is an overall degradation compared to
matching the question-context pairs, as is done in the SQuAD-style
evaluation. This can be circumvented by increasing the number of possible
answers that the reader is allowed to predict.

Until now we have only extracted answer spans from the context, but in
general it could be that bits and pieces of the answer are scattered
throughout the document and we would like our model to synthesize these
fragments into a single coherent answer. Let’s have a look at how we can
use generative QA to succeed at this task.

Going Beyond Extractive QA
One interesting alternative to extracting answers as spans of text in a
document is to generate them with a pretrained language model. This
approach is often referred to as abstractive or generative QA and has the
potential to produce better-phrased answers that synthesize evidence across
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multiple passages. Although less mature than extractive QA, this is a fast-
moving field of research, so chances are that these approaches will be
widely adopted in industry by the time you are reading this! In this section
we’ll briefly touch on the current state of the art: retrieval-augmented
generation (RAG).

RAG extends the classic retriever-reader architecture that we’ve seen in this
chapter by swapping the reader for a generator and using DPR as the
retriever. The generator is a pretrained sequence-to-sequence transformer
like T5 or BART that receives latent vectors of documents from DPR and
then iteratively generates an answer based on the query and these
documents. Since DPR and the generator are differentiable, the whole
process can be fine-tuned end-to-end as illustrated in Figure 7-13.

Figure 7-13. The RAG architecture for fine-tuning a retriever and generator end-to-end (courtesy of
Ethan Perez)

To show RAG in action we’ll use the DPRetriever from earlier, so we just
need to instantiate a generator. There are two types of RAG models to
choose from:

RAG-Sequence

Uses the same retrieved document to generate the complete answer. In
particular, the top k documents from the retriever are fed to the
generator, which produces an output sequence for each document, and
the result is marginalized to obtain the best answer.

RAG-Token
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Can use a different document to generate each token in the answer. This
allows the generator to synthesize evidence from multiple documents.

Since RAG-Token models tend to perform better than RAG-Sequence ones,
we’ll use the token model that was fine-tuned on NQ as our generator.
Instantiating a generator in Haystack is similar to instantiating the reader,
but instead of specifying the max_seq_length and doc_stride parameters
for a sliding window over the contexts, we specify hyperparameters that
control the text generation:

from haystack.generator.transformers import RAGenerator

generator = RAGenerator(model_name_or_path="facebook/rag-token-nq",

                        embed_title=False, num_beams=5)

Here num_beams specifies the number of beams to use in beam search (text
generation is covered at length in Chapter 5). As we did with the DPR
retriever, we don’t embed the document titles since our corpus is always
filtered per product ID.

The next thing to do is tie together the retriever and generator using
Haystack’s GenerativeQAPipeline:

from haystack.pipeline import GenerativeQAPipeline

pipe = GenerativeQAPipeline(generator=generator, retriever=dpr_retriever)

NOTE
In RAG, both the query encoder and the generator are trained end-to-end, while the
context encoder is frozen. In Haystack, the GenerativeQAPipeline uses the query
encoder from RAGenerator and the context encoder from DensePassageRetriever.

Let’s now give RAG a spin by feeding in some queries about the Amazon
Fire tablet from before. To simplify the querying, we’ll write a simple
function that takes the query and prints out the top answers:



def generate_answers(query, top_k_generator=3):

    preds = pipe.run(query=query, top_k_generator=top_k_generator,

                     top_k_retriever=5, filters={"item_id":["B0074BW614"]})

    print(f"Question: {preds['query']} \n")

    for idx in range(top_k_generator):

        print(f"Answer {idx+1}: {preds['answers'][idx]['answer']}")

OK, now we’re ready to give it a test:

generate_answers(query)

Question: Is it good for reading?

Answer 1:  the screen is absolutely beautiful

Answer 2:  the Screen is absolutely beautiful

Answer 3:  Kindle fire

This result isn’t too bad for an answer, but it does suggest that the
subjective nature of the question is confusing the generator. Let’s try with
something a bit more factual:

generate_answers("What is the main drawback?")

Question: What is the main drawback?

Answer 1:  the price

Answer 2:  no flash support

Answer 3:  the cost

This is more sensible! To get better results we could fine-tune RAG end-to-
end on SubjQA; we’ll leave this as an exercise, but if you’re interested in
exploring it there are scripts in the  Transformers repository to help you
get started.

Conclusion
Well, that was a whirlwind tour of QA, and you probably have many more
questions that you’d like answered (pun intended!). In this chapter, we
discussed two approaches to QA (extractive and generative) and examined
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two different retrieval algorithms (BM25 and DPR). Along the way, we saw
that domain adaptation can be a simple technique to boost the performance
of our QA system by a significant margin, and we looked at a few of the
most common metrics that are used for evaluating such systems. Although
we focused on closed-domain QA (i.e., a single domain of electronic
products), the techniques in this chapter can easily be generalized to the
open-domain case; we recommend reading Cloudera’s excellent Fast
Forward QA series to see what’s involved.

Deploying QA systems in the wild can be a tricky business to get right, and
our experience is that a significant part of the value comes from first
providing end users with useful search capabilities, followed by an
extractive component. In this respect, the reader can be used in novel ways
beyond answering on-demand user queries. For example, researchers at
Grid Dynamics were able to use their reader to automatically extract a set of
pros and cons for each product in a client’s catalog. They also showed that a
reader can be used to extract named entities in a zero-shot fashion by
creating queries like “What kind of camera?” Given its infancy and subtle
failure modes, we recommend exploring generative QA only once the other
two approaches have been exhausted. This “hierarchy of needs” for tackling
QA problems is illustrated in Figure 7-14.

https://oreil.ly/Fd6lc
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Figure 7-14. The QA hierarchy of needs

Looking ahead, one exciting research area is multimodal QA, which
involves QA over multiple modalities like text, tables, and images. As
described in the MultiModalQA benchmark,  such systems could enable
users to answer complex questions that integrate information across
different modalities, like “When was the famous painting with two touching
fingers completed?” Another area with practical business applications is QA
over a knowledge graph, where the nodes of the graph correspond to real-
world entities and their relations are defined by the edges. By encoding
factoids as (subject, predicate, object) triples, one can use the graph to
answer questions about a missing element. For an example that combines
transformers with knowledge graphs, see the Haystack tutorials. One more
promising direction is automatic question generation as a way to do some
form of unsupervised/weakly supervised training using unlabeled data or
data augmentation. Two recent examples include the papers on the Probably
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Answered Questions (PAQ) benchmark and synthetic data augmentation for
cross-lingual settings.

In this chapter we’ve seen that in order to successfully use QA models for
real-world use cases we need to apply a few tricks, such as implementing a
fast retrieval pipeline to make predictions in near real time. Still, applying a
QA model to a handful of preselected documents can take a couple of
seconds on production hardware. Although this may not sound like much,
imagine how different your experience would be if you had to wait a few
seconds to get the results of a Google search—a few seconds of wait time
can decide the fate of your transformer-powered application. In the next
chapter we’ll have a look at a few methods to accelerate model predictions
further.

1  Although, in this particular case, everyone agrees that Drop C is the best guitar tuning.

2  J. Bjerva et al., “SubjQA: A Dataset for Subjectivity and Review Comprehension”, (2020).

3  As we’ll soon see, there are also unanswerable questions that are designed to produce more
robust models.

4  D. Hendrycks et al., “CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review”,
(2021).

5  P. Rajpurkar et al., “SQuAD: 100,000+ Questions for Machine Comprehension of Text”,
(2016).

6  P. Rajpurkar, R. Jia, and P. Liang, “Know What You Don’t Know: Unanswerable Questions
for SQuAD”, (2018).

7  T. Kwiatkowski et al., “Natural Questions: A Benchmark for Question Answering Research,”
Transactions of the Association for Computational Linguistics 7 (March 2019): 452–466,
http://dx.doi.org/10.1162/tacl_a_00276.

8  W. Wang et al., “MINILM: Deep Self-Attention Distillation for Task-Agnostic Compression
of Pre-Trained Transformers”, (2020).

9  Note that the token_type_ids are not present in all transformer models. In the case of BERT-
like models such as MiniLM, the token_type_ids are also used during pretraining to
incorporate the next sentence prediction task.

10  See Chapter 2 for details on how these hidden states can be extracted.

11  A vector is sparse if most of its elements are zero.

12  The guide also provides installation instructions for macOS and Windows.
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Chapter 8. Making Transformers
Efficient in Production

In the previous chapters, you’ve seen how transformers can be fine-tuned to
produce great results on a wide range of tasks. However, in many situations
accuracy (or whatever metric you’re optimizing for) is not enough; your
state-of-the-art model is not very useful if it’s too slow or large to meet the
business requirements of your application. An obvious alternative is to train
a faster and more compact model, but the reduction in model capacity is
often accompanied by a degradation in performance. So what can you do
when you need a fast, compact, yet highly accurate model?

In this chapter we will explore four complementary techniques that can be
used to speed up the predictions and reduce the memory footprint of your
transformer models: knowledge distillation, quantization, pruning, and
graph optimization with the Open Neural Network Exchange (ONNX)
format and ONNX Runtime (ORT). We’ll also see how some of these
techniques can be combined to produce significant performance gains. For
example, this was the approach taken by the Roblox engineering team in
their article “How We Scaled Bert to Serve 1+ Billion Daily Requests on
CPUs”, who as shown in Figure 8-1 found that combining knowledge
distillation and quantization enabled them to improve the latency and
throughput of their BERT classifier by over a factor of 30!

https://oreil.ly/QdNIk
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Figure 8-1. How Roblox scaled BERT with knowledge distillation, dynamic padding, and weight
quantization (photo courtesy of Roblox employees Quoc N. Le and Kip Kaehler)

To illustrate the benefits and trade-offs associated with each technique,
we’ll use intent detection as a case study; this is an important component of
text-based assistants, where low latencies are critical for maintaining a
conversation in real time. Along the way you’ll learn how to create custom
trainers, perform efficient hyperparameter search, and gain a sense of what
it takes to implement cutting-edge research with  Transformers. Let’s dive
in!

Intent Detection as a Case Study
Let’s suppose that we’re trying to build a text-based assistant for our
company’s call center so that customers can request their account balance or
make bookings without needing to speak with a human agent. In order to
understand the goals of a customer, our assistant will need to be able to
classify a wide variety of natural language text into a set of predefined
actions or intents. For example, a customer might send a message like the
following about an upcoming trip:

Hey, I’d like to rent a vehicle from Nov 1st to Nov 15th in Paris and I
need a 15 passenger van



and our intent classifier could automatically categorize this as a Car Rental
intent, which then triggers an action and response. To be robust in a
production environment, our classifier will also need to be able to handle
out-of-scope queries, where a customer makes a query that doesn’t belong
to any of the predefined intents and the system should yield a fallback
response. For example, in the second case shown in Figure 8-2, a customer
asks a question about sports (which is out of scope), and the text assistant
mistakenly classifies it as one of the known in-scope intents and returns the
payday response. In the third case, the text assistant has been trained to
detect out-of-scope queries (usually labeled as a separate class) and informs
the customer about which topics it can answer questions about.

Figure 8-2. Three exchanges between a human (right) and a text-based assistant (left) for personal
finance (courtesy of Stefan Larson et al.)

As a baseline, we’ve fine-tuned a BERT-base model that achieves around
94% accuracy on the CLINC150 dataset.  This dataset includes 22,500 in-
scope queries across 150 intents and 10 domains like banking and travel,
and also includes 1,200 out-of-scope queries that belong to an oos intent
class. In practice we would also gather our own in-house dataset, but using
public data is a great way to iterate quickly and generate preliminary results.
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To get started, let’s download our fine-tuned model from the Hugging Face
Hub and wrap it in a pipeline for text classification:

from transformers import pipeline

bert_ckpt = "transformersbook/bert-base-uncased-finetuned-clinc"

pipe = pipeline("text-classification", model=bert_ckpt)

Now that we have a pipeline, we can pass a query to get the predicted intent
and confidence score from the model:

query = """Hey, I'd like to rent a vehicle from Nov 1st to Nov 15th in

Paris and I need a 15 passenger van"""

pipe(query)

[{'label': 'car_rental', 'score': 0.549003541469574}]

Great, the car_rental intent makes sense. Let’s now look at creating a
benchmark that we can use to evaluate the performance of our baseline
model.

Creating a Performance Benchmark
Like other machine learning models, deploying transformers in production
environments involves a trade-off among several constraints, the most
common being:

Model performance

How well does our model perform on a well-crafted test set that reflects
production data? This is especially important when the cost of making
errors is large (and best mitigated with a human in the loop), or when
we need to run inference on millions of examples and small
improvements to the model metrics can translate into large gains in
aggregate.

Latency

2



How fast can our model deliver predictions? We usually care about
latency in real-time environments that deal with a lot of traffic, like how
Stack Overflow needed a classifier to quickly detect unwelcome
comments on the website.

Memory

How can we deploy billion-parameter models like GPT-2 or T5 that
require gigabytes of disk storage and RAM? Memory plays an
especially important role in mobile or edge devices, where a model has
to generate predictions without access to a powerful cloud server.

Failing to address these constraints can have a negative impact on the user
experience of your application. More commonly, it can lead to ballooning
costs from running expensive cloud servers that may only need to handle a
few requests. To explore how each of these constraints can be optimized
with various compression techniques, let’s begin by creating a simple
benchmark that measures each quantity for a given pipeline and test set. A
skeleton of what we’ll need is given by the following class:

class PerformanceBenchmark:

    def __init__(self, pipeline, dataset, optim_type="BERT baseline"):

        self.pipeline = pipeline

        self.dataset = dataset

        self.optim_type = optim_type

    def compute_accuracy(self):

        # We'll define this later

        pass

    def compute_size(self):

        # We'll define this later

        pass

    def time_pipeline(self):

        # We'll define this later

        pass

    def run_benchmark(self):

        metrics = {}

        metrics[self.optim_type] = self.compute_size()

https://oreil.ly/cf7QX
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        metrics[self.optim_type].update(self.time_pipeline())

        metrics[self.optim_type].update(self.compute_accuracy())

        return metrics

We’ve defined an optim_type parameter to keep track of the different
optimization techniques that we’ll cover in this chapter. We’ll use the
run_benchmark() method to collect all the metrics in a dictionary, with
keys given by optim_type.

Let’s now put some flesh on the bones of this class by computing the model
accuracy on the test set. First we need some data to test on, so let’s
download the CLINC150 dataset that was used to fine-tune our baseline
model. We can get the dataset from the Hub with  Datasets as follows:

from datasets import load_dataset

clinc = load_dataset("clinc_oos", "plus")

Here, the plus configuration refers to the subset that contains the out-of-
scope training examples. Each example in the CLINC150 dataset consists of
a query in the text column and its corresponding intent. We’ll use the test
set to benchmark our models, so let’s take a look at one of the dataset’s
examples:

sample = clinc["test"][42]

sample

{'intent': 133, 'text': 'transfer $100 from my checking to saving account'}

The intents are provided as IDs, but we can easily get the mapping to strings
(and vice versa) by accessing the features attribute of the dataset:

intents = clinc["test"].features["intent"]

intents.int2str(sample["intent"])

'transfer'



Now that we have a basic understanding of the contents in the CLINC150
dataset, let’s implement the compute_accuracy() method of
PerformanceBenchmark. Since the dataset is balanced across the intent
classes, we’ll use accuracy as our metric. We can load this metric with 
Datasets as follows:

from datasets import load_metric

accuracy_score = load_metric("accuracy")

The accuracy metric expects the predictions and references (i.e., the ground
truth labels) to be integers. We can use the pipeline to extract the predictions
from the text field and then use the str2int() method of our intents
object to map each prediction to its corresponding ID. The following code
collects all the predictions and labels in lists before returning the accuracy
on the dataset. Let’s also add it to our Perform​an⁠ce​Benchmark class:

def compute_accuracy(self):

    """This overrides the PerformanceBenchmark.compute_accuracy() method"""

    preds, labels = [], []

    for example in self.dataset:

        pred = self.pipeline(example["text"])[0]["label"]

        label = example["intent"]

        preds.append(intents.str2int(pred))

        labels.append(label)

    accuracy = accuracy_score.compute(predictions=preds, references=labels)

    print(f"Accuracy on test set - {accuracy['accuracy']:.3f}")

    return accuracy

PerformanceBenchmark.compute_accuracy = compute_accuracy

Next, let’s compute the size of our model by using the torch.save()
function from PyTorch to serialize the model to disk. Under the hood,
torch.save() uses Python’s pickle module and can be used to save
anything from models to tensors to ordinary Python objects. In PyTorch, the
recommended way to save a model is by using its state_dict, which is a
Python dictionary that maps each layer in a model to its learnable



parameters (i.e., weights and biases). Let’s see what is stored in the
state_dict of our baseline model:

list(pipe.model.state_dict().items())[42]

('bert.encoder.layer.2.attention.self.value.weight',

 tensor([[-1.0526e-02, -3.2215e-02,  2.2097e-02,  ..., -6.0953e-03,

           4.6521e-03,  2.9844e-02],

         [-1.4964e-02, -1.0915e-02,  5.2396e-04,  ...,  3.2047e-05,

          -2.6890e-02, -2.1943e-02],

         [-2.9640e-02, -3.7842e-03, -1.2582e-02,  ..., -1.0917e-02,

           3.1152e-02, -9.7786e-03],

         ...,

         [-1.5116e-02, -3.3226e-02,  4.2063e-02,  ..., -5.2652e-03,

           1.1093e-02,  2.9703e-03],

         [-3.6809e-02,  5.6848e-02, -2.6544e-02,  ..., -4.0114e-02,

           6.7487e-03,  1.0511e-03],

         [-2.4961e-02,  1.4747e-03, -5.4271e-02,  ...,  2.0004e-02,

           2.3981e-02, -4.2880e-02]]))

We can clearly see that each key/value pair corresponds to a specific layer
and tensor in BERT. So if we save our model with:

torch.save(pipe.model.state_dict(), "model.pt")

we can then use the Path.stat() function from Python’s pathlib module
to get information about the underlying files. In particular, Path(​"model.​
pt").​stat().​st_size will give us the model size in bytes. Let’s put this
all together in the com⁠pute_​size() function and add it to
PerformanceBenchmark:

import torch

from pathlib import Path

def compute_size(self):

    """This overrides the PerformanceBenchmark.compute_size() method"""

    state_dict = self.pipeline.model.state_dict()

    tmp_path = Path("model.pt")

    torch.save(state_dict, tmp_path)

    # Calculate size in megabytes

    size_mb = Path(tmp_path).stat().st_size / (1024 * 1024)



    # Delete temporary file

    tmp_path.unlink()

    print(f"Model size (MB) - {size_mb:.2f}")

    return {"size_mb": size_mb}

PerformanceBenchmark.compute_size = compute_size

Finally let’s implement the time_pipeline() function so that we can time
the average latency per query. For this application, latency refers to the time
it takes to feed a text query to the pipeline and return the predicted intent
from the model. Under the hood the pipeline also tokenizes the text, but this
is around one thousand times faster than generating the predictions and thus
adds a negligible contribution to the overall latency. A simple way to
measure the execution time of a code snippet is to use the perf_counter()
function from Python’s time module. This function has a better time
resolution than the time.time() function and is well suited for getting
precise results.

We can use perf_counter() to time our pipeline by passing our test query
and calculating the time difference in milliseconds between the start and
end:

from time import perf_counter

for _ in range(3):

    start_time = perf_counter()

    _ = pipe(query)

    latency = perf_counter() - start_time

    print(f"Latency (ms) - {1000 * latency:.3f}")

Latency (ms) - 85.367

Latency (ms) - 85.241

Latency (ms) - 87.275

These results exhibit quite some spread in the latencies and suggest that
timing a single pass through the pipeline can give wildly different results
each time we run the code. So instead, we’ll collect the latencies over many
runs and then use the resulting distribution to calculate the mean and
standard deviation, which will give us an idea about the spread in values.



The following code does what we need and includes a phase to warm up the
CPU before performing the actual timed run:

import numpy as np

def time_pipeline(self, query="What is the pin number for my account?"):

    """This overrides the PerformanceBenchmark.time_pipeline() method"""

    latencies = []

    # Warmup

    for _ in range(10):

        _ = self.pipeline(query)

    # Timed run

    for _ in range(100):

        start_time = perf_counter()

        _ = self.pipeline(query)

        latency = perf_counter() - start_time

        latencies.append(latency)

    # Compute run statistics

    time_avg_ms = 1000 * np.mean(latencies)

    time_std_ms = 1000 * np.std(latencies)

    print(f"Average latency (ms) - {time_avg_ms:.2f} +\- {time_std_ms:.2f}")

    return {"time_avg_ms": time_avg_ms, "time_std_ms": time_std_ms}

PerformanceBenchmark.time_pipeline = time_pipeline

To keeps things simple, we’ll use the same query value to benchmark all
our models. In general, the latency will depend on the query length, and a
good practice is to benchmark your models with queries that they’re likely
to encounter in production environments.

Now that our PerformanceBenchmark class is complete, let’s give it a spin!
Let’s start by benchmarking our BERT baseline. For the baseline model, we
just need to pass the pipeline and the dataset we wish to perform the
benchmark on. We’ll collect the results in the perf_metrics dictionary to
keep track of each model’s performance:

pb = PerformanceBenchmark(pipe, clinc["test"])

perf_metrics = pb.run_benchmark()

Model size (MB) - 418.16

Average latency (ms) - 54.20 +\- 1.91

Accuracy on test set - 0.867



Now that we have a reference point, let’s look at our first compression
technique: knowledge distillation.

NOTE
The average latency values will differ depending on what type of hardware you are
running on. For example, you can usually get better performance by running inference
on a GPU since it enables batch processing. For the purposes of this chapter, what’s
important is the relative difference in latencies between models. Once we have
determined the best-performing model, we can then explore different backends to reduce
the absolute latency if needed.

Making Models Smaller via Knowledge
Distillation
Knowledge distillation is a general-purpose method for training a smaller
student model to mimic the behavior of a slower, larger, but better-
performing teacher. Originally introduced in 2006 in the context of
ensemble models,  it was later popularized in a famous 2015 paper that
generalized the method to deep neural networks and applied it to image
classification and automatic speech recognition.

Given the trend toward pretraining language models with ever-increasing
parameter counts (the largest at the time of writing having over one trillion
parameters),  knowledge distillation has also become a popular strategy to
compress these huge models and make them more suitable for building
practical applications.

Knowledge Distillation for Fine-Tuning
So how is knowledge actually “distilled” or transferred from the teacher to
the student during training? For supervised tasks like fine-tuning, the main
idea is to augment the ground truth labels with a distribution of “soft
probabilities” from the teacher which provide complementary information
for the student to learn from. For example, if our BERT-base classifier
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assigns high probabilities to multiple intents, then this could be a sign that
these intents lie close to each other in the feature space. By training the
student to mimic these probabilities, the goal is to distill some of this “dark
knowledge”  that the teacher has learned—that is, knowledge that is not
available from the labels alone.

Mathematically, the way this works is as follows. Suppose we feed an input
sequence x to the teacher to generate a vector of logits z(x) = [
z1 (x), ..., zN (x)]. We can convert these logits into probabilities by applying
a softmax function:

exp (zi (x))

∑j exp (zi (x))

This isn’t quite what we want, though, because in many cases the teacher
will assign a high probability to one class, with all other class probabilities
close to zero. When that happens, the teacher doesn’t provide much
additional information beyond the ground truth labels, so instead we
“soften” the probabilities by scaling the logits with a temperature
hyperparameter T before applying the softmax:

pi (x) =
exp (zi (x)/T )

∑j exp (zi (x)/T )

As shown in Figure 8-3, higher values of T produce a softer probability
distribution over the classes and reveal much more information about the
decision boundary that the teacher has learned for each training example.
When T = 1 we recover the original softmax distribution.
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Figure 8-3. Comparison of a hard label that is one-hot encoded (left), softmax probabilities (middle),
and softened class probabilities (right)

Since the student also produces softened probabilities qi (x) of its own, we
can use the Kullback–Leibler (KL) divergence to measure the difference
between the two probability distributions:

DKL (p, q) = ∑
i

pi (x) log
pi (x)

qi (x)

With the KL divergence we can calculate how much is lost when we
approximate the probability distribution of the teacher with the student. This
allows us to define a knowledge distillation loss:

LKD = T 2DKL

where T 2 is a normalization factor to account for the fact that the magnitude
of the gradients produced by soft labels scales as 1/T 2. For classification
tasks, the student loss is then a weighted average of the distillation loss with
the usual cross-entropy loss LCE of the ground truth labels:

Lstudent = αLCE + (1 − α)LKD

where α is a hyperparameter that controls the relative strength of each loss.
A diagram of the whole process is shown in Figure 8-4; the temperature is
set to 1 at inference time to recover the standard softmax probabilities.

https://oreil.ly/8nKQG


Figure 8-4. The knowledge distillation process

Knowledge Distillation for Pretraining
Knowledge distillation can also be used during pretraining to create a
general-purpose student that can be subsequently fine-tuned on downstream
tasks. In this case, the teacher is a pretrained language model like BERT,
which transfers its knowledge about masked language modeling to the
student. For example, in the DistilBERT paper,  the masked language
modeling loss Lmlm is augmented with a term from knowledge distillation
and a cosine embedding loss Lcos = 1− cos (hs, ht) to align the directions
of the hidden state vectors between the teacher and student:

LDistilBERT = αLmlm + βLKD + γLcos

Since we already have a fine-tuned BERT-base model, let’s see how we can
use knowledge distillation to fine-tune a smaller and faster model. To do
that we’ll need a way to augment the cross-entropy loss with an LKD term.
Fortunately we can do this by creating our own trainer!

Creating a Knowledge Distillation Trainer
To implement knowledge distillation we need to add a few things to the
Trainer base class:

The new hyperparameters α and T, which control the relative
weight of the distillation loss and how much the probability
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distribution of the labels should be smoothed

The fine-tuned teacher model, which in our case is BERT-base

A new loss function that combines the cross-entropy loss with the
knowledge distillation loss

Adding the new hyperparameters is quite simple, since we just need to
subclass TrainingArguments and include them as new attributes:

from transformers import TrainingArguments

class DistillationTrainingArguments(TrainingArguments):

    def __init__(self, *args, alpha=0.5, temperature=2.0, **kwargs):

        super().__init__(*args, **kwargs)

        self.alpha = alpha

        self.temperature = temperature

For the trainer itself, we need a new loss function. The way to implement
this is by subclassing Trainer and overriding the compute_loss() method
to include the knowledge distillation loss term LKD:

import torch.nn as nn

import torch.nn.functional as F

from transformers import Trainer

class DistillationTrainer(Trainer):

    def __init__(self, *args, teacher_model=None, **kwargs):

        super().__init__(*args, **kwargs)

        self.teacher_model = teacher_model

    def compute_loss(self, model, inputs, return_outputs=False):

        outputs_stu = model(**inputs)

        # Extract cross-entropy loss and logits from student

        loss_ce = outputs_stu.loss

        logits_stu = outputs_stu.logits

        # Extract logits from teacher

        with torch.no_grad():

            outputs_tea = self.teacher_model(**inputs)

            logits_tea = outputs_tea.logits

        # Soften probabilities and compute distillation loss

        loss_fct = nn.KLDivLoss(reduction="batchmean")

        loss_kd = self.args.temperature ** 2 * loss_fct(



            F.log_softmax(logits_stu / self.args.temperature, dim=-1),

            F.softmax(logits_tea / self.args.temperature, dim=-1))

        # Return weighted student loss

        loss = self.args.alpha * loss_ce + (1. - self.args.alpha) * loss_kd

        return (loss, outputs_stu) if return_outputs else loss

Let’s unpack this code a bit. When we instantiate DistillationTrainer
we pass a teacher_model argument with a teacher that has already been
fine-tuned on our task. Next, in the compute_loss() method we extract the
logits from the student and teacher, scale them by the temperature, and then
normalize them with a softmax before passing them to PyTorch’s
nn.KLDivLoss() function for computing the KL divergence. One quirk
with nn.KLDivLoss() is that it expects the inputs in the form of log
probabilities and the labels as normal probabilities. That’s why we’ve used
the F.log_softmax() function to normalize the student’s logits, while the
teacher’s logits are converted to probabilities with a standard softmax. The
reduction=batchmean argument in nn.KLDivLoss() specifies that we
average the losses over the batch dimension.

TIP
You can also perform knowledge distillation with the Keras API of the  Transformers
library. To do this, you’ll need to implement a custom Distiller class that overrides
the train_step(), test_step(), and compile() methods of tf.keras.Model(). See
the Keras documentation for an example of how to do this.

Choosing a Good Student Initialization
Now that we have our custom trainer, the first question you might have is
which pretrained language model should we pick for the student? In general
we should pick a smaller model for the student to reduce the latency and
memory footprint. A good rule of thumb from the literature is that
knowledge distillation works best when the teacher and student are of the
same model type.  One possible reason for this is that different model types,
say BERT and RoBERTa, can have different output embedding spaces,
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which hinders the ability of the student to mimic the teacher. In our case
study the teacher is BERT, so DistilBERT is a natural candidate to initialize
the student with since it has 40% fewer parameters and has been shown to
achieve strong results on downstream tasks.

First we’ll need to tokenize and encode our queries, so let’s instantiate the
tokenizer from DistilBERT and create a simple tokenize_text() function
to take care of the preprocessing:

from transformers import AutoTokenizer

student_ckpt = "distilbert-base-uncased"

student_tokenizer = AutoTokenizer.from_pretrained(student_ckpt)

def tokenize_text(batch):

    return student_tokenizer(batch["text"], truncation=True)

clinc_enc = clinc.map(tokenize_text, batched=True, remove_columns=["text"])

clinc_enc = clinc_enc.rename_column("intent", "labels")

Here we’ve removed the text column since we no longer need it, and
we’ve also renamed the intent column to labels so it can be
automatically detected by the trainer.

Now that we’ve processed our texts, the next thing we need to do is define
the hyperparameters and compute_metrics() function for our
DistillationTrainer. We’ll also push all of our models to the Hugging
Face Hub, so let’s start by logging in to our account:

from huggingface_hub import notebook_login

notebook_login()

Next, we’ll define the metrics to track during training. As we did in the
performance benchmark, we’ll use accuracy as the main metric. This means
we can reuse our accuracy_score() function in the compute_metrics()
function that we’ll include in DistillationTrainer:
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def compute_metrics(pred):

    predictions, labels = pred

    predictions = np.argmax(predictions, axis=1)

    return accuracy_score.compute(predictions=predictions, references=labels)

In this function, the predictions from the sequence modeling head come in
the form of logits, so we use the np.argmax() function to find the most
confident class prediction and compare that against the ground truth label.

Next we need to define the training arguments. To warm up, we’ll set α = 1
to see how well DistilBERT performs without any signal from the teacher.
Then we will push our fine-tuned model to a new repository called
distilbert-base-uncased-finetuned-clinc, so we just need to specify
that in the output_dir argument of DistillationTrainingArguments:

batch_size = 48

finetuned_ckpt = "distilbert-base-uncased-finetuned-clinc"

student_training_args = DistillationTrainingArguments(

    output_dir=finetuned_ckpt, evaluation_strategy = "epoch",

    num_train_epochs=5, learning_rate=2e-5,

    per_device_train_batch_size=batch_size,

    per_device_eval_batch_size=batch_size, alpha=1, weight_decay=0.01,

    push_to_hub=True)

We’ve also tweaked a few of the default hyperparameter values, like the
number of epochs, the weight decay, and the learning rate. The next thing to
do is initialize a student model. Since we will be doing multiple runs with
the trainer, we’ll create a student_init() function to initialize the model
with each new run. When we pass this function to the
DistillationTrainer, this will ensure we initialize a new model each
time we call the train() method.

One other thing we need to do is provide the student model with the
mappings between each intent and label ID. These mappings can be
obtained from our BERT-base model that we downloaded in the pipeline:

id2label = pipe.model.config.id2label

label2id = pipe.model.config.label2id

11



With these mappings, we can now create a custom model configuration with
the AutoConfig class hat we encountered in Chapters 3 and 4. Let’s use this
to create a configuration for our student with the information about the label
mappings:

from transformers import AutoConfig

num_labels = intents.num_classes

student_config = (AutoConfig

                  .from_pretrained(student_ckpt, num_labels=num_labels,

                                   id2label=id2label, label2id=label2id))

Here we’ve also specified the number of classes our model should expect.
We can then provide this configuration to the from_pretrained() function
of the AutoModelForSequenceClassification class as follows:

import torch

from transformers import AutoModelForSequenceClassification

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def student_init():

    return (AutoModelForSequenceClassification

            .from_pretrained(student_ckpt, config=student_config).to(device))

We now have all the ingredients needed for our distillation trainer, so let’s
load the teacher and fine-tune:

teacher_ckpt = "transformersbook/bert-base-uncased-finetuned-clinc"

teacher_model = (AutoModelForSequenceClassification

                 .from_pretrained(teacher_ckpt, num_labels=num_labels)

                 .to(device))

distilbert_trainer = DistillationTrainer(model_init=student_init,

    teacher_model=teacher_model, args=student_training_args,

    train_dataset=clinc_enc['train'], eval_dataset=clinc_enc['validation'],

    compute_metrics=compute_metrics, tokenizer=student_tokenizer)

distilbert_trainer.train()



Epoch Training Loss Validation Loss Accuracy

1 4.2923 3.289337 0.742258

2 2.6307 1.883680 0.828065

3 1.5483 1.158315 0.896774

4 1.0153 0.861815 0.909355

5 0.7958 0.777289 0.917419

The 92% accuracy on the validation set looks quite good compared to the
94% that the BERT-base teacher achieves. Now that we’ve fine-tuned
DistilBERT, let’s push the model to the Hub so we can reuse it later:

distilbert_trainer.push_to_hub("Training completed!")

With our model now safely stored on the Hub, we can immediately use it in
a pipeline for our performance benchmark:

finetuned_ckpt = "transformersbook/distilbert-base-uncased-finetuned-clinc"

pipe = pipeline("text-classification", model=finetuned_ckpt)

We can then pass this pipeline to our PerformanceBenchmark class to
compute the metrics associated with this model:

optim_type = "DistilBERT"

pb = PerformanceBenchmark(pipe, clinc["test"], optim_type=optim_type)

perf_metrics.update(pb.run_benchmark())

Model size (MB) - 255.89

Average latency (ms) - 27.53 +\- 0.60

Accuracy on test set - 0.858

To compare these results against our baseline, let’s create a scatter plot of
the accuracy against the latency, with the radius of each point corresponding
to the size of the model on disk. The following function does what we need
and marks the current optimization type as a dashed circle to aid the
comparison to previous results:



import pandas as pd

def plot_metrics(perf_metrics, current_optim_type):

    df = pd.DataFrame.from_dict(perf_metrics, orient='index')

    for idx in df.index:

        df_opt = df.loc[idx]

        # Add a dashed circle around the current optimization type

        if idx == current_optim_type:

            plt.scatter(df_opt["time_avg_ms"], df_opt["accuracy"] * 100,

                        alpha=0.5, s=df_opt["size_mb"], label=idx,

                        marker='$\u25CC$')

        else:

            plt.scatter(df_opt["time_avg_ms"], df_opt["accuracy"] * 100,

                        s=df_opt["size_mb"], label=idx, alpha=0.5)

    legend = plt.legend(bbox_to_anchor=(1,1))

    for handle in legend.legendHandles:

        handle.set_sizes([20])

    plt.ylim(80,90)

    # Use the slowest model to define the x-axis range

    xlim = int(perf_metrics["BERT baseline"]["time_avg_ms"] + 3)

    plt.xlim(1, xlim)

    plt.ylabel("Accuracy (%)")

    plt.xlabel("Average latency (ms)")

    plt.show()

plot_metrics(perf_metrics, optim_type)



From the plot we can see that by using a smaller model we’ve managed to
significantly decrease the average latency. And all this at the price of just
over a 1% reduction in accuracy! Let’s see if we can close that last gap by
including the distillation loss of the teacher and finding good values for α
and T.

Finding Good Hyperparameters with Optuna
To find good values for α and T, we could do a grid search over the 2D
parameter space. But a much better alternative is to use Optuna,  which is
an optimization framework designed for just this type of task. Optuna
formulates the search problem in terms of an objective function that is
optimized through multiple trials. For example, suppose we wished to
minimize Rosenbrock’s “banana function”:

f (x, y) = (1 − x)2 + 100(y − x2)
2
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which is a famous test case for optimization frameworks. As shown in
Figure 8-5, the function gets its name from the curved contours and has a
global minimum at (x, y) = (1, 1). Finding the valley is an easy
optimization problem, but converging to the global minimum is not.

Figure 8-5. Plot of the Rosenbrock function of two variables

In Optuna, we can find the minimum of f(x, y) by defining an
objective() function that returns the value of f(x, y):

def objective(trial):

    x = trial.suggest_float("x", -2, 2)

    y = trial.suggest_float("y", -2, 2)

    return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2

The trial.suggest_float object specifies the parameter ranges to sample
uniformly from; Optuna also provides suggest_int and
suggest_categorical for integer and categorical parameters, respectively.
Optuna collects multiple trials as a study, so to create one we just pass the
objective() function to study.optimize() as follows:



import optuna

study = optuna.create_study()

study.optimize(objective, n_trials=1000)

Once the study is completed, we can then find the best parameters as
follows:

study.best_params

{'x': 1.003024865971437, 'y': 1.00315167589307}

We see that with one thousand trials, Optuna has managed to find values for
x and y that are reasonably close to the global minimum. To use Optuna in

 Transformers, we use similar logic by first defining the hyperparameter
space that we wish to optimize over. In addition to α and T, we’ll include
the number of training epochs as follows:

def hp_space(trial):

    return {"num_train_epochs": trial.suggest_int("num_train_epochs", 5, 10),

        "alpha": trial.suggest_float("alpha", 0, 1),

        "temperature": trial.suggest_int("temperature", 2, 20)}

Running the hyperparameter search with the Trainer is then quite simple;
we just need to specify the number of trials to run and a direction to
optimize for. Because we want the best possible accuracy, we specify
direction="maximize" in the hyper​para⁠meter_​search() method of the
trainer and pass the hyperparameter search space as follows:

best_run = distilbert_trainer.hyperparameter_search(

    n_trials=20, direction="maximize", hp_space=hp_space)

The hyperparameter_search() method returns a BestRun object, which
contains the value of the objective that was maximized (by default, the sum
of all metrics) and the hyperparameters it used for that run:

print(best_run)



BestRun(run_id='1', objective=0.927741935483871,

hyperparameters={'num_train_epochs': 10, 'alpha': 0.12468168730193585,

'temperature': 7})

This value of α tells us that most of the training signal is coming from the
knowledge distillation term. Let’s update our training arguments with these
values and run the final training run:

for k,v in best_run.hyperparameters.items():

    setattr(student_training_args, k, v)

# Define a new repository to store our distilled model

distilled_ckpt = "distilbert-base-uncased-distilled-clinc"

student_training_args.output_dir = distilled_ckpt

# Create a new Trainer with optimal parameters

distil_trainer = DistillationTrainer(model_init=student_init,

    teacher_model=teacher_model, args=student_training_args,

    train_dataset=clinc_enc['train'], eval_dataset=clinc_enc['validation'],

    compute_metrics=compute_metrics, tokenizer=student_tokenizer)

distil_trainer.train();

Epoch Training Loss Validation Loss Accuracy

1 0.9031 0.574540 0.736452

2 0.4481 0.285621 0.874839

3 0.2528 0.179766 0.918710

4 0.1760 0.139828 0.929355

5 0.1416 0.121053 0.934839

6 0.1243 0.111640 0.934839

7 0.1133 0.106174 0.937742

8 0.1075 0.103526 0.938710

9 0.1039 0.101432 0.938065

10 0.1018 0.100493 0.939355

Remarkably, we’ve been able to train the student to match the accuracy of
the teacher, despite it having almost half the number of parameters! Let’s



push the model to the Hub for future use:

distil_trainer.push_to_hub("Training complete")

Benchmarking Our Distilled Model
Now that we have an accurate student, let’s create a pipeline and redo our
benchmark to see how we perform on the test set:

distilled_ckpt = "transformersbook/distilbert-base-uncased-distilled-clinc"

pipe = pipeline("text-classification", model=distilled_ckpt)

optim_type = "Distillation"

pb = PerformanceBenchmark(pipe, clinc["test"], optim_type=optim_type)

perf_metrics.update(pb.run_benchmark())

Model size (MB) - 255.89

Average latency (ms) - 25.96 +\- 1.63

Accuracy on test set - 0.868

To put these results in context, let’s also visualize them with our
plot_metrics() function:

plot_metrics(perf_metrics, optim_type)



As expected, the model size and latency remain essentially unchanged
compared to the DistilBERT benchmark, but the accuracy has improved and
even surpassed the performance of the teacher! One way to interpret this
surprising result is that the teacher has likely not been fine-tuned as
systematically as the student. This is great, but we can actually compress
our distilled model even further using a technique known as quantization.
That’s the topic of the next section.

Making Models Faster with Quantization
We’ve now seen that with knowledge distillation we can reduce the
computational and memory cost of running inference by transferring the
information from a teacher into a smaller student. Quantization takes a
different approach; instead of reducing the number of computations, it
makes them much more efficient by representing the weights and
activations with low-precision data types like 8-bit integer (INT8) instead of
the usual 32-bit floating point (FP32). Reducing the number of bits means



the resulting model requires less memory storage, and operations like
matrix multiplication can be performed much faster with integer arithmetic.
Remarkably, these performance gains can be realized with little to no loss in
accuracy!



A PRIMER ON FLOATING-POINT AND FIXED-POINT
NUMBERS

Most transformers today are pretrained and fine-tuned with floating-
point numbers (usually FP32 or a mix of FP16 and FP32), since they
provide the precision needed to accommodate the very different ranges
of weights, activations, and gradients. A floating-point number like
FP32 represents a sequence of 32 bits that are grouped in terms of a
sign, exponent, and significand. The sign determines whether the
number is positive or negative, while the significand corresponds to the
number of significant digits, which are scaled using the exponent in
some fixed base (usually 2 for binary or 10 for decimal).

For example, the number 137.035 can be expressed as a decimal
floating-point number through the following arithmetic:

137. 035 = (−1)0 × 1. 37035 × 102

where the 1.37035 is the significand and 2 is the exponent of the base
10. Through the exponent we can represent a wide range of real
numbers, and the decimal or binary point can be placed anywhere
relative to the significant digits (hence the name “floating-point”).

However, once a model is trained, we only need the forward pass to run
inference, so we can reduce the precision of the data types without
impacting the accuracy too much. For neural networks it is common to
use a fixed-point format for the low-precision data types, where real
numbers are represented as B-bit integers that are scaled by a common
factor for all variables of the same type. For example, 137.035 can be
represented as the integer 137,035 that is scaled by 1/1,000. We can
control the range and precision of a fixed-point number by adjusting the
scaling factor.

The basic idea behind quantization is that we can “discretize” the floating-
point values f in each tensor by mapping their range [fmax, fmin] into a
smaller one [qmax, qmin] of fixed-point numbers q, and linearly distributing



all values in between. Mathematically, this mapping is described by the
following equation:

f = (
fmax − fmin

qmax − qmin
) (q − Z) = S (q − Z)

where the scale factor S is a positive floating-point number and the constant
Z has the same type as q and is called the zero point because it corresponds
to the quantized value of the floating-point value f = 0. Note that the map
needs to be affine so that we get back floating-point numbers when we
dequantize the fixed-point ones.  An illustration of the conversion is
shown in Figure 8-6.

Figure 8-6. Quantizing floating-point numbers as unsigned 8-bit integers (courtesy of Manas Sahni)

Now, one of the main reasons why transformers (and deep neural networks
more generally) are prime candidates for quantization is that the weights
and activations tend to take values in relatively small ranges. This means we
don’t have to squeeze the whole range of possible FP32 numbers into, say,
the 28 = 256 numbers represented by INT8. To see this, let’s pick out one
of the attention weight matrices from our distilled model and plot the
frequency distribution of the values:

import matplotlib.pyplot as plt

state_dict = pipe.model.state_dict()

weights = 

state_dict["distilbert.transformer.layer.0.attention.out_lin.weight"]

plt.hist(weights.flatten().numpy(), bins=250, range=(-0.3,0.3), 

edgecolor="C0")

plt.show()
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As we can see, the values of the weights are distributed in the small range [
−0. 1, 0. 1] around zero. Now, suppose we want to quantize this tensor as a
signed 8-bit integer. In that case, the range of possible values for our
integers is [qmax, qmin] = [−128, 127]. The zero point coincides with the
zero of FP32 and the scale factor is calculated according to the previous
equation:

zero_point = 0

scale = (weights.max() - weights.min()) / (127 - (-128))

To obtain the quantized tensor, we just need to invert the mapping
q = f/S + Z, clamp the values, round them to the nearest integer, and
represent the result in the torch.int8 data type using the Tensor.char()
function:

(weights / scale + zero_point).clamp(-128, 127).round().char()

tensor([[ -5,  -8,   0,  ...,  -6,  -4,   8],

        [  8,   3,   1,  ...,  -4,   7,   0],

        [ -9,  -6,   5,  ...,   1,   5,  -3],



        ...,

        [  6,   0,  12,  ...,   0,   6,  -1],

        [  0,  -2, -12,  ...,  12,  -7, -13],

        [-13,  -1, -10,  ...,   8,   2,  -2]], dtype=torch.int8)

Great, we’ve just quantized our first tensor! In PyTorch we can simplify the
conversion by using the quantize_per_tensor() function together with a
quantized data type, torch.qint, that is optimized for integer arithmetic
operations:

from torch import quantize_per_tensor

dtype = torch.qint8

quantized_weights = quantize_per_tensor(weights, scale, zero_point, dtype)

quantized_weights.int_repr()

tensor([[ -5,  -8,   0,  ...,  -6,  -4,   8],

        [  8,   3,   1,  ...,  -4,   7,   0],

        [ -9,  -6,   5,  ...,   1,   5,  -3],

        ...,

        [  6,   0,  12,  ...,   0,   6,  -1],

        [  0,  -2, -12,  ...,  12,  -7, -13],

        [-13,  -1, -10,  ...,   8,   2,  -2]], dtype=torch.int8)

The plot in Figure 8-7 shows very clearly the discretization that’s induced
by only mapping some of the weight values precisely and rounding the rest.



Figure 8-7. Effect of quantization on a transformer’s weights

To round out our little analysis, let’s compare how long it takes to compute
the multiplication of two weight tensors with FP32 and INT8 values. For
the FP32 tensors, we can multiply them using PyTorch’s nifty @ operator:

%%timeit

weights @ weights

393 µs ± 3.84 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

For the quantized tensors we need the QFunctional wrapper class so that
we can perform operations with the special torch.qint8 data type:

from torch.nn.quantized import QFunctional

q_fn = QFunctional()

This class supports various elementary operations, like addition, and in our
case we can time the multiplication of our quantized tensors as follows:



%%timeit

q_fn.mul(quantized_weights, quantized_weights)

23.3 µs ± 298 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Compared to our FP32 computation, using the INT8 tensors is almost 100
times faster! Even larger gains can be obtained by using dedicated backends
for running quantized operators efficiently. As of this book’s writing,
PyTorch supports:

x86 CPUs with AVX2 support or higher

ARM CPUs (typically found in mobile/embedded devices)

Since INT8 numbers have four times fewer bits than FP32 numbers,
quantization also reduces the memory storage requirements by up to a factor
of four. In our simple example we can verify this by comparing the
underlying storage size of our weight tensor and its quantized cousin by
using the Tensor.storage() function and the getsizeof() function from
Python’s sys module:

import sys

sys.getsizeof(weights.storage()) / sys.getsizeof(quantized_weights.storage())

3.999633833760527

For a full-scale transformer, the actual compression rate depends on which
layers are quantized (as we’ll see in the next section it is only the linear
layers that typically get quantized).

So what’s the catch with quantization? Changing the precision for all
computations in our model introduces small disturbances at each point in
the model’s computational graph, which can compound and affect the
model’s performance. There are several ways to quantize a model, which all
have pros and cons. For deep neural networks, there are typically three main
approaches to quantization:



Dynamic quantization

When using dynamic quantization nothing is changed during training
and the adaptations are only performed during inference. Like with all
the quantization methods we will discuss, the weights of the model are
converted to INT8 ahead of inference time. In addition to the weights,
the model’s activations are also quantized. This approach is dynamic
because the quantization happens on the fly. This means that all the
matrix multiplications can be calculated with highly optimized INT8
functions. Of all the quantization methods discussed here, dynamic
quantization is the simplest one. However, with dynamic quantization
the activations are written and read to memory in floating-point format.
This conversion between integer and floating point can be a
performance bottleneck.

Static quantization

Instead of computing the quantization of the activations on the fly, we
can avoid the conversion to floating point by precomputing the
quantization scheme. Static quantization achieves this by observing the
activation patterns on a representative sample of the data ahead of
inference time. The ideal quantization scheme is calculated and then
saved. This enables us to skip the conversion between INT8 and FP32
values and speeds up the computations. However, it requires access to a
good data sample and introduces an additional step in the pipeline, since
we now need to train and determine the quantization scheme before we
can perform inference. There is also one aspect that static quantization
does not address: the discrepancy between the precision during training
and inference, which leads to a performance drop in the model’s metrics
(e.g., accuracy).

Quantization-aware training

The effect of quantization can be effectively simulated during training
by “fake” quantization of the FP32 values. Instead of using INT8 values
during training, the FP32 values are rounded to mimic the effect of



quantization. This is done during both the forward and the backward
pass and improves performance in terms of model metrics over static
and dynamic quantization.

The main bottleneck for running inference with transformers is the compute
and memory bandwidth associated with the enormous numbers of weights
in these models. For this reason, dynamic quantization is currently the best
approach for transformer-based models in NLP. In smaller computer vision
models the limiting factor is the memory bandwidth of the activations,
which is why static quantization is generally used (or quantization-aware
training in cases where the performance drops are too significant).

Implementing dynamic quantization in PyTorch is quite simple and can be
done with a single line of code:

from torch.quantization import quantize_dynamic

model_ckpt = "transformersbook/distilbert-base-uncased-distilled-clinc"

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

model = (AutoModelForSequenceClassification

         .from_pretrained(model_ckpt).to("cpu"))

model_quantized = quantize_dynamic(model, {nn.Linear}, dtype=torch.qint8)

Here we pass to quantize_dynamic() the full-precision model and specify
the set of PyTorch layer classes in that model that we want to quantize. The
dtype argument specifies the target precision and can be fp16 or qint8. A
good practice is to pick the lowest precision that you can tolerate with
respect to your evaluation metrics. In this chapter we’ll use INT8, which as
we’ll soon see has little impact on our model’s accuracy.

Benchmarking Our Quantized Model
With our model now quantized, let’s pass it through the benchmark and
visualize the results:



pipe = pipeline("text-classification", model=model_quantized,

                tokenizer=tokenizer)

optim_type = "Distillation + quantization"

pb = PerformanceBenchmark(pipe, clinc["test"], optim_type=optim_type)

perf_metrics.update(pb.run_benchmark())

Model size (MB) - 132.40

Average latency (ms) - 12.54 +\- 0.73

Accuracy on test set - 0.876

plot_metrics(perf_metrics, optim_type)

Nice, the quantized model is almost half the size of our distilled one and has
even gained a slight accuracy boost! Let’s see if we can push our
optimization to the limit with a powerful framework called the ONNX
Runtime.

Optimizing Inference with ONNX and the
ONNX Runtime
ONNX is an open standard that defines a common set of operators and a
common file format to represent deep learning models in a wide variety of
frameworks, including PyTorch and TensorFlow.  When a model is14
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exported to the ONNX format, these operators are used to construct a
computational graph (often called an intermediate representation) that
represents the flow of data through the neural network. An example of such
a graph for BERT-base is shown in Figure 8-8, where each node receives
some input, applies an operation like Add or Squeeze, and then feeds the
output to the next set of nodes.

Figure 8-8. A section of the ONNX graph for BERT-base, visualized in Netron

By exposing a graph with standardized operators and data types, ONNX
makes it easy to switch between frameworks. For example, a model trained
in PyTorch can be exported to ONNX format and then imported in
TensorFlow (and vice versa).

Where ONNX really shines is when it is coupled with a dedicated
accelerator like ONNX Runtime, or ORT for short.  ORT provides tools to
optimize the ONNX graph through techniques like operator fusion and
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constant folding,  and defines an interface to execution providers that
allow you to run the model on different types of hardware. This is a
powerful abstraction. Figure 8-9 shows the high-level architecture of the
ONNX and ORT ecosystem.

Figure 8-9. Architecture of the ONNX and ONNX Runtime ecosystem (courtesy of the ONNX Runtime
team)

To see ORT in action, the first thing we need to do is convert our distilled
model into the ONNX format. The  Transformers library has a built-in
function called con⁠vert_graph_to_onnx.convert() that simplifies the
process by taking the following steps:

1. Initialize the model as a Pipeline.

2. Run placeholder inputs through the pipeline so that ONNX can
record the computational graph.

3. Define dynamic axes to handle dynamic sequence lengths.

4. Save the graph with network parameters.
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To use this function, we first need to set some OpenMP environment
variables for ONNX:

import os

from psutil import cpu_count

os.environ["OMP_NUM_THREADS"] = f"{cpu_count()}"

os.environ["OMP_WAIT_POLICY"] = "ACTIVE"

OpenMP is an API designed for developing highly parallelized applications.
The OMP_NUM_THREADS environment variable sets the number of threads to
use for parallel computations in the ONNX Runtime, while
OMP_WAIT_POLICY=ACTIVE specifies that waiting threads should be active
(i.e., using CPU processor cycles).

Next, let’s convert our distilled model to the ONNX format. Here we need
to specify the argument pipeline_name="text-classification" since
convert() wraps the model in a  Transformers pipeline() function
during the conversion. In addition to the model_ckpt, we also pass the
tokenizer to initialize the pipeline:

from transformers.convert_graph_to_onnx import convert

model_ckpt = "transformersbook/distilbert-base-uncased-distilled-clinc"

onnx_model_path = Path("onnx/model.onnx")

convert(framework="pt", model=model_ckpt, tokenizer=tokenizer,

        output=onnx_model_path, opset=12, pipeline_name="text-classification")

ONNX uses operator sets to group together immutable operator
specifications, so opset=12 corresponds to a specific version of the ONNX
library.

Now that we have our model saved, we need to create an
InferenceSession instance to feed inputs to the model:

from onnxruntime import (GraphOptimizationLevel, InferenceSession,

                         SessionOptions)

def create_model_for_provider(model_path, provider="CPUExecutionProvider"):

https://openmp.org/


    options = SessionOptions()

    options.intra_op_num_threads = 1

    options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL

    session = InferenceSession(str(model_path), options, providers=[provider])

    session.disable_fallback()

    return session

onnx_model = create_model_for_provider(onnx_model_path)

Now when we call onnx_model.run(), we can get the class logits from the
ONNX model. Let’s test this out with an example from the test set. Since
the output from convert() tells us that ONNX expects just the input_ids
and attention_mask as inputs, we need to drop the label column from
our sample:

inputs = clinc_enc["test"][:1]

del inputs["labels"]

logits_onnx = onnx_model.run(None, inputs)[0]

logits_onnx.shape

(1, 151)

Once we have the logits, we can easily get the predicted label by taking the
argmax:

np.argmax(logits_onnx)
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which indeed agrees with the ground truth label:

clinc_enc["test"][0]["labels"]
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The ONNX model is not compatible with the text-classification
pipeline, so we’ll create our own class that mimics the core behavior:



from scipy.special import softmax

class OnnxPipeline:

    def __init__(self, model, tokenizer):

        self.model = model

        self.tokenizer = tokenizer

    def __call__(self, query):

        model_inputs = self.tokenizer(query, return_tensors="pt")

        inputs_onnx = {k: v.cpu().detach().numpy()

                       for k, v in model_inputs.items()}

        logits = self.model.run(None, inputs_onnx)[0][0, :]

        probs = softmax(logits)

        pred_idx = np.argmax(probs).item()

        return [{"label": intents.int2str(pred_idx), "score": 

probs[pred_idx]}]

We can then test this on our simple query to see if we recover the
car_rental intent:

pipe = OnnxPipeline(onnx_model, tokenizer)

pipe(query)

[{'label': 'car_rental', 'score': 0.7848334}]

Great, our pipeline works as expected. The next step is to create a
performance benchmark for ONNX models. Here we can build on the work
we did with the Per⁠formanceBenchmark class by simply overriding the
compute_size() method and leaving the compute_accuracy() and
time_pipeline() methods intact. The reason we need to override the
compute_size() method is that we cannot rely on the state_dict and
torch.save() to measure a model’s size, since onnx_model is technically
an ONNX InferenceSession object that doesn’t have access to the
attributes of PyTorch’s nn.Module. In any case, the resulting logic is simple
and can be implemented as follows:

class OnnxPerformanceBenchmark(PerformanceBenchmark):

    def __init__(self, *args, model_path, **kwargs):

        super().__init__(*args, **kwargs)

        self.model_path = model_path



    def compute_size(self):

        size_mb = Path(self.model_path).stat().st_size / (1024 * 1024)

        print(f"Model size (MB) - {size_mb:.2f}")

        return {"size_mb": size_mb}

With our new benchmark, let’s see how our distilled model performs when
converted to ONNX format:

optim_type = "Distillation + ORT"

pb = OnnxPerformanceBenchmark(pipe, clinc["test"], optim_type,

                              model_path="onnx/model.onnx")

perf_metrics.update(pb.run_benchmark())

Model size (MB) - 255.88

Average latency (ms) - 21.02 +\- 0.55

Accuracy on test set - 0.868

plot_metrics(perf_metrics, optim_type)

Remarkably, converting to the ONNX format and using the ONNX Runtime
has given our distilled model (i.e. the “Distillation” circle in the plot) a
boost in latency! Let’s see if we can squeeze out a bit more performance by
adding quantization to the mix.



Similar to PyTorch, ORT offers three ways to quantize a model: dynamic,
static, and quantization-aware training. As we did with PyTorch, we’ll apply
dynamic quantization to our distilled model. In ORT, the quantization is
applied through the quan⁠tize_dynamic() function, which requires a path
to the ONNX model to quantize, a target path to save the quantized model
to, and the data type to reduce the weights to:

from onnxruntime.quantization import quantize_dynamic, QuantType

model_input = "onnx/model.onnx"

model_output = "onnx/model.quant.onnx"

quantize_dynamic(model_input, model_output, weight_type=QuantType.QInt8)

Now that the model is quantized, let’s run it through our benchmark:

onnx_quantized_model = create_model_for_provider(model_output)

pipe = OnnxPipeline(onnx_quantized_model, tokenizer)

optim_type = "Distillation + ORT (quantized)"

pb = OnnxPerformanceBenchmark(pipe, clinc["test"], optim_type,

                              model_path=model_output)

perf_metrics.update(pb.run_benchmark())

Model size (MB) - 64.20

Average latency (ms) - 9.24 +\- 0.29

Accuracy on test set - 0.877

plot_metrics(perf_metrics, optim_type)



ORT quantization has reduced the model size and latency by around 30%
compared to the model obtained from PyTorch quantization (the distillation
+ quantization blob). One reason for this is that PyTorch only optimizes the
nn.Linear modules, while ONNX quantizes the embedding layer as well.
From the plot we can also see that applying ORT quantization to our
distilled model has provided an almost three-fold gain compared to our
BERT baseline!

This concludes our analysis of techniques to speed up transformers for
inference. We have seen that methods such as quantization reduce the model
size by reducing the precision of the representation. Another strategy to
reduce the size is to remove some weights altogether. This technique is
called weight pruning, and it’s the focus of the next section.

Making Models Sparser with Weight Pruning
So far we’ve seen that knowledge distillation and weight quantization are
quite effective at producing faster models for inference, but in some cases
you might also have strong constraints on the memory footprint of your
model. For example, if our product manager suddenly decides that our text
assistant needs to be deployed on a mobile device, then we’ll need our
intent classifier to take up as little storage space as possible. To round out



our survey of compression methods, let’s take a look at how we can shrink
the number of parameters in our model by identifying and removing the
least important weights in the network.

Sparsity in Deep Neural Networks
As shown in Figure 8-10, the main idea behind pruning is to gradually
remove weight connections (and potentially neurons) during training such
that the model becomes progressively sparser. The resulting pruned model
has a smaller number of nonzero parameters, which can then be stored in a
compact sparse matrix format. Pruning can be also combined with
quantization to obtain further compression.

Figure 8-10. Weights and neurons before and after pruning (courtesy of Song Han)

Weight Pruning Methods
Mathematically, the way most weight pruning methods work is to calculate
a matrix S of importance scores and then select the top k percent of weights
by importance:

Topk (S)ij = {
1 if Sij in top k%

0 otherwise



In effect, k acts as a new hyperparameter to control the amount of sparsity
in the model—that is, the proportion of weights that are zero-valued. Lower
values of k correspond to sparser matrices. From these scores we can then
define a mask matrix M that masks the weights Wij during the forward pass
with some input xi and effectively creates a sparse network of activations ai

:

ai = ∑
k

WikMikxk

As discussed in the tongue-in-cheek “Optimal Brain Surgeon” paper,  at
the heart of each pruning method are a set of questions that need to be
considered:

Which weights should be eliminated?

How should the remaining weights be adjusted for best
performance?

How can such network pruning be done in a computationally
efficient way?

The answers to these questions inform how the score matrix S is computed,
so let’s begin by looking at one of the earliest and most popular pruning
methods: magnitude pruning.

Magnitude pruning
As the name suggests, magnitude pruning calculates the scores according to
the magnitude of the weights S = (∣ Wij ∣)1≤j,j≤n

 and then derives the
masks from M = Topk (S). In the literature it is common to apply
magnitude pruning in an iterative fashion by first training the model to learn
which connections are important and pruning the weights of least
importance.  The sparse model is then retrained and the process repeated
until the desired sparsity is reached.

One drawback with this approach is that it is computationally demanding: at
every step of pruning we need to train the model to convergence. For this
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reason it is generally better to gradually increase the initial sparsity si

(which is usually zero) to a final value sf after some number of steps N :

st = sf + (si − sf)(1 −
t − t0

NΔt
)

3

for t ∈ {t0, t0 + Δt, ..., t0 + NΔt}

Here the idea is to update the binary masks M every Δt steps to allow
masked weights to reactivate during training and recover from any potential
loss in accuracy that is induced by the pruning process. As shown in
Figure 8-11, the cubic factor implies that the rate of weight pruning is
highest in the early phases (when the number of redundant weights is large)
and gradually tapers off.

Figure 8-11. The cubic sparsity scheduler used for pruning

One problem with magnitude pruning is that it is really designed for pure
supervised learning, where the importance of each weight is directly related
to the task at hand. By contrast, in transfer learning the importance of the
weights is primarily determined by the pretraining phase, so magnitude
pruning can remove connections that are important for the fine-tuning task.

19



Recently, an adaptive approach called movement pruning has been
proposed by Hugging Face researchers—let’s take a look.

Movement pruning
The basic idea behind movement pruning is to gradually remove weights
during fine-tuning such that the model becomes progressively sparser. The
key novelty is that both the weights and the scores are learned during fine-
tuning. So, instead of being derived directly from the weights (like with
magnitude pruning), the scores in movement pruning are arbitrary and are
learned through gradient descent like any other neural network parameter.
This implies that in the backward pass, we also track the gradient of the loss
L with respect to the scores Sij.

Once the scores are learned, it is then straightforward to generate the binary
mask using M = Topk (S).

The intuition behind movement pruning is that the weights that are
“moving” the most from zero are the most important ones to keep. In other
words, the positive weights increase during fine-tuning (and vice versa for
the negative weights), which is equivalent to saying that the scores increase
as the weights move away from zero. As shown in Figure 8-12, this
behavior differs from magnitude pruning, which selects as the most
important weights those that are furthest from zero.
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Figure 8-12. Comparison of weights removed during magnitude pruning (left) and movement pruning
(right)

These differences between the two pruning methods are also evident in the
distribution of the remaining weights. As shown in Figure 8-13, magnitude
pruning produces two clusters of weights, while movement pruning
produces a smoother distribution.

As of this book’s writing,  Transformers does not support pruning
methods out of the box. Fortunately, there is a nifty library called Neural
Networks Block Movement Pruning that implements many of these ideas,
and we recommend checking it out if memory constraints are a concern.

https://oreil.ly/aHEvD
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Figure 8-13. Distribution of remaining weights for magnitude pruning (MaP) and movement pruning
(MvP)

Conclusion
We’ve seen that optimizing transformers for deployment in production
environments involves compression along two dimensions: latency and
memory footprint. Starting from a fine-tuned model, we applied distillation,
quantization, and optimizations through ORT to significantly reduce both of
these. In particular, we found that quantization and conversion in ORT gave
the largest gains with minimal effort.

Although pruning is an effective strategy for reducing the storage size of
transformer models, current hardware is not optimized for sparse matrix
operations, which limits the usefulness of this technique. However, this is
an active area of research, and by the time this book hits the shelves many
of these limitations may have been resolved.

So where to from here? All of the techniques in this chapter can be adapted
to other tasks, such as question answering, named entity recognition, or
language modeling. If you find yourself struggling to meet the latency



requirements or your model is eating up all your compute budget, we
suggest giving one of them a try.

In the next chapter, we’ll switch gears away from performance optimization
and explore every data scientist’s worst nightmare: dealing with few to no
labels.
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Chapter 9. Dealing with Few to
No Labels

There is one question so deeply ingrained into every data scientist’s mind
that it’s usually the first thing they ask at the start of a new project: is there
any labeled data? More often than not, the answer is “no” or “a little bit,”
followed by an expectation from the client that your team’s fancy machine
learning models should still perform well. Since training models on very
small datasets does not typically yield good results, one obvious solution is
to annotate more data. However, this takes time and can be very expensive,
especially if each annotation requires domain expertise to validate.

Fortunately, there are several methods that are well suited for dealing with
few to no labels! You may already be familiar with some of them, such as
zero-shot or few-shot learning, as witnessed by GPT-3’s impressive ability
to perform a diverse range of tasks with just a few dozen examples.

In general, the best-performing method will depend on the task, the amount
of available data, and what fraction of that data is labeled. The decision tree
shown in Figure 9-1 can help guide us through the process of picking the
most appropriate method.



Figure 9-1. Several techniques that can be used to improve model performance in the absence of
large amounts of labeled data

Let’s walk through this decision tree step-by-step:

1. Do you have labeled data?

Even a handful of labeled samples can make a difference with regard to
which method works best. If you have no labeled data at all, you can
start with the zero-shot learning approach, which often sets a strong
baseline to work from.

2. How many labels?

If labeled data is available, the deciding factor is how much. If you have
a lot of training data available you can use the standard fine-tuning
approach discussed in Chapter 2.

3. Do you have unlabeled data?

If you only have a handful of labeled samples it can help immensely if
you have access to large amounts of unlabeled data. If you have access
to unlabeled data you can either use it to fine-tune the language model
on the domain before training a classifier, or you can use more



sophisticated methods such as unsupervised data augmentation (UDA)
or uncertainty-aware self-training (UST).  If you don’t have any
unlabeled data available, you don’t have the option of annotating more
data. In this case you can use few-shot learning or use the embeddings
from a pretrained language model to perform lookups with a nearest
neighbor search.

In this chapter we’ll work our way through this decision tree by tackling a
common problem facing many support teams that use issue trackers like
Jira or GitHub to assist their users: tagging issues with metadata based on
the issue’s description. These tags might define the issue type, the product
causing the problem, or which team is responsible for handling the reported
issue. Automating this process can have a big impact on productivity and
enables the support teams to focus on helping their users. As a running
example, we’ll use the GitHub issues associated with a popular open source
project:  Transformers! Let’s now take a look at what information is
contained in these issues, how to frame the task, and how to get the data.

NOTE
The methods presented in this chapter work well for text classification, but other
techniques such as data augmentation may be necessary for tackling more complex tasks
like named entity recognition, question answering, or summarization.

Building a GitHub Issues Tagger
If you navigate to the Issues tab of the  Transformers repository, you’ll
find issues like the one shown in Figure 9-2, which contains a title, a
description, and a set of tags or labels that characterize the issue. This
suggests a natural way to frame the supervised learning task: given a title
and description of an issue, predict one or more labels. Since each issue can
be assigned a variable number of labels, this means we are dealing with a
multilabel text classification problem. This is usually more challenging than
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the multiclass problem that we encountered in Chapter 2, where each tweet
was assigned to only one emotion.

Figure 9-2. A typical GitHub issue on the  Transformers repository

Now that we’ve seen what the GitHub issues look like, let’s see how we can
download them to create our dataset.

Getting the Data
To grab all the repository’s issues, we’ll use the GitHub REST API to poll
the Issues endpoint. This endpoint returns a list of JSON objects, with
each containing a large number of fields about the issue at hand, including
its state (open or closed), who opened the issue, as well as the title, body,
and labels we saw in Figure 9-2.

https://oreil.ly/q605k
https://oreil.ly/qXdWV


Since it takes a while to fetch all the issues, we’ve included a github-issues-
transformers.jsonl file in this book’s GitHub repository, along with a
fetch_issues() function that you can use to download them yourself.

NOTE
The GitHub REST API treats pull requests as issues, so our dataset contains a mix of
both. To keep things simple, we’ll develop our classifier for both types of issue,
although in practice you might consider building two separate classifiers to have more
fine-grained control over the model’s performance.

Now that we know how to grab the data, let’s take a look at cleaning it up.

Preparing the Data
Once we’ve downloaded all the issues, we can load them using Pandas:

import pandas as pd

dataset_url = "https://git.io/nlp-with-transformers"

df_issues = pd.read_json(dataset_url, lines=True)

print(f"DataFrame shape: {df_issues.shape}")

DataFrame shape: (9930, 26)

There are almost 10,000 issues in our dataset, and by looking at a single
row we can see that the information retrieved from the GitHub API contains
many fields such as URLs, IDs, dates, users, title, body, as well as labels:

cols = ["url", "id", "title", "user", "labels", "state", "created_at", "body"]

df_issues.loc[2, cols].to_frame()

https://oreil.ly/if2dm
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url https://api.github.com/repos/huggingface/trans...

id 849529761

title [DeepSpeed] ZeRO stage 3 integration: getting ...

user {'login’: ’stas00', ‘id’: 10676103, ‘node_id’:...

labels [{'id’: 2659267025, ‘node_id’: ‘MDU6TGFiZWwyNj...

state open

created_at 2021-04-02 23:40:42

body **[This is not yet alive, preparing for the re...

The labels column is the thing that we’re interested in, and each row
contains a list of JSON objects with metadata about each label:

[

   {

      "id":2659267025,

      "node_id":"MDU6TGFiZWwyNjU5MjY3MDI1",

      "url":"https://api.github.com/repos/huggingface...",

      "name":"DeepSpeed",

      "color":"4D34F7",

      "default":false,

      "description":""

   }

]

For our purposes, we’re only interested in the name field of each label
object, so let’s overwrite the labels column with just the label names:

df_issues["labels"] = (df_issues["labels"]

                       .apply(lambda x: [meta["name"] for meta in x]))

df_issues[["labels"]].head()



labels

0 []

1 []

2 [DeepSpeed]

3 []

4 []

Now each row in the labels column is a list of GitHub labels, so we can
compute the length of each row to find the number of labels per issue:

df_issues["labels"].apply(lambda x : len(x)).value_counts().to_frame().T

0 1 2 3

labels 6440 3057 305 100

This shows that the majority of issues have zero or one label, and much
fewer have more than one. Next let’s take a look at the top 10 most frequent
labels in the dataset. In Pandas we can do this by “exploding” the labels
column so that each label in the list becomes a row, and then simply
counting the occurrences of each label:

df_counts = df_issues["labels"].explode().value_counts()

print(f"Number of labels: {len(df_counts)}")

# Display the top-8 label categories

df_counts.to_frame().head(8).T

Number of labels: 65

wontfix model card
Core:
Tokenization New model

labels 2284 649 106 98



We can see that there are 65 unique labels in the dataset and that the classes
are very imbalanced, with wontfix and model card being the most
common labels. To make the classification problem more tractable, we’ll
focus on building a tagger for a subset of the labels. For example, some
labels, such as Good First Issue or Help Wanted, are potentially very
difficult to predict from the issue’s description, while others, such as model
card, could be classified with a simple rule that detects when a model card
is added on the Hugging Face Hub.

The following code filters the dataset for the subset of labels that we’ll
work with, along with a standardization of the names to make them easier
to read:

label_map = {"Core: Tokenization": "tokenization",

             "New model": "new model",

             "Core: Modeling": "model training",

             "Usage": "usage",

             "Core: Pipeline": "pipeline",

             "TensorFlow": "tensorflow or tf",

             "PyTorch": "pytorch",

             "Examples": "examples",

             "Documentation": "documentation"}

def filter_labels(x):

    return [label_map[label] for label in x if label in label_map]

df_issues["labels"] = df_issues["labels"].apply(filter_labels)

all_labels = list(label_map.values())

Now let’s look at the distribution of the new labels:

df_counts = df_issues["labels"].explode().value_counts()

df_counts.to_frame().T

tokenization new model model training usage

labels 106 98 64 46



Later in this chapter we’ll find it useful to treat the unlabeled issues as a
separate training split, so let’s create a new column that indicates whether
the issue is unlabeled or not:

df_issues["split"] = "unlabeled"

mask = df_issues["labels"].apply(lambda x: len(x)) > 0

df_issues.loc[mask, "split"] = "labeled"

df_issues["split"].value_counts().to_frame()

split

unlabeled 9489

labeled 441

Let’s now take a look at an example:

for column in ["title", "body", "labels"]:

    print(f"{column}: {df_issues[column].iloc[26][:500]}\n")

title: Add new CANINE model

body: #  New model addition

## Model description

Google recently proposed a new **C**haracter **A**rchitecture with **N**o

 tokenization **I**n **N**eural **E**ncoders architecture (CANINE). Not only

 the title is exciting:

Pipelined NLP systems have largely been superseded by end-to-end neural

 modeling, yet nearly all commonly-used models still require an explicit

 tokenization step. While recent tokenization approaches based on data-derived

 subword lexicons are less brittle than manually en

labels: ['new model']

In this example a new model architecture is proposed, so the new model tag
makes sense. We can also see that the title contains information that will
be useful for our classifier, so let’s concatenate it with the issue’s
description in the body field:



df_issues["text"] = (df_issues

                     .apply(lambda x: x["title"] + "\n\n" + x["body"], 

axis=1))

Before we look at the rest of the data, let’s check for any duplicates in the
data and drop them with the drop_duplicates() method:

len_before = len(df_issues)

df_issues = df_issues.drop_duplicates(subset="text")

print(f"Removed {(len_before-len(df_issues))/len_before:.2%} duplicates.")

Removed 1.88% duplicates.

We can see that there were a few duplicate issues in our dataset, but they
only represented a small percentage. As we’ve done in other chapters, it’s
also a good idea to have a quick look at the number of words in our texts to
see if we’ll lose much information when we truncate to each model’s
context size:

import numpy as np

import matplotlib.pyplot as plt

(df_issues["text"].str.split().apply(len)

 .hist(bins=np.linspace(0, 500, 50), grid=False, edgecolor="C0"))

plt.title("Words per issue")

plt.xlabel("Number of words")

plt.ylabel("Number of issues")

plt.show()



The distribution has the long tail characteristic of many text datasets. Most
of the texts are fairly short, but there are also issues with more than 500
words. It is common to have some very long issues, especially when error
messages and code snippets are posted along with them. Given that most
transformer models have a context size of 512 tokens or larger, truncating a
handful of long issues is not likely to affect the overall performance. Now
that we’ve explored and cleaned up our dataset, the final thing to do is
define our training and validation sets to benchmark our classifiers. Let’s
take a look at how to do this.

Creating Training Sets
Creating training and validation sets is a bit trickier for multlilabel problems
because there is no guaranteed balance for all labels. However, it can be
approximated, and we can use the Scikit-multilearn library, which is
specifically set up for this purpose. The first thing we need to do is
transform our set of labels, like pytorch and tokenization, into a format

http://scikit.ml/


that the model can process. Here we can use Scikit-learn’s Multi​La⁠bel​
Binarizer class, which takes a list of label names and creates a vector with
zeros for absent labels and ones for present labels. We can test this by fitting
Multi​La⁠bel​Binarizer on all_labels to learn the mapping from label
name to ID as follows:

from sklearn.preprocessing import MultiLabelBinarizer

mlb = MultiLabelBinarizer()

mlb.fit([all_labels])

mlb.transform([["tokenization", "new model"], ["pytorch"]])

array([[0, 0, 0, 1, 0, 0, 0, 1, 0],

       [0, 0, 0, 0, 0, 1, 0, 0, 0]])

In this simple example we can see the first row has two ones corresponding
to the tokenization and new model labels, while the second row has just
one hit with pytorch.

To create the splits we can use the iterative_train_test_split()
function from Scikit-multilearn, which creates the train/test splits iteratively
to achieve balanced labels. We wrap it in a function that we can apply to
DataFrames. Since the function expects a two-dimensional feature matrix,
we need to add a dimension to the possible indices before making the split:

from skmultilearn.model_selection import iterative_train_test_split

def balanced_split(df, test_size=0.5):

    ind = np.expand_dims(np.arange(len(df)), axis=1)

    labels = mlb.transform(df["labels"])

    ind_train, _, ind_test, _ = iterative_train_test_split(ind, labels,

                                                           test_size)

    return df.iloc[ind_train[:, 0]], df.iloc[ind_test[:,0]]

Armed with the balanced_split() function, we can split the data into
supervised and unsupervised datasets, and then create balanced training,
validation, and test sets for the supervised part:



from sklearn.model_selection import train_test_split

df_clean = df_issues[["text", "labels", 

"split"]].reset_index(drop=True).copy()

df_unsup = df_clean.loc[df_clean["split"] == "unlabeled", ["text", "labels"]]

df_sup = df_clean.loc[df_clean["split"] == "labeled", ["text", "labels"]]

np.random.seed(0)

df_train, df_tmp = balanced_split(df_sup, test_size=0.5)

df_valid, df_test = balanced_split(df_tmp, test_size=0.5)

Finally, let’s create a DatasetDict with all the splits so that we can easily
tokenize the dataset and integrate with the Trainer. Here we’ll use the nifty
from_pandas() method to load each split directly from the corresponding
Pandas DataFrame:

from datasets import Dataset, DatasetDict

ds = DatasetDict({

    "train": Dataset.from_pandas(df_train.reset_index(drop=True)),

    "valid": Dataset.from_pandas(df_valid.reset_index(drop=True)),

    "test": Dataset.from_pandas(df_test.reset_index(drop=True)),

    "unsup": Dataset.from_pandas(df_unsup.reset_index(drop=True))})

This looks good, so the last thing to do is to create some training slices so
that we can evaluate the performance of each classifier as a function of the
training set size.

Creating Training Slices
The dataset has the two characteristics that we’d like to investigate in this
chapter: sparse labeled data and multilabel classification. The training set
consists of only 220 examples to train with, which is certainly a challenge
even with transfer learning. To drill down into how each method in this
chapter performs with little labeled data, we’ll also create slices of the
training data with even fewer samples. We can then plot the number of
samples against the performance and investigate various regimes. We’ll
start with only eight samples per label and build up until the slice covers the
full training set using the iterative_train_test_split() function:



np.random.seed(0)

all_indices = np.expand_dims(list(range(len(ds["train"]))), axis=1)

indices_pool = all_indices

labels = mlb.transform(ds["train"]["labels"])

train_samples = [8, 16, 32, 64, 128]

train_slices, last_k = [], 0

for i, k in enumerate(train_samples):

    # Split off samples necessary to fill the gap to the next split size

    indices_pool, labels, new_slice, _ = iterative_train_test_split(

        indices_pool, labels, (k-last_k)/len(labels))

    last_k = k

    if i==0: train_slices.append(new_slice)

    else: train_slices.append(np.concatenate((train_slices[-1], new_slice)))

# Add full dataset as last slice

train_slices.append(all_indices), train_samples.append(len(ds["train"]))

train_slices = [np.squeeze(train_slice) for train_slice in train_slices]

Note that this iterative approach only approximately splits the samples to
the desired size, since it is not always possible to find a balanced split at a
given split size:

print("Target split sizes:")

print(train_samples)

print("Actual split sizes:")

print([len(x) for x in train_slices])

Target split sizes:

[8, 16, 32, 64, 128, 223]

Actual split sizes:

[10, 19, 36, 68, 134, 223]

We’ll use the specified split sizes as the labels for the following plots.
Great, we’ve finally prepared our dataset into training splits—let’s next take
a look at training a strong baseline model!

Implementing a Naive Bayesline
Whenever you start a new NLP project, it’s always a good idea to
implement a set of strong baselines. There are two main reasons for this:



1. A baseline based on regular expressions, handcrafted rules, or a
very simple model might already work really well to solve the
problem. In these cases, there is no reason to bring out big guns
like transformers, which are generally more complex to deploy and
maintain in production environments.

2. The baselines provide quick checks as you explore more complex
models. For example, suppose you train BERT-large and get an
accuracy of 80% on your validation set. You might write it off as a
hard dataset and call it a day. But what if you knew that a simple
classifier like logistic regression gets 95% accuracy? That would
raise your suspicions and prompt you to debug your model.

So let’s start our analysis by training a baseline model. For text
classification, a great baseline is a Naive Bayes classifier as it is very
simple, quick to train, and fairly robust to perturbations in the inputs. The
Scikit-learn implementation of Naive Bayes does not support multilabel
classification out of the box, but fortunately we can again use the Scikit-
multilearn library to cast the problem as a one-versus-rest classification task
where we train L binary classifiers for L labels. First, let’s use a multilabel
binarizer to create a new label_ids column in our training sets. We can
use the map() function to take care of all the processing in one go:

def prepare_labels(batch):

    batch["label_ids"] = mlb.transform(batch["labels"])

    return batch

ds = ds.map(prepare_labels, batched=True)

To measure the performance of our classifiers, we’ll use the micro and
macro F -scores, where the former tracks performance on the frequent
labels and the latter on all labels disregarding the frequency. Since we’ll be
evaluating each model across different-sized training splits, let’s create a
defaultdict with a list to store the scores per split:

from collections import defaultdict
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macro_scores, micro_scores = defaultdict(list), defaultdict(list)

Now we’re finally ready to train our baseline! Here’s the code to train the
model and evaluate our classifier across increasing training set sizes:

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import classification_report

from skmultilearn.problem_transform import BinaryRelevance

from sklearn.feature_extraction.text import CountVectorizer

for train_slice in train_slices:

    # Get training slice and test data

    ds_train_sample = ds["train"].select(train_slice)

    y_train = np.array(ds_train_sample["label_ids"])

    y_test = np.array(ds["test"]["label_ids"])

    # Use a simple count vectorizer to encode our texts as token counts

    count_vect = CountVectorizer()

    X_train_counts = count_vect.fit_transform(ds_train_sample["text"])

    X_test_counts = count_vect.transform(ds["test"]["text"])

    # Create and train our model!

    classifier = BinaryRelevance(classifier=MultinomialNB())

    classifier.fit(X_train_counts, y_train)

    # Generate predictions and evaluate

    y_pred_test = classifier.predict(X_test_counts)

    clf_report = classification_report(

        y_test, y_pred_test, target_names=mlb.classes_, zero_division=0,

        output_dict=True)

    # Store metrics

    macro_scores["Naive Bayes"].append(clf_report["macro avg"]["f1-score"])

    micro_scores["Naive Bayes"].append(clf_report["micro avg"]["f1-score"])

There’s quite a lot going on in this block of code, so let’s unpack it. First,
we get the training slice and encode the labels. Then we use a count
vectorizer to encode the texts by simply creating a vector of the size of the
vocabulary where each entry corresponds to the frequency with which a
token appeared in the text. This is called a bag-of-words approach, since all
information on the order of the words is lost. Then we train the classifier
and use the predictions on the test set to get the micro and macro F -scores
via the classification report.

With the following helper function we can plot the results of this
experiment:
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import matplotlib.pyplot as plt

def plot_metrics(micro_scores, macro_scores, sample_sizes, current_model):

    fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(10, 4), sharey=True)

    for run in micro_scores.keys():

        if run == current_model:

            ax0.plot(sample_sizes, micro_scores[run], label=run, linewidth=2)

            ax1.plot(sample_sizes, macro_scores[run], label=run, linewidth=2)

        else:

            ax0.plot(sample_sizes, micro_scores[run], label=run,

                     linestyle="dashed")

            ax1.plot(sample_sizes, macro_scores[run], label=run,

                     linestyle="dashed")

    ax0.set_title("Micro F1 scores")

    ax1.set_title("Macro F1 scores")

    ax0.set_ylabel("Test set F1 score")

    ax0.legend(loc="lower right")

    for ax in [ax0, ax1]:

        ax.set_xlabel("Number of training samples")

        ax.set_xscale("log")

        ax.set_xticks(sample_sizes)

        ax.set_xticklabels(sample_sizes)

        ax.minorticks_off()

    plt.tight_layout()

    plt.show()

plot_metrics(micro_scores, macro_scores, train_samples, "Naive Bayes")





Note that we plot the number of samples on a logarithmic scale. From the
figure we can see that the micro and macro F -scores both improve as we
increase the number of training samples. With so few samples to train on,
the results are also slightly noisy since each slice can have a different class
distribution. Nevertheless, what’s important here is the trend, so let’s now
see how these results fare against transformer-based approaches!

Working with No Labeled Data
The first technique that we’ll consider is zero-shot classification, which is
suitable in settings where you have no labeled data at all. This is
surprisingly common in industry, and might occur because there is no
historic data with labels or because acquiring the labels for the data is
difficult. We will cheat a bit in this section since we will still use the test
data to measure the performance, but we will not use any data to train the
model (otherwise the comparison to the following approaches would be
difficult).

The goal of zero-shot classification is to make use of a pretrained model
without any additional fine-tuning on your task-specific corpus. To get a
better idea of how this could work, recall that language models like BERT
are pretrained to predict masked tokens in text on thousands of books and
large Wikipedia dumps. To successfully predict a missing token, the model
needs to be aware of the topic in the context. We can try to trick the model
into classifying a document for us by providing a sentence like:

“This section was about the topic [MASK].”

The model should then give a reasonable suggestion for the document’s
topic, since this is a natural text to occur in the dataset.

Let’s illustrate this further with the following toy problem: suppose you
have two children, and one of them likes movies with cars while the other
enjoys movies with animals better. Unfortunately, they have already seen all
the ones you know, so you want to build a function that tells you what topic
a new movie is about. Naturally, you turn to transformers for this task. The
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first thing to try is to load BERT-base in the fill-mask pipeline, which
uses the masked language model to predict the content of the masked
tokens:

from transformers import pipeline

pipe = pipeline("fill-mask", model="bert-base-uncased")

Next, let’s construct a little movie description and add a prompt to it with a
masked word. The goal of the prompt is to guide the model to help us make
a classification. The fill-mask pipeline returns the most likely tokens to
fill in the masked spot:

movie_desc = "The main characters of the movie madacascar \

are a lion, a zebra, a giraffe, and a hippo. "

prompt = "The movie is about [MASK]."

output = pipe(movie_desc + prompt)

for element in output:

    print(f"Token {element['token_str']}:\t{element['score']:.3f}%")

Token animals:  0.103%

Token lions:    0.066%

Token birds:    0.025%

Token love:     0.015%

Token hunting:  0.013%

Clearly, the model predicts only tokens that are related to animals. We can
also turn this around, and instead of getting the most likely tokens we can
query the pipeline for the probability of a few given tokens. For this task we
might choose cars and animals, so we can pass them to the pipeline as
targets:

output = pipe(movie_desc + prompt, targets=["animals", "cars"])

for element in output:

    print(f"Token {element['token_str']}:\t{element['score']:.3f}%")

Token animals:  0.103%

Token cars:     0.001%



Unsurprisingly, the predicted probability for the token cars is much smaller
than for animals. Let’s see if this also works for a description that is closer
to cars:

movie_desc = "In the movie transformers aliens \

can morph into a wide range of vehicles."

output = pipe(movie_desc + prompt, targets=["animals", "cars"])

for element in output:

    print(f"Token {element['token_str']}:\t{element['score']:.3f}%")

Token cars:     0.139%

Token animals:  0.006%

It does! This is only a simple example, and if we want to make sure it works
well we should test it thoroughly, but it illustrates the key idea of many
approaches discussed in this chapter: find a way to adapt a pretrained model
for another task without training it. In this case we set up a prompt with a
mask in such a way that we can use a masked language model directly for
classification. Let’s see if we can do better by adapting a model that has
been fine-tuned on a task that’s closer to text classification: natural
language inference (NLI).

Using the masked language model for classification is a nice trick, but we
can do better still by using a model that has been trained on a task that is
closer to classification. There is a neat proxy task called text entailment that
fits the bill. In text entailment, the model needs to determine whether two
text passages are likely to follow or contradict each other. Models are
typically trained to detect entailments and contradictions with datasets such
as Multi-Genre NLI Corpus (MNLI) or Cross-Lingual NLI Corpus
(XNLI).

Each sample in these datasets is composed of three parts: a premise, a
hypothesis, and a label, which can be one of entailment, neutral, or
contradiction. The entailment label is assigned when the hypothesis
text is necessarily true under the premise. The contradiction label is used
when the hypothesis is necessarily false or inappropriate under the premise.
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If neither of these cases applies, then the neutral label is assigned. See
Table 9-1 for examples of each.

Table 9-1. The three classes in the MLNI dataset

Premise Hypothesis Label

His favourite color is blue. He is into heavy metal music. neutral

She finds the joke hilarious. She thinks the joke is not funny at all. contradiction

The house was recently built. The house is new. entailment

Now, it turns out that we can hijack a model trained on the MNLI dataset to
build a classifier without needing any labels at all! The key idea is to treat
the text we wish to classify as the premise, and then formulate the
hypothesis as:

“This example is about {label}.”

where we insert the class name for the label. The entailment score then tells
us how likely that premise is to be about that topic, and we can run this for
any number of classes sequentially. The downside of this approach is that
we need to execute a forward pass for each class, which makes it less
efficient than a standard classifier. Another slightly tricky aspect is that the
choice of label names can have a large impact on the accuracy, and
choosing labels with semantic meaning is generally the best approach. For
example, if the label is simply Class 1, the model has no hint what this
might mean and whether this constitutes a contradiction or entailment.

 Transformers has an MNLI model for zero-shot classification built in.
We can initialize it via a pipeline as follows:

from transformers import pipeline

pipe = pipeline("zero-shot-classification", device=0)



The setting device=0 makes sure that the model runs on the GPU instead of
the default CPU to speed up inference. To classify a text, we simply need to
pass it to the pipeline along with the label names. In addition, we can set
multi_label=True to ensure that all the scores are returned and not only
the maximum for single-label classification:

sample = ds["train"][0]

print(f"Labels: {sample['labels']}")

output = pipe(sample["text"], all_labels, multi_label=True)

print(output["sequence"][:400])

print("\nPredictions:")

for label, score in zip(output["labels"], output["scores"]):

    print(f"{label}, {score:.2f}")

Labels: ['new model']

Add new CANINE model

#  New model addition

## Model description

Google recently proposed a new **C**haracter **A**rchitecture with **N**o

tokenization **I**n **N**eural **E**ncoders architecture (CANINE). Not only 

the

title is exciting:

> Pipelined NLP systems have largely been superseded by end-to-end neural

modeling, yet nearly all commonly-used models still require an explicit tokeni

Predictions:

new model, 0.98

tensorflow or tf, 0.37

examples, 0.34

usage, 0.30

pytorch, 0.25

documentation, 0.25

model training, 0.24

tokenization, 0.17

pipeline, 0.16



NOTE
Since we are using a subword tokenizer, we can even pass code to the model! The
tokenization might not be very efficient because only a small fraction of the pretraining
dataset for the zero-shot pipeline consists of code snippets, but since code is also made
up of a lot of natural words this is not a big issue. Also, the code block might contain
important information, such as the framework (PyTorch or TensorFlow).

We can see that the model is very confident that this text is about a new
model, but it also produces relatively high scores for the other labels. An
important aspect for zero-shot classification is the domain we’re operating
in. The texts we are dealing with here are very technical and mostly about
coding, which makes them quite different from the original text distribution
in the MNLI dataset. Thus, it is not surprising that this is a challenging task
for the model; it might work much better for some domains than others,
depending on how close they are to the training data.

Let’s write a function that feeds a single example through the zero-shot
pipeline, and then scale it out to the whole validation set by running map():

def zero_shot_pipeline(example):

    output = pipe(example["text"], all_labels, multi_label=True)

    example["predicted_labels"] = output["labels"]

    example["scores"] = output["scores"]

    return example

ds_zero_shot = ds["valid"].map(zero_shot_pipeline)

Now that we have our scores, the next step is to determine which set of
labels should be assigned to each example. There are a few options we can
experiment with:

Define a threshold and select all labels above the threshold.

Pick the top k labels with the k highest scores.

To help us determine which method is best, let’s write a get_preds()
function that applies one of the approaches to retrieve the predictions:



def get_preds(example, threshold=None, topk=None):

    preds = []

    if threshold:

        for label, score in zip(example["predicted_labels"], 

example["scores"]):

            if score >= threshold:

                preds.append(label)

    elif topk:

        for i in range(topk):

            preds.append(example["predicted_labels"][i])

    else:

        raise ValueError("Set either `threshold` or `topk`.")

    return {"pred_label_ids": list(np.squeeze(mlb.transform([preds])))}

Next, let’s write a second function, get_clf_report(), that returns the
Scikit-learn classification report from a dataset with the predicted labels:

def get_clf_report(ds):

    y_true = np.array(ds["label_ids"])

    y_pred = np.array(ds["pred_label_ids"])

    return classification_report(

        y_true, y_pred, target_names=mlb.classes_, zero_division=0,

        output_dict=True)

Armed with these two functions, let’s start with the top-k method by
increasing k for several values and then plotting the micro and macro F -
scores across the validation set:

macros, micros = [], []

topks = [1, 2, 3, 4]

for topk in topks:

    ds_zero_shot = ds_zero_shot.map(get_preds, batched=False,

                                    fn_kwargs={'topk': topk})

    clf_report = get_clf_report(ds_zero_shot)

    micros.append(clf_report['micro avg']['f1-score'])

    macros.append(clf_report['macro avg']['f1-score'])

plt.plot(topks, micros, label='Micro F1')

plt.plot(topks, macros, label='Macro F1')

plt.xlabel("Top-k")

plt.ylabel("F1-score")

plt.legend(loc='best')

plt.show()

1



From the plot we can see that the best results are obtained by selecting the
label with the highest score per example (top 1). This is perhaps not so
surprising, given that most of the examples in our datasets have only one
label. Let’s now compare this against setting a threshold, so we can
potentially predict more than one label per example:

macros, micros = [], []

thresholds = np.linspace(0.01, 1, 100)

for threshold in thresholds:

    ds_zero_shot = ds_zero_shot.map(get_preds,

                                    fn_kwargs={"threshold": threshold})

    clf_report = get_clf_report(ds_zero_shot)

    micros.append(clf_report["micro avg"]["f1-score"])

    macros.append(clf_report["macro avg"]["f1-score"])

plt.plot(thresholds, micros, label="Micro F1")

plt.plot(thresholds, macros, label="Macro F1")

plt.xlabel("Threshold")

plt.ylabel("F1-score")

plt.legend(loc="best")

plt.show()



best_t, best_micro = thresholds[np.argmax(micros)], np.max(micros)

print(f'Best threshold (micro): {best_t} with F1-score {best_micro:.2f}.')

best_t, best_macro = thresholds[np.argmax(macros)], np.max(macros)

print(f'Best threshold (micro): {best_t} with F1-score {best_macro:.2f}.')

Best threshold (micro): 0.75 with F1-score 0.46.

Best threshold (micro): 0.72 with F1-score 0.42.

This approach fares somewhat worse than the top-1 results, but we can see
the precision/recall trade-off clearly in this graph. If we set the threshold too
low, then there are too many predictions, which leads to a low precision. If
we set the threshold too high, then we will make hardly any predictions,
which produces a low recall. From the plot we can see that a threshold
value of around 0.8 is the sweet spot between the two.

Since the top-1 method performs best, let’s use this to compare zero-shot
classification against Naive Bayes on the test set:

ds_zero_shot = ds['test'].map(zero_shot_pipeline)

ds_zero_shot = ds_zero_shot.map(get_preds, fn_kwargs={'topk': 1})



clf_report = get_clf_report(ds_zero_shot)

for train_slice in train_slices:

    macro_scores['Zero Shot'].append(clf_report['macro avg']['f1-score'])

    micro_scores['Zero Shot'].append(clf_report['micro avg']['f1-score'])

plot_metrics(micro_scores, macro_scores, train_samples, "Zero Shot")

Comparing the zero-shot pipeline to the baseline, we observe two things:



1. If we have less than 50 labeled samples, the zero-shot pipeline
handily outperforms the baseline.

2. Even above 50 samples, the performance of the zero-shot pipeline
is superior when considering both the micro and macro F -scores.
The results for the micro F -score tell us that the baseline performs
well on the frequent classes, while the zero-shot pipeline excels at
those since it does not require any examples to learn from.

NOTE
You might notice a slight paradox in this section: although we talk about dealing with no
labels, we still use the validation and test sets. We use them to showcase different
techniques and to make the results comparable between them. Even in a real use case, it
makes sense to gather a handful of labeled examples to run some quick evaluations. The
important point is that we did not adapt the parameters of the model with the data;
instead, we just adapted some hyperparameters.

If you find it difficult to get good results on your own dataset, here are a
few things you can do to improve the zero-shot pipeline:

The way the pipeline works makes it very sensitive to the names of
the labels. If the names don’t make much sense or are not easily
connected to the texts, the pipeline will likely perform poorly.
Either try using different names or use several names in parallel
and aggregate them in an extra step.

Another thing you can improve is the form of the hypothesis. By
default it is hypothesis="This is example is about {}", but
you can pass any other text to the pipeline. Depending on the use
case, this might improve the performance.

Let’s now turn to the regime where we have a few labeled examples we can
use to train a model.
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Working with a Few Labels
In most NLP projects, you’ll have access to at least a few labeled examples.
The labels might come directly from a client or cross-company team, or you
might decide to just sit down and annotate a few examples yourself. Even
for the previous approach, we needed a few labeled examples to evaluate
how well the zero-shot approach worked. In this section, we’ll have a look
at how we can best leverage the few, precious labeled examples that we
have. Let’s start by looking at a technique known as data augmentation that
can help us multiply the little labeled data that we have.

Data Augmentation
One simple but effective way to boost the performance of text classifiers on
small datasets is to apply data augmentation techniques to generate new
training examples from the existing ones. This is a common strategy in
computer vision, where images are randomly perturbed without changing
the meaning of the data (e.g., a slightly rotated cat is still a cat). For text,
data augmentation is somewhat trickier because perturbing the words or
characters can completely change the meaning. For example, the two
questions “Are elephants heavier than mice?” and “Are mice heavier than
elephants?” differ by a single word swap, but have opposite answers.
However, if the text consists of more than a few sentences (like our GitHub
issues do), then the noise introduced by these types of transformations will
generally not affect the label. In practice, there are two types of data
augmentation techniques that are commonly used:

Back translation

Take a text in the source language, translate it into one or more target
languages using machine translation, and then translate it back to the
source language. Back translation tends to works best for high-resource
languages or corpora that don’t contain too many domain-specific
words.

Token perturbations



Given a text from the training set, randomly choose and perform simple
transformations like random synonym replacement, word insertion,
swap, or deletion.⁠

Examples of these transformations are shown in Table 9-2. For a detailed
list of other data augmentation techniques for NLP, we recommend reading
Amit Chaudhary’s blog post “A Visual Survey of Data Augmentation in
NLP”.

Table 9-2. Different types of data augmentation techniques for text

Augmentation Sentence

None Even if you defeat me Megatron, others will rise to defeat your tyranny

Synonym replace Even if you kill me Megatron, others will prove to defeat your tyranny

Random insert Even if you defeat me Megatron, others humanity will rise to defeat your
tyranny

Random swap You even if defeat me Megatron, others will rise defeat to tyranny your

Random delete Even if you me Megatron, others to defeat tyranny

Back translate
(German)

Even if you defeat me, others will rise up to defeat your tyranny

You can implement back translation using machine translation models like
M2M100, while libraries like NlpAug and TextAttack provide various
recipes for token perturbations. In this section, we’ll focus on using
synonym replacement as it’s simple to implement and gets across the main
idea behind data augmentation.

We’ll use the ContextualWordEmbsAug augmenter from NlpAug to
leverage the contextual word embeddings of DistilBERT for our synonym
replacements. Let’s start with a simple example:
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from transformers import set_seed

import nlpaug.augmenter.word as naw

set_seed(3)

aug = naw.ContextualWordEmbsAug(model_path="distilbert-base-uncased",

                                device="cpu", action="substitute")

text = "Transformers are the most popular toys"

print(f"Original text: {text}")

print(f"Augmented text: {aug.augment(text)}")

Original text: Transformers are the most popular toys

Augmented text: transformers'the most popular toys

Here we can see how the word “are” has been replaced with an apostrophe
to generate a new synthetic training example. We can wrap this
augmentation in a simple function as follows:

def augment_text(batch, transformations_per_example=1):

    text_aug, label_ids = [], []

    for text, labels in zip(batch["text"], batch["label_ids"]):

        text_aug += [text]

        label_ids += [labels]

        for _ in range(transformations_per_example):

            text_aug += [aug.augment(text)]

            label_ids += [labels]

    return {"text": text_aug, "label_ids": label_ids}

Now when we pass this function to the map() method, we can generate any
number of new examples with the transformations_per_example
argument. We can use this function in our code to train the Naive Bayes
classifier by simply adding one line after we select the slice:

ds_train_sample = ds_train_sample.map(augment_text, batched=True,

    remove_columns=ds_train_sample.column_names).shuffle(seed=42)

Including this and rerunning the analysis produces the plot shown here:

plot_metrics(micro_scores, macro_scores, train_samples, "Naive Bayes + Aug")





From the figure, we can see that a small amount of data augmentation
improves the F -score of the Naive Bayes classifier by around 5 points, and
it overtakes the zero-shot pipeline for the macro scores once we have
around 170 training samples. Let’s now take a look at a method based on
using the embeddings of large language models.

Using Embeddings as a Lookup Table
Large language models such as GPT-3 have been shown to be excellent at
solving tasks with limited data. The reason is that these models learn useful
representations of text that encode information across many dimensions,
such as sentiment, topic, text structure, and more. For this reason, the
embeddings of large language models can be used to develop a semantic
search engine, find similar documents or comments, or even classify text.

In this section we’ll create a text classifier that’s modeled after the OpenAI
API classification endpoint. The idea follows a three-step process:

1. Use the language model to embed all labeled texts.

2. Perform a nearest neighbor search over the stored embeddings.

3. Aggregate the labels of the nearest neighbors to get a prediction.

The process is illustrated in Figure 9-3, which shows how labeled data is
embedded with a model and stored with the labels. When a new text needs
to be classified it is embedded as well, and the label is given based on the
labels of the nearest neighbors. It is important to calibrate the number of
neighbors to be searched for, as too few might be noisy and too many might
mix in neighboring groups.
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Figure 9-3. An illustration of nearest neighbor embedding lookup

The beauty of this approach is that no model fine-tuning is necessary to
leverage the few available labeled data points. Instead, the main decision to
make this approach work is to select an appropriate model that is ideally
pretrained on a similar domain to your dataset.

Since GPT-3 is only available through the OpenAI API, we’ll use GPT-2 to
test the technique. Specifically, we’ll use a variant of GPT-2 that was
trained on Python code, which will hopefully capture some of the context
contained in our GitHub issues.



Let’s write a helper function that takes a list of texts and uses the model to
create a single-vector representation for each text. One problem we have to
deal with is that transformer models like GPT-2 will actually return one
embedding vector per token. For example, given the sentence “I took my
dog for a walk”, we can expect several embedding vectors, one for each
token. But what we really want is a single embedding vector for the whole
sentence (or GitHub issue in our application). To deal with this, we can use
a technique called pooling. One of the simplest pooling methods is to
average the token embeddings, which is called mean pooling. With mean
pooling, the only thing we need to watch out for is that we don’t include
padding tokens in the average, so we can use the attention mask to handle
that.

To see how this works, let’s load a GPT-2 tokenizer and model, define the
mean pooling operation, and wrap the whole process in a simple
embed_text() function:

import torch

from transformers import AutoTokenizer, AutoModel

model_ckpt = "miguelvictor/python-gpt2-large"

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

model = AutoModel.from_pretrained(model_ckpt)

def mean_pooling(model_output, attention_mask):

    # Extract the token embeddings

    token_embeddings = model_output[0]

    # Compute the attention mask

    input_mask_expanded = (attention_mask

                           .unsqueeze(-1)

                           .expand(token_embeddings.size())

                           .float())

    # Sum the embeddings, but ignore masked tokens

    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)

    sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)

    # Return the average as a single vector

    return sum_embeddings / sum_mask

def embed_text(examples):

    inputs = tokenizer(examples["text"], padding=True, truncation=True,

                       max_length=128, return_tensors="pt")

    with torch.no_grad():



        model_output = model(**inputs)

    pooled_embeds = mean_pooling(model_output, inputs["attention_mask"])

    return {"embedding": pooled_embeds.cpu().numpy()}

Now we can get the embeddings for each split. Note that GPT-style models
don’t have a padding token, and therefore we need to add one before we can
get the embeddings in a batched fashion as implemented in the preceding
code. We’ll just recycle the end-of-string token for this purpose:

tokenizer.pad_token = tokenizer.eos_token

embs_train = ds["train"].map(embed_text, batched=True, batch_size=16)

embs_valid = ds["valid"].map(embed_text, batched=True, batch_size=16)

embs_test = ds["test"].map(embed_text, batched=True, batch_size=16)

Now that we have all the embeddings, we need to set up a system to search
them. We could write a function that calculates, say, the cosine similarity
between a new text embedding that we’ll query and the existing
embeddings in the training set. Alternatively, we can use a built-in structure
of  Datasets called a FAISS index.  We already encountered FAISS in
Chapter 7. You can think of this as a search engine for embeddings, and
we’ll have a closer look at how it works in a minute. We can use an existing
field of the dataset to create a FAISS index with add_faiss_index(), or
we can load new embeddings into the dataset with
add_faiss_index_from_external_arrays(). Let’s use the former
function to add our training embeddings to the dataset as follows:

embs_train.add_faiss_index("embedding")

This created a new FAISS index called embedding. We can now perform a
nearest neighbor lookup by calling the function get_nearest_examples().
It returns the closest neighbors as well as the matching score for each
neighbor. We need to specify the query embedding as well as the number of
nearest neighbors to retrieve. Let’s give it a spin and have a look at the
documents that are closest to an example:

i, k = 0, 3 # Select the first query and 3 nearest neighbors

rn, nl = "\r\n\r\n", "\n" # Used to remove newlines in text for compact 
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display

query =  np.array(embs_valid[i]["embedding"], dtype=np.float32)

scores, samples = embs_train.get_nearest_examples("embedding", query, k=k)

print(f"QUERY LABELS: {embs_valid[i]['labels']}")

print(f"QUERY TEXT:\n{embs_valid[i]['text'][:200].replace(rn, nl)} [...]\n")

print("="*50)

print(f"Retrieved documents:")

for score, label, text in zip(scores, samples["labels"], samples["text"]):

    print("="*50)

    print(f"TEXT:\n{text[:200].replace(rn, nl)} [...]")

    print(f"SCORE: {score:.2f}")

    print(f"LABELS: {label}")

QUERY LABELS: ['new model']

QUERY TEXT:

Implementing efficient self attention in T5

#  New model addition

My teammates and I (including @ice-americano) would like to use efficient self

attention methods such as Linformer, Performer and [...]

==================================================

Retrieved documents:

==================================================

TEXT:

Add Linformer model

#  New model addition

## Model description

### Linformer: Self-Attention with Linear Complexity

Paper published June 9th on ArXiv: https://arxiv.org/abs/2006.04768

La [...]

SCORE: 54.92

LABELS: ['new model']

==================================================

TEXT:

Add FAVOR+ / Performer attention

#  FAVOR+ / Performer attention addition

Are there any plans to add this new attention approximation block to

Transformers library?

## Model description

The n [...]

SCORE: 57.90

LABELS: ['new model']



==================================================

TEXT:

Implement DeLighT: Very Deep and Light-weight Transformers

#  New model addition

## Model description

DeLight, that delivers similar or better performance than transformer-based

models with sign [...]

SCORE: 60.12

LABELS: ['new model']

Nice! This is exactly what we hoped for: the three retrieved documents that
we got via embedding lookup all have the same labels and we can already
see from the titles that they are all very similar. The query as well as the
retrieved documents revolve around adding new and efficient transformer
models. The question remains, however, what is the best value for k?
Similarly, how we should then aggregate the labels of the retrieved
documents? Should we, for example, retrieve three documents and assign
all labels that occurred at least twice? Or should we go for 20 and use all
labels that appeared at least 5 times? Let’s investigate this systematically:
we’ll try several values for k and then vary the threshold m < k for label
assignment with a helper function. We’ll record the macro and micro
performance for each setting so we can decide later which run performed
best. Instead of looping over each sample in the validation set we can make
use of the function get_nearest_examples_batch(), which accepts a
batch of queries:

def get_sample_preds(sample, m):

    return (np.sum(sample["label_ids"], axis=0) >= m).astype(int)

def find_best_k_m(ds_train, valid_queries, valid_labels, max_k=17):

    max_k = min(len(ds_train), max_k)

    perf_micro = np.zeros((max_k, max_k))

    perf_macro = np.zeros((max_k, max_k))

    for k in range(1, max_k):

        for m in range(1, k + 1):

            _, samples = ds_train.get_nearest_examples_batch("embedding",

                                                             valid_queries, 

k=k)

            y_pred = np.array([get_sample_preds(s, m) for s in samples])

            clf_report = classification_report(valid_labels, y_pred,



                target_names=mlb.classes_, zero_division=0, output_dict=True)

            perf_micro[k, m] = clf_report["micro avg"]["f1-score"]

            perf_macro[k, m] = clf_report["macro avg"]["f1-score"]

    return perf_micro, perf_macro

Let’s check what the best values would be with all the training samples and
visualize the scores for all k and m configurations:

valid_labels = np.array(embs_valid["label_ids"])

valid_queries = np.array(embs_valid["embedding"], dtype=np.float32)

perf_micro, perf_macro = find_best_k_m(embs_train, valid_queries, 

valid_labels)

fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(10, 3.5), sharey=True)

ax0.imshow(perf_micro)

ax1.imshow(perf_macro)

ax0.set_title("micro scores")

ax0.set_ylabel("k")

ax1.set_title("macro scores")

for ax in [ax0, ax1]:

    ax.set_xlim([0.5, 17 - 0.5])

    ax.set_ylim([17 - 0.5, 0.5])

    ax.set_xlabel("m")

plt.show()



From the plots we can see that there is a pattern: choosing m too large or
small for a given k yields suboptimal results. The best performance is
achieved when choosing a ratio of approximately m/k = 1/3. Let’s see
which k and m give the best result overall:

k, m = np.unravel_index(perf_micro.argmax(), perf_micro.shape)

print(f"Best k: {k}, best m: {m}")

Best k: 15, best m: 5

The perfomance is best when we choose k = 15 and m = 5, or in other
words when we retrieve the 15 nearest neighbors and then assign the labels
that occurred at least 5 times. Now that we have a good method for finding
the best values for the embedding lookup, we can play the same game as
with the Naive Bayes classifier where we go through the slices of the
training set and evaluate the performance. Before we can slice the dataset,
we need to remove the index since we cannot slice a FAISS index like the
dataset. The rest of the loops stay exactly the same, with the addition of
using the validation set to get the best k and m values:

embs_train.drop_index("embedding")

test_labels = np.array(embs_test["label_ids"])

test_queries = np.array(embs_test["embedding"], dtype=np.float32)

for train_slice in train_slices:

    # Create a Faiss index from training slice

    embs_train_tmp = embs_train.select(train_slice)

    embs_train_tmp.add_faiss_index("embedding")

    # Get best k, m values with validation set

    perf_micro, _ = find_best_k_m(embs_train_tmp, valid_queries, valid_labels)

    k, m = np.unravel_index(perf_micro.argmax(), perf_micro.shape)

    # Get predictions on test set

    _, samples = embs_train_tmp.get_nearest_examples_batch("embedding",

                                                           test_queries,

                                                           k=int(k))

    y_pred = np.array([get_sample_preds(s, m) for s in samples])

    # Evaluate predictions

    clf_report = classification_report(test_labels, y_pred,

        target_names=mlb.classes_, zero_division=0, output_dict=True,)

    macro_scores["Embedding"].append(clf_report["macro avg"]["f1-score"])

    micro_scores["Embedding"].append(clf_report["micro avg"]["f1-score"])



plot_metrics(micro_scores, macro_scores, train_samples, "Embedding")



The embedding lookup is competitive on the micro scores with the previous
approaches while just having two “learnable” parameters, k and m, but
performs slightly worse on the macro scores.

Take these results with a grain of salt; which method works best strongly
depends on the domain. The zero-shot pipeline’s training data is quite
different from the GitHub issues dataset we’re using it on, which contains a
lot of code that the model likely has not encountered much before. For a
more common task such as sentiment analysis of reviews, the pipeline
might work much better. Similarly, the embeddings’ quality depends on the
model and the data it was trained on. We tried half a dozen models, such as
sentence-transformers/stsb-roberta-large, which was trained to
give high-quality embeddings of sentences, and microsoft/codebert-
base and dbernsohn/roberta-python, which were trained on code and
documentation. For this specific use case, GPT-2 trained on Python code
worked best.

Since you don’t actually need to change anything in your code besides
replacing the model checkpoint name to test another model, you can
quickly try out a few models once you have the evaluation pipeline set up.

Let’s now compare this simple embedding trick against simply fine-tuning a
transformer on the limited data we have.



EFFICIENT SIMILARITY SEARCH WITH FAISS
We first encountered FAISS in Chapter 7, where we used it to retrieve
documents via the DPR embeddings. Here we’ll explain briefly how the
FAISS library works and why it is a powerful tool in the ML toolbox.

We are used to performing fast text queries on huge datasets such as
Wikipedia or the web with search engines such as Google. When we
move from text to embeddings, we would like to maintain that
performance; however, the methods used to speed up text queries don’t
apply to embeddings.

To speed up text search we usually create an inverted index that maps
terms to documents. An inverted index works like an index at the end of
a book: each word is mapped to the pages (or in our case, document) it
occurs in. When we later run a query we can quickly look up in which
documents the search terms appear. This works well with discrete
objects such as words, but does not work with continuous objects such
as vectors. Each document likely has a unique vector, and therefore the
index will never match with a new vector. Instead of looking for exact
matches, we need to look for close or similar matches.

When we want to find the most similar vectors in a database to a query
vector, in theory we need to compare the query vector to each of the n
vectors in the database. For a small database such as we have in this
chapter this is no problem, but if we scaled this up to thousands or even
million of entries we would need to wait a while for each query to be
processed.

FAISS addresses this issue with several tricks. The main idea is to
partition the dataset. If we only need to compare the query vector to a
subset of the database, we can speed up the process significantly. But if
we just randomly partition the dataset, how can we decide which
partition to search, and what guarantees do we get for finding the most
similar entries? Evidently, there must be a better solution: apply k-
means clustering to the dataset! This clusters the embeddings into



groups by similarity. Furthermore, for each group we get a centroid
vector, which is the average of all members of the group (Figure 9-4).

Figure 9-4. The structure of a FAISS index: the gray points represent data points added to the
index, the bold black points are the cluster centers found via k-means clustering, and the

colored areas represent the regions belonging to a cluster center

Given such a grouping, searching among n vectors is much easier: we
first search across the k centroids for the one that is most similar to our
query (k comparisons), and then we search within the group ( k

n

elements to compare). This reduces the number of comparisons from n
to k + n

k
. So the question is, what is the best option for k? If it is too

small, each group still contains many samples we need to compare
against in the second step, and if k is too large there are many centroids
we need to search through. Looking for the minimum of the function
f (k) = k + n

k
 with respect to k, we find k = √n. In fact, we can

visualize this with the following graphic with n = 220.



In the plot you can see the number of comparisons as a function of the
number of clusters. We are looking for the minimum of this function,
where we need to do the least comparisons. We can see that the
minimum is exactly where we expected to see it, at
√220 = 210 = 1, 024.

In addition to speeding up queries with partitioning, FAISS also allows
you to utilize GPUs for a further speedup. If memory becomes a
concern there are also several options to compress the vectors with
advanced quantization schemes. If you want to use FAISS for your
project, the repository has a simple guide for you to choose the right
methods for your use case.

One of the largest projects to use FAISS was the creation of the
CCMatrix corpus by Facebook. The authors used multilingual
embeddings to find parallel sentences in different languages. This
enormous corpus was subsequently used to train M2M100, a large
machine translation model that is able to directly translate between any
of 100 languages.
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Fine-Tuning a Vanilla Transformer
If we have access to labeled data, we can also try to do the obvious thing:
simply fine-tune a pretrained transformer model. In this section, we’ll use
the standard BERT checkpoint as a starting point. Later, we’ll see the effect
that fine-tuning the language model has on performance.

TIP
For many applications, starting with a pretrained BERT-like model is a good idea.
However, if the domain of your corpus differs significantly from the pretraining corpus
(which is usually Wikipedia), you should explore the many models that are available on
the Hugging Face Hub. Chances are someone has already pretrained a model on your
domain!

Let’s start by loading the pretrained tokenizer, tokenizing our dataset, and
getting rid of the columns we don’t need for training and evaluation:

import torch

from transformers import (AutoTokenizer, AutoConfig,

                          AutoModelForSequenceClassification)

model_ckpt = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

def tokenize(batch):

    return tokenizer(batch["text"], truncation=True, max_length=128)

ds_enc = ds.map(tokenize, batched=True)

ds_enc = ds_enc.remove_columns(['labels', 'text'])

The multilabel loss function expects the labels to be of type float, since it
also allows for class probabilities instead of discrete labels. Therefore, we
need to change the type of the column label_ids. Since changing the
format of the column element-wise does not play well with Arrow’s typed
format, we’ll do a little workaround. First, we create a new column with the
labels. The format of that column is inferred from the first element. Then
we delete the original column and rename the new one to take the place of
the original one:



ds_enc.set_format("torch")

ds_enc = ds_enc.map(lambda x: {"label_ids_f": x["label_ids"].to(torch.float)},

                    remove_columns=["label_ids"])

ds_enc = ds_enc.rename_column("label_ids_f", "label_ids")

Since we are likely to quickly overfit the training data due to its limited
size, we set load_best_model_at_end=True and choose the best model
based on the micro F -⁠score:

from transformers import Trainer, TrainingArguments

training_args_fine_tune = TrainingArguments(

    output_dir="./results", num_train_epochs=20, learning_rate=3e-5,

    lr_scheduler_type='constant', per_device_train_batch_size=4,

    per_device_eval_batch_size=32, weight_decay=0.0,

    evaluation_strategy="epoch", 

save_strategy="epoch",logging_strategy="epoch",

    load_best_model_at_end=True, metric_for_best_model='micro f1',

    save_total_limit=1, log_level='error')

We need the F -score to choose the best model, so we need to make sure it
is calculated during the evaluation. Because the model returns the logits, we
first need to normalize the predictions with a sigmoid function and can then
binarize them with a simple threshold. Then we return the scores we are
interested in from the classification report:

from scipy.special import expit as sigmoid

def compute_metrics(pred):

    y_true = pred.label_ids

    y_pred = sigmoid(pred.predictions)

    y_pred = (y_pred>0.5).astype(float)

    clf_dict = classification_report(y_true, y_pred, target_names=all_labels,

                                     zero_division=0, output_dict=True)

    return {"micro f1": clf_dict["micro avg"]["f1-score"],

            "macro f1": clf_dict["macro avg"]["f1-score"]}

Now we are ready to rumble! For each training set slice we train a classifier
from scratch, load the best model at the end of the training loop, and store
the results on the test set:
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config = AutoConfig.from_pretrained(model_ckpt)

config.num_labels = len(all_labels)

config.problem_type = "multi_label_classification"

for train_slice in train_slices:

    model = AutoModelForSequenceClassification.from_pretrained(model_ckpt,

                                                               config=config)

    trainer = Trainer(

        model=model, tokenizer=tokenizer,

        args=training_args_fine_tune,

        compute_metrics=compute_metrics,

        train_dataset=ds_enc["train"].select(train_slice),

        eval_dataset=ds_enc["valid"],)

    trainer.train()

    pred = trainer.predict(ds_enc["test"])

    metrics = compute_metrics(pred)

    macro_scores["Fine-tune (vanilla)"].append(metrics["macro f1"])

    micro_scores["Fine-tune (vanilla)"].append(metrics["micro f1"])

plot_metrics(micro_scores, macro_scores, train_samples, "Fine-tune (vanilla)")





First of all we see that simply fine-tuning a vanilla BERT model on the
dataset leads to competitive results when we have access to around 64
examples. We also see that before this the behavior is a bit erratic, which is
again due to training a model on a small sample where some labels can be
unfavorably unbalanced. Before we make use of the unlabeled part of our
dataset, let’s take a quick look at another promising approach for using
language models in the few-shot domain.

In-Context and Few-Shot Learning with Prompts
We saw earlier in this chapter that we can use a language model like BERT
or GPT-2 and adapt it to a supervised task by using prompts and parsing the
model’s token predictions. This is different from the classic approach of
adding a task-specific head and tuning the model parameters for the task.
On the plus side, this approach does not require any training data, but on the
negative side it seems we can’t leverage labeled data if we have access to it.
There is a middle ground that we can sometimes take advantage of called
in-context or few-shot learning.

To illustrate the concept, consider an English to French translation task. In
the zero-shot paradigm, we would construct a prompt that might look as
follows:

prompt = """\

Translate English to French:

thanks =>

"""

This hopefully prompts the model to predict the tokens of the word “merci”.
We already saw when using GPT-2 for summarization in Chapter 6 that
adding “TL;DR” to a text prompted the model to generate a summary
without explicitly being trained to do this. An interesting finding of the
GPT-3 paper was the ability of large language models to effectively learn
from examples presented in the prompt—so, the previous translation
example could be augmented with several English to German examples,
which would make the model perform much better on this task.6



Furthermore, the authors found that the larger the models are scaled, the
better they are at using the in-context examples, leading to significant
performance boosts. Although GPT-3-sized models are challenging to use in
production, this is an exciting emerging research field and people have built
cool applications, such as a natural language shell where commands are
entered in natural language and parsed by GPT-3 to shell commands.

An alternative approach to using labeled data is to create examples of the
prompts and desired predictions and continue training the language model
on these examples. A novel method called ADAPET uses such an approach
and beats GPT-3 on a wide variety of tasks,  tuning the model with
generated prompts. Recent work by Hugging Face researchers suggests that
such an approach can be more data-efficient than fine-tuning a custom
head.

In this section we briefly looked at various ways to make good use of the
few labeled examples that we have. Very often we also have access to a lot
of unlabeled data in addition to the labeled examples; in the next section
we’ll discuss how to make good use of that.

Leveraging Unlabeled Data
Although having access to large volumes of high-quality labeled data is the
best-case scenario to train a classifier, this does not mean that unlabeled
data is worthless. Just think about the pretraining of most models we have
used: even though they are trained on mostly unrelated data from the
internet, we can leverage the pretrained weights for other tasks on a wide
variety of texts. This is the core idea of transfer learning in NLP. Naturally,
if the downstream task has similar textual structure as the pretraining texts
the transfer works better, so if we can bring the pretraining task closer to the
downstream objective we could potentially improve the transfer.

Let’s think about this in terms of our concrete use case: BERT is pretrained
on the BookCorpus and English Wikipedia, and texts containing code and
GitHub issues are definitely a small niche in these datasets. If we pretrained
BERT from scratch we could do it on a crawl of all of the issues on GitHub,
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for example. However, this would be expensive, and a lot of aspects about
language that BERT has learned are still valid for GitHub issues. So is there
a middle ground between retraining from scratch and just using the model
as is for classification? There is, and it is called domain adaptation (which
we also saw for question answering in Chapter 7). Instead of retraining the
language model from scratch, we can continue training it on data from our
domain. In this step we use the classic language model objective of
predicting masked words, which means we don’t need any labeled data.
After that we can load the adapted model as a classifier and fine-tune it,
thus leveraging the unlabeled data.

The beauty of domain adaptation is that compared to labeled data,
unlabeled data is often abundantly available. Furthermore, the adapted
model can be reused for many use cases. Imagine you want to build an
email classifier and apply domain adaptation on all your historic emails.
You can later use the same model for named entity recognition or another
classification task like sentiment analysis, since the approach is agnostic to
the downstream task.

Let’s now see the steps we need to take to fine-tune a pretrained language
model.

Fine-Tuning a Language Model
In this section we’ll fine-tune the pretrained BERT model with masked
language modeling on the unlabeled portion of our dataset. To do this we
only need two new concepts: an extra step when tokenizing the data and a
special data collator. Let’s start with the tokenization.

In addition to the ordinary tokens from the text the tokenizer also adds
special tokens to the sequence, such as the [CLS] and [SEP] tokens that are
used for classification and next sentence prediction. When we do masked
language modeling, we want to make sure we don’t train the model to also
predict these tokens. For this reason we mask them from the loss, and we
can get a mask when tokenizing by setting



return_special_tokens_mask=True. Let’s retokenize the text with that
setting:

def tokenize(batch):

    return tokenizer(batch["text"], truncation=True,

                     max_length=128, return_special_tokens_mask=True)

ds_mlm = ds.map(tokenize, batched=True)

ds_mlm = ds_mlm.remove_columns(["labels", "text", "label_ids"])

What’s missing to start with masked language modeling is the mechanism
to mask tokens in the input sequence and have the target tokens in the
outputs. One way we could approach this is by setting up a function that
masks random tokens and creates labels for these sequences. But this would
double the size of the dataset, since we would also store the target sequence
in the dataset, and it would mean we would use the same masking of a
sequence every epoch.

A much more elegant solution is to use a data collator. Remember that the
data collator is the function that builds the bridge between the dataset and
the model calls. A batch is sampled from the dataset, and the data collator
prepares the elements in the batch to feed them to the model. In the simplest
case we have encountered, it simply concatenates the tensors of each
element into a single tensor. In our case we can use it to do the masking and
label generation on the fly. That way we don’t need to store the labels and
we get new masks every time we sample. The data collator for this task is
called DataCollatorForLanguageModeling. We initialize it with the
model’s tokenizer and the fraction of tokens we want to mask via the
mlm_probability argument. We’ll use this collator to mask 15% of the
tokens, which follows the procedure in the BERT paper:

from transformers import DataCollatorForLanguageModeling, set_seed

data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer,

                                                mlm_probability=0.15)



Let’s have a quick look at the data collator in action to see what it actually
does. To quickly show the results in a DataFrame, we switch the return
formats of the tokenizer and the data collator to NumPy:

set_seed(3)

data_collator.return_tensors = "np"

inputs = tokenizer("Transformers are awesome!", return_tensors="np")

outputs = data_collator([{"input_ids": inputs["input_ids"][0]}])

pd.DataFrame({

    "Original tokens": tokenizer.convert_ids_to_tokens(inputs["input_ids"]

[0]),

    "Masked tokens": tokenizer.convert_ids_to_tokens(outputs["input_ids"][0]),

    "Original input_ids": original_input_ids,

    "Masked input_ids": masked_input_ids,

    "Labels": outputs["labels"][0]}).T

0 1 2 3

Original tokens [CLS] transformers are awesome

Masked tokens [CLS] transformers are awesome

Original input_ids 101 19081 2024 12476

Masked input_ids 101 19081 2024 12476

Labels -100 -100 -100 -100

We see that the token corresponding to the exclamation mark has been
replaced with a mask token. In addition, the data collator returned a label
array, which is –100 for the original tokens and the token ID for the masked
tokens. As we have seen previously, the entries containing –100 are ignored
when calculating the loss. Let’s switch the format of the data collator back
to PyTorch:

data_collator.return_tensors = "pt"

With the tokenizer and data collator in place, we are ready to fine-tune the
masked language model. We set up the TrainingArguments and Trainer
as usual:



from transformers import AutoModelForMaskedLM

training_args = TrainingArguments(

    output_dir = f"{model_ckpt}-issues-128", per_device_train_batch_size=32,

    logging_strategy="epoch", evaluation_strategy="epoch", save_strategy="no",

    num_train_epochs=16, push_to_hub=True, log_level="error", 

report_to="none")

trainer = Trainer(

        model=AutoModelForMaskedLM.from_pretrained("bert-base-uncased"),

        tokenizer=tokenizer, args=training_args, data_collator=data_collator,

        train_dataset=ds_mlm["unsup"], eval_dataset=ds_mlm["train"])

trainer.train()

trainer.push_to_hub("Training complete!")

We can access the trainer’s log history to look at the training and validation
losses of the model. All logs are stored in trainer.state.log_history as
a list of dictionaries that we can easily load into a Pandas DataFrame. Since
the training and validation loss are recorded at different steps, there are
missing values in the dataframe. For this reason we drop the missing values
before plotting the metrics:

df_log = pd.DataFrame(trainer.state.log_history)

(df_log.dropna(subset=["eval_loss"]).reset_index()["eval_loss"]

 .plot(label="Validation"))

df_log.dropna(subset=["loss"]).reset_index()["loss"].plot(label="Train")

plt.xlabel("Epochs")

plt.ylabel("Loss")

plt.legend(loc="upper right")

plt.show()



It seems that both the training and validation loss went down considerably.
So let’s check if we can also see an improvement when we fine-tune a
classifier based on this model.

Fine-Tuning a Classifier
Now we’ll repeat the fine-tuning procedure, but with the slight difference
that we load our own custom checkpoint:

model_ckpt = f'{model_ckpt}-issues-128'

config = AutoConfig.from_pretrained(model_ckpt)

config.num_labels = len(all_labels)

config.problem_type = "multi_label_classification"

for train_slice in train_slices:

    model = AutoModelForSequenceClassification.from_pretrained(model_ckpt,

                                                               config=config)

    trainer = Trainer(

        model=model,

        tokenizer=tokenizer,

        args=training_args_fine_tune,



        compute_metrics=compute_metrics,

        train_dataset=ds_enc["train"].select(train_slice),

        eval_dataset=ds_enc["valid"],

    )

    trainer.train()

    pred = trainer.predict(ds_enc['test'])

    metrics = compute_metrics(pred)

    # DA refers to domain adaptation

    macro_scores['Fine-tune (DA)'].append(metrics['macro f1'])

    micro_scores['Fine-tune (DA)'].append(metrics['micro f1'])

Comparing the results to the fine-tuning based on vanilla BERT, we see that
we get an advantage especially in the low-data domain. We also gain a few
percentage points in the regime where more labeled data is available:

plot_metrics(micro_scores, macro_scores, train_samples, "Fine-tune (DA)")





This highlights that domain adaptation can provide a slight boost to the
model’s performance with unlabeled data and little effort. Naturally, the
more unlabeled data and the less labeled data you have, the more impact
you will get with this method. Before we conclude this chapter, we’ll show
you a few more tricks for taking advantage of unlabeled data.

Advanced Methods
Fine-tuning the language model before tuning the classification head is a
simple yet reliable method to boost performance. However, there are
sophisticated methods than can leverage unlabeled data even further. We
summarize a few of these methods here, which should provide a good
starting point if you need more performance.

Unsupervised data augmentation
The key idea behind unsupervised data augmentation (UDA) is that a
model’s predictions should be consistent for an unlabeled example and a
slightly distorted one. Such distortions are introduced with standard data
augmentation strategies such as token replacement and back translation.
Consistency is then enforced by minimizing the KL divergence between the
predictions of the original and distorted examples. This process is illustrated
in Figure 9-5, where the consistency requirement is incorporated by
augmenting the cross-entropy loss with an additional term from the
unlabeled examples. This means that one trains a model on the labeled data
with the standard supervised approach, but constrains the model to make
consistent predictions on the unlabeled data.



Figure 9-5. Training a model M with UDA (courtesy of Qizhe Xie)

The performance of this approach is quite impressive: with a handful of
labeled examples, BERT models trained with UDA get similar performance
to models trained on thousands of examples. The downside is that you need
a data augmentation pipeline, and training takes much longer since you
need multiple forward passes to generate the predicted distributions on the
unlabeled and augmented examples.

Uncertainty-aware self-training
Another promising method to leverage unlabeled data is uncertainty-aware
self-training (UST). The idea here is to train a teacher model on the labeled
data and then use that model to create pseudo-labels on the unlabeled data.
Then a student is trained on the pseudo-labeled data, and after training it
becomes the teacher for the next iteration.

One interesting aspect of this method is how the pseudo-labels are
generated: to get an uncertainty measure of the model’s predictions the
same input is fed several times through the model with dropout turned on.
Then the variance in the predictions gives a proxy for the certainty of the
model on a specific sample. With that uncertainty measure the pseudo-
labels are then sampled using a method called Bayesian Active Learning by
Disagreement (BALD). The full training pipeline is illustrated in Figure 9-
6.



Figure 9-6. The UST method consists of a teacher that generates pseudo-labels and a student that is
subsequently trained on those labels; after the student is trained it becomes the teacher and the step

is repeated (courtesy of Subhabrata Mukherjee)

With this iteration scheme the teacher continuously gets better at creating
pseudo-labels, and thus the model’s performance improves. In the end this
approach gets within a few percent of models trained on the full training
data with thousands of samples and even beats UDA on several datasets.

Now that we’ve seen a few advanced methods, let’s take a step back and
summarize what we’ve learned in this chapter.

Conclusion
In this chapter we’ve seen that even if we have only a few or even no labels,
not all hope is lost. We can utilize models that have been pretrained on other
tasks, such as the BERT language model or GPT-2 trained on Python code,
to make predictions on the new task of GitHub issue classification.
Furthermore, we can use domain adaptation to get an additional boost when
training the model with a normal classification head.
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Which of the presented approaches will work best on a specific use case
depends on a variety of aspects: how much labeled data you have, how
noisy is it, how close the data is to the pretraining corpus, and so on. To find
out what works best, it is a good idea to set up an evaluation pipeline and
then iterate quickly. The flexible API of​ ⁠ Transformers allows you to
quickly load a handful of models and compare them without the need for
any code changes. There are over 10,000 models on the Hugging Face Hub,
and chances are somebody has worked on a similar problem in the past and
you can build on top of this.

One aspect that is beyond the scope of this book is the trade-off between a
more complex approach like UDA or UST and getting more data. To
evaluate your approach, it makes sense to at least build a validation and test
set early on. At every step of the way you can also gather more labeled data.
Usually annotating a few hundred examples is a matter of a couple of hours’
or a few days’ work, and there are many tools that can assist you in doing
so. Depending on what you are trying to achieve, it can make sense to
invest some time in creating a small, high-quality dataset rather than
engineering a very complex method to compensate for the lack thereof.
With the methods we’ve presented in this chapter you can ensure that you
get the most value out of your precious labeled data.

Here, we have ventured into the low-data regime and seen that transformer
models are still powerful even with just a hundred examples. In the next
chapter we’ll look at the complete opposite case: we’ll see what we can do
when we have hundreds of gigabytes of data and a lot of compute. We’ll
train a large transformer model from scratch to autocomplete code for us.

1  Q. Xie et al., “Unsupervised Data Augmentation for Consistency Training”, (2019); S.
Mukherjee and A.H. Awadallah, “Uncertainty-Aware Self-Training for Few-Shot Text
Classification”, (2020).

2  We thank Joe Davison for suggesting this approach to us.

3  A. Williams, N. Nangia, and S.R. Bowman, “A Broad-Coverage Challenge Corpus for
Sentence Understanding Through Inference”, (2018); A. Conneau et al., “XNLI: Evaluating
Cross-Lingual Sentence Representations”, (2018).

https://arxiv.org/abs/1904.12848
https://arxiv.org/abs/2006.15315
https://arxiv.org/abs/2006.15315
https://joeddav.github.io/
https://arxiv.org/abs/1704.05426
https://arxiv.org/abs/1704.05426
https://arxiv.org/abs/1809.05053
https://arxiv.org/abs/1809.05053


4  J. Wei and K. Zou, “EDA: Easy Data Augmentation Techniques for Boosting Performance on
Text Classification Tasks”, (2019).

5  J. Johnson, M. Douze, and H. Jégou, “Billion-Scale Similarity Search with GPUs”, (2017).

6  T. Brown et al., “Language Models Are Few-Shot Learners”, (2020).

7  D. Tam et al., “Improving and Simplifying Pattern Exploiting Training”, (2021).

8  T. Le Scao and A.M. Rush, “How Many Data Points Is a Prompt Worth?”, (2021).

9  S. Mukherjee and A.H. Awadallah, “Uncertainty-Aware Self-Training for Few-Shot Text
Classification”, (2020).

https://arxiv.org/abs/1901.11196
https://arxiv.org/abs/1901.11196
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2103.11955
https://arxiv.org/abs/2103.08493
https://arxiv.org/abs/2006.15315
https://arxiv.org/abs/2006.15315


Chapter 10. Training
Transformers from Scratch

In the opening paragraph of this book, we mentioned a sophisticated
application called GitHub Copilot that uses GPT-like transformers to
perform code autocompletion, a feature that is particularly useful when
programming in a new language or framework or learning to code, or for
automatically producing boilerplate code. Other products that use AI
models for this purpose include TabNine and Kite. Later, in Chapter 5, we
had a closer look at how we can use GPT models to generate high-quality
text. In this chapter, we’ll close the circle and build our very own GPT-like
model for generating Python source code! We call the resulting model
CodeParrot.

So far we’ve mostly worked on data-constrained applications where the
amount of labeled training data is limited. In these cases, transfer learning
helped us build performant models. We took transfer learning to the limit in
Chapter 9, where we barely used any training data at all.

In this chapter we’ll move to the other extreme and look at what we can do
when we are drowning in all the data we could possibly want. We’ll explore
the pretraining step itself and learn how to train a transformer from scratch.
In working through this problem, we’ll look at some aspects of training that
we have not considered yet, such as the following:

Gathering and processing a very large dataset

Creating a custom tokenizer for our dataset

Training a model on multiple GPUs at scale

To efficiently train large models with billions of parameters, we’ll need
special tools for distributed training. Although the Trainer from 
Transformers supports distributed training, we’ll take the opportunity to

https://tabnine.com/
https://kite.com/


showcase a powerful PyTorch library called  Accelerate. We’ll end up
touching on some of the largest NLP models in use today—but first, we
need to find a sufficiently large dataset.

WARNING
Unlike the code in the others in this book (which can be run with a Jupyter notebook on
a single GPU), the training code in this chapter is designed to be run as a script with
multiple GPUs. If you want to train your own version of CodeParrot, we recommend
running the script provided in the  Transformers repository.

Large Datasets and Where to Find Them
There are many domains where you may actually have a large amount of
data at hand, ranging from legal documents to biomedical datasets to
programming codebases. In most cases, these datasets are unlabeled, and
their large size means that they can usually only be labeled through the use
of heuristics, or by using accompanying metadata that is stored during the
gathering process.

Nevertheless, a very large corpus can be useful even when it is unlabeled or
only heuristically labeled. We saw an example of this in Chapter 9, where
we used the unlabeled part of a dataset to fine-tune a language model for
domain adaptation. This approach typically yields a performance gain when
limited data is available. The decision to train from scratch rather than fine-
tune an existing model is mostly dictated by the size of your fine-tuning
corpus and the domain differences between the available pretrained models
and the corpus.

Using a pretrained model forces you to use the model’s corresponding
tokenizer, but using a tokenizer that is trained on a corpus from another
domain is typically suboptimal. For example, using GPT’s pretrained
tokenizer on legal documents, other languages, or even completely different
sequences such as musical notes or DNA sequences will result in poor
tokenization (as we will see shortly).

https://oreil.ly/ZyPPR


As the amount of training data you have access to gets closer to the amount
of data used for pretraining, it thus becomes interesting to consider training
the model and the tokenizer from scratch, provided the necessary
computational resources are available. Before we discuss the different
pretraining objectives further, we first need to build a large corpus suitable
for pretraining. Building such a corpus comes with its own set of
challenges, which we’ll explore in the next section.

Challenges of Building a Large-Scale Corpus
The quality of a model after pretraining largely reflects the quality of the
pretraining corpus. In particular, the model will inherit any defects in the
pretraining corpus. Thus, before we attempt to create one of our own it’s
good to be aware of some of the common issues and challenges that are
associated with building large corpora for pretraining.

As the dataset gets larger and larger, the chances that you can fully control
—or at least have a precise idea of—what is inside it diminish. A very large
dataset will most likely not have been assembled by dedicated creators that
craft one example at a time, while being aware and knowledgeable of the
full pipeline and the task that the machine learning model will be applied to.
Instead, it is much more likely that a very large dataset will have been
created in an automatic or semiautomatic way by collecting data that is
generated as a side effect of other activities. For instance, it may consist of
all the documents (e.g., contracts, purchase orders, etc.) that a company
stores, logs from user activities, or data gathered from the internet.

There are several important consequences that follow from the fact that
large-scale datasets are mostly created with a high degree of automation. An
important consideration is that there is limited control over both their
content and the way they are created, and thus the risk of training a model
on biased and lower-quality data increases. Recent investigations of famous
large-scale datasets like BookCorpus and C4, which were used to train
BERT and T5, respectively, have uncovered (among other things) that:1



A significant proportion of the C4 corpus is machine-translated
rather than translated by humans.

Disparate erasure of African-American English as a result of
stopword filtering in C4 has resulted in an underrepresentation of
such content.

It is typically difficult in a large text corpus to find a middle
ground between including (often too much) sexually or other
explicit content and totally erasing all mention of sexuality or
gender. As a surprising consequence of this, a rather common word
like “sex” (which can have both neutral and explicit meanings) is
completely unknown to a tokenizer that is trained on C4, since this
word is fully absent from the corpus.

There are many occurrences of copyright violation in BookCorpus,
and probably in other large-scale datasets as well.

There is genre skew toward “romance” novels in BookCorpus.

These discoveries might not be incompatible with downstream usage of the
models trained on these corpora. For instance, the strong overrepresentation
of romance novels in BookCorpus is probably acceptable if the model is
intended to be used as a romance novel writing tool or for a building a
game.

Let’s illustrate the notion of a model being skewed by the data by
comparing text generations from GPT and GPT-2. GPT was mostly trained
on BookCorpus, while GPT-2 was trained on web pages, blogs, and news
articles linked from Reddit. We’ll compare similar-sized versions of both
models on the same prompt, so that the main difference is the pretraining
dataset, and we’ll use the text-generation pipeline to investigate the
model outputs:

from transformers import pipeline, set_seed

generation_gpt = pipeline("text-generation", model="openai-gpt")
generation_gpt2 = pipeline("text-generation", model="gpt2")
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Next, let’s create a simple function to count the number of parameters in
each model:

def model_size(model):
    return sum(t.numel() for t in model.parameters())

print(f"GPT  size: {model_size(generation_gpt.model)/1000**2:.1f}M 
parameters")
print(f"GPT2 size: {model_size(generation_gpt2.model)/1000**2:.1f}M 
parameters")

GPT  size: 116.5M parameters
GPT2 size: 124.4M parameters

The original GPT model is about the same size as the smallest GPT-2
model. Now we can generate three different completions from each model,
each with the same input prompt:

def enum_pipeline_ouputs(pipe, prompt, num_return_sequences):
    out = pipe(prompt, num_return_sequences=num_return_sequences,
               clean_up_tokenization_spaces=True)
    return "\n".join(f"{i+1}." + s["generated_text"] for i, s in 
enumerate(out))

prompt = "\nWhen they came back"
print("GPT completions:\n" + enum_pipeline_ouputs(generation_gpt, prompt, 3))
print("")
print("GPT-2 completions:\n" + enum_pipeline_ouputs(generation_gpt2, prompt, 
3))

GPT completions:
1.
When they came back.
 " we need all we can get, " jason said once they had settled into the back of
the truck without anyone stopping them. " after getting out here, it 'll be up
to us what to find. for now
2.
When they came back.
 his gaze swept over her body. he 'd dressed her, too, in the borrowed clothes
that she 'd worn for the journey.
 " i thought it would be easier to just leave you there. " a woman like
3.
When they came back to the house and she was sitting there with the little 
boy.



 " don't be afraid, " he told her. she nodded slowly, her eyes wide. she was 
so
lost in whatever she discovered that tom knew her mistake

GPT-2 completions:
1.
When they came back we had a big dinner and the other guys went to see what
their opinion was on her. I did an hour and they were happy with it.
2.
When they came back to this island there had been another massacre, but he 
could
not help but feel pity for the helpless victim who had been left to die, and
that they had failed that day. And so was very, very grateful indeed.
3.
When they came back to our house after the morning, I asked if she was sure. 
She
said, "Nope." The two kids were gone that morning. I thought they were back to
being a good friend.

When Dost

By just sampling a handful of outputs from both models we can already see
the distinctive “romance” skew in GPT generation, which will typically
imagine a dialogue with a romantic interaction between a woman and a
man. On the other hand, GPT-2 was trained on webtext linked to and from
Reddit articles and mostly adopts a neutral “they” in its generations, which
contain “blog-like” or adventure-related elements.

In general, any model trained on a dataset will reflect the language bias and
over- or underrepresentation of populations and events in its training data.
These biases in the behavior of the model are important to take into
consideration with regard to the target audience interacting with the model;
for some useful guidelines, we refer you to a paper by Google that provides
a framework for dataset development.

This brief introduction should give you an idea of the difficult challenges
you face when creating large text corpora. With these in mind, let’s now
take a look at creating our own dataset!
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Building a Custom Code Dataset
To simplify the task a bit, we’ll focus on building a code generation model
for the Python programming language only.  The first thing we’ll need is a
large pretraining corpus consisting of Python source code. Fortunately,
there is a natural resource that every software engineer knows: GitHub! The
famous code-sharing website hosts terabytes of code repositories that are
openly accessible and can be downloaded and used according to their
respective licenses. At the time of this book’s writing, GitHub hosts more
than 20 million code repositories. Many of them are small or test
repositories created by users for learning, future side projects, or testing
purposes.

GitHub repositories can be accessed in two main ways:

Via the GitHub REST API, like we saw in Chapter 9 when we
downloaded all the GitHub issues of the  Transformers
repository

Via public dataset inventories like Google BigQuery

Since the REST API is rate limited and we need a lot data for our
pretraining corpus, we’ll use Google BigQuery to extract all the Python
repositories. The bigquery-public-data.github_repos.contents table
contains copies of all ASCII files that are less than 10 MB in size. Projects
also need to be open source to be included, as determined by GitHub’s
License API.

TIP
The Google BigQuery dataset doesn’t contain star or downstream usage information.
For those attributes, we can use the GitHub REST API or a service like Libraries.io that
monitors open source packages. Indeed, a team from GitHub recently released a dataset
called CodeSearchNet that filtered repositories used in at least one downstream task
using information from Libraries.io.
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Let’s have a look at what it takes to create our code dataset with Google
BigQuery.

Creating a dataset with Google BigQuery
We’ll begin by extracting all the Python files in GitHub public repositories
from the snapshot on Google BigQuery. For the sake of reproducibility and
in case the policy around free usage of BigQuery changes in the future, we
will also share this dataset on the Hugging Face Hub. The steps to export
these files are adapted from the TransCoder implementation and are as
follows:

1. Create a Google Cloud account (a free trial should be sufficient).

2. Create a Google BigQuery project under your account.

3. In this project, create a dataset.

4. In this dataset, create a table where the results of the SQL request
will be stored.

5. Prepare and run the following SQL query on the github_repos (to
save the query results, select More > Query Options, check the
“Set a destination table for query results” box, and specify the table
name):

SELECT

  f.repo_name, f.path, c.copies, c.size, c.content, l.license

FROM

  `bigquery-public-data.github_repos.files` AS f

JOIN

  `bigquery-public-data.github_repos.contents` AS c

ON

  f.id = c.id

JOIN

  `bigquery-public-data.github_repos.licenses` AS l

ON

5
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  f.repo_name = l.repo_name

WHERE

  NOT c.binary

  AND ((f.path LIKE '%.py')

    AND (c.size BETWEEN 1024

      AND 1048575))

This command processes about 2.6 TB of data to extract 26.8 million files.
The result is a dataset of about 50 GB of compressed JSON files, each
containing the source code of Python files. We filtered to remove empty
files and small files such as __init__.py that don’t contain much useful
information. We also filtered out files larger than 1 MB, and we
downloaded the licenses for all the files so we can filter the training data
based on licenses if we want later on.

Next, we’ll download the results to our local machine. If you try this at
home, make sure you have good bandwidth available and at least 50 GB of
free disk space. The easiest way to get the resulting table to your local
machine is to follow this two-step process:

1. Export your results to Google Cloud:

a. Create a bucket and a folder in Google Cloud Storage
(GCS).

b. Export your table to this bucket by selecting Export >
Export to GCS, with an export format of JSON and gzip
compression.

2. To download the bucket to your machine, use the gsutil library:

a. Install gsutil with pip install gsutil.

b. Configure gsutil with your Google account: gsutil
config.

c. Copy your bucket on your machine:

https://oreil.ly/JzgRk


$ gsutil -m -o

"GSUtil:parallel_process_count=1" cp -r 

gs://<name_of_bucket>

Alternatively, you can directly download the dataset from the Hugging Face
Hub with the following command:

$ git clone https://huggingface.co/datasets/transformersbook/codeparrot

TO FILTER THE NOISE OR NOT?
Anybody can create a GitHub repository, so the quality of the projects
varies. There are some conscious choices to be made regarding how we
want the system to perform in a real-world setting. Having some noise
in the training dataset will make our system more robust to noisy inputs
at inference time, but will also make its predictions more random.
Depending on the intended use and whole system integration, you may
choose more or less noisy data and add pre- and postfiltering
operations.

For the educational purposes of the present chapter and to keep the data
preparation code concise, we will not filter according to stars or usage
and will just grab all the Python files in the GitHub BigQuery dataset.
Data preparation, however, is a crucial step, and you should make sure
you clean up your dataset as much as possible. In our case a few things
to consider are whether to balance the programming languages in the
dataset; filter low-quality data (e.g., via GitHub stars or references from
other repos); remove duplicated code samples; take copyright
information into account; investigate the language used in
documentation, comments, or docstrings; and remove personal
identifying information such as passwords or keys.

Working with a 50 GB dataset can be challenging; it requires sufficient disk
space, and one must be careful not to run out of RAM. In the following



section, we’ll have a look how  Datasets helps deal with these constraints
of working with large datasets on small machines.

Working with Large Datasets
Loading a very large dataset is often a challenging task, in particular when
the data is larger than your machine’s RAM. For a large-scale pretraining
dataset, this is a very common situation. In our example, we have 50 GB of
compressed data and about 200 GB of uncompressed data, which is difficult
to extract and load into the RAM memory of a standard-sized laptop or
desktop computer.

Thankfully,  Datasets has been designed from the ground up to overcome
this problem with two specific features that allow you to set yourself free
from RAM and hard drive space limitations: memory mapping and
streaming.

Memory mapping
To overcome RAM limitations,  Datasets uses a mechanism for zero-
copy and zero-overhead memory mapping that is activated by default.
Basically, each dataset is cached on the drive in a file that is a direct
reflection of the content in RAM memory. Instead of loading the dataset in
RAM,  Datasets opens a read-only pointer to this file and uses it as a
substitute for RAM, basically using the hard drive as a direct extension of
the RAM memory.

Up to now we have mostly used  Datasets to access remote datasets on
the Hugging Face Hub. Here, we will directly load our 50 GB of
compressed JSON files that we have stored locally in the codeparrot
repository. Since the JSON files are compressed, we first need to
decompress them, which  Datasets takes care of for us. Be careful,
because this requires about 180 GB of free disk space! However, it will use
almost no RAM. By setting delete_extracted=True in the dataset’s
downloading configuration, we can make sure that we delete all the files we
don’t need anymore as soon as possible:



from datasets import load_dataset, DownloadConfig

download_config = DownloadConfig(delete_extracted=True)
dataset = load_dataset("./codeparrot", split="train",
                       download_config=download_config)

Under the hood,  Datasets extracted and read all the compressed JSON
files by loading them in a single optimized cache file. Let’s see how big this
dataset is once loaded:

import psutil

print(f"Number of python files code in dataset : {len(dataset)}")
ds_size = sum(os.stat(f["filename"]).st_size for f in dataset.cache_files)
# os.stat.st_size is expressed in bytes, so we convert to GB
print(f"Dataset size (cache file) : {ds_size / 2**30:.2f} GB")
# Process.memory_info is expressed in bytes, so we convert to MB
print(f"RAM used: {psutil.Process(os.getpid()).memory_info().rss >> 20} MB")

Number of python files code in dataset : 18695559
Dataset size (cache file) : 183.68 GB
RAM memory used: 4924 MB

As we can see, the dataset is much larger than our typical RAM memory,
but we can still load and access it, and we’re actually using a very limited
amount of memory.

You may wonder if this will make our training I/O-bound. In practice, NLP
data is usually very lightweight to load in comparison to the model
processing computations, so this is rarely an issue. In addition, the zero-
copy/zero-overhead format uses Apache Arrow under the hood, which
makes it very efficient to access any element. Depending on the speed of
your hard drive and the batch size, iterating over the dataset can typically be
done at a rate of a few tenths of a GB/s to several GB/s. This is great, but
what if you can’t free enough disk space to store the full dataset locally?
Everybody knows the feeling of helplessness when you get a full disk
warning and need to painfully try to reclaim a few GB by looking for
hidden files to delete. Luckily, you don’t need to store the full dataset
locally if you use the streaming feature of  Datasets!



Streaming
Some datasets (reaching up to 1 TB or more) will be difficult to fit even on
a standard hard drive. In this case, an alternative to scaling up the server
you are using is to stream the dataset. This is also possible with  Datasets
for a number of compressed or uncompressed file formats that can be read
line by line, like JSON Lines, CSV, or text (either raw or zip, gzip, or
zstandard compressed). Let’s load our dataset directly from the compressed
JSON files instead of creating a cache file from them:

streamed_dataset = load_dataset('./codeparrot', split="train", streaming=True)

As you’ll see, loading the dataset is instantaneous! In streaming mode, the
compressed JSON files will be opened and read on the fly. Our dataset is
now an IterableDataset object. This means that we cannot access
random elements of it, like streamed_dataset[1264], but we need to read
it in order, for instance with next(iter(streamed_dataset)). It’s still
possible to use methods like shuffle(), but these will operate by fetching
a buffer of examples and shuffling within this buffer (the size of the buffer
is adjustable). When several files are provided as raw files (like our 184
files here), shuffle() will also randomize the order of files for the
iteration.

The samples of a streamed dataset are identical to the samples of a
nonstreamed dataset, as we can see:

iterator = iter(streamed_dataset)

print(dataset[0] == next(iterator))
print(dataset[1] == next(iterator))

True
True

The main interest of using a streaming dataset is that loading this dataset
will not create a cache file on the drive or require any (significant) RAM
memory. The original raw files are extracted and read on the fly when a



new batch of examples is requested, and only that batch is loaded in
memory. This reduces the memory footprint of our dataset from 180 GB to
50 GB. But we can take this one step further—instead of pointing to the
local dataset we can reference the dataset on the Hub, and then directly
download samples without downloading the raw files locally:

remote_dataset = load_dataset('transformersbook/codeparrot', split="train",
                              streaming=True)

This dataset behaves exactly like the previous one, but behind the scenes
downloads the examples on the fly. With such a setup, we can then use
arbitrarily large datasets on an (almost) arbitrarily small server. Let’s push
our dataset with a train and validation split to the Hugging Face Hub and
access it with streaming.

Adding Datasets to the Hugging Face Hub
Pushing our dataset to the Hugging Face Hub will allow us to:

Easily access it from our training server.

See how streaming datasets work seamlessly with datasets from the
Hub.

Share it with the community, including you, dear reader!

To upload the dataset, we first need to log in to our Hugging Face account
by running the following command in the terminal and providing the
relevant credentials:

$ huggingface-cli login

This is equivalent to the notebook_login() helper function we used in
previous chapters. Once this is done, we can directly create a new dataset
on the Hub and upload the compressed JSON files. To simplify things, we
will create two repositories: one for the train split and one for the validation



split. We can do this by running the repo create command of the CLI as
follows:

$ huggingface-cli repo create --type dataset --organization transformersbook \

codeparrot-train

$ huggingface-cli repo create --type dataset --organization transformersbook \

codeparrot-valid

Here we’ve specified that the repository should be a dataset (in contrast to
the model repositories used to store weights), along with the organization
we’d like to store the repositories under. If you’re running this code under
your personal account, you can omit the --organization flag. Next, we
need to clone these empty repositories to our local machine, copy the JSON
files to them, and push the changes to the Hub. We will take the last
compressed JSON file out of the 184 we have as the validation file (i.e.,
roughly 0.5 percent of our dataset). Execute these commands to clone the
repository from the Hub to your local machine:

$ git clone https://huggingface.co/datasets/transformersbook/codeparrot-train

$ git clone https://huggingface.co/datasets/transformersbook/codeparrot-valid

Next, copy all but the last GitHub file as the training set:

$ cd codeparrot-train

$ cp ../codeparrot/*.json.gz .

$ rm ./file-000000000183.json.gz

Then commit the files and push them to the Hub:

$ git add .

$ git commit -m "Adding dataset files"

$ git push

Now, repeat the process for the validation set:

$ cd ../codeparrot-valid

$ cp ../codeparrot/file-000000000183.json.gz .

$ mv ./file-000000000183.json.gz ./file-000000000183_validation.json.gz



$ git add .

$ git commit -m "Adding dataset files"

$ git push

The git add . step can take a couple of minutes since a hash of all the
files is computed. Uploading all the files will also take a little while. Since
this will enable us to use streaming later in the chapter, however, this is not
lost time, and this step will allow us to go significantly faster in the rest of
our experiments. Note that we added a _validation suffix to the validation
filename. This will enable us to load it later as a validation split.

And that’s it! Our two splits of the dataset as well as the full dataset are now
live on the Hugging Face Hub at the following URLs:

https://huggingface.co/datasets/transformersbook/codeparrot

https://huggingface.co/datasets/transformersbook/codeparrot-train

https://huggingface.co/datasets/transformersbook/codeparrot-valid

NOTE
It’s good practice to add README cards that explain how the datasets were created and
provide as much useful information about them as possible. A well-documented dataset
is more likely to be useful to other people, as well as your future self. You can read the

 Datasets README guide for a detailed description of how to write good dataset
documentation. You can also use the web editor to modify your README cards directly
on the Hub later.

Building a Tokenizer
Now that we have gathered and loaded our large dataset, let’s see how we
can efficiently process the data to feed to our model. In the previous
chapters we’ve used tokenizers that accompanied the models we used. This
made sense since these models were pretrained using data passed through a
specific preprocessing pipeline defined in the tokenizer. When using a
pretrained model, it’s important to stick with the same preprocessing design

https://huggingface.co/datasets/transformersbook/codeparrot
https://huggingface.co/datasets/transformersbook/codeparrot-train
https://huggingface.co/datasets/transformersbook/codeparrot-valid
https://oreil.ly/Tv9bq


choices selected for pretraining. Otherwise the model may be fed out-of-
distribution patterns or unknown tokens.

However, when we train a new model, using a tokenizer prepared for
another dataset can be suboptimal. Here are a few examples of the kinds of
problems we might run into when using an existing tokenizer:

The T5 tokenizer was trained on the C4 corpus that we
encountered earlier, but an extensive step of stopword filtering was
used to create it. As a result, the T5 tokenizer has never seen
common English words such as “sex.”

The CamemBERT tokenizer was also trained on a very large
corpus of text, but only comprising French text (the French subset
of the OSCAR corpus). As such, it is unaware of common English
words such “being.”

We can easily test these features of each tokenizer in practice:

from transformers import AutoTokenizer

def tok_list(tokenizer, string):
    input_ids = tokenizer(string, add_special_tokens=False)["input_ids"]
    return [tokenizer.decode(tok) for tok in input_ids]

tokenizer_T5 = AutoTokenizer.from_pretrained("t5-base")
tokenizer_camembert = AutoTokenizer.from_pretrained("camembert-base")

print(f'T5 tokens for "sex": {tok_list(tokenizer_T5,"sex")}')
print(f'CamemBERT tokens for "being": 
{tok_list(tokenizer_camembert,"being")}')

T5 tokens for "sex": ['', 's', 'ex']
CamemBERT tokens for "being": ['be', 'ing']

In many cases, splitting such short and common words into subparts will be
inefficient, since this will increase the input sequence length of the model
(which has limited context). Therefore, it’s important to be aware of the
domain and preprocessing of the dataset that was used to train the tokenizer.
The tokenizer and model can encode bias from the dataset that has an

https://oreil.ly/wsYIC
https://oreil.ly/hgO5J


impact on the downstream behavior of the model. To create an optimal
tokenizer for our dataset, we thus need to train one ourselves. Let’s see how
this can be done.

NOTE
Training a model involves starting from a given set of weights and using
backpropagation from an error signal on a designed objective to minimize the loss of the
model and find an optimal set of weights for the model to perform the task defined by
the training objective. Training a tokenizer, on the other hand, does not involve
backpropagation or weights. It is a way to create an optimal mapping from a string of
text to a list of integers that can be ingested by the model. In today’s tokenizers, the
optimal string-to-integer conversion involves a vocabulary consisting of a list of atomic
strings and an associated method to convert, normalize, cut, or map a text string into a
list of indices with this vocabulary. This list of indices is then the input for our neural
network.

The Tokenizer Model
As you saw in Chapter 4, the tokenizer is a processing pipeline consisting
of four steps: normalization, pretokenization, the tokenizer model, and
postprocessing. The part of the tokenizer pipeline that can be trained on
data is the tokenizer model. As we discussed in Chapter 2, there are several
subword tokenization algorithms that can be used, such as BPE, WordPiece,
and Unigram.

BPE starts from a list of basic units (single characters) and creates a
vocabulary by a process of progressively creating new tokens formed by
merging the most frequently co-occurring basic units and adding them to
the vocabulary. This process is reiterated until a predefined vocabulary size
is reached.

Unigram starts from the other end, by initializing its base vocabulary with
all the words in the corpus, and potential subwords. Then it progressively
removes or splits the less useful tokens to obtain a smaller and smaller
vocabulary, until the target vocabulary size is reached. WordPiece is a



predecessor of Unigram, and its official implementation was never open-
sourced by Google.

The impact of these various algorithms on downstream performance varies
depending on the task, and overall it’s quite difficult to identify if one
algorithm is clearly superior to the others. Both BPE and Unigram have
reasonable performance in most cases, but let’s have a look at some aspects
to consider when evaluating.

Measuring Tokenizer Performance
The optimality and performance of a tokenizer are challenging to measure
in practice. Some possible metrics include:

Subword fertility, which calculates the average number of
subwords produced per tokenized word

Proportion of continued words, which refers to the proportion of
tokenized words in a corpus that are split into at least two
subtokens

Coverage metrics like the proportion of unknown words or rarely
used tokens in a tokenized corpus

In addition, robustness to misspelling or noise is often estimated, as well as
model performance on such out-of-domain examples, as this strongly
depends on the tokenization process.

These measures give a set of different views on the tokenizer’s
performance, but they tend to ignore the interaction of the tokenizer with
the model. For example, subword fertility can be minimized by including
all the possible words in the vocabulary, but this will produce a very large
vocabulary for the model.

In the end, the performance of the various tokenization approaches is thus
generally best estimated by using the downstream performance of the
model as the ultimate metric. For instance, the good performance of early
BPE approaches was demonstrated by showing improved performance on



machine translation tasks by models trained using these tokenizers and
vocabularies instead of character- or word-based tokenization.

Let’s see how we can build our own tokenizer optimized for Python code.

A Tokenizer for Python
We need a custom tokenizer for our use case: tokenizing Python code. The
question of pretokenization merits some discussion for programming
languages. If we split on whitespaces and remove them, we will lose all the
indentation information, which in Python is important for the semantics of
the program (just think about while loops, or if-then-else statements).
On the other hand, line breaks are not meaningful and can be added or
removed without impact on the semantics. Similarly, splitting on
punctuation, like an underscore, which is used to compose a single variable
name from several subparts, might not make as much sense as it would in
natural language. Using a natural language pretokenizer for tokenizing code
thus seems potentially suboptimal.

Let’s see if there are any tokenizers in the collection provided on the Hub
that might be useful to us. We want a tokenizer that preserves spaces, so a
good candidate could be a byte-level tokenizer like the one from GPT-2.
Let’s load this tokenizer and explore its tokenization properties:

from transformers import AutoTokenizer

python_code = r"""def say_hello():
    print("Hello, World!")

# Print it
say_hello()
"""
tokenizer = AutoTokenizer.from_pretrained("gpt2")
print(tokenizer(python_code).tokens())

['def', 'Ġsay', '_', 'hello', '():', 'Ċ', 'Ġ', 'Ġ', 'Ġ', 'Ġprint', '("',
'Hello', ',', 'ĠWorld', '!"', ')', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 'say', 
'_',
'hello', '()', 'Ċ']



NOTE
Python has a built-in tokenize module that splits Python code strings into meaningful
units (code operation, comments, indent and dedent, etc.). One issue with using this
approach is that this pretokenizer is Python-based and as such is typically rather slow
and limited by the Python global interpreter lock (GIL). On the other hand, most of the
tokenizers in the  Transformers library are provided by the  Tokenizers library and
are coded in Rust. The Rust tokenizers are many orders of magnitude faster to train and
to use, and we will thus likely want to use them given the size of our corpus.

This is quite a strange output, so let’s try to understand what is happening
here by running the various submodules of the tokenizer’s pipeline. First
let’s see what normalization is applied in this tokenizer:

print(tokenizer.backend_tokenizer.normalizer)

None

As we can see, the GPT-2 tokenizer uses no normalization. It works directly
on the raw Unicode inputs without any normalization steps. Let’s now take
a look at the pretokenization:

print(tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str(python_code))

[('def', (0, 3)), ('Ġsay', (3, 7)), ('_', (7, 8)), ('hello', (8, 13)), ('():',
(13, 16)), ('ĊĠĠĠ', (16, 20)), ('Ġprint', (20, 26)), ('("', (26, 28)), 
('Hello',
(28, 33)), (',', (33, 34)), ('ĠWorld', (34, 40)), ('!")', (40, 43)), ('Ġ#', 
(43,
45)), ('ĠPrint', (45, 51)), ('Ġit', (51, 54)), ('Ċ', (54, 55)), ('Ċ', (55, 
56)),
('say', (56, 59)), ('_', (59, 60)), ('hello', (60, 65)), ('()', (65, 67)), 
('Ċ',
(67, 68))]

What are all these Ġ symbols, and what are the numbers accompanying the
tokens? Let’s explain both and see if we can understand better how this
tokenizer works.



Let’s start with the numbers.  Tokenizers has a very useful feature for
switching between strings and tokens, called offset tracking. All the
operations on the input string are tracked so that it’s possible to know
exactly what part of the input string a token after tokenization corresponds
to. These numbers simply indicate where in the original string each token
comes from; for instance, the word 'hello' in the first line corresponds to
the characters 8 to 13 in the original string. If some characters are removed
in a normalization step, we are thus still able to associate each token with
the respective part in the original string.

The other curious feature of the tokenized text is the odd-looking
characters, such as Ċ and Ġ. Byte-level means that this tokenizer works on
bytes instead of Unicode characters. Each Unicode character is composed
of between 1 and 4 bytes, depending on the character. The nice thing about
bytes is that while there are 143,859 Unicode characters in the Unicode
alphabet, there are only 256 elements in the byte alphabet, and you can
express each Unicode character as a sequence of these bytes. If we work on
bytes we can thus express all the strings composed from the UTF-8 world
as longer strings in this alphabet of 256 values. That is, we can have a
model using an alphabet of only 256 words and be able to process any
Unicode string. Let’s have a look at what the byte representations of some
characters look like:

a, e = u"a", u"€"
byte = ord(a.encode("utf-8"))
print(f'`{a}` is encoded as `{a.encode("utf-8")}` with a single byte: {byte}')
byte = [ord(chr(i)) for i in e.encode("utf-8")]
print(f'`{e}` is encoded as `{e.encode("utf-8")}` with three bytes: {byte}')

`a` is encoded as `b'a'` with a single byte: 97
`€` is encoded as `b'\xe2\x82\xac'` with three bytes: [226, 130, 172]

At this point you might wonder: why work on a byte level? Think back to
our discussion in Chapter 2 about the trade-offs between character and word
tokens. We could decide to build our vocabulary from the 143,859 Unicode
characters, but we would also like to include words—i.e., combinations of



Unicode characters—in our vocabulary, so this (already very large) size is
only a lower bound for the total size of the vocabulary. This will make our
model’s embedding layer very large because it comprises one vector for
each vocabulary token.

On the other extreme, if we only use the 256 byte values as our vocabulary,
the input sequences will be segmented in many small pieces (each byte
constituting the Unicode characters), and as such our model will have to
work on long inputs and spend significant compute power on reconstructing
Unicode characters from their separate bytes, and then words from these
characters. See the paper accompanying the ByT5 model release for a
detailed study of this overhead.

A middle-ground solution is to construct a medium-sized vocabulary by
extending the 256-word vocabulary with the most common combinations of
bytes. This is the approach taken by the BPE algorithm. The idea is to
progressively construct a vocabulary of a predefined size by creating new
vocabulary tokens through iteratively merging the most frequently co-
occurring pair of tokens in the vocabulary. For instance, if t and h occur
very frequently together, like in English, we’ll add a token th to the
vocabulary to model this pair of tokens instead of keeping them separated.
The t and h tokens are kept in the vocabulary to tokenize instances where
they do not occur together. Starting from a basic vocabulary of elementary
units, we can then model any string efficiently.

WARNING
Be careful not to confuse the “byte” in “Byte-Pair Encoding” with the “byte” in “byte-
level.” The name Byte-Pair Encoding comes from a data compression technique
proposed by Philip Gage in 1994, originally operating on bytes.  Unlike what this name
might indicate, standard BPE algorithms in NLP typically operate on Unicode strings
rather than bytes (although there is a new type of BPE that specifically works on bytes,
called byte-level BPE). If we read our Unicode strings in bytes we can thus reuse a
simple BPE subword splitting algorithm.

6
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There is just one issue when using a typical BPE algorithm in NLP. These
algorithms are designed to work with clean Unicode string as inputs, not
bytes, and expect regular ASCII characters in the inputs, without spaces or
control characters. But in the Unicode characters corresponding to the 256
first bytes, there are many control characters (newline, tab, escape, line
feed, and other nonprintable characters). To overcome this problem, the
GPT-2 tokenizer first maps all the 256 input bytes to Unicode strings that
can easily be digested by the standard BPE algorithms—that is, we will
map our 256 elementary values to Unicode strings that all correspond to
standard printable Unicode characters.

It’s not very important that these Unicode characters are each encoded with
1 byte or more; what is important is that we have 256 single values at the
end, forming our base vocabulary, and that these 256 values are correctly
handled by our BPE algorithm. Let’s see some examples of this mapping
with the GPT-2 tokenizer. We can access the entire mapping as follows:

from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode

byte_to_unicode_map = bytes_to_unicode()
unicode_to_byte_map = dict((v, k) for k, v in byte_to_unicode_map.items())
base_vocab = list(unicode_to_byte_map.keys())

print(f'Size of our base vocabulary: {len(base_vocab)}')
print(f'First element: `{base_vocab[0]}`, last element: `{base_vocab[-1]}`')

Size of our base vocabulary: 256
First element: `!`, last element: `Ń`

And we can take a look at some common values of bytes and associated
mapped Unicode characters in Table 10-1.



Table 10-1. Examples of character mappings in BPE

Description Character Bytes Mapped bytes

Regular characters `a` and `?` 97 and 63 `a` and `?`

A nonprintable control character
(carriage return)

`U+000D` 13 `č`

A space ` ` 32 `Ġ`

A nonbreakable space `\xa0` 160 `ł`

A newline character `\n` 10 `Ċ`

We could have used a more explicit conversion, like mapping newlines to a
NEWLINE string, but BPE algorithms are typically designed to work on
characters. For this reason, keeping one Unicode character for each byte
character is easier to handle with an out-of-the-box BPE algorithm. Now
that we have been introduced to the dark magic of Unicode encodings, we
can understand our tokenization conversion a bit better:

print(tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str(python_code))

[('def', (0, 3)), ('Ġsay', (3, 7)), ('_', (7, 8)), ('hello', (8, 13)), ('():',
(13, 16)), ('ĊĠĠĠ', (16, 20)), ('Ġprint', (20, 26)), ('("', (26, 28)), 
('Hello',
(28, 33)), (',', (33, 34)), ('ĠWorld', (34, 40)), ('!")', (40, 43)), ('Ġ#', 
(43,
45)), ('ĠPrint', (45, 51)), ('Ġit', (51, 54)), ('Ċ', (54, 55)), ('Ċ', (55, 
56)),
('say', (56, 59)), ('_', (59, 60)), ('hello', (60, 65)), ('()', (65, 67)), 
('Ċ',
(67, 68))]

We can recognize the newlines, which as we now know are mapped to Ċ,
and the spaces, mapped to Ġ. We also see that:

Spaces, and in particular consecutive spaces, are conserved (for
instance, the three spaces in 'ĊĠĠĠ').

Consecutive spaces are considered as a single word.



Each space preceding a word is attached to and considered a part
of the subsequent word (e.g., in 'Ġsay').

Let’s now experiment with the BPE model. As we’ve mentioned, it’s in
charge of splitting the words into subunits until all subunits belong to the
predefined vocabulary.

The vocabulary of our GPT-2 tokenizer comprises 50,257 words:

The base vocabulary with the 256 values of the bytes

50,000 additional tokens created by repeatedly merging the most
commonly co-occurring tokens

A special character added to the vocabulary to represent document
boundaries

We can easily check that by looking at the length attribute of the tokenizer:

print(f"Size of the vocabulary: {len(tokenizer)}")

Size of the vocabulary: 50257

Running the full pipeline on our input code gives us the following output:

print(tokenizer(python_code).tokens())

['def', 'Ġsay', '_', 'hello', '():', 'Ċ', 'Ġ', 'Ġ', 'Ġ', 'Ġprint', '("',
'Hello', ',', 'ĠWorld', '!"', ')', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 'say', 
'_',
'hello', '()', 'Ċ']

As we can see, the BPE tokenizer keeps most of the words but will split the
multiple spaces of our indentation into several consecutive spaces. This
happens because this tokenizer is not specifically trained on code, but
mostly on texts where consecutive spaces are rare. The BPE model thus
doesn’t include a specific token in the vocabulary for indentation. This is a
case where the tokenizer model is poorly suited for the dataset’s domain. As



we discussed earlier, the solution is to retrain the tokenizer on the target
corpus. So let’s get to it!

Training a Tokenizer
Let’s retrain our byte-level BPE tokenizer on a slice of our corpus to get a
vocabulary better adapted to Python code. Retraining a tokenizer provided
by  Transformers is simple. We just need to:

Specify our target vocabulary size.

Prepare an iterator to supply lists of input strings to process to train
the tokenizer’s model.

Call the train_new_from_iterator() method.

Unlike deep learning models, which are often expected to memorize a lot of
specific details from the training corpus, tokenizers are really just trained to
extract the main statistics. In a nutshell, the tokenizer is just trained to know
which letter combinations are the most frequent in our corpus.

Therefore, you don’t necessarily need to train your tokenizer on a very large
corpus; the corpus just needs to be representative of your domain and big
enough for the tokenizer to extract statistically significant measures. But
depending on the vocabulary size and the exact texts in the corpus, the
tokenizer can end up storing unexpected words. We can see this, for
instance, when looking at the longest words in the vocabulary of the GPT-2
tokenizer:

tokens = sorted(tokenizer.vocab.items(), key=lambda x: len(x[0]), 
reverse=True)
print([f'{tokenizer.convert_tokens_to_string(t)}' for t, _ in tokens[:8]]);

['ÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂ', '
=================================================================', '
----------------------------------------------------------------
',
'................................................................',
'ÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂ',



'
----------------------------------------------------------------
',
'================================================================',
'________________________________________________________________']

These tokens look like separator lines that are likely to be used on forums.
This makes sense since GPT-2 was trained on a corpus centered around
Reddit. Now let’s have a look at the last words that were added to the
vocabulary, and thus the least frequent ones:

tokens = sorted(tokenizer.vocab.items(), key=lambda x: x[1], reverse=True)
print([f'{tokenizer.convert_tokens_to_string(t)}' for t, _ in tokens[:12]]);

['<|endoftext|>', ' gazed', ' informants', ' Collider', ' regress', 
'ominated',
' amplification', 'Compar', '..."', ' (/', 'Commission', ' Hitman']

The first token, <|endoftext|>, is the special token used to specify the end
of a text sequence and was added after the BPE vocabulary was built. For
each of these tokens our model will have to learn an associated word
embedding, and we probably don’t want the embedding matrix to contain
too many noisy words. Also note how some very time- and space-specific
knowledge of the world (e.g., proper nouns like Hitman and Commission) is
embedded at a very low level in our modeling approach by these words
being granted separate tokens with associated vectors in the vocabulary.
The creation of such specific tokens by a BPE tokenizer can also be an
indication that the target vocabulary size is too large or that the corpus
contains idiosyncratic tokens.

Let’s train a fresh tokenizer on our corpus and examine its learned
vocabulary. Since we just need a corpus reasonably representative of our
dataset statistics, let’s select about 1–2 GB of data, or about 100,000
documents from our corpus:

from tqdm.auto import tqdm

length = 100000



dataset_name = 'transformersbook/codeparrot-train'
dataset = load_dataset(dataset_name, split="train", streaming=True)
iter_dataset = iter(dataset)

def batch_iterator(batch_size=10):
    for _ in tqdm(range(0, length, batch_size)):
        yield [next(iter_dataset)['content'] for _ in range(batch_size)]

new_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(),
                                                  vocab_size=12500,
                                                  initial_alphabet=base_vocab)

Let’s investigate the first and last words created by our BPE algorithm to
see how relevant our vocabulary is. We skip the 256 byte tokens and look at
the first tokens added thereafter:

tokens = sorted(new_tokenizer.vocab.items(), key=lambda x: x[1], 
reverse=False)
print([f'{tokenizer.convert_tokens_to_string(t)}' for t, _ in 
tokens[257:280]]);

['  ', '    ', '   ', '        ', 'se', 'in', '       ', 're', 'on', 'te', '\n
', '\n        ', 'or', 'st', 'de', '\n   ', 'th', 'le', ' =', 'lf', 'self',
'me', 'al']

Here we can see various standard levels of indentation and whitespace
tokens, as well as short common Python keywords like self, or, and in.
This is a good sign that our BPE algorithm is working as intended. Now
let’s check out the last words:

print([f'{new_tokenizer.convert_tokens_to_string(t)}' for t,_ in 
tokens[-12:]]);

[' capt', ' embedded', ' regarding', 'Bundle', '355', ' recv', ' dmp', ' 
vault',
' Mongo', ' possibly', 'implementation', 'Matches']

Here there are still some relatively common words, like recv, as well as
some more noisy words probably coming from the comments.

https://oreil.ly/tliPP


We can also tokenize our simple example of Python code to see how our
tokenizer is behaving on a simple example:

print(new_tokenizer(python_code).tokens())

['def', 'Ġs', 'ay', '_', 'hello', '():', 'ĊĠĠĠ', 'Ġprint', '("', 'Hello', ',',
'ĠWor', 'ld', '!")', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 's', 'ay', '_', 'hello',
'()', 'Ċ']

Even though they are not code keywords, it’s a little annoying to see
common English words like World or say being split by our tokenizer,
since we’d expect them to occur rather frequently in the corpus. Let’s check
if all the Python reserved keywords are in the vocabulary:

import keyword

print(f'There are in total {len(keyword.kwlist)} Python keywords.')
for keyw in keyword.kwlist:
    if keyw not in new_tokenizer.vocab:
        print(f'No, keyword `{keyw}` is not in the vocabulary')

There are in total 35 Python keywords.
No, keyword `await` is not in the vocabulary
No, keyword `finally` is not in the vocabulary
No, keyword `nonlocal` is not in the vocabulary

It appears that several quite frequent keywords, like finally, are not in the
vocabulary either. Let’s try building a larger vocabulary using a larger
sample of our dataset. For instance, we can build a vocabulary of 32,768
words (multiples of 8 are better for some efficient GPU/TPU computations)
and train the tokenizer on a twice as large slice of our corpus:

length = 200000
new_tokenizer_larger = tokenizer.train_new_from_iterator(batch_iterator(),
    vocab_size=32768, initial_alphabet=base_vocab)

We don’t expect the most frequent tokens to change much when adding
more documents, but let’s look at the last tokens:



tokens = sorted(new_tokenizer_larger.vocab.items(), key=lambda x: x[1],
                reverse=False)
print([f'{tokenizer.convert_tokens_to_string(t)}' for t, _ in tokens[-12:]]);

['lineEdit', 'spik', ' BC', 'pective', 'OTA', 'theus', 'FLUSH', ' excutils',
'00000002', ' DIVISION', 'CursorPosition', ' InfoBar']

A brief inspection doesn’t show any regular programming keywords here,
which is promising. Let’s try tokenizing our sample code example with the
new larger tokenizer:

print(new_tokenizer_larger(python_code).tokens())

['def', 'Ġsay', '_', 'hello', '():', 'ĊĠĠĠ', 'Ġprint', '("', 'Hello', ',',
'ĠWorld', '!")', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 'say', '_', 'hello', '()',
'Ċ']

Here also the indents are conveniently kept in the vocabulary, and we see
that common English words like Hello, World, and say are also included
as single tokens. This seems more in line with our expectations of the data
the model may see in the downstream task. Let’s investigate the common
Python keywords, as we did before:

for keyw in keyword.kwlist:
    if keyw not in new_tokenizer_larger.vocab:
        print(f'No, keyword `{keyw}` is not in the vocabulary')

No, keyword `nonlocal` is not in the vocabulary

We are still missing the nonlocal keyword, but it’s also rarely used in
practice as it makes the syntax more complex. Keeping it out of the
vocabulary seems reasonable. After this manual inspection, our larger
tokenizer seems well adapted for our task—but as we mentioned earlier,
objectively evaluating the performance of a tokenizer is a challenging task
without measuring the model’s performance. We will proceed with this one
and train a model to see how well it works in practice.

https://oreil.ly/IHAMu


NOTE
You can easily verify that the new tokenizer is about twice as efficient than the standard
GPT-2 tokenizer by comparing the sequence lengths of tokenized code examples. Our
tokenizer uses approximately half as many tokens as the existing one to encode a text,
which gives us twice the effective model context for free. When we train a new model
with the new tokenizer on a context window of size 1,024 it is equivalent to training the
same model with the old tokenizer on a context window of size 2,048, with the
advantage of being much faster and more memory efficient.

Saving a Custom Tokenizer on the Hub
Now that our tokenizer is trained, we should save it. The simplest way to
save it and be able to access it from anywhere later is to push it to the
Hugging Face Hub. This will be especially useful later, when we use a
separate training server.

To create a private model repository and save our tokenizer in it as a first
file, we can directly use the push_to_hub() method of the tokenizer. Since
we already authenticated our account with huggingface-cli login, we
can simply push the tokenizer as follows:

model_ckpt = "codeparrot"
org = "transformersbook"
new_tokenizer_larger.push_to_hub(model_ckpt, organization=org)

If you don’t want to push to an organization, you can simply omit the
organization argument. This will create a repository in your namespace
named codeparrot, which anyone can then load by running:

reloaded_tokenizer = AutoTokenizer.from_pretrained(org + "/" + model_ckpt)
print(reloaded_tokenizer(python_code).tokens())

['def', 'Ġsay', '_', 'hello', '():', 'ĊĠĠĠ', 'Ġprint', '("', 'Hello', ',',
'ĠWorld', '!")', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 'say', '_', 'hello', '()',
'Ċ']



The tokenizer loaded from the Hub behaves exactly as we just saw. We can
also investigate its files and saved vocabulary on the Hub. For
reproducibility, let’s save our smaller tokenizer as well:

new_tokenizer.push_to_hub(model_ckpt+ "-small-vocabulary", organization=org)

This was a deep dive into building a tokenizer for a specific use case. Next,
we will finally create a new model and train it from scratch.

Training a Model from Scratch
Here’s the part you’ve probably been waiting for: the model training. In this
section we’ll decide which architecture works best for the task, initialize a
fresh model without pretrained weights, set up a custom data loading class,
and create a scalable training loop. In the grand finale we will train small
and large GPT-2 models with 111 million and 1.5 billion parameters,
respectively! But let’s not get ahead ourselves. First, we need to decide
which architecture is best suited for code autocompletion.

TIP
In this section we will implement a longer than usual script to train a model on a
distributed infrastructure. Therefore, you should not run each code snippet
independently, but instead download the script provided in the  Transformers
repository. Follow the accompanying instructions to execute the script with 
Accelerate on your hardware.

A Tale of Pretraining Objectives
Now that we have access to a large-scale pretraining corpus and an efficient
tokenizer, we can start thinking about how to pretrain a transformer model.
With such a large codebase consisting of code snippets like the one shown
in Figure 10-1, we can tackle several tasks. Which one we choose will
influence our choice of pretraining objectives. Let’s have a look at three
common tasks.

https://oreil.ly/vcLeo
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Figure 10-1. An example of a Python function that could be found in our dataset

Causal language modeling
A natural task with textual data is to provide a model with the beginning of
a code sample and ask it to generate possible completions. This is a self-
supervised training objective in which we can use the dataset without
annotations. This should ring a bell: it’s the causal language modeling task
we encountered in Chapter 5. A directly related downstream task is code
autocompletion, so we’ll definitely put this model on the shortlist. A
decoder-only architecture such as the GPT family of models is usually best
suited for this task, as shown in Figure 10-2.

Figure 10-2. In causal language modeling, the future tokens are masked and the model has to predict
them; typically a decoder model such as GPT is used for such a task

Masked language modeling
A related but slightly different task is to provide a model with a noisy code
sample, for instance with a code instruction replaced by a random or
masked word, and ask it to reconstruct the original clean sample, as
illustrated in Figure 10-3. This is also a self-supervised training objective
and is commonly called masked language modeling or the denoising
objective. It’s harder to think about a downstream task directly related to
denoising, but denoising is generally a good pretraining task to learn
general representations for later downstream tasks. Many of the models that



we have used in the previous chapters (like BERT and XLM-RoBERTa) are
pretrained in that way. Training a masked language model on a large corpus
can thus be combined with fine-tuning the model on a downstream task
with a limited number of labeled examples.

Figure 10-3. In masked language modeling some of the input tokens are either masked or replaced,
and the model’s task is to predict the original tokens; this is the architecture underlying the encoder

branch of transformer models

Sequence-to-sequence training
An alternative task is to use a heuristic like regular expressions to separate
comments or docstrings from code and build a large-scale dataset of (code,
comments) pairs that can be used as an annotated dataset. The training task
is then a supervised training objective in which one category (code or
comment) is used as input for the model and the other category (comment
or code) is used as labels. This is a case of supervised learning with (input,
labels) pairs, as highlighted in Figure 10-4. With a large, clean, and diverse
dataset as well as a model with sufficient capacity, we can try to train a
model that learns to transcript comments in code or vice versa. A
downstream task directly related to this supervised training task is then
documentation generation from code or code generation from
documentation, depending on how we set our input/outputs. In this setting a
sequence is translated into another sequence, which is where encoder-
decoder architectures such as T5, BART, and PEGASUS shine.



Figure 10-4. Using an encoder-decoder architecture for a sequence-to-sequence task where the
inputs are split into comment/code pairs using heuristics: the model gets one element as input and

needs to generate the other one

Since we want to build a code autocompletion model, we’ll select the first
objective and choose a GPT architecture for the task. So let’s initialize a
fresh GPT-2 model!

Initializing the Model
This is the first time in this book that we won’t use the
from_pretrained() method to load a model but initialize the new model.
We will, however, load the configuration of gpt2-xl so that we use the
same hyperparameters and only adapt the vocabulary size for the new
tokenizer. We then initialize a new model with this configuration with the
from_config() method:

from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
config = AutoConfig.from_pretrained("gpt2-xl", vocab_size=len(tokenizer))
model = AutoModelForCausalLM.from_config(config)

Let’s check how large the model actually is:

print(f'GPT-2 (xl) size: {model_size(model)/1000**2:.1f}M parameters')

GPT-2 (xl) size: 1529.6M parameters



This is a 1.5B parameter model! This is a lot of capacity, but we also have a
large dataset. In general, large language models are more efficient to train
as long as the dataset is reasonably large. Let’s save the newly initialized
model in a models/ folder and push it to the Hub:

model.save_pretrained("models/" + model_ckpt, push_to_hub=True,
                      organization=org)

Pushing the model to the Hub may take a few minutes given the size of the
checkpoint (> 5 GB). Since this model is quite large, we’ll also create a
smaller version that we can train to make sure everything works before
scaling up. We will take the standard GPT-2 size as a base:

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
config_small = AutoConfig.from_pretrained("gpt2", vocab_size=len(tokenizer))
model_small = AutoModelForCausalLM.from_config(config_small)

print(f'GPT-2 size: {model_size(model_small)/1000**2:.1f}M parameters')

GPT-2 size: 111.0M parameters

And let’s save it to the Hub as well for easy sharing and reuse:

model_small.save_pretrained("models/" + model_ckpt + "-small", 
push_to_hub=True,
                            organization=org)

Now that we have two models we can train, we need to make sure we can
feed them the input data efficiently during training.

Implementing the Dataloader
To be able to train with maximal efficiency, we will want to supply our
model with sequences filling its context. For example, if the context length
of our model is 1,024 tokens, we always want to provide 1,024-token
sequences during training. But some of our code examples might be shorter
or longer than 1,024 tokens. To feed batches with full sequences of



sequence_length to our model, we should thus either drop the last
incomplete sequence or pad it. However, this will render our training
slightly less efficient and force us to take care of padding and masking
padded token labels. We are much more compute- than data-constrained, so
we’ll take the easy and efficient way here. We can use a little trick to make
sure we don’t lose too many trailing segments: we can tokenize several
examples and then concatenate them, separated by the special end-of-
sequence token, to get a very long sequence. Finally, we split this sequence
into equally sized chunks as shown in Figure 10-5. With this approach, we
lose at most a small fraction of the data at the end.

Figure 10-5. Preparing sequences of varying length for causal language modeling by concatenating
several tokenized examples with an EOS token before chunking them

We can, for instance, make sure we have roughly one hundred full
sequences in our tokenized examples by defining our input string character
length as:

input_characters = number_of_sequences * sequence_length * 
characters_per_token

where:

input_characters is the number of characters in the string input
to our tokenizer.



number_of_sequences is the number of (truncated) sequences we
would like from our tokenizer, (e.g., 100).

sequence_length is the number of tokens per sequence returned
by the tokenizer, (e.g., 1,024).

characters_per_token is the average number of characters per
output token that we first need to estimate.

If we input a string with input_characters characters we will thus get on
average number_of_sequences output sequences, and we can easily
calculate how much input data we are losing by dropping the last sequence.
If number_of_sequences=100 it means that we stack roughly 100
sequences and at most lose the last element, which might be too short or too
long. This corresponds to at most losing 1% of our dataset. At the same
time, this approach ensures that we don’t introduce a bias by cutting off the
majority of file endings.

Let’s first estimate the average character length per token in our dataset:

examples, total_characters, total_tokens = 500, 0, 0
dataset = load_dataset('transformersbook/codeparrot-train', split='train',
                       streaming=True)

for _, example in tqdm(zip(range(examples), iter(dataset)), total=examples):
    total_characters += len(example['content'])
    total_tokens += len(tokenizer(example['content']).tokens())

characters_per_token = total_characters / total_tokens

print(characters_per_token)

3.6233025034779565

With that we have all that’s needed to create our own IterableDataset
(which is a helper class provided by PyTorch) for preparing constant-length
inputs for the model. We just need to inherit from IterableDataset and



set up the __iter__() function that yields the next element with the logic
we just walked through:

import torch
from torch.utils.data import IterableDataset

class ConstantLengthDataset(IterableDataset):

    def __init__(self, tokenizer, dataset, seq_length=1024,
                 num_of_sequences=1024, chars_per_token=3.6):
        self.tokenizer = tokenizer
        self.concat_token_id = tokenizer.eos_token_id
        self.dataset = dataset
        self.seq_length = seq_length
        self.input_characters = seq_length * chars_per_token * 
num_of_sequences

    def __iter__(self):
        iterator = iter(self.dataset)
        more_examples = True
        while more_examples:
            buffer, buffer_len = [], 0
            while True:
                if buffer_len >= self.input_characters:
                    m=f"Buffer full: {buffer_len}>=
{self.input_characters:.0f}"
                    print(m)
                    break
                try:
                    m=f"Fill buffer: {buffer_len}<{self.input_characters:.0f}"
                    print(m)
                    buffer.append(next(iterator)["content"])
                    buffer_len += len(buffer[-1])
                except StopIteration:
                    iterator = iter(self.dataset)

            all_token_ids = []
            tokenized_inputs = self.tokenizer(buffer, truncation=False)
            for tokenized_input in tokenized_inputs["input_ids'"]:
            for tokenized_input in tokenized_inputs:
                all_token_ids.extend(tokenized_input + [self.concat_token_id])

            for i in range(0, len(all_token_ids), self.seq_length):
                input_ids = all_token_ids[i : i + self.seq_length]
                if len(input_ids) == self.seq_length:
                    yield torch.tensor(input_ids)



The __iter__() function builds up a buffer of strings until it contains
enough characters. All the elements in the buffer are tokenized and
concatenated with the EOS token, then the long sequence in
all_token_ids is chunked in seq_length-sized slices. Normally, we need
attention masks to stack padded sequences of varying length and make sure
the padding is ignored during training. We have taken care of this by only
providing sequences of the same (maximal) length, so we don’t need the
masks here and only return the input_ids. Let’s test our iterable dataset:

shuffled_dataset = dataset.shuffle(buffer_size=100)
constant_length_dataset = ConstantLengthDataset(tokenizer, shuffled_dataset,
                                                num_of_sequences=10)
dataset_iterator = iter(constant_length_dataset)

lengths = [len(b) for _, b in zip(range(5), dataset_iterator)]
print(f"Lengths of the sequences: {lengths}")

Fill buffer: 0<36864
Fill buffer: 3311<36864
Fill buffer: 9590<36864
Fill buffer: 22177<36864
Fill buffer: 25530<36864
Fill buffer: 31098<36864
Fill buffer: 32232<36864
Fill buffer: 33867<36864
Buffer full: 41172>=36864
Lengths of the sequences: [1024, 1024, 1024, 1024, 1024]

Nice, this works as intended and we get constant-length inputs for the
model. Now that we have a reliable data source for the model, it’s time to
build the actual training loop.

TIP
Notice that we shuffled the raw dataset before creating a ConstantLengthDataset.
Since this is an iterable dataset, we can’t just shuffle the whole dataset at the beginning.
Instead, we set up a buffer with size buffer_size and shuffle the elements in this buffer
before we get elements from the dataset.



Defining the Training Loop
We now have all the elements to write our training loop. One obvious
limitation of training our own language model is the memory limits on the
GPUs we will use. Even on a modern graphics card you can’t train a model
at GPT-2 scale in reasonable time. In this tutorial we will implement data
parallelism, which will help us utilize several GPUs for training.
Fortunately, we can use  Accelerate to make our code scalable. The 
Accelerate library is designed to make distributed training—and changing
the underlying hardware for training—easy. We can also use the Trainer
for distributed training but  Accelerate gives us full control over the
training loop, which is what we want to explore here.

 Accelerate provides an easy API to make training scripts run with mixed
precision and in any kind of distributed setting (single GPU, multiple
GPUs, and TPUs). The same code can then run seamlessly on your local
machine for debugging purposes or your beefy training cluster for the final
training run. You only need to make a handful of changes to your native
PyTorch training loop:

  import torch
  import torch.nn.functional as F
  from datasets import load_dataset
+ from accelerate import Accelerator

- device = 'cpu'
+ accelerator = Accelerator()

- model = torch.nn.Transformer().to(device)
+ model = torch.nn.Transformer()
  optimizer = torch.optim.Adam(model.parameters())
  dataset = load_dataset('my_dataset')
  data = torch.utils.data.DataLoader(dataset, shuffle=True)
+ model, optimizer, data = accelerator.prepare(model, optimizer, data)

  model.train()
  for epoch in range(10):
      for source, targets in data:
-         source = source.to(device)
-         targets = targets.to(device)
          optimizer.zero_grad()



          output = model(source)
          loss = F.cross_entropy(output, targets)
-         loss.backward()
+         accelerator.backward(loss)
          optimizer.step()

The core part of the changes is the call to prepare(), which makes sure the
model, optimizers, and dataloaders are all prepared and distributed on the
infrastructure. These minor changes to the PyTorch training loop enable you
to easily scale training across different infrastructures. With that in mind,
let’s start building up our training script and define a few helper functions.
First we set up the hyperparameters for training and wrap them in a
Namespace for easy access:

from argparse import Namespace

# Commented parameters correspond to the small model
config = {"train_batch_size": 2, # 12
          "valid_batch_size": 2, # 12
          "weight_decay": 0.1,
          "shuffle_buffer": 1000,
          "learning_rate": 2e-4, # 5e-4
          "lr_scheduler_type": "cosine",
          "num_warmup_steps": 750, # 2000
          "gradient_accumulation_steps": 16, # 1
          "max_train_steps": 50000, # 150000
          "max_eval_steps": -1,
          "seq_length": 1024,
          "seed": 1,
          "save_checkpoint_steps": 50000} # 15000

args = Namespace(**config)

Next, we set up logging for training. Since we are training a model from
scratch, the training run will take a while and require expensive
infrastructure. Therefore, we want to make sure that all the relevant
information is stored and easily accessible. The setup_logging() method
sets up three levels of logging: using a standard Python Logger,
TensorBoard, and Weights & Biases. Depending on your preferences and
use case, you can add or remove logging frameworks here:

https://oreil.ly/P9Xrm
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from torch.utils.tensorboard import SummaryWriter
import logging
import wandb

def setup_logging(project_name):
    logger = logging.getLogger(__name__)
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[
        logging.FileHandler(f"log/debug_{accelerator.process_index}.log"),
        logging.StreamHandler()])
    if accelerator.is_main_process: # We only want to set up logging once
        wandb.init(project=project_name, config=args)
        run_name = wandb.run.name
        tb_writer = SummaryWriter()
        tb_writer.add_hparams(vars(args), {'0': 0})
        logger.setLevel(logging.INFO)
        datasets.utils.logging.set_verbosity_debug()
        transformers.utils.logging.set_verbosity_info()
    else:
        tb_writer = None
        run_name = ''
        logger.setLevel(logging.ERROR)
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    return logger, tb_writer, run_name

Each worker gets a unique accelerator.process_index, which we use
with the FileHandler to write the logs of each worker to an individual file.
We also use the accel⁠erator.is_main_process attribute, which is only
true for the main worker. We make sure we don’t initialize the
TensorBoard and Weights & Biases loggers several times, and we decrease
the logging levels for the other workers. We return the autogenerated,
unique wandb.run.name, which we use later to name our experiment
branch on the Hub.

We’ll also define a function to log the metrics with TensorBoard and
Weights & Biases. We again use the accelerator.is_main_process here
to ensure that we only log the metrics once and not for each worker:

def log_metrics(step, metrics):
    logger.info(f"Step {step}: {metrics}")



    if accelerator.is_main_process:
        wandb.log(metrics)
        [tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]

Next, let’s write a function that creates the dataloaders for the training and
validation sets with our brand new ConstantLengthDataset class:

from torch.utils.data.dataloader import DataLoader

def create_dataloaders(dataset_name):
    train_data = load_dataset(dataset_name+'-train', split="train",
                              streaming=True)
    train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
                                    seed=args.seed)
    valid_data = load_dataset(dataset_name+'-valid', split="validation",
                              streaming=True)

    train_dataset = ConstantLengthDataset(tokenizer, train_data,
                                          seq_length=args.seq_length)
    valid_dataset = ConstantLengthDataset(tokenizer, valid_data,
                                          seq_length=args.seq_length)

    train_dataloader=DataLoader(train_dataset, 
batch_size=args.train_batch_size)
    eval_dataloader=DataLoader(valid_dataset, 
batch_size=args.valid_batch_size)
    return train_dataloader, eval_dataloader

At the end we wrap the dataset in a DataLoader, which also handles the
batching. ​ ⁠ Accelerate will take care of distributing the batches to each
worker.

Another aspect we need to implement is optimization. We will set up the
optimizer and learning rate schedule in the main loop, but we define a
helper function here to differentiate the parameters that should receive
weight decay. In general, biases and LayerNorm weights are not subject to
weight decay:

def get_grouped_params(model, no_decay=["bias", "LayerNorm.weight"]):
    params_with_wd, params_without_wd = [], []
    for n, p in model.named_parameters():
        if any(nd in n for nd in no_decay):



            params_without_wd.append(p)
        else:
            params_with_wd.append(p)
    return [{'params': params_with_wd, 'weight_decay': args.weight_decay},
            {'params': params_without_wd, 'weight_decay': 0.0}]

Finally, we want to evaluate the model on the validation set from time to
time, so let’s add an evaluation function we can call that calculates the loss
and perplexity on the evaluation set:

def evaluate():
    model.eval()
    losses = []
    for step, batch in enumerate(eval_dataloader):
        with torch.no_grad():
            outputs = model(batch, labels=batch)
        loss = outputs.loss.repeat(args.valid_batch_size)
        losses.append(accelerator.gather(loss))
        if args.max_eval_steps > 0 and step >= args.max_eval_steps: break
    loss = torch.mean(torch.cat(losses))
    try:

perplexity = torch.exp(loss)
    except OverflowError:

perplexity = torch.tensor(float("inf"))
    return loss.item(), perplexity.item()

The perplexity measures how well the model’s output probability
distributions predict the targeted tokens. So a lower perplexity corresponds
to a better performance. Note that we can compute the perplexity by
exponentiating the cross-entropy loss which we get from the model’s
output. Especially at the start of training when the loss is still high, it is
possible to get a numerical overflow when calculating the perplexity. We
catch this error and set the perplexity to infinity in these instances.

Before we put it all together in the training script, there is one more
additional function that we’ll use. As you know by now, the Hugging Face
Hub uses Git under the hood to store and version models and datasets. With
the Repository class from the huggingface_hub library you can
programmatically access the repository and pull, branch, commit, or push.



We’ll use this in our script to continuously push model checkpoints to the
Hub during training.

Now that we have all these helper functions in place, we are ready to write
the heart of the training script:

set_seed(args.seed)

# Accelerator
accelerator = Accelerator()
samples_per_step = accelerator.state.num_processes * args.train_batch_size

# Logging
logger, tb_writer, run_name = setup_logging(project_name.split("/")[1])
logger.info(accelerator.state)

# Load model and tokenizer
if accelerator.is_main_process:
    hf_repo = Repository("./", clone_from=project_name, revision=run_name)
model = AutoModelForCausalLM.from_pretrained("./", 
gradient_checkpointing=True)
tokenizer = AutoTokenizer.from_pretrained("./")

# Load dataset and dataloader
train_dataloader, eval_dataloader = create_dataloaders(dataset_name)

# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model), lr=args.learning_rate)
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer,
                             num_warmup_steps=args.num_warmup_steps,
                             num_training_steps=args.max_train_steps,)
def get_lr():
    return optimizer.param_groups[0]['lr']

# Prepare everything with our `accelerator` (order of args is not important)
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
    model, optimizer, train_dataloader, eval_dataloader)

# Train model
model.train()
completed_steps = 0
for step, batch in enumerate(train_dataloader, start=1):
    loss = model(batch, labels=batch).loss
    log_metrics(step, {'lr': get_lr(), 'samples': step*samples_per_step,
                       'steps': completed_steps, 'loss/train': loss.item()})
    loss = loss / args.gradient_accumulation_steps



    accelerator.backward(loss)
    if step % args.gradient_accumulation_steps == 0:
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
        completed_steps += 1
    if step % args.save_checkpoint_steps == 0:
        logger.info('Evaluating and saving model checkpoint')
        eval_loss, perplexity = evaluate()
        log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        if accelerator.is_main_process:
            unwrapped_model.save_pretrained("./")
            hf_repo.push_to_hub(commit_message=f'step {step}')
        model.train()
    if completed_steps >= args.max_train_steps:
        break

# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
eval_loss, perplexity = evaluate()
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
    unwrapped_model.save_pretrained("./")
    hf_repo.push_to_hub(commit_message=f'final model')

This is quite a code block, but remember that this is all the code you need to
train a fancy, large language model on a distributed infrastructure. Let’s
deconstruct the script a little bit and highlight the most important parts:

Model saving

We run the script from within the model repository, and at the start we
check out a new branch named after the run_name we get from Weights
& Biases. Later, we commit the model at each checkpoint and push it to
the Hub. With that setup each experiment is on a new branch and each
commit represents a model checkpoint. Note that we need to call
wait_for_everyone() and unwrap_model() to make sure the model is
properly synchronized when we store it.



Optimization

For the model optimization we use AdamW with a cosine learning rate
schedule after a linear warming-up period. For the hyperparameters, we
closely follow the parameters described in the GPT-3 paper for similar-
sized models.

Evaluation

We evaluate the model on the evaluation set every time we save—that
is, every save_checkpoint_steps and after training. Along with the
validation loss we also log the validation perplexity.

Gradient accumulation and checkpointing

The required batch sizes don’t fit in a GPU’s memory, even when we
run on the latest GPUs. Therefore, we implement gradient
accumulation, which gathers gradients over several backward passes
and optimizes once enough gradients are accumulated. In Chapter 6, we
saw how we can do this with the Trainer. For the large model, even a
single batch does not quite fit on a single GPU. Using a method called
gradient checkpointing we can trade some of the memory footprint for
an approximately 20% training slowdown.  This allows us to fit even
the large model in a single GPU.

One aspect that might still be a bit obscure is what it means to train a model
on multiple GPUs. There are several approaches to train models in a
distributed fashion depending on the size of your model and volume of data.
The approach utilized by  Accelerate is called
DataDistributedParallelism (DDP). The main advantage of this
approach is that it allows you to train models faster with larger batch sizes
that wouldn’t fit into any single GPU. The process is illustrated in
Figure 10-6.
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Figure 10-6. Illustration of the processing steps in DDP with four GPUs

Let’s go through the pipeline step by step:

1. Each worker consists of a GPU. In  Accelerate, there is a
dataloader running on the main process that prepares the batches of
data and sends them to all the workers.

2. Each GPU receives a batch of data and calculates the loss and
respective accumulated gradients from forward and backward
passes with a local copy of the model.

3. The gradients from each node are averaged with a reduce pattern,
and the averaged gradients are sent back to each worker.

4. The gradients are applied using the optimizer on each node
individually. Although this might seem like redundant work, it
avoids transferring copies of the large models between nodes.
We’ll need to update the model at least once, and without this
approach the other nodes would each need to wait until they’d
received the updated version.



5. Once all models are updated we start all over again, with the main
worker preparing new batches.

This simple pattern allows us to train large models extremely fast by scaling
up to the number of available GPUs without much additional logic.
Sometimes, however, this is not enough. For example, if the model does not
fit on a single GPU you might need more sophisticated parallelism
strategies. Now that we have all the pieces needed for training, it’s time to
launch a job! As you’ll see in the next section, this is quite simple to do.

The Training Run
We’ll save the training script in a file called codeparrot_training.py so that
we can execute it on our training server. To make life even easier, we’ll add
it along with a requirements.txt file containing all the required Python
dependencies to the model repository on the Hub. Remember that the
models on the Hub are essentially Git repositories so we can just clone the
repository, add any files we want, and then push them back to the Hub. On
the training server, we can then spin up training with the following handful
of commands:

$ git clone https://huggingface.co/transformersbook/codeparrot

$ cd codeparrot

$ pip install -r requirements.txt

$ wandb login

$ accelerate config

$ accelerate launch codeparrot_training.py

And that’s it—our model is now training! Note that wandb login will
prompt you to authenticate with Weights & Biases for logging. The
accelerate config command will guide you through setting up the
infrastructure; you can see the settings used for this experiment in Table 10-
2. We use an a2-megagpu-16g instance for all experiments, which is a
workstation with 16 A100 GPUs with 40 GB of memory each.
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Table 10-2. Configuration used to
train the CodeParrot models

Setting Value

Compute environment? multi-GPU

How many machines? 1

DeepSpeed? No

How many processes? 16

Use FP16? Yes

Running the training script with these settings on that infrastructure takes
about 24 hours and 7 days for the small and large models, respectively. If
you train your own custom model, make sure your code runs smoothly on
smaller infrastructure in order to make sure that expensive long run goes
smoothly as well. After the full training run completes successfully, you can
merge the experiment branch on the Hub back into the main branch with the
following commands:

$ git checkout main

$ git merge <RUN_NAME>

$ git push

Naturally, RUN_NAME should be the name of the experiment branch on the
Hub you would like to merge. Now that we have a trained model, let’s have
a look at how we can investigate its performance.

Results and Analysis
After anxiously monitoring the logs for a week, you will probably see loss
and perplexity curves that look like those shown in Figure 10-7. The
training loss and validation perplexity go down continuously, and the loss
curve looks almost linear on the log-log scale. We also see that the large



model converges faster in terms of processed tokens, although the overall
training takes longer.

Figure 10-7. Training loss and validation perplexity as a function of processed tokens for the small
and large CodeParrot models



So what can we do with our freshly baked language model, straight out of
the GPU oven? Well, we can use it to write some code for us. There are two
types of analyses we can conduct: qualitative and quantitative. In the
former, we look at concrete examples and try to better understand in which
cases the model succeeds and where it fails. In the latter case, we evaluate
the model’s performance statistically on a large set of test cases. In this
section we’ll explore how we can use our model. First we’ll have a look at a
few examples, and then we’ll briefly discuss how we could evaluate the
model systematically and more robustly. First, let’s wrap the small model in
a pipeline and use it to continue some code inputs:

from transformers import pipeline, set_seed

model_ckpt = 'transformersbook/codeparrot-small'
generation = pipeline('text-generation', model=model_ckpt, device=0)

Now we can use the generation pipeline to generate candidate completions
from a given prompt. By default, the pipeline will generate code until a
predefined maximum length, and the output could contain multiple
functions or classes. So, to keep the outputs concise, we’ll implement a
first_block() function that uses regular expressions to extract the first
occurrence of a function or class. The complete_code() function below
applies this logic to print out the completions generated by CodeParrot:

import re
from transformers import set_seed

def first_block(string):
    return re.split('\nclass|\ndef|\n#|\n@|\nprint|\nif', string)[0].rstrip()

def complete_code(pipe, prompt, max_length=64, num_completions=4, seed=1):
    set_seed(seed)
    gen_kwargs = {"temperature":0.4, "top_p":0.95, "top_k":0, "num_beams":1,
                  "do_sample":True,}
    code_gens = generation(prompt, num_return_sequences=num_completions,
                            max_length=max_length, **gen_kwargs)
    code_strings = []
    for code_gen in code_gens:
        generated_code = first_block(code_gen['generated_text'][len(prompt):])



        code_strings.append(generated_code)
    print(('\n'+'='*80 + '\n').join(code_strings))

Let’s start with a simple example and have the model write a function for us
that calculates the area of a rectangle:

prompt = '''def area_of_rectangle(a: float, b: float):
    """Return the area of the rectangle."""'''
complete_code(generation, prompt)

    return math.sqrt(a * b)
==============================================================================
==

    return a * b / 2.0
==============================================================================
==

    return a * b
==============================================================================
==

    return a * b / a

That looks pretty good! Although not all the generations are correct, the
right solution is in there. Now, can the model also solve a more complex
task of extracting URLs from an HTML string? Let’s see:

prompt = '''def get_urls_from_html(html):
    """Get all embedded URLs in a HTML string."""'''
complete_code(generation, prompt)

    if not html:
        return []
    return [url for url in re.findall(r'<a href="(/[^/]+/[^"]+?)">', html)]
==============================================================================
==

    return [url for url in re.findall(r'<a href="(.*?)"', html)
            if url]
==============================================================================
==



    return [url for url in re.findall(r'<a href="(/.*)",', html)]
==============================================================================
==

    return re.findall(r'<a href="(.*?)" class="url"[^>]*>', html)

Although it didn’t quite get it right in the second attempt, the other three
generations are correct. We can test the function on the Hugging Face home
page:

import requests

def get_urls_from_html(html):
    return [url for url in re.findall(r'<a href="(.*?)"', html) if url]

print(" | ".join(get_urls_from_html(requests.get('https://hf.co/').text)))

https://github.com/huggingface/transformers | /allenai | /facebook |
/asteroid-team | /google | /amazon | /speechbrain | /microsoft | /grammarly |
/models | /inference-api | /distilbert-base-uncased |
/dbmdz/bert-large-cased-finetuned-conll03-english |
https://huggingface.co/transformers | https://arxiv.org/abs/1811.06031 |
https://arxiv.org/abs/1803.10631 | https://transformer.huggingface.co/ | 
/coref
| https://medium.com/huggingface/distilbert-8cf3380435b5

We can see that all the URLs starting with https are external pages,
whereas the others are subpages of the main website. That’s exactly what
we wanted. Finally, let’s load the large model and see if we can use it to
translate a function from pure Python to NumPy:

model_ckpt = 'transformersbook/codeparrot'
generation = pipeline('text-generation', model=model_ckpt, device=0)

prompt = '''# a function in native python:
def mean(a):
    return sum(a)/len(a)

# the same function using numpy:
import numpy as np
def mean(a):'''
complete_code(generation, prompt, max_length=64)



Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.

    return np.mean(a)
==============================================================================
==

    return np.mean(a)
==============================================================================
==

    return np.mean(a)
==============================================================================
==

    return np.mean(a)

That worked! Let’s see if we can also use the CodeParrot model to help us
build a Scikit-learn model:

prompt = '''X = np.random.randn(100, 100)
y = np.random.randint(0, 1, 100)

# fit random forest classifier with 20 estimators'''
complete_code(generation, prompt, max_length=96)

Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.

reg = DummyRegressor()

forest = RandomForestClassifier(n_estimators=20)

forest.fit(X, y)
==============================================================================
==

clf = ExtraTreesClassifier(n_estimators=100, max_features='sqrt')
clf.fit(X, y)
==============================================================================
==

clf = RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=1)
clf.fit(X, y)
==============================================================================
==



clf = RandomForestClassifier(n_estimators=20)
clf.fit(X, y)

Although in the second attempt it tried to train an extra-trees classifier, it
generated what we asked in the other cases.

In Chapter 5 we explored a few metrics to measure the quality of generated
text. Among these was the BLEU score, which is frequently used for that
purpose. While this metric has limitations in general, it is particularly badly
suited for our use case. The BLEU score measures the overlap of n-grams
between the reference texts and the generated texts. When writing code we
have a lot of freedom in terms of variables and classes, and the success of a
program does not depend on the naming scheme as long as it is consistent.
However, the BLEU score would punish a generation that deviates from the
reference naming, which might in fact be almost impossible to predict (even
for a human coder).

In software development there are much better and more reliable ways to
measure the quality of code, such as unit tests. This is how all the OpenAI
Codex models were evaluated: by running several code generations for
coding tasks through a set of unit tests and calculating the fraction of
generations that pass the tests.  For a proper performance measure we
should apply the same evaluation regimen to our models but this is beyond
the scope of this chapter. You can find details on how CodeParrot performs
on the HumanEval benchmark in the model’s accompanying blog post.

10

https://oreil.ly/40Uy7
https://oreil.ly/hKOP8


Conclusion
Let’s take a step back for a moment and contemplate what we have
achieved in this chapter. We set out to create a code autocomplete function
for Python. First we built a custom, large-scale dataset suitable for
pretraining a large language model. Then we created a custom tokenizer
that is able to efficiently encode Python code with that dataset. Finally, with
the help of  Accelerate we put everything together and wrote a training
script to train small and large versions of a GPT-2 model from scratch on a
multi-GPU infrastructure, in under two hundred lines of code. Investigating
the model outputs, we saw that it can generate reasonable code
continuations, and we discussed how the model could be systematically
evaluated.

You now not only know how to fine-tune any of the many pretrained
models on the Hub, but also how to pretrain a custom model from scratch
when you have enough data and compute resources available. You are now
prepared to tackle almost any NLP use case with transformers. So the
question is: where to next? In the next and last chapter, we’ll have a look at
where the field is currently moving and what new exciting applications and
domains beyond NLP transformer models can tackle.
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Chapter 11. Future Directions

Throughout this book we’ve explored the powerful capabilities of
transformers across a wide range of NLP tasks. In this final chapter, we’ll
shift our perspective and look at some of the current challenges with these
models and the research trends that are trying to overcome them. In the first
part we explore the topic of scaling up transformers, both in terms of model
and corpus size. Then we turn our attention toward various techniques that
have been proposed to make the self-attention mechanism more efficient.
Finally, we explore the emerging and exciting field of multimodal
transformers, which can model inputs across multiple domains like text,
images, and audio.

Scaling Transformers
In 2019, the researcher Richard Sutton wrote a provocative essay entitled
“The Bitter Lesson” in which he argued that:

The biggest lesson that can be read from 70 years of AI research is that
general methods that leverage computation are ultimately the most
effective, and by a large margin…. Seeking an improvement that makes a
difference in the shorter term, researchers seek to leverage their human
knowledge of the domain, but the only thing that matters in the long run
is the leveraging of computation. These two need not run counter to each
other, but in practice they tend to…. And the human-knowledge approach
tends to complicate methods in ways that make them less suited to taking
advantage of general methods leveraging computation.

The essay provides several historical examples, such as playing chess or
Go, where the approach of encoding human knowledge within AI systems
was ultimately outdone by increased computation. Sutton calls this the
“bitter lesson” for the AI research field:
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We have to learn the bitter lesson that building in how we think we think
does not work in the long run…. One thing that should be learned from
the bitter lesson is the great power of general purpose methods, of
methods that continue to scale with increased computation even as the
available computation becomes very great. The two methods that seem to
scale arbitrarily in this way are search and learning.

There are now signs that a similar lesson is at play with transformers; while
many of the early BERT and GPT descendants focused on tweaking the
architecture or pretraining objectives, the best-performing models in mid-
2021, like GPT-3, are essentially basic scaled-up versions of the original
models without many architectural modifications. In Figure 11-1 you can
see a timeline of the development of the largest models since the release of
the original Transformer architecture in 2017, which shows that model size
has increased by over four orders of magnitude in just a few years!

Figure 11-1. Parameter counts over time for prominent Transformer architectures

This dramatic growth is motivated by empirical evidence that large
language models perform better on downstream tasks and that interesting
capabilities such as zero-shot and few-shot learning emerge in the 10- to
100-billion parameter range. However, the number of parameters is not the
only factor that affects model performance; the amount of compute and
training data must also be scaled in tandem to train these monsters. Given



that large language models like GPT-3 are estimated to cost $4.6 million to
train, it is clearly desirable to be able to estimate the model’s performance
in advance. Somewhat surprisingly, the performance of language models
appears to obey a power law relationship with model size and other factors
that is codified in a set of scaling laws.  Let’s take a look at this exciting
area of research.

Scaling Laws
Scaling laws allow one to empirically quantify the “bigger is better”
paradigm for language models by studying their behavior with varying
compute budget C, dataset size D, and model size N.  The basic idea is to
chart the dependence of the cross-entropy loss L on these three factors and
determine if a relationship emerges. For autoregressive models like those in
the GPT family, the resulting loss curves are shown in Figure 11-2, where
each blue curve represents the training run of a single model.

Figure 11-2. Power-law scaling of test loss versus compute budget (left), dataset size (middle), and
model size (right) (courtesy of Jared Kaplan)

From these loss curves we can draw a few conclusions about:

The relationship of performance and scale

Although many NLP researchers focus on architectural tweaks or
hyperparameter optimization (like tuning the number of layers or
attention heads) to improve performance on a fixed set of datasets, the
implication of scaling laws is that a more productive path toward better
models is to focus on increasing N, C, and D in tandem.
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Smooth power laws

The test loss L has a power law relationship with each of N, C, and D
across several orders of magnitude (power law relationships are linear
on a log-log scale). For X = N , C, D we can express these power law
relationships as L (X) ∼ 1/X α, where α is a scaling exponent that is
determined by a fit to the loss curves shown in Figure 11-2.  Typical
values for αX lie in the 0.05–0.095 range, and one attractive feature of
these power laws is that the early part of a loss curve can be
extrapolated to predict what the approximate loss would be if training
was conducted for much longer.

Sample efficiency

Large models are able to reach the same performance as smaller models
with a smaller number of training steps. This can be seen by comparing
the regions where a loss curve plateaus over some number of training
steps, which indicates one gets diminishing returns in performance
compared to simply scaling up the model.

Somewhat surprisingly, scaling laws have also been observed for other
modalities, like images, videos, and mathematical problem solving, as
illustrated in Figure 11-3.
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Figure 11-3. Power-law scaling of test loss versus compute budget across a wide range of modalities
(courtesy of Tom Henighan)

Whether power-law scaling is a universal property of transformer language
models is currently unknown. For now, we can use scaling laws as a tool to
extrapolate large, expensive models without having to explicitly train them.
However, scaling isn’t quite as easy as it sounds. Let’s now look at a few
challenges that crop up when charting this frontier.

Challenges with Scaling
While scaling up sounds simple in theory (“just add more layers!”), in
practice there are many difficulties. Here are a few of the biggest challenges
you’re likely to encounter when scaling language models:

Infrastructure

Provisioning and managing infrastructure that potentially spans
hundreds or thousands of nodes with as many GPUs is not for the faint-
hearted. Are the required number of nodes available? Is communication
between nodes a bottleneck? Tackling these issues requires a very
different skill set than that found in most data science teams, and
typically involves specialized engineers familiar with running large-
scale, distributed experiments.



Cost

Most ML practitioners have experienced the feeling of waking up in the
middle of the night in a cold sweat, remembering they forgot to shut
down that fancy GPU on the cloud. This feeling intensifies when
running large-scale experiments, and most companies cannot afford the
teams and resources necessary to train models at the largest scales.
Training a single GPT-3-sized model can cost several million dollars,
which is not the kind of pocket change that many companies have lying
around.

Dataset curation

A model is only as good as the data it is trained on. Training large
models requires large, high-quality datasets. When using terabytes of
text data it becomes harder to make sure the dataset contains high-
quality text, and even preprocessing becomes challenging. Furthermore,
one needs to ensure that there is a way to control biases like sexism and
racism that these language models can acquire when trained on large-
scale webtext corpora. Another type of consideration revolves around
licensing issues with the training data and personal information that can
be embedded in large text datasets.

Model evaluation

Once the model is trained, the challenges don’t stop. Evaluating the
model on downstream tasks again requires time and resources. In
addition, you’ll want to probe the model for biased and toxic
generations, even if you are confident that you created a clean dataset.
These steps take time and need to be carried out thoroughly to minimize
the risks of adverse effects later on.

Deployment

Finally, serving large language models also poses a significant
challenge. In Chapter 8 we looked at a few approaches, such as
distillation, pruning, and quantization, to help with these issues.
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However, this may not be enough if you are starting with a model that is
hundreds of gigabytes in size. Hosted services such as the OpenAI API
or Hugging Face’s Accelerated Inference API are designed to help
companies that cannot or do not want to deal with these deployment
challenges.

This is by no means an exhaustive list, but it should give you an idea of the
kinds of considerations and challenges that go hand in hand with scaling
language models to ever larger sizes. While most of these efforts are
centralized around a few institutions that have the resources and know-how
to push the boundaries, there are currently two community-led projects that
aim to produce and probe large language models in the open:

BigScience

This is a one-year-long research workshop that runs from 2021 to 2022
and is focused on large language models. The workshop aims to foster
discussions and reflections around the research questions surrounding
these models (capabilities, limitations, potential improvements, bias,
ethics, environmental impact, role in the general AI/cognitive research
landscape) as well as the challenges around creating and sharing such
models and datasets for research purposes and among the research
community. The collaborative tasks involve creating, sharing, and
evaluating a large multilingual dataset and a large language model. An
unusually large compute budget was allocated for these collaborative
tasks (several million GPU hours on several thousands GPUs). If
successful, this workshop will run again in the future, focusing on
involving an updated or different set of collaborative tasks. If you want
to join the effort, you can find more information at the project’s website.

EleutherAI

This is a decentralized collective of volunteer researchers, engineers,
and developers focused on AI alignment, scaling, and open source AI
research. One of its aims is to train and open-source a GPT-3-sized
model, and the group has already released some impressive models like

https://beta.openai.com/
https://oreil.ly/E4q3b
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GPT-Neo and GPT-J, which is a 6-billion-parameter model and
currently the best-performing publicly available transformer in terms of
zero-shot performance. You can find more information at EleutherAI’s
website.

Now that we’ve explored how to scale transformers across compute, model
size, and dataset size, let’s examine another active area of research: making
self-attention more efficient.

Attention Please!
We’ve seen throughout this book that the self-attention mechanism plays a
central role in the architecture of transformers; after all, the original
Transformer paper is called “Attention Is All You Need”! However, there is
a key challenge associated with self-attention: since the weights are
generated from pairwise comparisons of all the tokens in a sequence, this
layer becomes a computational bottleneck when trying to process long
documents or apply transformers to domains like speech processing or
computer vision. In terms of time and memory complexity, the self-
attention layer of the Transformer architecture naively scales like O(n2),
where n is the length of the sequence.

As a result, much of the recent research on transformers has focused on
making self-attention more efficient. The research directions are broadly
clustered in Figure 11-4.
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Figure 11-4. A summarization of research directions to make attention more efficient (courtesy of Yi
Tay et al.)

A common pattern is to make attention more efficient by introducing
sparsity into the attention mechanism or by applying kernels to the attention
matrix. Let’s take a quick look at some of the most popular approaches to
make self-attention more efficient, starting with sparsity.

Sparse Attention
One way to reduce the number of computations that are performed in the
self-attention layer is to simply limit the number of query-key pairs that are
generated according to some predefined pattern. There have been many
sparsity patterns explored in the literature, but most of them can be
decomposed into a handful of “atomic” patterns illustrated in Figure 11-5.

6



Figure 11-5. Common atomic sparse attention patterns for self-attention: a colored square means the
attention score is calculated, while a blank square means the score is discarded (courtesy of

Tianyang Lin)

We can describe these patterns as follows:

Global attention

Defines a few special tokens in the sequence that are allowed to attend
to all other tokens

Band attention

Computes attention over a diagonal band

Dilated attention

Skips some query-key pairs by using a dilated window with gaps

Random attention

Randomly samples a few keys for each query to compute attention
scores

Block local attention

Divides the sequence into blocks and restricts attention within these
blocks

In practice, most transformer models with sparse attention use a mix of the
atomic sparsity patterns shown in Figure 11-5 to generate the final attention
matrix. As illustrated in Figure 11-6, models like Longformer use a mix of
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global and band attention, while BigBird adds random attention to the mix.
Introducing sparsity into the attention matrix enables these models to
process much longer sequences; in the case of Longformer and BigBird the
maximum sequence length is 4,096 tokens, which is 8 times larger than
BERT!

Figure 11-6. Sparse attention patterns for recent transformer models (courtesy of Tianyang Lin)

NOTE
It is also possible to learn the sparsity pattern in a data-driven manner. The basic idea
behind such approaches is to cluster the tokens into chunks. For example, Reformer uses
a hash function to cluster similar tokens together.

Now that we’ve seen how sparsity can reduce the complexity of self-
attention, let’s take a look at another popular approach based on changing
the operations directly.

Linearized Attention
An alternative way to make self-attention more efficient is to change the
order of operations that are involved in computing the attention scores.
Recall that to compute the self-attention scores of the queries and keys we
need a similarity function, which for the transformer is just a simple dot
product. However, for a general similarity function sim(qi, kj) we can
express the attention outputs as the following equation:

( )

https://oreil.ly/yFPyj
https://oreil.ly/yIVvX


yi = ∑
j

sim(Qi, Kj)

∑k sim (Qi, Kk)
Vj

The trick behind linearized attention mechanisms is to express the similarity
function as a kernel function that decomposes the operation into two pieces:

sim (Qj, Kj) = ϕ(Qi)
T

ϕ (Kj)

where ϕ is typically a high-dimensional feature map. Since ϕ(Qi) is
independent of j and k, we can pull it under the sums to write the attention
outputs as follows:

yi =
ϕ(Qi)

T ∑j ϕ (Kj)V T
j

ϕ(Qi)
T ∑k ϕ (Kk)

By first computing ∑j ϕ (Kj)V T
j  and ∑k ϕ (Kk), we can effectively

linearize the space and time complexity of self-attention! The comparison
between the two approaches is illustrated in Figure 11-7. Popular models
that implement linearized self-attention include Linear Transformer and
Performer.

Figure 11-7. Complexity difference between standard self-attention and linearized self-attention
(courtesy of Tianyang Lin)

In this section we’ve seen how Transformer architectures in general and
attention in particular can be scaled up to achieve even better performance
on a wide range of tasks. In the next section we’ll have a look at how
transformers are branching out of NLP into other domains such as audio
and computer vision.
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Going Beyond Text
Using text to train language models has been the driving force behind the
success of transformer language models, in combination with transfer
learning. On the one hand, text is abundant and enables self-supervised
training of large models. On the other hand, textual tasks such as
classification and question answering are common, and developing
effective strategies for them allows us to address a wide range of real-world
problems.

However, there are limits to this approach, including:

Human reporting bias

The frequencies of events in text may not represent their true
frequencies.  A model solely trained on text from the internet might
have a very distorted image of the world.

Common sense

Common sense is a fundamental quality of human reasoning, but is
rarely written down. As such, language models trained on text might
know many facts about the world, but lack basic common-sense
reasoning.

Facts

A probabilistic language model cannot store facts in a reliable way and
can produce text that is factually wrong. Similarly, such models can
detect named entities, but have no direct way to access information
about them.

Modality

Language models have no way to connect to other modalities that could
address the previous points, such as audio or visual signals or tabular
data.
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So, if we could solve the modality limitations we could potentially address
some of the others as well. Recently there has been a lot of progress in
pushing transformers to new modalities, and even building multimodal
models. In this section we’ll highlight a few of these advances.

Vision
Vision has been the stronghold of convolutional neural networks (CNNs)
since they kickstarted the deep learning revolution. More recently,
transformers have begun to be applied to this domain and to achieve
efficiency similar to or better than CNNs. Let’s have a look at a few
examples.

iGPT
Inspired by the success of the GPT family of models with text, iGPT (short
for image GPT) applies the same methods to images.  By viewing images
as sequences of pixels, iGPT uses the GPT architecture and autoregressive
pretraining objective to predict the next pixel values. Pretraining on large
image datasets enables iGPT to “autocomplete” partial images, as displayed
in Figure 11-8. It also achieves performant results on classification tasks
when a classification head is added to the model.
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Figure 11-8. Examples of image completions with iGPT (courtesy of Mark Chen)

ViT
We saw that iGPT follows closely the GPT-style architecture and
pretraining procedure. Vision Transformer (ViT)  is a BERT-style take on
transformers for vision, as illustrated in Figure 11-9. First the image is split
into smaller patches, and each of these patches is embedded with a linear
projection. The results strongly resemble the token embeddings in BERT,
and what follows is virtually identical. The patch embeddings are combined
with position embeddings and then fed through an ordinary transformer
encoder. During pretraining some of the patches are masked or distorted,
and the objective is to predict the average color of the masked patch.
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Figure 11-9. The ViT architecture (courtesy of Alexey Dosovitskiy et al.)

Although this approach did not produce better results when pretrained on
the standard ImageNet dataset, it scaled significantly better than CNNs on
larger datasets.

ViT is integrated in  Transformers, and using it is very similar to the NLP
pipelines that we’ve used throughout this book. Let’s start by loading the
image of a rather famous dog:

from PIL import Image

import matplotlib.pyplot as plt

image = Image.open("images/doge.jpg")

plt.imshow(image)

plt.axis("off")

plt.show()



To load a ViT model, we just need to specify the image-classification
pipeline, and then we feed in the image to extract the predicted classes:

import pandas as pd

from transformers import pipeline

image_classifier = pipeline("image-classification")

preds = image_classifier(image)

preds_df = pd.DataFrame(preds)

preds_df

score label

0 0.643599 Eskimo dog, husky

1 0.207407 Siberian husky

2 0.060160 dingo, warrigal, warragal, Canis dingo

3 0.035359 Norwegian elkhound, elkhound

4 0.012927 malamute, malemute, Alaskan malamute

Great, the predicted class seems to match the image!

A natural extension of image models is video models. In addition to the
spatial dimensions, videos come with a temporal dimension. This makes the
task more challenging as the volume of data gets much bigger and one
needs to deal with the extra dimension. Models such as TimeSformer
introduce a spatial and temporal attention mechanism to account for both.12



In the future, such models can help build tools for a wide range of tasks
such as classification or annotation of video sequences.

Tables
A lot of data, such as customer data within a company, is stored in
structured databases instead of as raw text. We saw in Chapter 7 that with
question answering models we can query text with a question in natural
text. Wouldn’t it be nice if we could do the same with tables, as shown in
Figure 11-10?

Figure 11-10. Question answering over a table (courtesy of Jonathan Herzig)

TAPAS (short for Table Parser)  to the rescue! This model applies the
Transformer architecture to tables by combining the tabular information
with the query, as illustrated in Figure 11-11.

Figure 11-11. Architecture of TAPAS (courtesy of Jonathan Herzig)

Let’s look at an example of how TAPAS works in practice. We have created
a fictitious version of this book’s table of contents. It contains the chapter
number, the name of the chapter, as well as the starting and ending pages of
the chapters:
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book_data = [

    {"chapter": 0, "name": "Introduction", "start_page": 1, "end_page": 11},

    {"chapter": 1, "name": "Text classification", "start_page": 12,

     "end_page": 48},

    {"chapter": 2, "name": "Named Entity Recognition", "start_page": 49,

     "end_page": 73},

    {"chapter": 3, "name": "Question Answering", "start_page": 74,

     "end_page": 120},

    {"chapter": 4, "name": "Summarization", "start_page": 121,

     "end_page": 140},

    {"chapter": 5, "name": "Conclusion", "start_page": 141,

     "end_page": 144}

]

We can also easily add the number of pages each chapter has with the
existing fields. In order to play nicely with the TAPAS model, we need to
make sure that all columns are of type str:

table = pd.DataFrame(book_data)

table['number_of_pages'] = table['end_page']-table['start_page']

table = table.astype(str)

table

chapter name start_page end_page

0 0 Introduction 1 11

1 1 Text classification 12 48

2
2 Named Entity

Recognition
49 73

3
3 Question

Answering
74 120

4 4 Summarization 121 140

5 5 Conclusion 141 144

By now you should know the drill. We first load the table-question-
answering pipeline:

table_qa = pipeline("table-question-answering")



and then pass some queries to extract the answers:

table_qa = pipeline("table-question-answering")

queries = ["What's the topic in chapter 4?",

           "What is the total number of pages?",

           "On which page does the chapter about question-answering start?",

           "How many chapters have more than 20 pages?"]

preds = table_qa(table, queries)

These predictions store the type of table operation in an aggregator field,
along with the answer. Let’s see how well TAPAS fared on our questions:

for query, pred in zip(queries, preds):

    print(query)

    if pred["aggregator"] == "NONE":

        print("Predicted answer: " + pred["answer"])

    else:

        print("Predicted answer: " + pred["answer"])

    print('='*50)

What's the topic in chapter 4?

Predicted answer: Summarization

==================================================

What is the total number of pages?

Predicted answer: SUM > 10, 36, 24, 46, 19, 3

==================================================

On which page does the chapter about question-answering start?

Predicted answer: AVERAGE > 74

==================================================

How many chapters have more than 20 pages?

Predicted answer: COUNT > 1, 2, 3

==================================================

For the first chapter, the model predicted exactly one cell with no
aggregation. If we look at the table, we see that the answer is in fact correct.
In the next example the model predicted all the cells containing the number
of pages in combination with the sum aggregator, which again is the correct
way of calculating the total number of pages. The answer to question three
is also correct; the average aggregation is not necessary in that case, but it
doesn’t make a difference. Finally, we have a question that is a little bit
more complex. To determine how many chapters have more than 20 pages



we first need to find out which chapters satisfy that criterion and then count
them. It seem that TAPAS again got it right and correctly determined that
chapters 1, 2, and 3 have more than 20 pages, and added a count aggregator
to the cells.

The kinds of questions we asked can also be solved with a few simple
Pandas commands; however, the ability to ask questions in natural language
instead of Python code allows a much wider audience to query the data to
answer specific questions. Imagine such tools in the hands of business
analysts or managers who are able verify their own hypotheses about the
data!

Multimodal Transformers
So far we’ve looked at extending transformers to a single new modality.
TAPAS is arguably multimodal since it combines text and tables, but the
table is also treated as text. In this section we examine transformers that
combine two modalities at once: audio plus text and vision plus text.

Speech-to-Text
Although being able to use text to interface with a computer is a huge step
forward, using spoken language is an even more natural way for us to
communicate. You can see this trend in industry, where applications such as
Siri and Alexa are on the rise and becoming progressively more useful.
Also, for a large fraction of the population, writing and reading are more
challenging than speaking. So, being able to process and understand audio
is not only convenient, but can help many people access more information.
A common task in this domain is automatic speech recognition (ASR),
which converts spoken words to text and enables voice technologies like
Siri to answer questions like “What is the weather like today?”

The wav2vec 2.0 family of models are one of the most recent developments
in ASR: they use a transformer layer in combination with a CNN, as
illustrated in Figure 11-12.  By leveraging unlabeled data during14
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pretraining, these models achieve competitive results with only a few
minutes of labeled data.

Figure 11-12. Architecture of wav2vec 2.0 (courtesy of Alexei Baevski)

The wav2vec 2.0 models are integrated in  Transformers, and you won’t
be surprised to learn that loading and using them follows the familiar steps
that we have seen throughout this book. Let’s load a pretrained model that
was trained on 960 hours of speech audio:

asr = pipeline("automatic-speech-recognition")

To apply this model to some audio files we’ll use the ASR subset of the
SUPERB dataset, which is the same dataset the model was pretrained on.
Since the dataset is quite large, we’ll just load one example for our demo
purposes:

from datasets import load_dataset

ds = load_dataset("superb", "asr", split="validation[:1]")

print(ds[0])

{'chapter_id': 128104, 'speaker_id': 1272, 'file': '~/.cache/huggingf

ace/datasets/downloads/extracted/e4e70a454363bec1c1a8ce336139866a39442114d86a4
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6014acd4b1ed55e55/LibriSpeech/dev-clean/1272/128104/1272-128104-0000.flac',

'id': '1272-128104-0000', 'text': 'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE

CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'}

Here we can see that the audio in the file column is stored in the FLAC
coding format, while the expected transcription is given by the text
column. To convert the audio to an array of floats, we can use the SoundFile
library to read each file in our dataset with map():

import soundfile as sf

def map_to_array(batch):

    speech, _ = sf.read(batch["file"])

    batch["speech"] = speech

    return batch

ds = ds.map(map_to_array)

If you are using a Jupyter notebook you can easily play the sound files with
the following IPython widgets:

from IPython.display import Audio

display(Audio(ds[0]['speech'], rate=16000))

Finally, we can pass the inputs to the pipeline and inspect the prediction:

pred = asr(ds[0]["speech"])

print(pred)

{'text': 'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD 

TO

WELCOME HIS GOSPEL'}

This transcription seems to be correct. We can see that some punctuation is
missing, but this is hard to get from audio alone and could be added in a
postprocessing step. With only a handful of lines of code we can build
ourselves a state-of-the-art speech-to-text application!
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Building a model for a new language still requires a minimum amount of
labeled data, which can be challenging to obtain, especially for low-
resource languages. Soon after the release of wav2vec 2.0, a paper
describing a method named wav2vec-U was published.  In this work, a
combination of clever clustering and GAN training is used to build a
speech-to-text model using only independent unlabeled speech and
unlabeled text data. This process is visualized in detail in Figure 11-13. No
aligned speech and text data is required at all, which enables the training of
highly performant speech-to-text models for a much larger spectrum of
languages.

Figure 11-13. Training scheme for wav2vec-U (courtesy of Alexsei Baevski)

Great, so transformers can now “read” text and “hear” audio—can they also
“see”? The answer is yes, and this is one of the current hot research
frontiers in the field.

Vision and Text
Vision and text are another natural pair of modalities to combine since we
frequently use language to communicate and reason about the contents of
images and videos. In addition to the vision transformers, there have been
several developments in the direction of combining visual and textual
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information. In this section we will look at four examples of models
combining vision and text: VisualQA, LayoutLM, DALL·E, and CLIP.

VQA
In Chapter 7 we explored how we can use transformer models to extract
answers to text-based questions. This can be done ad hoc to extract
information from texts or offline, where the question answering model is
used to extract structured information from a set of documents. There have
been several efforts to expand this approach to vision with datasets such as
VQA,  shown in Figure 11-14.

Figure 11-14. Example of a visual question answering task from the VQA dataset (courtesy of Yash
Goyal)

Models such as LXMERT and VisualBERT use vision models like ResNets
to extract features from the pictures and then use transformer encoders to
combine them with the natural questions and predict an answer.

LayoutLM
Analyzing scanned business documents like receipts, invoices, or reports is
another area where extracting visual and layout information can be a useful
way to recognize text fields of interest. Here the LayoutLM family of
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models are the current state of the art. They use an enhanced Transformer
architecture that receives three modalities as input: text, image, and layout.
Accordingly, as shown in Figure 11-15, there are embedding layers
associated with each modality, a spatially aware self-attention mechanism,
and a mix of image and text/image pretraining objectives to align the
different modalities. By pretraining on millions of scanned documents,
LayoutLM models are able to transfer to various downstream tasks in a
manner similar to BERT for NLP.

Figure 11-15. The model architecture and pretraining strategies for LayoutLMv2 (courtesy of Yang
Xu)



DALL·E
A model that combines vision and text for generative tasks is DALL·E.  It
uses the GPT architecture and autoregressive modeling to generate images
from text. Inspired by iGPT, it regards the words and pixels as one sequence
of tokens and is thus able to continue generating an image from a text
prompt, as shown in Figure 11-16.

Figure 11-16. Generation examples with DALL·E (courtesy of Aditya Ramesh)

CLIP
Finally, let’s have a look at CLIP,  which also combines text and vision but
is designed for supervised tasks. Its creators constructed a dataset with 400
million image/caption pairs and used contrastive learning to pretrain the
model. The CLIP architecture consists of a text and an image encoder (both
transformers) that create embeddings of the captions and images. A batch of
images with captions is sampled, and the contrastive objective is to
maximize the similarity of the embeddings (as measured by the dot product)
of the corresponding pair while minimizing the similarity of the rest, as
illustrated in Figure 11-17.

In order to use the pretrained model for classification the possible classes
are embedded with the text encoder, similar to how we used the zero-shot
pipeline. Then the embeddings of all the classes are compared to the image
embedding that we want to classify, and the class with the highest similarity
is chosen.
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Figure 11-17. Architecture of CLIP (courtesy of Alec Radford)



The zero-shot image classification performance of CLIP is remarkable and
competitive with fully supervised trained vision models, while being more
flexible with regard to new classes. CLIP is also fully integrated in 
Transformers, so we can try it out. For image-to-text tasks, we instantiate a
processor that consists of a feature extractor and a tokenizer. The role of the
feature extractor is to convert the image into a form suitable for the model,
while the tokenizer is responsible for decoding the model’s predictions into
text:

from transformers import CLIPProcessor, CLIPModel

clip_ckpt = "openai/clip-vit-base-patch32"

model = CLIPModel.from_pretrained(clip_ckpt)

processor = CLIPProcessor.from_pretrained(clip_ckpt)

Then we need a fitting image to try it out. What would be better suited than
a picture of Optimus Prime?

image = Image.open("images/optimusprime.jpg")

plt.imshow(image)

plt.axis("off")

plt.show()

Next, we set up the texts to compare the image against and pass it through
the model:



import torch

texts = ["a photo of a transformer", "a photo of a robot", "a photo of agi"]

inputs = processor(text=texts, images=image, return_tensors="pt", 

padding=True)

with torch.no_grad():

    outputs = model(**inputs)

logits_per_image = outputs.logits_per_image

probs = logits_per_image.softmax(dim=1)

probs

tensor([[0.9557, 0.0413, 0.0031]])

Well, it almost got the right answer (a photo of AGI of course). Jokes aside,
CLIP makes image classification very flexible by allowing us to define
classes through text instead of having the classes hardcoded in the model
architecture. This concludes our tour of multimodal transformer models, but
we hope we’ve whetted your appetite.

Where to from Here?
Well that’s the end of the ride; thanks for joining us on this journey through
the transformers landscape! Throughout this book we’ve explored how
transformers can address a wide range of tasks and achieve state-of-the-art
results. In this chapter we’ve seen how the current generation of models are
being pushed to their limits with scaling and how they are also branching
out into new domains and modalities.

If you want to reinforce the concepts and skills that you’ve learned in this
book, here are a few ideas for where to go from here:

Join a Hugging Face community event

Hugging Face hosts short sprints focused on improving the libraries in
the ecosystem, and these events are a great way to meet the community
and get a taste for open source software development. So far there have
been sprints on adding 600+ datasets to  Datasets, fine-tuning 300+
ASR models in various languages, and implementing hundreds of
projects in JAX/Flax.



Build your own project

One very effective way to test your knowledge in machine learning is to
build a project to solve a problem that interests you. You could
reimplement a transformer paper, or apply transformers to a novel
domain.

Contribute a model to  Transformers

If you’re looking for something more advanced, then contributing a
newly published architecture to  Transformers is a great way to dive
into the nuts and bolts of the library. There is a detailed guide to help
you get started in the ​ ⁠ Transformers documentation.

Blog about what you’ve learned

Teaching others what you’ve learned is a powerful test of your own
knowledge, and in a sense this was one of the driving motivations
behind us writing this book! There are great tools to help you get started
with technical blogging; we recommend fastpages as you can easily use
Jupyter notebooks for everything.
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