

Machine Learning Pocket
Reference

Working with Structured Data in Python

Matt Harrison

Machine Learning Pocket Reference
by Matt Harrison

Copyright © 2019 Matt Harrison. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Rachel Roumeliotis

Development Editor: Nicole Tache

Production Editor: Christopher Faucher

Copyeditor: Sonia Saruba

Proofreader: Christina Edwards

Indexer: WordCo Indexing Services, Inc.

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

September 2019: First Edition

Revision History for the First Edition
2019-08-27: First Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781492047544 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Machine Learning Pocket Reference, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-04754-4

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492047544

Preface

Machine learning and data science are very popular right now and are fast-
moving targets. I have worked with Python and data for most of my career
and wanted to have a physical book that could provide a reference for the
common methods that I have been using in industry and teaching during
workshops to solve structured machine learning problems.

This book is what I believe is the best collection of resources and examples
for attacking a predictive modeling task if you have structured data. There
are many libraries that perform a portion of the tasks required and I have
tried to incorporate those that I have found useful as I have applied these
techniques in consulting or industry work.

Many may lament the lack of deep learning techniques. Those could be a
book by themselves. I also prefer simpler techniques and others in industry
seem to agree. Deep learning for unstructured data (video, audio, images),
and powerful tools like XGBoost for structured data.

I hope this book serves as a useful reference for you to solve pressing
problems.

What to Expect
This book gives in-depth examples of solving common structured data
problems. It walks through various libraries and models, their trade-offs,
how to tune them, and how to interpret them.

The code snippets are meant to be sized such that you can use and adapt
them in your own projects.

Who This Book Is For
If you are just learning machine learning, or have worked with it for years,
this book should serve as a valuable reference. It assumes some knowledge
of Python, and doesn’t delve at all into syntax. Rather it shows how to use
various libraries to solve real-world problems.

This will not replace an in-depth course, but should serve as a reference of
what an applied machine learning course might cover. (Note: The author
uses it as a reference for the data analytics and machine learning courses he
teaches.)

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available at
https://github.com/mattharrison/ml_pocket_reference.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s
documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Machine
Learning Pocket Reference by Matt Harrison (O’Reilly). Copyright 2019
Matt Harrison, 978-1-492-04754-4.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For almost 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

https://github.com/mattharrison/ml_pocket_reference
mailto:permissions@oreilly.com
http://oreilly.com/

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://www.oreilly.com/catalog/9781492047544.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

http://oreilly.com/
http://www.oreilly.com/catalog/9781492047544
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
Much thanks to my wife and family for their support. I’m grateful to the
Python community for providing a wonderful language and toolset to work
with. Nicole Tache has been lovely to work with and provided excellent
feedback. My technical reviewers, Mikio Braun, Natalino Busa, and Justin
Francis, kept me honest. Thanks!

Chapter 1. Introduction

This is not so much an instructional manual, but rather notes, tables, and
examples for machine learning. It was created by the author as an additional
resource during training, meant to be distributed as a physical notebook.
Participants (who favor the physical characteristics of dead-tree material)
could add their own notes and thoughts and have a valuable reference of
curated examples.

We will walk through classification with structured data. Other common
machine learning applications include predicting a continuous value
(regression), creating clusters, or trying to reduce dimensionality, among
others. This book does not discuss deep learning techniques. While those
techniques work well for unstructured data, most recommend the
techniques in this book for structured data.

We assume knowledge and familiarity with Python. Learning how to
manipulate data using the pandas library is useful. We have many examples
using pandas, and it is an excellent tool for dealing with structured data.
However, some of the indexing operations may be confusing if you are not
familiar with numpy. Full coverage of pandas could be a book in itself.

Libraries Used
This book uses many libraries. This can be a good thing and a bad thing.
Some of these libraries may be hard to install or conflict with other library
versions. Do not feel like you need to install all of these libraries. Use “JIT
installation” and only install the libraries that you want to use as you need
them.

>>> import autosklearn, catboost,

category_encoders, dtreeviz, eli5, fancyimpute,

fastai, featuretools, glmnet_py, graphviz,

hdbscan, imblearn, janitor, lime, matplotlib,

https://pandas.pydata.org/

missingno, mlxtend, numpy, pandas, pdpbox, phate,

pydotplus, rfpimp, scikitplot, scipy, seaborn,

shap, sklearn, statsmodels, tpot, treeinterpreter,

umap, xgbfir, xgboost, yellowbrick

>>> for lib in [

... autosklearn,

... catboost,

... category_encoders,

... dtreeviz,

... eli5,

... fancyimpute,

... fastai,

... featuretools,

... glmnet_py,

... graphviz,

... hdbscan,

... imblearn,

... lime,

... janitor,

... matplotlib,

... missingno,

... mlxtend,

... numpy,

... pandas,

... pandas_profiling,

... pdpbox,

... phate,

... pydotplus,

... rfpimp,

... scikitplot,

... scipy,

... seaborn,

... shap,

... sklearn,

... statsmodels,

... tpot,

... treeinterpreter,

... umap,

... xgbfir,

... xgboost,

... yellowbrick,

...]:

... try:

... print(lib.__name__, lib.__version__)

... except:

... print("Missing", lib.__name__)

catboost 0.11.1

category_encoders 2.0.0

Missing dtreeviz

eli5 0.8.2

fancyimpute 0.4.2

fastai 1.0.28

featuretools 0.4.0

Missing glmnet_py

graphviz 0.10.1

hdbscan 0.8.22

imblearn 0.4.3

janitor 0.16.6

Missing lime

matplotlib 2.2.3

missingno 0.4.1

mlxtend 0.14.0

numpy 1.15.2

pandas 0.23.4

Missing pandas_profiling

pdpbox 0.2.0

phate 0.4.2

Missing pydotplus

rfpimp

scikitplot 0.3.7

scipy 1.1.0

seaborn 0.9.0

shap 0.25.2

sklearn 0.21.1

statsmodels 0.9.0

tpot 0.9.5

treeinterpreter 0.1.0

umap 0.3.8

xgboost 0.81

yellowbrick 0.9

NOTE
Most of these libraries are easily installed with pip or conda. With fastai I need to use
pip install --no-deps fastai. The umap library is installed with pip install
umap-learn. The janitor library is installed with pip install pyjanitor. The
autosklearn library is installed with pip install auto-sklearn.

I usually use Jupyter for doing an analysis. You can use other notebook tools as well.
Note that some, like Google Colab, have preinstalled many of the libraries (though they
may be outdated versions).

There are two main options for installing libraries in Python. One is to use
pip (an acronym for Pip Installs Python), a tool that comes with Python.
The other option is to use Anaconda. We will introduce both.

Installation with Pip
Before using pip, we will create a sandbox environment to install our
libraries into. This is called a virtual environment named env:

$ python -m venv env

NOTE
On Macintosh and Linux, use python; on Windows, use python3. If Windows doesn’t
recognize that from the command prompt, you may need to reinstall or fix your install
and make sure you check the “Add Python to my PATH” checkbox.

Then you activate the environment so that when you install libraries, they
go in the sandbox environment and not in the global Python installation. As
many of these libraries change and are updated, it is best to lock down
versions on a per-project basis so you know that your code will run.

Here is how we activate the virtual environment on Linux and Macintosh:

$ source env/bin/activate

You will notice that the prompt is updated, indicating that we are using the
virtual environment:

 (env) $ which python

 env/bin/python

On Windows, you will need to activate the environment by running this
command:

https://anaconda.org/

C:> env\Scripts\activate.bat

Again, you will notice that the prompt is updated, indicating that we are
using the virtual environment:

 (env) C:> where python

 env\Scripts\python.exe

On all platforms, you can install packages using pip. To install pandas,
type:

(env) $ pip install pandas

Some of the package names are different than the library names. You can
search for packages using:

(env) $ pip search libraryname

Once you have your packages installed, you can create a file with all of the
versions of the packages using pip:

(env) $ pip freeze > requirements.txt

With this requirements.txt file you can easily install the packages into a
new virtual environment:

(other_env) $ pip install -r requirements.txt

Installation with Conda
The conda tool comes with Anaconda and lets us create environments and
install packages.

To create an environment named env, run:

$ conda create --name env python=3.6

To activate this environment, run:

$ conda activate env

This will update the prompt on both Unix and Windows systems. Now you
can search for packages using:

(env) $ conda search libraryname

To install a package, like pandas, run:

(env) $ conda install pandas

To create a file with the package requirements in it, run:

(env) $ conda env export > environment.yml

To install these requirements in a new environment, run:

(other_env) $ conda create -f environment.yml

WARNING
Some of the libraries mentioned in this book are not available to install from Anaconda’s
repository. Don’t fret. It turns out you can use pip inside of a conda environment (no
need to create a new virtual environment), and install these using pip.

Chapter 2. Overview of the
Machine Learning Process

Cross-Industry Standard Process for Data Mining (CRISP-DM) is a process
for doing data mining. It has several steps that can be followed for
continuous improvement. They are:

Business understanding

Data understanding

Data preparation

Modeling

Evaluation

Deployment

Figure 2-1 shows my workflow for creating a predictive model that expands
on the CRISP-DM methodology. The walkthrough in the next chapter will
cover these basic steps.

Figure 2-1. Common workflow for machine learning.

Chapter 3. Classification
Walkthrough: Titanic Dataset

This chapter will walk through a common classification problem using the
Titanic dataset. Later chapters will dive into and expand on the common
steps performed during an analysis.

Project Layout Suggestion
An excellent tool for performing exploratory data analysis is Jupyter.
Jupyter is an open-source notebook environment that supports Python and
other languages. It allows you to create cells of code or Markdown content.

I tend to use Jupyter in two modes. One is for exploratory data analysis and
quickly trying things out. The other is more of a deliverable style where I
format a report using Markdown cells and insert code cells to illustrate
important points or discoveries. If you aren’t careful, your notebooks might
need some refactoring and application of software engineering practices
(remove globals, use functions and classes, etc.).

The cookiecutter data science package suggests a layout to create an
analysis that allows for easy reproduction and sharing code.

Imports
This example is based mostly on pandas, scikit-learn, and Yellowbrick. The
pandas library gives us tooling for easy data munging. The scikit-learn
library has great predictive modeling, and Yellowbrick is a visualization
library for evaluating models:

>>> import matplotlib.pyplot as plt

>>> import pandas as pd

https://oreil.ly/PjceO
https://jupyter.org/
https://oreil.ly/86jL3
http://pandas.pydata.org/
https://scikit-learn.org/
http://www.scikit-yb.org/

>>> from sklearn import (

... ensemble,

... preprocessing,

... tree,

...)

>>> from sklearn.metrics import (

... auc,

... confusion_matrix,

... roc_auc_score,

... roc_curve,

...)

>>> from sklearn.model_selection import (

... train_test_split,

... StratifiedKFold,

...)

>>> from yellowbrick.classifier import (

... ConfusionMatrix,

... ROCAUC,

...)

>>> from yellowbrick.model_selection import (

... LearningCurve,

...)

WARNING
You might find documentation and examples online that include star imports like:

from pandas import *

Refrain from using star imports. Being explicit makes your code easier to understand.

Ask a Question
In this example, we want to create a predictive model to answer a question.
It will classify whether an individual survives the Titanic ship catastrophe
based on individual and trip characteristics. This is a toy example, but it
serves as a pedagogical tool for showing many steps of modeling. Our
model should be able to take passenger information and predict whether
that passenger would survive on the Titanic.

This is a classification question, as we are predicting a label for survival;
either they survived or they died.

Terms for Data
We typically train a model with a matrix of data. (I prefer to use pandas
DataFrames because it is very nice to have column labels, but numpy arrays
work as well.)

For supervised learning, such as regression or classification, our intent is to
have a fuction that transforms features into a label. If we were to write this
as an algebra formula, it would look like this:

y = f(X)

X is a matrix. Each row represents a sample of data or information about an
individual. Every column in X is a feature. The output of our function, y, is
a vector that contains labels (for classification) or values (for regression)
(see Figure 3-1).

Figure 3-1. Structured data layout.

This is standard naming procedure for naming the data and the output. If

you read academic papers or even look at the documentation for libraries,
they follow this convention. In Python, we use the variable name X to hold
the sample data even though capitalization of variables is a violation of
standard naming conventions (PEP 8). Don’t worry, everyone does it, and if
you were to name your variable x, they might look at you funny. The
variable y stores the labels or targets.

Table 3-1 shows a basic dataset with two samples and three features for
each sample.

Table 3-1.
Samples (rows)

and features
(columns)

pclass age sibsp

1 29 0

1 2 1

Gather Data
We are going to load an Excel file (make sure you have pandas and xlrd1

installed) with the Titanic features. It has many columns, including a
survived column that contains the label of what happened to an individual:

>>> url = (

... "http://biostat.mc.vanderbilt.edu/"

... "wiki/pub/Main/DataSets/titanic3.xls"

...)

>>> df = pd.read_excel(url)

>>> orig_df = df

The following columns are included in the dataset:

pclass - Passenger class (1 = 1st, 2 = 2nd, 3 = 3rd)

survival - Survival (0 = No, 1 = Yes)

name - Name

sex - Sex

age - Age

sibsp - Number of siblings/spouses aboard

parch - Number of parents/children aboard

ticket - Ticket number

fare - Passenger fare

cabin - Cabin

embarked - Point of embarkation (C = Cherbourg, Q = Queenstown, S =
Southampton)

boat - Lifeboat

body - Body identification number

home.dest - Home/destination

Pandas can read this spreadsheet and convert it into a DataFrame for us. We
will need to spot-check the data and ensure that it is OK for performing
analysis.

Clean Data
Once we have the data, we need to ensure that it is in a format that we can
use to create a model. Most scikit-learn models require that our features be
numeric (integer or float). In addition, many models fail if they are passed
missing values (NaN in pandas or numpy). Some models perform better if
the data is standardized (given a mean value of 0 and a standard deviation

of 1). We will deal with these issues using pandas or scikit-learn. In
addition, the Titanic dataset has leaky features.

Leaky features are variables that contain information about the future or
target. There’s nothing bad in having data about the target, and we often
have that data during model creation time. However, if those variables are
not available when we perform a prediction on a new sample, we should
remove them from the model as they are leaking data from the future.

Cleaning the data can take a bit of time. It helps to have access to a subject
matter expert (SME) who can provide guidance on dealing with outliers or
missing data.

>>> df.dtypes

pclass int64

survived int64

name object

sex object

age float64

sibsp int64

parch int64

ticket object

fare float64

cabin object

embarked object

boat object

body float64

home.dest object

dtype: object

We typically see int64, float64, datetime64[ns], or object. These are
the types that pandas uses to store a column of data. int64 and float64 are
numeric types. datetime64[ns] holds date and time data. object typically
means that it is holding string data, though it could be a combination of
string and other types.

When reading from CSV files, pandas will try to coerce data into the
appropriate type, but will fall back to object. Reading data from
spreadsheets, databases, or other systems may provide better types in the

DataFrame. In any case, it is worthwhile to look through the data and
ensure that the types make sense.

Integer types are typically fine. Float types might have some missing
values. Date and string types will need to be converted or used to feature
engineer numeric types. String types that have low cardinality are called
categorical columns, and it might be worthwhile to create dummy columns
from them (the pd.get_dummies function takes care of this).

NOTE
Up to pandas 0.23, if the type is int64, we are guaranteed that there are no missing
values. If the type is float64, the values might be all floats, but also could be integer-
like numbers with missing values. The pandas library converts integer values that have
missing numbers to floats, as this type supports missing values. The object typically
means string types (or both string and numeric).

As of pandas 0.24, there is a new Int64 type (notice the capitalization). This is not the
default integer type, but you can coerce to this type and have support for missing
numbers.

The pandas-profiling library includes a profile report. You can generate this
report in a notebook. It will summarize the types of the columns and allow
you to view details of quantile statistics, descriptive statistics, a histogram,
common values, and extreme values (see Figures 3-2 and 3-3):

>>> import pandas_profiling

>>> pandas_profiling.ProfileReport(df)

Figure 3-2. Pandas-profiling summary.

Figure 3-3. Pandas-profiling variable details.

Use the .shape attribute of the DataFrame to inspect the number of rows
and columns:

>>> df.shape

(1309, 14)

Use the .describe method to get summary stats as well as see the count of
nonnull data. The default behavior of this method is to only report on
numeric columns. Here the output is truncated to only show the first two
columns:

>>> df.describe().iloc[:, :2]

 pclass survived

count 1309.000000 1309.000000

mean 2.294882 0.381971

std 0.837836 0.486055

min 1.000000 0.000000

25% 2.000000 0.000000

50% 3.000000 0.000000

75% 3.000000 1.000000

max 3.000000 1.000000

The count statistic only includes values that are not NaN, so it is useful for
checking whether a column is missing data. It is also a good idea to spot-
check the minimum and maximum values to see if there are outliers.
Summary statistics are one way to do this. Plotting a histogram or a box
plot is a visual representation that we will see later.

We will need to deal with missing data. Use the .isnull method to find
columns or rows with missing values. Calling .isnull on a DataFrame
returns a new DataFrame with every cell containing a True or False value.
In Python, these values evaluate to 1 and 0, respectively. This allows us to
sum them up or even calculate the percent missing (by calculating the
mean).

The code indicates the count of missing data in each column:

>>> df.isnull().sum()

pclass 0

survived 0

name 0

sex 0

age 263

sibsp 0

parch 0

ticket 0

fare 1

cabin 1014

embarked 2

boat 823

body 1188

home.dest 564

dtype: int64

TIP
Replace .sum with .mean to get the percentage of null values. By default, calling these
methods will apply the operation along axis 0, which is along the index. If you want to
get the counts of missing features for each sample, you can apply this along axis 1
(along the columns):

>>> df.isnull().sum(axis=1).loc[:10]

0 1

1 1

2 2

3 1

4 2

5 1

6 1

7 2

8 1

9 2

dtype: int64

A SME can help in determining what to do with missing data. The age
column might be useful, so keeping it and interpolating values could
provide some signal to the model. Columns where most of the values are
missing (cabin, boat, and body) tend to not provide value and can be
dropped.

The body column (body identification number) is missing for many rows.
We should drop this column at any rate because it leaks data. This column
indicates that the passenger did not survive; by necessity our model could
use that to cheat. We will pull it out. (If we are creating a model to predict if
a passenger would die, knowing that they had a body identification number
a priori would let us know they were already dead. We want our model to
not know that information and make the prediction based on the other
columns.) Likewise, the boat column leaks the reverse information (that a
passenger survived).

Let’s look at some of the rows with missing data. We can create a boolean
array (a series with True or False to indicate if the row has missing data)

and use it to inspect rows that are missing data:

>>> mask = df.isnull().any(axis=1)

>>> mask.head() # rows

0 True

1 True

2 True

3 True

4 True

dtype: bool

>>> df[mask].body.head()

0 NaN

1 NaN

2 NaN

3 135.0

4 NaN

Name: body, dtype: float64

We will impute (or derive values for) the missing values for the age column
later.

Columns with type of object tend to be categorical (but they may also be
high cardinality string data, or a mix of column types). For object columns
that we believe to be categorical, use the .value_counts method to
examine the counts of the values:

>>> df.sex.value_counts(dropna=False)

male 843

female 466

Name: sex, dtype: int64

Remember that pandas typically ignores null or NaN values. If you want to
include those, use dropna=False to also show counts for NaN:

>>> df.embarked.value_counts(dropna=False)

S 914

C 270

Q 123

NaN 2

Name: embarked, dtype: int64

We have a couple of options for dealing with missing embarked values.
Using S might seem logical as that is the most common value. We could dig
into the data and try and determine if another option is better. We could also
drop those two values. Or, because this is categorical, we can ignore them
and use pandas to create dummy columns if these two samples will just
have 0 entries for every option. We will use this latter choice for this
feature.

Create Features
We can drop columns that have no variance or no signal. There aren’t
features like that in this dataset, but if there was a column called “is human”
that had 1 for every sample this column would not be providing any
information.

Alternatively, unless we are using NLP or extracting data out of text
columns where every value is different, a model will not be able to take
advantage of this column. The name column is an example of this. Some
have pulled out the title t from the name and treated it as categorical.

We also want to drop columns that leak information. Both boat and body
columns leak whether a passenger survived.

The pandas .drop method can drop either rows or columns:

>>> name = df.name

>>> name.head(3)

0 Allen, Miss. Elisabeth Walton

1 Allison, Master. Hudson Trevor

2 Allison, Miss. Helen Loraine

Name: name, dtype: object

>>> df = df.drop(

... columns=[

... "name",

... "ticket",

... "home.dest",

... "boat",

... "body",

... "cabin",

...]

...)

We need to create dummy columns from string columns. This will create
new columns for sex and embarked. Pandas has a convenient get_dummies
function for that:

>>> df = pd.get_dummies(df)

>>> df.columns

Index(['pclass', 'survived', 'age', 'sibsp',

 'parch', 'fare', 'sex_female', 'sex_male',

 'embarked_C', 'embarked_Q', 'embarked_S'],

 dtype='object')

At this point the sex_male and sex_female columns are perfectly inverse
correlated. Typically we remove any columns with perfect or very high
positive or negative correlation. Multicollinearity can impact interpretation
of feature importance and coefficients in some models. Here is code to
remove the sex_male column:

>>> df = df.drop(columns="sex_male")

Alternatively, we can add a drop_first=True parameter to the
get_dummies call:

>>> df = pd.get_dummies(df, drop_first=True)

>>> df.columns

Index(['pclass', 'survived', 'age', 'sibsp',

 'parch', 'fare', 'sex_male',

 'embarked_Q', 'embarked_S'],

 dtype='object')

Create a DataFrame (X) with the features and a series (y) with the labels. We
could also use numpy arrays, but then we don’t have column names:

>>> y = df.survived

>>> X = df.drop(columns="survived")

TIP
We can use the pyjanitor library to replace the last two lines:

>>> import janitor as jn

>>> X, y = jn.get_features_targets(

... df, target_columns="survived"

...)

Sample Data
We always want to train and test on different data. Otherwise you don’t
really know how well your model generalizes to data that it hasn’t seen
before. We’ll use scikit-learn to pull out 30% for testing (using
random_state=42 to remove an element of randomness if we start
comparing different models):

>>> X_train, X_test, y_train, y_test = model_selection.train_test_split(

... X, y, test_size=0.3, random_state=42

...)

Impute Data
The age column has missing values. We need to impute age from the
numeric values. We only want to impute on the training set and then use
that imputer to fill in the date for the test set. Otherwise we are leaking data
(cheating by giving future information to the model).

Now that we have test and train data, we can impute missing values on the
training set, and use the trained imputers to fill in the test dataset. The
fancyimpute library has many algorithms that it implements. Sadly, most of
these algorithms are not implemented in an inductive manner. This means
that you cannot call .fit and then .transform, which means you cannot
impute for new data based on how the model was trained.

https://oreil.ly/_IWbA
https://oreil.ly/Vlf9e

The IterativeImputer class (which was in fancyimpute but has been
migrated to scikit-learn) does support inductive mode. To use it we need to
add a special experimental import (as of scikit-learn version 0.21.2):

>>> from sklearn.experimental import (

... enable_iterative_imputer,

...)

>>> from sklearn import impute

>>> num_cols = [

... "pclass",

... "age",

... "sibsp",

... "parch",

... "fare",

... "sex_female",

...]

>>> imputer = impute.IterativeImputer()

>>> imputed = imputer.fit_transform(

... X_train[num_cols]

...)

>>> X_train.loc[:, num_cols] = imputed

>>> imputed = imputer.transform(X_test[num_cols])

>>> X_test.loc[:, num_cols] = imputed

If we wanted to impute with the median, we can use pandas to do that:

>>> meds = X_train.median()

>>> X_train = X_train.fillna(meds)

>>> X_test = X_test.fillna(meds)

Normalize Data
Normalizing or preprocessing the data will help many models perform
better after this is done. Particularly those that depend on a distance metric
to determine similarity. (Note that tree models, which treat each feature on
its own, don’t have this requirement.)

We are going to standardize the data for the preprocessing. Standardizing is
translating the data so that it has a mean value of zero and a standard
deviation of one. This way models don’t treat variables with larger scales as

more important than smaller scaled variables. I’m going to stick the result
(numpy array) back into a pandas DataFrame for easier manipulation (and
to keep column names).

I also normally don’t standardize dummy columns, so I will ignore those:

>>> cols = "pclass,age,sibsp,fare".split(",")

>>> sca = preprocessing.StandardScaler()

>>> X_train = sca.fit_transform(X_train)

>>> X_train = pd.DataFrame(X_train, columns=cols)

>>> X_test = sca.transform(X_test)

>>> X_test = pd.DataFrame(X_test, columns=cols)

Refactor
At this point I like to refactor my code. I typically make two functions. One
for general cleaning, and another for dividing up into a training and testing
set and to perform mutations that need to happen differently on those sets:

>>> def tweak_titanic(df):

... df = df.drop(

... columns=[

... "name",

... "ticket",

... "home.dest",

... "boat",

... "body",

... "cabin",

...]

...).pipe(pd.get_dummies, drop_first=True)

... return df

>>> def get_train_test_X_y(

... df, y_col, size=0.3, std_cols=None

...):

... y = df[y_col]

... X = df.drop(columns=y_col)

... X_train, X_test, y_train, y_test = model_selection.train_test_split(

... X, y, test_size=size, random_state=42

...)

... cols = X.columns

... num_cols = [

... "pclass",

... "age",

... "sibsp",

... "parch",

... "fare",

...]

... fi = impute.IterativeImputer()

... X_train.loc[

... :, num_cols

...] = fi.fit_transform(X_train[num_cols])

... X_test.loc[:, num_cols] = fi.transform(

... X_test[num_cols]

...)

...

... if std_cols:

... std = preprocessing.StandardScaler()

... X_train.loc[

... :, std_cols

...] = std.fit_transform(

... X_train[std_cols]

...)

... X_test.loc[

... :, std_cols

...] = std.transform(X_test[std_cols])

...

... return X_train, X_test, y_train, y_test

>>> ti_df = tweak_titanic(orig_df)

>>> std_cols = "pclass,age,sibsp,fare".split(",")

>>> X_train, X_test, y_train, y_test = get_train_test_X_y(

... ti_df, "survived", std_cols=std_cols

...)

Baseline Model
Creating a baseline model that does something really simple can give us
something to compare our model to. Note that using the default .score
result gives us the accuracy which can be misleading. A problem where a
positive case is 1 in 10,000 can easily get over 99% accuracy by always
predicting negative.

>>> from sklearn.dummy import DummyClassifier

>>> bm = DummyClassifier()

>>> bm.fit(X_train, y_train)

>>> bm.score(X_test, y_test) # accuracy

(_ , y_) y

0.5292620865139949

>>> from sklearn import metrics

>>> metrics.precision_score(

... y_test, bm.predict(X_test)

...)

0.4027777777777778

Various Families
This code tries a variety of algorithm families. The “No Free Lunch”
theorem states that no algorithm performs well on all data. However, for
some finite set of data, there may be an algorithm that does well on that set.
(A popular choice for structured learning these days is a tree-boosted
algorithm such as XGBoost.)

Here we use a few different families and compare the AUC score and
standard deviation using k-fold cross-validation. An algorithm that has a
slightly smaller average score but tighter standard deviation might be a
better choice.

Because we are using k-fold cross-validation, we will feed the model all of
X and y:

>>> X = pd.concat([X_train, X_test])

>>> y = pd.concat([y_train, y_test])

>>> from sklearn import model_selection

>>> from sklearn.dummy import DummyClassifier

>>> from sklearn.linear_model import (

... LogisticRegression,

...)

>>> from sklearn.tree import DecisionTreeClassifier

>>> from sklearn.neighbors import (

... KNeighborsClassifier,

...)

>>> from sklearn.naive_bayes import GaussianNB

>>> from sklearn.svm import SVC

>>> from sklearn.ensemble import (

... RandomForestClassifier,

...)

>>> import xgboost

>>> for model in [

... DummyClassifier,

... LogisticRegression,

... DecisionTreeClassifier,

... KNeighborsClassifier,

... GaussianNB,

... SVC,

... RandomForestClassifier,

... xgboost.XGBClassifier,

...]:

... cls = model()

... kfold = model_selection.KFold(

... n_splits=10, random_state=42

...)

... s = model_selection.cross_val_score(

... cls, X, y, scoring="roc_auc", cv=kfold

...)

... print(

... f"{model.__name__:22} AUC: "

... f"{s.mean():.3f} STD: {s.std():.2f}"

...)

DummyClassifier AUC: 0.511 STD: 0.04

LogisticRegression AUC: 0.843 STD: 0.03

DecisionTreeClassifier AUC: 0.761 STD: 0.03

KNeighborsClassifier AUC: 0.829 STD: 0.05

GaussianNB AUC: 0.818 STD: 0.04

SVC AUC: 0.838 STD: 0.05

RandomForestClassifier AUC: 0.829 STD: 0.04

XGBClassifier AUC: 0.864 STD: 0.04

Stacking
If you were going down the Kaggle route (or want maximum performance
at the cost of interpretability), stacking is an option. A stacking classifier
takes other models and uses their output to predict a target or label. We will
use the previous models’ outputs and combine them to see if a stacking
classifier can do better:

>>> from mlxtend.classifier import (

... StackingClassifier,

...)

>>> clfs = [

... x()

... for x in [

... LogisticRegression,

... DecisionTreeClassifier,

... KNeighborsClassifier,

... GaussianNB,

... SVC,

... RandomForestClassifier,

...]

...]

>>> stack = StackingClassifier(

... classifiers=clfs,

... meta_classifier=LogisticRegression(),

...)

>>> kfold = model_selection.KFold(

... n_splits=10, random_state=42

...)

>>> s = model_selection.cross_val_score(

... stack, X, y, scoring="roc_auc", cv=kfold

...)

>>> print(

... f"{stack.__class__.__name__} "

... f"AUC: {s.mean():.3f} STD: {s.std():.2f}"

...)

StackingClassifier AUC: 0.804 STD: 0.06

In this case it looks like performance went down a bit, as well as standard
deviation.

Create Model
I’m going to use a random forest classifier to create a model. It is a flexible
model that tends to give decent out-of-the-box results. Remember to train it
(calling .fit) with the training data from the data that we split earlier into a
training and testing set:

>>> rf = ensemble.RandomForestClassifier(

... n_estimators=100, random_state=42

...)

>>> rf.fit(X_train, y_train)

RandomForestClassifier(bootstrap=True,

 class_weight=None, criterion='gini',

 max_depth=None, max_features='auto',

 max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=10,

 n_jobs=1, oob_score=False, random_state=42,

 verbose=0, warm_start=False)

Evaluate Model
Now that we have a model, we can use the test data to see how well the
model generalizes to data that it hasn’t seen before. The .score method of
a classifier returns the average of the prediction accuracy. We want to make
sure that we call the .score method with the test data (presumably it should
perform better with the training data):

>>> rf.score(X_test, y_test)

0.7964376590330788

We can also look at other metrics, such as precision:

>>> metrics.precision_score(

... y_test, rf.predict(X_test)

...)

0.8013698630136986

A nice benefit of tree-based models is that you can inspect the feature
importance. The feature importance tells you how much a feature
contributes to the model. Note that removing a feature doesn’t mean that the
score will go down accordingly, as other features might be colinear (in this
case we could remove either the sex_male or sex_female column as they
have a perfect negative correlation):

>>> for col, val in sorted(

... zip(

... X_train.columns,

... rf.feature_importances_,

...),

... key=lambda x: x[1],

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")

age 0.277

fare 0.265

sex_female 0.240

pclass 0.092

sibsp 0.048

The feature importance is calculated by looking at the error increase. If
removing a feature increases the error in the model, the feature is more
important.

I really like the SHAP library for exploring what features a model deems
important, and for explaining predictions. This library works with black-
box models, and we will show it later.

Optimize Model
Models have hyperparameters that control how they behave. By varying the
values for these parameters, we change their performance. Sklearn has a
grid search class to evaluate a model with different combinations of
parameters and return the best result. We can use those parameters to
instantiate the model class:

>>> rf4 = ensemble.RandomForestClassifier()

>>> params = {

... "max_features": [0.4, "auto"],

... "n_estimators": [15, 200],

... "min_samples_leaf": [1, 0.1],

... "random_state": [42],

... }

>>> cv = model_selection.GridSearchCV(

... rf4, params, n_jobs=-1

...).fit(X_train, y_train)

>>> print(cv.best_params_)

{'max_features': 'auto', 'min_samples_leaf': 0.1,

 'n_estimators': 200, 'random_state': 42}

>>> rf5 = ensemble.RandomForestClassifier(

... **{

... "max_features": "auto",

... "min_samples_leaf": 0.1,

... "n_estimators": 200,

... "random_state": 42,

... }

...)

>>> rf5.fit(X_train, y_train)

>>> rf5.score(X_test, y_test)

0.7888040712468194

We can pass in a scoring parameter to GridSearchCV to optimize for
different metrics. See Chapter 12 for a list of metrics and their meanings.

Confusion Matrix
A confusion matrix allows us to see the correct classifications as well as
false positives and false negatives. It may be that we want to optimize
toward false positives or false negatives, and different models or parameters
can alter that. We can use sklearn to get a text version, or Yellowbrick for a
plot (see Figure 3-4):

>>> from sklearn.metrics import confusion_matrix

>>> y_pred = rf5.predict(X_test)

>>> confusion_matrix(y_test, y_pred)

array([[196, 28],

 [55, 114]])

>>> mapping = {0: "died", 1: "survived"}

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> cm_viz = ConfusionMatrix(

... rf5,

... classes=["died", "survived"],

... label_encoder=mapping,

...)

>>> cm_viz.score(X_test, y_test)

>>> cm_viz.poof()

>>> fig.savefig(

... "images/mlpr_0304.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 3-4. Yellowbrick confusion matrix. This is a useful evaluation tool that presents the
predicted class along the bottom and the true class along the side. A good classifier would have all

of the values along the diagonal, and zeros in the other cells.

ROC Curve
A receiver operating characteristic (ROC) plot is a common tool used to
evaluate classifiers. By measuring the area under the curve (AUC), we can
get a metric to compare different classifiers (see Figure 3-5). It plots the

true positive rate against the false positive rate. We can use sklearn to
calculate the AUC:

>>> y_pred = rf5.predict(X_test)

>>> roc_auc_score(y_test, y_pred)

0.7747781065088757

Or Yellowbrick to visualize the plot:

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> roc_viz = ROCAUC(rf5)

>>> roc_viz.score(X_test, y_test)

0.8279691030696217

>>> roc_viz.poof()

>>> fig.savefig("images/mlpr_0305.png")

Figure 3-5. ROC curve. This shows the true positive rate against the false positive rate. In general,
the further it bulges out the better. Measuring the AUC gives a single number to evaluate. Closer to

one is better. Below .5 is a poor model.

Learning Curve
A learning curve is used to tell us if we have enough training data. It trains
the model with increasing portions of the data and measures the score (see
Figure 3-6). If the cross-validation score continues to climb, then we might
need to invest in gathering more data. Here is a Yellowbrick example:

>>> import numpy as np

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> cv = StratifiedKFold(12)

>>> sizes = np.linspace(0.3, 1.0, 10)

>>> lc_viz = LearningCurve(

... rf5,

... cv=cv,

... train_sizes=sizes,

... scoring="f1_weighted",

... n_jobs=4,

... ax=ax,

...)

>>> lc_viz.fit(X, y)

>>> lc_viz.poof()

>>> fig.savefig("images/mlpr_0306.png")

Figure 3-6. This learning curve shows that as we add more training samples, our cross-validation
(testing) scores appear to improve.

Deploy Model

Using Python’s pickle module, we can persist models and load them. Once
we have a model, we call the .predict method to get a classification or
regression result:

>>> import pickle

>>> pic = pickle.dumps(rf5)

>>> rf6 = pickle.loads(pic)

>>> y_pred = rf6.predict(X_test)

>>> roc_auc_score(y_test, y_pred)

0.7747781065088757

Using Flask to deploy a web service for prediction is very common. There
are now other commercial and open source products coming out that
support deployment. Among them are Clipper, Pipeline, and Google’s
Cloud Machine Learning Engine.

Even though we don’t directly call this library, when we load an Excel file, pandas leverages it
behind the scenes.

1

https://palletsprojects.com/p/flask
http://clipper.ai/
https://oreil.ly/UfHdP
https://oreil.ly/1qYkH
https://oreil.ly/1qYkH

Chapter 4. Missing Data

We need to deal with missing data. The previous chapter showed an
example. This chapter will dive into it a bit more. Most algorithms will not
work if data is missing. Notable exceptions are the recent boosting libraries:
XGBoost, CatBoost, and LightGBM.

As with many things in machine learning, there are no hard answers for
how to treat missing data. Also, missing data could represent different
situations. Imagine census data coming back and an age feature being
reported as missing. Is it because the sample didn’t want to reveal their age?
They didn’t know their age? The one asking the questions forgot to even
ask about age? Is there a pattern to missing ages? Does it correlate to
another feature? Is it completely random?

There are also various ways to handle missing data:

Remove any row with missing data

Remove any column with missing data

Impute missing values

Create an indicator column to signify data was missing

Examining Missing Data
Let’s go back to the Titanic data. Because Python treats True and False as
1 and 0, respectively, we can use this trick in pandas to get percent of
missing data:

>>> df.isnull().mean() * 100

pclass 0.000000

survived 0.000000

name 0.000000

sex 0.000000

age 20.091673

sibsp 0.000000

parch 0.000000

ticket 0.000000

fare 0.076394

cabin 77.463713

embarked 0.152788

boat 62.872422

body 90.756303

home.dest 43.086325

dtype: float64

To visualize patterns in the missing data, use the missingno library. This
library is useful for viewing contiguous areas of missing data, which would
indicate that the missing data is not random (see Figure 4-1). The matrix
function includes a sparkline along the right side. Patterns here would also
indicate nonrandom missing data. You may need to limit the number of
samples to be able to see the patterns:

>>> import missingno as msno

>>> ax = msno.matrix(orig_df.sample(500))

>>> ax.get_figure().savefig("images/mlpr_0401.png")

https://oreil.ly/rgYJG

Figure 4-1. Where data is missing. No clear patterns jump out to the author.

We can create a bar plot of missing data counts using pandas (see Figure 4-
2):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> (1 - df.isnull().mean()).abs().plot.bar(ax=ax)

>>> fig.savefig("images/mlpr_0402.png", dpi=300)

Figure 4-2. Percents of nonmissing data with pandas. Boat and body are leaky so we should ignore
those. Interesting that some ages are missing.

Or use the missingno library to create the same plot (see Figure 4-3):

>>> ax = msno.bar(orig_df.sample(500))

>>> ax.get_figure().savefig("images/mlpr_0403.png")

Figure 4-3. Percents of nonmissing data with missingno.

We can create a heat map showing if there are correlations where data is
missing (see Figure 4-4). In this case, it doesn’t look like the locations
where data are missing are correlated:

>>> ax = msno.heatmap(df, figsize=(6, 6))

>>> ax.get_figure().savefig("/tmp/mlpr_0404.png")

Figure 4-4. Correlations of missing data with missingno.

We can create a dendrogram showing the clusterings of where data is
missing (see Figure 4-5). Leaves that are at the same level predict one
another’s presence (empty or filled). The vertical arms are used to indicate
how different clusters are. Short arms mean that branches are similar:

>>> ax = msno.dendrogram(df)

>>> ax.get_figure().savefig("images/mlpr_0405.png")

Figure 4-5. Dendrogram of missing data with missingno. We can see the columns without missing
data on the upper right.

Dropping Missing Data
The pandas library can drop all rows with missing data with the .dropna
method:

>>> df1 = df.dropna()

To drop columns, we can note what columns are missing and use the .drop
method. We can pass in a list of column names or a single column name:

>>> df1 = df.drop(columns="cabin")

Alternatively, we can use the .dropna method and set axis=1 (drop along
the column axis):

>>> df1 = df.dropna(axis=1)

Be careful about dropping data. I typically view this as a last resort option.

Imputing Data
Once you have a tool for predicting data, you can use that to predict missing
data. The general task of defining values for missing values is called
imputation.

If you are imputing data, you will need to build up a pipeline and use the
same imputation logic during model creation and prediction time. The
SimpleImputer class in scikit-learn will handle mean, median, and most
frequent feature values.

The default behavior is to calculate the mean:

>>> from sklearn.impute import SimpleImputer

>>> num_cols = df.select_dtypes(

... include="number"

...).columns

>>> im = SimpleImputer() # mean

>>> imputed = im.fit_transform(df[num_cols])

Provide strategy='median' or strategy='most_frequent' to change
the replaced value to median or most common, respectively. If you wish to
fill with a constant value, say -1, use strategy='constant' in
combination with fill_value=-1.

TIP
You can use the .fillna method in pandas to impute missing values as well. Make sure
that you do not leak data though. If you are filling in with the mean value, make sure
you use the same mean value during model creation and model prediction time.

The most frequent and constant strategies may be used with numeric or
string data. The mean and median require numeric data.

The fancyimpute library implements many algorithms and follows the
scikit-learn interface. Sadly, most of the algorithms are transductive,
meaning that you can’t call the .transform method by itself after fitting

the algorithm. The IterativeImputer is inductive (has since been
migrated from fancyimpute to scikit-learn) and supports transforming after
fitting.

Adding Indicator Columns
The lack of data in and of itself may provide some signal to a model. The
pandas library can add a new column to indicate that a value was missing:

>>> def add_indicator(col):

... def wrapper(df):

... return df[col].isna().astype(int)

...

... return wrapper

>>> df1 = df.assign(

... cabin_missing=add_indicator("cabin")

...)

Chapter 5. Cleaning Data

We can use generic tools like pandas and specialized tools like pyjanitor to
help with cleaning data.

Column Names
When using pandas, having Python-friendly column names makes attribute
access possible. The pyjanitor clean_names function will return a
DataFrame with columns in lowercase and spaces replaced by underscores:

>>> import janitor as jn

>>> Xbad = pd.DataFrame(

... {

... "A": [1, None, 3],

... " sales numbers ": [20.0, 30.0, None],

... }

...)

>>> jn.clean_names(Xbad)

 a _sales_numbers_

0 1.0 20.0

1 NaN 30.0

2 3.0 NaN

TIP
I recommend updating columns using index assignment, the .assign method, .loc or
.iloc assignment. I also recommend not using attribute assignment to update columns
in pandas. Due to the risk of overwriting existing methods with the same name as a
column, attribute assignment is not guaranteed to work.

The pyjanitor library is handy, but doesn’t allow us to strip whitespace
around columns. We can use pandas to have more fine-grained control of
the column renaming:

>>> def clean_col(name):

... return (

... name.strip().lower().replace(" ", "_")

...)

>>> Xbad.rename(columns=clean_col)

 a sales_numbers

0 1.0 20.0

1 NaN 30.0

2 3.0 NaN

Replacing Missing Values
The coalesce function in pyjanitor takes a DataFrame and a list of
columns to consider. This is similar to functionality found in Excel and
SQL databases. It returns the first nonnull value for each row:

>>> jn.coalesce(

... Xbad,

... columns=["A", " sales numbers "],

... new_column_name="val",

...)

 val

0 1.0

1 30.0

2 3.0

If we want to fill missing values with a particular value, we can use the
DataFrame .fillna method:

>>> Xbad.fillna(10)

 A sales numbers

0 1.0 20.0

1 10.0 30.0

2 3.0 10.0

or the pyjanitor fill_empty function:

>>> jn.fill_empty(

... Xbad,

... columns=["A", " sales numbers "],

... value=10,

...)

 A sales numbers

0 1.0 20.0

1 10.0 30.0

2 3.0 10.0

Often, we will use finer-grained imputations in pandas, scikit-learn, or
fancyimpute to perform per-column null replacement.

As a sanity check before creating models, you can use pandas to ensure that
you have dealt with all missing values. The following code returns a single
boolean if there is any cell that is missing in a DataFrame:

>>> df.isna().any().any()

True

Chapter 6. Exploring

It has been said that it is easier to take a SME and train them in data science
than the reverse. I’m not sure I agree with that 100%, but there is truth that
data has nuance and an SME can help tease that apart. By understanding the
business and the data, they are able to create better models and have a better
impact on their business.

Before I create a model, I will do some exploratory data analysis. This gives
me a feel for the data, but also is a great excuse to meet and discuss issues
with business units that control that data.

Data Size
Again, we are using the Titanic dataset here. The pandas .shape property
will return a tuple of the number of rows and columns:

>>> X.shape

(1309, 13)

We can see that this dataset has 1,309 rows and 13 columns.

Summary Stats
We can use pandas to get summary statistics for our data. The .describe
method will also give us the count of non-NaN values. Let’s look at the
results for the first and last columns:

>>> X.describe().iloc[:, [0, -1]]

 pclass embarked_S

count 1309.000000 1309.000000

mean -0.012831 0.698243

std 0.995822 0.459196

min -1.551881 0.000000

25% -0.363317 0.000000

50% 0.825248 1.000000

75% 0.825248 1.000000

max 0.825248 1.000000

The count row tells us that both of these columns are filled in. There are no
missing values. We also have the mean, standard deviation, minimum,
maximum, and quartile values.

NOTE
A pandas DataFrame has an iloc attribute that we can do index operations on. It will let
us pick out rows and columns by index location. We pass in the row positions as a
scalar, list, or slice, and then we can add a comma and pass in the column positions as a
scalar, list, or slice.

Here we pull out the second and fifth row, and the last three columns:

>>> X.iloc[[1, 4], -3:]

 sex_male embarked_Q embarked_S

677 1.0 0 1

864 0.0 0 1

There is also a .loc attribute, and we can put out rows and columns based on name
(rather than position). Here is the same portion of the DataFrame:

>>> X.loc[[677, 864], "sex_male":]

 sex_male embarked_Q embarked_S

677 1.0 0 1

864 0.0 0 1

Histogram
A histogram is a great tool to visualize numeric data. You can see how
many modes there are as well as look at the distribution (see Figure 6-1).
The pandas library has a .plot method to show histograms:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> X.fare.plot(kind="hist", ax=ax)

>>> fig.savefig("images/mlpr_0601.png", dpi=300)

Figure 6-1. Pandas histogram.

Using the seaborn library, we can plot a histogram of continuous values
against the target (see Figure 6-2):

fig, ax = plt.subplots(figsize=(12, 8))

mask = y_train == 1

ax = sns.distplot(X_train[mask].fare, label='survived')

ax = sns.distplot(X_train[~mask].fare, label='died')

ax.set_xlim(-1.5, 1.5)

ax.legend()

fig.savefig('images/mlpr_0602.png', dpi=300, bbox_inches='tight')

Figure 6-2. Seaborn histogram.

Scatter Plot
A scatter plot shows the relationship between two numeric columns (see
Figure 6-3). Again, this is easy with pandas. Adjust the alpha parameter if
you have overlapping data:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> X.plot.scatter(

... x="age", y="fare", ax=ax, alpha=0.3

...)

>>> fig.savefig("images/mlpr_0603.png", dpi=300)

Figure 6-3. Pandas scatter plot.

There doesn’t appear to be much correlation between these two features.
We can do Pearson correlation between two (pandas) columns with the
.corr method to quantify the correlation:

>>> X.age.corr(X.fare)

0.17818151568062093

Joint Plot
Yellowbrick has a fancier scatter plot that includes histograms on the edge
as well as a regression line called a joint plot (see Figure 6-4):

>>> from yellowbrick.features import (

... JointPlotVisualizer,

...)

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> jpv = JointPlotVisualizer(

... feature="age", target="fare"

...)

>>> jpv.fit(X["age"], X["fare"])

>>> jpv.poof()

>>> fig.savefig("images/mlpr_0604.png", dpi=300)

Figure 6-4. Yellowbrick joint plot.

WARNING
In this .fit method, X and y refer to a column each. Usually, the X is a DataFrame, not a
series.

You can also use the seaborn library to create a joint plot (see Figure 6-5):

https://seaborn.pydata.org/

>>> from seaborn import jointplot

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> new_df = X.copy()

>>> new_df["target"] = y

>>> p = jointplot(

... "age", "fare", data=new_df, kind="reg"

...)

>>> p.savefig("images/mlpr_0605.png", dpi=300)

Figure 6-5. Seaborn joint plot.

Pair Grid
The seaborn library can create a pair grid (see Figure 6-6). This plot is a
matrix of columns and kernel density estimations. To color by a column
from a DataFrame, use the hue parameter. By coloring with the target, we
can see if features have different effects on the target:

>>> from seaborn import pairplot

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> new_df = X.copy()

>>> new_df["target"] = y

>>> vars = ["pclass", "age", "fare"]

>>> p = pairplot(

... new_df, vars=vars, hue="target", kind="reg"

...)

>>> p.savefig("images/mlpr_0606.png", dpi=300)

Figure 6-6. Seaborn pair grid.

Box and Violin Plots
Seaborn has various plots to visualize distributions. We show examples of a
box plot and a violin plot (see Figure 6-7 and Figure 6-8). These plots can
visualize a feature against a target:

>>> from seaborn import box plot

>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> new_df = X.copy()

>>> new_df["target"] = y

>>> boxplot(x="target", y="age", data=new_df)

>>> fig.savefig("images/mlpr_0607.png", dpi=300)

Figure 6-7. Seaborn box plot.

Violin plots can help with distribution visualization:

>>> from seaborn import violinplot

>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> new_df = X.copy()

>>> new_df["target"] = y

>>> violinplot(

... x="target", y="sex_male", data=new_df

...)

>>> fig.savefig("images/mlpr_0608.png", dpi=300)

Figure 6-8. Seaborn violin plot.

Comparing Two Ordinal Values
Here is pandas code to compare two ordinal categories. I’m simulating that
by binning age into ten quantiles, and pclass into three bins. The plot is
normalized so it fills all of the vertical area. This makes it easy to see that in
the 40% quantile most of the tickets were in 3rd class (see Figure 6-9):

>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> (

... X.assign(

... age_bin=pd.qcut(

... X.age, q=10, labels=False

...),

... class_bin=pd.cut(

... X.pclass, bins=3, labels=False

...),

...)

... .groupby(["age_bin", "class_bin"])

... .size()

... .unstack()

... .pipe(lambda df: df.div(df.sum(1), axis=0))

... .plot.bar(

... stacked=True,

... width=1,

... ax=ax,

... cmap="viridis",

...)

... .legend(bbox_to_anchor=(1, 1))

...)

>>> fig.savefig(

... "image/mlpr_0609.png",

... dpi=300,

... bbox_inches="tight",

...)

NOTE
The lines:

.groupby(["age_bin", "class_bin"])

.size()

.unstack()

can be replaced by:

.pipe(lambda df: pd.crosstab(

 df.age_bin, df.class_bin)

)

In pandas, there is often more than one way to do something, and some helper functions
are available that compose other functionality, such as pd.crosstab.

Figure 6-9. Comparing ordinal values.

Correlation
Yellowbrick can create pairwise comparisons between the features (see
Figure 6-10). This plot shows a Pearson correlation (the algorithm
parameter also accepts 'spearman' and 'covariance'):

>>> from yellowbrick.features import Rank2D

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> pcv = Rank2D(

... features=X.columns, algorithm="pearson"

...)

>>> pcv.fit(X, y)

>>> pcv.transform(X)

>>> pcv.poof()

>>> fig.savefig(

... "images/mlpr_0610.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 6-10. Covariance correlation created with Yellowbrick.

A similar plot, a heat map, is available in the seaborn library (see Figure 6-
11). We need to pass in a correlation DataFrame as the data. Sadly, the
colorbar does not span between -1 and 1 unless the values in the matrix do,
or we add the vmin and vmax parameters:

>>> from seaborn import heatmap

>>> fig, ax = plt.subplots(figsize=(8, 8))

>>> ax = heatmap(

... X.corr(),

... fmt=".2f",

... annot=True,

... ax=ax,

... cmap="RdBu_r",

... vmin=-1,

... vmax=1,

...)

>>> fig.savefig(

... "images/mlpr_0611.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 6-11. Seaborn heat map.

The pandas library can also provide a correlation between DataFrame
columns. We only show the first two columns of the result. The default
method is 'pearson', but you can also set the method parameter to
'kendall', 'spearman', or a custom callable that returns a float given two
columns:

>>> X.corr().iloc[:, :2]

 pclass age

pclass 1.000000 -0.440769

age -0.440769 1.000000

sibsp 0.060832 -0.292051

parch 0.018322 -0.174992

fare -0.558831 0.177205

sex_male 0.124617 0.077636

embarked_Q 0.230491 -0.061146

embarked_S 0.096335 -0.041315

Highly correlated columns don’t add value and can throw off feature
importance and interpretation of regression coefficients. Below is code to
find the correlated columns. In our data none of the columns are highly
correlated (remember we removed the sex_male column).

If we had correlated columns, we could choose to remove either the
columns from level_0 or level_1 from the feature data:

>>> def correlated_columns(df, threshold=0.95):

... return (

... df.corr()

... .pipe(

... lambda df1: pd.DataFrame(

... np.tril(df1, k=-1),

... columns=df.columns,

... index=df.columns,

...)

...)

... .stack()

... .rename("pearson")

... .pipe(

... lambda s: s[

... s.abs() > threshold

...].reset_index()

...)

... .query("level_0 not in level_1")

...)

>>> correlated_columns(X)

Empty DataFrame

Columns: [level_0, level_1, pearson]

Index: []

Using the dataset with more columns, we can see that many of them are
correlated:

>>> c_df = correlated_columns(agg_df)

>>> c_df.style.format({"pearson": "{:.2f}"})

 level_0 level_1 pearson

3 pclass_mean pclass 1.00

4 pclass_mean pclass_min 1.00

5 pclass_mean pclass_max 1.00

6 sibsp_mean sibsp_max 0.97

7 parch_mean parch_min 0.95

8 parch_mean parch_max 0.96

9 fare_mean fare 0.95

10 fare_mean fare_max 0.98

12 body_mean body_min 1.00

13 body_mean body_max 1.00

14 sex_male sex_female -1.00

15 embarked_S embarked_C -0.95

RadViz
A RadViz plot shows each sample on a circle, with the features on the
circumference (see Figure 6-12). The values are normalized, and you can
imagine that each figure has a spring that pulls samples to it based on the
value.

This is one technique to visualize separability between the targets.

Yellowbrick can do this:

>>> from yellowbrick.features import RadViz

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> rv = RadViz(

... classes=["died", "survived"],

... features=X.columns,

...)

>>> rv.fit(X, y)

>>> _ = rv.transform(X)

>>> rv.poof()

>>> fig.savefig("images/mlpr_0612.png", dpi=300)

Figure 6-12. Yellowbrick RadViz plot.

The pandas library can plot RadViz plots as well (see Figure 6-13):

>>> from pandas.plotting import radviz

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> new_df = X.copy()

>>> new_df["target"] = y

>>> radviz(

... new_df, "target", ax=ax, colormap="PiYG"

...)

>>> fig.savefig("images/mlpr_0613.png", dpi=300)

Figure 6-13. Pandas RadViz plot.

Parallel Coordinates
For multivariate data, you can use a parallel coordinates plot to see
clustering visually (see Figure 6-14 and Figure 6-15).

Again, here is a Yellowbrick version:

>>> from yellowbrick.features import (

... ParallelCoordinates,

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> pc = ParallelCoordinates(

... classes=["died", "survived"],

... features=X.columns,

...)

>>> pc.fit(X, y)

>>> pc.transform(X)

>>> ax.set_xticklabels(

... ax.get_xticklabels(), rotation=45

...)

>>> pc.poof()

>>> fig.savefig("images/mlpr_0614.png", dpi=300)

Figure 6-14. Yellowbrick parallel coordinates plot.

And a pandas version:

>>> from pandas.plotting import (

... parallel_coordinates,

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> new_df = X.copy()

>>> new_df["target"] = y

>>> parallel_coordinates(

... new_df,

... "target",

... ax=ax,

... colormap="viridis",

... alpha=0.5,

...)

>>> ax.set_xticklabels(

... ax.get_xticklabels(), rotation=45

...)

>>> fig.savefig(

... "images/mlpr_0615.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 6-15. Pandas parallel coordinates plot.

Chapter 7. Preprocess Data

This chapter will explore common preprocessing steps using this data:

>>> X2 = pd.DataFrame(

... {

... "a": range(5),

... "b": [-100, -50, 0, 200, 1000],

... }

...)

>>> X2

 a b

0 0 -100

1 1 -50

2 2 0

3 3 200

4 4 1000

Standardize
Some algorithms, such as SVM, perform better when the data is
standardized. Each column should have a mean value of 0 and standard
deviation of 1. Sklearn provides a .fit_transform method that combines
both .fit and .transform:

>>> from sklearn import preprocessing

>>> std = preprocessing.StandardScaler()

>>> std.fit_transform(X2)

array([[-1.41421356, -0.75995002],

 [-0.70710678, -0.63737744],

 [0. , -0.51480485],

 [0.70710678, -0.02451452],

 [1.41421356, 1.93664683]])

After fitting, there are various attributes we can inspect:

>>> std.scale_

array([1.41421356, 407.92156109])

>>> std.mean_

array([2., 210.])

>>> std.var_

array([2.000e+00, 1.664e+05])

Here is a pandas version. Remember that you will need to track the original
mean and standard deviation if you use this for preprocessing. Any sample
that you will use to predict later will need to be standardized with those
same values:

>>> X_std = (X2 - X2.mean()) / X2.std()

>>> X_std

 a b

0 -1.264911 -0.679720

1 -0.632456 -0.570088

2 0.000000 -0.460455

3 0.632456 -0.021926

4 1.264911 1.732190

>>> X_std.mean()

a 4.440892e-17

b 0.000000e+00

dtype: float64

>>> X_std.std()

a 1.0

b 1.0

dtype: float64

The fastai library also implements this:

>>> X3 = X2.copy()

>>> from fastai.structured import scale_vars

>>> scale_vars(X3, mapper=None)

>>> X3.std()

a 1.118034

b 1.118034

dtype: float64

>>> X3.mean()

a 0.000000e+00

b 4.440892e-17

dtype: float64

Scale to Range
Scaling to range is translating data so it is between 0 and 1, inclusive.
Having the data bounded may be useful. However, if you have outliers, you
probably want to be careful using this:

>>> from sklearn import preprocessing

>>> mms = preprocessing.MinMaxScaler()

>>> mms.fit(X2)

>>> mms.transform(X2)

array([[0. , 0.],

 [0.25 , 0.04545],

 [0.5 , 0.09091],

 [0.75 , 0.27273],

 [1. , 1.]])

Here is a pandas version:

>>> (X2 - X2.min()) / (X2.max() - X2.min())

 a b

0 0.00 0.000000

1 0.25 0.045455

2 0.50 0.090909

3 0.75 0.272727

4 1.00 1.000000

Dummy Variables
We can use pandas to create dummy variables from categorical data. This is
also referred to as one-hot encoding, or indicator encoding. Dummy
variables are especially useful if the data is nominal (unordered). The
get_dummies function in pandas creates multiple columns for a categorical
column, each with a 1 or 0 if the original column had that value:

>>> X_cat = pd.DataFrame(

... {

... "name": ["George", "Paul"],

... "inst": ["Bass", "Guitar"],

... }

...)

>>> X_cat

 name inst

0 George Bass

1 Paul Guitar

Here is the pandas version. Note the drop_first option can be used to
eliminate a column (one of the dummy columns is a linear combination of
the other columns):

>>> pd.get_dummies(X_cat, drop_first=True)

 name_Paul inst_Guitar

0 0 0

1 1 1

The pyjanitor library also has the ability to split columns with the
expand_column function:

>>> X_cat2 = pd.DataFrame(

... {

... "A": [1, None, 3],

... "names": [

... "Fred,George",

... "George",

... "John,Paul",

...],

... }

...)

>>> jn.expand_column(X_cat2, "names", sep=",")

 A names Fred George John Paul

0 1.0 Fred,George 1 1 0 0

1 NaN George 0 1 0 0

2 3.0 John,Paul 0 0 1 1

If we have high cardinality nominal data, we can use label encoding. This is
introduced in the next section.

Label Encoder
An alternative to dummy variable encoding is label encoding. This will take
categorical data and assign each value a number. It is useful for high

cardinality data. This encoder imposes ordinality, which may or may not be
desired. It can take up less space than one-hot encoding, and some (tree)
algorithms can deal with this encoding.

The label encoder can only deal with one column at a time:

>>> from sklearn import preprocessing

>>> lab = preprocessing.LabelEncoder()

>>> lab.fit_transform(X_cat)

array([0,1])

If you have encoded values, applying the .inverse_transform method
decodes them:

>>> lab.inverse_transform([1, 1, 0])

array(['Guitar', 'Guitar', 'Bass'], dtype=object)

You can also use pandas to label encode. First, you convert the column to a
categorical column type, and then pull out the numeric code from it.

This code will create a new series of numeric data from a pandas series. We
use the .as_ordered method to ensure that the category is ordered:

>>> X_cat.name.astype(

... "category"

...).cat.as_ordered().cat.codes + 1

0 1

1 2

dtype: int8

Frequency Encoding
Another option for handling high cardinality categorical data is to frequency
encode it. This means replacing the name of the category with the count it
had in the training data. We will use pandas to do this. First, we will use the
pandas .value_counts method to make a mapping (a pandas series that
maps strings to counts). With the mapping we can use the .map method to
do the encoding:

>>> mapping = X_cat.name.value_counts()

>>> X_cat.name.map(mapping)

0 1

1 1

Name: name, dtype: int64

Make sure you store the training mapping so you can encode future data
with the same data.

Pulling Categories from Strings
One way to increase the accuracy of the Titanic model is to pull out titles
from the names. A quick hack to find the most common triples is to use the
Counter class:

>>> from collections import Counter

>>> c = Counter()

>>> def triples(val):

... for i in range(len(val)):

... c[val[i : i + 3]] += 1

>>> df.name.apply(triples)

>>> c.most_common(10)

[(', M', 1282),

 (' Mr', 954),

 ('r. ', 830),

 ('Mr.', 757),

 ('s. ', 460),

 ('n, ', 320),

 (' Mi', 283),

 ('iss', 261),

 ('ss.', 261),

 ('Mis', 260)]

We can see that “Mr.” and “Miss.” are very common.

Another option is to use a regular expression to pull out the capital letter
followed by lowercase letters and a period:

>>> df.name.str.extract(

... "([A-Za-z]+)\.", expand=False

...).head()

0 Miss

1 Master

2 Miss

3 Mr

4 Mrs

Name: name, dtype: object

We can use .value_counts to see the frequency of these:

>>> df.name.str.extract(

... "([A-Za-z]+)\.", expand=False

...).value_counts()

Mr 757

Miss 260

Mrs 197

Master 61

Dr 8

Rev 8

Col 4

Mlle 2

Ms 2

Major 2

Dona 1

Don 1

Lady 1

Countess 1

Capt 1

Sir 1

Mme 1

Jonkheer 1

Name: name, dtype: int64

NOTE
A complete discussion of regular expressions is beyond the scope of this book. This
expression captures a group with one or more alphabetic characters. This group will be
followed by a period.

Using these manipulations and pandas, you can create dummy variables or
combine columns with low counts into other categories (or drop them).

Other Categorical Encoding
The categorical_encoding library is a set of scikit-learn transformers used to
convert categorical data into numeric data. A nice feature of this library is
that it supports outputting pandas DataFrames (unlike scikit-learn, which
transforms them into numpy arrays).

One algorithm implemented in the library is a hash encoder. This is useful if
you don’t know how many categories you have ahead of time or if you are
using a bag of words to represent text. This will hash the categorical
columns into n_components. If you are using online learning (models that
can be updated), this can be very useful:

>>> import category_encoders as ce

>>> he = ce.HashingEncoder(verbose=1)

>>> he.fit_transform(X_cat)

 col_0 col_1 col_2 col_3 col_4 col_5 col_6 col_7

0 0 0 0 1 0 1 0 0

1 0 2 0 0 0 0 0 0

The ordinal encoder can convert categorical columns that have order to a
single column of numbers. Here we convert the size column to ordinal
numbers. If a value is missing from the mapping dictionary, the default
value of -1 is used:

>>> size_df = pd.DataFrame(

... {

... "name": ["Fred", "John", "Matt"],

... "size": ["small", "med", "xxl"],

... }

...)

>>> ore = ce.OrdinalEncoder(

... mapping=[

... {

... "col": "size",

... "mapping": {

... "small": 1,

... "med": 2,

... "lg": 3,

... },

... }

https://oreil.ly/JbxWG

...]

...)

>>> ore.fit_transform(size_df)

 name size

0 Fred 1.0

1 John 2.0

2 Matt -1.0

This reference explains many of the algorithms of the categorical_encoding
library.

If you have high cardinality data (a large number of unique values) consider
using one of the Bayesian encoders that output a single column per
categorical column. These are TargetEncoder, LeaveOneOutEncoder,
WOEEncoder, JamesSteinEncoder, and MEstimateEncoder.

For example, to convert the Titanic survival column to a blend of posterior
probability of the target and the prior probability given the title (categorical)
information, use the following code:

>>> def get_title(df):

... return df.name.str.extract(

... "([A-Za-z]+)\.", expand=False

...)

>>> te = ce.TargetEncoder(cols="Title")

>>> te.fit_transform(

... df.assign(Title=get_title), df.survived

...)["Title"].head()

0 0.676923

1 0.508197

2 0.676923

3 0.162483

4 0.786802

Name: Title, dtype: float64

Date Feature Engineering
The fastai library has an add_datepart function that will generate date
attribute columns based on a datetime column. This is useful as most
machine learning algorithms would not be able to infer this type of signal
from a numeric representation of a date:

https://oreil.ly/JUtYh

>>> from fastai.tabular.transform import (

... add_datepart,

...)

>>> dates = pd.DataFrame(

... {

... "A": pd.to_datetime(

... ["9/17/2001", "Jan 1, 2002"]

...)

... }

...)

>>> add_datepart(dates, "A")

>>> dates.T

 0 1

AYear 2001 2002

AMonth 9 1

AWeek 38 1

ADay 17 1

ADayofweek 0 1

ADayofyear 260 1

AIs_month_end False False

AIs_month_start False True

AIs_quarter_end False False

AIs_quarter_start False True

AIs_year_end False False

AIs_year_start False True

AElapsed 1000684800 1009843200

WARNING
add_datepart mutates the DataFrame, which pandas can do, but normally doesn’t!

Add col_na Feature
The fastai library used to have a function for creating a column to fill a
missing value (with the median) and indicate that a value was missing.
There might be some signal in knowing that a value was missing. Here is a
copy of the function and an example using it:

>>> from pandas.api.types import is_numeric_dtype

>>> def fix_missing(df, col, name, na_dict):

... if is_numeric_dtype(col):

... if pd.isnull(col).sum() or (

... name in na_dict

...):

... df[name + "_na"] = pd.isnull(col)

... filler = (

... na_dict[name]

... if name in na_dict

... else col.median()

...)

... df[name] = col.fillna(filler)

... na_dict[name] = filler

... return na_dict

>>> data = pd.DataFrame({"A": [0, None, 5, 100]})

>>> fix_missing(data, data.A, "A", {})

{'A': 5.0}

>>> data

 A A_na

0 0.0 False

1 5.0 True

2 5.0 False

3 100.0 False

Here is a pandas version:

>>> data = pd.DataFrame({"A": [0, None, 5, 100]})

>>> data["A_na"] = data.A.isnull()

>>> data["A"] = data.A.fillna(data.A.median())

Manual Feature Engineering
We can use pandas to generate new features. For the Titanic dataset, we can
add aggregate cabin data (maximum age per cabin, mean age per cabin,
etc.). To get aggregate data per cabin and merge it back in, use the pandas
.groupby method to create the data. Then align it back to the original data
using the .merge method:

>>> agg = (

... df.groupby("cabin")

... .agg("min,max,mean,sum".split(","))

... .reset_index()

...)

>>> agg.columns = [

... "_".join(c).strip("_")

... for c in agg.columns.values

...]

>>> agg_df = df.merge(agg, on="cabin")

If you wanted to sum up “good” or “bad” columns, you could create a new
column that is the sum of the aggregated columns (or another mathematical
operation). This is somewhat of an art and also requires understanding the
data.

Chapter 8. Feature Selection

We use feature selection to select features that are useful to the model.
Irrelevant features may have a negative effect on a model. Correlated
features can make coefficients in regression (or feature importance in tree
models) unstable or difficult to interpret.

The curse of dimensionality is another issue to consider. As you increase the
number of dimensions of your data, it becomes more sparse. This can make
it difficult to pull out a signal unless you have more data. Neighbor
calculations tend to lose their usefulness as more dimensions are added.

Also, training time is usually a function of the number of columns (and
sometimes it is worse than linear). If you can be concise and precise with
your columns, you can have a better model in less time. We will walk
through some examples using the agg_df dataset from the last chapter.
Remember that this is the Titanic dataset with some extra columns for cabin
information. Because this dataset is aggregating numeric values for each
cabin, it will show many correlations. Other options include PCA and
looking at the .feature_importances_ of a tree classifier.

Collinear Columns
We can use the previously defined correlated_columns function or run
the following code to find columns that have a correlation coefficient of .95
or above:

>>> limit = 0.95

>>> corr = agg_df.corr()

>>> mask = np.triu(

... np.ones(corr.shape), k=1

...).astype(bool)

>>> corr_no_diag = corr.where(mask)

>>> coll = [

... c

... for c in corr_no_diag.columns

... if any(abs(corr_no_diag[c]) > threshold)

...]

>>> coll

['pclass_min', 'pclass_max', 'pclass_mean',

 'sibsp_mean', 'parch_mean', 'fare_mean',

 'body_max', 'body_mean', 'sex_male', 'embarked_S']

The Yellowbrick Rank2 visualizer, shown previously, will plot a heat map
of correlations.

The rfpimp package has a visualization of multicollinearity. The
plot_dependence_heatmap function trains a random forest for each
numeric column from the other columns in a training dataset. The
dependence value is the R2 score from the out-of-bag (OOB) estimates for
predicting that column (see Figure 8-1).

The suggested way to use this plot is to find values close to 1. The label on
the X axis is the feature that predicts the Y axis label. If a feature predicts
another, you can remove the predicted feature (the feature on the Y axis). In
our example, fare predicts pclass, sibsp, parch, and embarked_Q. We
should be able to keep fare and remove the others and get similar
performance:

>>> rfpimp.plot_dependence_heatmap(

... rfpimp.feature_dependence_matrix(X_train),

... value_fontsize=12,

... label_fontsize=14,

... figsize=(8, 8),sn

...)

>>> fig = plt.gcf()

>>> fig.savefig(

... "images/mlpr_0801.png",

... dpi=300,

... bbox_inches="tight",

...)

https://oreil.ly/MsnXc

Figure 8-1. Dependence heat map. Pclass, sibsp, parch, and embarked_Q can be predicted from
fare, so we can remove them.

Here is code showing that we get a similar score if we remove these
columns:

>>> cols_to_remove = [

... "pclass",

... "sibsp",

... "parch",

... "embarked_Q",

...]

>>> rf3 = RandomForestClassifier(random_state=42)

>>> rf3.fit(

... X_train[

... [

... c

... for c in X_train.columns

... if c not in cols_to_remove

...]

...],

... y_train,

...)

>>> rf3.score(

... X_test[

... [

... c

... for c in X_train.columns

... if c not in cols_to_remove

...]

...],

... y_test,

...)

0.7684478371501272

>>> rf4 = RandomForestClassifier(random_state=42)

>>> rf4.fit(X_train, y_train)

>>> rf4.score(X_test, y_test)

0.7659033078880407

Lasso Regression
If you use lasso regression, you can set an alpha parameter that acts as a
regularization parameter. As you increase the value, it gives less weight to
features that are less important. Here we use the LassoLarsCV model to
iterate over various values of alpha and track the feature coefficients (see
Figure 8-2):

>>> from sklearn import linear_model

>>> model = linear_model.LassoLarsCV(

... cv=10, max_n_alphas=10

...).fit(X_train, y_train)

>>> fig, ax = plt.subplots(figsize=(12, 8))

>>> cm = iter(

... plt.get_cmap("tab20")(

... np.linspace(0, 1, X.shape[1])

...)

...)

>>> for i in range(X.shape[1]):

... c = next(cm)

... ax.plot(

... model.alphas_,

... model.coef_path_.T[:, i],

... c=c,

... alpha=0.8,

... label=X.columns[i],

...)

>>> ax.axvline(

... model.alpha_,

... linestyle="-",

... c="k",

... label="alphaCV",

...)

>>> plt.ylabel("Regression Coefficients")

>>> ax.legend(X.columns, bbox_to_anchor=(1, 1))

>>> plt.xlabel("alpha")

>>> plt.title(

... "Regression Coefficients Progression for Lasso Paths"

...)

>>> fig.savefig(

... "images/mlpr_0802.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 8-2. Coefficients of features as alpha varies during lasso regression.

Recursive Feature Elimination
Recursive feature elimination will remove the weakest features, then fit a
model (see Figure 8-3). It does this by passing in a scikit-learn model with a
.coef_ or .feature_importances_ attribute:

>>> from yellowbrick.features import RFECV

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> rfe = RFECV(

... ensemble.RandomForestClassifier(

... n_estimators=100

...),

... cv=5,

...)

>>> rfe.fit(X, y)

>>> rfe.rfe_estimator_.ranking_

array([1, 1, 2, 3, 1, 1, 5, 4])

>>> rfe.rfe_estimator_.n_features_

4

>>> rfe.rfe_estimator_.support_

array([True, True, False, False, True,

 True, False, False])

>>> rfe.poof()

>>> fig.savefig("images/mlpr_0803.png", dpi=300)

Figure 8-3. Recursive feature elimination.

We will use recursive feature elimination to find the 10 most important
features. (In this aggregated dataset we find that we have leaked the
survival column!)

>>> from sklearn.feature_selection import RFE

>>> model = ensemble.RandomForestClassifier(

... n_estimators=100

...)

>>> rfe = RFE(model, 4)

>>> rfe.fit(X, y)

>>> agg_X.columns[rfe.support_]

Index(['pclass', 'age', 'fare', 'sex_male'], dtype='object')

Mutual Information
Sklearn provides nonparametric tests that will use k-nearest neighbor to
determine the mutual information between features and the target. Mutual
information quantifies the amount of information gained by observing
another variable. The value is zero or more. If the value is zero, then there is
no relation between them (see Figure 8-4). This number is not bounded and
represents the number of bits shared between the feature and the target:

>>> from sklearn import feature_selection

>>> mic = feature_selection.mutual_info_classif(

... X, y

...)

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> (

... pd.DataFrame(

... {"feature": X.columns, "vimp": mic}

...)

... .set_index("feature")

... .plot.barh(ax=ax)

...)

>>> fig.savefig("images/mlpr_0804.png")

Figure 8-4. Mutual information plot.

Principal Component Analysis
Another option for feature selection is to run principal component analysis.
Once you have the main principal components, examine the features that
contribute to them the most. These are features that have more variance.
Note that this is an unsupervised algorithm and doesn’t take y into account.

See “PCA” for more details.

Feature Importance
Most tree models provide access to a .feature_importances_ attribute
following training. A higher importance typically means that there is higher

error when the feature is removed from the model. See the chapters for the
various tree models for more details.

Chapter 9. Imbalanced Classes

If you are classifying data, and the classes are not relatively balanced in
size, the bias toward more popular classes can carry over into your model.
For example, if you have 1 positive case and 99 negative cases, you can get
99% accuracy simply by classifying everything as negative. There are
various options for dealing with imbalanced classes.

Use a Different Metric
One hint is to use a measure other than accuracy (AUC is a good choice) for
calibrating models. Precision and recall are also better options when the
target sizes are different. However, there are other options to consider as
well.

Tree-based Algorithms and Ensembles
Tree-based models may perform better depending on the distribution of the
smaller class. If they tend to be clustered, they can be classified easier.

Ensemble methods can further aid in pulling out the minority classes.
Bagging and boosting are options found in tree models like random forests
and Extreme Gradient Boosting (XGBoost).

Penalize Models
Many scikit-learn classification models support the class_weight
parameter. Setting this to 'balanced' will attempt to regularize minority
classes and incentivize the model to classify them correctly. Alternatively,
you can grid search and specify the weight options by passing in a
dictionary mapping class to weight (give higher weight to smaller classes).

The XGBoost library has the max_delta_step parameter, which can be set
from 1 to 10 to make the update step more conservative. It also has the
scale_pos_weight parameter that sets the ratio of negative to positive
samples (for binary classes). Also, the eval_metric should be set to 'auc'
rather than the default value of 'error' for classification.

The KNN model has a weights parameter that can bias neighbors that are
closer. If the minority class samples are close together, setting this
parameter to 'distance' may improve performance.

Upsampling Minority
You can upsample the minority class in a couple of ways. Here is an sklearn
implementation:

>>> from sklearn.utils import resample

>>> mask = df.survived == 1

>>> surv_df = df[mask]

>>> death_df = df[~mask]

>>> df_upsample = resample(

... surv_df,

... replace=True,

... n_samples=len(death_df),

... random_state=42,

...)

>>> df2 = pd.concat([death_df, df_upsample])

>>> df2.survived.value_counts()

1 809

0 809

Name: survived, dtype: int64

We can also use the imbalanced-learn library to randomly sample with
replacement:

>>> from imblearn.over_sampling import (

... RandomOverSampler,

...)

>>> ros = RandomOverSampler(random_state=42)

>>> X_ros, y_ros = ros.fit_sample(X, y)

https://xgboost.readthedocs.io/

>>> pd.Series(y_ros).value_counts()

1 809

0 809

dtype: int64

Generate Minority Data
The imbalanced-learn library can also generate new samples of minority
classes with both the Synthetic Minority Over-sampling Technique
(SMOTE) and Adaptive Synthetic (ADASYN) sampling approach
algorithms. SMOTE works by choosing one of its k-nearest neighbors,
connecting a line to one of them, and choosing a point along that line.
ADASYN is similar to SMOTE, but generates more samples from those
that are harder to learn. The classes in imbanced-learn are named
over_sampling.SMOTE and over_sampling.ADASYN.

Downsampling Majority
Another method to balance classes is to downsample majority classes. Here
is an sklearn example:

>>> from sklearn.utils import resample

>>> mask = df.survived == 1

>>> surv_df = df[mask]

>>> death_df = df[~mask]

>>> df_downsample = resample(

... death_df,

... replace=False,

... n_samples=len(surv_df),

... random_state=42,

...)

>>> df3 = pd.concat([surv_df, df_downsample])

>>> df3.survived.value_counts()

1 500

0 500

Name: survived, dtype: int64

TIP
Don’t use replacement when downsampling.

The imbalanced-learn library also implements various downsampling
algorithms:

ClusterCentroids

This class uses K-means to synthesize data with the centroids.

RandomUnderSampler

This class randomly selects samples.

NearMiss

This class uses nearest neighbors to downsample.

TomekLink

This class downsamples by removing samples that are close to each
other.

EditedNearestNeighbours

This class removes samples that have neighbors that are either not in the
majority or all of the same class.

RepeatedNearestNeighbours

This class repeatedly calls the EditedNearestNeighbours.

AllKNN

This class is similar but increases the number of nearest neighbors
during the iterations of downsampling.

CondensedNearestNeighbour

This class picks one sample of the class to be downsampled, then
iterates through the other samples of the class, and if KNN doesn’t
misclassify, it adds that sample.

OneSidedSelection

This classremoves noisy samples.

NeighbourhoodCleaningRule

This class uses EditedNearestNeighbours results and applies KNN to
it.

InstanceHardnessThreshold

This class trains a model, then removes samples with low probabilities.

All of these classes support the .fit_sample method.

Upsampling Then Downsampling
The imbalanced-learn library implements SMOTEENN and SMOTETomek,
which both upsample and then apply downsampling to clean up the data.

Chapter 10. Classification

Classification is a supervised learning mechanism for labeling a sample
based on the features. Supervised learning means that we have labels for
classification or numbers for regression that the algorithm should learn.

We will look at various classification models in this chapter. Sklearn
implements many common and useful models. We will also see some that
are not in sklearn, but implement the sklearn interface. Because they follow
the same interface, it is easy to try different families of models and see how
well they perform.

In sklearn, we create a model instance and call the .fit method on it with
the training data and training labels. We can now call the .predict method
(or the .predict_proba or the .predict_log_proba methods) with the
fitted model. To evaluate the model, we use the .score with testing data
and testing labels.

The bigger challenge is usually arranging data in a form that will work with
sklearn. The data (X) should be an (m by n) numpy array (or pandas
DataFrame) with m rows of sample data each with n features (columns).
The label (y) is a vector (or pandas series) of size m with a value (class) for
each sample.

The .score method returns the mean accuracy, which by itself might not be
sufficient to evaluate a classifier. We will see other evaluation metrics.

We will look at many models and discuss their efficiency, the preprocessing
techniques they require, how to prevent overfitting, and if the model
supports intuitive interpretation of results.

The general methods that sklearn type models implement are:

fit(X, y[, sample_weight])

Fit a model

predict(X)

Predict classes

predict_log_proba(X)

Predict log probability

predict_proba(X)

Predict probability

score(X, y[, sample_weight])

Get accuracy

Logistic Regression
Logistic regression estimates probabilities by using a logistic function.
(Careful; even though it has regression in the name, it is used for
classification.) This has been the standard classification model for most
sciences.

The following are some model characteristics that we will include for each
model:

Runtime efficiency

Can use n_jobs if not using 'liblinear' solver.

Preprocess data

If solver is set to 'sag' or 'saga', standardize so that convergence
works. Can handle sparse input.

Prevent overfitting

The C parameter controls regularization. (Lower C is more
regularization, higher means less.) Can specify penalty to 'l1' or
'l2' (the default).

Interpret results

The .coef_ attribute of the fitted model shows the decision function
coefficients. A change in x one unit changes the log odds ratio by the
coefficient. The .intercept_ attribute is the inverse log odds of the
baseline condition.

Here is an example using this model:

>>> from sklearn.linear_model import (

... LogisticRegression,

...)

>>> lr = LogisticRegression(random_state=42)

>>> lr.fit(X_train, y_train)

LogisticRegression(C=1.0, class_weight=None,

 dual=False, fit_intercept=True,

 intercept_scaling=1, max_iter=100,

 multi_class='ovr', n_jobs=1, penalty='l2',

 random_state=42, solver='liblinear',

 tol=0.0001, verbose=0, warm_start=False)

>>> lr.score(X_test, y_test)

0.8040712468193384

>>> lr.predict(X.iloc[[0]])

array([1])

>>> lr.predict_proba(X.iloc[[0]])

array([[0.08698937, 0.91301063]])

>>> lr.predict_log_proba(X.iloc[[0]])

array([[-2.4419694 , -0.09100775]])

>>> lr.decision_function(X.iloc[[0]])

array([2.35096164])

Instance parameters:

penalty='l2'

Penalization norm, 'l1' or 'l2'.

dual=False

Use dual formulation (only with 'l2' and 'liblinear').

C=1.0

Positive float. Inverse regularization strength. Smaller is stronger
regularization.

fit_intercept=True

Add bias to the decision function.

intercept_scaling=1

If fit_intercept and 'liblinear', scale the intercept.

max_iter=100

Maximum number of iterations.

multi_class='ovr'

Use one versus rest for each class, or for 'multinomial', train one
class.

class_weight=None

Dictionary or 'balanced'.

solver='liblinear'

'liblinear' is good for small data. 'newton-cg', 'sag', 'saga', and
'lbfgs' are for multiclass data. 'liblinear' and 'saga' only work
with 'l1' penalty. The others work with 'l2'.

tol=0.0001

Stopping tolerance.

verbose=0

Be verbose (if nonzero int).

warm_start=False

If True, remember previous fit.

njobs=1

Number of CPUs to use. -1 is all. Only works with
multi_class='over' and solver is not 'liblinear'.

Attributes after fitting:

coef_

Decision function coefficients

intercept_

Intercept of the decision function

n_iter_

Number of iterations

The intercept is the log odds of the baseline condition. We can convert it
back to a percent accuracy (proportion):

>>> lr.intercept_

array([-0.62386001])

Using the inverse logit function, we see that the baseline for survival is
34%:

>>> def inv_logit(p):

... return np.exp(p) / (1 + np.exp(p))

>>> inv_logit(lr.intercept_)

array([0.34890406])

We can inspect the coefficients. The inverse logit of the coefficients gives
the proportion of the positive cases. In this case, if fare goes up, we are
more likely to survive. If sex is male, we are less likely to survive:

>>> cols = X.columns

>>> for col, val in sorted(

... zip(cols, lr.coef_[0]),

... key=lambda x: x[1],

... reverse=True,

...):

... print(

... f"{col:10}{val:10.3f} {inv_logit(val):10.3f}"

...)

fare 0.104 0.526

parch -0.062 0.485

sibsp -0.274 0.432

age -0.296 0.427

embarked_Q -0.504 0.377

embarked_S -0.507 0.376

pclass -0.740 0.323

sex_male -2.400 0.083

Yellowbrick can also visualize the coefficients. This visualizer has a
relative=True parameter that makes the largest value be 100 (or -100),
and the others are the percentages of that (see Figure 10-1):

>>> from yellowbrick.features.importances import (

... FeatureImportances,

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> fi_viz = FeatureImportances(lr)

>>> fi_viz.fit(X, y)

>>> fi_viz.poof()

>>> fig.savefig("images/mlpr_1001.png", dpi=300)

Figure 10-1. Feature importance (relative to largest absolute regression coefficient).

Naive Bayes
Naive Bayes is a probabilistic classifier that assumes independence between
the features of the data. It is popular for text classification applications,
such as catching spam. One advantage of this model is that because it
assumes feature independence, it can train a model with a small number of
samples. (A downside is that it can’t capture the interactions between
features.) This simple model can also work with data that has many
features. As such, it serves as a good baseline model.

There are three classes in sklearn: GaussianNB, MultinomialNB, and
BernoulliNB. The first assumes a Gaussian distribution (continuous
features with a normal distribution), the second is for discrete occurrence
counts, and the third is for discrete Boolean features.

This model has the following properties:

Runtime efficiency

Training O(Nd), where N is the number of training examples and d is
dimensionality. Testing O(cd), where c is the number of classes.

Preprocess data
Assumes that data is independent. Should perform better after removing
colinear columns. For continuous numerical data, might be good to bin
data. Gaussian assumes normal distribution, and you might need to
transform data to convert to normal distribution.

Prevent overfitting
Exhibits high bias and low variance (ensembles won’t reduce variance).

Interpret results
Percentage is the likelihood that a sample belongs to a class based on
priors.

Here is an example using this model:

>>> from sklearn.naive_bayes import GaussianNB

>>> nb = GaussianNB()

>>> nb.fit(X_train, y_train)

GaussianNB(priors=None, var_smoothing=1e-09)

>>> nb.score(X_test, y_test)

0.7837150127226463

>>> nb.predict(X.iloc[[0]])

array([1])

>>> nb.predict_proba(X.iloc[[0]])

array([[2.17472227e-08, 9.99999978e-01]])

>>> nb.predict_log_proba(X.iloc[[0]])

array([[-1.76437798e+01, -2.17472227e-08]])

Instance parameters:

priors=None

Prior probabilities of classes.

var_smoothing=1e-9

Added to variance for stable calculations.

Attributes after fitting:

class_prior_

Probabilities of classes

class_count_

Counts of classes

theta_

Mean of each column per class

sigma_

Variance of each column per class

epsilon_

Additive value to each variance

TIP
These models are susceptible to the zero probability problem. If you try to classify a
new sample that has no training data, it will have a zero probability. One solution is to
use Laplace smoothing. Sklearn controls this with the alpha parameter, which defaults
to 1 and enables smoothing on the MultinomialNB and BernoulliNB models.

Support Vector Machine
A Support Vector Machine (SVM) is an algorithm that tries to fit a line (or
plane or hyperplane) between the different classes that maximizes the
distance from the line to the points of the classes. In this way it tries to find

a robust separation between the classes. The support vectors are the points
of the edge of the dividing hyperplane.

NOTE
There are a few different SVM implementations in sklearn. SVC wraps the libsvm
library, while LinearSVC wraps the liblinear library.

There is also the linear_model.SGDClassifier, which implements SVM when using
the default loss parameter. This chapter will describe the first implementation.

SVM generally performs well and can support linear spaces or nonlinear
spaces by using a kernel trick. The kernel trick is the idea that we can create
a decision boundary in a new dimension by minimizing a formula that is
easier to calculate than actually mapping the points to the new dimension.
The default kernel is the Radial Basis Function ('rbf'), which is controlled
by the gamma parameter and can map an input space into a high dimensional
space.

SVMs have the following properties:

Runtime efficiency
The scikit-learn implementation is O(n⁴), so it can be hard to scale to
large sizes. Using a linear kernel or the LinearSVC model can improve
the runtime performance at perhaps the cost of accuracy. Upping the
cache_size parameter can bring that down to O(n³).

Preprocess data
The algorithm is not scale invariant. Standardizing the data is highly
recommended.

Prevent overfitting

The C (penalty parameter) controls regularization. A smaller value
allows for a smaller margin in the hyperplane. A higher value for gamma

will tend to overfit the training data. The LinearSVC model supports a
loss and penalty parameter to support regularization.

Interpret results

Inspect .support_vectors_, though these are hard to explain. With
linear kernels, you can inspect .coef_.

Here is an example using scikit-learn’s SVM implementation:

>>> from sklearn.svm import SVC

>>> svc = SVC(random_state=42, probability=True)

>>> svc.fit(X_train, y_train)

SVC(C=1.0, cache_size=200, class_weight=None,

 coef0=0.0, decision_function_shape='ovr',

 degree=3, gamma='auto', kernel='rbf',

 max_iter=-1, probability=True, random_state=42,

 shrinking=True, tol=0.001, verbose=False)

>>> svc.score(X_test, y_test)

0.8015267175572519

>>> svc.predict(X.iloc[[0]])

array([1])

>>> svc.predict_proba(X.iloc[[0]])

array([[0.15344656, 0.84655344]])

>>> svc.predict_log_proba(X.iloc[[0]])

array([[-1.87440289, -0.16658195]])

To get probability, use probability=True, which will slow down fitting of
the model.

This is similar to a perceptron, but will find the maximum margin. If the
data is not linearly separable, it will minimize the error. Alternatively, a
different kernel may be used.

Instance parameters:

C=1.0

The penalty parameter. The smaller the value, the tighter the decision
boundary (more overfitting).

cache_size=200

Cache size (MB). Bumping this up can improve training time on large
datasets.

class_weight=None

Dictionary or 'balanced'. Use dictionary to set C for each class.

coef0=0.0

Independent term for poly and sigmoid kernels.

decision_function_shape='ovr'

Use one versus rest ('ovr') or one versus one.

degree=3

Degree for polynomial kernel.

gamma='auto'

Kernel coefficient. Can be a number, 'scale' (default in 0.22, 1 / (num
features * X.std())), or 'auto' (default prior, 1 / num features). A
lower value leads to overfitting the training data.

kernel='rbf'

Kernel type: 'linear', 'poly', 'rbf' (default), 'sigmoid',
'precomputed', or a function.

max_iter=-1

Maximum number of iterations for solver. -1 for no limit.

probability=False

Enable probability estimation. Slows down training.

random_state=None

Random seed.

shrinking=True

Use shrinking heuristic.

tol=0.001

Stopping tolerance.

verbose=False

Verbosity.

Attributes after fitting:

support_

Support vector indices

support_vectors_

Support vectors

n_support_vectors_

Count of per-class support vectors

coef_

Coefficients (for linear) kernel

K-Nearest Neighbor
The K-Nearest Neighbor (KNN) algorithm classifies based on distance to
some number (k) of training samples. The algorithm family is called
instance-based learning as there are no parameters to learn. This model
assumes that distance is sufficient for inference; otherwise it makes no
assumptions about the underlying data or its distributions.

The tricky part is selecting the appropriate k value. Also, the curse of
dimensionality can hamper distance metrics as there is little difference in
high dimensions between nearest and farthest neighbor.

Nearest neighbor models have the following properties:

Runtime efficiency
Training O(1), but need to store data. Testing O(Nd) where N is the
number of training examples and d is dimensionality.

Preprocess data
Yes, distance-based calculations perform better when standardized.

Prevent overfitting

Raise n_neighbors. Change p for L1 or L2 metric.

Interpret results

Interpret the k-nearest neighbors to the sample (using the .kneighbors
method). Those neighbors (if you can explain them) explain your result.

Here is an example of using the model:

>>> from sklearn.neighbors import (

... KNeighborsClassifier,

...)

>>> knc = KNeighborsClassifier()

>>> knc.fit(X_train, y_train)

KNeighborsClassifier(algorithm='auto',

 leaf_size=30, metric='minkowski',

 metric_params=None, n_jobs=1, n_neighbors=5,

 p=2, weights='uniform')

>>> knc.score(X_test, y_test)

0.7837150127226463

>>> knc.predict(X.iloc[[0]])

array([1])

>>> knc.predict_proba(X.iloc[[0]])

array([[0., 1.]])

Attributes:

algorithm='auto'

Can be 'brute', 'ball_tree', or 'kd_tree'.

leaf_size=30

Used for tree algorithms.

metric='minkowski'

Distance metric.

metric_params=None

Additional dictionary of parameters for custom metric function.

n_jobs=1

Number of CPUs.

n_neighbors=5

Number of neighbors.

p=2

Minkowski power parameter: 1 = manhattan (L1). 2 = Euclidean (L2).

weights='uniform'

Can be 'distance', in which case, closer points have more influence.

Distance metrics include: 'euclidean', 'manhattan', 'chebyshev',
'minkowski', 'wminkowski', 'seuclidean', 'mahalanobis',
'haversine', 'hamming', 'canberra', 'braycurtis', 'jaccard',
'matching', 'dice', 'rogerstanimoto', 'russellrao',
'sokalmichener', 'sokalsneath', or a callable (user defined).

NOTE
If k is an even number and the neighbors are split, the result depends on the order of the
training data.

Decision Tree
A decision tree is like going to a doctor who asks a series of questions to
determine the cause of your symptoms. We can use a process to create a
decision tree and have a series of questions to predict a target class. The
advantages of this model include support for nonnumeric data (in some
implementations), little data preparation (no need for scaling), support for
dealing with nonlinear relationships, feature importances are revealed, and
it is easy to explain.

The default algorithm used for creation is called the classification and
regression tree (CART). It uses the Gini impurity or index measure to
construct decisions. This is done by looping over the features and finding
the value that gives the lowest probability of misclassifying.

TIP
The default values will lead to a fully grown (read overfit) tree. Use a mechanism such
as max_depth and cross-validation to control for this.

Decision trees have the following properties:

Runtime efficiency
For creation, loop over each of the m features, and sort all n samples,
O(mn log n). For predicting, you walk the tree, O(height).

Preprocess data
Scaling is not necessary. Need to get rid of missing values and convert
to numeric.

Prevent overfitting

Set max_depth to a lower number, raise min_impurity_decrease.

Interpret results
Can step through the tree of choices. Because there are steps, a tree is
bad at dealing with linear relationships (a small change in a number can
go down a different path). The tree is also highly dependent on the
training data. A small change can change the whole tree.

Here is an example using the scikit-learn library:

>>> from sklearn.tree import DecisionTreeClassifier

>>> dt = DecisionTreeClassifier(

... random_state=42, max_depth=3

...)

>>> dt.fit(X_train, y_train)

DecisionTreeClassifier(class_weight=None,

 criterion='gini', max_depth=None,

 max_features=None, max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, presort=False,

 random_state=42, splitter='best')

>>> dt.score(X_test, y_test)

0.8142493638676844

>>> dt.predict(X.iloc[[0]])

array([1])

>>> dt.predict_proba(X.iloc[[0]])

array([[0.02040816, 0.97959184]])

>>> dt.predict_log_proba(X.iloc[[0]])

array([[-3.8918203 , -0.02061929]])

Instance parameters:

class_weight=None

Weights for class in dictionary. 'balanced' will set values to the
inverse proportion of class frequencies. Default is a value of 1 for each
class. For multiclass, need a list of dictionaries, one-versus-rest (OVR)
for each class.

criterion='gini'

Splitting function, 'gini' or 'entropy'.

max_depth=None

Depth of tree. Default will build until the leaves contain less than
min_samples_split.

max_features=None

Number of features to examine for split. Default is all.

max_leaf_nodes=None

Limit the number of leaves. Default is unlimited.

min_impurity_decrease=0.0

Split node if a split will decrease impurity >= value.

min_impurity_split=None

Deprecated.

min_samples_leaf=1

Minimum number of samples at each leaf.

min_samples_split=2

Minimum number of samples required to split a node.

min_weight_fraction_leaf=0.0

Minimum sum total of weights required for leaf nodes.

presort=False

May speed up training with a small dataset or restricted depth if set to
True.

random_state=None

Random seed.

splitter='best'

Use 'random' or 'best'.

Attributes after fitting:

classes_

Class labels

feature_importances_

Array of Gini importance

n_classes_

Number of classes

n_features_

Number of features

tree_

Underlying tree object

View the tree with this code (see Figure 10-2):

>>> import pydotplus

>>> from io import StringIO

>>> from sklearn.tree import export_graphviz

>>> dot_data = StringIO()

>>> tree.export_graphviz(

... dt,

... out_file=dot_data,

... feature_names=X.columns,

... class_names=["Died", "Survived"],

... filled=True,

...)

>>> g = pydotplus.graph_from_dot_data(

... dot_data.getvalue()

...)

>>> g.write_png("images/mlpr_1002.png")

For Jupyter, use:

from IPython.display import Image

Image(g.create_png())

Figure 10-2. Decision tree.

The dtreeviz package can aid in understanding how the decision tree works.
It creates a tree with labeled histograms, which gives valuable insight (see
Figure 10-3). Here is an example. In Jupyter we can just display the viz
object directly. If we are working from a script, we can call the .save
method to create a PDF, SVG, or PNG:

>>> viz = dtreeviz.trees.dtreeviz(

... dt,

... X,

... y,

... target_name="survived",

... feature_names=X.columns,

... class_names=["died", "survived"],

...)

>>> viz

https://github.com/parrt/dtreeviz

Figure 10-3. dtreeviz output.

Feature importance showing Gini importance (reduction of error by using
that feature):

>>> for col, val in sorted(

... zip(X.columns, dt.feature_importances_),

... key=lambda x: x[1],

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")

sex_male 0.607

pclass 0.248

sibsp 0.052

fare 0.050

age 0.043

You can also use Yellowbrick to visualize feature importance (see
Figure 10-4):

>>> from yellowbrick.features.importances import (

... FeatureImportances,

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> fi_viz = FeatureImportances(dt)

>>> fi_viz.fit(X, y)

>>> fi_viz.poof()

>>> fig.savefig("images/mlpr_1004.png", dpi=300)

Figure 10-4. Feature importance (Gini coefficient) for decision tree (normalized to male
importance).

Random Forest
A random forest is an ensemble of decision trees. It uses bagging to correct
the tendency of decision trees to overfit. By creating many trees trained on
random subsamples of the samples and random features of the data, the
variance is lowered.

Because they train on subsamples of the data, random forests can evaluate
OOB error and evaluate performance. They can also track feature
importance by averaging the feature importance over all of the trees.

The intuition for understanding bagging comes from a 1785 essay by
Marquis de Condorcet. The essence is that if you are creating a jury, you
should add anyone who has a greater than 50% chance of delivering the
correct verdict and then average their decisions. Every time you add another

member (and their selection process is independent of the others), you will
get a better result.

The idea with random forests is to create a “forest” of decision trees trained
on different columns of the training data. If each tree has a better than 50%
chance of correct classification, you should incorporate its prediction. The
random forest has been an excellent tool for both classification and
regression, though it has recently fallen out of favor for gradient-boosted
trees.

It has the following properties:

Runtime efficiency
Need to create j random trees. This can be done in parallel using
n_jobs. Complexity for each tree is O(mn log n), where n is the number
of samples and m is the number of features. For creation, loop over each
of the m features, and sort all n samples, O(mn log n). For predicting,
walk the tree O(height).

Preprocess data
Not necessary.

Prevent overfitting

Add more trees (n_estimators). Use lower max_depth.

Interpret results
Supports feature importance, but we don’t have a single decision tree
that we can walk through. Can inspect single trees from the ensemble.

Here is an example:

>>> from sklearn.ensemble import (

... RandomForestClassifier,

...)

>>> rf = RandomForestClassifier(random_state=42)

>>> rf.fit(X_train, y_train)

RandomForestClassifier(bootstrap=True,

 class_weight=None, criterion='gini',

 max_depth=None, max_features='auto',

 max_leaf_nodes=None, min_impurity_decrease=0.0,

 min_impurity_split=None, min_samples_leaf=1,

 min_samples_split=2,

 min_weight_fraction_leaf=0.0,

 n_estimators=10, n_jobs=1, oob_score=False,

 random_state=42, verbose=0, warm_start=False)

>>> rf.score(X_test, y_test)

0.7862595419847328

>>> rf.predict(X.iloc[[0]])

array([1])

>>> rf.predict_proba(X.iloc[[0]])

array([[0., 1.]])

>>> rf.predict_log_proba(X.iloc[[0]])

array([[-inf, 0.]])

Instance parameters (these options mirror the decision tree):

bootstrap=True

Bootstrap when building trees.

class_weight=None

Weights for class in dictionary. 'balanced' will set values to the
inverse proportion of class frequencies. Default is a value of 1 for each
class. For multiclass, need a list of dictionaries (OVR) for each class.

criterion='gini'

Splitting function, 'gini' or 'entropy'.

max_depth=None

Depth of tree. Default will build until leaves contain less than
min_samples_split.

max_features='auto'

Number of features to examine for split. Default is all.

max_leaf_nodes=None

Limit the number of leaves. Default is unlimited.

min_impurity_decrease=0.0

Split node if a split will decrease impurity >= value.

min_impurity_split=None

Deprecated.

min_samples_leaf=1

Minimum number of samples at each leaf.

min_samples_split=2

Minimum number of samples required to split a node.
min_weight_fraction_leaf=0.0- Minimum sum total of weights
required for leaf nodes.

* n_estimators=10
Number of trees in the forest.

n_jobs=1

Number of jobs for fitting and predicting.

oob_score=False

Whether to estimate oob_score.

random_state=None

Random seed.

verbose=0

Verbosity.

warm_start=False

Fit a new forest or use the existing one.

Attributes after fitting:

classes_

Class labels.

feature_importances_

Array of Gini importance.

n_classes_

Number of classes.

n_features_

Number of features.

oob_score_

OOB score. Average accuracy for each observation not used in trees.

Feature importance showing Gini importance (reduction of error by using
that feature):

>>> for col, val in sorted(

... zip(X.columns, rf.feature_importances_),

... key=lambda x: x[1],

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")

p ({ }{ })

age 0.285

fare 0.268

sex_male 0.232

pclass 0.077

sibsp 0.059

TIP
The random forest classifier computes the feature importance by determining the mean
decrease in impurity for each feature (also known as Gini importance). Features that
reduce uncertainty in classification receive higher scores.

These numbers might be off if features vary in scale or cardinality of categorical
columns. A more reliable score is permutation importance (where each column has its
values permuted and the drop in accuracy is measured). An even more reliable
mechanism is drop column importance (where each column is dropped and the model is
re-evaluated), but sadly this requires creating a new model for each column that is
dropped. See the importances function in the rfpimp package:

>>> import rfpimp

>>> rf = RandomForestClassifier(random_state=42)

>>> rf.fit(X_train, y_train)

>>> rfpimp.importances(

... rf, X_test, y_test

...).Importance

Feature

sex_male 0.155216

fare 0.043257

age 0.033079

pclass 0.027990

parch 0.020356

embarked_Q 0.005089

sibsp 0.002545

embarked_S 0.000000

Name: Importance, dtype: float64

XGBoost
Although sklearn has a GradientBoostedClassifier, it is better to use a
third-party implementation that uses extreme boosting. These tend to
provide better results.

XGBoost is a popular library outside of scikit-learn. It creates a weak tree
and then “boosts” the subsequent trees to reduce the residual errors. It tries
to capture and address any patterns in the errors until they appear to be
random.

XGBoost has the following properties:

Runtime efficiency

XGBoost is parallelizeable. Use the n_jobs option to indicate the
number of CPUs. Use GPU for even better performance.

Preprocess data
No scaling necessary with tree models. Need to encode categorical data.

Prevent overfitting

The early_stopping_rounds=N parameter can be set to stop training if
there is no improvement after N rounds. L1 and L2 regularization are
controlled by reg_alpha and reg_lambda, respectively. Higher
numbers are more conservative.

Interpret results
Has feature importance.

XGBoost has an extra parameter for the .fit method. The
early_stopping_rounds parameter can be combined with the eval_set
parameter to tell XGBoost to stop creating trees if the evaluation metric has
not improved after that many boosting rounds. The eval_metric can also
be set to one of the following: 'rmse', 'mae', 'logloss', 'error'
(default), 'auc', 'aucpr', as well as a custom function.

Here is an example using the library:

>>> import xgboost as xgb

>>> xgb_class = xgb.XGBClassifier(random_state=42)

>>> xgb_class.fit(

https://oreil.ly/WBo0g

... X_train,

... y_train,

... early_stopping_rounds=10,

... eval_set=[(X_test, y_test)],

...)

XGBClassifier(base_score=0.5, booster='gbtree',

 colsample_bylevel=1, colsample_bytree=1, gamma=0,

 learning_rate=0.1, max_delta_step=0, max_depth=3,

 min_child_weight=1, missing=None,

 n_estimators=100, n_jobs=1, nthread=None,

 objective='binary:logistic', random_state=42,

 reg_alpha=0, reg_lambda=1, scale_pos_weight=1,

 seed=None, silent=True, subsample=1)

>>> xgb_class.score(X_test, y_test)

0.7862595419847328

>>> xgb_class.predict(X.iloc[[0]])

array([1])

>>> xgb_class.predict_proba(X.iloc[[0]])

array([[0.06732017, 0.93267983]], dtype=float32)

Instance parameters:

max_depth=3

Maximum depth.

learning_rate=0.1

Learning rate (also called eta) for boosting (between 0 and 1). After
each boost step, the newly added weights are scaled by this factor. The
lower the value, the more conservative, but will also need more trees to
converge. In the call to .train, you can pass a learning_rates
parameter, which is a list of rates at each round (i.e., [.1]*100 +
[.05]*100).

n_estimators=100

Number of rounds or boosted trees.

silent=True

Opposite of verbose. Whether to print messages while running boosting.

objective='binary:logistic'

Learning task or callable for classification.

booster='gbtree'

Can be 'gbtree', 'gblinear', or 'dart'.

nthread=None

Deprecated.

n_jobs=1

Number of threads to use.

gamma=0

Controls pruning. Range is 0 to infinite. Minimum loss reduction
needed to further split a leaf. Higher gamma is more conservative. If
training and test scores are diverging, insert a higher number (around
10). If training and test scores are close, use a lower number.

min_child_weight=1

Minimum value for sum of hessian for a child.

max_delta_step=0

Make update more conservative. Set 1 to 10 for imbalanced classes.

subsample=1

Fraction of samples to use for next round.

colsample_bytree=1

Fraction of columns to use for round.

colsample_bylevel=1

Fraction of columns to use for level.

colsample_bynode=1

Fraction of columns to use for node.

reg_alpha=0

L1 regularization (mean of weights) encourages sparsity. Increase to be
more conservative.

reg_lambda=1

L2 regularization (root of squared weights) encourages small weights.
Increase to be more conservative.

scale_pos_weight=1

Ratio of negative/positive weight.

base_score=.5

Initial prediction.

seed=None

Deprecated.

random_state=0

Random seed.

missing=None

Value to interpret for missing. None means np.nan.

importance_type='gain'

The feature importance type: 'gain', 'weight', 'cover',
'total_gain', or 'total_cover'.

Attributes:

coef_

Coefficients for gblinear learners

feature_importances_

Feature importances for gbtree learners

Feature importance is the average gain across all the nodes where the
feature is used:

>>> for col, val in sorted(

... zip(

... X.columns,

... xgb_class.feature_importances_,

...),

... key=lambda x: x[1],

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")

fare 0.420

age 0.309

pclass 0.071

sex_male 0.066

sibsp 0.050

XGBoost can plot the feature importance (see Figure 10-5). It has an
importance_type parameter. The default value is "weight", which is the
number of times a feature appears in a tree. It can also be "gain", which

shows the average gain when the feature is used, or "cover", which is the
number of samples affected by a split:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> xgb.plot_importance(xgb_class, ax=ax)

>>> fig.savefig("images/mlpr_1005.png", dpi=300)

Figure 10-5. Feature importance showing weight (how many times a feature appears in the trees).

We can plot this in Yellowbrick, which normalizes the values (see
Figure 10-6):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> fi_viz = FeatureImportances(xgb_class)

>>> fi_viz.fit(X, y)

>>> fi_viz.poof()

>>> fig.savefig("images/mlpr_1006.png", dpi=300)

Figure 10-6. Yellowbrick feature importance for XGBoost (normalized to 100).

XGBoost provides both a textual representation of the trees and a graphical
one. Here is the text representation:

>>> booster = xgb_class.get_booster()

>>> print(booster.get_dump()[0])

0:[sex_male<0.5] yes=1,no=2,missing=1

 1:[pclass<0.23096] yes=3,no=4,missing=3

 3:[fare<-0.142866] yes=7,no=8,missing=7

 7:leaf=0.132530

 8:leaf=0.184

 4:[fare<-0.19542] yes=9,no=10,missing=9

 9:leaf=0.024598

 10:leaf=-0.1459

 2:[age<-1.4911] yes=5,no=6,missing=5

 5:[sibsp<1.81278] yes=11,no=12,missing=11

 11:leaf=0.13548

 12:leaf=-0.15000

 6:[pclass<-0.95759] yes=13,no=14,missing=13

 13:leaf=-0.06666

 14:leaf=-0.1487

The value in the leaf is the score for class 1. It can be converted into a
probability using the logistic function. If the decisions fell through to leaf 7,
the probability of class 1 is 53%. This is the score from a single tree. If our
model had 100 trees, you would sum up each leaf value and get the
probability with the logistic function:

>>> # score from first tree leaf 7

>>> 1 / (1 + np.exp(-1 * 0.1238))

0.5309105310475829

Here is the graphical version of the first tree in the model (see Figure 10-7):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> xgb.plot_tree(xgb_class, ax=ax, num_trees=0)

>>> fig.savefig("images/mlpr_1007.png", dpi=300)

Figure 10-7. Tree of XGBoost.

The xgbfir package is a library built on top of XGBoost. This library gives
various measures about feature importance. What is unique is that it
provides these measures about the columns, and also pairs of columns, so

https://oreil.ly/kPnRv

you can see the interactions. In addition, you can get information about
triplets (three-column) interactions.

The measures it provides are:

Gain

Total gain of each feature or feature interaction

FScore

Amount of possible splits taken on a feature or feature interaction

wFScore

Amount of possible splits taken on a feature or feature interaction,
weighted by the probability of the splits to take place

Average wFScore

wFScore divided by FScore

Average Gain

Gain divided by FScore

Expected Gain

Total gain of each feature or feature interaction weighted by the
probability to gather the gain

The interface is simply an export to a spreadsheet, so we will use pandas to
read them back in. Here is the column importance:

>>> import xgbfir

>>> xgbfir.saveXgbFI(

... xgb_class,

... feature_names=X.columns,

... OutputXlsxFile="fir.xlsx",

...)

>>> pd.read_excel("/tmp/surv-fir.xlsx").head(3).T

 0 1 2

Interaction sex_male pclass fare

Gain 1311.44 585.794 544.884

FScore 42 45 267

wFScore 39.2892 21.5038 128.33

Average wFScore 0.935458 0.477861 0.480636

Average Gain 31.2247 13.0177 2.04076

Expected Gain 1307.43 229.565 236.738

Gain Rank 1 2 3

FScore Rank 4 3 1

wFScore Rank 3 4 1

Avg wFScore Rank 1 5 4

Avg Gain Rank 1 2 4

Expected Gain Rank 1 3 2

Average Rank 1.83333 3.16667 2.5

Average Tree Index 32.2381 20.9778 51.9101

Average Tree Depth 0.142857 1.13333 1.50562

From this table, we see sex_male ranks high in gain, average wFScore,
average gain, and expected gain, whereas fare tops out in FScore and
wFScore.

Let’s look at pairs of column interactions:

>>> pd.read_excel(

... "fir.xlsx",

... sheet_name="Interaction Depth 1",

...).head(2).T

Interaction pclass|sex_male age|sex_male

Gain 2090.27 964.046

FScore 35 18

wFScore 14.3608 9.65915

Average wFScore 0.410308 0.536619

Average Gain 59.722 53.5581

Expected Gain 827.49 616.17

Gain Rank 1 2

FScore Rank 5 10

wFScore Rank 4 8

Avg wFScore Rank 8 5

Avg Gain Rank 1 2

Expected Gain Rank 1 2

Average Rank 3.33333 4.83333

Average Tree Index 18.9714 38.1111

Average Tree Depth 1 1.11111

Here we see that the top two interactions involve the sex_male column in
combination with pclass and age. If you were only able to make a model
with two features, you would probably want to choose pclass and sex_male.

Finally, let’s look at triplets:

>>> pd.read_excel(

... "fir.xlsx",

... sheet_name="Interaction Depth 2",

...).head(1).T

 0

Interaction fare|pclass|sex_male

Gain 2973.16

FScore 44

wFScore 8.92572

Average wFScore 0.202857

Average Gain 67.5719

Expected Gain 549.145

Gain Rank 1

FScore Rank 1

wFScore Rank 4

Avg wFScore Rank 21

Avg Gain Rank 3

Expected Gain Rank 2

Average Rank 5.33333

Average Tree Index 16.6591

Average Tree Depth 2

This is only showing the first triplet due to space limitations, but the
spreadsheet has many more:

>>> pd.read_excel(

... "/tmp/surv-fir.xlsx",

... sheet_name="Interaction Depth 2",

...)[["Interaction", "Gain"]].head()

 Interaction Gain

0 fare|pclass|sex_male 2973.162529

1 age|pclass|sex_male 1621.945151

2 age|sex_male|sibsp 1042.320428

3 age|fare|sex_male 366.860828

4 fare|fare|sex_male 196.224791

Gradient Boosted with LightGBM
LightGBM is an implementation by Microsoft. LightGBM uses a sampling
mechanism to deal with continuous values. This allows quicker creation of
trees (than say XGBoost), and reduces memory usage.

LightGBM also grows trees depth first (leaf-wise rather than level-wise).
Because of this, rather than using max_depth to control overfitting, use
num_leaves (where this value is < 2^(max_depth)).

NOTE
Installation of this library currently requires having a compiler and is a little more
involved than just a pip install.

It has the following properties:

Runtime efficiency
Can take advantage of multiple CPUs. By using binning, can be 15
times faster than XGBoost.

Preprocess data
Has some support for encoding categorical columns as integers (or
pandas Categorical type), but AUC appears to suffer compared to
one-hot encoding.

Prevent overfitting

Lower num_leaves. Increase min_data_in_leaf. Use
min_gain_to_split with lambda_l1 or lambda_l2.

Interpret results
Feature importance is available. Individual trees are weak and tend to be
hard to interpret.

Here is an example using the library:

>>> import lightgbm as lgb

>>> lgbm_class = lgb.LGBMClassifier(

... random_state=42

...)

>>> lgbm_class.fit(X_train, y_train)

LGBMClassifier(boosting_type='gbdt',

 class_weight=None, colsample_bytree=1.0,

 learning_rate=0.1, max_depth=-1,

 min_child_samples=20, min_child_weight=0.001,

 min_split_gain=0.0, n_estimators=100,

 n_jobs=-1, num_leaves=31, objective=None,

 random_state=42, reg_alpha=0.0, reg_lambda=0.0,

 silent=True, subsample=1.0,

 subsample_for_bin=200000, subsample_freq=0)

>>> lgbm_class.score(X_test, y_test)

0.7964376590330788

>>> lgbm_class.predict(X.iloc[[0]])

array([1])

>>> lgbm_class.predict_proba(X.iloc[[0]])

array([[0.01637168, 0.98362832]])

Instance parameters:

boosting_type='gbdt'

Can be: 'gbdt' (gradient boosting), 'rf' (random forest), 'dart'
(dropouts meet multiple additive regression trees), or 'goss' (gradient-
based, one-sided sampling).

class_weight=None

Dictionary or 'balanced'. Use dictionary to set weight for each class
label when doing multiclass problems. For binary problems, use
is_unbalance or scale_pos_weight.

colsample_bytree=1.0

Range (0, 1.0]. Select percent of features for each boosting round.

importance_type='split'

How to calculate feature importance. 'split' means number of times a
feature is used. 'gain' is total gains of splits for a feature.

learning_rate=0.1

Range (0, 1.0]. Learning rate for boosting. A smaller value slows down
overfitting as boosting rounds have less impact. A smaller number
should give better performance but will require more num_iterations.

max_depth=-1

Maximum tree depth. -1 is unlimited. Larger depths tend to overfit
more.

min_child_samples=20

Number of samples required for a leaf. Lower numbers mean more
overfitting.

min_child_weight=0.001

Sum of hessian weight required for a leaf.

min_split_gain=0.0

Loss reduction required to partition leaf.

n_estimators=100

Number of trees or boosting rounds.

n_jobs=-1

Number of threads.

num_leaves=31

Maximum tree leaves.

objective=None

None is 'binary' or 'multiclass' for classifier. Can be a function or
string.

random_state=42

Random seed.

reg_alpha=0.0

L1 regularization (mean of weights). Increase to be more conservative.

reg_lambda=0.0

L2 regularization (root of squared weights). Increase to be more
conservative.

silent=True

Verbose mode.

subsample=1.0

Fraction of samples to use for next round.

subsample_for_bin=200000

Samples required to create bins.

subsample_freq=0

Subsample frequency. Change to 1 to enable.

Feature importance based on 'splits' (number of times a product is used):

>>> for col, val in sorted(

... zip(cols, lgbm_class.feature_importances_),

... key=lambda x: x[1],

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")

fare 1272.000

age 1182.000

sibsp 118.000

pclass 115.000

sex_male 110.000

The LightGBM library supports creating a feature importance plot (see
Figure 10-8). The default is based on 'splits', the number of times a
feature is used. You can specify 'importance_type' if you want to change
it to 'gain':

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> lgb.plot_importance(lgbm_class, ax=ax)

>>> fig.tight_layout()

>>> fig.savefig("images/mlpr_1008.png", dpi=300)

Figure 10-8. Feature importance splits for LightGBM.

WARNING
As of version 0.9, Yellowbrick doesn’t work with LightGBM for creating feature
importance plots.

We can create a tree of the decisions as well (see Figure 10-9):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> lgb.plot_tree(lgbm_class, tree_index=0, ax=ax)

>>> fig.savefig("images/mlpr_1009.png", dpi=300)

Figure 10-9. LightGBM tree.

TIP
In Jupyter, use the following command to view a tree:

lgb.create_tree_digraph(lgbm_class)

TPOT
TPOT uses a genetic algorithm to try different models and ensembles. This
can take hours to days to run as it considers multiple models and
preprocessing steps, as well as the hyperparameters for said models, and
ensembling options. On a typical machine, a generation may take five or
more minutes to run.

It has the following properties:

Runtime efficiency

Can take hours or days. Use n_jobs=-1 to use all CPUs.

Preprocess data
You need to remove NaN and categorical data.

https://oreil.ly/NFJvl

Prevent overfitting
Ideally, results should use cross-validation to minimize overfitting.

Interpret results
Depends on the results.

Here is an example of using the library:

>>> from tpot import TPOTClassifier

>>> tc = TPOTClassifier(generations=2)

>>> tc.fit(X_train, y_train)

>>> tc.score(X_test, y_test)

0.7888040712468194

>>> tc.predict(X.iloc[[0]])

array([1])

>>> tc.predict_proba(X.iloc[[0]])

array([[0.07449919, 0.92550081]])

Instance parameters:

generations=100

Iterations to run.

population_size=100

Population size for genetic programming. Larger size usually performs
better but takes more memory and time.

offspring_size=None

Offspring for each generation. Default is population_size.

mutation_rate=.9

Mutation rate for algorithm [0, 1]. Default is .9.

crossover_rate=.1

Cross-over rate (how many pipelines to breed in a generation). Range
[0, 1]. Default is .1.

scoring='accuracy'

Scoring mechanism. Uses sklearn strings.

cv=5

Cross-validation folds.

subsample=1

Subsample training instances. Range [0, 1]. Default is 1.

n_jobs=1

Number of CPUs to use, -1 for all cores.

max_time_mins=None

Maximum amount of minutes to run.

max_eval_time_mins=5

Maximum amount of minutes to evaluate a single pipeline.

random_state=None

Random seed.

config_dict

Configuration options for optimization.

warm_start=False

Reuse previous calls to .fit.

memory=None

Can cache pipelines. 'auto' or a path will persist in a directory.

use_dask=False

Use dask.

periodic_checkpoint_folder=None

Path to a folder where the best pipeline will be persisted periodically.

early_stop=None

Stop after running this many generations with no improvement.

verbosity=0

0 = none, 1 = minimal, 2 = high, or 3 = all. 2 and higher shows a
progress bar.

disable_update_check=False

Disable version check.

Attributes:

evaluated_individuals_

Dictionary with all pipelines that were evaluated.

fitted_pipeline_

Best pipeline.

After you are done, you can export the pipeline:

>>> tc.export("tpot_exported_pipeline.py")

The result might look like this:

import numpy as np

import pandas as pd

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.model_selection import \

 train_test_split

from sklearn.pipeline import make_pipeline, \

 make_union

from sklearn.preprocessing import Normalizer

from tpot.builtins import StackingEstimator

NOTE: Make sure that the class is labeled

'target' in the data file

tpot_data = pd.read_csv('PATH/TO/DATA/FILE',

 sep='COLUMN_SEPARATOR', dtype=np.float64)

features = tpot_data.drop('target', axis=1).values

training_features, testing_features, \

 training_target, testing_target = \

 train_test_split(features,

 tpot_data['target'].values, random_state=42)

Score on the training set was:0.8122535043953432

exported_pipeline = make_pipeline(

 Normalizer(norm="max"),

 StackingEstimator(

 estimator=ExtraTreesClassifier(bootstrap=True,

 criterion="gini", max_features=0.85,

 min_samples_leaf=2, min_samples_split=19,

 n_estimators=100)),

 ExtraTreesClassifier(bootstrap=False,

 criterion="entropy", max_features=0.3,

 min_samples_leaf=13, min_samples_split=9,

 n_estimators=100)

)

exported_pipeline.fit(training_features,

 training_target)

results = exported_pipeline.predict(

 testing_features)

Chapter 11. Model Selection

This chapter will discuss optimizing hyperparameters. It will also explore
the issue of whether the model requires more data to perform better.

Validation Curve
Creating a validation curve is one way to determine an appropriate value for
a hyperparameter. A validation curve is a plot that shows how the model
performance responds to changes in the hyperparameter’s value (see
Figure 11-1). The chart shows both the training data and the validation data.
The validation scores allow us to infer how the model would respond to
unseen data. Typically, we would choose a hyperparameter that maximizes
the validation score.

In the following example, we will use Yellowbrick to see if changing the
value of the max_depth hyperparameter changes the model performance of
a random forest. You can provide a scoring parameter set to a scikit-learn
model metric (the default for classification is 'accuracy'):

TIP
Use the n_jobs parameter to take advantage of the CPUs and run this faster. If you set it
to -1, it will use all of the CPUs.

>>> from yellowbrick.model_selection import (

... ValidationCurve,

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> vc_viz = ValidationCurve(

... RandomForestClassifier(n_estimators=100),

... param_name="max_depth",

... param_range=np.arange(1, 11),

... cv=10,

... n_jobs=-1,

...)

>>> vc_viz.fit(X, y)

>>> vc_viz.poof()

>>> fig.savefig("images/mlpr_1101.png", dpi=300)

Figure 11-1. Validation curve report.

The ValidationCurve class supports a scoring parameter. The parameter
can be a custom function or one of the following options, depending on the
task.

Classification scoring options include: 'accuracy',
'average_precision', 'f1', 'f1_micro', 'f1_macro', 'f1_weighted',
'f1_samples', 'neg_log_loss', 'precision', 'recall', and
'roc_auc'.

Clustering scoring options: 'adjusted_mutual_info_score',
'adjusted_rand_score', 'completeness_score',
'fowlkesmallows_score', 'homogeneity_score',
'mutual_info_score', 'normalized_mutual_info_score', and
'v_measure_score'.

Regression scoring options: 'explained_variance',
'neg_mean_absolute_error', 'neg_mean_squared_error',
'neg_mean_squared_log_error', 'neg_median_absolute_error', and
'r2'.

Learning Curve
To select the best model for your project, how much data do you need? A
learning curve can help us answer that question. This curve plots the
training and cross-validation score as we create models with more samples.
If the cross-validation score continues to rise, for example, that could
indicate that more data would help the model perform better.

The following visualization shows a validation curve and also helps us
explore bias and variance in our model (see Figure 11-2). If there is
variability (a large shaded area) in the training score, then the model suffers
from bias error and is too simple (underfit). If there is variability in the
cross-validated score, then the model suffers from variance error and is too
complicated (overfit). Another indication that the model is overfit is that the
performance of the validation set is much worse than the training set.

Here is an example of creating a learning curve using Yellowbrick:

>>> from yellowbrick.model_selection import (

... LearningCurve,

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> lc3_viz = LearningCurve(

... RandomForestClassifier(n_estimators=100),

... cv=10,

...)

>>> lc3_viz.fit(X, y)

>>> lc3_viz.poof()

>>> fig.savefig("images/mlpr_1102.png", dpi=300)

Figure 11-2. Learning curve plot. The plateau in the validation score indicates that adding more
data would not improve this model.

This visualization can also be used for regression or clustering by changing
the scoring options.

Chapter 12. Metrics and
Classification Evaluation

We’ll cover the following metrics and evaluation tools in this chapter:
confusion matrices, various metrics, a classification report, and some
visualizations.

This will be evaluated as a decision tree model that predicts Titanic
survival.

Confusion Matrix
A confusion matrix can aid in understanding how a classifier performs.

A binary classifier can have four classification results: true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). The first
two are correct classifications.

Here is a common example for remembering the other results. Assuming
positive means pregnant and negative is not pregnant, a false positive is like
claiming a man is pregnant. A false negative is claiming that a pregnant
woman is not (when she is clearly showing) (see Figure 12-1). These last
two types of errors are referred to as type 1 and type 2 errors, respectively
(see Table 12-1).

Another way to remember these is that P (for false positive) has one straight
line in it (type 1 error), and N (for false negative) has two vertical lines in it.

Figure 12-1. Classification errors.

Table 12-1. Binary classification results from a
confusion matrix

Actual Predicted negative Predicted positive

Actual negative True negative False positive (type 1)

Actual positive False negative (type 2) True positive

Here is the pandas code to calculate the classification results. The
comments show the results. We will use these variables to calculate other
metrics:

>>> y_predict = dt.predict(X_test)

>>> tp = (

... (y_test == 1) & (y_test == y_predict)

...).sum() # 123

>>> tn = (

... (y_test == 0) & (y_test == y_predict)

...).sum() # 199

>>> fp = (

... (y_test == 0) & (y_test != y_predict)

...).sum() # 25

>>> fn = (

... (y_test == 1) & (y_test != y_predict)

...).sum() # 46

Well-behaving classifiers ideally have high counts in the true diagonal. We
can create a DataFrame using the sklearn confusion_matrix function:

>>> from sklearn.metrics import confusion_matrix

>>> y_predict = dt.predict(X_test)

>>> pd.DataFrame(

... confusion_matrix(y_test, y_predict),

... columns=[

... "Predict died",

... "Predict Survive",

...],

... index=["True Death", "True Survive"],

...)

 Predict died Predict Survive

True Death 199 25

True Survive 46 123

Yellowbrick has a plot for the confusion matrix (see Figure 12-2):

>>> import matplotlib.pyplot as plt

>>> from yellowbrick.classifier import (

... ConfusionMatrix,

...)

>>> mapping = {0: "died", 1: "survived"}

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> cm_viz = ConfusionMatrix(

... dt,

... classes=["died", "survived"],

... label_encoder=mapping,

...)

>>> cm_viz.score(X_test, y_test)

>>> cm_viz.poof()

>>> fig.savefig("images/mlpr_1202.png", dpi=300)

Figure 12-2. Confusion matrix. The upper left and lower right are correct classifications. The
lower left is false negative. The upper right is false positive.

Metrics
The sklearn.metrics module implements many common classification
metrics, including:

'accuracy'

Percent of correct predictions

'average_precision'

Precision recall curve summary

'f1'

Harmonic mean of precision and recall

'neg_log_loss'

Logistic or cross-entropy loss (model must support predict_proba)

'precision'

Ability to find only relevant samples (not label a negative as a positive)

'recall'

Ability to find all positive samples

'roc_auc'

Area under the receiver operator characteristic curve

These strings can be used as the scoring parameter when doing grid
search, or you can use functions from the sklearn.metrics module that
have the same names as the strings but end in _score. See the following
note for examples.

NOTE
'f1', 'precision', and 'recall' all support the following suffixes for multiclass
classifers:

'_micro'

Global weighted average of metric

'_macro'

Unweighted average of metric

'_weighted'

Multiclass weighted average of metric

'_samples'

Per sample metric

Accuracy
Accuracy is the percentage of correct classifications:

>>> (tp + tn) / (tp + tn + fp + fn)

0.8142493638676844

What is good accuracy? It depends. If I’m predicting fraud (which usually
is a rare event, say 1 in 10,000), I can get very high accuracy by always
predicting not fraud. But this model is not very useful. Looking at other
metrics and the cost of predicting a false positive and a false negative can
help us determine if a model is decent.

We can use sklearn to calculate it for us:

>>> from sklearn.metrics import accuracy_score

>>> y_predict = dt.predict(X_test)

>>> accuracy_score(y_test, y_predict)

0.8142493638676844

Recall
Recall (also called sensitivity) is the percentage of positive values correctly
classified. (How many relevant results are returned?)

>>> tp / (tp + fn)

0.7159763313609467

>>> from sklearn.metrics import recall_score

>>> y_predict = dt.predict(X_test)

>>> recall_score(y_test, y_predict)

0.7159763313609467

Precision
Precision is the percent of positive predictions that were correct (TP divided
by (TP + FP)). (How relevant are the results?)

>>> tp / (tp + fp)

0.8287671232876712

>>> from sklearn.metrics import precision_score

>>> y_predict = dt.predict(X_test)

>>> precision_score(y_test, y_predict)

0.8287671232876712

F1
F1 is the harmonic mean of recall and precision:

>>> pre = tp / (tp + fp)

>>> rec = tp / (tp + fn)

>>> (2 * pre * rec) / (pre + rec)

0.7682539682539683

>>> from sklearn.metrics import f1_score

>>> y_predict = dt.predict(X_test)

>>> f1_score(y_test, y_predict)

0.7682539682539683

Classification Report
Yellowbrick has a classification report showing precision, recall, and f1
scores for both positive and negative values (see Figure 12-3). This is
colored, and the redder the cell (closer to one), the better the score:

>>> import matplotlib.pyplot as plt

>>> from yellowbrick.classifier import (

... ClassificationReport,

...)

>>> fig, ax = plt.subplots(figsize=(6, 3))

>>> cm_viz = ClassificationReport(

... dt,

... classes=["died", "survived"],

... label_encoder=mapping,

...)

>>> cm_viz.score(X_test, y_test)

>>> cm_viz.poof()

>>> fig.savefig("images/mlpr_1203.png", dpi=300)

Figure 12-3. Classification report.

ROC
A ROC curve illustrates how the classifier performs by tracking the true
positive rate (recall/sensitivity) as the false positive rate (inverted

specificity) changes (see Figure 12-4).

A rule of thumb is that the plot should bulge out toward the top-left corner.
A plot that is to the left and above another plot indicates better performance.
The diagonal in this plot indicates the behavior of a random guessing
classifier. By taking the AUC, you get a metric for evaluating the
performance:

>>> from sklearn.metrics import roc_auc_score

>>> y_predict = dt.predict(X_test)

>>> roc_auc_score(y_test, y_predict)

0.8706304346418559

Yellowbrick can plot this for us:

>>> from yellowbrick.classifier import ROCAUC

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> roc_viz = ROCAUC(dt)

>>> roc_viz.score(X_test, y_test)

0.8706304346418559

>>> roc_viz.poof()

>>> fig.savefig("images/mlpr_1204.png", dpi=300)

Figure 12-4. ROC curve.

Precision-Recall Curve
The ROC curve may be overly optimistic for imbalanced classes. Another
option for evaluating classifiers is using a precision-recall curve (see
Figure 12-5). Classification is a balancing act of finding everything you
need (recall) while limiting the junk results (precision). This is typically a
trade-off. As recall goes up, precision usually goes down and vice versa.

>>> from sklearn.metrics import (

... average_precision_score,

...)

>>> y_predict = dt.predict(X_test)

>>> average_precision_score(y_test, y_predict)

0.7155150490642249

Here is a Yellowbrick precision-recall curve:

>>> from yellowbrick.classifier import (

... PrecisionRecallCurve,

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> viz = PrecisionRecallCurve(

... DecisionTreeClassifier(max_depth=3)

...)

>>> viz.fit(X_train, y_train)

>>> print(viz.score(X_test, y_test))

>>> viz.poof()

>>> fig.savefig("images/mlpr_1205.png", dpi=300)

Figure 12-5. Precision-recall curve.

Cumulative Gains Plot
A cumulative gains plot can be used to evaluate a binary classifier. It
models the true positive rate (sensitivity) against the support rate (fraction
of positive predictions). The intuition behind this plot is to sort all
classifications by predicted probability. Ideally there would be a clean cut
that divides positive from negative samples. If the first 10% of the
predictions has 30% of the positive samples, you would plot a point from
(0,0) to (.1, .3). You continue this process through all of the samples (see
Figure 12-6).

A common use for this is determining customer response. The cumulative
gains curve plots the support or predicted positive rate along the x-axis. Our
chart labels this as “Percentage of sample”. It plots the sensitivity or true
positive rate along the y-axis. This is labeled as “Gain” in our plot.

If you wanted to contact 90% of the customers that would respond
(sensitivity), you can trace from .9 on the y-axis to the right until you hit
that curve. The x-axis at that point will indicate how many total customers
you need to contact (support) to get to 90%.

In this case we aren’t contacting customers that would respond to a survey
but predicting survival on the Titanic. If we ordered all passengers on the
Titanic according to our model by how likely they are to survive, if you
took the first 65% of them, you would have 90% of the survivors. If you
have an associated cost per contact and revenue per response, you can
calculate what the best number is.

In general, a model that is to the left and above another model is a better
model. The best models are lines that go up to the top (if 10% of the
samples are positive, it would hit at (.1, 1)) and then directly to the right. If
the plot is below the baseline, we would do better to randomly assign labels
that use our model.

The scikit-plot library can create a cumulative gains plot:

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> y_probas = dt.predict_proba(X_test)

>>> scikitplot.metrics.plot_cumulative_gain(

... y_test, y_probas, ax=ax

...)

>>> fig.savefig(

... "images/mlpr_1206.png",

... dpi=300,

... bbox_inches="tight",

...)

https://oreil.ly/dg0iQ

Figure 12-6. Cumulative gains plot. If we ordered people on the Titanic according to our model,
looking at 20% of them we would get 40% of the survivors.

Lift Curve
A lift curve is another way of looking at the information in a cumulative
gains plot. The lift is how much better we are doing than the baseline
model. In our plot below, we can see that if we sorted our Titanic
passengers by the survival probability and took the first 20% of them, our
lift would be about 2.2 times (the gain divided by sample percent) better

than randomly choosing survivors (see Figure 12-7). (We would get 2.2
times as many survivors.)

The scikit-plot library can create a lift curve:

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> y_probas = dt.predict_proba(X_test)

>>> scikitplot.metrics.plot_lift_curve(

... y_test, y_probas, ax=ax

...)

>>> fig.savefig(

... "images/mlpr_1207.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 12-7. Lift curve.

Class Balance
Yellowbrick has a simple bar plot to view the class sizes. When the relative
class sizes are different, accuracy is not a good evaluation metric (see
Figure 12-8). When splitting up the data into training and test sets, use
stratified sampling so the sets keep a relative proportion of the classes. (The

test_train_split function does this when you set the stratify
parameter to the labels.)

>>> from yellowbrick.classifier import ClassBalance

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> cb_viz = ClassBalance(

... labels=["Died", "Survived"]

...)

>>> cb_viz.fit(y_test)

>>> cb_viz.poof()

>>> fig.savefig("images/mlpr_1208.png", dpi=300)

Figure 12-8. A slight class imbalance.

Class Prediction Error
The class prediction error plot from Yellowbrick is a bar chart that
visualizes a confusion matrix (see Figure 12-9):

>>> from yellowbrick.classifier import (

... ClassPredictionError,

...)

>>> fig, ax = plt.subplots(figsize=(6, 3))

>>> cpe_viz = ClassPredictionError(

... dt, classes=["died", "survived"]

...)

>>> cpe_viz.score(X_test, y_test)

>>> cpe_viz.poof()

>>> fig.savefig("images/mlpr_1209.png", dpi=300)

Figure 12-9. Class prediction error. At the top of the left bar are people who died, but we predicted
that they survived (false positive). At the bottom of the right bar are people who survived, but the

model predicted death (false negative).

Discrimination Threshold

Most binary classifiers that predict probability have a discrimination
threshold of 50%. If the predicted probability is above 50%, the classifier
assigns a positive label. Figure 12-10 moves that threshold value between 0
and 100 and shows the impact to precision, recall, f1, and queue rate.

This plot can be useful to view the trade-off between precision and recall.
Assume we are looking for fraud (and considering fraud to be the positive
classification). To get high recall (catch all of the fraud), we can just
classify everything as fraud. But in a bank situation, this would not be
profitable and would require an army of workers. To get high precision
(only catch fraud if it is fraud), we could have a model that only triggers on
cases of extreme fraud. But this would miss much of the fraud that might
not be as obvious. There is a trade-off here.

The queue rate is the percent of predictions above the threshold. You can
consider this to be the percent of cases to review if you are dealing with
fraud.

If you have the cost for positive, negative, and erroneous calculations, you
can determine what threshold you are comfortable with.

The following plot is useful to see what discrimination threshold will
maximize the f1 score or adjust precision or recall to an acceptable number
when coupled with the queue rate.

Yellowbrick provides this visualizer. This visualizer shuffles the data and
runs 50 trials by default, splitting out 10% for validation:

>>> from yellowbrick.classifier import (

... DiscriminationThreshold,

...)

>>> fig, ax = plt.subplots(figsize=(6, 5))

>>> dt_viz = DiscriminationThreshold(dt)

>>> dt_viz.fit(X, y)

>>> dt_viz.poof()

>>> fig.savefig("images/mlpr_1210.png", dpi=300)

Figure 12-10. Discrimination threshold.

Chapter 13. Explaining Models

Predictive models have different properties. Some are designed to handle
linear data. Others can mold to more complex input. Some models can be
interpreted very easily, others are like black boxes and don’t offer much
insight into how the prediction is made.

In this chapter we will look at interpreting different models. We will look at
some examples using the Titanic data.

>>> dt = DecisionTreeClassifier(

... random_state=42, max_depth=3

...)

>>> dt.fit(X_train, y_train)

Regression Coefficients
The intercepts and regression coefficients explain the expected value, and
how features impact the prediction. A positive coefficient indicates that as a
feature’s value increases, the prediction increases as well.

Feature Importance
Tree-based models in the scikit-learn library include a
.fea⁠ture_importances_ attribute for inspecting how the features of a
dataset affect the model. We can inspect or plot them.

LIME
LIME works to help explain black-box models. It performs a local
interpretation rather than an overall interpretation. It will help explain a
single sample.

https://oreil.ly/shCR_

For a given data point or sample, LIME indicates which features were
important in determining the result. It does this by perturbing the sample in
question and fitting a linear model to it. The linear model approximates the
model close to the sample (see Figure 13-1).

Here is an example explaining the last sample (which our decision tree
predicts will survive) from the training data:

>>> from lime import lime_tabular

>>> explainer = lime_tabular.LimeTabularExplainer(

... X_train.values,

... feature_names=X.columns,

... class_names=["died", "survived"],

...)

>>> exp = explainer.explain_instance(

... X_train.iloc[-1].values, dt.predict_proba

...)

LIME doesn’t like using DataFrames as input. Note that we converted the
data to numpy arrays using .values.

TIP
If you are doing this in Jupyter, follow up with this code:

exp.show_in_notebook()

This will render an HTML version of the explanation.

We can create a matplotlib figure if we want to export the explanation (or
aren’t using Jupyter):

>>> fig = exp.as_pyplot_figure()

>>> fig.tight_layout()

>>> fig.savefig("images/mlpr_1301.png")

Figure 13-1. LIME explanation for the Titanic dataset. Features for the sample push the prediction
toward the right (survival) or left (deceased).

Play around with this and notice that if you switch genders, the results are
affected. Below we take the second to last row in the training data. The
prediction for that row is 48% deceased and 52% survived. If we switch the
gender, we find that the prediction shifts toward 88% deceased:

>>> data = X_train.iloc[-2].values.copy()

>>> dt.predict_proba(

... [data]

...) # predicting that a woman lives

[[0.48062016 0.51937984]]

>>> data[5] = 1 # change to male

>>> dt.predict_proba([data])

array([[0.87954545, 0.12045455]])

NOTE
The .predict_proba method returns a probability for each label.

Tree Interpretation
For sklearn tree-based models (decision tree, random forest, and extra tree
models) you can use the treeinterpreter package. This will calculate the bias
and the contribution from each feature. The bias is the mean of the training
set.

Each contribution lists how it contributes to each of the labels. (The bias
plus the contributions should sum to the prediction.) Since this is a binary
classification, there are only two. We see that sex_male is the most
important, followed by age and fare:

>>> from treeinterpreter import (

... treeinterpreter as ti,

...)

>>> instances = X.iloc[:2]

>>> prediction, bias, contribs = ti.predict(

... rf5, instances

...)

>>> i = 0

>>> print("Instance", i)

>>> print("Prediction", prediction[i])

>>> print("Bias (trainset mean)", bias[i])

>>> print("Feature contributions:")

>>> for c, feature in zip(

... contribs[i], instances.columns

...):

... print(" {} {}".format(feature, c))

Instance 0

Prediction [0.98571429 0.01428571]

Bias (trainset mean) [0.63984716 0.36015284]

Feature contributions:

 pclass [0.03588478 -0.03588478]

 age [0.08569306 -0.08569306]

 sibsp [0.01024538 -0.01024538]

 parch [0.0100742 -0.0100742]

 fare [0.06850243 -0.06850243]

 sex_male [0.12000073 -0.12000073]

 embarked_Q [0.0026364 -0.0026364]

 embarked_S [0.01283015 -0.01283015]

https://oreil.ly/vN1Bl

NOTE
This example is for classification, but there is support for regression as well.

Partial Dependence Plots
With feature importance in trees we know that a feature is impacting the
outcome, but we don’t know how the impact varies as the feature’s value
changes. Partial dependence plots allow us to visualize the relation between
changes in just one feature and the outcome. We will use pdpbox to
visualize how age affects survival (see Figure 13-2).

This example uses a random forest model:

>>> rf5 = ensemble.RandomForestClassifier(

... **{

... "max_features": "auto",

... "min_samples_leaf": 0.1,

... "n_estimators": 200,

... "random_state": 42,

... }

...)

>>> rf5.fit(X_train, y_train)

>>> from pdpbox import pdp

>>> feat_name = "age"

>>> p = pdp.pdp_isolate(

... rf5, X, X.columns, feat_name

...)

>>> fig, _ = pdp.pdp_plot(

... p, feat_name, plot_lines=True

...)

>>> fig.savefig("images/mlpr_1302.png", dpi=300)

https://oreil.ly/O9zY2

Figure 13-2. Partial dependence plot showing what happens to the target as age changes.

We can also visualize the interactions between two features (see Figure 13-
3):

>>> features = ["fare", "sex_male"]

>>> p = pdp.pdp_interact(

... rf5, X, X.columns, features

...)

>>> fig, _ = pdp.pdp_interact_plot(p, features)

>>> fig.savefig("images/mlpr_1303.png", dpi=300)

Figure 13-3. Partial dependence plot with two features. As fare goes up and sex goes from male to
female, survival goes up.

NOTE
The partial dependence plot pins down a feature value across the samples and then
averages the result. (Be careful about outliers and means.) Also, this plot assumes
features are independent. (Not always the case; for example, holding width of a sepal
steady would probably have an effect on the height.) The pdpbox library also prints out
the individual conditional expectations to better visualize these relationships.

Surrogate Models
If you have a model that is not interpretable (SVM or neural network), you
can fit an interpretable model (decision tree) to that model. Using the
surrogate you can examine the feature importances.

Here we create a Support Vector Classifier (SVC), but train a decision tree
(without a depth limit to overfit and capture what is happening in this
model) to explain it:

>>> from sklearn import svm

>>> sv = svm.SVC()

>>> sv.fit(X_train, y_train)

>>> sur_dt = tree.DecisionTreeClassifier()

>>> sur_dt.fit(X_test, sv.predict(X_test))

>>> for col, val in sorted(

... zip(

... X_test.columns,

... sur_dt.feature_importances_,

...),

... key=lambda x: x[1],

... reverse=True,

...)[:7]:

... print(f"{col:10}{val:10.3f}")

sex_male 0.723

pclass 0.076

sibsp 0.061

age 0.056

embarked_S 0.050

fare 0.028

parch 0.005

Shapley
The SHapley Additive exPlanations, (SHAP) package can visualize feature
contributions of any model. This is a really nice package because not only
does it work with most models, it also can explain individual predictions
and the global feature contributions.

SHAP works for both classification and regression. It generates “SHAP”
values. For classification models, the SHAP value sums to log odds for

https://oreil.ly/QYj-q

binary classification. For regression, the SHAP values sum to the target
prediction.

This library requires Jupyter (JavaScript) for interactivity on some of its
plots. (Some can render static images with matplotlib.) Here is an example
for sample 20, predicted to die:

>>> rf5.predict_proba(X_test.iloc[[20]])

array([[0.59223553, 0.40776447]])

In the force plot for sample 20, you can see the “base value.” This is a
female who is predicted to die (see Figure 13-4). We will use the survival
index (1) because we want the right-hand side of the plot to be survival. The
features push this to the right or left. The larger the feature, the more impact
it has. In this case, the low fare and third class push toward death (the
output value is below .5):

>>> import shap

>>> s = shap.TreeExplainer(rf5)

>>> shap_vals = s.shap_values(X_test)

>>> target_idx = 1

>>> shap.force_plot(

... s.expected_value[target_idx],

... shap_vals[target_idx][20, :],

... feature_names=X_test.columns,

...)

Figure 13-4. Shapley feature contributions for sample 20. This plot shows the base value and the
features that push toward death.

You can also visualize the explanations for the entire dataset (rotating them
by 90 and plotting them along the x axis) (see Figure 13-5):

>>> shap.force_plot(

... s.expected_value[1],

... shap_vals[1],

... feature_names=X_test.columns,

...)

Figure 13-5. Shapley feature contributions for dataset.

The SHAP library can also generate dependence plots. The following plot
(see Figure 13-6) visualizes the relationship between age and SHAP value
(it is colored by pclass, which SHAP chooses automatically; specify a
column name as an interaction_index parameter to choose your own):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> res = shap.dependence_plot(

... "age",

... shap_vals[target_idx],

... X_test,

... feature_names=X_test.columns,

... alpha=0.7,

...)

>>> fig.savefig(

... "images/mlpr_1306.png",

... bbox_inches="tight",

... dpi=300,

...)

Figure 13-6. Shapley dependency plot for age. Young and old have a higher rate of survival. As age
goes up, a lower pclass has more chance of survival.

TIP
You might get a dependence plot that has vertical lines. Setting the x_jitter parameter
to 1 is useful if you are viewing ordinal categorical features.

In addition, we can summarize all of the features. This is a very powerful
chart to understand. It shows global impact, but also individual impacts.
The features are ranked by importance. The most important features are at
the top.

Also the features are colored according to their value. We can see that a low
sex_male score (female) has a strong push toward survival, while a high
score has a less strong push toward death. The age feature is a little harder
to interpret. That is because young and old values push toward survival,
while middle values push toward death.

When you combine the summary plot with the dependence plot, you can get
good insight into model behavior (see Figure 13-7):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> shap.summary_plot(shap_vals[0], X_test)

>>> fig.savefig("images/mlpr_1307.png", dpi=300)

Figure 13-7. Shapley summary plot showing most important features at the top. The coloring shows
how the values of the feature affect the target.

Chapter 14. Regression

Regression is a supervised machine learning process. It is similar to
classification, but rather than predicting a label, we try to predict a
continuous value. If you are trying to predict a number, then use regression.

It turns out that sklearn supports many of the same classification models for
regression problems. In fact, the API is the same, calling .fit, .score, and
.predict. This is also true for the next-generation boosting libraries,
XGBoost and LightGBM.

Though there are similarities with the classification models and
hyperparameters, the evaluation metrics are different for regression. This
chapter will review many of the types of regression models. We will use the
Boston housing dataset to explore them.

Here we load the data, create a split version for training and testing, and
create another split version with standardized data:

>>> import pandas as pd

>>> from sklearn.datasets import load_boston

>>> from sklearn import (

... model_selection,

... preprocessing,

...)

>>> b = load_boston()

>>> bos_X = pd.DataFrame(

... b.data, columns=b.feature_names

...)

>>> bos_y = b.target

>>> bos_X_train, bos_X_test, bos_y_train, bos_y_test =

model_selection.train_test_split(

... bos_X,

... bos_y,

... test_size=0.3,

... random_state=42,

...)

https://oreil.ly/b2bKQ

>>> bos_sX = preprocessing.StandardScaler().fit_transform(

... bos_X

...)

>>> bos_sX_train, bos_sX_test, bos_sy_train, bos_sy_test =

model_selection.train_test_split(

... bos_sX,

... bos_y,

... test_size=0.3,

... random_state=42,

...)

Here are descriptions of the features of the housing dataset taken from the
dataset:

CRIM
Per capita crime rate by town

ZN
Proportion of residential land zoned for lots over 25,000 square feet

INDUS
Proportion of nonretail business acres per town

CHAS
Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX
Nitric oxides concentration (parts per 10 million)

RM
Average number of rooms per dwelling

AGE
Proportion of owner-occupied units built prior to 1940

DIS
Weighted distances to five Boston employment centers

RAD
Index of accessibility to radial highways

TAX
Full-value property tax rate per $10,000

PTRATIO
Pupil-teacher ratio by town

B
1000(Bk - 0.63)^2, where Bk is the proportion of black people by town
(this dataset is from 1978)

LSTAT
Percent lower status of the population

MEDV
Median value of owner-occupied homes in increments of $1000

Baseline Model
A baseline regression model will give us something to compare our other
models to. In sklearn, the default result of the .score method is the
coefficient of determination (r² or R²). This number explains the percent of
variation of the input data that the prediction captures. The value is
typically between 0 and 1, but it can be negative in the case of particulary
bad models.

The default strategy of the DummyRegressor is to predict the mean value of
the training set. We can see that this model does not perform very well:

>>> from sklearn.dummy import DummyRegressor

>>> dr = DummyRegressor()

>>> dr.fit(bos_X_train, bos_y_train)

>>> dr.score(bos_X_test, bos_y_test)

-0.03469753992352409

Linear Regression
Simple linear regression is taught in math and beginning statistics courses.
It tries to fit a form of the formula y = mx + b while minimizing the square
of the errors. When solved, we have an intercept and coefficient. The
intercept gives a base value for a prediction modified by adding the product
of the coefficient and the input.

This form can be generalized to higher dimensions. In that case each feature
has a coefficient. The larger the absolute value of the coefficient, the more
impact the feature has on the target.

This model assumes that the prediction is a linear combination of the inputs.
For some datasets, this is not flexible enough. Complexity can be added by
transforming the features (the sklearn
preprocessing.PolynomialFeatures transformer can create polynomial
combinations of the features). If this leads to overfitting, ridge and lasso
regression may be used to regularize the estimator.

This model is also susceptible to heteroscedasticity. This is the idea that as
the input values change in size, the error of the prediction (or the residuals)
often changes as well. If you plot the input against the residuals, you will
see a fan or cone shape. We will see examples of that later.

Another issue to be aware of is multicollinearity. If columns have high
correlation, it can hinder interpretation of the coefficients. This usually does
not impact the model, only coefficient meaning.

A linear regression model has the following properties:

Runtime efficiency

Use n_jobs to speed up performance.

Preprocess data
Standardize data before training the model.

Prevent overfitting
You can simplify the model by not using or adding polynomial features.

Interpret results
Can interpret results as weights for feature contribution, but assumes
normality and independence of features. You might want to remove
colinear features to improve interpretability. R² will tell you how much
of the total variance of the outcome is explained by the model.

Here is a sample run with the default data:

>>> from sklearn.linear_model import (

... LinearRegression,

...)

>>> lr = LinearRegression()

>>> lr.fit(bos_X_train, bos_y_train)

LinearRegression(copy_X=True, fit_intercept=True,

 n_jobs=1, normalize=False)

>>> lr.score(bos_X_test, bos_y_test)

0.7109203586326287

>>> lr.coef_

array([-1.32774155e-01, 3.57812335e-02,

 4.99454423e-02, 3.12127706e+00,

 -1.54698463e+01, 4.04872721e+00,

 -1.07515901e-02, -1.38699758e+00,

 2.42353741e-01, -8.69095363e-03,

 -9.11917342e-01, 1.19435253e-02,

 -5.48080157e-01])

Instance parameters:

n_jobs=None

Number of CPUs to use. -1 is all.

Attributes after fitting:

coef_

Linear regression coefficients

intercept_

Intercept of the linear model

The .intercept_ value is the expected mean value. You can see how
scaling the data affects the coefficients. The sign of the coefficients explains
the direction of the relation between the feature and the target. A positive
sign indicates that as the feature increases, the label increases. A negative
sign indicates that as the feature increases, the label decreases. The larger
the absolute value of the coefficient, the more impact it has:

>>> lr2 = LinearRegression()

>>> lr2.fit(bos_sX_train, bos_sy_train)

LinearRegression(copy_X=True, fit_intercept=True,

 n_jobs=1, normalize=False)

>>> lr2.score(bos_sX_test, bos_sy_test)

0.7109203586326278

>>> lr2.intercept_

22.50945471291039

>>> lr2.coef_

array([-1.14030209, 0.83368112, 0.34230461,

 0.792002, -1.7908376, 2.84189278, -0.30234582,

 -2.91772744, 2.10815064, -1.46330017,

 -1.97229956, 1.08930453, -3.91000474])

You can use Yellowbrick to visualize coefficients (see Figure 14-1).
Because the scaled Boston data is a numpy array rather than a pandas
DataFrame, we need to pass the labels parameter if we want to use the
column names:

>>> from yellowbrick.features import (

... FeatureImportances,

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> fi_viz = FeatureImportances(

... lr2, labels=bos_X.columns

...)

>>> fi_viz.fit(bos_sX, bos_sy)

>>> fi_viz.poof()

>>> fig.savefig(

... "images/mlpr_1401.png",

... bbox_inches="tight",

... dpi=300,

...)

Figure 14-1. Feature importance. This indicates that RM (number of rooms) increases the price,
age doesn’t really matter, and LSTAT (percent of low status in population) lowers the price.

SVMs
Support vector machines can perform regression as well.

SVMs have the following properties:

Runtime efficiency
The scikit-learn implementation is O(n⁴), so it can be hard to scale to
large sizes. Using a linear kernel or the LinearSVR model can improve
the runtime performance at perhaps the cost of accuracy. Upping the
cache_size parameter can bring that down to O(n³).

Preprocess data
The algorithm is not scale invariant, so standardizing the data is highly
recommended.

Prevent overfitting

The C (penalty parameter) controls regularization. A smaller value
allows for a smaller margin in the hyperplane. A higher value for gamma
will tend to overfit the training data. The LinearSVR model supports a
loss and penalty parameter for regularization. The epsilon parameter
can be raised (with 0 you should expect overfitting).

Interpret results

Inspect .support_vectors_, though these are hard to interpret. With
linear kernels, you can inspect .coef_.

Here is an example of using the library:

>>> from sklearn.svm import SVR

>>> svr = SVR()

>>> svr.fit(bos_sX_train, bos_sy_train)

SVR(C=1.0, cache_size=200, coef0=0.0, degree=3,

 epsilon=0.1, gamma='auto', kernel='rbf',

 max_iter=-1, shrinking=True, tol=0.001,

 verbose=False)

>>> svr.score(bos_sX_test, bos_sy_test)

0.6555356362002485

Instance parameters:

C=1.0

The penalty parameter. The smaller the value, the tighter the decision
boundary (more overfitting).

cache_size=200

Cache size (MB). Bumping this up can improve training time on large
datasets.

coef0=0.0

Independent term for poly and sigmoid kernels.

epsilon=0.1

Defines a margin of tolerance where no penalty is given to errors.
Should be smaller for larger datasets.

degree=3

Degree for polynomial kernel.

gamma='auto'

Kernel coefficient. Can be a number, 'scale' (default in 0.22, 1 / (num
features * X.std())), or 'auto' (default prior, 1 / num_features). A
lower value leads to overfitting the training data.

kernel='rbf'

Kernel type: 'linear', 'poly', 'rbf' (default), 'sigmoid',
'precomputed', or a function.

max_iter=-1

Maximum number of iterations for solver. -1 for no limit.

probability=False

Enable probability estimation. Slows down training.

random_state=None

Random seed.

shrinking=True

Use shrinking heuristic.

tol=0.001

Stopping tolerance.

verbose=False

Verbosity.

Attributes after fitting:

support_

Support vector indices

support_vectors_

Support vectors

coef_

Coefficients (for linear) kernel

intercept_

Constant for decision function

K-Nearest Neighbor
The KNN model also supports regression by finding k neighbor targets to
the sample for which you want to predict. For regression, this model
averages the targets together to determine a prediction.

Nearest neighbor models have the following properties:

Runtime efficiency
Training runtime is O(1), but there is a trade-off as the sample data
needs to be stored. Testing runtime is O(Nd), where N is the number of
training examples and d is dimensionality.

Preprocess data
Yes, distance-based calculations perform better when standardized.

Prevent overfitting

Raise n_neighbors. Change p for L1 or L2 metric.

Interpret results

Interpret the k-nearest neighbors to the sample (using the .kneighbors
method). Those neighbors (if you can explain them) explain your result.

Here is an example of using the model:

>>> from sklearn.neighbors import (

... KNeighborsRegressor,

...)

>>> knr = KNeighborsRegressor()

>>> knr.fit(bos_sX_train, bos_sy_train)

KNeighborsRegressor(algorithm='auto',

 leaf_size=30, metric='minkowski',

 metric_params=None, n_jobs=1, n_neighbors=5,

 p=2, weights='uniform')

>>> knr.score(bos_sX_test, bos_sy_test)

0.747112767457727

Attributes:

algorithm='auto'

Can be 'brute', 'ball_tree', or 'kd_tree'.

leaf_size=30

Used for tree algorithms.

metric='minkowski'

Distance metric.

metric_params=None

Additional dictionary of parameters for custom metric function.

n_jobs=1

Number of CPUs.

n_neighbors=5

Number of neighbors.

p=2

Minkowski power parameter. 1 = manhattan (L1). 2 = euclidean (L2).

weights='uniform'

Can be 'distance', in which case, closer points have more influence.

Decision Tree
Decision trees support classification and regression. At each level of the
tree, various splits on features are evaluated. The split that will produce the

lowest error (impurity) is chosen. The criterion parameter can be
adjusted to determine the metric for impurity.

Decision trees have the following properties:

Runtime efficiency
For creation, loop over each of the m features we have to sort all n
samples: O(mn log n). For predicting, you walk the tree: O(height).

Preprocess data
Scaling not necessary. Need to get rid of missing values and convert to
numeric.

Prevent overfitting

Set max_depth to a lower number, raise min_impurity_decrease.

Interpret results
Can step through the tree of choices. Because there are steps, a tree is
bad at dealing with linear relationships (a small change in the values of
a feature can cause a completely different tree to be formed). The tree is
also highly dependent on the training data. A small change can change
the whole tree.

Here is an example using the scikit-learn library:

>>> from sklearn.tree import DecisionTreeRegressor

>>> dtr = DecisionTreeRegressor(random_state=42)

>>> dtr.fit(bos_X_train, bos_y_train)

DecisionTreeRegressor(criterion='mse',

 max_depth=None, max_features=None,

 max_leaf_nodes=None, min_impurity_decrease=0.0,

 min_impurity_split=None, min_samples_leaf=1,

 min_samples_split=2,

 min_weight_fraction_leaf=0.0, presort=False,

 random_state=42, splitter='best')

>>> dtr.score(bos_X_test, bos_y_test)

0.8426751288675483

Instance parameters:

criterion='mse'

Splitting function. Default is mean squared error (L2 loss).
'friedman_mse' or 'mae' (L1 loss).

max_depth=None

Depth of tree. Default will build until leaves contain less than
min_samples_split.

max_features=None

Number of features to examine for split. Default is all.

max_leaf_nodes=None

Limit number of leaves. Default is unlimited.

min_impurity_decrease=0.0

Split node if a split will decrease impurity >= value.

min_impurity_split=None

Deprecated.

min_samples_leaf=1

Minimum number of samples at each leaf.

min_samples_split=2

Minimum number of samples required to split a node.

min_weight_fraction_leaf=0.0

Minimum sum of weights required for leaf nodes.

presort=False

May speed up training with small dataset or restricted depth if set to
True.

random_state=None

Random seed.

splitter='best'

Use 'random' or 'best'.

Attributes after fitting:

feature_importances_

Array of Gini importance

max_features_

Computed value of max_features

n_outputs_

Number of outputs

n_features_

Number of features

tree_

Underlying tree object

View the tree (see Figure 14-2):

>>> import pydotplus

>>> from io import StringIO

>>> from sklearn.tree import export_graphviz

>>> dot_data = StringIO()

>>> tree.export_graphviz(

... dtr,

... out_file=dot_data,

... feature_names=bos_X.columns,

... filled=True,

...)

>>> g = pydotplus.graph_from_dot_data(

... dot_data.getvalue()

...)

>>> g.write_png("images/mlpr_1402.png")

For Jupyter, use:

from IPython.display import Image

Image(g.create_png())

Figure 14-2. Decision tree.

This plot was a little wide. On a computer you can zoom in on portions of
it. You can also limit the depth of the chart (see Figure 14-3). (It turns out
that the most important features are typically near the top of the tree.) We
will use the max_depth parameter to do this:

>>> dot_data = StringIO()

>>> tree.export_graphviz(

... dtr,

... max_depth=2,

... out_file=dot_data,

... feature_names=bos_X.columns,

... filled=True,

...)

>>> g = pydotplus.graph_from_dot_data(

... dot_data.getvalue()

...)

>>> g.write_png("images/mlpr_1403.png")

Figure 14-3. The first two layers of a decision tree.

We can also use the dtreeviz package to view a scatter plot at each of the
nodes of the tree (see Figure 14-4). We will use a tree limited to a depth of
two so we can see the details:

>>> dtr3 = DecisionTreeRegressor(max_depth=2)

>>> dtr3.fit(bos_X_train, bos_y_train)

>>> viz = dtreeviz.trees.dtreeviz(

... dtr3,

... bos_X,

... bos_y,

... target_name="price",

... feature_names=bos_X.columns,

...)

>>> viz

Figure 14-4. Regression with dtviz.

Feature importance:

>>> for col, val in sorted(

... zip(

... bos_X.columns, dtr.feature_importances_

...),

... key=lambda x: x[1],

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")

RM 0.574

LSTAT 0.191

DIS 0.110

CRIM 0.061

RAD 0.018

Random Forest
Decision trees are good because they are explainable, but they have a
tendency to overfit. A random forest trades some of the explainability for a
model that tends to generalize better. This model can also be used for
regression.

Random forests have the following properties:

Runtime efficiency
Need to create j random trees. This can be done in parallel using
n_jobs. Complexity for each tree is O(mn log n), where n is the number
of samples and m is the number of features. For creation, loop over each
of the m features, and sort all n samples: O(mn log n). For predicting,
you walk the tree: O(height).

Preprocess data
Not necessary as long as the input is numeric and not missing values.

Prevent overfitting

Add more trees (n_estimators). Use lower max_depth.

Interpret results
Supports feature importance, but we don’t have a single decision tree
that we can walk through. Can inspect single trees from the ensemble.

Here is an example of using the model:

>>> from sklearn.ensemble import (

... RandomForestRegressor,

...)

>>> rfr = RandomForestRegressor(

... random_state=42, n_estimators=100

_ , _

...)

>>> rfr.fit(bos_X_train, bos_y_train)

RandomForestRegressor(bootstrap=True,

 criterion='mse', max_depth=None,

 max_features='auto', max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,_samples_leaf=1,

 min_samples_split=2,

 min_weight_fraction_leaf=0.0,

 n_estimators=100, n_jobs=1,

 oob_score=False, random_state=42,

 verbose=0, warm_start=False)

>>> rfr.score(bos_X_test, bos_y_test)

0.8641887615545837

Instance parameters (these options mirror the decision tree):

bootstrap=True

Bootstrap when building trees.

criterion='mse'

Splitting function, 'mae'.

max_depth=None

Depth of tree. Default will build until leaves contain less than
min_samples_split.

max_features='auto'

Number of features to examine for split. Default is all.

max_leaf_nodes=None

Limit number of leaves. Default is unlimited.

min_impurity_decrease=0.0

Split node if a split will decrease impurity by this value or more.

min_impurity_split=None

Deprecated.

min_samples_leaf=1

Minimum number of samples at each leaf.

min_samples_split=2

Minimum number of samples required to split a node.

min_weight_fraction_leaf=0.0

Minimum sum total of weights required for leaf nodes.

n_estimators=10

Number of trees in the forest.

n_jobs=None

Number of jobs for fitting and predicting. (None means 1.)

oob_score=False

Whether to use OOB samples to estimate score on unseen data.

random_state=None

Random seed.

verbose=0

Verbosity.

warm_start=False

Fit a new forest or use existing one.

Attributes after fitting:

estimators_

Collection of trees

feature_importances_

Array of Gini importance

n_classes_

Number of classes

n_features_

Number of features

oob_score_

Score of the training dataset using OOB estimate

Feature importance:

>>> for col, val in sorted(

... zip(

... bos_X.columns, rfr.feature_importances_

...),

... key=lambda x: x[1],

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")

RM 0.505

LSTAT 0.283

DIS 0.115

CRIM 0.029

PTRATIO 0.016

XGBoost Regression
The XGBoost library also supports regression. It builds a simple decision
tree, then “boosts” it by adding subsequent trees. Each tree tries to correct
the residuals of the previous output. In practice, this works quite well on
structured data.

It has the following properties:

Runtime efficiency

XGBoost is parallelizeable. Use the n_jobs option to indicate the
number of CPUs. Use GPU for even better performance.

Preprocess data
No scaling necessary with tree models. Need to encode categorical data.
Supports missing data!

Prevent overfitting

The early_stopping_rounds=N parameter can be set to stop training if
there is no improvement after N rounds. L1 and L2 regularization are
controlled by reg_alpha and reg_lambda, respectively. Higher
numbers mean more conservative.

Interpret results
Has feature importance.

Here is an example using the library:

>>> xgr = xgb.XGBRegressor(random_state=42)

>>> xgr.fit(bos_X_train, bos_y_train)

XGBRegressor(base_score=0.5, booster='gbtree',

 colsample_bylevel=1, colsample_bytree=1,

 gamma=0, learning_rate=0.1, max_delta_step=0,

 max_depth=3, min_child_weight=1, missing=None,

 n_estimators=100, n_jobs=1, nthread=None,

 objective='reg:linear', random_state=42,

 reg_alpha=0, reg_lambda=1, scale_pos_weight=1,

 seed=None, silent=True, subsample=1)

>>> xgr.score(bos_X_test, bos_y_test)

0.871679473122472

>>> xgr.predict(bos_X.iloc[[0]])

array([27.013563], dtype=float32)

Instance parameters:

max_depth=3

Maximum depth.

learning_rate=0.1

Learning rate (eta) for boosting (between 0 and 1). After each boost
step, the newly added weights are scaled by this factor. The lower the
value, the more conservative, but will also need more trees to converge.
In the call to .train, you can pass a learning_rates parameter, which
is a list of rates at each round (i.e., [.1]*100 + [.05]*100).

n_estimators=100

Number of rounds or boosted trees.

silent=True

Whether to print messages while running boosting.

objective="reg:linear"

Learning task or callable for classification.

booster="gbtree"

Can be 'gbtree', 'gblinear', or 'dart'. The 'dart' option adds
dropout (drops random trees to prevent overfitting). The 'gblinear'

option creates a regularized linear model (read not a tree but similar to
lasso regression).

nthread=None

Deprecated.

n_jobs=1

Number of threads to use.

gamma=0

Minimum loss reduction needed to further split a leaf.

min_child_weight=1

Minimum value for sum of hessian for a child.

max_delta_step=0

Make update more conservative. Set 1 to 10 for imbalanced classes.

subsample=1

Fraction of samples to use for next boosting round.

colsample_bytree=1

Fraction of columns to use for boosting round.

colsample_bylevel=1

Fraction of columns to use for level in tree.

colsample_bynode=1

Fraction of columns to use for split (node in tree).

reg_alpha=0

L1 regularization (mean of weights). Increase to be more conservative.

reg_lambda=1

L2 regularization (root of squared weights). Increase to be more
conservative.

base_score=.5

Initial prediction.

seed=None

Deprecated.

random_state=0

Random seed.

missing=None

Value to interpret for missing. None means np.nan.

importance_type='gain'

The feature importance type: 'gain', 'weight', 'cover',
'total_gain', or 'total_cover'.

Attributes:

coef_

Coefficients for gblinear learners (booster = 'gblinear')

intercept_

Intercept for gblinear learners

feature_importances_

Feature importances for gbtree learners

Feature importance is the average gain across all the nodes where the
feature is used:

>>> for col, val in sorted(

... zip(

... bos_X.columns, xgr.feature_importances_

...),

... key=lambda x: x[1],

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")

DIS 0.187

CRIM 0.137

RM 0.137

LSTAT 0.134

AGE 0.110

XGBoost includes plotting facilities for feature importance. Note that the
importance_type parameter changes the values in this plot (see Figure 14-
5). The default is using weight to determine feature importance:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> xgb.plot_importance(xgr, ax=ax)

>>> fig.savefig("images/mlpr_1405.png", dpi=300)

Figure 14-5. Feature importance using weight (how many times a feature is split on in the trees).

Using Yellowbrick to plot feature importances (it will normalize the
feature_importances_ attribute) (see Figure 14-6):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> fi_viz = FeatureImportances(xgr)

>>> fi_viz.fit(bos_X_train, bos_y_train)

>>> fi_viz.poof()

>>> fig.savefig("images/mlpr_1406.png", dpi=300)

Figure 14-6. Feature importance using relative importance of gain (percent importance of the most
important feature).

XGBoost provides both a textual representation of the trees and a graphical
one. Here is the text representation:

>>> booster = xgr.get_booster()

>>> print(booster.get_dump()[0])

0:[LSTAT<9.72500038] yes=1,no=2,missing=1

 1:[RM<6.94099998] yes=3,no=4,missing=3

 3:[DIS<1.48494995] yes=7,no=8,missing=7

 7:leaf=3.9599998

 8:leaf=2.40158272

 4:[RM<7.43700027] yes=9,no=10,missing=9

 9:leaf=3.22561002

 10:leaf=4.31580687

 2:[LSTAT<16.0849991] yes=5,no=6,missing=5

 5:[B<116.024994] yes=11,no=12,missing=11

 11:leaf=1.1825

 12:leaf=1.99701393

 6:[NOX<0.603000045] yes=13,no=14,missing=13

 13:leaf=1.6868

 14:leaf=1.18572915

The leaf values can be interpreted as the sum of the base_score and the
leaf. (To validate this, call .predict with the ntree_limit=1 parameter to
limit the model to using the result of the first tree.)

Here is a graphical version of the tree (see Figure 14-7):

fig, ax = plt.subplots(figsize=(6, 4))

xgb.plot_tree(xgr, ax=ax, num_trees=0)

fig.savefig('images/mlpr_1407.png', dpi=300)

Figure 14-7. XGBoost tree.

LightGBM Regression
The gradient boosting tree library, LightGBM, also supports regression. As
mentioned in the classification chapter, it can be faster than XGBoost for
creating trees due to the sampling mechanism used to determine node splits.

Also, remember that it grows trees depth first, so limiting depth may harm
the model. It has the following properties:

Runtime efficiency
Can take advantage of multiple CPUs. By using binning, can be 15
times faster than XGBoost.

Preprocess data
Has some support for encoding categorical columns as integers (or
pandas Categorical type), but AUC appears to suffer compared to
one-hot encoding.

Prevent overfitting

Lower num_leaves. Increase min_data_in_leaf. Use
min_gain_to_split with lambda_l1 or lambda_l2.

Interpret results
Feature importance is available. Individual trees are weak and tend to be
hard to interpret.

Here is an example of using the model:

>>> import lightgbm as lgb

>>> lgr = lgb.LGBMRegressor(random_state=42)

>>> lgr.fit(bos_X_train, bos_y_train)

LGBMRegressor(boosting_type='gbdt',

 class_weight=None, colsample_bytree=1.0,

 learning_rate=0.1, max_depth=-1,

 min_child_samples=20, min_child_weight=0.001,

 min_split_gain=0.0, n_estimators=100,

 n_jobs=-1, num_leaves=31, objective=None,

 random_state=42, reg_alpha=0.0,

 reg_lambda=0.0, silent=True, subsample=1.0,

 subsample_for_bin=200000, subsample_freq=0)

>>> lgr.score(bos_X_test, bos_y_test)

0.847729219534575

>>> lgr.predict(bos_X.iloc[[0]])

array([30.31689569])

Instance parameters:

boosting_type='gbdt'

Can be 'gbdt' (gradient boosting), 'rf' (random forest), 'dart'
(dropouts meet multiple additive regression trees), or 'goss' (gradient-
based, one-sided sampling).

num_leaves=31

Maximum tree leaves.

max_depth=-1

Maximum tree depth. -1 is unlimited. Larger depths tend to overfit
more.

learning_rate=0.1

Range (0, 1.0]. Learning rate for boosting. A smaller value slows down
overfitting as the boosting rounds have less impact. A smaller number
should give better performance but will require more num_iterations.

n_estimators=100

Number of trees or boosting rounds.

subsample_for_bin=200000

Samples required to create bins.

objective=None

None - Does regression by default. Can be a function or string.

min_split_gain=0.0

Loss reduction required to partition leaf.

min_child_weight=0.001

Sum of hessian weight required for a leaf. Larger will be more
conservative.

min_child_samples=20

Number of samples required for a leaf. Lower numbers mean more
overfitting.

subsample=1.0

Fraction of samples to use for the next round.

subsample_freq=0

Subsample frequency. Change to 1 to enable.

colsample_bytree=1.0

Range (0, 1.0]. Select percent of features for each boosting round.

reg_alpha=0.0

L1 regularization (mean of weights). Increase to be more conservative.

reg_lambda=0.0

L2 regularization (root of squared weights). Increase to be more
conservative.

random_state=42

Random seed.

n_jobs=-1

Number of threads.

silent=True

Verbose mode.

importance_type='split'

Determines how importance is calculated: split (times a feature was
used) or gain (total gains of splits when a feature was used).

LightGBM supports feature importance. The importance_type parameter
determines how this is calculated (the default is based on how many times a
feature was used):

>>> for col, val in sorted(

... zip(

... bos_X.columns, lgr.feature_importances_

...),

... key=lambda x: x[1],

... reverse=True,

...)[:5]:

... print(f"{col:10}{val:10.3f}")

LSTAT 226.000

RM 199.000

DIS 172.000

AGE 130.000

B 121.000

Feature importance plot showing how many times a feature is used (see
Figure 14-8):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> lgb.plot_importance(lgr, ax=ax)

>>> fig.tight_layout()

>>> fig.savefig("images/mlpr_1408.png", dpi=300)

Figure 14-8. Feature importance showing how many times a feature is used.

TIP
In Jupyter, use the following command to view a tree:

lgb.create_tree_digraph(lgbr)

Chapter 15. Metrics and
Regression Evaluation

This chapter will evaluate the results of a random forest regressor trained on
the Boston housing data:

>>> rfr = RandomForestRegressor(

... random_state=42, n_estimators=100

...)

>>> rfr.fit(bos_X_train, bos_y_train)

Metrics
The sklearn.metrics module includes metrics to evaluate regression
models. Metric functions ending in loss or error should be minimized.
Functions ending in score should be maximized.

The coefficient of determination (r²) is a common regression metric. This
value is typically between 0 and 1. It represents the percent of the variance
of the target that the features contribute. Higher values are better, but in
general it is difficult to evaluate the model from this metric alone. Does a .7
mean it is a good score? It depends. For a given dataset, .5 might be a good
score, while for another dataset, a .9 may be a bad score. Typically we use
this number in combination with other metrics or visualizations to evaluate
a model.

For example, it is easy to make a model that predicts stock prices for the
next day with an r² of .99. But I wouldn’t trade my own money with that
model. It might be slightly low or high, which can wreak havoc on trades.

The r² metric is the default metric used during grid search. You can specify
other metrics using the scoring parameter.

The .score method calculates this for regression models:

>>> from sklearn import metrics

>>> rfr.score(bos_X_test, bos_y_test)

0.8721182042634867

>>> metrics.r2_score(bos_y_test, bos_y_test_pred)

0.8721182042634867

NOTE
There is also an explained variance metric ('explained_variance' in grid search). If
the mean of the residuals (errors in predictions) is 0 (in ordinary least squares (OLS)
models), then the variance explained is the same as the coefficient of determination:

>>> metrics.explained_variance_score(

... bos_y_test, bos_y_test_pred

...)

0.8724890451227875

Mean absolute error ('neg_mean_absolute_error' when used in grid
search) expresses the average absolute model prediction error. A perfect
model would score 0, but this metric has no upper bounds, unlike the
coefficient of determination. However, since it is in units of the target, it is
more interpretable. If you want to ignore outliers, this is a good metric to
use.

This measure cannot indicate how bad a model is, but can be used to
compare two models. If you have two models, the model with a lower score
is better.

This number tells us that the average error is about two above or below the
real value:

>>> metrics.mean_absolute_error(

... bos_y_test, bos_y_test_pred

...)

2.0839802631578945

Root mean squared error ('neg_mean_squared_error' in grid search) also
measures model error in terms of the target. However, because it averages
the square of errors before taking the square root, it penalizes large errors. If
you want to penalize large errors, this is a good metric to use. For example,
if being off by eight is more than two times worse than being off by four.

As with mean absolute error, this measure cannot indicate how bad a model
is, but can be used to compare two models. If you assume that errors are
normally distributed, this is a good choice.

The result tells us if we square the errors and average them, the result will
be around 9.5:

>>> metrics.mean_squared_error(

... bos_y_test, bos_y_test_pred

...)

9.52886846710526

The mean squared logarithmic error (in grid search,
'neg_mean_squared_log_error') penalizes underprediction more than
overprediction. If you have targets that experience exponential growth
(population, stock, etc.), this is a good metric.

If you take the log of the error and then square it, the average of these
results will be 0.021:

>>> metrics.mean_squared_log_error(

... bos_y_test, bos_y_test_pred

...)

0.02128263061776433

Residuals Plot
Good models (with appropriate R2 scores) will exhibit homoscedasticity.
This means the variance is the same for all values of targets regardless of
the input. Plotted, this looks like randomly distributed values in a residuals
plot. If there are patterns, the model or the data are problematic.

Residuals plots also show outliers, which can have a big impact on model
fitting (see Figure 15-1).

Yellowbrick can make residuals plots to visualize this:

>>> from yellowbrick.regressor import ResidualsPlot

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> rpv = ResidualsPlot(rfr)

>>> rpv.fit(bos_X_train, bos_y_train)

>>> rpv.score(bos_X_test, bos_y_test)

>>> rpv.poof()

>>> fig.savefig("images/mlpr_1501.png", dpi=300)

Figure 15-1. Residuals plot. Further testing will show these to be heteroscedastic.

Heteroscedasticity
The statsmodel library includes the Breusch-Pagan test for
heteroscedasticity. This means that variance of the residuals varies over the
predicted values. In the Breusch-Pagan test, if the p-values are significant

https://oreil.ly/HtIi5

(p-value less than 0.05), the null hypothesis of homoscedasticity is
rejected. This indicates that residuals are heteroscedastic, and the
predictions are biased.

The test confirms heteroscedasticity:

>>> import statsmodels.stats.api as sms

>>> hb = sms.het_breuschpagan(resids, bos_X_test)

>>> labels = [

... "Lagrange multiplier statistic",

... "p-value",

... "f-value",

... "f p-value",

...]

>>> for name, num in zip(name, hb):

... print(f"{name}: {num:.2}")

Lagrange multiplier statistic: 3.6e+01

p-value: 0.00036

f-value: 3.3

f p-value: 0.00022

Normal Residuals
The scipy library includes a probability plot and the Kolmogorov-Smirnov
test, both of which measure whether the residuals are normal.

We can plot a histogram (see Figure 15-2) to visualize the residuals and
check for normality:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> resids = bos_y_test - rfr.predict(bos_X_test)

>>> pd.Series(resids, name="residuals").plot.hist(

... bins=20, ax=ax, title="Residual Histogram"

...)

>>> fig.savefig("images/mlpr_1502.png", dpi=300)

Figure 15-2. Histogram of residuals.

Figure 15-3 shows a probability plot. If the samples plotted against the
quantiles line up, the residuals are normal. We can see that this fails in this
case:

>>> from scipy import stats

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> _ = stats.probplot(resids, plot=ax)

>>> fig.savefig("images/mlpr_1503.png", dpi=300)

Figure 15-3. Probability plot of residuals.

The Kolmogorov-Smirnov test can evaluate whether a distribution is
normal. If the p-value is significant (< 0.05), then the values are not normal.

This fails as well, which tells us the residuals are not normal:

>>> stats.kstest(resids, cdf="norm")

KstestResult(statistic=0.1962230021010155, pvalue=1.3283596864921421e-05)

Prediction Error Plot
A prediction error plot shows the real targets against the predicted values.
For a perfect model these points would line up in a 45-degree line.

As our model seems to predict lower values for the high end of y, the model
has some performance issues. This is also evident in the residuals plot (see

Figure 15-4).

Here is the Yellowbrick version:

>>> from yellowbrick.regressor import (

... PredictionError,

...)

>>> fig, ax = plt.subplots(figsize=(6, 6))

>>> pev = PredictionError(rfr)

>>> pev.fit(bos_X_train, bos_y_train)

>>> pev.score(bos_X_test, bos_y_test)

>>> pev.poof()

>>> fig.savefig("images/mlpr_1504.png", dpi=300)

Figure 15-4. Prediction error. Plots predicted y (y-hat) versus actual y.

Chapter 16. Explaining
Regression Models

Most of the techniques used to explain classification models apply to
regression models. In this chapter, I will show how to use the SHAP library
to interpret regression models.

We will interpret an XGBoost model for the Boston housing dataset:

>>> import xgboost as xgb

>>> xgr = xgb.XGBRegressor(

... random_state=42, base_score=0.5

...)

>>> xgr.fit(bos_X_train, bos_y_train)

Shapley
I’m a big fan of Shapley because it is model agnostic. This library also
gives us global insight into our model and helps explain individual
predictions. If you have a black-box model, I find it very useful.

We will first look at the prediction for index 5. Our model predicts the value
to be 27.26:

>>> sample_idx = 5

>>> xgr.predict(bos_X.iloc[[sample_idx]])

array([27.269186], dtype=float32)

To use the model, we have to create a TreeExplainer from our model and
estimate the SHAP values for our samples. If we want to use Jupyter and
have an interactive interface, we also need to call the initjs function:

>>> import shap

>>> shap.initjs()

>>> exp = shap.TreeExplainer(xgr)

>>> vals = exp.shap_values(bos_X)

With the explainer and the SHAP values, we can create a force plot to
explain the prediction (see Figure 16-1). This informs us that the base
prediction is 23, and that the population status (LSTAT) and property tax
rate (TAX) push the price up, while the number of rooms (RM) pushes the
price down:

>>> shap.force_plot(

... exp.expected_value,

... vals[sample_idx],

... bos_X.iloc[sample_idx],

...)

Figure 16-1. Force plot for regression. The expected value is pushed up from 23 to 27 due to the
population status and tax rate.

We can view the force plot for all of the samples as well to get an overall
feel of the behavior. If we are using the interactive JavaScript mode on
Jupyter, we can mouse over the samples and see what features are
impacting the result (see Figure 16-2):

>>> shap.force_plot(

... exp.expected_value, vals, bos_X

...)

Figure 16-2. Force plot for regression for all samples.

From the force plot of the sample, we saw that the LSTAT feature had a big
impact. To visualize how LSTAT affects the result, we can create a
dependence plot. The library will automatically choose a feature to color it
by (you can provide the interaction_index parameter to set your own).

From the dependence plot for LSTAT (see Figure 16-3), we can see that as
LSTAT increases (the percent of lower status population), the SHAP value
goes down (pushing down the target). A very low LSTAT value pushes
SHAP up. From viewing the coloring of the TAX (property tax rate), it
appears that as the rate goes down (more blue), the SHAP value goes up:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> shap.dependence_plot("LSTAT", vals, bos_X)

>>> fig.savefig(

... "images/mlpr_1603.png",

... bbox_inches="tight",

... dpi=300,

...)

Figure 16-3. Dependence plot for LSTAT. As LSTAT goes up, the predicted value goes down.

Here is another dependence plot, shown in Figure 16-4, to explore the DIS
(distance to employment centers). It appears that this feature has little effect
unless it is very small:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> shap.dependence_plot(

... "DIS", vals, bos_X, interaction_index="RM"

...)

>>> fig.savefig(

... "images/mlpr_1604.png",

... bbox_inches="tight",

... dpi=300,

...)

Figure 16-4. Dependence plot for DIS. Unless DIS is very small, SHAP stays relatively flat.

Finally, we will look at the global effect of the features using a summary
plot (see Figure 16-5). The features at the top have the most impact to the
model. From this view you can see that large values of RM (number of
rooms) push up the target a lot, while medium and smaller values push it
down a little:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> shap.summary_plot(vals, bos_X)

>>> fig.savefig(

... "images/mlpr_1605.png",

... bbox_inches="tight",

... dpi=300,

...)

Figure 16-5. Summary plot. The most important features are at the top.

The SHAP library is a great tool to have in your toolbelt. It helps
understand the global impact of features and also helps explain individual
predictions.

Chapter 17. Dimensionality
Reduction

There are many techniques to decompose features into a smaller subset.
This can be useful for exploratory data analysis, visualization, making
predictive models, or clustering.

In this chapter we will explore the Titanic dataset using various techniques.
We will look at PCA, UMAP, t-SNE, and PHATE.

Here is the data:

>>> ti_df = tweak_titanic(orig_df)

>>> std_cols = "pclass,age,sibsp,fare".split(",")

>>> X_train, X_test, y_train, y_test = get_train_test_X_y(

... ti_df, "survived", std_cols=std_cols

...)

>>> X = pd.concat([X_train, X_test])

>>> y = pd.concat([y_train, y_test])

PCA
Principal Component Analysis (PCA) takes a matrix (X) of rows (samples)
and columns (features). PCA returns a new matrix that has columns that are
linear combinations of the original columns. These linear combinations
maximize the variance.

Each column is orthogonal (a right angle) to the other columns. The
columns are sorted in order of decreasing variance.

Scikit-learn has an implementation of this model. It is best to standardize
the data prior to running the algorithm. After calling the .fit method, you
will have access to an .explained_variance_ratio_ attribute that lists
the percentage of variance in each column.

PCA is useful to visualize data in two (or three) dimensions. It is also used
as a preprocessing step to filter out random noise in data. It is good for
finding global structures, but not local ones, and works well with linear
data.

In this example, we are going to run PCA on the Titanic features. The PCA
class is a transformer in scikit-learn; you call the .fit method to teach it
how to get the principal components, then you call .transform to convert a
matrix into a matrix of principal components:

>>> from sklearn.decomposition import PCA

>>> from sklearn.preprocessing import (

... StandardScaler,

...)

>>> pca = PCA(random_state=42)

>>> X_pca = pca.fit_transform(

... StandardScaler().fit_transform(X)

...)

>>> pca.explained_variance_ratio_

array([0.23917891, 0.21623078, 0.19265028,

 0.10460882, 0.08170342, 0.07229959,

 0.05133752, 0.04199068])

>>> pca.components_[0]

arrayarray([-0.63368693, 0.39682566,

 0.00614498, 0.11488415, 0.58075352,

 -0.19046812, -0.21190808, -0.09631388])

Instance parameters:

n_components=None

Number of components to generate. If None, return same number as
number of columns. Can be a float (0, 1), then will create as many
components as needed to get that ratio of variance.

copy=True

Will mutate data on .fit if True.

whiten=False

Whiten data after transform to ensure uncorrelated components.

svd_solver='auto'

'auto' runs 'randomized' SVD if n_components is less than 80% of
the smallest dimension (faster, but an approximation). Otherwise runs
'full'.

tol=0.0

Tolerance for singular values.

iterated_power='auto'

Number of iterations for 'randomized' svd_solver.

random_state=None

Random state for 'randomized' svd_solver.

Attributes:

components_

Principal components (columns of linear combination weights for
original features).

explained_variance_

Amount of variance for each component.

explained_variance_ratio_

Amount of variance for each component normalized (sums to 1).

singular_values_

Singular values for each component.

mean_

Mean of each feature.

n_components_

When n_components is a float, this is the size of the components.

noise_variance_

Estimated noise covariance.

Plotting the cumulative sum of the explained variance ratio is called a scree
plot (see Figure 17-1). It will show how much information is stored in the
components. You can use the elbow method to see if it bends to determine
how many components to use:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> ax.plot(pca.explained_variance_ratio_)

>>> ax.set(

... xlabel="Component",

... ylabel="Percent of Explained variance",

... title="Scree Plot",

... ylim=(0, 1),

...)

>>> fig.savefig(

... "images/mlpr_1701.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 17-1. PCA scree plot.

Another way to view this data is using a cumulative plot (see Figure 17-2).
Our original data had 8 columns, but from the plot it appears that we keep
around 90% of the variance if we use just 4 of the PCA components:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> ax.plot(

... np.cumsum(pca.explained_variance_ratio_)

...)

>>> ax.set(

... xlabel="Component",

... ylabel="Percent of Explained variance",

... title="Cumulative Variance",

... ylim=(0, 1),

...)

>>> fig.savefig("images/mlpr_1702.png", dpi=300)

Figure 17-2. PCA cumulative explained variance.

How much do features impact components? Use the matplotlib imshow
function to plot the components along the x axis and the original features
along the y axis (see Figure 17-3). The darker the color, the more the
original column contributes to the component.

It looks like the first component is heavily influenced by the pclass, age,
and fare columns. (Using the spectral colormap (cmap) emphasizes nonzero
values, and providing vmin and vmax adds limits to the colorbar legend.)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> plt.imshow(

... pca.components_.T,

... cmap="Spectral",

... vmin=-1,

... vmax=1,

...)

>>> plt.yticks(range(len(X.columns)), X.columns)

>>> plt.xticks(range(8), range(1, 9))

>>> plt.xlabel("Principal Component")

>>> plt.ylabel("Contribution")

>>> plt.title(

... "Contribution of Features to Components"

...)

>>> plt.colorbar()

>>> fig.savefig("images/mlpr_1703.png", dpi=300)

Figure 17-3. PCA features in components.

An alternative view is to look at a bar plot (see Figure 17-4). Each
component is shown with the contributions from the original data:

>>> fig, ax = plt.subplots(figsize=(8, 4))

>>> pd.DataFrame(

... pca.components_, columns=X.columns

...).plot(kind="bar", ax=ax).legend(

... bbox_to_anchor=(1, 1)

...)

>>> fig.savefig("images/mlpr_1704.png", dpi=300)

Figure 17-4. PCA features in components.

If we have many features, we may want to limit the plots above by showing
only features that meet a minimum weight. Here is code to find all the
features in the first two components that have absolute values of at least .5:

>>> comps = pd.DataFrame(

... pca.components_, columns=X.columns

...)

>>> min_val = 0.5

>>> num_components = 2

>>> pca_cols = set()

>>> for i in range(num_components):

... parts = comps.iloc[i][

... comps.iloc[i].abs() > min_val

...]

... pca_cols.update(set(parts.index))

>>> pca_cols

{'fare', 'parch', 'pclass', 'sibsp'}

PCA is commonly used to visualize high dimension datasets in two
components. Here we visualize the Titanic features in 2D. They are colored
by survival status. Sometimes clusters may appear in the visualization. In
this case, there doesn’t appear to be clustering of survivors (see Figure 17-
5).

We generate this visualization using Yellowbrick:

>>> from yellowbrick.features.pca import (

... PCADecomposition,

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> colors = ["rg"[j] for j in y]

>>> pca_viz = PCADecomposition(color=colors)

>>> pca_viz.fit_transform(X, y)

>>> pca_viz.poof()

>>> fig.savefig("images/mlpr_1705.png", dpi=300)

Figure 17-5. Yellowbrick PCA plot.

If you want to color the scatter plot by a column and add a legend (not a
colorbar), you need to loop over each color and plot that group individually
in pandas or matplotlib (or use seaborn). Below we also set the aspect ratio
to the ratio of the explained variances for the components we are looking at

(see Figure 17-6). Because the second component only has 90% of the first
component, it is a little shorter.

Here is the seaborn version:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> pca_df = pd.DataFrame(

... X_pca,

... columns=[

... f"PC{i+1}"

... for i in range(X_pca.shape[1])

...],

...)

>>> pca_df["status"] = [

... ("deceased", "survived")[i] for i in y

...]

>>> evr = pca.explained_variance_ratio_

>>> ax.set_aspect(evr[1] / evr[0])

>>> sns.scatterplot(

... x="PC1",

... y="PC2",

... hue="status",

... data=pca_df,

... alpha=0.5,

... ax=ax,

...)

>>> fig.savefig(

... "images/mlpr_1706.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 17-6. Seaborn PCA with legend and relative aspect.

Below, we augment the scatter plot by showing a loading plot on top of it.
This plot is called a biplot because it has the scatter plot and the loadings
(see Figure 17-7). The loadings indicate how strong features are and how
they correlate. If their angles are close, they likely correlate. If the angles
are at 90 degrees, they likely don’t correlate. Finally, if the angle between
them is close to 180 degrees, they have a negative correlation:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> pca_df = pd.DataFrame(

... X_pca,

... columns=[

[

... f"PC{i+1}"

... for i in range(X_pca.shape[1])

...],

...)

>>> pca_df["status"] = [

... ("deceased", "survived")[i] for i in y

...]

>>> evr = pca.explained_variance_ratio_

>>> x_idx = 0 # x_pc

>>> y_idx = 1 # y_pc

>>> ax.set_aspect(evr[y_idx] / evr[x_idx])

>>> x_col = pca_df.columns[x_idx]

>>> y_col = pca_df.columns[y_idx]

>>> sns.scatterplot(

... x=x_col,

... y=y_col,

... hue="status",

... data=pca_df,

... alpha=0.5,

... ax=ax,

...)

>>> scale = 8

>>> comps = pd.DataFrame(

... pca.components_, columns=X.columns

...)

>>> for idx, s in comps.T.iterrows():

... plt.arrow(

... 0,

... 0,

... s[x_idx] * scale,

... s[y_idx] * scale,

... color="k",

...)

... plt.text(

... s[x_idx] * scale,

... s[y_idx] * scale,

... idx,

... weight="bold",

...)

>>> fig.savefig(

... "images/mlpr_1707.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 17-7. Seaborn biplot with scatter plot and loading plot.

From previous tree models, we know that age, fare, and sex are important
for determining whether a passenger survived. The first principal
component is influenced by pclass, age, and fare, while the fourth is
influenced by sex. Let’s plot those components against each other.

Again, this plot is scaling the aspect ratio of the plot based on the ratios of
variance of the components (see Figure 17-8).

This plot appears to more accurately separate the survivors:

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> pca_df = pd.DataFrame(

... X_pca,

... columns=[

... f"PC{i+1}"

... for i in range(X_pca.shape[1])

...],

...)

>>> pca_df["status"] = [

... ("deceased", "survived")[i] for i in y

...]

>>> evr = pca.explained_variance_ratio_

>>> ax.set_aspect(evr[3] / evr[0])

>>> sns.scatterplot(

... x="PC1",

... y="PC4",

... hue="status",

... data=pca_df,

... alpha=0.5,

... ax=ax,

...)

>>> fig.savefig(

... "images/mlpr_1708.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 17-8. PCA plot showing components 1 against 4.

Matplotlib can create pretty plots, but it is less useful for interactive plots.
When performing PCA, it is often useful to view the data for scatter plots. I
have included a function that uses the Bokeh library for interacting with
scatter plots (see Figure 17-9). It works well in Jupyter:

https://bokeh.pydata.org/

>>> from bokeh.io import output_notebook

>>> from bokeh import models, palettes, transform

>>> from bokeh.plotting import figure, show

>>>

>>> def bokeh_scatter(

... x,

... y,

... data,

... hue=None,

... label_cols=None,

... size=None,

... legend=None,

... alpha=0.5,

...):

... """

... x - x column name to plot

... y - y column name to plot

... data - pandas DataFrame

... hue - column name to color by (numeric)

... legend - column name to label by

... label_cols - columns to use in tooltip

... (None all in DataFrame)

... size - size of points in screen space unigs

... alpha - transparency

... """

... output_notebook()

... circle_kwargs = {}

... if legend:

... circle_kwargs["legend"] = legend

... if size:

... circle_kwargs["size"] = size

... if hue:

... color_seq = data[hue]

... mapper = models.LinearColorMapper(

... palette=palettes.viridis(256),

... low=min(color_seq),

... high=max(color_seq),

...)

... circle_kwargs[

... "fill_color"

...] = transform.transform(hue, mapper)

... ds = models.ColumnDataSource(data)

... if label_cols is None:

... label_cols = data.columns

... tool_tips = sorted(

... [

... (x, "@{}".format(x))

... for x in label_cols

_

...],

... key=lambda tup: tup[0],

...)

... hover = models.HoverTool(

... tooltips=tool_tips

...)

... fig = figure(

... tools=[

... hover,

... "pan",

... "zoom_in",

... "zoom_out",

... "reset",

...],

... toolbar_location="below",

...)

...

... fig.circle(

... x,

... y,

... source=ds,

... alpha=alpha,

... **circle_kwargs

...)

... show(fig)

... return fig

>>> res = bokeh_scatter(

... "PC1",

... "PC2",

... data=pca_df.assign(

... surv=y.reset_index(drop=True)

...),

... hue="surv",

... size=10,

... legend="surv",

...)

Figure 17-9. Bokeh scatter plot with tooltips.

Yellowbrick can also plot in three dimensions (see Figure 17-10):

>>> from yellowbrick.features.pca import (

... PCADecomposition,

...)

>>> colors = ["rg"[j] for j in y]

>>> pca3_viz = PCADecomposition(

... proj_dim=3, color=colors

...)

>>> pca3_viz.fit_transform(X, y)

>>> pca3_viz.finalize()

>>> fig = plt.gcf()

>>> plt.tight_layout()

>>> fig.savefig(

... "images/mlpr_1710.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 17-10. Yellowbrick 3D PCA.

The scprep library (which is a dependency for the PHATE library, which we
discuss shortly) has a useful plotting function. The rotate_scatter3d
function can generate a plot that will animate in Jupyter (see Figure 17-11).
This makes it easier to understand 3D plots.

You can use this library to visualize any 3D data, not just PHATE:

https://oreil.ly/Jdq1s

>>> import scprep

>>> scprep.plot.rotate_scatter3d(

... X_pca[:, :3],

... c=y,

... cmap="Spectral",

... figsize=(8, 6),

... label_prefix="Principal Component",

...)

Figure 17-11. scprep 3D PCA animation.

If you change the matplotlib cell magic mode in Jupyter to notebook, you
can get an interactive 3D plot from matplotlib (see Figure 17-12).

>>> from mpl_toolkits.mplot3d import Axes3D

>>> fig = plt.figure(figsize=(6, 4))

>>> ax = fig.add_subplot(111, projection="3d")

>>> ax.scatter(

... xs=X_pca[:, 0],

... ys=X_pca[:, 1],

... zs=X_pca[:, 2],

... c=y,

... cmap="viridis",

...)

>>> ax.set_xlabel("PC 1")

>>> ax.set_ylabel("PC 2")

>>> ax.set_zlabel("PC 3")

Figure 17-12. Matplotlib interactive 3D PCA with notebook mode.

WARNING
Note that switching the cell magic for matplotlib in Jupyter from:

% matplotlib inline

to:

% matplotlib notebook

can sometimes cause Jupyter to stop responding. Tread with caution.

UMAP
Uniform Manifold Approximation and Projection (UMAP) is a
dimensionality reduction technique that uses manifold learning. As such it
tends to keeps similar items together topologically. It tries to preserve both
the global and the local structure, as opposed to t-SNE (explained in “t-
SNE”), which favors local structure.

The Python implementation doesn’t have multicore support.

Normalization of features is a good idea to get values on the same scale.

UMAP is very sensitive to hyperparameters (n_neighbors, min_dist,
n_components, or metric). Here are some examples:

>>> import umap

>>> u = umap.UMAP(random_state=42)

>>> X_umap = u.fit_transform(

... StandardScaler().fit_transform(X)

...)

>>> X_umap.shape

(1309, 2)

Instance parameters:

n_neighbors=15

Local neighborhood size. Larger means use a global view, smaller
means more local.

n_components=2

Number of dimensions for embedding.

metric='euclidean'

Metric to use for distance. Can be a function that accepts two 1D arrays
and returns a float.

n_epochs=None

https://oreil.ly/qF8RJ

Number of training epochs. Default will be 200 or 500 (depending on
size of data).

learning_rate=1.0

Learning rate for embedding optimization.

init='spectral'

Initialization type. Spectral embedding is the default. Can be 'random'
or a numpy array of locations.

min_dist=0.1

Between 0 and 1. Minimum distance between embedded points. Smaller
means more clumps, larger means spread out.

spread=1.0

Determines distance of embedded points.

set_op_mix_ratio=1.0

Between 0 and 1: fuzzy union (1) or fuzzy intersection (0).

local_connectivity=1.0

Number of neighbors for local connectivity. As this goes up, more local
connections are created.

repulsion_strength=1.0

Repulsion strength. Higher values give more weight to negative
samples.

negative_sample_rate=5

Negative samples per positive sample. Higher value has more repulsion,
more optimization costs, and better accuracy.

transform_queue_size=4.0

Aggressiveness for nearest neighbors search. Higher value is lower
performance but better accuracy.

a=None

Parameter to control embedding. If equal to None, UMAP determines
these from min_dist and spread.

b=None

Parameter to control embedding. If equal to None, UMAP determines
these from min_dist and spread.

random_state=None

Random seed.

metric_kwds=None

Metrics dictionary for additional parameters if function is used for
metric. Also minkowsi (and other metrics) can be parameterized with
this.

angular_rp_forest=False

Use angular random projection.

target_n_neighbors=-1

Number of neighbors for simplicity set.

target_metric='categorical'

For using supervised reduction. Can also be 'L1' or 'L2'. Also
supports a function that takes two arrays from X as input and returns the
distance value between them.

target_metric_kwds=None

Metrics dictionary to use if function is used for target_metric.

target_weight=0.5

Weighting factor. Between 0.0 and 1.0, where 0 means base on data
only, and 1 means base on target only.

transform_seed=42

Random seed for transform operations.

verbose=False

Verbosity.

Attributes:

embedding_

The embedding results

Let’s visualize the default results of UMAP on the Titanic dataset (see
Figure 17-13):

>>> fig, ax = plt.subplots(figsize=(8, 4))

>>> pd.DataFrame(X_umap).plot(

... kind="scatter",

... x=0,

... y=1,

... ax=ax,

... c=y,

... alpha=0.2,

... cmap="Spectral",

...)

>>> fig.savefig("images/mlpr_1713.png", dpi=300)

Figure 17-13. UMAP results.

To adjust the results of UMAP, focus on the n_neighbors and min_dist
hyperparameters first. Here are illustrations of changing those values (see
Figures 17-14 and 17-15):

>>> X_std = StandardScaler().fit_transform(X)

>>> fig, axes = plt.subplots(2, 2, figsize=(6, 4))

>>> axes = axes.reshape(4)

>>> for i, n in enumerate([2, 5, 10, 50]):

... ax = axes[i]

... u = umap.UMAP(

... random_state=42, n_neighbors=n

...)

... X_umap = u.fit_transform(X_std)

...

... pd.DataFrame(X_umap).plot(

... kind="scatter",

... x=0,

... y=1,

... ax=ax,

... c=y,

... cmap="Spectral",

... alpha=0.5,

...)

... ax.set_title(f"nn={n}")

>>> plt.tight_layout()

>>> fig.savefig("images/mlpr_1714.png", dpi=300)

Figure 17-14. UMAP results adjusting n_neighbors.

>>> fig, axes = plt.subplots(2, 2, figsize=(6, 4))

>>> axes = axes.reshape(4)

>>> for i, n in enumerate([0, 0.33, 0.66, 0.99]):

... ax = axes[i]

... u = umap.UMAP(random_state=42, min_dist=n)

... X_umap = u.fit_transform(X_std)

... pd.DataFrame(X_umap).plot(

... kind="scatter",

... x=0,

... y=1,

... ax=ax,

... c=y,

... cmap="Spectral",

... alpha=0.5,

...)

... ax.set_title(f"min_dist={n}")

>>> plt.tight_layout()

>>> fig.savefig("images/mlpr_1715.png", dpi=300)

Figure 17-15. UMAP results adjusting min_dist.

Sometimes PCA is performed before UMAP to reduce the dimensions and
speed up the computations.

t-SNE
The t-Distributed Stochastic Neighboring Embedding (t-SNE) technique is
a visualization and dimensionality reduction technique. It uses distributions
of the input and low dimension embedding, and minimizes the joint
probabilities between them. Because this is computationally intensive, you
might not be able to use this technique with a large dataset.

One characteristic of t-SNE is that it is quite sensitive to hyperparameters.
Also, while it preserves local clusters quite well, global information is not
preserved. As such, the distance between clusters is meaningless. Finally,
this is not a deterministic algorithm and may not converge.

It is a good idea to standardize the data before using this technique:

>>> from sklearn.manifold import TSNE

>>> X_std = StandardScaler().fit_transform(X)

>>> ts = TSNE()

>>> X_tsne = ts.fit_transform(X_std)

Instance parameters:

n_components=2

Number of dimensions for embedding.

perplexity=30.0

Suggested values are between 5 and 50. Smaller numbers tend to make
tighter clumps.

early_exaggeration=12.0

Controls cluster tightness and spacing between them. Larger values
mean larger spacing.

learning_rate=200.0

Usually between 10 and 1000. If data looks like a ball, lower it. If data
looks compressed, raise it.

n_iter=1000

Number of iterations.

n_iter_without_progress=300

Abort if no progress after this number of iterations.

min_grad_norm=1e-07

Optimization stops if the gradient norm is below this value.

metric='euclidean'

Distance metric from scipy.spatial.distance.pdist,
pairwise.PAIRWISE_DISTANCE_METRIC, or a function.

init='random'

Embedding initialization.

verbose=0

Verbosity.

random_state=None

Random seed.

method='barnes_hut'

Gradient calculation algorithm.

angle=0.5

For gradient calculation. Less than .2 increases runtime. Greater than .8
increases error.

Attributes:

embedding_

Embedding vectors

kl_divergence_

Kullback-Leibler divergence

n_iter_

Number of iterations

Here’s a visualization of the results of t-SNE using matplotlib (see
Figure 17-16):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> colors = ["rg"[j] for j in y]

>>> scat = ax.scatter(

... X_tsne[:, 0],

... X_tsne[:, 1],

... c=colors,

... alpha=0.5,

...)

>>> ax.set_xlabel("Embedding 1")

>>> ax.set_ylabel("Embedding 2")

>>> fig.savefig("images/mlpr_1716.png", dpi=300)

Figure 17-16. t-SNE result with matplotlib.

Changing the value of perplexity can have big effects on the plot (see
Figure 17-17). Here are a few different values:

>>> fig, axes = plt.subplots(2, 2, figsize=(6, 4))

>>> axes = axes.reshape(4)

>>> for i, n in enumerate((2, 30, 50, 100)):

... ax = axes[i]

... t = TSNE(random_state=42, perplexity=n)

... X_tsne = t.fit_transform(X)

... pd.DataFrame(X_tsne).plot(

... kind="scatter",

... x=0,

... y=1,

... ax=ax,

... c=y,

... cmap="Spectral",

... alpha=0.5,

...)

... ax.set_title(f"perplexity={n}")

... plt.tight_layout()

... fig.savefig("images/mlpr_1717.png", dpi=300)

Figure 17-17. Changing perplexity for t-SNE.

PHATE

Potential of Heat-diffusion for Affinity-based Trajectory Embedding
(PHATE) is a tool for visualization of high dimensional data. It tends to
keep both global structure (like PCA) and local structure (like t-SNE).

PHATE first encodes local information (points close to each other should
remain close). It uses “diffusion” to discover global data, then reduce
dimensionality:

>>> import phate

>>> p = phate.PHATE(random_state=42)

>>> X_phate = p.fit_transform(X)

>>> X_phate.shape

Instance parameters:

n_components=2

Number of dimensions.

knn=5

Number of neighbors for the kernel. Increase if the embedding is
disconnected or dataset is larger than 100,000 samples.

decay=40

Decay rate of kernel. Lowering this value increases graph connectivity.

n_landmark=2000

Landmarks to use.

t='auto'

Diffusion power. Smoothing is performed on the data. Increase if
embedding lacks structure. Decrease if structure is tight and compact.

gamma=1

https://phate.readthedocs.io/

Log potential (between -1 and 1). If embeddings are concentrated
around a single point, try setting this to 0.

n_pca=100

Number of principle components for neighborhood calculation.

knn_dist='euclidean'

KNN metric.

mds_dist='euclidean'

Multidimensional scaling (MDS) metric.

mds='metric'

MDS algorithm for dimension reduction.

n_jobs=1

Number of CPUs to use.

random_state=None

Random seed.

verbose=1

Verbosity.

Attributes (note that these aren’t followed by _):

X

Input data

embedding

Embedding space

diff_op

Diffusion operator

graph

KNN graph built from input

Here is an example of using PHATE (see Figure 17-18):

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> phate.plot.scatter2d(p, c=y, ax=ax, alpha=0.5)

>>> fig.savefig("images/mlpr_1718.png", dpi=300)

Figure 17-18. PHATE results.

As noted in the instance parameters above, there are a few parameters that
we can adjust to change the behavior of the model. Below is an example of

adjusting the knn parameter (see Figure 17-19). Note that if we use the
.set_params method, it will speed up the calculation as it uses the
precomputed graph and diffusion operator:

>>> fig, axes = plt.subplots(2, 2, figsize=(6, 4))

>>> axes = axes.reshape(4)

>>> p = phate.PHATE(random_state=42, n_jobs=-1)

>>> for i, n in enumerate((2, 5, 20, 100)):

... ax = axes[i]

... p.set_params(knn=n)

... X_phate = p.fit_transform(X)

... pd.DataFrame(X_phate).plot(

... kind="scatter",

... x=0,

... y=1,

... ax=ax,

... c=y,

... cmap="Spectral",

... alpha=0.5,

...)

... ax.set_title(f"knn={n}")

... plt.tight_layout()

... fig.savefig("images/mlpr_1719.png", dpi=300)

Figure 17-19. Changing the knn parameter for PHATE.

Chapter 18. Clustering

Clustering is an unsupervised machine learning technique used to divide a
group into cohorts. It is unsupervised because we don’t give the model any
labels; it just inspects the features and determines which samples are similar
and belong in a cluster. In this chapter, we will look at the K-means and
hierarchical clustering methods. We will also explore the Titanic dataset
again using various techniques.

K-Means
The K-means algorithm requires the user to pick the number of clusters or
“k.” It then randomly chooses k centroids and assigns each sample to a
cluster based on a distance metric from the centroid. Following the
assignment, it recalculates the centroids based on the center of every sample
assigned to a label. It then repeats assigning samples to clusters based on
the new centroids. After a few iterations it should converge.

Because clustering uses distance metrics to determine which samples are
similar, the behavior may change depending on the scale of the data. You
can standardize the data and put all of the features on the same scale. Some
have suggested that a SME might advise against standardizing if the scale
hints that some features have more importance. We will standardize the data
here in this example.

In this example, we will cluster the Titanic passengers. We will start with
two clusters to see if the clustering can tease apart survival (we won’t leak
the survival data into the clustering and will only use X, not y).

Unsupervised algorithms have a .fit method and a .predict method. We
only pass X into .fit:

>>> from sklearn.cluster import KMeans

>>> X_std = preprocessing.StandardScaler().fit_transform(

... X

...)

>>> km = KMeans(2, random_state=42)

>>> km.fit(X_std)

KMeans(algorithm='auto', copy_x=True,

 init='k-means', max_iter=300,

 n_clusters=2, n_init=10, n_jobs=1,

 precompute_distances='auto',

 random_state=42, tol=0.0001, verbose=0)

After the model is trained, we can call the .predict method to assign new
samples to a cluster:

>>> X_km = km.predict(X)

>>> X_km

array([1, 1, 1, ..., 1, 1, 1], dtype=int32)

Instance parameters:

n_clusters=8

Number of clusters to create.

init='kmeans++'

Initialization method.

n_init=10

Number of times to run the algorithm with different centroids. Best
score will win.

max_iter=300

Number of iterations for a run.

tol=0.0001

Tolerance until convergence.

precompute_distances='auto'

Precompute distances (takes more memory but is faster). auto will
precompute if n_samples * n_clusters is less than or equal to 12
million.

verbose=0

Verbosity.

random_state=None

Random seed.

copy_x=True

Copy data before computing.

n_jobs=1

Number of CPUs to use.

algorithm='auto'

K-means algorithm. 'full' works with sparse data, but 'elkan' is
more efficient. 'auto' uses 'elkan' with dense data.

Attributes:

cluster_centers_

Coordinates of centers

labels_

Labels for samples

inertia_

Sum of squared distance to cluster centroid

n_iter_

Number of iterations

If you don’t know ahead of time how many clusters you need, you can run
the algorithm with a range of sizes and evaluate various metrics. It can be
tricky.

You can roll your own elbow plot using the .inertia_ calculation. Look
for where the curve bends as that is potentially a good choice for the
number of clusters. In this case, the curve is smooth, but after eight there
doesn’t seem to be much improvement (see Figure 18-1).

For plots without an elbow, we have a few options. We can use other
metrics, some of which are shown below. We can also inspect a
visualization of the clustering and see if clusters are visible. We can add
features to the data and see if that helps with clustering.

Here is the code for an elbow plot:

>>> inertias = []

>>> sizes = range(2, 12)

>>> for k in sizes:

... k2 = KMeans(random_state=42, n_clusters=k)

... k2.fit(X)

... inertias.append(k2.inertia_)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> pd.Series(inertias, index=sizes).plot(ax=ax)

>>> ax.set_xlabel("K")

>>> ax.set_ylabel("Inertia")

>>> fig.savefig("images/mlpr_1801.png", dpi=300)

Figure 18-1. Elbow plot that is looking rather smooth.

Scikit-learn has other clustering metrics when the ground truth labels are
not known. We can calculate and plot those as well. The Silhouette
Coefficient is a value between -1 and 1. The higher the score, the better. 1
indicates tight clusters, and 0 means overlapping clusters. From that
measure, two clusters gives us the best score.

The Calinski-Harabasz Index is the ratio of between-cluster dispersion and
within-cluster dispersion. A higher score is better. Two clusters gives the
best score for this metric.

The Davis-Bouldin Index is the average similarity between each cluster and
the closest cluster. Scores range from 0 and up. 0 indicates better clustering.

Here we will plot inertia, the silhouette coefficient, the Calinski-Harabasz
Index, and the Davies-Bouldin Index over a range of cluster sizes to see if
there is a clear size of clusters for the data (see Figure 18-2). It appears that
most of these metrics agree on two clusters:

>>> from sklearn import metrics

>>> inertias = []

>>> sils = []

>>> chs = []

>>> dbs = []

>>> sizes = range(2, 12)

>>> for k in sizes:

... k2 = KMeans(random_state=42, n_clusters=k)

... k2.fit(X_std)

... inertias.append(k2.inertia_)

... sils.append(

... metrics.silhouette_score(X, k2.labels_)

...)

... chs.append(

... metrics.calinski_harabasz_score(

... X, k2.labels_

...)

...)

... dbs.append(

... metrics.davies_bouldin_score(

... X, k2.labels_

...)

...)

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> (

... pd.DataFrame(

... {

... "inertia": inertias,

... "silhouette": sils,

... "calinski": chs,

... "davis": dbs,

... "k": sizes,

... }

...)

... .set_index("k")

... .plot(ax=ax, subplots=True, layout=(2, 2))

...)

>>> fig.savefig("images/mlpr_1802.png", dpi=300)

Figure 18-2. Cluster metrics. These metrics mostly agree on two clusters.

Another technique for determining clusters is to visualize the silhouette
scores for each cluster. Yellowbrick has a visualizer for this (see Figure 18-
3).

The vertical dotted red line in this plot is the average score. One way to
interpret it is to make sure that each cluster bumps out above the average,
and the cluster scores look decent. Make sure you are using the same x
limits (ax.set_xlim). I would choose two clusters from these plots:

>>> from yellowbrick.cluster.silhouette import (

... SilhouetteVisualizer,

...)

>>> fig, axes = plt.subplots(2, 2, figsize=(12, 8))

>>> axes = axes.reshape(4)

>>> for i, k in enumerate(range(2, 6)):

... ax = axes[i]

... sil = SilhouetteVisualizer(

... KMeans(n_clusters=k, random_state=42),

... ax=ax,

...)

... sil.fit(X_std)

... sil.finalize()

... ax.set_xlim(-0.2, 0.8)

>>> plt.tight_layout()

>>> fig.savefig("images/mlpr_1803.png", dpi=300)

Figure 18-3. Yellowbrick silhouette visualizer

Agglomerative (Hierarchical) Clustering
Agglomerative clustering is another methodology. You start off with each
sample in its own cluster. Then you combine the “nearest” clusters. Repeat
until done while keeping track of the nearest sizes.

When you have finished this, you will have a dendrogram, or a tree that
tracks when clusters were created and what the distance metric was. You
can use the scipy library to visualize the dendrogram.

We can use scipy to create a dendrogram (see Figure 18-4). As you can see,
if you have many samples the leaf nodes are hard to read:

>>> from scipy.cluster import hierarchy

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> dend = hierarchy.dendrogram(

... hierarchy.linkage(X_std, method="ward")

...)

>>> fig.savefig("images/mlpr_1804.png", dpi=300)

Figure 18-4. Scipy hierarchical clustering dendrogram

Once you have the dendrogram, you have all the clusters (from one to the
size of the samples). The heights represent how similar clusters are when
they are joined. In order to find how many clusters are in the data, you
would want to “cut” a horizontal line through where it would cross the
tallest lines.

In this case, it looks like when you perform that cut, you have three clusters.

The previous plot was a little noisy with all of the samples in it. You can
also use the truncate_mode parameter to combine the leaves into a single
node (see Figure 18-5):

>>> from scipy.cluster import hierarchy

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> dend = hierarchy.dendrogram(

... hierarchy.linkage(X_std, method="ward"),

... truncate_mode="lastp",

... p=20,

... show_contracted=True,

...)

>>> fig.savefig("images/mlpr_1805.png", dpi=300)

Figure 18-5. Truncated hierarchical clustering dendrogram. If we cut across the largest vertical
lines, we get three clusters.

Once we know how many clusters we need, we can use scikit-learn to
create a model:

>>> from sklearn.cluster import (

... AgglomerativeClustering,

...)

>>> ag = AgglomerativeClustering(

... n_clusters=4,

... affinity="euclidean",

... linkage="ward",

...)

>>> ag.fit(X)

NOTE
The fastcluster package provides an optimized agglomerative clustering package if the
scikit-learn implementation is too slow.

Understanding Clusters
Using K-means on the Titanic dataset, we will make two clusters. We can
use the grouping functionality in pandas to examine the differences in the
clusters. The code below examines the mean and variance for each feature.
It appears that the mean value for pclass varies quite a bit.

I’m sticking the survival data back in to see if the clustering was related to
that:

>>> km = KMeans(n_clusters=2)

>>> km.fit(X_std)

>>> labels = km.predict(X_std)

>>> (

... X.assign(cluster=labels, survived=y)

... .groupby("cluster")

... .agg(["mean", "var"])

... .T

...)

cluster 0 1

pclass mean 0.526538 -1.423831

 var 0.266089 0.136175

age mean -0.280471 0.921668

 var 0.653027 1.145303

sibsp mean -0.010464 -0.107849

 var 1.163848 0.303881

parch mean 0.387540 0.378453

 var 0.829570 0.540587

fare mean -0.349335 0.886400

 var 0.056321 2.225399

sex_male mean 0.678986 0.552486

 var 0.218194 0.247930

https://oreil.ly/OuNuo

embarked_Q mean 0.123548 0.016575

 var 0.108398 0.016345

embarked_S mean 0.741288 0.585635

 var 0.191983 0.243339

survived mean 0.596685 0.299894

 var 0.241319 0.210180

NOTE
In Jupyter you can tack on the following code to a DataFrame, and it will highlight the
high and low values of each row. This is useful for visually seeing which values stand
out in the above cluster summary:

.style.background_gradient(cmap='RdBu', axis=1)

In Figure 18-6 we plot a bar plot of the means for each cluster:

>>> fig, ax = plt.subplots(figsize=(6, 4))

... (

... X.assign(cluster=labels, survived=y)

... .groupby("cluster")

... .mean()

... .T.plot.bar(ax=ax)

...)

>>> fig.savefig(

... "images/mlpr_1806.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 18-6. Mean values of each cluster

I also like to plot the PCA components, but colored by the cluster label (see
Figure 18-7). Here we use Seaborn to do that. It is also interesting to change
the values for hue to dive into the features that are distinct for the clusters.

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> sns.scatterplot(

... "PC1",

... "PC2",

... data=X.assign(

... PC1=X_pca[:, 0],

... PC2=X_pca[:, 1],

... cluster=labels,

...),

... hue="cluster",

... alpha=0.5,

... ax=ax,

...)

>>> fig.savefig(

... "images/mlpr_1807.png",

... dpi=300,

... bbox_inches="tight",

...)

Figure 18-7. PCA plot of clusters

If we want to examine a single feature, we can use the pandas .describe
method:

>>> (

... X.assign(cluster=label)

... .groupby("cluster")

... .age.describe()

... .T

...)

cluster 0 1

count 362.000000 947.000000

mean 0.921668 -0.280471

std 1.070188 0.808101

min -2.160126 -2.218578

25% 0.184415 -0.672870

50% 0.867467 -0.283195

75% 1.665179 0.106480

max 4.003228 3.535618

We can also create a surrogate model to explain the clusters. Here we use a
decision tree to explain them. This also shows that pclass (which had a large
difference in the mean) is very important:

>>> dt = tree.DecisionTreeClassifier()

>>> dt.fit(X, labels)

>>> for col, val in sorted(

... zip(X.columns, dt.feature_importances_),

... key=lambda col_val: col_val[1],

... reverse=True,

...):

... print(f"{col:10}{val:10.3f}")

pclass 0.902

age 0.074

sex_male 0.016

embarked_S 0.003

fare 0.003

parch 0.003

sibsp 0.000

embarked_Q 0.000

And we can visualize the decisions in Figure 18-8. It shows that pclass is
the first feature the surrogate looks at to make a decision:

>>> dot_data = StringIO()

>>> tree.export_graphviz(

... dt,

... out_file=dot_data,

... feature_names=X.columns,

... class_names=["0", "1"],

... max_depth=2,

... filled=True,

...)

>>> g = pydotplus.graph_from_dot_data(

... dot_data.getvalue()

...)

>>> g.write_png("images/mlpr_1808.png")

Figure 18-8. Decision tree explaining the clustering

Chapter 19. Pipelines

Scikit-learn uses the notion of a pipeline. Using the Pipeline class, you
can chain together transformers and models, and treat the whole process
like a scikit-learn model. You can even insert custom logic.

Classification Pipeline
Here is an example using the tweak_titanic function inside of a pipeline:

>>> from sklearn.base import (

... BaseEstimator,

... TransformerMixin,

...)

>>> from sklearn.pipeline import Pipeline

>>> def tweak_titanic(df):

... df = df.drop(

... columns=[

... "name",

... "ticket",

... "home.dest",

... "boat",

... "body",

... "cabin",

...]

...).pipe(pd.get_dummies, drop_first=True)

... return df

>>> class TitanicTransformer(

... BaseEstimator, TransformerMixin

...):

... def transform(self, X):

... # assumes X is output

... # from reading Excel file

... X = tweak_titanic(X)

... X = X.drop(column="survived")

... return X

...

... def fit(self, X, y):

... return self

>>> pipe = Pipeline(

... [

... ("titan", TitanicTransformer()),

... ("impute", impute.IterativeImputer()),

... (

... "std",

... preprocessing.StandardScaler(),

...),

... ("rf", RandomForestClassifier()),

...]

...)

With a pipeline in hand, we can call .fit and .score on it:

>>> from sklearn.model_selection import (

... train_test_split,

...)

>>> X_train2, X_test2, y_train2, y_test2 = train_test_split(

... orig_df,

... orig_df.survived,

... test_size=0.3,

... random_state=42,

...)

>>> pipe.fit(X_train2, y_train2)

>>> pipe.score(X_test2, y_test2)

0.7913486005089059

Pipelines can be used in grid search. Our param_grid needs to have the
parameters prefixed by the name of the pipe stage, followed by two
underscores. In the example below, we add some parameters for the random
forest stage:

>>> params = {

... "rf__max_features": [0.4, "auto"],

... "rf__n_estimators": [15, 200],

... }

>>> grid = model_selection.GridSearchCV(

... pipe, cv=3, param_grid=params

...)

>>> grid.fit(orig_df, orig_df.survived)

Now we can pull out the best parameters and train the final model. (In this
case the random forest doesn’t improve after grid search.)

>>> grid.best_params_

{'rf__max_features': 0.4, 'rf__n_estimators': 15}

>>> pipe.set_params(**grid.best_params_)

>>> pipe.fit(X_train2, y_train2)

>>> pipe.score(X_test2, y_test2)

0.7913486005089059

We can use the pipeline where we use scikit-learn models:

>>> metrics.roc_auc_score(

... y_test2, pipe.predict(X_test2)

...)

0.7813688715131023

Regression Pipeline
Here is an example of a pipeline that performs linear regression on the
Boston dataset:

>>> from sklearn.pipeline import Pipeline

>>> reg_pipe = Pipeline(

... [

... (

... "std",

... preprocessing.StandardScaler(),

...),

... ("lr", LinearRegression()),

...]

...)

>>> reg_pipe.fit(bos_X_train, bos_y_train)

>>> reg_pipe.score(bos_X_test, bos_y_test)

0.7112260057484934

If we want to pull parts out of the pipeline to examine their properties, we
can do that with the .named_steps attribute:

>>> reg_pipe.named_steps["lr"].intercept_

23.01581920903956

>>> reg_pipe.named_steps["lr"].coef_

array([-1.10834602, 0.80843998, 0.34313466,

 0.81386426, -1.79804295, 2.913858 ,

 -0.29893918, -2.94251148, 2.09419303,

 -1.44706731, -2.05232232, 1.02375187,

 -3.88579002])_

We can use the pipeline in metric calculations as well:

>>> from sklearn import metrics

>>> metrics.mean_squared_error(

... bos_y_test, reg_pipe.predict(bos_X_test)

...)

21.517444231177205

PCA Pipeline
Scikit-learn pipelines can also be used for PCA.

Here we standardize the Titanic dataset and perform PCA on it:

>>> pca_pipe = Pipeline(

... [

... (

... "std",

... preprocessing.StandardScaler(),

...),

... ("pca", PCA()),

...]

...)

>>> X_pca = pca_pipe.fit_transform(X)

Using the .named_steps attribute, we can pull properties off of the PCA
portion of the pipeline:

>>> pca_pipe.named_steps[

... "pca"

...].explained_variance_ratio_

array([0.23917891, 0.21623078, 0.19265028,

 0.10460882, 0.08170342, 0.07229959,

 0.05133752, 0.04199068])

,])

>>> pca_pipe.named_steps["pca"].components_[0]

array([-0.63368693, 0.39682566, 0.00614498,

 0.11488415, 0.58075352, -0.19046812,

 -0.21190808, -0.09631388])

Index

A
accuracy, of classifications, Accuracy

Adaptive Synthetic (ADASYN), Generate Minority Data

agglomerative (hierarchical) clustering, Agglomerative
(Hierarchical) Clustering-Agglomerative (Hierarchical) Clustering

Anaconda, package installation on, Installation with Conda

area under the curve (AUC), ROC Curve, ROC

B
bagging, Random Forest

baseline model, Baseline Model

baseline regression model, Baseline Model

Bayesian encoders, Other Categorical Encoding

bias, Learning Curve, Tree Interpretation

binary classifiers

and confusion matrix, Confusion Matrix-Confusion Matrix

and discrimination threshold, Discrimination Threshold

cumulative gains plot for evaluation, Cumulative Gains Plot-
Cumulative Gains Plot

possible classification results, Confusion Matrix

tree interpretation, Tree Interpretation

biplot, PCA

black box models

LIME and, LIME-LIME

SHAP and, Shapley

Bokeh, PCA

box plots, Box and Violin Plots
C

Calinski-Harabasz Index, K-Means

CART (classification and regression trees) algorithm, Decision Tree

categorical encoding, Other Categorical Encoding

categories, pulling from strings, Pulling Categories from Strings-
Pulling Categories from Strings

class balance, Class Balance

class prediction error, Class Prediction Error

classification

algorithm families for, Various Families

asking a question to create predictive model for, Ask a Question

baseline model, Baseline Model

cleaning data, Clean Data-Clean Data

confusion matrix and, Confusion Matrix

decision tree, Decision Tree-Decision Tree

evaluation (see classification evaluation)

feature creation, Create Features-Create Features

gathering data, Gather Data

gradient boosted with LightGBM, Gradient Boosted with
LightGBM-Gradient Boosted with LightGBM

imbalanced classes (see imbalanced classes)

imports, Imports

imputing data, Impute Data

k-nearest neighbor, K-Nearest Neighbor-K-Nearest Neighbor

learning curve, Learning Curve

logistic regression, Logistic Regression-Logistic Regression

model creation, Create Model

model deployment, Deploy Model

model evaluation, Evaluate Model

model optimization, Optimize Model

models, Classification-TPOT

Naive Bayes classifier, Naive Bayes-Naive Bayes

normalizing data, Normalize Data

pipelines for, Classification Pipeline-Classification Pipeline

project layout suggestion, Project Layout Suggestion

random forest, Random Forest-Random Forest

refactoring code, Refactor

ROC curve, ROC Curve

sampling data, Sample Data

SHAP and, Shapley

stacking, Stacking

support vector machine, Support Vector Machine-Support Vector
Machine

terms for data, Terms for Data

TPOT, TPOT-TPOT

walkthrough with Titanic dataset, Classification Walkthrough:
Titanic Dataset-Deploy Model

XGBoost, XGBoost-XGBoost

classification and regression trees (CART) algorithm, Decision Tree

classification evaluation, Metrics and Classification Evaluation-
Discrimination Threshold

accuracy, Accuracy

class balance, Class Balance

class prediction error, Class Prediction Error

classification report, Classification Report

confusion matrix, Confusion Matrix-Confusion Matrix

cumulative gains plot, Cumulative Gains Plot-Cumulative Gains
Plot

discrimination threshold, Discrimination Threshold

F1, F1

lift curve, Lift Curve

metrics, Metrics

precision, Precision

precision-recall curve, Precision-Recall Curve

recall, Recall

ROC, ROC

classification report, Classification Report

cleaning data, Clean Data-Clean Data, Cleaning Data-Replacing
Missing Values

Python-friendly column names, Column Names

replacing missing values, Replacing Missing Values

clustering, Clustering-Understanding Clusters

agglomerative, Agglomerative (Hierarchical) Clustering-
Agglomerative (Hierarchical) Clustering

k-means, K-Means-K-Means

metrics, K-Means

parallel coordinates plot, Parallel Coordinates

understanding clusters, Understanding Clusters-Understanding
Clusters

code, refactoring, Refactor

coefficient of determination, Baseline Model, Metrics

collinear columns, Collinear Columns

columns

collinear, Collinear Columns

correlation between, Correlation-Correlation

dropping, Create Features

Python-friendly names, Column Names

updating, Column Names

col_na feature, Add col_na Feature

conda

installation of libraries with, Installation with Conda

pip in conda environment, Installation with Conda

confusion matrix, Confusion Matrix, Confusion Matrix-Confusion
Matrix

cookiecutter, Project Layout Suggestion

correlation, in exploratory data analysis, Correlation-Correlation

Cross-Industry Standard Process for Data Mining (CRISP-DM),
Overview of the Machine Learning Process

CSV files, Clean Data

cumulative gains plot, Cumulative Gains Plot-Cumulative Gains
Plot, Lift Curve

cumulative plot, PCA

curse of dimensionality, Feature Selection
D

data

cleaning, Clean Data-Clean Data, Cleaning Data-Replacing
Missing Values

(see also cleaning data)

gathering, Gather Data

imputing, Impute Data

missing (see missing data)

sampling, Sample Data

terms for, Terms for Data

date feature engineering, Date Feature Engineering

Davis-Bouldin Index, K-Means

decision tree, Decision Tree-Decision Tree

for regression, Decision Tree-Decision Tree

random forest and, Random Forest-Random Forest

surrogate models and, Surrogate Models

tree interpretation, Tree Interpretation

dendrograms, Examining Missing Data, Agglomerative
(Hierarchical) Clustering-Agglomerative (Hierarchical) Clustering

dependence plots, Shapley, Shapley

dimensionality reduction, Dimensionality Reduction-PHATE

PCA, PCA-PCA

PHATE, PHATE-PHATE

t-SNE, t-SNE-t-SNE

UMAP, UMAP-UMAP

discrimination threshold, Discrimination Threshold

downsampling, Downsampling Majority

drop column importance, Random Forest

dtreeviz, Decision Tree, Decision Tree

dummy variables, Dummy Variables
E

elbow method, PCA

ensemble methods, Tree-based Algorithms and Ensembles

evaluation tools (see classification evaluation)

explained variance, Metrics

exploratory data analysis, Exploring-Parallel Coordinates

box and violin plots, Box and Violin Plots

comparing two ordinal values, Comparing Two Ordinal Values

correlation, Correlation-Correlation

data size, Data Size

histograms for, Histogram

joint plot for, Joint Plot

pair grid for, Pair Grid

parallel coordinates plot, Parallel Coordinates

RadViz plot, RadViz

scatter plot for, Scatter Plot

summary statistics, Summary Stats
F

F1, F1

false negatives, Confusion Matrix

false positives, Confusion Matrix, ROC

fancyimpute, Impute Data, Imputing Data

fastai, Date Feature Engineering

fastcluster, Agglomerative (Hierarchical) Clustering

feature

column as, Terms for Data

creating, Create Features-Create Features

dimensionality reduction (see dimensionality reduction)

feature engineering

date feature engineering, Date Feature Engineering

manual, Manual Feature Engineering

feature importance

decision trees, Decision Tree

feature selection, Feature Importance

LightGBM, Gradient Boosted with LightGBM, LightGBM
Regression

model interpretation, Feature Importance

partial dependence plots, Partial Dependence Plots-Partial
Dependence Plots

random forests, Random Forest-Random Forest

tree-based models, Evaluate Model

xgbfir package, XGBoost-XGBoost

XGBoost, XGBoost, XGBoost Regression

feature selection, Feature Selection-Feature Importance

collinear columns, Collinear Columns

feature importance and, Feature Importance

lasso regression, Lasso Regression

principal component analysis (PCA), Principal Component
Analysis

recursive feature elimination, Recursive Feature Elimination

frequency encoding, Frequency Encoding

G
Gini importance, Random Forest-Random Forest

gradient boosting (see LightGBM)

grid search, Classification Pipeline

H
hash encoder, Other Categorical Encoding

heat map, Correlation

heteroscedasticity

defined, Linear Regression

regression evaluation and, Heteroscedasticity

hierarchical (agglomerative) clustering, Agglomerative
(Hierarchical) Clustering-Agglomerative (Hierarchical) Clustering

histograms, Histogram

homoscedasticity, Residuals Plot

hyperparameters

model optimization and, Optimize Model

model selection and, Model Selection-Learning Curve

t-SNE and, t-SNE

UMAP and, UMAP, UMAP

validation curve for determining values, Validation Curve-
Validation Curve

I
imbalanced classes, managing, Imbalanced Classes-Upsampling
Then Downsampling

downsampling majority classes, Downsampling Majority

ensemble methods, Tree-based Algorithms and Ensembles

generating minority data, Generate Minority Data

penalizing models, Penalize Models

tree-based algorithms, Tree-based Algorithms and Ensembles

upsampling the minority class, Upsampling Minority

upsampling then downsampling, Upsampling Then
Downsampling

using metric other than accuracy, Use a Different Metric

imbalanced-learn

downsampling algorithms, Downsampling Majority

upsampling minority class, Upsampling Minority

upsampling then downsampling, Upsampling Then
Downsampling

imputing data, Impute Data, Imputing Data

index assignment, Column Names

installation of libraries

with conda, Installation with Conda

with pip, Installation with Pip-Installation with Pip

instance-based learning, K-Nearest Neighbor
J

joint plot, exploratory data analysis with, Joint Plot

Jupyter

and regression models, Shapley

cluster summary with, Understanding Clusters

decision tree creation, Decision Tree

for exploratory data analysis, Project Layout Suggestion

interactive scatter plots, PCA, PCA-PCA

K
k-fold cross-validation, Various Families

k-means clustering, K-Means-K-Means

k-nearest neighbor (KNN), K-Nearest Neighbor-K-Nearest Neighbor

for mutual information determination, Mutual Information

for regression, K-Nearest Neighbor-K-Nearest Neighbor

weights parameter, Penalize Models

kernel trick, Support Vector Machine

Kolmogorov-Smirnov test, Normal Residuals
L

label encoding, Label Encoder

Laplace smoothing, Naive Bayes

lasso regression, Lasso Regression

leaky features

defined, Clean Data

dropping columns with, Create Features

learning curve, Learning Curve, Learning Curve-Learning Curve

libraries

installation with conda, Installation with Conda

installation with pip, Installation with Pip-Installation with Pip

list of, Libraries Used-Libraries Used

lift (term), Lift Curve

lift curve, Lift Curve

LightGBM

for regression, LightGBM Regression-LightGBM Regression

gradient boosted with, Gradient Boosted with LightGBM-
Gradient Boosted with LightGBM

linear regression, Linear Regression-Linear Regression

Linux, library installation on, Installation with Pip

loading plot, PCA

Local Interpretable Model-Agnostic Explanations (LIME), LIME-
LIME

logistic regression, Logistic Regression-Logistic Regression
M

machine learning, overview of process, Overview of the Machine
Learning Process

Macintosh, library installation on, Installation with Pip

majority classes, Downsampling Majority

manifold learning (see Uniform Manifold Approximation and
Projection (UMAP))

manual feature engineering, Manual Feature Engineering

matplotlib

interactive scatter plots, PCA-PCA

t-SNE visualization, t-SNE

mean absolute error, Metrics

mean squared logarithmic error, Metrics

metrics

classification evaluation, Metrics

clustering, K-Means

for regression model evaluation, Metrics-Metrics

imbalanced classes, Use a Different Metric

random forest, Metrics and Regression Evaluation-Prediction
Error Plot

regression evaluation, Metrics-Metrics

minority class

generating new samples of, Generate Minority Data

upsampling, Upsampling Minority

missing data, Missing Data-Adding Indicator Columns

cleaning data, Clean Data-Clean Data

dropping rows with, Dropping Missing Data

examining, Examining Missing Data-Examining Missing Data

imputing, Imputing Data

indicator columns for, Adding Indicator Columns

replacing, Replacing Missing Values

missingno

for missing data bar plot, Examining Missing Data-Examining
Missing Data

for visualizing patterns in missing data, Examining Missing Data

model

creating with random forest classifier, Create Model

deployment, Deploy Model

evaluating, Evaluate Model

model explanation/interpretation, Explaining Models-Shapley

feature importance, Feature Importance

LIME, LIME-LIME

partial dependence plots, Partial Dependence Plots-Partial
Dependence Plots

regression coefficients, Regression Coefficients

Shapley, Shapley-Shapley

surrogate models, Surrogate Models

tree interpretation, Tree Interpretation

model selection, Model Selection-Learning Curve

multicollinearity, Collinear Columns, Linear Regression

multivariate data, Parallel Coordinates

mutual information, Mutual Information
N

Naive Bayes classifier, Naive Bayes-Naive Bayes

normal residuals, Normal Residuals

normalizing data, Normalize Data

(see also preprocessing data)

null values, percentage of, Clean Data
O

optimization, model, Optimize Model

ordinal encoder, Other Categorical Encoding

ordinal values, comparing, Comparing Two Ordinal Values

OSX, library installation on, Installation with Pip

out-of-bag (OOB) error, Random Forest

overfitting, Learning Curve

P
pair grid, Pair Grid

pairwise comparisons, Correlation-Correlation

pandas

classification calculations, Confusion Matrix

column names, Column Names

data standardization, Standardize

DataFrame column correlation, Correlation-Correlation

determining data size, Data Size

dropping rows with missing data, Dropping Missing Data

dummy variable creation, Dummy Variables

feature examination in clusters, Understanding Clusters

for indicator columns, Adding Indicator Columns

for missing data bar plot, Examining Missing Data

frequency encoding, Frequency Encoding

histograms with, Histogram

iloc attribute, Summary Stats

imports with, Imports

imputing missing values with, Imputing Data

int64 vs. Int64 types, Clean Data

label encoding, Label Encoder

manual feature engineering, Manual Feature Engineering

ordinal category comparison, Comparing Two Ordinal Values

parallel coordinates plot, Parallel Coordinates

profile report with, Clean Data

RadViz plots, RadViz

scaling data to range, Scale to Range

scatter plot generation, Scatter Plot

summary stats, Summary Stats

updating columns, Column Names

parallel coordinates plot, Parallel Coordinates

partial dependence plots, Partial Dependence Plots-Partial
Dependence Plots

PCA (see principal component analysis)

Pearson correlation, Scatter Plot, Correlation

permutation importance, Random Forest

PHATE (Potential of Heat-diffusion for Affinity-based Trajectory
Embedding), PHATE-PHATE

pip

in conda environment, Installation with Conda

installation of libraries with, Installation with Pip-Installation
with Pip

pipelines, Pipelines-PCA Pipeline

classification, Classification Pipeline-Classification Pipeline

imputing data with, Imputing Data

PCA, PCA Pipeline

regression, Regression Pipeline

Potential of Heat-diffusion for Affinity-based Trajectory Embedding
(PHATE), PHATE-PHATE

precision

discrimination threshold and, Discrimination Threshold

F1 and, F1

of classifications, Precision

precision-recall curve, Precision-Recall Curve

prediction error plot, Prediction Error Plot

preprocessing data, Normalize Data, Preprocess Data-Manual
Feature Engineering

and categorical_encoding library, Other Categorical Encoding

col_na feature, Add col_na Feature

date feature engineering, Date Feature Engineering

dummy variables, Dummy Variables

frequency encoding, Frequency Encoding

label encoding, Label Encoder

manual feature engineering, Manual Feature Engineering

pulling categories from strings, Pulling Categories from Strings-
Pulling Categories from Strings

scaling to range, Scale to Range

standardizing, Clean Data, Normalize Data, Standardize

various categorical encoding approaches, Other Categorical
Encoding

principal component analysis (PCA), Principal Component Analysis

component plotting with clustering, Understanding Clusters

for dimensionality reduction, PCA-PCA

pipelines for, PCA Pipeline

probability plot, Normal Residuals

pyjanitor, Create Features

cleaning data, Column Names-Replacing Missing Values

splitting columns, Dummy Variables
Q

queue rate, Discrimination Threshold

R
RadViz plot, RadViz

random forest, Random Forest-Random Forest

for regression, Random Forest-Random Forest

metrics and regression evaluation, Metrics and Regression
Evaluation-Prediction Error Plot

model creation with, Create Model

tree interpretation, Tree Interpretation

recall (sensitivity)

discrimination threshold and, Discrimination Threshold

F1 and, F1

of classifications, Recall

receiver operating characteristic (ROC) curve, ROC Curve, ROC

recursive feature elimination, Recursive Feature Elimination

refactoring, Refactor

regression, Regression-LightGBM Regression

baseline model, Baseline Model

decision tree, Decision Tree-Decision Tree

k-nearest neighbor, K-Nearest Neighbor-K-Nearest Neighbor

LightGBM for, LightGBM Regression-LightGBM Regression

linear, Linear Regression-Linear Regression

metrics, Metrics-Metrics

pipelines for, Regression Pipeline

random forest, Random Forest-Random Forest

SHAP and, Shapley

SVMs and, SVMs-SVMs

XGBoost for, XGBoost Regression-XGBoost Regression

regression coefficients, Regression Coefficients

regression evaluation, Metrics and Regression Evaluation-Prediction
Error Plot

heteroscedasticity, Heteroscedasticity

metrics, Metrics-Metrics

normal residuals, Normal Residuals

prediction error plot, Prediction Error Plot

residuals plot, Residuals Plot

regression models, Explaining Regression Models-Shapley

Shapley, Explaining Regression Models-Shapley

regular expressions, Pulling Categories from Strings

residuals plot, Residuals Plot, Normal Residuals

rfpimp, Collinear Columns

ROC (receiver operating characteristic) curve, ROC Curve, ROC

root mean squared error, Metrics
S

sample (term), Terms for Data

sampling data, Sample Data

sandbox environment, for library installation, Installation with Pip

scaling data to range, Scale to Range

scatter plot

exploratory data analysis with, Scatter Plot

PCA and, PCA

scikit-learn

categorical encoding, Other Categorical Encoding

class_weight parameter, Penalize Models

clustering metrics, K-Means

clustering models, Agglomerative (Hierarchical) Clustering

feature_importances_ attribute, Feature Importance

imports with, Imports

numeric features with, Clean Data

PCA implementation, PCA

pipelines, Pipelines-PCA Pipeline

recursive feature elimination, Recursive Feature Elimination

scipy, Normal Residuals, Agglomerative (Hierarchical) Clustering

scprep, PCA

scree plot, PCA

seaborn

box and violin plots, Box and Violin Plots

heat maps, Correlation

histograms with, Histogram

joint plot creation, Joint Plot

pair grid creation, Pair Grid

PCA, PCA

PCA component plotting with clustering, Understanding Clusters

sensitivity (see recall)

SHapley Additive exPlanations (SHAP), Shapley-Shapley,
Explaining Regression Models-Shapley

silhouette coefficient, K-Means

simple linear regression, Linear Regression-Linear Regression

sklearn

classification metrics implementation, Metrics

coefficient of determination, Baseline Model

data format for, Classification

data standardization, Standardize

DataFrame from confusion_matrix function, Confusion Matrix

downsampling majority classes, Downsampling Majority

for confusion matrix, Confusion Matrix

Laplace smoothing with, Naive Bayes

methods implemented by type models, Classification

model optimization, Optimize Model

mutual information determination, Mutual Information

Naive Bayes classes, Naive Bayes

regression model evaluation, Metrics-Metrics

scaling data to range, Scale to Range

SVM implementations in, Support Vector Machine

tree interpretation, Tree Interpretation

upsampling minority class, Upsampling Minority

SME (see subject matter expert)

splits, Gradient Boosted with LightGBM

stacking classifier, Stacking

standardizing data, Clean Data, Normalize Data, Standardize

star imports, avoiding, Imports

stratified sampling, Class Balance

strings, pulling categories from, Pulling Categories from Strings-
Pulling Categories from Strings

subject matter expert (SME)

and cleaning data, Clean Data

and missing data, Clean Data

and nuance in data, Exploring

summary statistics, Summary Stats

supervised learning

classification and, Classification

regression and, Regression

support vector machines (SVMs), Support Vector Machine-Support
Vector Machine, SVMs-SVMs

surrogate models, Surrogate Models, Understanding Clusters

Synthetic Minority Over-sampling Technique (SMOTE), Generate
Minority Data

T
t-Distributed Stochastic Neighboring Embedding (t-SNE), t-SNE-t-
SNE

Titanic dataset, classification walkthrough with, Classification
Walkthrough: Titanic Dataset-Deploy Model

TPOT, TPOT-TPOT

training data, Learning Curve

transductive algorithms, Imputing Data

tree interpretation, Tree Interpretation

tree-based algorithms, Tree-based Algorithms and Ensembles

true positives, ROC

type 1/type 2 errors, Confusion Matrix

types, for storage of columns of data, Clean Data
U

underfitting, Learning Curve

Uniform Manifold Approximation and Projection (UMAP), UMAP-
UMAP

unsupervised learning (see clustering)

upsampling, Upsampling Minority

V
validation curve, Validation Curve-Validation Curve

violin plots, Box and Violin Plots

virtual environment, for library installation, Installation with Pip

W
Windows, library installation on, Installation with Pip

X
xgbfir, XGBoost-XGBoost

XGBoost, XGBoost-XGBoost

for regression, XGBoost Regression-XGBoost Regression

max_delta_step parameter, Penalize Models

regression models, Explaining Regression Models-Shapley

Y
Yellowbrick

class prediction error plot, Class Prediction Error

class size bar plot, Class Balance

classification report, Classification Report

coefficient visualization, Logistic Regression, Linear Regression

confusion matrix, Confusion Matrix, Confusion Matrix

correlation heat map, Collinear Columns

discrimination threshold visualization, Discrimination Threshold

feature importance for XGBoost, XGBoost

feature importance visualization, Decision Tree, XGBoost
Regression

imports with, Imports

learning curve plot, Learning Curve

pairwise comparisons, Correlation-Correlation

parallel coordinates plot, Parallel Coordinates

prediction error plot, Prediction Error Plot

RadViz plot, RadViz

residuals plot, Residuals Plot

ROC curve, ROC

scatter plot, Joint Plot

scatter plot for 3D PCA, PCA

silhouette score visualizer, K-Means

validation curve report, Validation Curve-Validation Curve
Z

zero probability problem, Naive Bayes

About the Author
Matt Harrison runs MetaSnake, a Python and Data Science training and
consulting company. He has been using Python since 2000 across a breadth
of domains: data science, BI, storage, testing and automation, open source
stack management, finance, and search.

Colophon
The animal on the cover of Machine Learning Pocket Reference is the
northern crested newt (Triturus cristatus), an amphibian found near
standing water in Britain eastward through mainland Europe to Western
Russia.

This newt has a gray-brown back with dark spots and a yellow-orange
underside with white speckles. Males develop large jagged crests during the
mating season, while females always have an orange stripe on their tails.

While not hibernating in mud or under rocks during the winter months, the
northern crested newt hunts for other newts, tadpoles, young froglets,
worms, insect larvae, and water snails in water and for insects, worms, and
other invertebrates on land. They live for as long as 27 years and can be up
to 7 inches long.

While the northern crested newt’s current conservation status is designated
as of Least Concern, many of the animals on O’Reilly covers are
endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white
engraving from Meyers Kleines Lexicon. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	What to Expect
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Introduction
	Libraries Used
	Installation with Pip
	Installation with Conda

	2. Overview of the Machine Learning Process
	3. Classification Walkthrough: Titanic Dataset
	Project Layout Suggestion
	Imports
	Ask a Question
	Terms for Data
	Gather Data
	Clean Data
	Create Features
	Sample Data
	Impute Data
	Normalize Data
	Refactor
	Baseline Model
	Various Families
	Stacking
	Create Model
	Evaluate Model
	Optimize Model
	Confusion Matrix
	ROC Curve
	Learning Curve
	Deploy Model

	4. Missing Data
	Examining Missing Data
	Dropping Missing Data
	Imputing Data
	Adding Indicator Columns

	5. Cleaning Data
	Column Names
	Replacing Missing Values

	6. Exploring
	Data Size
	Summary Stats
	Histogram
	Scatter Plot
	Joint Plot
	Pair Grid
	Box and Violin Plots
	Comparing Two Ordinal Values
	Correlation
	RadViz
	Parallel Coordinates

	7. Preprocess Data
	Standardize
	Scale to Range
	Dummy Variables
	Label Encoder
	Frequency Encoding
	Pulling Categories from Strings
	Other Categorical Encoding
	Date Feature Engineering
	Add col_na Feature
	Manual Feature Engineering

	8. Feature Selection
	Collinear Columns
	Lasso Regression
	Recursive Feature Elimination
	Mutual Information
	Principal Component Analysis
	Feature Importance

	9. Imbalanced Classes
	Use a Different Metric
	Tree-based Algorithms and Ensembles
	Penalize Models
	Upsampling Minority
	Generate Minority Data
	Downsampling Majority
	Upsampling Then Downsampling

	10. Classification
	Logistic Regression
	Naive Bayes
	Support Vector Machine
	K-Nearest Neighbor
	Decision Tree
	Random Forest
	XGBoost
	Gradient Boosted with LightGBM
	TPOT

	11. Model Selection
	Validation Curve
	Learning Curve

	12. Metrics and Classification Evaluation
	Confusion Matrix
	Metrics
	Accuracy
	Recall
	Precision
	F1
	Classification Report
	ROC
	Precision-Recall Curve
	Cumulative Gains Plot
	Lift Curve
	Class Balance
	Class Prediction Error
	Discrimination Threshold

	13. Explaining Models
	Regression Coefficients
	Feature Importance
	LIME
	Tree Interpretation
	Partial Dependence Plots
	Surrogate Models
	Shapley

	14. Regression
	Baseline Model
	Linear Regression
	SVMs
	K-Nearest Neighbor
	Decision Tree
	Random Forest
	XGBoost Regression
	LightGBM Regression

	15. Metrics and Regression Evaluation
	Metrics
	Residuals Plot
	Heteroscedasticity
	Normal Residuals
	Prediction Error Plot

	16. Explaining Regression Models
	Shapley

	17. Dimensionality Reduction
	PCA
	UMAP
	t-SNE
	PHATE

	18. Clustering
	K-Means
	Agglomerative (Hierarchical) Clustering
	Understanding Clusters

	19. Pipelines
	Classification Pipeline
	Regression Pipeline
	PCA Pipeline

	Index

