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Preface
Data	science	is	an	exciting	new	field	that	is	used	by	various	organizations
to	perform	data-driven	decisions.	It	is	a	combination	of	technical
knowledge,	mathematics,	and	business.	Data	scientists	have	to	wear
various	hats	to	work	with	data	and	derive	some	value	out	of	it.	Python	is
one	of	the	most	popular	languages	among	all	the	languages	used	by
data	scientists.	It	is	a	simple	language	to	learn	and	is	used	for	purposes,
such	as	web	development,	scripting,	and	application	development	to
name	a	few.

The	ability	to	perform	data	science	using	Python	is	very	powerful	as	it
helps	clean	data	at	a	raw	level	to	create	advanced	machine	learning
algorithms	that	predict	customer	churns	for	a	retail	company.	This	book
explains	various	concepts	of	data	science	in	a	structured	manner	with	the
application	of	these	concepts	on	data	to	see	how	to	interpret	results.	The
book	provides	a	good	base	for	understanding	the	advanced	topics	of
data	science	and	how	to	apply	them	in	a	real-world	scenario.



What	this	book	covers
Chapter	1,	Getting	Started	with	Raw	Data,	teaches	you	the	techniques	of
handling	unorganized	data.	You'll	also	learn	how	to	extract	data	from
different	sources,	as	well	as	how	to	clean	and	manipulate	it.

Chapter	2,	Inferential	Statistics,	goes	beyond	descriptive	statistics,	where
you'll	learn	about	inferential	statistics	concepts,	such	as	distributions,
different	statistical	tests,	the	errors	in	statistical	tests,	and	confidence
intervals.

Chapter	3,	Finding	a	Needle	in	a	Haystack,	explains	what	data	mining	is
and	how	it	can	be	utilized.	There	is	a	lot	of	information	in	data	but	finding
meaningful	information	is	an	art.

Chapter	4,	Making	Sense	of	Data	through	Advanced	Visualization,
teaches	you	how	to	create	different	visualizations	of	data.	Visualization	is
an	integral	part	of	data	science;	it	helps	communicate	a	pattern	or
relationship	that	cannot	be	seen	by	looking	at	raw	data.

Chapter	5,	Uncovering	Machine	Learning,	introduces	you	to	the	different
techniques	of	machine	learning	and	how	to	apply	them.	Machine	learning
is	the	new	buzzword	in	the	industry.	It's	used	in	activities,	such	as
Google's	driverless	cars	and	predicting	the	effectiveness	of	marketing
campaigns.

Chapter	6,	Performing	Predictions	with	a	Linear	Regression,	helps	you
build	a	simple	regression	model	followed	by	multiple	regression	models
along	with	methods	to	test	the	effectiveness	of	the	models.	Linear
regression	is	one	of	the	most	popular	techniques	used	in	model	building
in	the	industry	today.

Chapter	7,	Estimating	the	Likelihood	of	Events,	teaches	you	how	to	build
a	logistic	regression	model	and	the	different	techniques	of	evaluating	it.
With	logistic	regression,	you'll	be	able	learn	how	to	estimate	the
likelihood	of	an	event	taking	place.

Chapter	8,	Generating	Recommendations	with	Collaborative	Filtering,



teaches	you	to	create	a	recommendation	model	and	apply	it.	It	is	similar
to	websites,	such	as	Amazon,	which	are	able	to	suggest	items	that	you
would	probably	buy	on	their	page.

Chapter	9,	Pushing	Boundaries	with	Ensemble	Models,	familiarizes	you
with	ensemble	techniques,	which	are	used	to	combine	the	power	of
multiple	models	to	enhance	the	accuracy	of	predictions.	This	is	done
because	sometimes	a	single	model	is	not	enough	to	estimate	the
outcome.

Chapter	10,	Applying	Segmentation	with	k-means	Clustering,	teaches
you	about	k-means	clustering	and	how	to	use	it.	Segmentation	is	widely
used	in	the	industry	to	group	similar	customers	together.

Chapter	11,	Analyzing	Unstructured	Data	with	Text	Mining,	teaches	you
to	process	unstructured	data	and	make	sense	of	it.	There	is	more
unstructured	data	in	the	world	than	structured	data.

Chapter	12,	Leveraging	Python	in	the	World	of	Big	Data,	teaches	you	to
use	Hadoop	and	Spark	with	Python	to	handle	data	in	this	chapter.	With
the	ever	increasing	size	of	data,	big	data	technologies	have	been	brought
into	existence	to	handle	such	data.



What	you	need	for	this	book
The	following	softwares	are	required	for	this	book:

Ubuntu	OS,	preferably	14.04
Python	2.7
The	pandas	0.16.2	library
The	NumPy	1.9.2	library
The	SciPy	0.16	library
IPython	4.0
The	SciKit	0.16.1	module
The	statsmodels	0.6.1	module
The	matplotlib	1.4.3	library
Apache	Hadoop	CDH4	(Cloudera	Hadoop	4)	with	MRv1
(MapReduce	version	1)
Apache	Spark	1.4.0



Who	this	book	is	for
If	you	are	a	Python	developer	who	wants	to	master	the	world	of	data
science,	then	this	book	is	for	you.	It	is	assumed	that	you	already	have
some	knowledge	of	data	science.



Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish
between	different	kinds	of	information.	Here	are	some	examples	of	these
styles,	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file
extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter	handles
are	shown	as	follows:	"The	json.load()	function	loads	the	data	into
Python."

Any	command-line	input	or	output	is	written	as	follows:

$	pig	./BigData/pig_sentiment.pig

New	terms	and	important	words	are	shown	in	bold.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.



Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you
think	about	this	book—what	you	liked	or	may	have	disliked.	Reader
feedback	is	important	for	us	to	develop	titles	that	you	really	get	the	most
out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to
<feedback@packtpub.com>,	and	mention	the	book	title	via	the	subject	of
your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in
either	writing	or	contributing	to	a	book,	see	our	author	guide	on
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors


Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of
things	to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have
purchased	from	your	account	at	http://www.packtpub.com.	If	you
purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	emailed
directly	to	you.

The	codes	provided	in	the	code	bundle	are	for	both	IPython	notebook
and	Python	2.7.	In	the	chapters,	Python	conventions	have	been	followed.

Downloading	the	color	images	of	this
book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	The	color	images	will	help	you
better	understand	the	changes	in	the	output.	You	can	download	this	file
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Chapter	1.	Getting	Started	with
Raw	Data
In	the	world	of	data	science,	raw	data	comes	in	many	forms	and	sizes.
There	is	a	lot	of	information	that	can	be	extracted	from	this	raw	data.	To
give	an	example,	Amazon	collects	click	stream	data	that	records	each
and	every	click	of	the	user	on	the	website.	This	data	can	be	utilized	to
understand	if	a	user	is	a	price-sensitive	customer	or	prefer	more
popularly	rated	products.	You	must	have	noticed	recommended	products
in	Amazon;	they	are	derived	using	such	data.

The	first	step	towards	such	an	analysis	would	be	to	parse	raw	data.	The
parsing	of	the	data	involves	the	following	steps:

Extracting	data	from	the	source:	Data	can	come	in	many	forms,
such	as	Excel,	CSV,	JSON,	databases,	and	so	on.	Python	makes	it
very	easy	to	read	data	from	these	sources	with	the	help	of	some
useful	packages,	which	will	be	covered	in	this	chapter.
Cleaning	the	data:	Once	a	sanity	check	has	been	done,	one	needs
to	clean	the	data	appropriately	so	that	it	can	be	utilized	for	analysis.
You	may	have	a	dataset	about	students	of	a	class	and	details	about
their	height,	weight,	and	marks.	There	may	also	be	certain	rows	with
the	height	or	weight	missing.	Depending	on	the	analysis	being
performed,	these	rows	with	missing	values	can	either	be	ignored	or
replaced	with	the	average	height	or	weight.

In	this	chapter	we	will	cover	the	following	topics:

Exploring	arrays	with	NumPy
Handling	data	with	pandas
Reading	and	writing	data	from	various	formats
Handling	missing	data
Manipulating	data

The	world	of	arrays	with	NumPy



Python,	by	default,	comes	with	a	data	structure,	such	as	List,	which	can
be	utilized	for	array	operations,	but	a	Python	list	on	its	own	is	not	suitable
to	perform	heavy	mathematical	operations,	as	it	is	not	optimized	for	it.

NumPy	is	a	wonderful	Python	package	produced	by	Travis	Oliphant,
which	has	been	created	fundamentally	for	scientific	computing.	It	helps
handle	large	multidimensional	arrays	and	matrices,	along	with	a	large
library	of	high-level	mathematical	functions	to	operate	on	these	arrays.

A	NumPy	array	would	require	much	less	memory	to	store	the	same
amount	of	data	compared	to	a	Python	list,	which	helps	in	reading	and
writing	from	the	array	in	a	faster	manner.

Creating	an	array
A	list	of	numbers	can	be	passed	to	the	following	array	function	to	create	a
NumPy	array	object:

>>>	import	numpy	as	np

>>>	n_array	=	np.array([[0,	1,	2,	3],

																	[4,	5,	6,	7],

																	[8,	9,	10,	11]])

A	NumPy	array	object	has	a	number	of	attributes,	which	help	in	giving
information	about	the	array.	Here	are	its	important	attributes:

ndim:	This	gives	the	number	of	dimensions	of	the	array.	The	following
shows	that	the	array	that	we	defined	had	two	dimensions:

>>>	n_array.ndim

2

n_array	has	a	rank	of	2,	which	is	a	2D	array.

shape:	This	gives	the	size	of	each	dimension	of	the	array:

>>>	n_array.shape

(3,	4)



The	first	dimension	of	n_array	has	a	size	of	3	and	the	second
dimension	has	a	size	of	4.	This	can	be	also	visualized	as	three	rows
and	four	columns.

size:	This	gives	the	number	of	elements:

>>>	n_array.size

12

The	total	number	of	elements	in	n_array	is	12.

dtype:	This	gives	the	datatype	of	the	elements	in	the	array:

>>>	n_array.dtype.name

int64

The	number	is	stored	as	int64	in	n_array.

Mathematical	operations
When	you	have	an	array	of	data,	you	would	like	to	perform	certain
mathematical	operations	on	it.	We	will	now	discuss	a	few	of	the	important
ones	in	the	following	sections.

Array	subtraction
The	following	commands	subtract	the	a	array	from	the	b	array	to	get	the
resultant	c	array.	The	subtraction	happens	element	by	element:

>>>	a	=	np.array(	[11,	12,	13,	14])

>>>	b	=	np.array(	[	1,	2,	3,	4])

>>>	c	=	a	-	b

>>>	c

Array[10	10	10	10]

Do	note	that	when	you	subtract	two	arrays,	they	should	be	of	equal
dimensions.

Squaring	an	array



The	following	command	raises	each	element	to	the	power	of	2	to	obtain
this	result:

>>>	b**2

[1		4		9	16]

A	trigonometric	function	performed	on	the	array
The	following	command	applies	cosine	to	each	of	the	values	in	the	b
array	to	obtain	the	following	result:

>>>	np.cos(b)

[	0.54030231	-0.41614684	-0.9899925		-0.65364362]

Conditional	operations
The	following	command	will	apply	a	conditional	operation	to	each	of	the
elements	of	the	b	array,	in	order	to	generate	the	respective	Boolean
values:

>>>	b<2

[	True	False	False	False]

Matrix	multiplication
Two	matrices	can	be	multiplied	element	by	element	or	in	a	dot	product.
The	following	commands	will	perform	the	element-by-element
multiplication:

>>>	A1	=	np.array([[1,	1],

												[0,	1]])

>>>	A2	=	np.array([[2,	0],

												[3,	4]])

>>>	A1	*	A2

[[2	0]

[0	4]]

The	dot	product	can	be	performed	with	the	following	command:



>>>	np.dot(A1,	A2)

[[5	4]

[3	4]]

Indexing	and	slicing
If	you	want	to	select	a	particular	element	of	an	array,	it	can	be	achieved
using	indexes:

>>>	n_array[0,1]

1

The	preceding	command	will	select	the	first	array	and	then	select	the
second	value	in	the	array.	It	can	also	be	seen	as	an	intersection	of	the
first	row	and	the	second	column	of	the	matrix.

If	a	range	of	values	has	to	be	selected	on	a	row,	then	we	can	use	the
following	command:

>>>	n_array[	0	,	0:3	]

[0	1	2]

The	0:3	value	selects	the	first	three	values	of	the	first	row.

The	whole	row	of	values	can	be	selected	with	the	following	command:

>>>	n_array[	0	,	:	]

[0	1	2	3]

Using	the	following	command,	an	entire	column	of	values	need	to	be
selected:

>>>	n_array[	:	,	1	]

[1	5	9]

Shape	manipulation
Once	the	array	has	been	created,	we	can	change	the	shape	of	it	too.	The
following	command	flattens	the	array:



>>>	n_array.ravel()

[	0		1		2		3		4		5		6		7		8		9	10	11]

The	following	command	reshapes	the	array	in	to	a	six	rows	and	two
columns	format.	Also,	note	that	when	reshaping,	the	new	shape	should
have	the	same	number	of	elements	as	the	previous	one:

>>>	n_array.shape	=	(6,2)

>>>	n_array

[[	0		1]

[	2		3]

[	4		5]

[	6		7]

[	8		9]

[10	11]]

The	array	can	be	transposed	too:

>>>	n_array.transpose()

[[	0		2		4		6		8	10]

[	1		3		5		7		9	11]]



Empowering	data	analysis	with
pandas
The	pandas	library	was	developed	by	Wes	McKinny	when	he	was
working	at	AQR	Capital	Management.	He	wanted	a	tool	that	was	flexible
enough	to	perform	quantitative	analysis	on	financial	data.	Later,	Chang
She	joined	him	and	helped	develop	the	package	further.

The	pandas	library	is	an	open	source	Python	library,	specially	designed
for	data	analysis.	It	has	been	built	on	NumPy	and	makes	it	easy	to
handle	data.	NumPy	is	a	fairly	low-level	tool	that	handles	matrices	really
well.

The	pandas	library	brings	the	richness	of	R	in	the	world	of	Python	to
handle	data.	It's	has	efficient	data	structures	to	process	data,	perform	fast
joins,	and	read	data	from	various	sources,	to	name	a	few.

The	data	structure	of	pandas
The	pandas	library	essentially	has	three	data	structures:

1.	 Series
2.	 DataFrame
3.	 Panel

Series
Series	is	a	one-dimensional	array,	which	can	hold	any	type	of	data,	such
as	integers,	floats,	strings,	and	Python	objects	too.	A	series	can	be
created	by	calling	the	following:

>>>	import	pandas	as	pd

>>>	pd.Series(np.random.randn(5))

0				0.733810

1			-1.274658

2			-1.602298



3				0.460944

4			-0.632756

dtype:	float64

The	random.randn	parameter	is	part	of	the	NumPy	package	and	it
generates	random	numbers.	The	series	function	creates	a	pandas	series
that	consists	of	an	index,	which	is	the	first	column,	and	the	second
column	consists	of	random	values.	At	the	bottom	of	the	output	is	the
datatype	of	the	series.

The	index	of	the	series	can	be	customized	by	calling	the	following:

>>>	pd.Series(np.random.randn(5),	index=['a',	'b',	

'c',	'd',	'e'])

a			-0.929494

b			-0.571423

c			-1.197866

d				0.081107

e			-0.035091

dtype:	float64

A	series	can	be	derived	from	a	Python	dict	too:

>>>	d	=	{'A':	10,	'B':	20,	'C':	30}

>>>	pd.Series(d)

A				10

B				20

C				30

dtype:	int64

DataFrame
DataFrame	is	a	2D	data	structure	with	columns	that	can	be	of	different
datatypes.	It	can	be	seen	as	a	table.	A	DataFrame	can	be	formed	from
the	following	data	structures:

A	NumPy	array
Lists
Dicts
Series



A	2D	NumPy	array

A	DataFrame	can	be	created	from	a	dict	of	series	by	calling	the	following
commands:

>>>	d	=	{'c1':	pd.Series(['A',	'B',	'C']),

								'c2':	pd.Series([1,	2.,	3.,	4.])}

>>>	df	=	pd.DataFrame(d)

>>>	df

			c1		c2

0				A			1

1				B			2

2				C			3

3		NaN			4

The	DataFrame	can	be	created	using	a	dict	of	lists	too:

>>>	d	=	{'c1':	['A',	'B',	'C',	'D'],

				'c2':	[1,	2.0,	3.0,	4.0]}

>>>	df	=	pd.DataFrame(d)

>>>	print	df

	c1		c2

0		A			1

1		B			2

2		C			3

3		D			4

Panel
A	Panel	is	a	data	structure	that	handles	3D	data.	The	following	command
is	an	example	of	panel	data:

>>>	d	=	{'Item1':	pd.DataFrame(np.random.randn(4,	3)),

				'Item2':	pd.DataFrame(np.random.randn(4,	2))}

>>>	pd.Panel(d)

<class	'pandas.core.panel.Panel'>

Dimensions:	2	(items)	x	4	(major_axis)	x	3	

(minor_axis)

Items	axis:	Item1	to	Item2

Major_axis	axis:	0	to	3

Minor_axis	axis:	0	to	2



The	preceding	command	shows	that	there	are	2	DataFrames
represented	by	two	items.	There	are	four	rows	represented	by	four	major
axes	and	three	columns	represented	by	three	minor	axes.

Inserting	and	exporting	data
The	data	is	stored	in	various	forms,	such	as	CSV,	TSV,	databases,	and
so	on.	The	pandas	library	makes	it	convenient	to	read	data	from	these
formats	or	to	export	to	these	formats.	We'll	use	a	dataset	that	contains
the	weight	statistics	of	the	school	students	from	the	U.S..

We'll	be	using	a	file	with	the	following	structure:

Column Description

LOCATION	CODE Unique	location	code

COUNTY The	county	the	school	belongs	to

AREA	NAME The	district	the	school	belongs	to

REGION The	region	the	school	belongs	to

SCHOOL	YEARS The	school	year	the	data	is	addressing

NO.	OVERWEIGHT The	number	of	overweight	students

PCT	OVERWEIGHT The	percentage	of	overweight	students

NO.	OBESE The	number	of	obese	students



PCT	OBESE The	percentage	of	obese	students

NO.	OVERWEIGHT	OR

OBESE
The	number	of	students	who	are	overweight	or
obese

PCT	OVERWEIGHT	OR

OBESE
The	percentage	of	students	who	are	overweight
or	obese

GRADE	LEVEL Whether	they	belong	to	elementary	or	high	school

AREA	TYPE The	type	of	area

STREET	ADDRESS The	address	of	the	school

CITY The	city	the	school	belongs	to

STATE The	state	the	school	belongs	to

ZIP	CODE The	zip	code	of	the	school

Location	1 The	address	with	longitude	and	latitude

CSV
To	read	data	from	a	.csv	file,	the	following	read_csv	function	can	be	used:

>>>	d	=	



pd.read_csv('Data/Student_Weight_Status_Category_Repor

ting_Results__Beginning_2010.csv')

>>>	d[0:5]['AREA	NAME']

0				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT

1				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT

2				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT

3																								COHOES	CITY	SCHOOL	DISTRICT

4																								COHOES	CITY	SCHOOL	DISTRICT

The	read_csv	function	takes	the	path	of	the	.csv	file	to	input	the	data.	The
command	after	this	prints	the	first	five	rows	of	the	Location	column	in	the
data.

To	write	a	data	to	the	.csv	file,	the	following	to_csv	function	can	be	used:

>>>	d	=	{'c1':	pd.Series(['A',	'B',	'C']),

				'c2':	pd.Series([1,	2.,	3.,	4.])}

>>>	df	=	pd.DataFrame(d)

>>>	df.to_csv('sample_data.csv')

The	DataFrame	is	written	to	a	.csv	file	by	using	the	to_csv	method.	The
path	and	the	filename	where	the	file	needs	to	be	created	should	be
mentioned.

XLS
In	addition	to	the	pandas	package,	the	xlrd	package	needs	to	be
installed	for	pandas	to	read	the	data	from	an	Excel	file:

>>>	

d=pd.read_excel('Data/Student_Weight_Status_Category_R

eporting_Results__Beginning_2010.xls')

The	preceding	function	is	similar	to	the	CSV	reading	command.	To	write
to	an	Excel	file,	the	xlwt	package	needs	to	be	installed:

>>>	df.to_excel('sample_data.xls')

JSON



To	read	the	data	from	a	JSON	file,	Python's	standard	json	package	can
be	used.	The	following	commands	help	in	reading	the	file:

>>>	import	json

>>>	json_data	=	

open('Data/Student_Weight_Status_Category_Reporting_Re

sults__Beginning_2010.json')

>>>	data	=	json.load(json_data)

>>>	json_data.close()

In	the	preceding	command,	the	open()	function	opens	a	connection	to	the
file.	The	json.load()	function	loads	the	data	into	Python.	The
json_data.close()	function	closes	the	connection	to	the	file.

The	pandas	library	also	provides	a	function	to	read	the	JSON	file,	which
can	be	accessed	using	pd.read_json().

Database
To	read	data	from	a	database,	the	following	function	can	be	used:

>>>	pd.read_sql_table(table_name,	con)

The	preceding	command	generates	a	DataFrame.	If	a	table	name	and	an
SQLAlchemy	engine	are	given,	they	return	a	DataFrame.	This	function
does	not	support	the	DBAPI	connection.	The	following	are	the	description
of	the	parameters	used:

table_name:	This	refers	to	the	name	of	the	SQL	table	in	a	database
con:	This	refers	to	the	SQLAlchemy	engine

The	following	command	reads	SQL	query	into	a	DataFrame:

>>>	pd.read_sql_query(sql,	con)

The	following	are	the	description	of	the	parameters	used:

sql:	This	refers	to	the	SQL	query	that	is	to	be	executed
con:	This	refers	to	the	SQLAlchemy	engine



Data	cleansing
The	data	in	its	raw	form	generally	requires	some	cleaning	so	that	it	can
be	analyzed	or	a	dashboard	can	be	created	on	it.	There	are	many
reasons	that	data	might	have	issues.	For	example,	the	Point	of	Sale
system	at	a	retail	shop	might	have	malfunctioned	and	inputted	some	data
with	missing	values.	We'll	be	learning	how	to	handle	such	data	in	the
following	section.

Checking	the	missing	data
Generally,	most	data	will	have	some	missing	values.	There	could	be
various	reasons	for	this:	the	source	system	which	collects	the	data	might
not	have	collected	the	values	or	the	values	may	never	have	existed.
Once	you	have	the	data	loaded,	it	is	essential	to	check	the	missing
elements	in	the	data.	Depending	on	the	requirements,	the	missing	data
needs	to	be	handled.	It	can	be	handled	by	removing	a	row	or	replacing	a
missing	value	with	an	alternative	value.

In	the	Student	Weight	data,	to	check	if	the	location	column	has	missing
value,	the	following	command	can	be	utilized:

>>>	d['Location	1'].isnull()

0							False

1							False

2							False

3							False

4							False

5							False

6							False

The	notnull()	method	will	output	each	row	of	the	value	as	TRUE	or	FALSE.
If	it's	False,	then	there	is	a	missing	value.	This	data	can	be	aggregated	to
find	the	number	of	instances	of	the	missing	value:

>>>	d['Location	1'].isnull().value_counts()

False				3246

True							24

dtype:	int64



The	preceding	command	shows	that	the	Location	1	column	has	24
instances	of	missing	values.	These	missing	values	can	be	handled	by
either	removing	the	rows	with	the	missing	values	or	replacing	it	with
some	values.	To	remove	the	rows,	execute	the	following	command:

>>>	d	=	d['Location	1'].dropna()

To	remove	all	the	rows	with	an	instance	of	missing	values,	use	the
following	command:

>>>	d	=	d.dropna(how='any')

Filling	the	missing	data
Let's	define	some	DataFrames	to	work	with:

>>>	df	=	pd.DataFrame(np.random.randn(5,	3),	index=

['a0',	'a10',	'a20',	'a30',	'a40'],

																		columns=['X',	'Y',	'Z'])

>>>	df

												X									Y									Z

a0		-0.854269		0.117540		1.515373

a10	-0.483923	-0.379934		0.484155

a20	-0.038317		0.196770	-0.564176

a30		0.752686		1.329661	-0.056649

a40	-1.383379		0.632615		1.274481

We'll	now	add	some	extra	row	indexes,	which	will	create	null	values	in
our	DataFrame:

>>>	df2	=	df2.reindex(['a0',	'a1',	'a10',	'a11',	

'a20',	'a21',	'a30',	'a31',	'a40',	'a41'])

>>>	df2

												X									Y									Z

a0		-1.193371		0.912654	-0.780461

a1								NaN							NaN							NaN

a10		1.413044		0.615997		0.947334

a11							NaN							NaN							NaN

a20		1.583516		1.388921		0.458771

a21							NaN							NaN							NaN

a30		0.479579		1.427625		1.407924



a31							NaN							NaN							NaN

a40		0.455510	-0.880937		1.375555

a41							NaN							NaN							NaN

If	you	want	to	replace	the	null	values	in	the	df2	DataFrame	with	a	value
of	zero	in	the	following	case,	execute	the	following	command:

>>>	df2.fillna(0)

												X									Y									Z

a0		-1.193371		0.912654	-0.780461

a1			0.000000		0.000000		0.000000

a10		1.413044		0.615997		0.947334

a11		0.000000		0.000000		0.000000

a20		1.583516		1.388921		0.458771

a21		0.000000		0.000000		0.000000

a30		0.479579		1.427625		1.407924

a31		0.000000		0.000000		0.000000

a40		0.455510	-0.880937		1.375555

a41		0.000000		0.000000		0.000000

If	you	want	to	fill	the	value	with	forward	propagation,	which	means	that
the	value	previous	to	the	null	value	in	the	column	will	be	used	to	fill	the
null	value,	the	following	command	can	be	used:

>>>	df2.fillna(method='pad')	#filling	with	forward	

propagation

												X									Y									Z

a0		-1.193371		0.912654	-0.780461

a1		-1.193371		0.912654	-0.780461

a10		1.413044		0.615997		0.947334

a11		1.413044		0.615997		0.947334

a20		1.583516		1.388921		0.458771

a21		1.583516		1.388921		0.458771

a30		0.479579		1.427625		1.407924

a31		0.479579		1.427625		1.407924

a40		0.455510	-0.880937		1.375555

a41		0.455510	-0.880937		1.375555

If	you	want	to	fill	the	null	values	of	the	column	with	the	column	mean,
then	the	following	command	can	be	utilized:

>>>	df2.fillna(df2.mean())



												X									Y									Z

a0		-1.193371		0.912654	-0.780461

a1			0.547655		0.692852		0.681825

a10		1.413044		0.615997		0.947334

a11		0.547655		0.692852		0.681825

a20		1.583516		1.388921		0.458771

a21		0.547655		0.692852		0.681825

a30		0.479579		1.427625		1.407924

a31		0.547655		0.692852		0.681825

a40		0.455510	-0.880937		1.375555

a41		0.547655		0.692852		0.681825

String	operations
Sometimes,	you	would	want	to	modify	the	string	field	column	in	your
data.	The	following	technique	explains	some	of	the	string	operations:

Substring:	Let's	start	by	choosing	the	first	five	rows	of	the	AREA	NAME
column	in	the	data	as	our	sample	data	to	modify:

>>>	df	=	

pd.read_csv('Data/Student_Weight_Status_Category_R

eporting_Results__Beginning_2010.csv')

>>>	df['AREA	NAME'][0:5]

0				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	

DISTRICT

1				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	

DISTRICT

2				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	

DISTRICT

3																								COHOES	CITY	SCHOOL	

DISTRICT

4																								COHOES	CITY	SCHOOL	

DISTRICT

Name:	AREA	NAME,	dtype:	object

In	order	to	extract	the	first	word	from	the	Area	Name	column,	we'll	use	the
extract	function	as	shown	in	the	following	command:

>>>	df['AREA	NAME'][0:5].str.extract('(\w+)')

0				RAVENA

1				RAVENA



2				RAVENA

3				COHOES

4				COHOES

Name:	AREA	NAME,	dtype:	object

In	the	preceding	command,	the	str	attribute	of	the	series	is	utilized.	The
str	class	contains	an	extract	method,	where	a	regular	expression	could
be	fed	to	extract	data,	which	is	very	powerful.	It	is	also	possible	to	extract
a	second	word	in	AREA	NAME	as	a	separate	column:

>>>	df['AREA	NAME'][0:5].str.extract('(\w+)\s(\w+)')

								0									1

0		RAVENA		COEYMANS

1		RAVENA		COEYMANS

2		RAVENA		COEYMANS

3		COHOES						CITY

4		COHOES						CITY

To	extract	data	in	different	columns,	the	respective	regular	expression
needs	to	be	enclosed	in	separate	parentheses.

Filtering:	If	we	want	to	filter	rows	with	data	on	ELEMENTARY	school,	then
the	following	command	can	be	used:

>>>	df[df['GRADE	LEVEL']	==	'ELEMENTARY']

Uppercase:	To	convert	the	area	name	to	uppercase,	we'll	use	the
following	command:

>>>	df['AREA	NAME'][0:5].str.upper()

0				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT

1				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT

2				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT

3																								COHOES	CITY	SCHOOL	DISTRICT

4																								COHOES	CITY	SCHOOL	DISTRICT

Name:	AREA	NAME,	dtype:	object

Since	the	data	strings	are	in	uppercase	already,	there	won't	be	any
difference	seen.

Lowercase:	To	convert	Area	Name	to	lowercase,	we'll	use	the	following
command:

>>>	df['AREA	NAME'][0:5].str.lower()



0				ravena	coeymans	selkirk	central	school	district

1				ravena	coeymans	selkirk	central	school	district

2				ravena	coeymans	selkirk	central	school	district

3																								cohoes	city	school	district

4																								cohoes	city	school	district

Name:	AREA	NAME,	dtype:	object

Length:	To	find	the	length	of	each	element	of	the	Area	Name	column,
we'll	use	the	following	command:

>>>	df['AREA	NAME'][0:5].str.len()

0				47

1				47

2				47

3				27

4				27

Name:	AREA	NAME,	dtype:	int64

Split:	To	split	Area	Name	based	on	a	whitespace,	we'll	use	the	following
command:

>>>	df['AREA	NAME'][0:5].str.split('	')

0				[RAVENA,	COEYMANS,	SELKIRK,	CENTRAL,	SCHOOL,	D...

1				[RAVENA,	COEYMANS,	SELKIRK,	CENTRAL,	SCHOOL,	D...

2				[RAVENA,	COEYMANS,	SELKIRK,	CENTRAL,	SCHOOL,	D...

3																					[COHOES,	CITY,	SCHOOL,	DISTRICT]

4																					[COHOES,	CITY,	SCHOOL,	DISTRICT]

Name:	AREA	NAME,	dtype:	object

Replace:	If	we	want	to	replace	all	the	area	names	ending	with	DISTRICT
to	DIST,	then	the	following	command	can	be	used:

>>>	df['AREA	NAME'][0:5].str.replace('DISTRICT$',	

'DIST')

0				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DIST

1				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DIST

2				RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DIST

3																								COHOES	CITY	SCHOOL	DIST

4																								COHOES	CITY	SCHOOL	DIST

Name:	AREA	NAME,	dtype:	object

The	first	argument	in	the	replace	method	is	the	regular	expression	used
to	identify	the	portion	of	the	string	to	replace.	The	second	argument	is	the
value	for	it	to	be	replaced	with.



Merging	data
To	combine	datasets	together,	the	concat	function	of	pandas	can	be
utilized.	Let's	take	the	Area	Name	and	the	County	columns	with	its	first	five
rows:

>>>	d[['AREA	NAME',	'COUNTY']][0:5]

																																	AREA	NAME												

COUNTY

0		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT				

ALBANY

1		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT				

ALBANY

2		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT				

ALBANY

3																						COHOES	CITY	SCHOOL	DISTRICT				

ALBANY

4																						COHOES	CITY	SCHOOL	DISTRICT				

ALBANY

We	can	divide	the	data	as	follows:

>>>	p1	=	d[['AREA	NAME',	'COUNTY']][0:2]

>>>	p2	=	d[['AREA	NAME',	'COUNTY']][2:5]

The	first	two	rows	of	the	data	are	in	p1	and	the	last	three	rows	are	in	p2.
These	pieces	can	be	combined	using	the	concat()	function:

>>>	pd.concat([p1,p2])

																																	AREA	NAME												

COUNTY

0		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT				

ALBANY

1		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT				

ALBANY

2		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT				

ALBANY

3																						COHOES	CITY	SCHOOL	DISTRICT				

ALBANY

4																						COHOES	CITY	SCHOOL	DISTRICT				

ALBANY



The	combined	pieces	can	be	identified	by	assigning	a	key:

>>>	concatenated	=	pd.concat([p1,p2],	keys	=	

['p1','p2'])

>>>	concatenated

																					AREA	NAME											COUNTY

p1	0		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT						

ALBANY

				1		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT					

ALBANY

p2	2		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT						

ALBANY

				3																						COHOES	CITY	SCHOOL	DISTRICT				

ALBANY

				4																						COHOES	CITY	SCHOOL	DISTRICT				

ALBANY

Using	the	keys,	the	pieces	can	be	extracted	back	from	the	concatenated
data:

>>>	concatenated.ix['p1']

																																								AREA	NAME					

COUNTY

0		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT				

ALBANY

1		RAVENA	COEYMANS	SELKIRK	CENTRAL	SCHOOL	DISTRICT				

ALBANY



Data	operations
Once	the	missing	data	is	handled,	various	operations	can	be	performed
on	the	data.

Aggregation	operations
There	are	a	number	of	aggregation	operations,	such	as	average,	sum,
and	so	on,	which	you	would	like	to	perform	on	a	numerical	field.	These
are	the	methods	used	to	perform	it:

Average:	To	find	out	the	average	number	of	students	in	the
ELEMENTARY	school	who	are	obese,	we'll	first	filter	the	ELEMENTARY	data
with	the	following	command:

>>>	data	=	d[d['GRADE	LEVEL']	==	'ELEMENTARY']

213.41593780369291

Now,	we'll	find	the	mean	using	the	following	command:

>>>	data['NO.	OBESE'].mean()

The	elementary	grade	level	data	is	filtered	and	stored	in	the	data	object.
The	NO.	OBESE	column	is	selected,	which	contains	the	number	of	obese
students	and	using	the	mean()	method,	the	average	is	taken	out.

SUM:	To	find	out	the	total	number	of	elementary	students	who	are
obese	across	all	the	school,	use	the	following	command:

>>>	data['NO.	OBESE'].sum()

219605.0

MAX:	To	get	the	maximum	number	of	students	that	are	obese	in	an
elementary	school,	use	the	following	command:

>>>	data['NO.	OBESE'].max()

48843.0

MIN:	To	get	the	minimum	number	of	students	that	are	obese	in	an
elementary	school,	use	the	following	command:



>>>	data['NO.	OBESE'].min()

5.0

STD:	To	get	the	standard	deviation	of	the	number	of	obese	students,
use	the	following	command:

>>>	data['NO.	OBESE'].std()

1690.3831128098113

COUNT:	To	count	the	total	number	of	schools	with	the	ELEMENTARY
grade	in	the	DELAWARE	county,	use	the	following	command:

>>>	data	=	df[(d['GRADE	LEVEL']	==	'ELEMENTARY')	&	

(d['COUNTY']	==	'DELAWARE')]

>>>	data['COUNTY'].count()

19

The	table	is	filtered	for	the	ELEMENTARY	grade	and	the	DELAWARE	county.
Notice	that	the	conditions	are	enclosed	in	parentheses.	This	is	to	ensure
that	individual	conditions	are	evaluated	and	if	the	parentheses	are	not
provided,	then	Python	will	throw	an	error.

Joins
SQL-like	joins	can	be	performed	on	the	DataFrame	using	pandas.	Let's
define	a	lookup	DataFrame,	which	assigns	levels	to	each	of	the	grades
using	the	following	command:

>>>	grade_lookup	=	{'GRADE	LEVEL':	

pd.Series(['ELEMENTARY',	'MIDDLE/HIGH',	'MISC']),

															'LEVEL':	pd.Series([1,	2,	3])}

>>>	grade_lookup	=	DataFrame(grade_lookup)

Let's	take	the	first	five	rows	of	the	GRADE	data	column	as	an	example	for
performing	the	joins:

>>>	df[['GRADE	LEVEL']][0:5]

					GRADE	LEVEL

0		DISTRICT	TOTAL

1						ELEMENTARY

2					MIDDLE/HIGH



3		DISTRICT	TOTAL

4						ELEMENTARY

The	inner	join
The	following	image	is	a	sample	of	an	inner	join:	

An	inner	join	can	be	performed	with	the	following	command:

>>>	d_sub	=	

df[0:5].join(grade_lookup.set_index(['GRADE	LEVEL']),	

on=['GRADE	LEVEL'],	how='inner')

>>>	d_sub[['GRADE	LEVEL',	'LEVEL']]

		GRADE	LEVEL		LEVEL

1			ELEMENTARY						1

4			ELEMENTARY						1

2		MIDDLE/HIGH						2

The	join	takes	place	with	the	join()	method.	The	first	argument	takes	the
DataFrame	on	which	the	lookup	takes	place.	Note	that	the	grade_lookup
DataFrame's	index	is	being	set	by	the	set_index()	method.	This	is
essential	for	a	join,	as	without	it,	the	join	method	won't	know	on	which
column	to	join	the	DataFrame	to.

The	second	argument	takes	a	column	of	the	d	DataFrame	to	join	the



data.	The	third	argument	defines	the	join	as	an	inner	join.

The	left	outer	join
The	following	image	is	a	sample	of	a	left	outer	join:	

A	left	outer	join	can	be	performed	with	the	following	commands:

>>>	d_sub	=	

df[0:5].join(grade_lookup.set_index(['GRADE	LEVEL']),	

on=['GRADE	LEVEL'],	how='left')

>>>	d_sub[['GRADE	LEVEL',	'LEVEL']]

						GRADE	LEVEL		LEVEL

0		DISTRICT	TOTAL				NaN

1						ELEMENTARY						1

2					MIDDLE/HIGH						2

3		DISTRICT	TOTAL				NaN

4						ELEMENTARY						1

You	can	notice	that	DISTRICT	TOTAL	has	missing	values	for	a	level
column,	as	the	grade_lookup	DataFrame	does	not	have	an	instance	for
DISTRICT	TOTAL.

The	full	outer	join



The	following	image	is	a	sample	of	a	full	outer	join:	

The	full	outer	join	can	be	performed	with	the	following	commands:

>>>	d_sub	=	

df[0:5].join(grade_lookup.set_index(['GRADE	LEVEL']),	

on=['GRADE	LEVEL'],	how='outer')

>>>	d_sub[['GRADE	LEVEL',	'LEVEL']]

					GRADE	LEVEL		LEVEL

0		DISTRICT	TOTAL				NaN

3		DISTRICT	TOTAL				NaN

1						ELEMENTARY						1

4						ELEMENTARY						1

2					MIDDLE/HIGH						2

4												MISC						3

The	groupby	function
It's	easy	to	do	an	SQL-like	group	by	operation	with	pandas.	Let's	say,	if
you	want	to	find	the	sum	of	the	number	of	obese	students	in	each	of	the
grades,	then	you	can	use	the	following	command:

>>>	df['NO.	OBESE'].groupby(d['GRADE	LEVEL']).sum()

GRADE	LEVEL

DISTRICT	TOTAL				127101

ELEMENTARY									72880



MIDDLE/HIGH								53089

This	command	chooses	the	number	of	obese	students	column,	then	uses
the	group	by	method	to	group	the	data-based	group	level,	and	finally,	the
sum	method	sums	up	the	number.	The	same	can	be	achieved	by	the
following	function	too:

>>>	d['NO.	OBESE'].groupby(d['GRADE	

LEVEL']).aggregate(sum)

Here,	the	aggregate	method	is	utilized.	The	sum	function	is	passed	to
obtain	the	required	results.

It's	also	possible	to	obtain	multiple	kinds	of	aggregations	on	the	same
metric.	This	can	be	achieved	by	the	following	command:

>>>	df['NO.	OBESE'].groupby(d['GRADE	

LEVEL']).aggregate([sum,	mean,	std])

																		sum								mean									std

GRADE	LEVEL																																			

DISTRICT	TOTAL		127101		128.384848		158.933263

ELEMENTARY							72880			76.958817		100.289578

MIDDLE/HIGH						53089			59.251116			65.905591



Summary
In	this	chapter,	we	got	familiarized	with	the	NumPy	and	pandas
packages.	We	understood	the	different	datatypes	in	pandas	and	how	to
utilize	them.	We	learned	how	to	perform	data	cleansing	and
manipulation,	in	which	we	handled	missing	values	and	performed	string
operations.	This	chapter	gives	us	a	foundation	for	data	science	and	you
can	dive	deeper	into	NumPy	and	pandas	by	clicking	on	the	following
links:

NumPy	documentation:	http://docs.scipy.org/doc/
pandas	documentation:	http://pandas.pydata.org/

In	the	next	chapter,	we'll	learn	about	the	meaning	of	inferential	statistics
and	what	they	do,	and	also	how	to	make	sense	of	the	different	concepts
in	inferential	statistics.

http://docs.scipy.org/doc/
http://pandas.pydata.org/


Chapter	2.	Inferential	Statistics
Before	getting	understanding	the	inferential	statistics,	let's	look	at	what
descriptive	statistics	is	about.

Descriptive	statistics	is	a	term	given	to	data	analysis	that	summarizes
data	in	a	meaningful	way	such	that	patterns	emerge	from	it.	It	is	a	simple
way	to	describe	data,	but	it	does	not	help	us	to	reach	a	conclusion	on	the
hypothesis	that	we	have	made.	Let's	say	you	have	collected	the	height	of
1,000	people	living	in	Hong	Kong.	The	mean	of	their	height	would	be
descriptive	statistics,	but	their	mean	height	does	not	indicate	that	it's	the
average	height	of	whole	of	Hong	Kong.	Here,	inferential	statistics	will
help	us	in	determining	what	the	average	height	of	whole	of	Hong	Kong
would	be,	which	is	described	in	depth	in	this	chapter.

Inferential	statistics	is	all	about	describing	the	larger	picture	of	the
analysis	with	a	limited	set	of	data	and	deriving	conclusions	from	it.

In	this	chapter,	we	will	cover	the	following	topics:

The	different	kinds	of	distributions
Different	statistical	tests	that	can	be	utilized	to	test	a	hypothesis
How	to	make	inferences	about	the	population	of	a	sample	from	the
data	given
Different	kinds	of	errors	that	can	occur	during	hypothesis	testing
Defining	the	confidence	interval	at	which	the	population	mean	lies
The	significance	of	p-value	and	how	it	can	be	utilized	to	interpret
results

Various	forms	of	distribution
There	are	various	kinds	of	probability	distributions,	and	each	distribution
shows	the	probability	of	different	outcomes	for	a	random	experiment.	In
this	section,	we'll	explore	the	various	kinds	of	probability	distributions.

A	normal	distribution



A	normal	distribution	is	the	most	common	and	widely	used	distribution	in
statistics.	It	is	also	called	a	"bell	curve"	and	"Gaussian	curve"	after	the
mathematician	Karl	Friedrich	Gauss.	A	normal	distribution	occurs
commonly	in	nature.	Let's	take	the	height	example	we	saw	previously.	If
you	have	data	for	the	height	of	all	the	people	of	a	particular	gender	in
Hong	Kong	city,	and	you	plot	a	bar	chart	where	each	bar	represents	the
number	of	people	at	this	particular	height,	then	the	curve	that	is	obtained
will	look	very	similar	to	the	following	graph.	The	numbers	in	the	plot	are
the	standard	deviation	numbers	from	the	mean,	which	is	zero.	The
concept	will	become	clearer	as	we	proceed	through	the	chapter.

Also,	if	you	take	an	hourglass	and	observe	the	way	sand	stacks	up	when
the	hour	glass	is	inverted,	it	forms	a	normal	distribution.	This	is	a	good
example	that	shows	how	normal	distribution	exists	in	nature.

Take	the	following	figure:	it	shows	three	curves	with	normal	distribution.
The	curve	A	has	a	standard	deviation	of	1,	curve	C	has	a	standard
deviation	of	2,	and	curve	B	has	a	standard	deviation	of	3,	which	means
that	the	curve	B	has	the	maximum	spread	of	values,	whereas	curve	A
has	the	least	spread	of	values.	One	more	way	of	looking	at	it	is	if	curve	B
represented	the	height	of	people	of	a	country,	then	this	country	has	a	lot



of	people	with	diverse	heights,	whereas	the	country	with	the	curve	A
distribution	will	have	people	whose	heights	are	similar	to	each	other.

A	normal	distribution	from	a	binomial
distribution
Let's	take	a	coin	and	flip	it.	The	probability	of	getting	a	head	or	a	tail	is
50%.	If	you	take	the	same	coin	and	flip	it	six	times,	the	probability	of
getting	a	head	three	times	can	be	computed	using	the	following	formula:	

In	the	preceding	formula,	n	is	the	number	of	times	the	coin	is	flipped,	p	is
the	probability	of	success,	and	q	is	(1–	p),	which	is	the	probability	of
failure.

The	SciPy	package	of	Python	provides	useful	functions	to	perform
statistical	computations.	You	can	install	it	from	http://www.scipy.org/.	The
following	commands	helps	in	plotting	the	binomial	distribution:

http://www.scipy.org/


>>>	from	scipy.stats	import	binom

>>>	import	matplotlib.pyplot	as	plt

>>>	fig,	ax	=	plt.subplots(1,	1)

>>>	x	=	[0,	1,	2,	3,	4,	5,	6]

>>>	n,	p	=	6,	0.5

>>>	rv	=	binom(n,	p)

>>>	ax.vlines(x,	0,	rv.pmf(x),	colors='k',	

linestyles='-',	lw=1,

										label='Probablity')

>>>	ax.legend(loc='best',	frameon=False)

>>>	plt.show()

The	binom	function	in	the	SciPy	package	helps	generate	binomial
distributions	and	the	necessary	statistics	related	to	it.	If	you	observe	the
preceding	commands,	there	are	parts	of	it	that	are	from	the	matplotlib,
which	we'll	use	right	now	to	plot	the	binomial	distribution.	The	matplotlib
library	will	be	covered	in	detail	in	later	chapters.	The	plt.subplots
function	helps	in	generating	multiple	plots	on	a	screen.	The	binom
function	takes	in	the	number	of	attempts	and	the	probability	of	success.
The	ax.vlines	function	is	used	to	plot	vertical	lines	and	rv.pmf	within	it
helps	in	calculating	the	probability	at	various	values	of	x.	The	ax.legend
function	adds	a	legend	to	the	graph,	and	finally,	plt.show	displays	the
graph.	The	result	is	as	follows:	



As	you	can	see	in	the	graph,	if	the	coin	is	flipped	six	times,	then	getting
three	heads	has	the	maximum	probability,	whereas	getting	a	single	head
or	five	heads	has	the	least	probability.

Now,	let's	increase	the	number	of	attempts	and	see	the	distribution:

>>>	fig,	ax	=	plt.subplots(1,	1)

>>>	x	=	range(101)

>>>	n,	p	=	100,	0.5

>>>	rv	=	binom(n,	p)

>>>	ax.vlines(x,	0,	rv.pmf(x),	colors='k',	

linestyles='-',	lw=1,

										label='Probablity')

>>>	ax.legend(loc='best',	frameon=False)

>>>	plt.show()

Here,	we	try	to	flip	the	coin	100	times	and	see	the	distribution:	

When	the	probability	of	success	is	changed	to	0.4,	this	is	what	you	see:	



When	the	probability	is	0.6,	this	is	what	you	see:	

When	you	flip	the	coin	1000	times	at	0.5	probability:	



As	you	can	see,	the	binomial	distribution	has	started	to	resemble	a
normal	distribution.

A	Poisson	distribution
A	Poisson	distribution	is	the	probability	distribution	of	independent
interval	occurrences	in	an	interval.	A	binomial	distribution	is	used	to
determine	the	probability	of	binary	occurrences,	whereas,	a	Poisson
distribution	is	used	for	count-based	distributions.	If	lambda	is	the	mean
occurrence	of	the	events	per	interval,	then	the	probability	of	having	a	k
occurrence	within	a	given	interval	is	given	by	the	following	formula:	

Here,	e	is	the	Euler's	number,	k	is	the	number	of	occurrences	for	which
the	probability	is	going	to	be	determined,	and	lambda	is	the	mean
number	of	occurrences.

Let's	understand	this	with	an	example.	The	number	of	cars	that	pass
through	a	bridge	in	an	hour	is	20.	What	would	be	the	probability	of	23
cars	passing	through	the	bridge	in	an	hour?

For	this,	we'll	use	the	poisson	function	from	SciPy:

>>>	from	scipy.stats	import	poisson

>>>	rv	=	poisson(20)



>>>	rv.pmf(23)

0.066881473662401172

With	the	Poisson	function,	we	define	the	mean	value,	which	is	20	cars.
The	rv.pmf	function	gives	the	probability,	which	is	around	6%,	that	23
cars	will	pass	the	bridge.

A	Bernoulli	distribution
You	can	perform	an	experiment	with	two	possible	outcomes:	success	or
failure.	Success	has	a	probability	of	p,	and	failure	has	a	probability	of	1	-
p.	A	random	variable	that	takes	a	1	value	in	case	of	a	success	and	0	in
case	of	failure	is	called	a	Bernoulli	distribution.	The	probability	distribution

function	can	be	written	as:	

It	can	also	be	written	like	this:

The	distribution	function	can	be	written	like	this:

Following	plot	shows	a	Bernoulli	distribution:



Voting	in	an	election	is	a	good	example	of	the	Bernoulli	distribution.

A	Bernoulli	distribution	can	be	generated	using	the	bernoulli.rvs()
function	of	the	SciPy	package.	The	following	function	generates	a
Bernoulli	distribution	with	a	probability	of	0.7:

>>>	from	scipy	import	stats

>>>	stats.bernoulli.rvs(0.7,	size=100)

array([1,	1,	1,	1,	1,	0,	0,	1,	1,	0,	1,	1,	1,	0,	1,	1,	

1,	1,	1,	1,	1,	1,	0,

							1,	1,	1,	0,	1,	1,	0,	1,	0,	0,	1,	0,	0,	1,	0,	1,	

0,	1,	1,	1,	1,	1,	0,

							1,	1,	1,	1,	1,	0,	0,	1,	1,	1,	0,	1,	0,	1,	0,	0,	

0,	0,	0,	1,	0,	0,	0,

							1,	1,	1,	0,	1,	0,	1,	1,	1,	1,	1,	1,	0,	0,	1,	1,	

1,	0,	0,	0,	1,	1,	1,

							1,	0,	1,	1,	1,	0,	1,	1])])

If	the	preceding	output	is	the	number	of	votes	for	a	candidate	by	people,
then	the	candidate	has	70%	of	the	votes.



A	z-score
A	z-score,	in	simple	terms,	is	a	score	that	expresses	the	value	of	a
distribution	in	standard	deviation	with	respect	to	the	mean.	Let's	take	a
look	at	the	following	formula	that	calculates	the	z-score:

Here,	X	is	the	value	in	the	distribution,	µ	is	the	mean	of	the	distribution,
and	σ	is	the	standard	deviation	of	the	distribution

Let's	try	to	understand	this	concept	from	the	perspective	of	a	school
classroom.

A	classroom	has	60	students	in	it	and	they	have	just	got	their
mathematics	examination	score.	We	simulate	the	score	of	these	60
students	with	a	normal	distribution	using	the	following	command:

>>>	classscore

>>>	classscore	=	np.random.normal(50,	10,	60).round()

[	56.		52.		60.		65.		39.		49.		41.		51.		48.		52.		

47.		41.		60.		54.		41.

		46.		37.		50.		50.		55.		47.		53.		38.		42.		42.		

57.		40.		45.		35.		39.

		67.		56.		35.		45.		47.		52.		48.		53.		53.		50.		

61.		60.		57.		53.		56.

		68.		43.		35.		45.		42.		33.		43.		49.		54.		45.		

54.		48.		55.		56.		30.]

The	NumPy	package	has	a	random	module	that	has	a	normal	function,
where	50	is	given	as	the	mean	of	the	distribution,	10	is	the	standard
deviation	of	the	distribution,	and	60	is	the	number	of	values	to	be
generated.	You	can	plot	the	normal	distribution	with	the	following
commands:

>>>	plt.hist(classscore,	30,	normed=True)	#Number	of	

breaks	is	30

>>>	plt.show()



The	score	of	each	student	can	be	converted	to	a	z-score	using	the
following	functions:

>>>	stats.zscore(classscore)

[	0.86008868		0.38555699		1.33462036		1.92778497	

-1.15667098		0.02965823

	-0.91940514		0.26692407	-0.08897469		0.38555699	

-0.20760761	-0.91940514

		1.33462036		0.62282284	-0.91940514	-0.32624053	

-1.39393683		0.14829115

		0.14829115		0.74145576	-0.20760761		0.50418992	

-1.2753039		-0.80077222

	-0.80077222		0.9787216		-1.03803806	-0.44487345	

-1.63120267	-1.15667098

		2.16505081		0.86008868	-1.63120267	-0.44487345	

-0.20760761		0.38555699

	-0.08897469		0.50418992		0.50418992		0.14829115		

1.45325329		1.33462036

		0.9787216			0.50418992		0.86008868		2.28368373	

-0.6821393		-1.63120267

	-0.44487345	-0.80077222	-1.86846851	-0.6821393			

0.02965823		0.62282284

	-0.44487345		0.62282284	-0.08897469		0.74145576		

0.86008868	-2.22436727]

So,	a	student	with	a	score	of	60	out	of	100	has	a	z-score	of	1.334.	To
make	more	sense	of	the	z-score,	we'll	use	the	standard	normal	table.



This	table	helps	in	determining	the	probability	of	a	score.

We	would	like	to	know	what	the	probability	of	getting	a	score	above	60
would	be.

The	standard	normal	table	can	help	us	in	determining	the	probability	of
the	occurrence	of	the	score,	but	we	do	not	have	to	perform	the
cumbersome	task	of	finding	the	value	by	looking	through	the	table	and
finding	the	probability.	This	task	is	made	simple	by	the	cdf	function,	which
is	the	cumulative	distribution	function:

>>>	prob	=	1	-	stats.norm.cdf(1.334)

>>>	prob

0.091101928265359899

The	cdf	function	gives	the	probability	of	getting	values	up	to	the	z-score
of	1.334,	and	doing	a	minus	one	of	it	will	give	us	the	probability	of	getting
a	z-score,	which	is	above	it.	In	other	words,	0.09	is	the	probability	of
getting	marks	above	60.

Let's	ask	another	question,	"how	many	students	made	it	to	the	top	20%
of	the	class?"



Here,	we'll	have	to	work	backwards	to	determine	the	marks	at	which	all
the	students	above	it	are	in	the	top	20%	of	the	class:

Now,	to	get	the	z-score	at	which	the	top	20%	score	marks,	we	can	use
the	ppf	function	in	SciPy:

>>>	stats.norm.ppf(0.80)

0.8416212335729143

The	z-score	for	the	preceding	output	that	determines	whether	the	top
20%	marks	are	at	0.84	is	as	follows:

>>>	(0.84	*	classscore.std())	+	classscore.mean()

55.942594176524267

We	multiply	the	z-score	with	the	standard	deviation	and	then	add	the
result	with	the	mean	of	the	distribution.	This	helps	in	converting	the	z-
score	to	a	value	in	the	distribution.	The	55.83	marks	means	that	students
who	have	marks	more	than	this	are	in	the	top	20%	of	the	distribution.

The	z-score	is	an	essential	concept	in	statistics,	which	is	widely	used.
Now	you	can	understand	that	it	is	basically	used	in	standardizing	any
distribution	so	that	it	can	be	compared	or	inferences	can	be	derived	from
it.



A	p-value
A	p-value	is	the	probability	of	rejecting	a	null-hypothesis	when	the
hypothesis	is	proven	true.	The	null	hypothesis	is	a	statement	that	says
that	there	is	no	difference	between	two	measures.	If	the	hypothesis	is
that	people	who	clock	in	4	hours	of	study	everyday	score	more	that	90
marks	out	of	100.	The	null	hypothesis	here	would	be	that	there	is	no
relation	between	the	number	of	hours	clocked	in	and	the	marks	scored.

If	the	p-value	is	equal	to	or	less	than	the	significance	level	(α),	then	the
null	hypothesis	is	inconsistent	and	it	needs	to	be	rejected.

Let's	understand	this	concept	with	an	example	where	the	null
hypothesis	is	that	it	is	common	for	students	to	score	68	marks	in
mathematics.

Let's	define	the	significance	level	at	5%.	If	the	p-value	is	less	than	5%,
then	the	null	hypothesis	is	rejected	and	it	is	not	common	to	score	68
marks	in	mathematics.

Let's	get	the	z-score	of	68	marks:

>>>	zscore	=	(	68	-	classscore.mean()	)	/	

classscore.std()

>>>	zscore

2.283



Now,	let's	get	the	value:

>>>	prob	=	1	-	stats.norm.cdf(zscore)

>>>	prob

0.032835182628040638

So,	you	can	see	that	the	p-value	is	at	3.2%,	which	is	lower	than	the
significance	level.	This	means	that	the	null	hypothesis	can	be	rejected,
and	it	can	be	said	that	it's	not	common	to	get	68	marks	in	mathematics.



One-tailed	and	two-tailed	tests
The	example	in	the	previous	section	was	an	instance	of	a	one-tailed	test
where	the	null	hypothesis	is	rejected	or	accepted	based	on	one	direction
of	the	normal	distribution.

In	a	two-tailed	test,	both	the	tails	of	the	null	hypothesis	are	used	to	test
the	hypothesis.

In	a	two-tailed	test,	when	a	significance	level	of	5%	is	used,	then	it	is
distributed	equally	in	the	both	directions,	that	is,	2.5%	of	it	in	one
direction	and	2.5%	in	the	other	direction.

Let's	understand	this	with	an	example.	The	mean	score	of	the
mathematics	exam	at	a	national	level	is	60	marks	and	the	standard
deviation	is	3	marks.

The	mean	marks	of	a	class	are	53.	The	null	hypothesis	is	that	the	mean
marks	of	the	class	are	similar	to	the	national	average.	Let's	test	this
hypothesis	by	first	getting	the	z-score	60:

>>>	zscore	=	(	53	-	60	)	/	3.0

>>>	zscore

-2.3333333333333335

The	p-value	would	be:



>>>	prob	=	stats.norm.cdf(zscore)

>>>	prob

0.0098153286286453336

So,	the	p-value	is	0.98%.	The	null	hypothesis	is	to	be	rejected,	and	the	p-
value	should	be	less	than	2.5%	in	either	direction	of	the	bell	curve.	Since
the	p-value	is	less	than	2.5%,	we	can	reject	the	null	hypothesis	and
clearly	state	that	the	average	marks	of	the	class	are	significantly	different
from	the	national	average.



Type	1	and	Type	2	errors
Type	1	error	is	a	type	of	error	that	occurs	when	there	is	a	rejection	of	the
null	hypothesis	when	it	is	actually	true.	This	kind	of	error	is	also	called	an
error	of	the	first	kind	and	is	equivalent	to	false	positives.

Let's	understand	this	concept	using	an	example.	There	is	a	new	drug	that
is	being	developed	and	it	needs	to	be	tested	on	whether	it	is	effective	in
combating	diseases.	The	null	hypothesis	is	that	it	is	not	effective	in
combating	diseases.

The	significance	level	is	kept	at	5%	so	that	the	null	hypothesis	can	be
accepted	confidently	95%	of	the	time.	However,	5%	of	the	time,	we'll
accept	the	rejecttion	of	the	hypothesis	although	it	had	to	be	accepted,
which	means	that	even	though	the	drug	is	ineffective,	it	is	assumed	to	be
effective.

The	Type	1	error	is	controlled	by	controlling	the	significance	level,	which
is	alpha.	Alpha	is	the	highest	probability	to	have	a	Type	1	error.	The	lower
the	alpha,	the	lower	will	be	the	Type	1	error.

The	Type	2	error	is	the	kind	of	error	that	occurs	when	we	do	not	reject	a
null	hypothesis	that	is	false.	This	error	is	also	called	the	error	of	the
second	kind	and	is	equivalent	to	a	false	negative.

This	kind	of	error	occurs	in	a	drug	scenario	when	the	drug	is	assumed	to
be	ineffective	but	is	actually	it	is	effective.



These	errors	can	be	controlled	one	at	a	time.	If	one	of	the	errors	is
lowered,	then	the	other	one	increases.	It	depends	on	the	use	case	and
the	problem	statement	that	the	analysis	is	trying	to	address,	and
depending	on	it,	the	appropriate	error	should	reduce.	In	the	case	of	this
drug	scenario,	typically,	a	Type	1	error	should	be	lowered	because	it	is
better	to	ship	a	drug	that	is	confidently	effective.



A	confidence	interval
A	confidence	interval	is	a	type	of	interval	statistics	for	a	population
parameter.	The	confidence	interval	helps	in	determining	the	interval	at
which	the	population	mean	can	be	defined.

Let's	try	to	understand	this	concept	by	using	an	example.	Let's	take	the
height	of	every	man	in	Kenya	and	determine	with	95%	confidence
interval	the	average	of	height	of	Kenyan	men	at	a	national	level.

Let's	take	50	men	and	their	height	in	centimeters:

>>>	height_data	=	np.array([	186.0,	180.0,	195.0,	

189.0,	191.0,	177.0,	161.0,	177.0,	192.0,	182.0,	

185.0,	192.0,

		173.0,	172.0,	191.0,	184.0,	193.0,	182.0,	190.0,	

185.0,	181.0,	188.0,	179.0,	188.0,

		170.0,	179.0,	180.0,	189.0,	188.0,	185.0,	170.0,	

197.0,	187.0,	182.0,	173.0,	179.0,

		184.0,	177.0,	190.0,	174.0,	203.0,	206.0,	173.0,	

169.0,	178.0,	201.0,	198.0,	166.0,

		171.0,	180.0])

Plotting	the	distribution,	it	has	a	normal	distribution:

>>>	plt.hist(height_data,	30,	normed=True)

>>>	plt.show()



The	mean	of	the	distribution	is	as	follows:

>>>	height_data.mean()

183.24000000000001

So,	the	average	height	of	a	man	from	the	sample	is	183.4	cm.

To	determine	the	confidence	interval,	we'll	now	define	the	standard	error
of	the	mean.

The	standard	error	of	the	mean	is	the	deviation	of	the	sample	mean	from
the	population	mean.	It	is	defined	using	the	following	formula:

Here,	s	is	the	standard	deviation	of	the	sample,	and	n	is	the	number	of
elements	of	the	sample.

This	can	be	calculated	using	the	sem()	function	of	the	SciPy	package:

>>>	stats.sem(height_data)

1.3787187190005252



So,	there	is	a	standard	error	of	the	mean	of	1.38	cm.	The	lower	and
upper	limit	of	the	confidence	interval	can	be	determined	by	using	the
following	formula:

Upper/Lower	limit	=	mean(height)	+	/	-	sigma	*	SEmean(x)

For	lower	limit:

183.24	+	(1.96	*	1.38)	=	185.94

For	upper	limit:

183.24	-	(1.96*1.38)	=	180.53

A	1.96	standard	deviation	covers	95%	of	area	in	the	normal	distribution.

We	can	confidently	say	that	the	population	mean	lies	between	180.53	cm
and	185.94	cm	of	height.



Let's	assume	we	take	a	sample	of	50	people,	record	their	height,	and
then	repeat	this	process	30	times.	We	can	then	plot	the	averages	of	each
sample	and	observe	the	distribution.

The	commands	that	simulated	the	preceding	plot	is	as	follows:

>>>	average_height	=	[]

>>>	for	i	in	xrange(30):

>>>				sample50	=	np.random.normal(183,	10,	

50).round()

>>>				average_height.append(sample50.mean())

>>>	plt.hist(average_height,	20,	normed=True)

>>>	plt.show()

You	can	observe	that	the	mean	ranges	from	180	to	187	cm	when	we
simulated	the	average	height	of	50	sample	men,	which	was	taken	30
times.

Let's	see	what	happens	when	we	sample	1000	men	and	repeat	the
process	30	times:

>>>	average_height	=	[]

>>>	for	i	in	xrange(30):

>>>				sample1000	=	np.random.normal(183,	10,	

1000).round()

>>>				average_height.append(sample1000.mean())

>>>	plt.hist(average_height,	10,	normed=True)



>>>	plt.show()

As	you	can	see,	the	height	varies	from	182.4	cm	and	to	183.4	cm.	What
does	this	mean?

It	means	that	as	the	sample	size	increases,	the	standard	error	of	the
mean	decreases,	which	also	means	that	the	confidence	interval	becomes
narrower,	and	we	can	tell	with	certainty	the	interval	that	the	population
mean	would	lie	on.



Correlation
In	statistics,	correlation	defines	the	similarity	between	two	random
variables.	The	most	commonly	used	correlation	is	the	Pearson
correlation	and	it	is	defined	by	the	following:

The	preceding	formula	defines	the	Pearson	correlation	as	the	covariance
between	X	and	Y,	which	is	divided	by	the	standard	deviation	of	X	and	Y,
or	it	can	also	be	defined	as	the	expected	mean	of	the	sum	of	multiplied
difference	of	random	variables	with	respect	to	the	mean	divided	by	the
standard	deviation	of	X	and	Y.	Let's	understand	this	with	an	example.
Let's	take	the	mileage	and	horsepower	of	various	cars	and	see	if	there	is
a	relation	between	the	two.	This	can	be	achieved	using	the	pearsonr
function	in	the	SciPy	package:

>>>	mpg	=	[21.0,	21.0,	22.8,	21.4,	18.7,	18.1,	14.3,	

24.4,	22.8,	19.2,	17.8,	16.4,	17.3,	15.2,	10.4,	10.4,	

14.7,	32.4,	30.4,

							33.9,	21.5,	15.5,	15.2,	13.3,	19.2,	27.3,	26.0,	

30.4,	15.8,	19.7,	15.0,	21.4]

>>>	hp	=	[110,	110,	93,	110,	175,	105,	245,	62,	95,	

123,	123,	180,	180,	180,	205,	215,	230,	66,	52,	65,	

97,	150,	150,	245,

						175,	66,	91,	113,	264,	175,	335,	109]

>>>	stats.pearsonr(mpg,hp)

(-0.77616837182658638,	1.7878352541210661e-07)

The	first	value	of	the	output	gives	the	correlation	between	the
horsepower	and	the	mileage	and	the	second	value	gives	the	p-value.

So,	the	first	value	tells	us	that	it	is	highly	negatively	correlated	and	the	p-
value	tells	us	that	there	is	significant	correlation	between	them:

>>>	plt.scatter(mpg,	hp)

>>>	plt.show()



From	the	plot,	we	can	see	that	as	the	mpg	increases,	the	horsepower
decreases.

Let's	look	into	another	correlation	called	the	Spearman	correlation.	The
Spearman	correlation	applies	to	the	rank	order	of	the	values	and	so	it
provides	a	monotonic	relation	between	the	two	distributions.	It	is	useful
for	ordinal	data	(data	that	has	an	order,	such	as	movie	ratings	or	grades
in	class)	and	is	not	affected	by	outliers.

Let's	get	the	Spearman	correlation	between	the	miles	per	gallon	and
horsepower.	This	can	be	achieved	using	the	spearmanr()	function	in	the
SciPy	package:

>>>	stats.spearmanr(mpg,hp)

(-0.89466464574996252,	5.085969430924539e-12)

We	can	see	that	the	Spearman	correlation	is	-0.89	and	the	p-value	is
significant.

Let's	do	an	experiment	in	which	we	introduce	a	few	outlier	values	in	the
data	and	see	how	the	Pearson	and	Spearman	correlation	gets	affected:

>>>	mpg	=	[21.0,	21.0,	22.8,	21.4,	18.7,	18.1,	14.3,	

24.4,	22.8,	19.2,	17.8,	16.4,	17.3,	15.2,	10.4,	10.4,	

14.7,	32.4,	30.4,



							33.9,	21.5,	15.5,	15.2,	13.3,	19.2,	27.3,	26.0,	

30.4,	15.8,	19.7,	15.0,	21.4,	120,	3]

>>>	hp	=	[110,	110,	93,	110,	175,	105,	245,	62,	95,	

123,	123,	180,	180,	180,	205,	215,	230,	66,	52,	65,	

97,	150,	150,	245,

						175,	66,	91,	113,	264,	175,	335,	109,	30,	600]

>>>	plt.scatter(mpg,	hp)

>>>	plt.show()

From	the	plot,	you	can	clearly	make	out	the	outlier	values.	Lets	see	how
the	correlations	get	affected	for	both	the	Pearson	and	Spearman
correlation

The	following	commands	show	you	the	Pearson	correlation:

>>>	stats.pearsonr(mpg,	hp)

>>>	(-0.47415304891435484,	0.0046122167947348462)

Here	is	the	Spearman	correlation:

>>>	stats.spearmanr(mpg,	hp)

>>>	(-0.91222184337265655,	6.0551681657984803e-14)

We	can	clearly	see	that	the	Pearson	correlation	has	been	drastically
affected	due	to	the	outliers,	which	are	from	a	correlation	of	0.89	to	0.47.

The	Spearman	correlation	did	not	get	affected	much	as	it	is	based	on	the



order	rather	than	the	actual	value	in	the	data.



Z-test	vs	T-test
We	have	already	done	a	few	Z-tests	before	where	we	validated	our	null
hypothesis.

A	T-distribution	is	similar	to	a	Z-distribution—it	is	centered	at	zero	and
has	a	basic	bell	shape,	but	its	shorter	and	flatter	around	the	center	than
the	Z-distribution.

The	T-distributions'	standard	deviation	is	usually	proportionally	larger
than	the	Z,	because	of	which	you	see	the	fatter	tails	on	each	side.

The	t	distribution	is	usually	used	to	analyze	the	population	when	the
sample	is	small.

The	Z-test	is	used	to	compare	the	population	mean	against	a	sample	or
compare	the	population	mean	of	two	distributions	with	a	sample	size
greater	than	30.	An	example	of	a	Z-test	would	be	comparing	the	heights
of	men	from	different	ethnicity	groups.

The	T-test	is	used	to	compare	the	population	mean	against	a	sample,	or
compare	the	population	mean	of	two	distributions	with	a	sample	size	less



than	30,	and	when	you	don't	know	the	population's	standard	deviation.

Let's	do	a	T-test	on	two	classes	that	are	given	a	mathematics	test	and
have	10	students	in	each	class:

>>>	class1_score	=	np.array([45.0,	40.0,	49.0,	52.0,	

54.0,	64.0,	36.0,	41.0,	42.0,	34.0])

>>>	class2_score	=	np.array([75.0,	85.0,	53.0,	70.0,	

72.0,	93.0,	61.0,	65.0,	65.0,	72.0])

To	perform	the	T-test,	we	can	use	the	ttest_ind()	function	in	the	SciPy
package:

>>>	stats.ttest_ind(class1_score,class2_score)

(array(-5.458195056848407),	3.4820722850153292e-05)

The	first	value	in	the	output	is	the	calculated	t-statistics,	whereas	the
second	value	is	the	p-value	and	p-value	shows	that	the	two	distributions
are	not	identical.



The	F	distribution
The	F	distribution	is	also	known	as	Snedecor's	F	distribution	or	the
Fisher–Snedecor	distribution.

An	f	statistic	is	given	by	the	following	formula:	

Here,	s1	is	the	standard	deviation	of	a	sample	1	with	an	n1	size,	s2	is	the
standard	deviation	of	a	sample	2,	where	the	size	n2σ1	is	the	population
standard	deviation	of	a	sample	1σ2	is	the	population	standard	deviation
of	a	sample	12.

The	distribution	of	all	the	possible	values	of	f	statistics	is	called	F
distribution.	The	d1	and	d2	represent	the	degrees	of	freedom	in	the
following	chart:

	



The	chisquare	distribution
The	chisquare	statistics	are	defined	by	the	following	formula:

Here,	n	is	the	size	of	the	sample,	s	is	the	standard	deviation	of	the
sample,	and	σ	is	the	standard	deviation	of	the	population.

If	we	repeatedly	take	samples	and	define	the	chisquare	statistics,	then
we	can	form	a	chisquare	distribution,	which	is	defined	by	the	following
probability	density	function:

Here,	Y0	is	a	constant	that	depends	on	the	number	of	degrees	of
freedom,	Χ2	is	the	chisquare	statistic,	v	=	n	-	1	is	the	number	of	degrees
of	freedom,	and	e	is	a	constant	equal	to	the	base	of	the	natural	logarithm
system.

Y0	is	defined	so	that	the	area	under	the	chisquare	curve	is	equal	to	one.



Chisquare	for	the	goodness	of	fit
The	Chisquare	test	can	be	used	to	test	whether	the	observed	data	differs
significantly	from	the	expected	data.	Let's	take	the	example	of	a	dice.
The	dice	is	rolled	36	times	and	the	probability	that	each	face	should	turn
upwards	is	1/6.	So,	the	expected	distribution	is	as	follows:

Expected	Frequency Outcome

6 1

6 2

6 3



6 4

6 5

6 6

>>>	expected	=	np.array([6,6,6,6,6,6])

The	observed	distribution	is	as	follows:

Observed	Frequency Outcome

7 1

5 2

3 3

9 4

6 5

6 6



>>>	observed	=	observed	=	np.array([7,	5,	3,	9,	6,	6])

The	null	hypothesis	in	the	chisquare	test	is	that	the	observed	value	is
similar	to	the	expected	value.

The	chisquare	can	be	performed	using	the	chisquare	function	in	the
SciPy	package:

>>>	stats.chisquare(observed,expected)

(3.333333333333333,	0.64874235866759344)

The	first	value	is	the	chisquare	value	and	the	second	value	is	the	p-value,
which	is	very	high.	This	means	that	the	null	hypothesis	is	valid	and	the
observed	value	is	similar	to	the	expected	value.



The	chi-square	test	of
independence
The	chi-square	test	of	independence	is	a	statistical	test	used	to
determine	whether	two	categorical	variables	are	independent	of	each
other	or	not.

Let's	take	the	following	example	to	see	whether	there	is	a	preference	for
a	book	based	on	the	gender	of	people	reading	it:

Flavour

Total Biography Suspense Romance Gender

280 60 120 100 Men

640 90 200 350 Women

920 150 320 450
	

The	Chi-Square	test	of	independence	can	be	performed	using	the
chi2_contingency	function	in	the	SciPy	package:

>>>	men_women	=	np.array([[100,	120,	60],[350,	200,	

90]])

>>>	stats.chi2_contingency(men_women)

(28.362103174603167,	6.9382117170577439e-07,	2,	

array([[	136.95652174,			97.39130435,			45.65217391],

							[	313.04347826,		222.60869565,		

104.34782609]]))



The	first	value	is	the	chi-square	value:

The	second	value	is	the	p-value,	which	is	very	small,	and	means	that
there	is	an	association	between	the	gender	of	people	and	the	genre	of
the	book	they	read.	The	third	value	is	the	degrees	of	freedom.	The	fourth
value,	which	is	an	array,	is	the	expected	frequencies.



ANOVA
Analysis	of	Variance	(ANOVA)	is	a	statistical	method	used	to	test
differences	between	two	or	more	means.

This	test	basically	compares	the	means	between	groups	and	determines
whether	any	of	these	means	are	significantly	different	from	each	other:	

ANOVA	is	a	test	that	can	tell	you	which	group	is	significantly	different
from	each	other.	Let's	take	the	height	of	men	who	are	from	three	different
countries	and	see	if	their	heights	are	significantly	different	from	others:

>>>	country1	=	np.array([	176.,		179.,		180.,		188.,		

187.,		184.,		171.,		201.,		172.,

								181.,		192.,		187.,		178.,		178.,		180.,		

199.,		185.,		176.,

								207.,		177.,		160.,		174.,		176.,		192.,		

189.,		187.,		183.,

								180.,		181.,		200.,		190.,		187.,		175.,		

179.,		181.,		183.,

								171.,		181.,		190.,		186.,		185.,		188.,		

201.,		192.,		188.,

								181.,		172.,		191.,		201.,		170.,		170.,		

192.,		185.,		167.,

								178.,		179.,		167.,		183.,		200.,		185.])

>>>	country2	=	np.array([	177.,		165.,		175.,		172.,		

179.,		192.,		169.,		185.,		187.,

								167.,		162.,		165.,		188.,		194.,		187.,		

175.,		163.,		178.,

								197.,		172.,		175.,		185.,		176.,		171.,		

172.,		186.,		168.,

								178.,		191.,		192.,		175.,		189.,		178.,		

181.,		170.,		182.,

								166.,		189.,		196.,		192.,		189.,		171.,		

185.,		198.,		181.,

								167.,		184.,		179.,		178.,		193.,		179.,		

177.,		181.,		174.,

								171.,		184.,		156.,		180.,		181.,		187.])

>>>	country3	=	np.array([	191.,		190.,		191.,		185.,		

190.,		184.,		173.,		175.,		200.,



								190.,		191.,		184.,		167.,		194.,		195.,		

174.,		171.,		191.,

								174.,		177.,		182.,		184.,		176.,		180.,		

181.,		186.,		179.,

								176.,		186.,		176.,		184.,		194.,		179.,		

171.,		174.,		174.,

								182.,		198.,		180.,		178.,		200.,		200.,		

174.,		202.,		176.,

								180.,		163.,		159.,		194.,		192.,		163.,		

194.,		183.,		190.,

								186.,		178.,		182.,		174.,		178.,		182.])

To	perform	the	one-way	ANOVA,	we	can	use	the	f_oneway()	function	of
the	SciPy	package:

>>>	stats.f_oneway(country1,country2,country3)

(2.9852039682631375,	0.053079678812747652)

The	first	value	of	the	output	gives	the	F-value	and	the	second	value	gives
the	p-value.	Since	the	p-value	is	greater	than	5%	by	a	small	margin,	we
can	tell	that	the	mean	of	the	heights	in	the	three	countries	is	not
significantly	different	from	each	other.



Summary
In	this	chapter,	you	learned	about	the	various	probability	distributions.
You	also	learned	about	how	to	use	z-score,	p-value,	Type	1,	and	Type	2
errors.	You	gained	an	insight	into	the	Z-test	and	T-test	followed	by	the
chi-square	distribution	and	saw	how	it	can	be	used	to	test	a	hypothesis.

In	the	next	chapter,	you'll	learn	about	data	mining	and	how	to	execute	it.



Chapter	3.	Finding	a	Needle	in	a
Haystack
Analyzing	a	dataset	to	find	patterns	is	an	art	as	much	as	it	is	a	science.
There	can	be	a	lot	of	metrics	associated	with	a	dataset	and	you	would
like	to	find	the	needle	in	this	haystack.	For	us,	a	needle	is	the	insight	that
we	look	for	within	data	that	we	weren't	aware	of	earlier.	Here,	insight
could	refer	to	important	information	about	people	who	buy	milk	of	a
particular	brand	and	also	buy	cereals	of	another	brand,	for	instance.	The
retail	store	can	then	stack	the	products	near	each	other.

Whenever	you	try	to	analyze	a	dataset,	you	should	have	a	detailed
understanding	of	it	and	also	of	the	domain	that	it	is	associated	with.	If	it's
a	simple	dataset	that	can	be	understood	very	easily,	then	the	analysis
can	be	performed	directly,	but	if	the	dataset	relates	to	the	sensor	data	of
a	turbine,	then	domain	understanding	of	how	turbines	work	and	what	is
critical	to	their	functioning	will	add	richness	to	your	analysis.

The	understanding	of	a	domain	is	like	the	North	Star:	it	helps	you
navigate	your	analysis.

In	this	chapter,	you'll	learn	the	following	topics:

How	to	structure	your	analysis	for	data	mining
How	to	present	your	analysis
How	to	perform	data	mining	on	a	Titanic	survivors	dataset



What	is	data	mining?
Data	mining	is	the	process	of	exploring	data	and	finding	patterns	in	it
using	machine	learning,	statistics,	and	database	systems.	The	end	goal
of	data	mining	is	to	derive	useful	information	from	data,	which	can	be
utilized	to	increase	revenue,	reduce	costs,	or	even	save	lives	through
some	of	its	applications.

When	you	have	a	dataset	that	needs	to	be	mined,	it	is	not	feasible	to	use
all	the	data-mining	techniques	that	are	available	on	every	column	field	of
the	data	to	derive	insights.	This	will	be	a	cumbersome	task	and	will	take	a
long	time	to	derive	any	useful	insights.

To	speed	up	the	process	of	mining	data,	knowledge	of	domains	is	a	great
help.	With	this	knowledge,	one	can	understand	what	the	data	represents



and	how	to	analyze	it	to	gain	insights.

The	best	way	to	start	data	mining	is	to	derive	themes	on	which	the	data
needs	to	be	mined.	If	you	have	the	sales	data	of	a	Fast	Moving
Consumer	Goods	(FMCG)	company,	then	themes	could	be	as	follows:

Brand	behavior
Outlet	behavior
Growth	of	products
Seasonal	effect	on	products

The	themes	help	by	giving	a	direction	to	explore	data	and	finding	patterns
in	it.

Once	you	have	the	themes,	you	need	to	put	questions	under	them	to
streamline	the	analysis:

Brand	behavior:	The	following	are	the	questions	used	to	streamline
the	analysis:

Which	are	the	top	brands?
Which	brands	have	the	maximum	coverage?
Which	brands	are	cannibalizing	the	sales	of	the	other	brands?

Outlet	behavior:	The	following	are	the	questions	used	to	streamline
the	analysis:

What	percentage	of	outlets	takes	up	80%	of	revenue?
What	kind	of	outlets	have	the	highest	number	of	sales?
What	kind	of	outlets	sell	primarily	premium	products?

Growth	of	products:	The	following	are	the	questions	used	to
streamline	the	analysis:

Which	are	the	fastest	growing	brands	in	terms	of	sale?
Which	are	the	fastest	growing	brands	in	terms	of	volume?
Which	brand's	growth	has	flattened	out?

Seasonal	effect	of	the	products:	The	following	are	the	questions
used	to	streamline	the	analysis:



How	many	brands	are	seasonal?
What	is	the	difference	in	terms	of	sales	during	seasonal	and
nonseasonal	periods?
Which	holiday	brings	in	the	maximum	amount	of	sales	for	a
particular	brand?

The	preceding	questions	under	these	themes	give	pinpointed	directions
to	find	patterns	and	perform	an	analysis	that	gives	some	quality	results.

The	process	of	exploring	data	can	be	summarized	by	the	following	flow
chart:



Presenting	an	analysis
After	performing	the	analysis,	you	would	need	to	present	some
observations.	The	most	commonly	used	medium	for	doing	this	is	through
Microsoft	PowerPoint	presentations.	The	result	of	your	analysis	could	be
a	construct	in	the	form	of	a	chart	or	table.	When	presenting	these
constructs,	there	is	certain	information	that	should	be	added	to	your
slides.	This	is	one	of	the	most	common	templates	used:	

Here	are	the	different	sections	of	the	preceding	image:

Question:	The	topmost	part	of	the	template	should	describe	the
problem	statement	that	the	particular	analysis	is	trying	to	address.
Observation:	Here,	the	observations	from	the	construct	are	listed	in
a	vertical	column.	Sometimes,	the	observations	can	be	marked	over
the	construct	using	arrow	marks	or	dialog	boxes.
Key	Takeaway:	Toward	the	bottom	of	the	image,	you	can	describe
what	is	concluded	from	the	chart.



Studying	the	Titanic
To	perform	the	data	analysis,	we'll	be	using	the	Titanic	dataset	from
Kaggle.

This	dataset	is	simple	to	understand	and	does	not	require	any	domain
understanding	to	derive	insights.

This	dataset	contains	the	details	of	each	passenger	on	the	Titanic	and
also	whether	they	survived	or	not.

The	following	are	the	field	descriptions:

Field Descriptions

survival Survival(0	=	No,	1	=	Yes)

pclass Passenger	class(1	=	1st,	2	=	2nd,	3	=	3rd)

name Name	of	the	passenger

sex Gender	of	the	passenger

age Age	of	the	passenger

sibsp Number	of	siblings/spouses	aboard

parch Number	of	parents/children	aboard



ticket Ticket	number

fare Passenger	fare

cabin Cabin

embarked Port	of	embarkation

(C	=	Cherbourg,	Q	=	Queenstown,	S	=	Southampton)

Since	the	data	is	quite	simple	to	understand,	we'll	keep	the	survival
analysis	as	the	main	theme	that	can	be	used	for	the	analysis	of	the	data.
We'll	attach	questions	to	these	themes.

These	are	the	questions	that	we'll	answer:

Which	passenger	class	has	the	maximum	number	of	survivors?
What	is	the	distribution,	based	on	gender,	of	the	survivors	among	the
different	classes?
What	is	the	distribution	of	the	nonsurvivors	among	classes	that	have
relatives	aboard	the	ship?
What	is	the	survival	percentage	among	different	age	groups?

Which	passenger	class	has	the
maximum	number	of	survivors?
To	answer	this	question,	we'll	construct	a	simple	bar	plot	of	the	number	of
survivors	and	the	percentage	of	survivors	in	each	class,	respectively.	You
can	do	this	using	the	following	command:

>>>	import	pandas	as	pd

>>>	import	pylab	as	plt

>>>	import	numpy	as	np



>>>	df	=	pd.read_csv('Data/titanic	data.csv')

>>>	df['Pclass'].isnull().value_counts()

>>>	False				891

>>>	dtype:	int64

>>>	df['Survived'].isnull().value_counts()

>>>	False				891

>>>	dtype:	int64

>>>	#Passengers	survived	in	each	class

>>>	survivors	=	df.groupby('Pclass')

['Survived'].agg(sum)

>>>	#Total	Passengers	in	each	class

>>>	total_passengers	=	df.groupby('Pclass')

['PassengerId'].count()

>>>	survivor_percentage	=	survivors	/	total_passengers

>>>	#Plotting	the	Total	number	of	survivors

>>>	fig	=	plt.figure()

>>>	ax	=	fig.add_subplot(111)

>>>	rect	=	ax.bar(survivors.index.values.tolist(),	

survivors,	color='blue',	width=0.5)

>>>	ax.set_ylabel('No.	of	survivors')

>>>	ax.set_title('Total	number	of	survivors	based	on	

class')

>>>	xTickMarks	=	survivors.index.values.tolist()

>>>	ax.set_xticks(survivors.index.values.tolist())

>>>	xtickNames	=	ax.set_xticklabels(xTickMarks)

>>>	plt.setp(xtickNames,	fontsize=20)

>>>	plt.show()



>>>	#Plotting	the	percentage	of	survivors	in	each	

class

>>>	fig	=	plt.figure()

>>>	ax	=	fig.add_subplot(111)

>>>	rect	=	

ax.bar(survivor_percentage.index.values.tolist(),	

survivor_percentage,	color='blue',	width=0.5)

>>>	ax.set_ylabel('Survivor	Percentage')

>>>	ax.set_title('Percentage	of	survivors	based	on	

class')

>>>	xTickMarks	=	survivors.index.values.tolist()

>>>	ax.set_xticks(survivors.index.values.tolist())

>>>	xtickNames	=	ax.set_xticklabels(xTickMarks)

>>>	plt.setp(xtickNames,	fontsize=20)

>>>	plt.show()



In	the	preceding	code,	we	performed	a	preliminary	check	for	null	values
on	the	fields	that	are	utilized.	After	this,	we	calculated	the	number	of
survivors	and	the	percentage	of	survivors	in	each	class.	Then,	we	plotted
two	bar	charts	for	the	total	number	of	survivors	and	the	percentage	of
survivors.

These	are	our	observations:

The	maximum	number	of	survivors	are	in	the	first	and	third	class,
respectively
With	respect	to	the	total	number	of	passengers	in	each	class,	first
class	has	the	maximum	survivors	at	around	61%
With	respect	to	the	total	number	of	passengers	in	each	class,	third
class	has	the	minimum	number	of	survivors	at	around	25%

This	is	our	key	takeaway:

There	was	clearly	a	preference	toward	saving	those	from	the	first
class	as	the	ship	was	drowning.	It	also	had	the	maximum	percentage



of	survivors

What	is	the	distribution	of	survivors
based	on	gender	among	the	various
classes?
To	answer	this	question,	we'll	use	the	following	code	to	plot	a	side-by-
side	bar	chart	to	compare	the	survival	rate	and	percentage	among	men
and	women	with	respect	to	the	class	they	were	in.

>>>	#Checking	for	any	null	values

>>>	df['Sex'].isnull().value_counts()

>>>	False				891

>>>	dtype:	int64

>>>	#	Male	Passengers	survived	in	each	class

>>>	male_survivors	=	df[df['Sex']	==	

'male'].groupby('Pclass')['Survived'].agg(sum)

>>>	#Total	Male	Passengers	in	each	class

>>>	male_total_passengers	=	df[df['Sex']	==	

'male'].groupby('Pclass')['PassengerId'].count()

>>>	male_survivor_percentage	=	male_survivors	/	

male_total_passengers

>>>	#	Female	Passengers	survived	in	each	class

>>>	female_survivors	=	df[df['Sex']	==	

'female'].groupby('Pclass')['Survived'].agg(sum)

>>>	#Total	Female	Passengers	in	each	class

>>>	female_total_passengers	=	df[df['Sex']	==	

'female'].groupby('Pclass')['PassengerId'].count()

>>>	female_survivor_percentage	=	female_survivors	/	

female_total_passengers

>>>	#Plotting	the	total	passengers	who	survived	based	

on	Gender

>>>	fig	=	plt.figure()

>>>	ax	=	fig.add_subplot(111)

>>>	index	=	np.arange(male_survivors.count())

>>>	bar_width	=	0.35

>>>	rect1	=	ax.bar(index,	male_survivors,	bar_width,	

color='blue',	label='Men')

>>>	rect2	=	ax.bar(index	+	bar_width,	



female_survivors,	bar_width,	color='y',	label='Women')

>>>	ax.set_ylabel('Survivor	Numbers')

>>>	ax.set_title('Male	and	Female	survivors	based	on	

class')

>>>	xTickMarks	=	male_survivors.index.values.tolist()

>>>	ax.set_xticks(index	+	bar_width)

>>>	xtickNames	=	ax.set_xticklabels(xTickMarks)

>>>	plt.setp(xtickNames,	fontsize=20)

>>>	plt.legend()

>>>	plt.tight_layout()

>>>	plt.show()

>>>	#Plotting	the	percentage	of	passengers	who	

survived	based	on	Gender

>>>	fig	=	plt.figure()

>>>	ax	=	fig.add_subplot(111)

>>>	index	=	

np.arange(male_survivor_percentage.count())

>>>	bar_width	=	0.35

>>>	rect1	=	ax.bar(index,	male_survivor_percentage,	

bar_width,	color='blue',	label='Men')

>>>	rect2	=	ax.bar(index	+	bar_width,	

female_survivor_percentage,	bar_width,	color='y',	



label='Women')

>>>	ax.set_ylabel('Survivor	Percentage')

>>>	ax.set_title('Percentage	Male	and	Female	of	

survivors	based	on	class')

>>>	xTickMarks	=	

male_survivor_percentage.index.values.tolist()

>>>	ax.set_xticks(index	+	bar_width)

>>>	xtickNames	=	ax.set_xticklabels(xTickMarks)

>>>	plt.setp(xtickNames,	fontsize=20)

>>>	plt.legend()

>>>	plt.tight_layout()

>>>	plt.show()

In	the	preceding	code,	the	number	of	male	and	female	survivors	is
calculated	and	then	a	side-by-side	bar	plot	is	plotted.	After	this,	the
percentage	of	male	and	female	survivors	with	respect	to	the	total	number
of	males	and	females	in	their	respective	classes	are	taken	and	then
plotted.

These	are	our	observations:



The	majority	of	survivors	are	females	in	all	the	classes
More	than	90%	of	female	passengers	in	first	and	second	class
survived
The	percentage	of	male	passengers	who	survived	in	first	and	third
class,	respectively,	are	comparable

This	is	our	key	takeaway:

Female	passengers	were	given	preference	for	lifeboats	and	the
majority	were	saved.

What	is	the	distribution	of	nonsurvivors
among	the	various	classes	who	have
family	aboard	the	ship?
To	answer	this	question,	we'll	use	the	following	code	to	plot	bar	charts
again	using	the	total	number	of	nonsurvivors	in	each	class	who	each	had
family	aboard,	and	the	percentage	with	respect	to	the	total	number	of
passengers:

>>>	#Checking	for	the	null	values

>>>	df['SibSp'].isnull().value_counts()

>>>	False				891

>>>	dtype:	int64

>>>	#Checking	for	the	null	values

>>>	df['Parch'].isnull().value_counts()

>>>	False				891

>>>	dtype:	int64

>>>	#Total	number	of	nonsurvivors	in	each	class

>>>	non_survivors	=	df[(df['SibSp']	>	0)	|	

(df['Parch']	>	0)	&	(df['Survived']	==	

0)].groupby('Pclass')['Survived'].agg('count')

>>>	#Total	passengers	in	each	class

>>>	total_passengers	=	df.groupby('Pclass')

['PassengerId'].count()

>>>	non_survivor_percentage	=	non_survivors	/	

total_passengers

>>>	#Total	number	of	non	survivors	with	family	based	

on	class

>>>	fig	=	plt.figure()



>>>	ax	=	fig.add_subplot(111)

>>>	rect	=	ax.bar(non_survivors.index.values.tolist(),	

non_survivors,	color='blue',	width=0.5)

>>>	ax.set_ylabel('No.	of	non	survivors')

>>>	ax.set_title('Total	number	of	non	survivors	with	

family	based	on	class')

>>>	xTickMarks	=	non_survivors.index.values.tolist()

>>>	ax.set_xticks(non_survivors.index.values.tolist())

>>>	xtickNames	=	ax.set_xticklabels(xTickMarks)

>>>	plt.setp(xtickNames,	fontsize=20)

>>>	plt.show()

>>>	#Plot	of	percentage	of	non	survivors	with	family	

based	on	class

>>>	fig	=	plt.figure()

>>>	ax	=	fig.add_subplot(111)

>>>	rect	=	

ax.bar(non_survivor_percentage.index.values.tolist(),	

non_survivor_percentage,	color='blue',	width=0.5)

>>>	ax.set_ylabel('Non	Survivor	Percentage')

>>>	ax.set_title('Percentage	of	non	survivors	with	

family	based	on	class')

>>>	xTickMarks	=	



non_survivor_percentage.index.values.tolist()

>>>	

ax.set_xticks(non_survivor_percentage.index.values.tol

ist())

>>>	xtickNames	=	ax.set_xticklabels(xTickMarks)

>>>	plt.setp(xtickNames,	fontsize=20)

>>>	plt.show()

The	code	here	is	pretty	similar	to	the	code	used	in	the	previous
questions.	Here,	we	can	get	the	number	of	the	nonsurvivors	who	have	a
family	and	then	perform	the	usual	bar	plots.

These	are	our	observations:

There	are	lot	of	nonsurvivors	in	the	third	class
Second	class	has	the	least	number	of	nonsurvivors	with	relatives
With	respect	to	the	total	number	of	passengers,	the	first	class,	who
had	relatives	aboard,	has	the	maximum	nonsurvivor	percentage	and
the	third	class	has	the	least



This	is	our	key	takeaway:

Even	though	third	class	has	the	highest	number	of	nonsurvivors	with
relatives	aboard,	it	primarily	had	passengers	who	did	not	have
relatives	on	the	ship,	whereas	in	first	class,	most	of	the	people	had
relatives	aboard	the	ship

What	was	the	survival	percentage	among
different	age	groups?
For	this	question,	we'll	use	the	following	code	to	plot	pie	charts	to
compare	the	proportion	of	survivors	in	terms	of	number	and	percentage
with	respect	to	the	different	age	groups:

>>>	#Checking	for	null	values

>>>	df['Age'].isnull().value_counts()

>>>	False				714

>>>	True					177

>>>	dtype:	int64

>>>	#Defining	the	age	binning	interval

>>>	age_bin	=	[0,	18,	25,	40,	60,	100]

>>>	#Creating	the	bins

>>>	df['AgeBin']	=	pd.cut(df.Age,	bins=age_bin)

>>>	#Removing	the	null	rows

>>>	d_temp	=	df[np.isfinite(df['Age'])]		#	removing	

all	na	instances

>>>	#Number	of	survivors	based	on	Age	bin

>>>	survivors	=	d_temp.groupby('AgeBin')

['Survived'].agg(sum)

>>>	#Total	passengers	in	each	bin

>>>	total_passengers	=	d_temp.groupby('AgeBin')

['Survived'].agg('count')

>>>	#Plotting	the	pie	chart	of	total	passengers	in	

each	bin

>>>	plt.pie(total_passengers,	

labels=total_passengers.index.values.tolist(),autopct=

'%1.1f%%',	shadow=True,	startangle=90)

>>>	plt.title('Total	Passengers	in	different	age	

groups')

>>>	plt.show()



>>>	#Plotting	the	pie	chart	of	percentage	passengers	

in	each	bin

>>>	plt.pie(survivors,	

labels=survivors.index.values.tolist(),

					autopct='%1.1f%%',	shadow=True,	startangle=90)

>>>	plt.title('Survivors	in	different	age	groups')

>>>	plt.show()



In	the	code,	we	defined	the	bin	with	the	age_bin	variable	and	then	added
a	column	called	AgeBin,	where	bin	values	are	filled	using	the	cut
function.	After	this,	we	filtered	out	all	the	rows	with	the	age	set	as	null.
After	this,	we	created	two	pie	charts:	one	for	the	total	number	of
passengers	in	each	age	group	and	another	for	the	number	of	survivors	in
each	age	group.

These	are	our	observations:

The	25-40	age	group	has	the	maximum	number	of	passengers,	and
0-18	has	the	second	highest	number	of	passengers
Among	the	people	who	survived,	the	18-25	age	group	has	the
second	highest	number	of	survivors
The	60-100	age	group	has	a	lower	proportion	among	the	survivors

This	is	our	key	takeaway:

The	25-40	age	group	had	the	maximum	number	of	survivors
compared	to	any	other	age	group,	and	people	who	were	old	were



either	not	lucky	enough	or	made	way	for	the	younger	people	to	the
lifeboats.



Summary
In	this	chapter,	we	learned	the	meaning	of	data	mining.	We	learned	the
importance	of	domain	knowledge	in	performing	analysis	and	how	to
perform	data	mining	in	a	systematic	manner.	We	also	learned	how	to
present	the	results	of	data	mining.	Toward	the	end,	we	took	an	example
and	performed	a	few	analyses	to	extract	useful	information.

In	the	next	chapter,	you'll	learn	about	how	to	create	visualizations	on	data
and	where	to	apply	different	kinds	of	visualizations.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you
have	purchased	from	your	account	at	http://www.packtpub.com.	If	you
purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

The	codes	provided	in	the	code	bundle	are	for	both	IPython	notebook
and	Python	2.7.	In	the	chapters,	Python	conventions	have	been
followed.

http://www.packtpub.com
http://www.packtpub.com/support


Chapter	4.	Making	Sense	of	Data
through	Advanced	Visualization
Visualization	is	a	very	integral	part	of	data	science.	It	helps	in
communicating	a	pattern	or	a	relationship	that	cannot	be	seen	by	looking
at	raw	data.	It's	easier	for	a	person	to	remember	a	picture	and	recollect	it
as	compared	to	lines	of	text.	This	holds	true	for	data	too.

In	this	chapter,	we'll	cover	the	following	topics:

Controlling	the	properties	of	a	plot
Combining	multiple	plots
Styling	your	plots
Creating	various	advanced	visualizations

Controlling	the	line	properties	of
a	chart
There	are	many	properties	of	a	line	that	can	be	set,	such	as	the	color,
dashes,	and	several	others.	There	are	essentially	three	ways	of	doing
this.	Let's	take	a	simple	line	chart	as	an	example:

>>>	plt.plot([1,2,3,4],	[1,4,9,16])

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:



Using	keyword	arguments
We	can	use	arguments	within	the	plot	function	to	set	the	property	of	the
line:

>>>	import	numpy	as	np

>>>	import	pandas	as	pd

>>>	import	matplotlib.pyplot	as	plt

>>>	import	pandas.tools.rplot	as	rplot

>>>	plt.plot([1,	2,	3,	4],	[1,	4,	9,	16],	

linewidth=4.0)		#	increasing	#	the	line	width

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:



Using	the	setter	methods
The	plot	function	returns	the	list	of	line	objects,	for	example	line1,	line2
=	plot(x1,y1,x2,y2).	Using	the	line	setter	method	of	line	objects	we	can
define	the	property	that	needs	to	be	set:

>>>	line,	=	plt.plot([1,	2,	3,	4],	[1,	4,	9,	16])

>>>	line.set_linestyle('--')	#	Setting	dashed	lines

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:



You	can	view	the	acceptable	line	style	at
http://matplotlib.org/api/lines_api.html.

Using	the	setp()	command
The	setp()	command	can	be	used	to	set	multiple	properties	of	a	line:

>>>	line,	=	plt.plot([1,	2,	3,	4],	[1,	4,	9,	16])

>>>	plt.setp(line,	color='r',	linewidth=2.0)		#	

setting	the	color	#	and	width	of	the	line

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:

http://matplotlib.org/api/lines_api.html




Creating	multiple	plots
One	very	useful	feature	of	matplotlib	is	that	it	makes	it	easy	to	plot
multiple	plots,	which	can	be	compared	to	each	other:

>>>	p1	=	np.arange(0.0,	30.0,	0.1)

>>>	plt.subplot(211)

>>>	plt.plot(p1,	np.sin(p1)/p1,	'b--')

>>>	plt.subplot(212)

>>>	plt.plot(p1,	np.cos(p1),	'r--')

>>>	plt.show()

In	the	preceding	code,	we	use	a	subplot	function	is	used	to	plot	multiple
plots	that	need	to	be	compared.	A	subplot	with	a	value	of	211	means	that
there	will	be	two	rows,	one	column,	and	one	figure:	



Playing	with	text
Adding	text	to	your	chart	can	be	done	by	using	a	simple	matplotlib
function.	You	only	have	to	use	the	text()	command	to	add	it	to	the	chart:

>>>	#	Playing	with	text

>>>	n	=	np.random.random_sample((5,))

>>>	plt.bar(np.arange(len(n)),	n)

>>>	plt.xlabel('Indices')

>>>	plt.ylabel('Value')

>>>	plt.text(1,	.7,	r'$\mu='	+	

str(np.round(np.mean(n),	2))	+	'	$')

>>>	plt.show()

In	the	preceding	code,	the	text()	command	is	used	to	add	text	within	the

plot:	

The	first	parameter	takes	the	x	axis	value	and	the	second	parameter



takes	the	y	axis	value.	The	third	parameter	is	the	text	that	needs	to	be
added	to	the	plot.	The	latex	expression	has	been	used	to	plot	the	mu
mean	within	the	plot.

A	certain	section	of	the	chart	can	be	annotated	by	using	the	annotate
command.	The	annotate	command	will	take	the	text,	the	position	of	the
section	of	plot	that	needs	to	be	pointed	at,	and	the	position	of	the	text:

>>>	ax	=	plt.subplot(111)

>>>	t	=	np.arange(0.0,	5.0,	0.01)

>>>	s	=	np.cos(2*np.pi*t)

>>>	line,	=	plt.plot(t,	s,	lw=2)

>>>	plt.annotate('local	max',	xy=(2,	1),	xytext=(3,	

1.5),

													arrowprops=dict(facecolor='black',	

shrink=0.05),

													)

>>>	plt.ylim(-2,2)

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:	



Styling	your	plots
The	style	package	within	the	matplotlib	library	makes	it	easier	to	change
the	style	of	the	plots	that	are	being	plotted.	It	is	very	easy	to	change	to
the	famous	ggplot	style	of	the	R	language	or	use	the	Nate	Silver's
website	http://fivethirtyeight.com/	for	fivethirtyeight	style.	The	following
example	shows	the	plotting	of	a	simple	line	chart	with	the	ggplot	style:

>>>	plt.style.use('ggplot')

>>>	plt.plot([1,	2,	3,	4],	[1,	4,	9,	16])

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:

In	the	preceding	code,	plt.style.use()	is	used	to	set	the	style	of	the	plot.
It	is	a	global	set,	so	after	it	is	executed,	all	the	plots	that	follow	will	have
the	same	style.

The	following	code	gives	the	popular	fivethirtyeight	style,	which	is
Nate	Silver's	website	on	data	journalism,	where	his	team	write	articles
on	various	topics	by	applying	data	science:

>>>	plt.style.use('fivethirtyeight')

>>>	plt.plot([1,	2,	3,	4],	[1,	4,	9,	16])

>>>	plt.show()

http://fivethirtyeight.com/


After	the	preceding	code	is	executed	we'll	get	the	following	output:

Sometimes,	you	just	want	a	specific	block	of	code	to	have	a	particular
style	and	the	rest	of	the	plots	in	the	code	to	have	the	default	style.	This
can	be	achieved	using	the	plt.style.context	function	and	the	style	can
be	specified	within	it.	Once	the	following	code	is	executed,	only	the	plot
that	is	specified	within	it	is	plotted	with	the	given	style:

>>>	with	plt.style.context(('dark_background')):

								plt.plot([1,	2,	3,	4],	[1,	4,	9,	16])

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:



Box	plots
A	box	plot	is	a	very	good	plot	to	understand	the	spread,	median,	and

outliers	of	data:	

The	various	parts	of	the	preceding	figure	are	explained	as	follows:

Q3:	This	is	the	75th	percentile	value	of	the	data.	It's	also	called	the
upper	hinge.
Q1:	This	is	the	25th	percentile	value	of	the	data.	It's	also	called	the
lower	hinge.
Box:	This	is	also	called	a	step.	It's	the	difference	between	the	upper
hinge	and	the	lower	hinge.
Median:	This	is	the	midpoint	of	the	data.
Max:	This	is	the	upper	inner	fence.	It	is	1.5	times	the	step	above	Q3.
Min:	This	is	the	lower	inner	fence.	It	is	1.5	times	the	step	below	Q1.

Any	value	that	is	greater	than	Max	or	lesser	than	Min	is	called	an	outlier,
which	is	also	known	as	a	flier.

The	following	code	will	create	some	data,	and	by	using	the	boxplot
function	we'll	create	box	plots:

>>>	##	Creating	some	data



>>>	np.random.seed(10)

>>>	box_data_1	=	np.random.normal(100,	10,	200)

>>>	box_data_2	=	np.random.normal(80,	30,	200)

>>>	box_data_3	=	np.random.normal(90,	20,	200)

>>>	##	Combining	the	different	data	in	a	list

>>>	data_to_plot	=	[box_data_1,	box_data_2,	

box_data_3]

>>>	#	Create	the	boxplot

>>>	bp	=	plt.boxplot(data_to_plot)

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

The	bp	variable	in	the	boxplot	function	is	a	Python	dictionary	with	key
values	such	as	boxes,	whiskers,	fliers,	caps,	and	median.	The	values	in
the	keys	represent	the	different	components	of	the	box	plot	and	their
properties.	The	properties	can	be	accessed	and	altered	appropriately	to
style	the	box	plot	to	your	liking.	The	following	code	gives	you	an	example
of	how	to	style	your	boxplot:

>>>	##	add	patch_artist=True	option	to	ax.boxplot()	

>>>	##	to	get	fill	color

>>>	bp	=	plt.boxplot(data_to_plot,	patch_artist=True)

>>>	##	change	outline	color,	fill	color	and	linewidth	

of	the	boxes

>>>	for	box	in	bp['boxes']:

							#	change	outline	color

							box.set(	color='#7570b3',	linewidth=2)



							#	change	fill	color

							box.set(	facecolor	=	'#1b9e77'	)

>>>	##	change	color	and	linewidth	of	the	whiskers

>>>	for	whisker	in	bp['whiskers']:

							whisker.set(color='#7570b3',	linewidth=2)

>>>	##	change	color	and	linewidth	of	the	caps

>>>	for	cap	in	bp['caps']:

								cap.set(color='#7570b3',	linewidth=2)

>>>	##	change	color	and	linewidth	of	the	medians

>>>	for	median	in	bp['medians']:

							median.set(color='#b2df8a',	linewidth=2)

>>>	##	change	the	style	of	fliers	and	their	fill

>>>	for	flier	in	bp['fliers']:

							flier.set(marker='o',	color='#e7298a',	

alpha=0.5)

In	the	preceding	code,	we	take	the	key	values	of	boxplots	and	set	their
properties	in	terms	of	color,	line	width,	and	face	color.	Similarly,	we
perform	the	same	task	for	the	other	components,	such	as	whiskers,	caps,
medians,	and	fliers.



Heatmaps
A	heatmap	is	a	graphical	representation	where	individual	values	of	a
matrix	are	represented	as	colors.	A	heatmap	is	very	useful	in	visualizing
the	concentration	of	values	between	two	dimensions	of	a	matrix.	This
helps	in	finding	patterns	and	gives	a	perspective	of	depth.

Let's	start	off	by	creating	a	basic	heatmap	between	two	dimensions.	We'll
create	a	10	x	6	matrix	of	random	values	and	visualize	it	as	a	heatmap:

>>>	#	Generate	Data

>>>	data	=	np.random.rand(10,6)

>>>	rows	=	list('ZYXWVUTSRQ')		#Ylabel

>>>	columns	=	list('ABCDEF')		#Xlabel

>>>	#Basic	Heat	Map	plot

>>>	plt.pcolor(data)

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

In	the	preceding	code,	we	used	the	pcolor()	function	to	create	the
heatmap	colors.	We'll	now	add	labels	to	the	heatmap:

>>>	#	Add	Row/Column	Labels

>>>	plt.pcolor(data)

>>>	plt.xticks(np.arange(0,6)+0.5,columns)



>>>	plt.yticks(np.arange(0,10)+0.5,rows)

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

We'll	now	adjust	the	color	of	the	heatmap	to	make	it	more	visually
representative.	This	will	help	us	to	understand	the	data:

>>>	#	Change	color	map

>>>	plt.pcolor(data,cmap=plt.cm.Reds,edgecolors='k')

>>>	plt.xticks(np.arange(0,6)+0.5,columns)

>>>	plt.yticks(np.arange(0,10)+0.5,rows)

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:	



In	some	instances,	there	might	be	a	huge	number	of	values	that	need	to
be	plotted	on	the	heatmap.	This	can	be	done	by	binning	the	values	first
and	then	using	the	following	code	to	plot	it:

>>>	#	Generate	some	test	data

>>>	x	=	np.random.randn(8873)

>>>	y	=	np.random.randn(8873)

>>>	heatmap,	xedges,	yedges	=	np.histogram2d(x,	y,	

bins=50)

>>>	extent	=	[xedges[0],	xedges[-1],	yedges[0],	

yedges[-1]]

>>>	plt.imshow(heatmap,	extent=extent)

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

In	the	preceding	code,	the	histogram2d	function	helped	in	binning	the	the
2D	values.	Post	this,	we	feed	the	values	to	the	heatmap	to	get	the
preceding	plot.	Since	we	used	the	randn(),	the	values	generated	were
random	normally	distributed	numbers,	which	means	that	the
concentration	of	numbers	will	be	more	toward	the	mean.	This	can	be
seen	in	the	preceding	plot,	which	shows	the	center	to	be	red	and	the
exterior	area	to	be	blue.



Scatter	plots	with	histograms
We	can	combine	a	simple	scatter	plot	with	histograms	for	each	axis.
These	kinds	of	plots	help	us	see	the	distribution	of	the	values	of	each
axis.

Let's	generate	some	randomly	distributed	data	for	the	two	axes:

>>>	from	matplotlib.ticker	import	NullFormatter

>>>	#	the	random	data

>>>	x	=	np.random.randn(1000)

>>>	y	=	np.random.randn(1000)

A	NullFormatter	object	is	created,	which	will	be	used	for	eliminating	the	x
and	y	labels	of	the	histograms:

>>>	nullfmt			=	NullFormatter()									#	no	labels

The	following	code	defines	the	size,	height,	and	width	of	the	scatter	and
histogram	plots:

>>>	#	definitions	for	the	axes

>>>	left,	width	=	0.1,	0.65

>>>	bottom,	height	=	0.1,	0.65

>>>	bottom_h	=	left_h	=	left+width+0.02

>>>	rect_scatter	=	[left,	bottom,	width,	height]

>>>	rect_histx	=	[left,	bottom_h,	width,	0.2]

>>>	rect_histy	=	[left_h,	bottom,	0.2,	height]

Once	the	size	and	height	are	defined,	the	axes	are	plotted	for	the	scatter
plot	as	well	as	both	the	histograms:

>>>	#	start	with	a	rectangular	Figure

>>>	plt.figure(1,	figsize=(8,8))

>>>	axScatter	=	plt.axes(rect_scatter)

>>>	axHistx	=	plt.axes(rect_histx)

>>>	axHisty	=	plt.axes(rect_histy)



The	histograms'	x	and	y	axis	labels	are	eliminated	by	using	the
set_major_formatter	method,	and	by	assigning	the	NullFormatter	object
to	it,	the	scatter	plot	is	plotted:

>>>	#	no	labels

>>>	axHistx.xaxis.set_major_formatter(nullfmt)

>>>	axHisty.yaxis.set_major_formatter(nullfmt)

>>>	#	the	scatter	plot:

>>>	axScatter.scatter(x,	y)

The	limits	of	the	x	and	y	axes	are	computed	using	the	following	code,
where	the	max	of	the	x	and	y	values	are	taken.	The	max	value	is	then
divided	by	the	bin,	then	one	is	added	to	it	before	it	is	again	multiplied	with
the	bin	value.	This	is	done	so	there	is	some	space	ahead	of	the	max
value:

>>>	#	now	determine	nice	limits	by	hand:

>>>	binwidth	=	0.25

>>>	xymax	=	np.max(	[np.max(np.fabs(x)),	

np.max(np.fabs(y))]	)

>>>	lim	=	(	int(xymax/binwidth)	+	1)	*	binwidth

The	limit	value	that	is	calculated	is	then	assigned	to	the	set_xlim	method
of	the	axScatter	object:

>>>	axScatter.set_xlim(	(-lim,	lim)	)

>>>	axScatter.set_ylim(	(-lim,	lim)	)

The	bins	variable	creates	a	list	of	interval	values,	which	will	be	used	with
the	histograms:

>>>	bins	=	np.arange(-lim,	lim	+	binwidth,	binwidth)

The	histograms	are	plotted	and	the	one	that	is	horizontal	is	set	using	the
orientation	parameter:

>>>	axHistx.hist(x,	bins=bins)

>>>	axHisty.hist(y,	bins=bins,	

orientation='horizontal')



The	limit	value	of	the	scatter	plot	is	fetched	and	then	assigned	to	the	limit
methods	of	the	histogram:

>>>	axHistx.set_xlim(	axScatter.get_xlim()	)

>>>	axHisty.set_ylim(	axScatter.get_ylim()	)

>>>	plt.show()

After	the	preceding	code	is	executed	we'll	get	the	following	output:



A	scatter	plot	matrix
A	scatter	plot	matrix	can	be	formed	for	a	collection	of	variables	where
each	of	the	variables	will	be	plotted	against	each	other.	The	following
code	generates	a	DataFrame	df,	which	consists	of	four	columns	with
normally	distributed	random	values	and	column	names	named	from	a	to
d:

>>>	df	=	pd.DataFrame(np.random.randn(1000,	4),	

columns=['a',	'b',	'c',	'd'])

>>>	spm	=	pd.tools.plotting.scatter_matrix(df,	

alpha=0.2,	figsize=(6,	6),	diagonal='hist')

After	the	preceding	code	is	executed	we'll	get	the	following	output:

The	scatter_matrix()	function	helps	in	plotting	the	preceding	figure.	It
takes	in	the	data	frame	object	and	the	required	parameters	that	are
defined	to	customize	the	plot.	You	would	have	observed	that	the	diagonal



graph	is	defined	as	a	histogram,	which	means	that	in	the	section	of	the
plot	matrix	where	the	variable	is	against	itself,	a	histogram	is	plotted.

Instead	of	the	histogram,	we	can	also	use	the	kernel	density	estimation
for	the	diagonal:

>>>	spm	=	pd.tools.plotting.scatter_matrix(df,	

alpha=0.2,	figsize=(6,	6),	diagonal='kde')

After	the	preceding	code	is	executed	we'll	get	the	following	output:

The	kernel	density	estimation	is	a	nonparametric	way	of	estimating	the
probability	density	function	of	a	random	variable.	It	basically	helps	in
understanding	whether	the	data	is	normally	distributed	and	the	side
toward	which	it	is	skewed.



Area	plots
An	area	plot	is	useful	for	comparing	the	values	of	different	factors	across
a	range.	The	area	plot	can	be	stacked	in	nature,	where	the	areas	of	the
different	factors	are	stacked	on	top	of	each	other.	The	following	code
gives	an	example	of	a	stacked	area	plot:

>>>	df	=	pd.DataFrame(np.random.rand(10,	4),	columns=

['p',	'q',	'r',	's'])

>>>	df.plot(kind='area');

After	the	preceding	code	is	executed	we'll	get	the	following	output:

To	remove	the	stack	of	area	plot,	you	can	use	the	following	code:

>>>	df.plot(kind='area',	stacked=False);

After	the	preceding	code	is	executed	we'll	get	the	following	output:





Bubble	charts
A	bubble	chart	is	basically	a	scatter	plot	with	an	additional	dimension.
The	additional	dimension	helps	in	setting	the	size	of	the	bubble,	which
means	that	the	greater	the	size	of	the	bubble,	the	larger	the	value	that
represents	the	bubble.	This	kind	of	a	chart	helps	in	analyzing	the	data	of
three	dimensions.

The	following	code	creates	a	sample	data	of	three	variables	and	this	data
is	then	fed	to	the	plot()	method	where	its	kind	is	mentioned	as	a	scatter
and	s	is	the	size	of	the	bubble:

>>>	plt.style.use('ggplot')

>>>	df	=	pd.DataFrame(np.random.rand(50,	3),	columns=

['a',	'b',	'c'])

>>>	df.plot(kind='scatter',	x='a',	y='b',	

s=df['c']*400);

After	the	preceding	code	is	executed	we'll	get	the	following	output:



Hexagon	bin	plots
A	hexagon	bin	plot	can	be	created	using	the	DataFrame.plot()	function
and	kind	=	'hexbin'.	This	kind	of	plot	is	really	useful	if	your	scatter	plot	is
too	dense	to	interpret.	It	helps	in	binning	the	spatial	area	of	the	chart	and
the	intensity	of	the	color	that	a	hexagon	can	be	interpreted	as	points
being	more	concentrated	in	this	area.

The	following	code	helps	in	plotting	the	hexagon	bin	plot,	and	the
structure	of	the	code	is	similar	to	the	previously	discussed	plots:

>>>	df	=	pd.DataFrame(np.random.randn(1000,	2),	

columns=['a',	'b'])

>>>	df['b']	=	df['b']	+	np.arange(1000)

>>>	df.plot(kind='hexbin',	x='a',	y='b',	gridsize=25)

After	the	preceding	code	is	executed	we'll	get	the	following	output:



Trellis	plots
A	Trellis	plot	is	a	layout	of	smaller	charts	in	a	grid	with	consistent	scales.
Each	smaller	chart	represents	an	item	in	a	category,	named	conditions.
The	data	displayed	on	each	smaller	chart	is	conditional	for	the	items	in
the	category.

Trellis	plots	are	useful	for	finding	structures	and	patterns	in	complex	data.
The	grid	layout	looks	similar	to	a	garden	trellis,	hence	the	name	Trellis
plots.

The	following	code	helps	in	plotting	a	trellis	chart	where	for	each
combination	of	sex	and	smoker/nonsmoker:

>>>	tips_data	=	pd.read_csv('Data/tips.csv')

>>>	plt.figure()

>>>	plot	=	rplot.RPlot(tips_data,	x='total_bill',	

y='tip')

>>>	plot.add(rplot.TrellisGrid(['sex',	'smoker']))

>>>	plot.add(rplot.GeomHistogram())

>>>	plot.render(plt.gcf())

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

In	the	preceding	code,	rplot.RPlot	takes	the	tips_data	object.	Also,	the



x	and	y	axis	values	are	defined.	After	this,	the	Trellis	grid	is	defined
based	on	the	smoker	and	sex.	In	the	end,	we	use	GeomHistogram()	to	plot
a	histogram.

To	change	the	Trellis	plot	to	a	kernel	density	estimate,	we	can	use	the
following	code:

>>>	plt.figure()

>>>	plot	=	rplot.RPlot(tips_data,	x='total_bill',	

y='tip')

>>>	plot.add(rplot.TrellisGrid(['sex',	'smoker']))

>>>	plot.add(rplot.GeomDensity())

>>>	plot.render(plt.gcf())

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

We	could	also	have	a	scatter	plot	with	a	poly	fit	line	on	it:

>>>	plt.figure()

>>>	plot	=	rplot.RPlot(tips_data,	x='total_bill',	

y='tip')

>>>	plot.add(rplot.TrellisGrid(['sex',	'smoker']))

>>>	plot.add(rplot.GeomScatter())

>>>	plot.add(rplot.GeomPolyFit(degree=2))

>>>	plot.render(plt.gcf())

After	the	preceding	code	is	executed	we'll	get	the	following	output:	



The	code	is	similar	to	the	previous	example.	The	only	difference	is	that
GeomScatter()	and	GeomPolyFit	are	used	to	get	the	fit	line	on	the	plot.

The	scatter	plot	can	be	combined	with	a	2D	kernel	density	plot	by	using
the	following	code:

>>>	plt.figure()

>>>	plot	=	rplot.RPlot(tips_data,	x='total_bill',	

y='tip')

>>>	plot.add(rplot.TrellisGrid(['sex',	'smoker']))

>>>	plot.add(rplot.GeomScatter())

>>>	plot.add(rplot.GeomDensity2D())

>>>	plot.render(plt.gcf())

After	the	preceding	code	is	executed	we'll	get	the	following	output:	





A	3D	plot	of	a	surface
We'll	now	plot	a	3D	plot,	where	the	Sin	function	is	plotted	against	the	sum
of	the	square	values	of	the	two	axes:

>>>	from	mpl_toolkits.mplot3d	import	Axes3D

>>>	fig	=	plt.figure()

>>>	ax	=	Axes3D(fig)

>>>	X	=	np.arange(-4,	4,	0.25)

>>>	Y	=	np.arange(-4,	4,	0.25)

>>>	X,	Y	=	np.meshgrid(X,	Y)

>>>	R	=	np.sqrt(X**2	+	Y**2)

>>>	Z	=	np.sin(R)

>>>	ax.plot_surface(X,	Y,	Z,	rstride=1,	cstride=1,	

cmap='hot')

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

In	the	preceding	code,	we	defined	the	x	and	y	axes	with	values	ranging
from	-4	to	4.	We	created	a	coordinate	matrix	with	meshgrid(),	then
squared	the	values	of	x	and	y,	and	finally,	summed	them	up.	This	was
then	fed	to	the	plot_surface	function.	The	rstride	and	cstride
parameters	in	simple	terms	help	in	sizing	the	cell	on	the	surface.

Let's	adjust	the	view	using	view_int.	The	following	is	the	view	at	0	degree
elevation	and	0	degree	angle:



>>>	fig	=	plt.figure()

>>>	ax	=	Axes3D(fig)

>>>	ax.view_init(elev=0.,	azim=0)

>>>	ax.plot_surface(X,	Y,	Z,	rstride=1,	cstride=1,	

cmap='hot')

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

The	following	is	the	view	at	50	degrees	elevation:

>>>	fig	=	plt.figure()

>>>	ax	=	Axes3D(fig)

>>>	ax.view_init(elev=50.,	azim=0)

>>>	ax.plot_surface(X,	Y,	Z,	rstride=1,	cstride=1,	

cmap='hot')

After	the	preceding	code	is	executed	we'll	get	the	following	output:	



The	following	is	the	view	at	50	degrees	elevation	and	30	degrees	angle:

>>>	fig	=	plt.figure()

>>>	ax	=	Axes3D(fig)

>>>	ax.view_init(elev=50.,	azim=30)

>>>	ax.plot_surface(X,	Y,	Z,	rstride=1,	cstride=1,	

cmap='hot')

After	the	preceding	code	is	executed	we'll	get	the	following	output:	



Summary
In	this	chapter,	you	learned	how	to	use	the	various	properties	of	a	chart.
You	also	learned	how	to	combine	multiple	charts	and	style	them.	There
were	multiple	advanced	visualizations	that	you	have	gained	knowledge	of
through	this	chapter.

In	the	next	chapter,	we	will	understand	what	machine	learning	is	and	also
explore	a	few	machine	learning	techniques.



Chapter	5.	Uncovering	Machine
Learning
Machine	learning	is	a	technique	to	teach	programs	that	use	data,	to
generate	algorithms	instead	of	explicitly	programming	an	algorithm	from
scratch.

It	is	a	field	of	computer	science	that	originates	from	the	research	into
artificial	intelligence.	It	is	closely	associated	to	statistics	and
mathematical	optimization,	which	give	methods,	theories,	and	application
domains	to	the	field.	Machine	learning	is	used	in	various	computing	tasks
where	programming	explicitly	rule-based	algorithms	is	infeasible.
Example	applications	include;	e-mail	spam	filters,	search	engines,
language	translation,	and	computer	visions.	Machine	learning	can	be
sometimes	confused	with	data	mining,	although	it	focuses	mainly	on
exploratory	data	analysis.

Here	are	some	of	the	terminologies	that	will	be	used	in	this	chapter
henceforth:

Features:	This	refers	to	distinctive	traits	that	help	define	the
outcome
Samples:	A	sample	is	an	item	to	process.	It	could	be	a	document,
image,	audio,	or	a	CSV	file
Feature	vector:	This	refers	to	numerical	features,	such	as	an	n-
dimensional	vector,	that	represents	some	object
Feature	extraction:	This	refers	to	the	processing	of	a	feature	vector
where	data	is	transformed	from	a	high-dimensional	space	to	a	lower-
dimensional	space
Training	set:	This	refers	to	a	set	of	data	that	discovers	potentially
predictive	relationships
Testing	set:	This	refers	to	a	set	of	data	that	tests	out	predications

Different	types	of	machine
learning



Machine	learning	is	divided	into	mainly	three	types	depending	on	the
nature	of	the	learning	target	or	the	feedback	available	to	the	learning
system:

1.	 Supervised	learning:	The	computer	is	presented	with	a	given	set	of
inputs	and	their	respective	outputs.	The	goal	of	the	program	is	to
learn	from	the	inputs	in	order	to	reproduce	the	outputs.

2.	 Unsupervised	learning:	There	is	no	target	variable	in	the	case	of
unsupervised	learning.	The	computer	is	left	on	its	own	to	find
patterns	within	the	data.

3.	 Reinforcement	learning:	A	program	has	to	interact	with	its
environment	in	a	dynamic	manner,	such	as	a	driving	a	car.

Supervised	learning
As	described	earlier,	a	supervised	learning	algorithm	studies	the	training
data	and	generates	a	function,	which	can	be	used	for	predicting	new
instances.



As	you	can	see	from	the	preceding	diagram,	there	is	training	data,	which
the	machine	learning	model	will	learn	from.

Let's	assume	that	the	training	data	is	a	set	of	text	that	represents	different
news	articles.	These	news	articles	can	be	related	to	sports,	international,
national,	and	various	other	categories	of	news.	These	categories	will	act
us	as	our	labels.	From	this	training	data,	we'll	derive	feature	vectors
where	each	word	could	be	a	vector	or	certain	vectors	could	be	derived
from	the	text.	For	example,	the	number	of	instances	of	the	word
"Football"	could	be	a	vector,	or	the	number	of	instances	of	the	word
"Prime	Minister"	could	be	a	vector	as	well.

These	feature	vectors	and	labels	are	fed	to	the	Machine	Learning
Algorithm,	which	learns	from	the	data.	Once	the	model	is	trained,	it	is
then	used	on	the	new	data	where	the	features	are	again	extracted	and
then	inputted	to	the	model,	which	generates	the	target	data.

Here	are	few	examples	of	supervised	machine	learning	algorithms,	which
will	be	introduced	in	this	chapter,	and	some	of	them	will	be	explained	in
detail	in	the	following	chapters:

1.	 Decision	tree
2.	 Linear	regression
3.	 Logistic	regression
4.	 The	naive	Bayes	classifier

Unsupervised	learning
As	described	earlier,	unsupervised	learning	tries	to	find	hidden	structures
in	unlabeled	data.	As	you	can	see	in	the	following	diagram,	there	is	no
label	that	is	inputted	to	the	algorithm:	



Let's	take	the	example	of	images	that	will	act	as	our	training	and	input
datasets.	The	images	contain	the	faces	of	a	human	being,	horses,	and
insects.	From	these	images,	features	are	extracted,	which	will	help
identify	the	group	that	the	images	belong	to.	These	features	are	then
inputted	to	the	unsupervised	machine	learning	algorithm.	The	algorithm
will	find	patterns	within	the	data	and	help	in	bucketing	these	images	to
the	respective	group.

This	same	algorithm	can	then	be	used	for	new	images	and	helps	in
bucketing	the	images	into	the	required	buckets.

Here	are	a	few	examples	of	unsupervised	machine	learning	algorithms,
which	will	be	introduced	in	this	chapter,	and	some	of	it	will	be	covered	in
detail	in	the	following	chapters:

1.	 The	k-means	clustering
2.	 Hierarchical	clustering

Reinforcement	learning



In	reinforcement	learning,	the	data	to	be	inputted	is	provided	as	a
stimulus	to	the	model	from	the	environment	to	which	the	machine
learning	model	must	respond	and	react.	Feedback	is	provided	not	like	a
teaching	process	as	in	the	case	of	supervised	learning,	but	as
punishments	and	rewards	in	the	environment.

The	actions	taken	by	the	agent	results	in	it	learning	from	its	outcome,
instead	of	being	explicitly	taught,	and	the	action	it	selects	is	based	on	its
past	experience	and	also	by	the	fresh	choices	made	by	it,	which	basically
means	it	is	learning	from	trial	and	error.	The	agent	receives	the
reinforcement	signal	in	the	form	of	a	numerical	reward	that	encodes	the
success	and	the	agent	seeks	to	teach	itself	to	take	actions	that	will
increase	the	accumulated	reward	over	time.

Reinforcement	learning	is	used	heavily	in	robotics	and	not	much	in	data
science.	The	following	are	the	algorithms	that	come	under	reinforcement
learning:

1.	 Temporal	difference	learning
2.	 Q	learning



Decision	trees
A	simple	predictive	model	maps	the	outcomes	of	an	item	to	the	input
data.	It	is	a	popular	predictive	modeling	technique,	which	is	used
commonly	in	the	industry:	Decision	tree	models	are	basically	of	two
types:

Classification	trees:	These	refer	to	dependent	variables	that	take	a
finite	value.	In	these	tree	structures,	branches	represent	the	rules	of
the	features	that	lead	to	the	class	labels,	and	leaves	represent	the
class	labels	of	the	outcome.
Regression	trees:	When	dependent	variables	takes	continuous
values,	then	they're	called	regression	trees.

Let's	take	an	example.	The	following	data	represents	whether	you	should
play	tennis	or	not,	based	on	the	overall	outlook	of	weather,	humidity,	and
wind	intensity:

Play Wind Humidity Outlook

No Low High Sunny

No High Normal Rain

Yes Low High Overcast

Yes Weak Normal Rain

Yes Low Normal Sunny

Yes Low Normal Overcast



Yes High Normal Sunny

If	you	take	this	data,	use	Play	as	the	target	variable,	and	the	remaining
as	the	independent	variable,	then	you'll	get	a	decision	tree	model	that	will
have	the	following	structure	as	the	rules.

So,	when	new	data	comes	in,	it	will	traverse	this	tree	to	come	to	this
conclusion,	which	will	be	the	outcome:	

Decision	trees	are	the	simplest	of	the	predictive	models	and	here	are	a
few	of	their	advantages:

1.	 It's	easy	to	communicate	and	visualize	decision	trees.
2.	 It	is	possible	to	find	odd	patterns.	Suppose	you	are	trying	to	find	the

voting	pattern	between	two	parties	for	an	election	and	you	have	data
on	the	education,	income,	sex,	and	age.	You	might	observe	a	pattern
where	highly	educated	people	have	a	very	low	income	and	vote	for	a
particular	party.

3.	 Decision	trees	make	minimal	assumptions	on	the	data.

Here	are	the	disadvantages	of	a	decision	tree:

1.	 There	is	a	high	classification	error	rate,	while	the	training	set	is	small
in	comparison	to	the	number	of	classes.

2.	 There	is	an	exponential	growth	in	computing	when	the	data	and	the
number	of	dependent	variables	increase	in	size.



3.	 There	is	a	need	for	discrete	data	for	a	particular	construction
algorithm.



Linear	regression
Linear	regression	is	an	approach	in	modeling	that	helps	model	the	scalar
linear	relationship	between	a	scalar	dependent	variable,	Y,	and	an
independent	variable,	X,	which	can	be	one	or	more	in	value:

Let's	try	to	understand	this	using	an	example.	The	following	table	shows
the	list	of	height	and	weight	of	students	in	a	class:

Height	(inches) Weight	(pounds)

50 125

58 135

63 145

68 144

70 170

79 165

84 171



75 166

65 160

If	we	run	this	through	a	simple	linear	regression	function,	which	will	be
covered	in	a	later	chapter,	with	the	weight	as	a	dependent	variable,	y,
and	the	independent	variable,	x,	which	is	the	height,	we	get	the	following
equation:

y	=	1.405405405	x	+	57.87687688

If	you	plot	the	preceding	equation	as	a	line	with	57.88	as	the	intercept
and	the	slope	of	the	line	being	1.4	on	top	of	a	scatter	plot	with	Weight	in
the	y	axis	and	Height	in	the	x	axis,	then	the	following	plot	is	obtained:

In	this	example,	the	regression	algorithm	tries	to	create	the	preceding



equation,	which	has	the	least	error	when	predicting	the	weight	of	the
student.	This	was	an	example	of	a	simple	linear	regression.	In	Chapter	6,
Performing	Predictions	with	a	Linear	Regression,	we'll	dwell	on	the
concept	of	linear	regression	further	with	multiple	variables.



Logistic	regression
Logistic	regression	is	another	supervised	learning	technique,	which	is
basically	a	probabilistic	classification	model.	It	is	mainly	used	in
predicting	a	binary	predictor,	such	as	whether	a	customer	is	going	to
churn	or	if	a	credit	card	transaction	is	fraudulent.

Logistic	regression	uses	logistics.	A	logistic	function	is	a	very	useful
function	that	can	take	any	value	from	a	negative	infinity	to	a	positive
infinity,	and	output	values	from	0	to	1.	Hence,	it	is	interpretable	as	a
probability.	The	following	is	the	logistic	function	that	generates	predicted

values	from	0	to	1	based	on	the	dependent	x	variable:	

Here,	x	will	be	the	independent	variable	and	F(x)	will	be	the	dependent
variable.

If	you	try	to	plot	the	logistic	function	from	a	negative	infinity	to	a	positive
infinity,	then	you'll	get	the	following	S	shaped	graph:	



Logistic	regression	can	be	applied	in	the	following	scenarios:

1.	 Deriving	a	propensity	score	for	a	customer	in	a	retail	store	of	buying
a	new	product	that	has	been	launched.

2.	 The	likelihood	of	a	transformer	failing	using	the	sensor	data
associated	with	it.

3.	 The	likelihood	of	a	user	clicking	on	an	ad	that	is	shown	on	a	website
based	on	their	behavior.

Logistic	regression	has	many	more	applications,	and	it	will	be	covered	in
the	following	chapters	in	greater	detail	with	examples.



The	naive	Bayes	classifier
The	naive	Bayes	classifier	is	a	simple	probabilistic	classifier,	which	is
based	on	the	Bayes	theorem.	The	assumption	made	is	that	there	is
strong	interdependence	between	the	features,	because	of	which	it	is
called	naive.	The	following	is	the	Bayes	theorem:	

Here	in	the	preceding	formula,	A	and	B	are	events,	P(A)	and	P(B)	are	the
probabilities	of	A	and	B	and	are	interdependent	of	each	other.	P(A|B)	is
the	probability	of	A,	given	that	B	is	True,	which	is	a	conditional	probability.
P(B|A)	is	the	probability	of	B,	given	that	A	is	True.	The	naive	Bayes
formula	is	as	follows:	

Let's	try	solving	this	equation	to	understand	the	naive	Bayes	formula	with
the	following	example:	Stacy	has	her	engagement	tomorrow	in	Austin	at
an	outdoor	ceremony.	In	the	past	few	years,	Austin	has	had	only	six	rainy
days	in	a	year.	Unfortunately,	there	has	been	rain	forecast	for	tomorrow
by	the	weatherman.	80%	of	the	time,	the	weatherman	accurately
forecasts	the	rain.	However,	he	incorrectly	forecasts	the	weather	20%	of
the	time	when	it	does	not	rain.	Determine	the	probability	that	it	will	rain	on
the	day	of	Stacy's	engagement.	The	following	are	some	events	based	on
which	the	probability	can	be	calculated:

AI:	This	event	states	that	it	rains	on	Stacy's	engagement
A2:	This	event	states	that	it	does	not	rain	on	Stacy's	engagement
B:	This	event	states	that	the	weatherman	predicts	rain

The	following	are	the	probabilities	based	on	the	preceding	events:

P(AI)	=	6/365	=	0.016438:	This	means	that	it	rains	six	days	out	of	the
year
P(AII)	=	359/365	=	0.98356:	This	means	that	it	does	not	rain	359
days	out	of	the	year
P(	B	|	AI	)	=	0.8:	This	means	that	80%	of	the	time,	it	rains	as



predicted	by	the	weatherman
P(	B	|	AII)	=	0.2:	This	means	that	20%	of	the	time,	it	does	not	rain	as
predicted	by	the	weatherman

The	following	formula	helps	us	in	calculating	the	naive	Bayes	probability:
P(	AI	|	B	)	=	P(AI)P(B	|	AI)/	(P(	AI	)	P(	B	|	AI)	+	P(AII)	P(	B	|	AII)	)

P(	AI	|	B)	=	(0.0164	0.8)	/	(	0.01640.8	+	0.9834	*	0.2)

P(AI	|	B)	=	0.065

So,	the	preceding	calculation	says	that	even	though	the	weatherman
predicted	rain,	there	is	only	a	6.5%	chance	that	it	will	actually	rain
according	to	the	Bayes	theorem	The	naive	Bayes	is	used	heavily	in	e-
mail	filtering.	It	takes	the	instance	of	each	word	in	an	e-mail	and
computes	the	probability	whether	the	e-mail	is	spam	is	not.	The	naive
Bayes	model	learns	from	the	previous	history	of	e-mails	and	marks	mails
as	spam,	which	helps	it	come	to	a	conclusion	on	whether	an	e-mail	is
spam	or	not.



The	k-means	clustering
The	k-means	clustering	is	an	unsupervised	learning	technique	that	helps
in	partitioning	data	of	n	observations	into	K	buckets	of	similar
observations.

The	clustering	algorithm	is	called	so	because	it	operates	by	computing
the	mean	of	the	features	which	refer	to	the	dependent	variables	based	on
which	we	cluster	things,	such	as	segmenting	of	customers	based	on	an
average	transaction	amount	and	the	average	number	of	products
purchased	in	a	quarter	of	a	year.	This	mean	value	then	becomes	the
center	of	a	cluster.	The	number	K	refers	to	the	number	of	clusters,	that	is,
the	technique	consisting	of	computing	a	K	number	of	means,	leading	to
the	clustering	of	the	data	around	these	k-means.

How	do	we	choose	this	K?	If	we	have	some	idea	of	what	we	are	looking
for	or	how	many	clusters	we	expect	or	want,	then	we	set	K	to	be	this
number	before	we	start	the	engines	and	let	the	algorithm	compute	along.



If	we	don't	know	how	many	there	are,	then	our	exploration	will	take	a	little
longer	and	involve	some	trial	and	error,	say,	as	we	try	K=3,	4,	and	5	until
we	see	that	the	clusters	are	making	some	sense	to	us	in	our	domain.

Here,	||xi	-vj||	is	the	Euclidean	distance	between	xi	and	vj,	ci	is	in	the	i	th

cluster,	the	number	of	data	points,	c	is	the	number	of	cluster	centers.

The	k-means	clustering	is	widely	used	in	computer	visions,	market
segmentations,	astronomy,	geostatistics,	and	agriculture.

The	k-means	clustering	will	be	covered	in	much	more	detail	and	with
real-life	examples	in	a	later	chapter.



Hierarchical	clustering
Hierarchical	clustering	is	an	unsupervised	learning	technique	where	a
hierarchy	of	clusters	is	built	out	of	observations.

This	clustering	groups	data	at	various	levels	of	a	cluster	tree	or
dendrogram.	It	is	not	a	single	set	of	clusters,	but	a	hierarchy	of	multiple
levels	where	clusters	at	a	particular	level	are	joined	as	clusters	on	the
next	level.	This	allows	you	to	decide	the	level	of	clustering	that	is	most
suitable.

The	hierarchical	clusters	essentially	are	of	two	types:

Agglomerative	hierarchical	clustering:	This	is	a	bottom-up
method	where	each	observation	starts	in	its	own	cluster	and	two
other	clusters	as	they	go	up	a	hierarchy
Divisive	hierarchical	clustering:	This	is	a	top-down	approach
where	observations	start	off	in	a	single	cluster	and	then	they	are	split
into	two	as	they	go	down	a	hierarchy

The	following	image	shows	Agglomerative	and	Divisive	hierarchical
clustering:



Hierarchical	clustering	will	be	explained	in	more	detail	in	later	chapters.



Summary
In	this	chapter,	you	understood	the	meaning	of	machine	learning	and	its
different	types.	You	were	introduced	to	commonly	used	machine	learning
algorithms	as	well.

In	the	next	chapter,	you'll	learn	how	to	create	linear	regression	models.



Chapter	6.	Performing	Predictions
with	a	Linear	Regression
Linear	regression	analysis	is	the	most	widely	used	of	all	statistical
techniques:	it	is	the	study	of	linear,	additive	relationships	between
variables.	It's	widely	used	in	various	industries	to	create	models,	which
will	help	in	a	business.	For	example,	in	the	retail	industry,	there	are
various	factors	affecting	the	sale	of	a	product.	These	factors	could	be	the
price,	promotions,	or	seasonal	factors,	to	name	a	few.	A	linear	regression
model	helps	in	understanding	the	influence	of	each	of	these	factors	on
the	sales	of	a	product	as	well	as	to	calculate	the	baseline	sales,	which	is
basically	the	number	of	sales	of	this	product	in	the	event	that	there	were
no	external	factors,	such	as	price,	promotions,	and	so	on.

In	the	preceding	chapter,	you	were	introduced	to	linear	regression	along
with	an	example	of	a	simple	linear	regression.	In	this	chapter,	you'll	learn
how	to	create	the	following:

A	simple	linear	regression	model
A	multiple	linear	regression	model

Simple	linear	regression
A	simple	linear	regression	has	a	single	variable,	and	it	can	be	described
using	the	following	formula:	y=	A	+	Bx

Here,	y	is	the	dependent	variable,	x	is	the	independent	variable,	A	is	the
intercept	(where	x	is	to	the	power	of	zero)	and	B	is	the	coefficient	The
dataset	that	we'll	be	using	contains	the	height	(cm)	and	weight	(kg)	of	a
sample	of	men.

The	following	code	ingests	the	data	and	creates	a	simple	scatter	plot	in
order	to	understand	the	distribution	of	the	weight	versus	the	height:

>>>	import	numpy	as	np

>>>	import	pandas	as	pd



>>>	from	scipy	import	stats

>>>	import	matplotlib.pyplot	as	plt

>>>	sl_data	=	

pd.read_csv('Data/Mens_height_weight.csv')

>>>	fig,	ax	=	plt.subplots(1,	1)	

>>>	ax.scatter(sl_data['Height'],sl_data['Weight'])

>>>	ax.set_xlabel('Height')

>>>	ax.set_ylabel('Weight')

>>>	plt.show()

The	following	is	the	output	of	the	preceding	code:	

From	the	plot,	you	can	see	that	there	is	a	linear	relationship	between	the
weight	and	height	of	the	individual.

Let's	see	how	the	variables	are	correlated	to	each	other	as	follows:

>>>	sl_data.corr()

The	preceding	code	helps	in	generating	the	following	correlation	matrix:	



We	can	clearly	see	that	the	height	and	weight	are	clearly	correlated	to
each	other	based	on	a	Pearson	correlation	value	coefficient	of	0.	94.	A
Pearson	correlation	ranges	from	-1	to	+1,	so	when	the	number	is	more
positive,	the	relation	between	the	two	variables	is	much	stronger	if	they
increase	or	decrease	together.	If	the	correlation	value	is	negative,	then
the	relation	between	the	two	variables	is	strong,	but	is	in	the	opposite
direction.

Let's	generate	a	linear	regression	model	with	the	weight	as	the
dependent	variable	and	x	as	the	independent	variable:

>>>#	Create	linear	regression	object

>>>	lm	=	linear_model.LinearRegression()

>>>#	Train	the	model	using	the	training	sets

>>>	lm.fit(sl_data.Height[:,np.newaxis],	

sl_data.Weight)

>>>	print	'Intercept	is	'	+	str(lm.intercept_)	+	'\n'

Intercept	is	-99.2772096063

>>>	print	'Coefficient	value	of	the	height	is	'	+	

str(lm.coef_)	+	'\n'

Coefficient	value	of	the	height	is	[	1.00092142]

>>>	print	pd.DataFrame(zip(sl_data.columns,lm.coef_),	

columns	=	['features',	'estimatedCoefficients'])

This	is	the	output	of	preceding	code:

In	the	preceding	code,	we	use	linear_model.LinearRegression()	to
create	a	linear	regression	object,	lm.	We	then	use	the	fit()	method	of	lm
to	define	the	dependent	and	independent	variable,	where	in	our	case,	the
weight	is	the	dependent	variable	and	the	height	is	the	independent
variable.

To	get	the	intercept	value,	we	use	lm.intercept_,	and	to	get	the



coefficient,	we	use	the	lm.coef.

The	last	line	of	the	code	helps	in	creating	a	DataFrame	of	the
independent	variable	and	its	corresponding	coefficients.	This	will	be
useful	when	we	explore	multiple	regression	in	detail.

We'll	now	plot	the	scatter	chart	again	with	a	trend	line:

>>>	fig,	ax	=	plt.subplots(1,	1)	

>>>	ax.scatter(sl_data.Height,sl_data.Weight)

>>>	

ax.plot(sl_data.Height,lm.predict(sl_data.Height[:,	

np.newaxis]),	

																			color	=	'red')

>>>	ax.set_xlabel('Height')

>>>	ax.set_ylabel('Weight')

>>>	plt.show()

Here	is	the	output	of	the	preceding	code:



Multiple	regression
Multiple	linear	regression	occurs	when	more	than	one	independent
variable	is	used	to	predict	a	dependent	variable:

Where,	Y	is	the	dependent	variable,	a	is	the	intercept,	b1	and	b2	are	the
coefficients,	and	x1	and	x2	are	the	independent	variables

Also,	note	that	squaring	the	dependent	variable	still	makes	it	linear,	but	if
the	coefficient	is	squared,	then	it	is	nonlinear.

To	build	the	multiple	linear	regression	model,	we'll	utilize	the	NBA's
basketball	data	to	predict	the	average	points	scored	per	game

The	following	are	the	column	descriptions	of	the	data:

height:	This	refers	to	the	height	in	feet
weight:	This	refers	to	the	weight	in	pounds
success_field_goals:	This	refers	to	the	percentage	of	successful
field	goals	(out	of	100	that	were	attempted)
success_free_throws:	This	refers	tot	the	percentage	of	successful
free	throws	(out	of	100	that	were	attempted)
avg_points_scored:	This	refers	to	the	average	points	scored	per
game

The	following	code	ingests	this	data	and	then	we	use	the	descibe()
method	of	the	DataFrame	to	get	the	univariate	metrics	on	each	of	the
fields:

>>>	b_data	=	pd.read_csv('Data/basketball.csv')

>>>	b_data.describe()

Here	is	the	output	of	the	preceding	code:



From	the	preceding	table,	we	get	an	understanding	of	the	data.	The
following	observations	can	be	made:

1.	 The	average	height	of	a	basketball	player	is	around	6.5	feet.
2.	 The	shortest	player	is	5.7	feet.
3.	 The	tallest	player	is	7.7	feet	(Shaquille	O'Neal	stands	at	7.1	feet).
4.	 The	player	with	the	least	weight	is	at	105	pounds,	which	is	quite

obscure.
5.	 The	heaviest	player	is	263	pounds.
6.	 The	best	field	goal	percentage	for	a	player	is	60%.
7.	 The	worst	field	goal	percentage	for	a	player	is	29%.
8.	 The	average	field	goal	attempt	for	a	player	is	45	%,	but	from	the

small	standard	deviation,	we	can	see	that	a	majority	of	the	players
have	a	field	goal	percentage	between	40	and	50%.

9.	 Among	free	throws,	there	is	a	player	who	misses	3/4th	of	the	time.
10.	 The	best	free	throw	player	has	a	90%	success	rate.
11.	 Most	of	the	players	have	a	success	percentage	for	free	throws	of

around	70	to	80%.
12.	 The	highest	score	scored	per	game	by	a	player	is	27.
13.	 The	least	scored	is	3.
14.	 On	an	average,	the	players	score	12	points.

Let's	see	the	correlation	between	the	variables:

>>>	b_data.corr()

The	following	is	the	output	of	the	preceding	code:



From	the	preceding	table,	we	can	see	the	following:

1.	 There	is	a	high	correlation	between	height	and	weight.
2.	 There	is	a	weak	positive	correlation	between	successful	field	goals	in

terms	of	height	and	weight.
3.	 The	average	points	scored	seem	to	have	the	maximum	correlation

with	success_field_goals,	but	they're	not	highly	correlated.

Let's	see	the	distribution	of	each	of	the	independent	variables	with
respect	to	the	dependent	variable:

>>>	fig,	ax	=	plt.subplots(1,	1)	

>>>	ax.scatter(b_data.height,	

b_data.avg_points_scored)

>>>	ax.set_xlabel('height')

>>>	ax.set_ylabel('Average	points	scored	per	game')

>>>	plt.show()

Here	is	the	output	of	the	preceding	code:



In	the	preceding	scatter	plot,	we	can	see	that	there	is	no	clear	pattern
between	the	average	points	scored	and	the	height.	The	distribution	looks
quite	random.

Let's	look	at	the	distribution	between	average	points	scored	and	the
weight:

>>>	fig,	ax	=	plt.subplots(1,	1)	

>>>	ax.scatter(b_data.weight,	

b_data.avg_points_scored)

>>>	ax.set_xlabel('weight')

>>>	ax.set_ylabel('Average	points	scored	per	game')

>>>	plt.show()

Here	is	the	output	of	the	preceding	code:

We	can	see	that	105	pounds	seems	like	an	outlier	and	also	has	a
relatively	lower	average	point	score.	We	can	also	see	that	the	players
who	are	almost	240	pounds	have	the	maximum	variations	in	terms	of
score,	so	a	hypothesis	can	be	made	that	the	taller	and	heavier	players
have	a	greater	score,	while	the	shorter	and	heavier	players	have	a	lower
score.

Now,	let's	look	at	the	distribution	between	successful	field	goals	and	the
average	points	scored:



>>>	fig,	ax	=	plt.subplots(1,	1)	

>>>	ax.scatter(b_data.success_field_goals,	

b_data.avg_points_scored)

>>>	ax.set_xlabel('success_field_goals')

>>>	ax.set_ylabel('Average	points	scored	per	game')

>>>	plt.show()

Here	is	the	output	of	the	preceding	code:

The	success_field_goals	variable	has	some	linear	relationship	with	the
average	points	scored,	but	the	distribution	is	still	quite	scattered.

Let's	finally	look	at	the	distribution	between	successful	free	throws	and
the	average	points	scored	per	game:

>>>	fig,	ax	=	plt.subplots(1,	1)

>>>	ax.scatter(b_data.success_free_throws,	

b_data.avg_points_scored)

>>>	x.set_xlabel('success_free_throws')

>>>	ax.set_ylabel('Average	points	scored	per	game')

>>>	plt.show()

Here	is	the	output	of	the	preceding	code:



We	can	see	that	there	is	a	player	whose	free	throws	are	quite	bad,	but
the	average	points	scored	seem	to	be	close	to	average	as	compared	to
other	players,	which	means	that	he	would	be	better	at	half	field	goals	or
he	would	make	a	lot	of	attempts	to	score.	The	overall	distribution	here	is
also	quite	scattered.

From	the	preceding	analysis	of	the	correlation	and	distribution,	we	can
see	that	there	are	no	clear-cut	patterns	between	the	average	points
scored	and	the	independent	variables.	It	can	be	expected	that	the	model
that	will	be	built	with	the	existing	data	won't	be	highly	accurate.



Training	and	testing	a	model
Let's	take	the	data	and	divide	it	into	training	and	test	sets:

>>>	from	sklearn	import	linear_model,cross_validation,	

																			feature_selection,preprocessing

>>>	import	statsmodels.formula.api	as	sm

>>>	from	statsmodels.tools.eval_measures	import	mse

>>>	from	statsmodels.tools.tools	import	add_constant

>>>	from	sklearn.metrics	import	mean_squared_error

>>>	X	=	b_data.values.copy()	

>>>	X_train,	X_valid,	y_train,	y_valid	=	

																					

cross_validation.train_test_split(	X[:,	:-1],	X[:,	

-1],	

																					train_size=0.80)

We	first	convert	the	data	frame	into	an	array	structure	using
values.copy()	of	b_data.	We	then	use	the	train_test_split	function	of
cross_validation	from	SciKit	to	divide	the	data	into	training	and	test	set
for	80%	of	the	data.

We'll	learn	how	to	build	the	linear	regression	models	using	the	following
packages:

The	statsmodels	module
The	SciKit	package

Even	pandas	provides	an	Ordinary	Least	Square	(OLS)	regression,
which	you	can	experiment	with	after	you've	completed	this	chapter.	The
ordinary	least	square	is	a	method	to	estimate	unknown	coefficients	and
intercepts	for	a	regression	equation.	We'll	start	off	the	with	the
statsmodels	package.	The	statsmodels	is	a	Python	module	that	allows
users	to	explore	data,	estimate	statistical	models,	and	perform	statistical
tests.	An	extensive	list	of	descriptive	statistics,	statistical	tests,	plotting
functions,	and	result	statistics	is	available	for	different	types	of	data	and
each	estimator:



>>>	result	=	sm.OLS(	y_train,	add_constant(X_train)	

).fit()

>>>	result.summary()

The	OLS	function	helps	in	creating	the	linear	regression	object	with	a
dependent	and	independent	variable.	The	fit()	method	helps	in	fitting
the	model.	Note	that	there	is	a	add_constant()	function,	which	is	used	to
calculate	the	intercept	while	creating	the	model.	By	default,	the	OLS()
function	won't	calculate	the	intercept,	and	it	has	to	be	explicitly	mentioned
with	the	the	help	of	the	add_constant	function.	The	following	image	shows
the	summary	of	the	regression	model	that	we	trained	earlier,	which
shows	the	various	metrics	associated	with	the	model:	

The	preceding	summary	gives	quite	a	lot	of	information	about	the	model.



The	main	parameter	to	look	for	is	the	r	square	value,	which	tells	you	how
much	of	the	variance	of	the	dependent	variable	is	captured	by	the	model.
It	ranges	from	0	to	1,	and	the	p	value	tells	us	if	the	model	is	significant.

From	the	preceding	output,	we	can	see	that	the	R-square	value	is	0.265,
which	isn't	great.	We	can	see	that	the	model	shows	x3	as	the	most
significant	variable,	which	is	the	success_field_goals	variable.	As	a	rule
of	thumb,	any	p	value	of	a	variable	less	than	0.05	can	be	considered
significant.

Let's	recreate	the	model	with	only	the	successful	field	goals	variable	and
see	how	the	model	performs:

>>>	result_alternate	=	sm.OLS(	y_train,	

																			add_constant(X_train[:,2])	).fit()

>>>	result_alternate.summary()



We	can	see	that	the	variable	has	become	less	significant,	and	the	r
square	value	has	become	really	low.	The	preceding	model	can	be
iterated	multiple	times	with	the	different	combination	of	variables	till	the
best	model	is	arrived	at.

Let's	apply	both	the	models	on	the	test	data	and	see	how	the	mean
squared	error	between	the	actual	and	the	predicted	value	is.	The	model
that	gives	the	least	mean	squared	error	is	a	good	model:

>>>	ypred	=	result.predict(add_constant(X_valid))

>>>	print	mse(ypred,y_valid)

35.208

In	the	following	code,	we	use	the	predict	function	of	the	regression	model
object	to	predict	the	given	test	dataset:

>>>	ypred_alternate	=	

result_alternate.predict(add_constant(X_valid[:,	2]))

>>>	print	mse(ypred_alternate,y_valid)

26.3

We	can	see	that	the	second	model	has	a	lower	mean	squared	error	as
compared	to	the	first	one.

Let's	also	plot	the	predicted	versus	actual	plot	for	both	the	models:

>>>	fig,	ax	=	plt.subplots(1,	1)	

>>>	ax.scatter(y_valid,	ypred)

>>>	ax.set_xlabel('Actual')

>>>	ax.set_ylabel('Predicted')

>>>	plt.show()

Here	is	the	output	for	the	preceding	code:



Now,	let's	plot	the	scatter	for	the	alternate	model:

>>>	fig,	ax	=	plt.subplots(1,	1)	

>>>	ax.scatter(y_valid,	ypred_alternate)

>>>	ax.set_xlabel('Actual')

>>>	ax.set_ylabel('Predicted')

>>>	plt.show()

Here	is	the	output	for	the	preceding	code:



This	clearly	shows	that	our	models	are	not	good	enough	since	the
predictions	are	quite	random.

To	make	a	highly	accurate	model,	we	need	some	more	variables,	which
have	an	influence	on	the	average	points	that	are	scored.

The	preceding	model	was	constructed	using	the	statsmodels	package.
We'll	now	build	a	model	using	SciKit.

The	following	code	creates	a	Linear	Regression	object	and	then	fits	it
with	dependent	and	independent	variables:

#	Create	linear	regression	object

>>>	lm	=	linear_model.LinearRegression()

#	Train	the	model	using	the	training	sets

>>>	lm.fit(X_train,	y_train)

>>>	print	'Intercept	is	%f'	%	lm.intercept_)	

Intercept	is	15.5129271596

>>>	pd.DataFrame(zip(b_data.columns,lm.coef_),	columns	

=	['features',	'estimatedCoefficients'])

Here	is	the	output	of	the	preceding	code:



The	coefficient	and	intercepts	are	similar	to	the	model	that	was	built	using
the	statsmodels	package.

To	calculate	the	r	square	in	SciKit,	the	cross-validation	module	of	the
SciKit	package	is	utilized:

>>>	cross_validation.cross_val_score(lm,	X_train,	

y_train,	scoring='r2')

array([-0.3043391	,	-0.42402161,		0.26890649])

Multiple	runs	of	the	cross-validation	takes	place	and,	by	default,	it	is	3
due	to	which	you	can	see	three	values	in	the	preceding	output.	The
highest	value	is	of	relevance	and	you	can	see	that	it	is	similar	to	the	one
we	built	with	the	statsmodels.

Let's	see	how	the	mean	squared	error	is	calculated:

>>>	ypred	=	lm.predict(X_valid)

>>>	mean_squared_error(ypred,y_valid)

35.208

We	used	the	mean_squared_error	function	of	the	SciKit	package	here.

Finally,	the	actual	versus	the	predicted	plot	will	be	same	as	the	first
model	plot	of	statsmodels:

>>>	fig,	ax	=	plt.subplots(1,	1)	

>>>	ax.scatter(y_valid,	ypred)

>>>	ax.set_xlabel('Actual')

>>>	ax.set_ylabel('Predicted')



>>>	plt.show()

Here	is	the	output	for	the	preceding	code:



Summary
In	this	chapter,	we	learned	how	to	create	a	simple	linear	regression
model	followed	by	multiple	regressions,	where	there	was	an	initial
inspection	analysis	done	on	the	data	in	order	to	understand	it.	We	then
created	regression	models	using	the	statsmodels	and	SciKit	package.

In	the	next	chapter,	we'll	learn	how	to	perform	the	probability	scoring	of
an	event	that	takes	place	using	logistic	regression.



Chapter	7.	Estimating	the
Likelihood	of	Events
Logistic	regression	is	a	type	of	regression	analysis	that	helps	in
estimating	the	likelihood	of	an	event	to	occur	based	on	some	given
parameters.	It	is	used	as	a	classification	technique	with	a	binary
outcome.	The	probabilities	describing	the	possible	outcomes	of	a	single
trial	are	modeled,	as	a	function	of	the	explanatory	(predictor)	variables,
using	a	logistic	function.

You	have	been	already	introduced	to	Logisitc	regression	in	Chapter	5,
Uncovering	Machine	Learning.	In	this	chapter,	you'll	learn	to:

Build	a	logistic	regression	model	with	statsmodels
Build	a	logistic	regression	model	with	SciKit
Evaluate	and	test	the	model

Logistic	regression
We'll	use	the	Titanic	dataset,	which	was	utilized	in	Chapter	3,	Finding	a
Needle	in	a	Haystack,	to	help	us	build	the	logistic	regression	model.
Since	we	have	already	explored	the	data,	we	won't	be	performing	any
exploratory	data	analysis	as	we	already	have	a	context	for	this	data.

This	is	a	recap	of	the	field	descriptions	of	the	Titanic	dataset:

Survival:	This	refers	to	the	survival	of	the	passengers	(0	=	No	and	1
=	Yes)
Pclass:	This	refers	to	the	passenger	class	(1	=	1st,	2	=	2nd,	and	3	=
3rd)
Name:	This	refers	to	the	names	of	the	passengers
Sex:	This	refers	to	the	gender	of	the	passengers
Age:	This	refers	to	the	age	of	the	passengers
Sibsp:	This	refers	to	the	number	of	siblings/spouses	aboard
Parch:	This	refers	to	the	number	of	parents/children	aboard
Ticket:	This	refers	to	the	ticket	number



Fare:	This	refers	to	the	passenger	fares
Cabin:	This	refers	to	the	cabin
Embarked:	This	refers	to	the	port	of	embarkation	(C	=	Cherbourg,	Q
=	Queenstown,	and	S	=	Southampton)

Data	preparation
Let's	start	off	by	reading	the	data:

>>>	df	=	pd.read_csv('Data/titanic	data.csv')

Let's	clean	the	data	a	bit	by	taking	care	of	columns	that	have	lots	of
missing	values:

>>>	df.count(0)

We	can	see	that	the	Ticket	and	Cabin	columns	won't	add	much	value	to
the	model	building	process	as	the	Ticket	column	is	basically	a	unique
identifier	for	each	passenger	and	the	Cabin	column	is	mostly	empty.	Also,
we'll	remove	the	rows	with	the	missing	values.

We'll	remove	these	two	columns	from	our	DataFrame:

>>>	#	Applying	axis	as	1	to	remove	the		columns	with	

the	following	labels

>>>	df	=	df.drop(['Ticket','Cabin','Name'],	axis=1)

>>>	#	Remove	missing	values



>>>	df	=	df.dropna()

Creating	training	and	testing	sets
In	the	preceding	code,	we	removed	the	Ticket,	Cabin,	and	Name	columns,
followed	by	the	missing	values.

We'll	use	a	Python	package	called	Patsy,	which	helps	in	describing
statistical	models.	It	helps	in	defining	a	dependent	and	independent
variable	formula	that	is	similar	to	R.	The	variable	that	is	defined	left	of	'~'
is	the	dependent	variable,	and	the	variable	that	is	defined	to	right	of	it	are
the	independent	variables.	The	variables	enclosed	within	C()	are	treated
as	categorical	variables.

Now,	we'll	create	the	training	and	test	sets	from	the	data:

>>>	formula	=	'Survived	~	C(Pclass)	+	C(Sex)	+	Age	+	

SibSp		+	C(Embarked)	+		Parch'	

>>>	#	create	a	results	dictionary	to	hold	our	

regression	results	for	easy	>>>	#	analysis	later

>>>	df_train	=	df.iloc[	0:	600,	:	]

>>>	df_test	=	df.iloc[	600:	,	:	]

>>>	#Splitting	the	data	into	dependent	and	independent	

variables

>>>	y_train,x_train	=	dmatrices(formula,	

data=df_train,	return_type='dataframe')

>>>	y_test,x_test	=	dmatrices(formula,	data=df_test,	

return_type='dataframe')

In	the	preceding	code,	we	define	the	equation	in	the	formula	variables
where	survived	is	the	dependent	variable	and	the	ones	to	the	right	of	it
are	the	independent	variables.	After	this,	we	take	the	first	600	rows	as	the
training	set	and	the	remaining	rows	in	the	df	DataFrame	as	the	test	set.

Finally,	we	use	the	dmatrices	of	the	Patsy	package,	which	takes	in	the
formula	and	input	a	DataFrame	to	create	a	DataFrame.	This	is	ready	to
be	inputted	to	the	modeling	functions	of	statsmodels	and	SciKit.

Building	a	model



We'll	use	the	statsmodels	package	to	build	a	model:

>>>	#	instantiate	our	model

>>>	model	=	sm.Logit(y_train,x_train)

>>>	res	=	model.fit()

>>>	res.summary()

Here	is	the	output	of	the	preceding	code:

We	can	see	that	the	Maximum	Likelihood	Estimation	has	been	used	to
predict	the	coefficients.	The	pseudo	r	square	is	similar	to	the	r	square	of
linear	regression,	which	is	used	to	measure	the	goodness	of	it.	A	pseudo
r	square	value	between	0.2	and	0.4	is	considered	good	that	we	have	got
a	value	of	0.33.

From	the	preceding	table,	we	can	see	that	the	port	of	embarkation	and
number	of	parents/children	are	significant	predictors	as	their	p-values	are



higher	than	0.05.

We'll	rebuild	the	model	by	using	predictors,	such	as	class,	age,	sex	and
number	of	siblings:

>>>	formula	=	'Survived	~	C(Pclass)	+	C(Sex)	+	Age	+	

SibSp	'	

>>>	y_train,x_train	=	dmatrices(formula,	

data=df_train,	return_type='dataframe')

>>>	y_test,x_test	=	dmatrices(formula,	data=df_test,	

return_type='dataframe')

>>>	#	instantiate	our	model

>>>	model	=	sm.Logit(y_train,x_train)

>>>	res	=	model.fit()

>>>	res.summary()

We	can	see	that	all	the	predictors	are	significant	in	the	preceding	model.

Model	evaluation



Now,	let's	see	the	distribution	of	the	predictions	on	the	training	data	with
the	following	code:

>>>	kde_res	=	KDEUnivariate(res.predict())

>>>	kde_res.fit()

>>>	plt.plot(kde_res.support,kde_res.density)

>>>	plt.fill_between(kde_res.support,kde_res.density,	

alpha=0.2)

>>>	plt.title("Distribution	of	our	Predictions")

In	the	preceding	code,	we	use	the	kernel	density	estimation	to	find	the
probability	density	of	the	predicted	values.	This	helps	us	to	understand
which	areas	of	the	predicted	probability	are	denser.

From	the	preceding	plot,	we	can	see	that	the	density	is	higher	near	the
probabilities	of	0	and	1,	which	is	a	good	sign	and	shows	that	the	model	is
able	to	predict	some	patterns	from	the	data	given.	It	also	shows	that	the
density	is	the	highest	near	0,	which	means	that	a	lot	of	people	did	not
survive.	This	proves	the	analysis	we	performed	in	Chapter	3,	Finding	a
Needle	in	a	Haystack.

Let's	see	the	prediction	distribution	based	on	the	male	gender:

>>>	plt.scatter(res.predict(),x_train['C(Sex)

[T.male]']	,	alpha=0.2)

>>>	plt.grid(b=True,	which='major',	axis='x')

>>>	plt.xlabel("Predicted	chance	of	survival")

>>>	plt.ylabel("Male	Gender")



>>>	plt.title("The	Change	of	Survival	Probability	by	

Gender	being	Male")

In	the	preceding	code,	we	created	a	scatter	plot	between	the	predicted
probability	of	survival	and	a	flag	indicating	that	the	passengers	are	male.

We	can	see	that	the	model	prediction	shows	that	if	the	passenger	is
male,	then	the	chances	of	survival	are	lower	compared	to	females.	This
was	also	shown	in	our	analysis	in	Chapter	3,	Finding	a	Needle	in	a
Haystack,	where	it	was	seen	that	females	had	a	higher	survival	rate.

Now,	let's	see	the	distribution	of	the	prediction	based	on	the	lower	class
of	the	passengers:

>>>	plt.scatter(res.predict(),x_train['C(Pclass)

[T.3]']	,	alpha=0.2)

>>>	plt.xlabel("Predicted	chance	of	survival")

>>>	plt.ylabel("Class	Bool")	#	Boolean	class	to	show	

if	its	3rd	class

>>>	plt.grid(b=True,	which='major',	axis='x')

>>>	plt.title("The	Change	of	Survival	Probability	by	

Lower	

																							Class	which	is	3rd	class")



We	can	see	that	the	lower	class	passengers	have	a	lower	probability	of
survival	as	the	probability	is	more	concentrated	toward	0	when	compared
to	the	other	classes.

Let's	see	the	distribution	of	the	probability	with	respect	to	the	age	of	the
passengers:

>>>	plt.scatter(res.predict(),x_train.Age	,	alpha=0.2)

>>>	plt.grid(True,	linewidth=0.15)

>>>	plt.title("The	Change	of	Survival	Probability	by	

Age")

>>>	plt.xlabel("Predicted	chance	of	survival")

>>>	plt.ylabel("Age")



If	you	observe	the	preceding	plot,	it	can	be	seen	that	as	the	age	of	the
passenger	increases,	the	probability	leans	toward	the	left-hand	side	of
the	graph,	which	shows	that	elderly	people	have	a	lower	probability	of
survival.

Let's	see	the	distribution	of	the	probability	with	respect	to	the	number	of
siblings/spouses:

>>>	plt.scatter(res.predict(),x_train.SibSp	,	

alpha=0.2)

>>>	plt.grid(True,	linewidth=0.15)

>>>	plt.title("The	Change	of	Survival	Probability	by	

Number	of	

																					siblings/spouses")

>>>	plt.xlabel("Predicted	chance	of	survival")

>>>	ylabel("No.	of	Siblings/Spouses")

From	the	preceding	graph,	the	only	pattern	we	can	see	is	that
passengers	with	four	to	five	siblings/spouses	had	a	lower	probability	of
survival.	For	the	remaining	passengers,	there	is	a	more	or	less	random
distribution.

Evaluating	a	model	based	on	test	data
Let's	predict	by	using	the	model	on	the	test	data	and	also	show	the
performance	of	the	model	through	precision	and	recall	by	maintaining	a
threshold	of	0.7:



>>>	y_pred	=	res.predict(x_test)

>>>	y_pred_flag	=	y_pred	>	0.7

>>>	print	pd.crosstab(y_test.Survived

																						,y_pred_flag

																					,rownames	=	['Actual']

																					,colnames	=	['Predicted'])

>>>	print	'\n	\n'

>>>	print	classification_report(y_test,y_pred_flag)

In	the	preceding	code,	we	get	the	predicted	probability	on	the	test	data
followed	by	assigning	True	or	False	for	an	event	based	on	the	threshold
of	0.7.	We	use	the	crosstab	function	of	pandas,	which	helps	in	displaying
the	frequency	distribution	between	two	variables.	We'll	use	this	to	get	the
crosstab	between	the	actual	and	predicted	values,	and	then	we	will	use
the	classification_report	function	of	SciKit	to	get	the	precision	and

recall	values:	

The	following	image	shows	the	precision	and	recall	on	the	test	data:

We	can	see	that	all	the	nonsurvivors	have	been	predicted	correctly,	but
the	model	is	able	to	predict	only	half	of	the	survivors	correctly	based	on
the	0.7	threshold.	Note	that	the	precision	and	recall	values	will	vary	with
the	threshold	that	is	used.

Let's	understand	what	precision	and	recall	mean.

Precision:	Precision	tells	you	that	among	all	the	predictions	of	class
0	or	class	1,	how	many	of	them	have	been	correctly	predicted.	So,	in



the	preceding	case,	76%	of	the	prediction	of	nonsurvivors	is	correct
and	100%	of	the	prediction	of	those	who	have	survived	is	correct.
Recall:	Recall	tells	you	that	out	of	the	actual	instances,	how	many	of
them	have	been	predicted	correctly.	So,	in	the	preceding	case,	all
the	people	who	did	not	survive	have	been	predicted	correctly	with	an
accuracy	of	100%,	but	of	all	the	people	who	survived,	only	53%	of
them	have	been	predicted	correctly.

Let's	plot	the	Receiver	Operating	Characteristic	(ROC)	curve,	which
will	be	explained	as	follows:

>>>	#	Compute	ROC	curve	and	area	the	curve

>>>	fpr,	tpr,	thresholds	=	roc_curve(y_test,	y_pred)

>>>	roc_auc	=	auc(fpr,	tpr)

>>>	print	"Area	under	the	ROC	curve	:	%f"	%	roc_auc

Area	under	the	ROC	curve	:	0.879934

The	area	under	the	curve	is	0.87,	which	is	a	good	value.	In	the	preceding
code,	we	use	the	roc_curve	function	to	get	the	False	and	True	Positive
rates,	respectively,	which	are	defined	as	follows:	The	False	Positive	rate

is	 	which	is	also	called	fallout,	and	the	True	Positive	rate	is	

	which	is	also	called	sensitivity.

Here	are	some	of	our	observations:

False	Positive	(FP):	This	is	a	positive	prediction,	which	is	actually
wrong.	So,	in	the	preceding	crosstab,	0	is	False	Positive
True	Positive(TP):	This	is	a	positive	prediction,	which	is	actually
right.	So,	in	the	preceding	crosstab,	24	is	True	Positive
True	Negative	(TN):	This	is	a	negative	prediction,	which	is	actually
right.	So,	in	the	above	crosstab,	67	is	True	Negative
False	Negative	(FN):	This	is	a	negative	prediction,	which	is	actually
wrong.	So,	in	the	preceding	cross	tab,	21	is	False	Negative

So,	a	False	Positive	rate	tells	us	that	among	all	the	people	who	did	not
survive,	what	percentage	have	been	predicted	as	survived.	The	True
Positive	rate	tells	us	that	among	all	the	people	who	survived,	what



percentage	of	them	have	been	predicted	as	survived.	Ideally,	False
Positive	rates	should	be	low	and	True	Positive	rates	should	be	high.

The	roc_curve	function	is	created	by	taking	the	TPR	and	FPR	at	different
threshold	values	and	then	plotting	them	against	each	other.

The	roc_curve	function	gives	the	False	and	True	Positive	rates	at
different	thresholds,	and	this	will	be	utilized	to	plot	the	ROC	curve:

>>>	#	Plot	ROC	curve

>>>	plt.clf()

>>>	plt.plot(fpr,	tpr,	label='ROC	curve	(area	=	

%0.2f)'	%	roc_auc)

>>>	plt.plot([0,	1],	[0,	1],	'k--')

>>>	plt.xlim([0.0,	1.0])

>>>	plt.ylim([0.0,	1.0])

>>>	plt.xlabel('False	Positive	Rate')

>>>	plt.ylabel('True	Positive	Rate')

>>>	plt.title('Receiver	operating	characteristic	

example')

>>>	plt.legend(loc="lower	right")

>>>	plt.show()

Accuracy	is	measured	by	the	area	under	the	ROC	curve.	An	area	of	1
represents	a	perfect	test;	an	area	of	0.5	represents	that	the	model	is	as
good	as	a	random	guess.	A	rough	guide	to	classify	the	accuracy	of	a
diagnostic	test	is	the	traditional	academic	point	system	as	follows:

Range Category



0.90-1 This	refers	to	excellent	(A)

0.80-0.90 This	refers	to	good	(B)

0.70-0.80 This	refers	to	fair	(C)

0.60-0.70 This	refers	to	poor	(D)

0.50-0.60 This	refers	to	fail	(F)

The	dotted	line	in	the	preceding	graph	has	an	AUC	of	0.50,	which	is	not
good.	Our	model	gives	us	an	AUC	of	0.88,	which	is	really	good	and	is	the
blue	line	on	the	graph.

Model	building	and	evaluation	with
SciKit
Let's	build	the	same	model	shown	earlier	by	using	SciKit:

>>>	#	instantiate	a	logistic	regression	model,	and	fit	

with	X	and	y

>>>	model	=	LogisticRegression()

>>>	model	=	model.fit(x_train,	y_train.Survived)

In	the	preceding	code,	we	create	an	object	of	the	LogisticRegression
method	and	then	fit	the	model	using	our	training	data:

>>>	#	examine	the	coefficients

>>>	pd.DataFrame(zip(x_train.columns,	

np.transpose(model.coef_)))



The	first	column	contains	our	dependent	variable	name	and	the	second
column	contains	the	coefficient	values.	We	can	see	that	the	coefficients
of	our	predictor	are	similar	but	not	same	as	the	model	built	using	the
statsmodels	package.

Let's	see	how	our	precision	and	recall	are	performing:

>>>	y_pred	=	model.predict_proba(x_test)

>>>	y_pred_flag	=	y_pred[:,1]	>	0.7

>>>	print	pd.crosstab(y_test.Survived

																					,y_pred_flag

																					,rownames	=	['Actual']

																					,colnames	=	['Predicted'])

>>>	print	'\n	\n'

>>>	print	classification_report(y_test,y_pred_flag)

The	following	shows	the	precision	and	recall	on	the	test	data:	



We	can	see	that	there	is	a	slight	difference	in	performance	compared	to
the	previous	model	that	we	created.	There	are	two	instances	of	positive
predictions	that	have	shifted	to	negative	predictions.

Let's	compute	the	ROC	and	area	under	the	curve:

>>>	#	Compute	ROC	curve	and	area	the	curve

>>>	fpr,	tpr,	thresholds	=	roc_curve(y_test,	

y_pred[:,1])

>>>	roc_auc	=	auc(fpr,	tpr)

>>>	print	"Area	under	the	ROC	curve	:	%f"	%	roc_auc

Area	under	the	ROC	curve	:0.878275

It's	nearly	the	same	but	slightly	less	than	the	AUC	of	the	previous	model.

Let's	plot	the	ROC	curve,	which	will	be	almost	identical	to	the	previous
model:

>>>	#	Plot	ROC	curve

>>>	plt.clf()

>>>	plt.plot(fpr,	tpr,	label='ROC	curve	(area	=	

%0.2f)'	%	roc_auc)

>>>	plt.plot([0,	1],	[0,	1],	'k--')

>>>	plt.xlim([0.0,	1.0])

>>>	plt.ylim([0.0,	1.0])

>>>	plt.xlabel('False	Positive	Rate')

>>>	plt.ylabel('True	Positive	Rate')

>>>	plt.title('Receiver	operating	characteristic	

example')

>>>	plt.legend(loc="lower	right")

>>>	plt.show()





Summary
In	this	chapter,	you	learned	the	purpose	of	logistic	regression.	You
learned	how	to	build	a	logistic	regression	model	using	statsmodels	and
SciKit,	and	then	how	to	evaluate	the	model	and	see	whether	it's	a	good
model	or	not.

In	the	next	chapter,	you'll	learn	how	to	generate	recommendations,	such
as	the	ones	you	see	on	http://www.amazon.com/,	where	you'll	be
recommended	new	items	based	on	your	purchase	history.	Similar	items
can	also	be	shown	to	you	based	on	the	product	that	you	are	currently
browsing.

http://www.amazon.com/


Chapter	8.	Generating
Recommendations	with
Collaborative	Filtering
Collaborative	filtering	is	the	process	of	filtering	for	information	or	patterns
using	techniques	including	collaboration	among	multiple	agents,
viewpoints,	data	sources,	and	so	on.	Collaborative	filtering	methods	have
been	applied	to	many	different	kinds	of	data,	including	sensing	and
monitoring	data,	such	as	mineral	exploration,	environmental	sensing	over
large	areas	or	multiple	sensors;	financial	data,	such	as	financial	service
institutions	that	integrate	many	financial	sources;	or	in	electronic
commerce	and	web	applications	where	the	focus	is	on	user	data	and	so
on.

The	basic	principle	behind	the	collaborative	filtering	approach	is	that	it
tries	to	find	people	who	are	similar	to	each	other	by	looking	at	their
tastes.	Let's	say	if	a	person	primarily	likes	action	movies,	then	it	will	try	to
find	a	person	who	has	seen	similar	kinds	of	movies	and	it	will	try	to
recommend	the	one	that	hasn't	been	seen	by	the	first	person,	but	seen
by	the	second	person.

We'll	be	focusing	on	the	following	types	of	collaborative	filtering	in	this
chapter:

User-based	collaborative	filtering
Item-based	collaborative	filtering

Recommendation	data
We	will	use	a	set	of	users	who	have	given	ratings	to	the	movies	of	their
choice.	The	following	is	a	dictionary	object	containing	the	different	users
in	the	form	of	keys	and	their	values	in	the	form	of	a	dictionary	of	movies,
with	each	movie's	value	being	the	rating	given	by	a	user:

movie_user_preferences={'Jill':	{'Avenger:	Age	of	



Ultron':	7.0,

	'Django	Unchained':	6.5,

	'Gone	Girl':	9.0,

	'Kill	the	Messenger':	8.0},

'Julia':	{'Avenger:	Age	of	Ultron':	10.0,

	'Django	Unchained':	6.0,

	'Gone	Girl':	6.5,

	'Kill	the	Messenger':	6.0,

	'Zoolander':	6.5},

'Max':	{'Avenger:	Age	of	Ultron':	7.0,

	'Django	Unchained':	7.0,

	'Gone	Girl':	10.0,

	'Horrible	Bosses	2':	6.0,

	'Kill	the	Messenger':	5.0,

	'Zoolander':	10.0},

'Robert':	{'Avenger:	Age	of	Ultron':	8.0,

	'Django	Unchained':	7.0,

	'Horrible	Bosses	2':	5.0,

	'Kill	the	Messenger':	9.0,

	'Zoolander':	9.0},

'Sam':	{'Avenger:	Age	of	Ultron':	10.0,

	'Django	Unchained':	7.5,

	'Gone	Girl':	6.0,

	'Horrible	Bosses	2':	3.0,

	'Kill	the	Messenger':	5.5,

	'Zoolander':	7.0},

'Toby':	{'Avenger:	Age	of	Ultron':	8.5,

	'Django	Unchained':	9.0,

	'Zoolander':	2.0},

'William':	{'Avenger:	Age	of	Ultron':	6.0,

	'Django	Unchained':	8.0,

	'Gone	Girl':	7.0,

	'Horrible	Bosses	2':	4.0,

	'Kill	the	Messenger':	6.5,

	'Zoolander':	4.0}}

movie_user_preferences['William']['Gone	Girl']

7.0



User-based	collaborative	filtering
Let's	start	to	build	a	user-based	collaborative	filter	by	finding	users	who
are	similar	to	each	other.

Finding	similar	users
When	you	have	data	about	what	people	like,	you	need	a	way	to
determine	the	similarity	between	different	users.	The	similarity	between
different	users	is	determined	by	comparing	each	user	with	every	other
user	and	computing	a	similarity	score.	This	similarity	score	can	be
computed	using	the	Pearson	correlation,	the	Euclidean	distance,	the
Manhattan	distance,	and	so	on.

The	Euclidean	distance	score
The	Euclidean	distance	is	the	minimum	distance	between	two	points	in
space.	Let's	try	to	understand	this	by	plotting	the	users	who	have
watched	Django	Unchained	and	Avengers.

We'll	create	a	DataFrame	that	contains	the	user,	django,	and	avenger
columns,	where	django	and	avenger	contain	the	ratings	given	by	the	user:

>>>	data	=	[]

>>>	for	i	in	movie_user_preferences.keys():

						try:

										data.append(	(i

										,movie_user_preferences[i]['Django	

Unchained']

										,movie_user_preferences[i]['Avenger:	Age	of	

Ultron'])	)

						except:

											pass		>>>	df	=	pd.DataFrame(data	=	data,	

columns	=	['user',	'django',	'avenger'])

>>>	df



Using	the	preceding	DataFrame,	we'll	plot	the	different	users	by	keeping
Django	as	the	y	axis	and	Avengers	as	the	x	axis:

>>>	plt.scatter(df.django,	df.avenger)

>>>	plt.xlabel('Django')

>>>	plt.ylabel('Avengers')

>>>	for	i,txt	in	enumerate(df.user):

							plt.annotate(txt,	(df.django[i],df.avenger[i]))

>>>	plt.show()

We	can	see	that	Jill	and	Toby	are	quite	far	away	from	each	other,
whereas	Robert	and	Max	are	quite	close	to	each	other.	Let's	compute	the
Euclidean	distance	between	the	two:

>>>	#Euclidean	distance	between	Jill	and	Toby	rating



>>>	sqrt(pow(8.5-7,2)+pow(9-6.5,2))

2.9154759474226504

>>>	#Euclidean	distance	between	Robert	and	Max	rating

>>>	sqrt(pow(8-7,2)+pow(7-7,2))

1.0

We	can	see	that	the	further	the	users	are	away	from	each	other,	the
higher	the	Euclidean	distance.	As	seen	in	the	preceding	code,	the
smaller	the	Euclidean	distance,	the	greater	is	the	similarity.	We'll	divide
the	Euclidean	distance	by	1	so	that	we	get	a	metric	that	represents	a
greater	similarity	for	a	higher	number.	We'll	also	add	1	in	the	denominator
to	avoid	getting	ZeroDivisionError.

>>>	#Similarity	Score	based	on	Euclidean	distance	

between	Jill	and	Toby

>>>	1/(1	+	sqrt(pow(8.5-7,2)+pow(9-6.5,2))	)

0.2553967929896867

>>>	#Similarity	Score	based	on	Euclidean	distance	

between	Robert	and	Max

>>>	1/(1	+	sqrt(pow(8-7,2)+pow(7-7,2))	)

0.5

Let's	create	a	function	that	calculates	the	similarity	score	based	on	the
Euclidean	distance	between	two	users	where	all	the	movies	that	they
watched	are	taken	into	consideration,	apart	from	the	two	movies	that	we
mentioned	earlier:

>>>	#	Returns	a	distance-based	similarity	score	for	

person1	and	person2

>>>	def	sim_distance(prefs,person1,person2):

						#	Get	the	list	of	shared_items

						si={}

						for	item	in	prefs[person1]:

										if	item	in	prefs[person2]:

														si[item]=1							#	if	they	have	no	

ratings	in	common,	return	0

						if	len(si)==0:	return	0							#	Add	up	the	

squares	of	all	the	differences

						sum_of_squares=sum([pow(prefs[person1][item]	-	

prefs[person2][item],2)



						for	item	in	prefs[person1]	if	item	in	

prefs[person2]])							return	1/(1+sum_of_squares)

Let's	apply	the	preceding	function	to	calculate	the	similarity	score
between	Sam	and	Toby:

>>>	sim_distance(movie_user_preferences,'Sam','Toby')

0.03278688524590164

The	Pearson	correlation	score
We	have	already	studied	what	the	Pearson	correlation	is	in	Chapter	2,
Inferential	Statistics.	The	Euclidean	distance	is	how	far	apart	the	users
are	from	each	other,	whereas	the	Pearson	correlation	takes	into	account
the	association	between	two	people.	We'll	use	the	Pearson	correlation	to
compute	the	similarity	score	between	two	users.

Let's	see	how	Sam	and	Toby	are	correlated	to	each	other:

>>>	def	create_movie_user_df(input_data,	user1,	

user2):

						data	=	[]

						for	movie	in	input_data[user1].keys():

										if	movie	in	input_data[user2].keys():

														try:

																		data.append(	(movie

																		,input_data[user1][movie]

																		,input_data[user2][movie])	)

														except:

																		pass								return	pd.DataFrame(data	

=	data,	columns	=	['movie',	user1,	user2])

>>>	df	=	create_movie_user_df(movie_user_preferences,	

'Sam',	'William')

>>>	df



Once	we	have	created	the	preceding	DataFrame,	we	will	plot	the	scatter
plot	as	we	did	earlier:

>>>	plt.scatter(df.Sam,	df.William)

>>>	plt.xlabel('Sam')

>>>	plt.ylabel('William')

>>>	for	i,txt	in	enumerate(df.movie):

						plt.annotate(txt,	(df.Sam[i],df.William[i]))

>>>	plt.show()

Let's	compute	the	Pearson	correlation	between	Sam	and	William:

>>>	pearsonr(df.Sam,df.William)

(0.37067401970178415,	0.46945413268410929)



Let's	see	the	scatter	plot	of	correlation	between	Sam	and	Julia:

>>>	df	=	create_movie_user_df(movie_user_preferences,	

'Sam',	'Julia')

>>>	df

>>>	plt.scatter(df.Sam,	df.Julia)

>>>	plt.xlabel('Sam')

>>>	plt.ylabel('Julia')

>>>	for	i,txt	in	enumerate(df.movie):

						plt.annotate(txt,	(df.Sam[i],df.Julia[i]))

>>>	plt.show()

Let's	compute	the	Pearson	correlation	between	Sam	and	Julia:

>>>	pearsonr(df.Sam,df.Julia)

(0.88285183326025096,	0.047277507003439537)

We	can	see	that	Sam	and	Julia	are	very	similar	to	each	other	as	the
correlation	value	of	0.88	is	close	to	1.

We'll	now	create	a	function	that	takes	in	the	data	and	calculates	the
Pearson	correlation	between	the	two	users:

>>>	#	Returns	the	Pearson	correlation	coefficient	for	

p1	and	p2

>>>	def	sim_pearson(prefs,p1,p2):

						#	Get	the	list	of	mutually	rated	items



						si={}

						for	item	in	prefs[p1]:

										if	item	in	prefs[p2]:	si[item]=1							#	

Find	the	number	of	elements

						n=len(si)							#	if	they	are	no	ratings	in	

common,	return	0

						if	n==0:	return	0							#	Add	up	all	the	

preferences

						sum1=sum([prefs[p1][it]	for	it	in	si])

						sum2=sum([prefs[p2][it]	for	it	in	si])							#	

Sum	up	the	squares

						sum1Sq=sum([pow(prefs[p1][it],2)	for	it	in	si])

						sum2Sq=sum([pow(prefs[p2][it],2)	for	it	in	si])							

#	Sum	up	the	products

						pSum=sum([prefs[p1][it]*prefs[p2][it]	for	it	in	

si])							#	Calculate	Pearson	score

						num=pSum-(sum1*sum2/n)

						den=sqrt((sum1Sq-pow(sum1,2)/n)*(sum2Sq-

pow(sum2,2)/n))

						if	den==0:	return	0							r=num/den							return	

r

Let's	compute	the	Pearson	correlation	between	Sam	and	Julia	by	using
the	preceding	function	and	verify	if	it's	computing	correctly:

>>>	sim_pearson(movie_user_preferences,'Sam','Julia')

0.8828518332602507

Ranking	the	users
Once	we	have	the	methods	of	computing	the	similarity	between	users,
we	then	proceed	to	rank	them	based	on	the	similarity	between	particular
users.	I	would	like	to	know	the	people	who	are	most	similar	to	me.	We
can	achieve	this	with	the	following	code:

>>>	def	

top_matches(prefs,person,n=5,similarity=sim_pearson):

						scores=[(similarity(prefs,person,other),other)

										for	other	in	prefs	if	other!=person]							#	

Sort	the	list	so	the	highest	scores	appear	at	the	top

						scores.sort(	)

						scores.reverse(	)

						return	scores[0:n]



Let's	see	the	top	three	people	who	are	similar	to	Sam:

>>>	top_matches(movie_user_preferences,'Toby',	

																								n	=	3,	similarity	=	

sim_distance)

[(0.10526315789473684,	'Jill'),

(0.08163265306122448,	'William'),

(0.03278688524590164,	'Sam')]

Recommending	items
Once	you	know	who	is	similar	to	you,	you	would	now	like	to	know	the
movies	that	are	recommended	for	you.	The	following	image	shows	how
to	compute	a	score	for	the	movies	so	that	we	can	find	out	what	the	most
recommended	movie	is:	

We	multiply	the	similarity	score	by	the	movie	ratings	of	each	user.	We
then	sum	up	this	new	score	and	then	divide	it	by	the	applicable	similarity
score.	In	summary,	we	are	taking	the	weighted	average	based	on	the
similarity	score.

From	the	preceding	output,	we	can	see	that	Gone	Girl	has	a	very	good
score	in	terms	of	being	recommended,	and	this	is	then	followed	by	Kill
the	Messenger.

We'll	now	create	a	function	that	will	generate	recommendations	for	a	user
by	encompassing	the	preceding	logic:

>>>	#	Gets	recommendations	for	a	person	by	using	a	

weighted	average

>>>	#	of	every	other	user's	rankings

>>>	def	

get_recommendations(prefs,person,similarity=sim_pearso

n):

						totals={}



						simSums={}

						for	other	in	prefs:

										#	don't	compare	me	to	myself

										if	other==person:	continue

										sim=similarity(prefs,person,other)											

#	ignore	scores	of	zero	or	lower

										if	sim<=0:	continue

										for	item	in	prefs[other]:															#	

only	score	movies	I	haven't	seen	yet

														if	item	not	in	prefs[person]	or	

prefs[person][item]==0:

																		#	Similarity	*	Score

																		totals.setdefault(item,0)

																		totals[item]+=prefs[other][item]*sim

																		#	Sum	of	similarities

																		simSums.setdefault(item,0)

																		simSums[item]+=sim							#	Create	

the	normalized	list

						rankings=[(total/simSums[item],item)	for	

item,total	in	totals.items(	)]							#	Return	the	

sorted	list

						rankings.sort(	)

						rankings.reverse(	)

						return	rankings

Let's	get	the	recommendation	by	using	the	preceding	function:

>>>	get_recommendations(movie_user_preferences,'Toby')

[(6.587965809121004,	'Gone	Girl'),

(6.087965809121004,	'Kill	the	Messenger'),

(3.608127720528246,	'Horrible	Bosses	2')]

>>>	getRecommendations(movie_user_preferences,'Toby',	

similarity	=	sim_distance)

[(7.773043918833565,	'Gone	Girl'),

(6.976295282563891,	'Kill	the	Messenger'),

(4.093380589669568,	'Horrible	Bosses	2')]

We	have	now	created	a	user-based	collaborative	filter.



Item-based	collaborative	filtering
User-based	collaborative	filtering	finds	the	similarities	between	users,
and	then	using	these	similarities	between	users,	a	recommendation	is
made.

Item-based	collaborative	filtering	finds	the	similarities	between	items.
This	is	then	used	to	find	new	recommendations	for	a	user.

To	begin	with	item-based	collaborative	filtering,	we'll	first	have	to	invert
our	dataset	by	putting	the	movies	in	the	first	layer,	followed	by	the	users
in	the	second	layer:

>>>	def	transform_prefs(prefs):

							result={}

							for	person	in	prefs:

											for	item	in	prefs[person]:

															result.setdefault(item,{})																

#	Flip	item	and	person

															result[item][person]=prefs[person]

[item]

							return	result

{'Avenger:	Age	of	Ultron':	{'Jill':	7.0,'Julia':	10.0,

	'Max':	7.0,

	'Robert':	8.0,

	'Sam':	10.0,

	'Toby':	8.5,

	'William':	6.0},

'Django	Unchained':	{'Jill':	6.5,

	'Julia':	6.0,

	'Max':	7.0,

	'Robert':	7.0,

	'Sam':	7.5,

	'Toby':	9.0,

	'William':	8.0},

'Gone	Girl':	{'Jill':	9.0,

	'Julia':	6.5,

	'Max':	10.0,

	'Sam':	6.0,

	'William':	7.0},

'Horrible	Bosses	2':	{'Max':	6.0,	'Robert':	5.0,	

'Sam':	3.0,	'William':	4.0},

'Kill	the	Messenger':	{'Jill':	8.0,



	'Julia':	6.0,

	'Max':	5.0,

	'Robert':	9.0,

	'Sam':	5.5,

	'William':	6.5},

'Zoolander':	{'Julia':	6.5,

	'Max':	10.0,

	'Robert':	9.0,

	'Sam':	7.0,

	'Toby':	2.0,

	'William':	4.0}}

Now,	we	would	like	to	find	similar	movies	for	each	of	the	movies:

>>>	def	calculate_similar_items(prefs,n=10):

							#	Create	a	dictionary	of	items	showing	which	

other	items	they

							#	are	most	similar	to.

							result={}								#	Invert	the	preference	matrix	

to	be	item-centric

							itemPrefs=transform_prefs(prefs)

							c=0

							for	item	in	itemPrefs:

											#	Status	updates	for	large	datasets

											c+=1

											if	c%100==0:	print	"%d	/	%d"	%	

(c,len(itemPrefs))

											#	Find	the	most	similar	items	to	this	one

											scores=top_matches(itemPrefs,	item,	n=n,	

similarity=sim_distance)

											result[item]=scores

							return	result

>>>	

itemsim=calculate_similar_items(movie_user_preferences)

>>>	itemsim

{'Avenger:	Age	of	Ultron':	[(0.034782608695652174,	

'Django	Unchained'),

	(0.023121387283236993,	'Gone	Girl'),

	(0.022988505747126436,	'Kill	the	Messenger'),

	(0.015625,	'Horrible	Bosses	2'),

	(0.012738853503184714,	'Zoolander')],

'Django	Unchained':	[(0.05714285714285714,	'Kill	the	

Messenger'),

	(0.05063291139240506,	'Gone	Girl'),

	(0.034782608695652174,	'Avenger:	Age	of	Ultron'),



	(0.023668639053254437,	'Horrible	Bosses	2'),

	(0.012578616352201259,	'Zoolander')],

'Gone	Girl':	[(0.09090909090909091,	'Zoolander'),

	(0.05063291139240506,	'Django	Unchained'),

	(0.036036036036036036,	'Kill	the	Messenger'),

	(0.02857142857142857,	'Horrible	Bosses	2'),

	(0.023121387283236993,	'Avenger:	Age	of	Ultron')],

'Horrible	Bosses	2':	[(0.03278688524590164,	'Kill	the	

Messenger'),

	(0.02857142857142857,	'Gone	Girl'),

	(0.023668639053254437,	'Django	Unchained'),

	(0.02040816326530612,	'Zoolander'),

	(0.015625,	'Avenger:	Age	of	Ultron')],

'Kill	the	Messenger':	[(0.05714285714285714,	'Django	

Unchained'),

	(0.036036036036036036,	'Gone	Girl'),

	(0.03278688524590164,	'Horrible	Bosses	2'),

	(0.02877697841726619,	'Zoolander'),

	(0.022988505747126436,	'Avenger:	Age	of	Ultron')],

'Zoolander':	[(0.09090909090909091,	'Gone	Girl'),

	(0.02877697841726619,	'Kill	the	Messenger'),

	(0.02040816326530612,	'Horrible	Bosses	2'),

	(0.012738853503184714,	'Avenger:	Age	of	Ultron'),

	(0.012578616352201259,	'Django	Unchained')]}

Once	we	have	similarities	between	all	the	movies,	we	would	like	to
generate	the	recommendations	for	a	user.

The	following	table	shows	the	movies	seen	by	Toby	under	the	Movie
column	and	the	rating	given	by	Toby.	The	Movie	column	contains	movies
similar	to	the	ones	seen	by	Toby.	The	columns	with	R	as	a	prefix	are	the
products	of	the	rating	and	similarity	score.

Finally,	we	normalize	the	values	by	summing	the	R	prefixed	column,	then
dividing	it	by	the	sum	of	the	similarity	score	of	the	Movie	column.

The	following	table	shows	Kill	The	Messenger	as	the	most	recommended
movie:	



We	would	now	like	to	generate	the	recommendations	by	encompassing
the	preceding	logic:

>>>	def	get_recommendedItems(prefs,itemMatch,user):

							userRatings=prefs[user]

							scores={}

							totalSim={}								#	Loop	over	items	rated	by	

this	user

							for	(item,rating)	in	userRatings.items(	):												

#	Loop	over	items	similar	to	this	one

											for	(similarity,item2)	in	itemMatch[item]:																

#	Ignore	if	this	user	has	already	rated	this	item

															if	item2	in	userRatings:	continue																

#	Weighted	sum	of	rating	times	similarity

															scores.setdefault(item2,0)

															scores[item2]+=similarity*rating																

#	Sum	of	all	the	similarities

															totalSim.setdefault(item2,0)

															totalSim[item2]+=similarity								#	

Divide	each	total	score	by	total	weighting	to	get	an	

average

							rankings=[(score/totalSim[item],item)	for	

item,score	in	scores.items(	)]								#	Return	the	

rankings	from	highest	to	lowest

							rankings.sort(	)

							rankings.reverse(	)

							return	rankings											

						#	Divide	each	total	score	by	total	weighting	to	

get	an	average

						rankings=[(score/totalSim[item],item)	for	

item,score	in	scores.items(	)]							#	Return	the	

rankings	from	highest	to	lowest

						rankings.sort(	)

						rankings.reverse(	)

						return	rankings

Let's	generate	recommendations	for	Toby,	using	the	item-based
recommender:

>>>	get_recommendedItems(movie_user_preferences,	

itemsim,'Toby')

[(7.044841200971884,	'Kill	the	Messenger'),

(6.476296577225752,	'Horrible	Bosses	2'),

(5.0651585538275095,	'Gone	Girl')]



Summary
In	this	chapter,	you	learned	how	to	perform	user-based	and	item-based
collaborative	filtering.	You	also	learned	some	of	the	metrics	that	can	be
used	to	compute	the	similarity	between	users	as	well	as	items,	and	how
to	apply	this	similarity	to	generate	recommendations	for	end	users.

The	next	chapter	will	cover	different	ensemble	models	that	basically
combine	multiple	models	to	increase	the	performance	of	predictions.



Chapter	9.	Pushing	Boundaries
with	Ensemble	Models
Ensemble	modeling	is	a	process	where	two	or	more	models	are
generated	and	then	their	results	are	combined.	In	this	chapter,	we'll	cover
a	random	forest,	which	is	a	nonparametric	modeling	technique	where
multiple	decision	trees	are	created	during	training	time,	and	then	the
result	of	these	decision	trees	are	averaged	to	give	the	required	output.
It's	called	a	random	forest	because	many	decision	trees	are	created
during	training	time	on	randomly	selected	features.

An	analogy	of	this	would	be	to	try	to	guess	the	number	of	pebbles	in	a
glass	jar.	There	are	groups	of	people	who	try	to	guess	the	number	of
pebbles	in	the	jar.	Individually,	each	person	would	be	very	wrong	in
guessing	the	number	of	pebbles	in	the	glass	jar,	but	when	you	average
each	of	their	guesses,	the	resulting	averaged	guess	would	be	pretty
close	to	the	actual	number	of	pebbles	in	the	jar.

In	this	chapter,	you'll	learn	how	to:

Work	with	census	data	on	US	earnings	and	explore	this	data
Make	decision	trees	to	predict	if	a	person	is	earning	more	than	$50K
Make	random	forest	models	and	get	improved	data	performance

The	census	income	dataset
The	following	table	is	a	census	dataset	on	income	created	by	the
University	of	California,	Irvine:

Columns Description

age This	refers	to	the	age	of	a	person

work	class



This	refers	to	the	type	of	employment	a	person	is
involved	in

education This	refers	to	the	education	level	of	a	person

marital_status This	refers	to	whether	a	person	is	married	or	not

occupation This	refers	to	the	type	of	jobs	a	person	is	involved	in

relationship This	refers	to	the	type	of	relationship	of	the	person

race This	refers	to	the	ethnicity	of	a	person

gender This	refers	to	the	gender	of	a	person

hours_per_week This	refers	to	the	average	hours	worked	per	week

native_country This	refers	to	the	country	of	origin

greater_than_50k This	refers	to	the	flag	that	indicates	whether	a	person
is	earning	more	than	$50K	in	a	year

Let's	load	this	data:

>>>	data	=	pd.read_csv('./Data/census.csv')

Let's	check	the	fill	rate	of	the	data:



>>>	data.count(0)/data.shape[0]	*	100

age																	100.000000

workclass												94.361179

education											100.000000

education_num							100.000000

marital_status						100.000000

occupation											94.339681

relationship								100.000000

race																100.000000

gender														100.000000

capital_gain								100.000000

capital_loss								100.000000

hours_per_week						100.000000

native_country							98.209459

greater_than_50k				100.000000

dtype:	float64

We	can	see	that	the	columns	have	a	good	fill	rate.	We'll	remove	the	rows
that	have	empty	values	and	also	remove	the	education_num	column	as	it
contains	the	same	information,	such	as	education	and	its	unique	codes:

>>>	data	=	data.dropna(how='any')

>>>	del	data['education_num']

Exploring	the	census	data
Let's	explore	the	census	data	and	understand	the	patterns	with	the	data
before	building	the	model.

Hypothesis	1:	People	who	are	older	earn	more
We'll	create	a	histogram	of	people	who	earn	more	than	$50K:

>>>	hist_above_50	=	

plt.hist(data[data.greater_than_50k	==	1].age.values,	

10,	facecolor='green',	alpha=0.5)

>>>	plt.title('Age	distribution	of	Above	50K	earners')

>>>	plt.xlabel('Age')

>>>	plt.ylabel('Frequency')

Here	is	the	histogram	for	the	preceding	code:



Now,	we'll	plot	a	histogram	of	the	age	of	the	people	who	earn	less	than
$50K	a	year,	using	this	code:

>>>	hist_below_50	=	

plt.hist(data[data.greater_than_50k	==	0].age.values,	

10,	facecolor='green',	alpha=0.5)

>>>	plt.title('Age	distribution	of	below	50K	earners')

>>>	plt.xlabel('Age')

>>>	plt.ylabel('Frequency)

We	can	see	that	people	who	earn	above	$50K	are	mostly	aged	between
their	late	30s	and	mid	50s,	whereas	people	who	earn	less	than	$50K	are
primarily	aged	between	20	and	30.



Hypothesis	2:	Income	bias	based	on	working
class
Let's	see	what	the	distribution	of	people	earning	more	than	$50K
between	different	working	class	groups	is.	We'll	see	the	percentage	of
earners	who	earn	more	than	$50K	in	each	of	the	groups,	using	the
following	code:

>>>	dist_data	=	pd.concat([data[data.greater_than_50k	

==	1].groupby('workclass').workclass.count()

																,	data[data.greater_than_50k	==	

0].groupby('workclass').workclass.count()],	axis=1)

>>>	dist_data.columns	=	

['wk_class_gt50','wk_class_lt50']

>>>	dist_data_final	=	dist_data.wk_class_gt50	/	

(dist_data.wk_class_lt50	+	dist_data.wk_class_gt50	)

>>>	dist_data_final.sort(ascending=False)

>>>	ax	=	dist_data_final.plot(kind	=	'bar',	color	=	

'r',	y='Percentage')

>>>	ax.set_xticklabels(dist_data_final.index,	

rotation=30,	fontsize=8,	ha='right')

>>>	ax.set_xlabel('Working	Class')

>>>	ax.set_ylabel('Percentage	of	People')

We	see	that	people	who	are	self-employed	and	have	a	company	have
got	the	maximum	share	of	people	who	earn	more	than	$50K.	The	second
most	well-off	group	in	terms	of	earning	are	federal	government



employees.

Hypothesis	3:	People	with	more	education	earn
more
Education	is	an	important	field.	It	should	be	related	to	the	level	of	earning
power	of	an	individual:

>>>	dist_data	=	pd.concat([data[data.greater_than_50k	

==	1].groupby('education').education.count()

															,	data[data.greater_than_50k	==	

0].groupby('education').education.count()],	axis=1)

>>>	dist_data.columns	=	

['education_gt50','education_lt50']

>>>	dist_data_final	=	dist_data.education_gt50	/	

(dist_data.education_gt50	+	dist_data.education_lt50)

>>>	dist_data_final.sort(ascending	=	False)

>>>	ax	=	dist_data_final.plot(kind	=	'bar',	color	=	

'r')

>>>	ax.set_xticklabels(dist_data_final.index,	

rotation=30,	fontsize=8,	ha='right')

>>>	ax.set_xlabel('Education	Level')

>>>	ax.set_ylabel('Percentage	of	People')

We	can	see	that	the	more	the	person	is	educated,	the	greater	the



number	of	people	in	their	group	who	earn	more	than	$50K.

Hypothesis	4:	Married	people	tend	to	earn	more
Let's	see	how	distribution	is	based	on	marital	status:

>>>	dist_data	=	pd.concat([data[data.greater_than_50k	

==	1].groupby('marital_status').marital_status.count()

																,	data[data.greater_than_50k	==	

0].groupby('marital_status').marital_status.count()],	

axis=1)

>>>	dist_data.columns	=	

['marital_status_gt50','marital_status_lt50']

>>>	dist_data_final	=	dist_data.marital_status_gt50	/	

(dist_data.marital_status_gt50+dist_data.marital_statu

s_lt50)

>>>	dist_data_final.sort(ascending	=	False)

>>>	ax	=	dist_data_final.plot(kind	=	'bar',	color	=	

'r')

>>>	ax.set_xticklabels(dist_data_final.index,	

rotation=30,	fontsize=8,	ha='right')

>>>	ax.set_xlabel('Marital	Status')

>>>	ax.set_ylabel('Percentage	of	People')

We	can	see	that	people	who	are	married	earn	better	as	compared	to



people	who	are	single.

Hypothesis	5:	There	is	a	bias	in	income	based
on	race
Let's	see	how	earning	power	is	based	on	the	race	of	the	person:

>>>	dist_data	=	pd.concat([data[data.greater_than_50k	

==	1].groupby('race').race.count()

																		,	data[data.greater_than_50k	==	

0].groupby('race').race.count()],	axis=1)

>>>	dist_data.columns	=	['race_gt50','race_lt50']

>>>	dist_data_final	=	dist_data.race_gt50	/	

(dist_data.race_gt50	+	dist_data.race_lt50	)

>>>	dist_data_final.sort(ascending	=	False)

>>>	ax	=	dist_data_final.plot(kind	=	'bar',	color	=	

'r')

>>>	ax.set_xticklabels(dist_data_final.index,	

rotation=30,	fontsize=8,	ha='right')

>>>	ax.set_xlabel('Race')

>>>	ax.set_ylabel('Percentage	of	People')

Asian	Pacific	people	and	Whites	have	the	highest	earning	power.



Hypothesis	6:	There	is	a	bias	in	the	income
based	on	occupation
Let's	see	how	earning	power	is	based	on	the	occupation	of	a	person:

>>>	dist_data	=	pd.concat([data[data.greater_than_50k	

==	1].groupby('occupation').occupation.count()

																	,	data[data.greater_than_50k	==	

0].groupby('occupation').occupation.count()],	axis=1)

>>>	dist_data.columns	=	

['occupation_gt50','occupation_lt50']

>>>	dist_data_final	=	dist_data.occupation_gt50	/	

(dist_data.occupation_gt50	+	dist_data.occupation_lt50	

)

>>>	dist_data_final.sort(ascending	=	False)

>>>	ax	=	dist_data_final.plot(kind	=	'bar',	color	=	

'r')

>>>	ax.set_xticklabels(dist_data_final.index,	

rotation=30,	fontsize=8,	ha='right')

>>>	ax.set_xlabel('Occupation')

>>>	ax.set_ylabel('Percentage	of	People')

We	can	see	that	people	who	are	in	specialized	or	managerial	positions



earn	more.

Hypothesis	7:	Men	earn	more
Let's	see	how	earning	power	is	based	on	gender:

>>>	dist_data	=	pd.concat([data[data.greater_than_50k	

==	1].groupby('gender').gender.count()

																		,	data[data.greater_than_50k	==	

0].groupby('gender').gender.count()],	axis=1)

>>>	dist_data.columns	=	['gender_gt50','gender_lt50']

>>>	dist_data_final	=	dist_data.gender_gt50	/	

(dist_data.gender_gt50	+	dist_data.gender_lt50)

>>>	dist_data_final.sort(ascending	=	False)

>>>	ax	=	dist_data_final.plot(kind	=	'bar',	color	=	

'r')

>>>	ax.set_xticklabels(dist_data_final.index,	

rotation=30,	fontsize=8,	ha='right')

>>>	ax.set_xlabel('Gender')

>>>	ax.set_ylabel('Percentage	of	People')

It's	no	surprise	to	see	that	males	have	a	higher	earning	power	as
compared	to	females.	It	will	be	good	to	see	the	two	bars	at	an	equal	level
sometime	in	the	future.



Hypothesis	8:	People	who	clock	in	more	hours
earn	more
Let's	see	the	distribution	of	people	who	earn	above	$50K	based	on	their
working	hours	per	week:

>>>	hist_above_50	=	

plt.hist(data[data.greater_than_50k	==	

1].hours_per_week.values,	10,	facecolor='green',	

alpha=0.5)

>>>	plt.title('Hours	per	week	distribution	of	Above	

50K	earners')

Now,	let's	see	the	distribution	of	the	earners	below	$50K	based	on	their
working	hours	per	week:

>>>	hist_below_50	=	

plt.hist(data[data.greater_than_50k	==	

0].hours_per_week.values,	10,	facecolor='green',	

alpha=0.5)

>>>	plt.title('Hours	per	week	distribution	of	Below	

50K	earners')



We	can	see	that	people	who	earn	more	than	$50K	and	less	than	this
have	an	average	of	40	working	hours	per	week,	but	it	can	be	seen	that
people	who	earn	above	$50K	have	a	higher	number	of	people	who	work
more	than	40	hours.

Hypothesis	9:	There	is	a	bias	in	income	based
on	the	country	of	origin
Let's	see	how	earning	power	is	based	on	a	person's	country	of	origin:

>>>	plt.figure(figsize=(10,5))

>>>	dist_data	=	pd.concat([data[data.greater_than_50k	

==	1].groupby('native_country').native_country.count()

																	,	data[data.greater_than_50k	==	

0].groupby('native_country').native_country.count()],	

axis=1)

>>>	dist_data.columns	=	

['native_country_gt50','native_country_lt50']

>>>	dist_data_final	=	dist_data.native_country_gt50	/	

(dist_data.native_country_gt50	+	

dist_data.native_country_lt50	)

>>>	dist_data_final.sort(ascending	=	False)

>>>	ax	=	dist_data_final.plot(kind	=	'bar',	color	=	

'r')

>>>	ax.set_xticklabels(dist_data_final.index,	



rotation=40,	fontsize=8,	ha='right')

>>>	ax.set_xlabel(Country)

>>>	ax.set_ylabel('Percentage	of	People')

We	can	see	that	Taiwanese,	French,	Iranians,	and	Indians	are	the	most
well-earning	people	among	different	counties.



Decision	trees
To	understand	decision	tree-based	models,	let's	try	to	imagine	that
Google	wants	to	recruit	people	for	a	software	development	job.	Based	on
the	employees	that	they	already	have	and	the	ones	they	have	rejected
previously,	we	can	determine	whether	an	applicant	was	from	an	Ivy
League	college	or	not	and	what	the	Grade	Point	Average	(GPA)	of	the
applicant	was.

The	decision	tree	will	split	the	applicants	into	Ivy	League	and	non-Ivy
League	groups.	The	Ivy	League	group	will	then	be	split	into	high	GPA
and	low	GPA	so	that	people	with	a	high	GPA	are	likely	to	be	tagged
highly	and	the	ones	with	a	low	GPA	are	likely	to	get	recruited.

Applicants	who	have	a	high	GPA	and	belong	to	non-Ivy	League	colleges
have	a	slightly	better	chance	of	getting	recruited	as	compared	to	those
who	have	a	low	GPA	and	belong	to	non-Ivy	League	colleges.

The	preceding	explanation	is	what	a	decision	tree	does	in	simple	terms.

Let's	create	a	decision	tree	on	the	basis	of	our	data	to	predict	what	the
likelihood	of	a	person	earning	more	than	$50K	is	going	to	be:

>>>	data_test	=	pd.read_csv('./Data/census_test.csv')

>>>	data_test	=	data_test.dropna(how='any')

>>>	formula	=	'greater_than_50k	~		age	+	workclass	+	

education	+	marital_status	+	occupation	+	race	+	

gender	+	hours_per_week	+	native_country	'

>>>	y_train,x_train	=	dmatrices(formula,	data=data,	

return_type='dataframe')

>>>	y_test,x_test	=	dmatrices(formula,	data=data_test,	

return_type='dataframe')

>>>	clf	=	tree.DecisionTreeClassifier()

>>>	clf	=	clf.fit(x_train,	y_train)

Let's	see	how	the	model	performs:

>>>	from	sklearn.metrics	import	classification_report

>>>	y_pred	=	clf.predict(x_test)

>>>	print	pd.crosstab(y_test.greater_than_50k

																					,y_pred



																					,rownames	=	['Actual']

																						,colnames	=	['Predicted'])

>>>	print	'\n	\n'

>>>	print	

classification_report(y_test.greater_than_50k,y_pred)

We	can	see	that	the	people	who	don't	earn	more	than	$50K	can	be
predicted	well	as	there	is	a	precision	of	85%	and	a	recall	of	87%.	People
who	earn	more	than	$50K	can	only	be	predicted	with	a	precision	of	56%
and	a	recall	of	52%

Note	that	the	order	of	the	dependent	variables	given	in	the	formula	will
change	these	values	slightly.	You	can	experiment	to	see	whether
changing	the	order	of	the	variables	will	improve	their	precision/recall.



Random	forests
We	have	learned	how	to	create	a	decision	tree	but,	at	times,	decision
tree	models	don't	hold	up	well	when	there	are	many	variables	and	a	large
dataset.	This	is	where	ensemble	models,	such	as	random	forest,	come	to
rescue.

A	random	forest	basically	creates	many	decision	trees	on	the	dataset	and
then	averages	out	the	results.	If	you	see	a	singing	competition,	such	as
American	Idol,	or	a	sporting	competition,	such	as	the	Olympics,	there	are
multiple	judges.	The	reason	for	having	multiple	judges	is	to	eliminate	bias
and	give	fair	results,	and	this	is	what	a	random	forest	tries	to	achieve.

A	decision	tree	can	change	drastically	if	the	data	changes	slightly	and	it
can	easily	overfit	the	data.

Let's	try	to	create	a	random	forest	model	and	see	how	its	precision/recall
is	compared	to	the	decision	tree	that	we	just	created:

>>>	import	sklearn.ensemble	as	sk

>>>	clf	=	sk.RandomForestClassifier(n_estimators=100)

>>>	clf	=	clf.fit(x_train,	y_train.greater_than_50k)

After	building	the	model,	let's	cross-validate	the	model	on	the	test	data:

>>>	y_pred	=	clf.predict(x_test)

>>>	print	pd.crosstab(y_test.greater_than_50k

																					,y_pred

																					,rownames	=	['Actual']

																					,colnames	=	['Predicted'])

>>>	print	'\n	\n'

>>>	print	

classification_report(y_test.greater_than_50k,y_pred)



We	can	see	that	we	have	improved	the	precision	and	recall	for	the
people	who	don't	earn	more	than	$50K,	as	well	as	for	the	people	who	do.

Let's	try	to	do	some	fine-tuning	to	achieve	better	performance	for	the
model	by	using	the	min_samples_split	parameter	and	setting	it	to	5.	This
parameter	tells	us	that	the	minimum	number	of	samples	required	to
create	a	split	is	5:

>>>	clf	=	sk.RandomForestClassifier(n_estimators=100,	

oob_score=True,min_samples_split=5)

>>>	clf	=	clf.fit(x_train,	y_train.greater_than_50k)

>>>	y_pred	=	clf.predict(x_test)

>>>	print	pd.crosstab(y_test.greater_than_50k

																					,y_pred

																					,rownames	=	['Actual']

																					,colnames	=	['Predicted'])

>>>	print	'\n	\n'

>>>	print	

classification_report(y_test.greater_than_50k,y_pred)



We	increased	the	recall	of	0%	to	90%,	1%	to	56%,	and	the	precision	of
1%	to	65%.

We'll	fine-tune	the	model	further	by	increasing	the	minimum	number	of
leaves	to	2	by	using	the	min_leaf	parameter.	The	meaning	of	this
parameter	indicates	that	the	minimum	number	of	nodes	to	be	created	are
2:

>>>	clf	=	sk.RandomForestClassifier(n_estimators=100,	

oob_score=True,min_samples_split=5,	min_samples_leaf=	

2)

>>>	clf	=	clf.fit(x_train,	y_train.greater_than_50k)

>>>	y_pred	=	clf.predict(x_test)

>>>	print	pd.crosstab(y_test.greater_than_50k

																					,y_pred

																					,rownames	=	['Actual']

																					,colnames	=	['Predicted'])

>>>	print	'\n	\n'

>>>	print	

classification_report(y_test.greater_than_50k,y_pred)



We	have	further	significantly	increased	the	recall	of	0%	to	92%	and	the
precision	of	1%	to	70%.	This	model	performs	decently.

Let's	see	the	importance	of	the	variables	that	are	contributing	to	the
prediction.	We'll	use	the	feature	importance	attribute	of	the	clf	object,
and	using	this,	we'll	plot	important	features,	such	as	dependent	variables
that	are	sorted	by	their	importance:

>>>	model_ranks	=	pd.Series(clf.feature_importances_,	

index=x_train.columns,	

name='Importance').sort(ascending=False,	

inplace=False)

>>>	model_ranks.index.name	=	'Features'

>>>	top_features	=	

model_ranks.iloc[:31].sort(ascending=True,	

inplace=False)

>>>	plt.figure(figsize=(15,7))

>>>	ax	=	top_features.plot(kind='barh')

>>>		=	ax.settitle("Variable	Ranking")

>>>		=	ax.setxlabel('Performance')

>>>		=	ax.setyticklabels(top_features.index,	

fontsize=8)



We	can	see	that	those	people	who	are	married	to	a	civilian	spouse	are
very	good	indicators	of	whether	a	particular	group	of	people	earn	more
than	$50K	or	not.	This	is	followed	by	the	age	of	a	person,	and	finally,	the
number	of	hours	a	week	a	person	works.	Also,	people	who	aren't	married
are	good	indicators	of	predicting	the	group	of	people	who	earn	less	than
$50K.



Summary
In	this	chapter,	we	explored	the	patterns	in	the	census	data	and	then
understood	how	a	decision	tree	was	constructed	and	also	built	a	decision
tree	model	on	the	data	given.	You	then	learned	the	concept	of	ensemble
models	with	the	help	of	a	random	forest	and	improved	the	performance	of
prediction	by	using	the	random	forest	model.

In	the	next	chapter,	you'll	learn	clustering,	which	is	basically	grouping
elements	together	that	are	similar	to	each	other.	We	will	use	the	k-means
cluster	for	this.



Chapter	10.	Applying
Segmentation	with	k-means
Clustering
Clustering	comes	under	unsupervised	learning	and	helps	in	segmenting
an	instance	into	groups	in	such	a	way	that	instances	in	the	group	have
similar	characteristics.	Amazon	might	want	to	understand	who	their	high-
value,	medium-value	and	low-value	users	are.	In	the	simplest	form,	we
can	determine	this	by	bucketing	the	total	transaction	amount	of	each	user
into	three	buckets.	The	high	value	customers	will	come	under	the	top	20
percentile	bucket,	the	medium	value	will	come	under	the	20th	to	80th
percentile	bucket,	and	the	bottom	20	percentile	will	contain	the	low-value
customers.	Amazon	will	know	who	their	high	value	customers	are
through	this	and	ensure	that	they	are	taken	care	of	in	case	of	scenarios,
such	as	payment	failures	for	transactions.	Here,	we've	used	a	single
variable,	such	as	the	transaction	amount,	and	we've	manually	bucketed
the	data.

We	require	an	algorithm	that	can	take	multiple	variables	and	helps	us	in
bucketing	instances.	The	k-means	is	one	of	the	most	popular	algorithms
to	perform	clustering	as	it	is	the	easiest	machine	learning	algorithm	to
understand	under	clustering.	Also,	segmentation	is	the	process	of
dividing	customers	into	groups,	and	clustering	is	the	technique	that	helps
in	finding	the	similarities	in	a	group	and	help	assign	customers	to	a
particular	group.

In	this	chapter,	you'll	learn	the	following	topics:

Determining	the	ideal	number	of	clusters	through	the	k-means
technique
Clustering	with	the	k-means	algorithm

The	k-means	algorithm	and	its
working



The	k-means	clustering	algorithm	operates	by	computing	the	average	of
features,	such	as	the	variables	that	we	use	for	clustering.	For	example,
segmenting	customers	based	on	the	average	transaction	amount	and	the
average	number	of	products	purchased	in	a	quarter	of	a	year.	This	mean
then	becomes	the	center	of	a	cluster.	The	K	number	is	the	number	of
clusters,	that	is,	the	technique	consists	of	computing	a	K	number	of
means	that	lead	to	the	clustering	of	data	around	these	k-means.

How	do	we	choose	this	K?	If	we	have	some	idea	of	what	we	are	looking
for	or	how	many	clusters	we	expect	or	want,	then	we	can	set	K	to	be	this
number	before	we	start	the	engines	and	let	the	algorithm	compute	along.

If	we	don't	know	how	many	clusters	there	are,	then	our	exploration	will
take	a	little	longer	and	involve	some	trial	and	error,	say,	as	we	try	K=3,4,
and	5.

The	k-means	algorithm	is	iterative.	It	starts	by	choosing	K	points	at
random	from	the	data	and	uses	these	as	cluster	centers	just	to	get
started.	Then,	at	each	iterative	step,	this	algorithm	decides	which	row
values	are	closest	to	the	cluster	center	and	assigns	K	points	to	them.

Once	this	is	done,	we	have	a	new	arrangement	of	points.	Thus,	the
center	or	mean	of	the	clusters	is	computed	again	as	it	may	have
changed.	When	does	it	not	shift?	When	we	have	stable	clusters,	and	we
have	iterated	till	we	get	no	benefit	from	iterating	further,	then	this	is	our
result.

There	are	conditions	under	which	k-means	do	not	converge,	that	is,	there
are	no	stable	clusters,	but	we	won't	get	into	that	here.	You	can	read
further	about	the	convergence	of	k-means	at
http://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551/kmeans_convergence.pdf

A	simple	example
Let's	look	at	a	simple	example	before	getting	into	k-means	clustering.
We'll	use	a	dataset	of	t-shirt	sizes	with	the	following	columns:

Size:	This	refers	to	the	size	of	a	t-shirt
Height:	This	refers	to	the	height	of	a	person

http://webdocs.cs.ualberta.ca/~nray1/CMPUT466_551/kmeans_convergence.pdf


Weight:	This	refers	to	the	weight	of	a	person

Let's	look	at	the	data:

>>>	import	numpy	as	np

>>>	import	pandas	as	pd

>>>	import	matplotlib.pyplot	as	plt

>>>	#Reading	the	data	from	the	file

>>>	df	=	pd.read_csv('./Data/tshirt_sizes.csv')

>>>	print	df[:10]

			Height		Weight	Size

0					150						54				S

1					150						55				S

2					151						55				S

3					151						47				S

4					152						58				S

5					155						53				S

6					155						59				S

7					157						60				S

8					157						56				S

9					157						55				S

We'll	plot	a	scatter	plot	of	the	height	and	weight	of	people	and	group	it	on
the	basis	of	t-shirt	sizes	using	the	following	code:

>>>	d_color	=	{

							"S":	"b",

							"M":	"r",

							"L":	"g",

			}

>>>	fig,	ax	=	plt.subplots()

>>>	for	size	in	["S",	"M",	"L"]:

							color	=	d_color[size]

							df[df.Size	==	size].plot(kind='scatter',	

x='Height',	y='Weight',	label=size,	ax=ax,	

color=color)

>>>	handles,	labels	=	ax.get_legend_handles_labels()

>>>	_	=	ax.legend(handles,	labels,	loc="upper	left")

After	the	preceding	code	is	executed	we'll	get	the	following	output:	



You	can	see	that	people	who	have	sizes,	such	as	small,	are	short	in
height	and	they	weigh	less	and	are	blue	in	color.	Similarly,	for	the	other	t-
shirt	sizes,	the	height	and	weight	of	people	are	grouped	together	around
each	other.

In	the	preceding	case,	we	had	labels	for	the	t-shirt	sizes.	However,	if	we
don't	have	t-shirt	sizes	with	us	but	have	the	height	and	weight	of	the
individual	instead	and	we	want	to	estimate	the	sizes	based	on	height	and
weight,	then	this	is	where	a	k-means	algorithm	helps	us:

>>>	from	math	import	sqrt

>>>	from	scipy.stats.stats	import	pearsonr		

>>>	from	sklearn.cluster	import	KMeans	

>>>	from	scipy.cluster.vq	import	kmeans,vq

>>>	from	scipy.spatial.distance	import	cdist

>>>	km	=	KMeans(3,init='k-means++',	random_state=3425)	

#	initialize

>>>	km.fit(df[['Height','Weight']])

>>>	df['SizePredict']	=	

km.predict(df[['Height','Weight']])

>>>	df.groupby(['Size','SizePredict']).Size.count()

>>>	print	pd.crosstab(df.Size

																		,df.SizePredict

																		,rownames	=	['Size']



																		,colnames	=	['SizePredict'])

SizePredict			0			1			2

Size																			

L												13			0			1

M													0			6		14

S													0		15			0

We	have	assumed	three	clusters	in	the	k-means	algorithm	based	on	the
t-shirt	sizes	that	we	know	(later	on	we'll	discuss	how	to	determine	the
number	of	clusters),	and	then	we	input	the	height	and	weight	in	the	k-
means	algorithm.	Post	this,	we	predict	buckets	and	assign	these	buckets
to	the	SizePredict	variable.	We	then	look	at	the	confusion	matrix
between	the	actual	and	the	predicted	values	to	see	where	the	predicted
bucket	belongs.	We	can	see	that	0	bucket	belongs	to	the	L	shirt	size,	1	to
S	and	2	to	M.	We'll	now	map	the	buckets	back	to	the	t-shirt	sizes	and	plot
the	scatter	plot:

>>>	c_map	=	{

							2:	"M",

							1:	"S",

							0:	"L",

			}

>>>	df['SizePredict']	=	df['SizePredict'].map(c_map)

>>>	df['SizePredict'][:10]

0				S

1				S

2				S

3				S

4				S

5				S

6				S

7				S

8				S

9				S

Name:	SizePredict,	dtype:	object

We'll	now	plot	the	scatter	plot:

>>>	fig,	ax	=	plt.subplots()

>>>	for	size	in	["S",	"M",	"L"]:

							color	=	d_color[size]

							df[df.SizePredict	==	size].plot(kind='scatter',	

x='Height',	y='Weight',	label=size,	ax=ax,	



color=color)

>>>	handles,	labels	=	ax.get_legend_handles_labels()

>>>	_	=	ax.legend(handles,	labels,	loc="upper	left")

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

We	can	see	from	the	plot	that	the	k-means	algorithm	was	able	to	bucket
people	into	appropriate	buckets	where	the	shirt	sizes	can	be	used	to
identify	a	bucket	as	unique.



The	k-means	clustering	with
countries
We	have	UN	data	on	different	countries	of	the	world	with	regard	to
education	of	people	to	Gross	Domestic	Product.	We'll	use	this	data	to
bucket	the	countries	based	on	their	development.	Here	are	the
descriptions	of	the	columns:	

Here	is	a	screenshot	of	the	data:

Lets	see	the	data	type	of	each	column:



>>>	df	=	pd.read_csv('./Data/UN.csv')

>>>	#	print	the	raw	column	information	plus	summary	

header

>>>	print('----')

>>>	#	look	at	the	types	of	each	column	explicitly

>>>	[(col,	type(df[col][0]))	for	col	in	df.columns]	

[(x,	type(df[x][0]))	for	x	in	df.columns]	

							[('country',	str),

							('region',	str),

							('tfr',	numpy.float64),

							('contraception',	numpy.float64),

							('educationMale',	numpy.float64),

							('educationFemale',	numpy.float64),

							('lifeMale',	numpy.float64),

							('lifeFemale',	numpy.float64),

							('infantMortality',	numpy.float64),

							('GDPperCapita',	numpy.float64),

							('economicActivityMale',	numpy.float64),

							('economicActivityFemale',	numpy.float64),

							('illiteracyMale',	numpy.float64),

							('illiteracyFemale',	numpy.float64)]

Let's	check	the	fill	rate	of	the	columns,	which	is	basically	the	percentage
of	rows	and	columns	that	have	values:

>>>	print('Percentage	of	the	values	complete	in	the	

columns')

>>>	s_col_fill	=	df.count(0)/df.shape[0]	*	100

>>>	s_col_fill

country																			100.000000

region																				100.000000

tfr																								95.169082

contraception														69.565217

educationMale														36.714976

educationFemale												36.714976

lifeMale																			94.685990

lifeFemale																	94.685990

infantMortality												97.101449

GDPperCapita															95.169082

economicActivityMale							79.710145

economicActivityFemale					79.710145

illiteracyMale													77.294686

illiteracyFemale											77.294686

dtype:	float64

We	can	see	that	the	education	column	does	not	have	a	good	fill	rate



followed	by	the	contraception	column.

The	columns	with	a	good	fill	rate	are	life	expectancy	of	lifeMale	and
lifeFemale,	infantMortality	and	GDPperCapita.	With	these	columns,	we'll
remove	only	a	few	countries,	whereas	if	we	include	other	columns,	we'll
remove	a	lot	of	countries.

There	should	be	a	clustering	influence	based	on	the	life	expectancy	of
males	and	females	and	the	infant	mortality	rate	based	on	the	GDP	of	a
country.	This	is	because	a	higher	GDP	is	better	for	the	economy	of	the
country,	and	a	country	with	a	good	economy	is	presumed	to	have	a	good
life	expectancy	and	low	infant	mortality	rate:

>>>	df	=	df[['lifeMale',	'lifeFemale',	

'infantMortality',	'GDPperCapita']]

>>>	df	=	df.dropna(how='any')

Determining	the	number	of	clusters
Before	applying	the	k-means	algorithm,	we	would	like	to	estimate	the
ideal	number	of	clusters	to	the	group	called	countries:

>>>	K	=	range(1,10)

>>>	#	scipy.cluster.vq.kmeans

>>>	KM	=	[kmeans(df.values,k)	for	k	in	K]	#	apply	

kmeans	1	to	10

>>>	KM[:3]

[(array([[			63.52606383,				68.30904255,				

44.30851064,		5890.59574468]]),				

6534.9809626620172),		(array([[		6.12227273e+01,			

6.57779221e+01,			5.23831169e+01,		2.19273377e+03],				

[		7.39588235e+01,			7.97735294e+01,		7.73529412e+00,				

2.26397353e+04]]),				2707.2294867471232),	(array([[		

7.43050000e+01,			8.02350000e+01,			

6.60000000e+00,2.76644500e+04],				[		6.02309353e+01,			

6.46640288e+01,		5.61007194e+01,				1.47384173e+03],					

[		7.18862069e+01,		7.75551724e+01,			1.37931034e+01,				

1.20441034e+04]]),1874.0284870915732)]

In	the	preceding	code,	we	define	a	number	of	clusters	from	1	to	10.	Using



the	SciPy	library's	k-mean	function,	we	compute	centroids	and	the
distortion	between	these	centroids	and	observed	values	associated	to	the
distortion	that	is	computed	between	the	centroid	and	the	observed	values
of	the	cluster:

>>>	euclidean_centroid	=	[cdist(df.values,	centroid,	

'euclidean')	for	(centroid,var)	in	k_clusters]

>>>	print	'-----with	1	cluster------'

>>>	print	euclidean_centroid[0][:5]

-----with	1	cluster------

[[	3044.71049474]

	[	5027.61602297]

	[	4359.59802141]

	[	5536.23755972]

	[	2164.54439528]]

>>>	print	'-----with	2	cluster------'

>>>	print	euclidean_centroid[1][:5]

-----with	2	cluster------

[[	19792.32574968				663.5918709	]

	[	21776.75039319			1329.9326654	]

	[	21108.76955936				661.83208396]

	[	22285.08003662			1839.28608809]

	[	14584.74322443			5862.36131557]]

We	take	the	centroids	in	each	of	the	group	of	clusters	and	compute	the
euclidean	distance	from	all	the	points	in	space	to	the	centroids	of	the
cluster	using	the	dist	function	in	SciPy.

You	can	see	that	the	first	cluster	has	only	one	column	since	it	has	only
one	cluster	in	it,	and	the	second	cluster	has	two	columns	as	it	has	two
clusters	in	it:

>>>	dist	=	[np.min(D,axis=1)	for	D	in	D_k]

>>>	print	'-----with	1st	cluster------'

>>>	print	dist[0][:5]

>>>	print	'-----with	2nd	cluster------'

>>>	print	dist[1][:5]

-----with	1st	cluster------

[	3044.71049474		

5027.61602297		

4359.59802141		

5536.23755972		



2164.54439528]

-----with	2nd	cluster------

[		663.5918709			

1329.9326654				

661.83208396		

1839.28608809		

5862.36131557]

As	we	have	the	distance	of	each	of	the	observed	points	from	the	different
centroids,	we	can	find	the	minimum	distance	of	each	observed	point	from
the	closest	centroid.

You	can	see	in	the	preceding	code	that	the	first	and	second	clusters
contain	a	single	value,	which	is	the	distance	from	the	centroid.

We'll	now	compute	the	average	of	the	sum	of	the	square	of	the	distance:

>>>	avgWithinSS	=	[sum(d)/df.values.shape[0]	for	d	in	

dist]

>>>	avgWithinSS

[6534.9809626620136,

	2790.2101193300132,

	1890.9166153060164,

	1438.7793254224125,

	1120.3902815703975,

	903.15438285732,

	740.45942949866003,

	645.91915410445336,

	604.37878538964185]

Each	of	the	values	in	the	array	is	the	average	sum	of	the	square	that	has
one	cluster	to	a	group	of	ten	clusters.

We'll	now	plot	the	elbow	curve	(this	is	the	point	at	which	a	curve	starts
flattening	out)	for	the	k-means	clustering	using	this	data:

>>>	#Choosing	the	cluster	number

>>>	kIdx	=	2

>>>	#	plot	elbow	curve

>>>	fig	=	plt.figure()

>>>	ax	=	fig.add_subplot(111)



>>>	ax.plot(K,	avgWithinSS,	'b*-')

>>>	ax.plot(K[kIdx],	avgWithinSS[kIdx],	marker='o',	

markersize=12,	

						markeredgewidth=2,	markeredgecolor='r',	

markerfacecolor='None')

>>>	plt.grid(True)

>>>	plt.xlabel('Number	of	clusters')

>>>	plt.ylabel('Average	within-cluster	sum	of	

squares')

>>>	tt	=	plt.title('Elbow	for	K-Means	clustering')

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

By	looking	at	the	curve,	we	can	see	that	there	is	big	jump	from	one
cluster	to	the	other,	and	then	a	significant	jump	from	cluster	2	to	cluster	3.
There	is	a	slight	jump	from	cluster	3	to	cluster	4,	and	then	the	jump	to	the
subsequent	number	of	clusters	is	very	small.	Let's	fix	the	elbow	point	at
cluster	3	and	create	three	clusters	to	segment	the	countries.



Clustering	the	countries
We'll	now	apply	the	k-means	algorithm	to	cluster	the	countries	together:

>>>	km	=	KMeans(3,	init='k-means++',	random_state	=	

3425)	#	initialize

>>>	km.fit(df.values)

>>>	df['countrySegment']	=	km.predict(df.values)

>>>	df[:5]

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

Let's	find	the	average	GDP	per	capita	for	each	country	segment:

>>>	df.groupby('countrySegment').GDPperCapita.mean()

>>>	countrySegment

0				13800.586207

1					1624.538462

2				29681.625000

Name:	GDPperCapita,	dtype:	float64

We	can	see	that	cluster	2	has	the	highest	average	GDP	per	capita	and
we	can	assume	that	this	includes	developed	countries.	Cluster	0	has	the
second	highest	GDP,	we	can	assume	this	includes	developing	countries,
and	finally,	cluster	1	has	a	very	low	average	GDP	per	capita.	We	can
assume	this	includes	developed	nations:

>>>	clust_map	=	{

							0:'Developing',

							1:'Under	Developed',

							2:'Developed'

			}



>>>	df.countrySegment	=	

df.countrySegment.map(clust_map)

>>>	df[:10]

After	the	preceding	code	is	executed	we'll	get	the	following	output:	

Let's	see	the	GDP	versus	infant	mortality	rate	of	the	countries	for	each	of
the	clusters:

>>>	d_color	=	{

							'Developing':'y',

							'Under	Developed':'r',

							'Developed':'g'

			}

>>>	fig,	ax	=	plt.subplots()

>>>	for	clust	in	clust_map.values():

							color	=	d_color[clust]

							df[df.countrySegment	==	

clust].plot(kind='scatter',	x='GDPperCapita',	

y='infantMortality',	label=clust,	ax=ax,	color=color)

>>>	handles,	labels	=	ax.get_legend_handles_labels()

>>>	_	=	ax.legend(handles,	labels,	loc="upper	right")

After	the	preceding	code	is	executed	we'll	get	the	following	output:	



We	can	see	from	the	preceding	graph	that	when	the	GDP	is	low,	the
infantMortality	rate	is	really	high,	and	as	the	GDP	increases,	the
InfantMortality	rate	decreases.

We	can	also	clearly	see	that	the	countries	in	green	are	the
underdeveloped	nations,	the	one	in	dark	blue	are	the	developing	nations,
and	the	ones	in	red	are	the	developed	nations.

Let's	see	the	life	expectancy	of	males	with	respect	to	the	GDP:

>>>	fig,	ax	=	plt.subplots()

>>>	for	clust	in	clust_map.values():

							color	=	d_color[clust]

							df[df.countrySegment	==	

clust].plot(kind='scatter',	x='GDPperCapita',	

y='lifeMale',	label=clust,	ax=ax,	color=color)

>>>	handles,	labels	=	ax.get_legend_handles_labels()

>>>	_	=	ax.legend(handles,	labels,	loc="lower	right")

After	the	preceding	code	is	executed	we'll	get	the	following	output:	



We	can	see	that	the	life	expectancy	of	males	also	increases	with	the
GDP	for	the	different	kinds	of	nations.

Now,	for	the	life	expectancy	of	females	with	regard	to	the	GDP,	we'll	use
this	code:

>>>	fig,	ax	=	plt.subplots()

>>>	for	clust	in	clust_map.values():

							color	=	d_color[clust]

							df[df.countrySegment	==	

clust].plot(kind='scatter',	x='GDPperCapita',	

y='lifeFemale',	label=clust,	ax=ax,	color=color)

>>>	handles,	labels	=	ax.get_legend_handles_labels()

>>>	_	=	ax.legend(handles,	labels,	loc="lower	right")

After	the	preceding	code	is	executed	we'll	get	the	following	output:	



There	is	a	similar	trend	for	females	too.



Summary
In	this	chapter,	you	were	made	to	understand	the	concept	of	clustering
and	learned	an	unsupervised	learning	technique	called	the	k-means
technique.	You	also	learned	how	to	determine	the	number	of	clusters
before	segmenting	data	using	k-means,	and	finally,	you	saw	the	results	of
this	using	the	k-means	clustering.

In	the	next	chapter,	you'll	learn	how	to	explore	unstructured	data	and	use
text	mining	techniques	on	unstructured	data.



Chapter	11.	Analyzing
Unstructured	Data	with	Text
Mining
There	is	a	lot	of	unstructured	data	out	there,	such	as	news	articles,
customer	feedbacks,	Twitter	tweets	and	so	on,	that	contains	information
and	needs	to	be	analyzed.	Text	mining	is	a	data	mining	technique	that
helps	us	to	perform	an	analysis	of	this	unstructured	data.

In	this	chapter,	we'll	learn	the	following:

Preprocessing	data
Plotting	a	wordcloud	from	data
Word	and	sentence	tokenization
Tagging	parts	of	speech
Stemming	and	lemmatization
Applying	Stanford	Named	Entity	Recognizer

Preprocessing	data
We'll	use	the	reviews	of	Mad	Max:	Fury	Road	from	the	online	portals	of
BBC,	Forbes,	Guardian,	and	Movie	Pilot.

We'll	extensively	use	the	Natural	Language	Toolkit	(NLTK)	package	of
Python	in	this	chapter	for	text	mining.	You	can	install	it	with	the	help	of
instructions	at	http://www.nltk.org/install.html

We'll	be	performing	the	following	actions	on	data:

Removing	punctuation
Removing	numbers
Converting	text	to	lowercase
Removing	the	most	common	words	in	the	English	language,	called
stop	words,	such	as	be,	the,	on,	and	so	on.

http://www.nltk.org/install.html


Let's	start	by	loading	the	data	first:

>>>	data	=	{}

>>>	#data['bbc']	=

>>>	data['bbc']	=	

open('./Data/madmax_review/bbc.txt','r').read()

>>>	data['forbes']	=	

open('./Data/madmax_review/forbes.txt','r').read()

>>>	data['guardian']	=	

open('./Data/madmax_review/guardian.txt','r').read()

>>>	data['moviepilot']	=	

open('./Data/madmax_review/moviepilot.txt','r').read()

>>>	#	We'll	convert	the	text	to	lower	case

>>>	#Conversion	to	lower	case

>>>	for	k	in	data.keys():

>>>				data[k]	=	data[k].lower()

>>>	print	data['bbc'][:800]

Now,	we'll	remove	the	punctuation	from	the	text	as	we'll	be	analyzing	the
frequency	of	each	word:

>>>	#Removing	punctuation

>>>	for	k	in	data.keys():

							data[k]	=	re.sub(r'[-./?!,":;()\']','	

',data[k])	

>>>	print	data['bbc'][:800]



We'll	remove	the	numbers	from	the	text:

>>>	#Removing	number

>>>	for	k	in	data.keys():

							data[k]	=	re.sub('[-|0-9]','	',data[k])	>>>	

print	data['bbc'][:800]

We'll	need	to	download	and	install	the	stopwords	package	for	nltk,	which
can	be	done	using	the	following	command:

>>>	import	nltk

>>>	nltk.download_gui()

You'll	get	the	following	GUI	from	which	you	can	install	the	stopwords:	



Post	this,	we'll	remove	commonly	occurring	stop	words,	such	as	ours,
yours,	that,	this,	and	so	on:

>>>	#Removing	stopwords

>>>	for	k	in	data.keys():

							data[k]	=	data[k].split()

>>>	stopwords_list	=	stopwords.words('english')

>>>	stopwords_list	=	stopwords_list	+	

['mad','max','film','fury','miller','road']

>>>	for	k	in	data.keys():

							data[k]	=	[	w	for	w	in	data[k]	if	not	w	in	

stopwords_list	]	>>>	print	data['bbc'][:80]

['creator',	'blockbuster',	'franchise',	'decides',	

'dust',	'decades',	'later',	'results',	'well',	

'results',	'phantom',	'menace',	'prometheus',	

'indiana',	'jones',	'kingdom',	'crystal',	'skull',	

'legacy',	'tarnishing',	'messes',	'fans',	'try',	

'forget',	'first',	'made',	'george',	'years',	

'belated',	'reboot',	'missing',	'original',	'star',	

'mel',	'gibson',	'director',	'spent',	'intervening',	

'years',	'children',	'fare',	'happy',	'feet',	'babe',	

'pig',	'city',	'might',	'assume',	'would',	'join',	

'phantom',	'menace',	'scrapheap',	'reserved',	



'unloved',	'revivals',	'yet',	'somehow',	'explosive',	

'new',	'barrage',	'action',	'eccentricity',	'isn',	

'faithful',	'continuation',	'series',	'also',	

'exhilarating',	'high',	'point',	'made',	'trilogy',	

'three',	'decades',	'ago',	'seems',	'revving',	

'benefit',	'uninitiated']



Creating	a	wordcloud
A	worldcloud	is	a	collage	of	words	and	those	words	that	are	bigger	in	size
have	a	high	frequency.

You	can	download	wordcloud	with	the	following	command	if	you	use
Ubuntu:

$	pip	install	

git+git://github.com/amueller/word_cloud.git

You	can	follow	the	instructions	to	do	this	by	referring	to
https://github.com/amueller/word_cloud.

Let's	plot	the	wordcloud	for	the	BBC	by	using	the	following	code:

>>>	wordcloud	=	WordCloud(width	=	1000,	height	=	

500).generate('	'.join(data['bbc']))

>>>	plt.figure(figsize=(15,8))

>>>	plt.imshow(wordcloud)

>>>	plt.axis("off")

>>>	plt.show()

https://github.com/amueller/word_cloud


From	the	preceding	wordcloud,	we	can	make	out	that	there	are	mentions
about	the	long	duration	between	the	80s	Mad	Max	and	the	current	Mad
Max.	The	article	talks	about	Mel	Gibson,	the	cars,	and	the	villain
Immortan	Joe	as	these	are	the	most	frequently	occurring	keywords.
There	is	also	an	emphasis	on	different	aspects	of	the	movie	given	by	the
one	keyword.

Now,	let's	see	how	the	wordcloud	looks	like	for	Forbes	by	using	this
code:

>>>	wordcloud	=	WordCloud(width	=	1000,	height	=	

500).generate('	'.join(data['forbes']))

>>>	plt.figure(figsize=(15,8))

>>>	plt.imshow(wordcloud)

>>>	plt.axis("off")

>>>	plt.show()



Forbes	talks	more	about	the	female	characters.

This	is	what	the	wordcloud	for	The	Guardian	looks	like:

>>>	wordcloud	=	WordCloud(width	=	1000,	height	=	

500).generate('	'.join(data['guardian']))

>>>	plt.figure(figsize=(15,8))

>>>	plt.imshow(wordcloud)

>>>	plt.axis("off")

>>>	plt.show()



The	Guardian	lays	an	emphasis	on	women	and	water.	If	you	have	seen
the	movie,	then	you'll	understand	that	The	Guardian	emphasizes	the
female	characters	and	the	lack	of	water	in	their	wasteland.

Finally,	this	is	what	the	word	cloud	looks	like	for	moviepilot:

>>>	wordcloud	=	WordCloud(width	=	1000,	height	=	

500).generate('	'.join(data['moviepilot']))

>>>	plt.figure(figsize=(15,8))

>>>	plt.imshow(wordcloud)

>>>	plt.axis("off")

>>>	plt.show()



The	http://moviepilot.com/	emphasizes	the	character	of	Immortan	Joe,
the	characters	in	general,	and	the	war	boys	shown	in	the	film.

http://moviepilot.com/


Word	and	sentence	tokenization
We	have	dealt	with	word	tokenization	previously,	but	we	can	perform	this
using	NLTK	as	well	as	sentence	tokenization,	which	is	quite	tricky,	as	the
English	language	has	period	symbols	for	abbreviations	and	other
purposes.	Thankfully,	the	sentence	tokenizer	is	a	instance	of
PunktSentenceTokenizer	from	the	tokenize.punkt	module	of	nltk,
which	helps	in	tokenizing	sentences.

Let's	look	at	word	tokenization	using	this	code:

>>>	#Loading	the	forbes	data

>>>	data	=	

open('./Data/madmax_review/forbes.txt','r').read()

>>>	word_data	=	nltk.word_tokenize(data)

>>>	word_data[:15]

['Pundits',

	'and',

	'critics',

	'like',

	'to',

	'blame',

	'the',

	'twin',

	'successes',

	'of',

	'Jaws',

	'and',

	'Star',

	'Wars',

	'for']

Now,	let's	perform	the	sentence	tokenization	of	the	Forbes	article:

>>>	sent_tokenize(data)[:5]

['Pundits	and	critics	like	to	blame	the	twin	successes	

of	Jaws	and	Star	Wars	for	turning	Hollywood	into	

something	of	a	blockbuster	factory.',	"We	can	debate	

the	merits	of	said	accusation,	but	for	me	it	comes	

down	to	one	simple	factor:	If	every	would-be	

blockbuster,	or	even	most	would-be	blockbusters	were	



as	good	as	Jaws	and/or	Star	Wars,	I	imagine	most	of	us	

wouldn't	be	complaining	nearly	as	much.",	"That	brings	

us	to	George	Miller's	Mad	Max:	Fury	Road.",	"It	is	a	

revamp/reboot/sequel	for	a	30-year	old	franchise,	

directed	by	the	original	helmer	who	hasn't	been	

culturally	relevant	in	decades,	featuring	a	new	and	

somewhat	flavor-of-the-month	actor,	and	seemingly	only	

existing	because	of	the	fact	that	the	property	is	

vaguely	known	and	thus	has	a	token	amount	of	built-in	

awareness.",	"If		you	think	that	sounds	like	the	kind	

of	thing	I	complain	about	rather	regularly,	you'd	be	

correct."]

You	can	see	that	each	of	the	sentences	is	an	element	of	the	list	after
sentence	tokenization	has	been	performed.



Parts	of	speech	tagging
Parts	of	speech	tagging	is	one	of	the	important	tasks	of	text	analysis.	It
helps	tag	each	word	based	on	the	context	of	a	sentence	or	the	role	that	a
word	plays	in	a	sentence.

Let's	see	how	to	perform	part	of	speech	tagging	using	nltk:

>>>	pos_word_data	=	nltk.pos_tag(word_data)

>>>	pos_word_data[	:	10]

[('Pundits',	'NNS'),

	('and',	'CC'),

	('critics',	'NNS'),

	('like',	'IN'),

	('to',	'TO'),

	('blame',	'VB'),

	('the',	'DT'),

	('twin',	'NN'),

	('successes',	'NNS'),

	('of',	'IN')]

You	can	see	tags,	such	as	NNS,	CC,	IN	,	TO,	DT,	and	NN.	Let's	see	what	they
mean	using	this	code:

>>>	nltk.help.upenn_tagset('NNS')

NNS:	noun,	common,	plural	undergraduates	scotches	

bric-a-brac	products	bodyguards	facets	coasts	

divestitures	storehouses	designs	clubs	fragrances	

averages	subjectivists	apprehensions	muses	factory-

jobs

>>>	nltk.help.upenn_tagset('NN')

NN:	noun,	common,	singular	or	mass	common-carrier	

cabbage	knuckle-duster	Casino	afghan	shed	thermostat	

investment	slide	humour	falloff	slick	wind	hyena	

override	subhumanity	machinist

>>>	nltk.help.upenn_tagset('IN')

IN:	preposition	or	conjunction,	subordinating	astride	



among	uppon	whether	out	inside	pro	despite	on	by	

throughout	below	within	for	towards	near	behind	atop	

around	if	like	until	below	next	into	if	beside

>>>	nltk.help.upenn_tagset('TO')

TO:	"to"	as	preposition	or	infinitive	marker

				to

>>>	nltk.help.upenn_tagset('DT')

DT:	determiner	all	an	another	any	both	del	each	either	

every	half	la	many	much	nary	neither	no	some	such	that	

the	them	these	this	those

>>>	nltk.help.upenn_tagset('CC')

CC:	conjunction,	coordinating	&	'n	and	both	but	either	

et	for	less	minus	neither	nor	or	plus	so	therefore	

times	v.	versus	vs.	whether	yet

You	can	get	more	information	about	the	tags	used	in	the	preceding	code
at
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

You	can	see	words	used	in	the	preceding	code	are	tagged	well.	This
tagging	can	help	us	create	heuristics	over	data	and	then	extract
information	out	of	it.	For	example,	we	can	take	out	all	the	nouns	in	our
article	and	analyze	the	theme	of	the	article.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html


Stemming	and	lemmatization
Text	documents	can	contain	words	in	different	forms,	such	as	play,
playing,	and	played.	They	are	similar	and	they	have	a	common	root.

Stemming	and	lemmatization	are	techniques	that	are	used	to	find	these
common	roots.	Finding	the	roots	will	help	us	count,	play,	playing,	and
played	as	a	single	entity	as	all	the	words	talk	about	play.

Stemming	is	more	of	a	crude	form	of	arriving	at	the	root	of	a	word;	so,	in
the	case	of	the	preceding	example,	playing	would	be	reduced	to	play.
Lemmatization	brings	into	context	words,	such	as	worse	and	bad,	that
can	have	a	common	bad	root.

Stemming
Stemming	is	a	process	of	reducing	a	word	to	its	root	form.	The	root	form
is	not	a	word	by	itself,	but	words	can	be	formed	by	adding	the	right	suffix
to	it.

If	you	take	fish,	fishes,	and	fishing,	they	all	can	be	stemmed	to	fishing.
Also,	study,	studying,	and	studies	can	be	stemmed	to	study,	which	is	not
a	part	of	the	English	language.

There	are	various	types	of	stemming	algorithms,	such	as	Porter,
Lancaster,	Snowball,	and	so	on.

Porter	is	the	most	commonly	used	stemmer.	It	is	also	one	of	the	gentlest
stemmers	and	is	computationally	intensive	with	regard	to	algorithms.

The	Snowball	algorithm	is	regarded	as	an	improvement	over	Porter.
Porter	himself,	in	fact,	admits	that	the	Snowball	algorithm	is	better	than
his	algorithm.

Lancaster	is	a	more	aggressive	stemming	algorithm.	Porter	and	Snowball
stemming	is	understandable	by	readers,	but	Lancaster	isn't,	as	it	makes
words	more	obscure.	Lancaster	is	considered	to	be	the	fastest	algorithm
among	the	three	and	it	will	work	very	well	with	a	large	set	of	words,	but	if



you	are	looking	for	something	more	distinctive,	then	Lancaster	is	not	for
you.

Let's	try	out	the	Porter	Stemming	Algorithm	using	this	code:

>>>	from	nltk.stem.porter	import	PorterStemmer

>>>	porter_stemmer	=	PorterStemmer()

>>>	for	w	in	word_data[:20]:

							print	"Actual:	%s		Stem:	%s"		%	

(w,porter_stemmer.stem(w))

Actual:	Pundits		Stem:	Pundit

Actual:	and		Stem:	and

Actual:	critics		Stem:	critic

Actual:	like		Stem:	like

Actual:	to		Stem:	to

Actual:	blame		Stem:	blame

Actual:	the		Stem:	the

Actual:	twin		Stem:	twin

Actual:	successes		Stem:	success

Actual:	of		Stem:	of

Actual:	Jaws		Stem:	Jaw

Actual:	and		Stem:	and

Actual:	Star		Stem:	Star

Actual:	Wars		Stem:	War

Actual:	for		Stem:	for

Actual:	turning		Stem:	turn

Actual:	Hollywood		Stem:	Hollywood

Actual:	into		Stem:	into

Actual:	something		Stem:	someth

Actual:	of		Stem:	of

Let's	try	out	the	Lancaster	Algorithm	using	this	code:

>>>	from	nltk.stem.lancaster	import	LancasterStemmer

>>>	lancaster_stemmer	=	LancasterStemmer()

>>>	for	w	in	word_data[:20]:

							print	"Actual:	%s		Stem:	%s"		%	

(w,lancaster_stemmer.stem(w))

Actual:	Pundits		Stem:	pundit

Actual:	and		Stem:	and

Actual:	critics		Stem:	crit



Actual:	like		Stem:	lik

Actual:	to		Stem:	to

Actual:	blame		Stem:	blam

Actual:	the		Stem:	the

Actual:	twin		Stem:	twin

Actual:	successes		Stem:	success

Actual:	of		Stem:	of

Actual:	Jaws		Stem:	jaw

Actual:	and		Stem:	and

Actual:	Star		Stem:	star

Actual:	Wars		Stem:	war

Actual:	for		Stem:	for

Actual:	turning		Stem:	turn

Actual:	Hollywood		Stem:	hollywood

Actual:	into		Stem:	into

Actual:	something		Stem:	someth

Actual:	of		Stem:	of

Now,	let's	try	out	the	Snowball	Algorithm	using	this	code:

>>>	from	nltk.stem.snowball	import	SnowballStemmer

>>>	snowball_stemmer	=	SnowballStemmer("english")

>>>	for	w	in	word_data[:20]:

							print	"Actual:	%s		Stem:	%s"		%	

(w,snowball_stemmer.stem(w))

Actual:	Pundits		Stem:	pundit

Actual:	and		Stem:	and

Actual:	critics		Stem:	critic

Actual:	like		Stem:	like

Actual:	to		Stem:	to

Actual:	blame		Stem:	blame

Actual:	the		Stem:	the

Actual:	twin		Stem:	twin

Actual:	successes		Stem:	success

Actual:	of		Stem:	of

Actual:	Jaws		Stem:	jaw

Actual:	and		Stem:	and

Actual:	Star		Stem:	star

Actual:	Wars		Stem:	war

Actual:	for		Stem:	for

Actual:	turning		Stem:	turn

Actual:	Hollywood		Stem:	hollywood

Actual:	into		Stem:	into

Actual:	something		Stem:	someth

Actual:	of		Stem:	of



Lemmatization
Lemmatization	is	similar	to	stemming	but	unlike	stemming,	it	brings	in	a
context	of	the	word.

A	lemmatization-based	algorithm	will	match	a	train	to	the	word
locomotive,	but	a	stemming	algorithm	won't	be	able	to	do	this.	A
lemmatization	algorithm	makes	use	of	a	dictionary	to	link	up	words.

The	WordNet	is	a	lexical	database	for	English	by	Princeton,	and	we'll	use
their	lemmatization	techniques:

Actual:	Pundits		Lemma:	Pundits

Actual:	and		Lemma:	and

Actual:	critics		Lemma:	critic

Actual:	like		Lemma:	like

Actual:	to		Lemma:	to

Actual:	blame		Lemma:	blame

Actual:	the		Lemma:	the

Actual:	twin		Lemma:	twin

Actual:	successes		Lemma:	success

Actual:	of		Lemma:	of

Actual:	Jaws		Lemma:	Jaws

Actual:	and		Lemma:	and

Actual:	Star		Lemma:	Star

Actual:	Wars		Lemma:	Wars

Actual:	for		Lemma:	for

Actual:	turning		Lemma:	turning

Actual:	Hollywood		Lemma:	Hollywood

Actual:	into		Lemma:	into

Actual:	something		Lemma:	something

Actual:	of		Lemma:	of

Actual:	a		Lemma:	a

Actual:	blockbuster		Lemma:	blockbuster

Actual:	factory		Lemma:	factory

Actual:	.		Lemma:	.

Actual:	We		Lemma:	We

Actual:	can		Lemma:	can

Actual:	debate		Lemma:	debate

Actual:	the		Lemma:	the

Actual:	merits		Lemma:	merit

Actual:	of		Lemma:	of



The	Stanford	Named	Entity
Recognizer
The	Named	Entity	Recognizer	is	a	task	that	classifies	the	elements	of	a
sentence	into	categories,	such	as	person,	organization,	location,	and	so
on.	Stanford	Named	Entity	Recognizer	is	one	of	the	most	popular	out
there	and	can	be	found	at	http://nlp.stanford.edu/.

The	Stanford	Named	Entity	Recognizer	can	be	downloaded	at
http://nlp.stanford.edu/software/stanford-ner-2014-06-16.zip.

The	following	code	shows	the	Stanford	Named	Entity	Recognizer	in
action:

>>>	from	nltk.tag.stanford	import	NERTagger.

>>>	st	=	NERTagger('./lib/stanford-

ner/classifiers/english.all.3class.distsim.crf.ser.gz'

,	'./lib/stanford-ner/stanford-ner.jar')

>>>	st.tag('''Barrack	Obama	is	the	president	of	the	

United	States	of	America	.	His	father	is	from	Kenya	

and	Mother	from	United	States	of	America.	

											He	has	two	daughters	with	his	wife.	He	has	

strong	opposition	in	Congress	due	to	

Republicans'''.split())	

[[(u'Barrack',	u'PERSON'),

		(u'Obama',	u'PERSON'),

		(u'is',	u'O'),

		(u'the',	u'O'),

		(u'president',	u'O'),

		(u'of',	u'O'),

		(u'the',	u'O'),

		(u'United',	u'LOCATION'),

		(u'States',	u'LOCATION'),

		(u'of',	u'LOCATION'),

		(u'America',	u'LOCATION'),

		(u'.',	u'O')],

	[(u'His',	u'O'),

		(u'father',	u'O'),

		(u'is',	u'O'),

http://nlp.stanford.edu/
http://nlp.stanford.edu/software/stanford-ner-2014-06-16.zip


		(u'from',	u'O'),

		(u'Kenya',	u'LOCATION'),

		(u'and',	u'O'),

		(u'Mother',	u'O'),

		(u'from',	u'O'),

		(u'United',	u'LOCATION'),

		(u'States',	u'LOCATION'),

		(u'of',	u'O'),

		(u'America.',	u'O'),

		(u'He',	u'O'),

		(u'has',	u'O'),

		(u'two',	u'O'),

		(u'daughters',	u'O'),

		(u'with',	u'O'),

		(u'his',	u'O'),

		(u'wife.',	u'O'),

		(u'He',	u'O'),

		(u'has',	u'O'),

		(u'strong',	u'O'),

		(u'opposition',	u'O'),

		(u'in',	u'O'),

		(u'Congress',	u'ORGANIZATION'),

		(u'due',	u'O'),

		(u'to',	u'O'),

		(u'Republicans',	u'O')]]

You	can	see	that	the	Stanford	Named	Entity	Tagger	does	a	pretty	good
job	of	tagging	a	PERSON,	LOCATION,	and	ORGANIZATION.



Performing	sentiment	analysis	on
world	leaders	using	Twitter
Before	we	start	analyzing	tweets,	we'll	need	to	install	the	Twython
package	of	Python,	which	helps	interact	with	the	Twitter	API	to	get	tweets
from	Twitter.	This	can	be	downloaded	from
https://github.com/ryanmcgrath/twython.

Also,	you	need	to	get	the	consumer	key	and	consumer	secret	key	from
https://apps.twitter.com/app/new.

Once	you	have	details	about	your	app,	you'll	get	the	consumer	key	and
consumer	secret	key:	

https://github.com/ryanmcgrath/twython
https://apps.twitter.com/app/new


After	this,	go	to	the	Key	and	Access	Tokens	tab	to	generate	your	access
token:	

Once	you	have	the	required	keys,	we'll	add	the	details	to	the	following
code:

#Please	provide	your	keys	here



TWITTER_APP_KEY	=	'XXXXXXXXXXXXXXXXXXXXX'	

TWITTER_APP_KEY_SECRET	=	'XXXXXXXXXXXXXXXXXXXXX'		

TWITTER_ACCESS_TOKEN	=	'XXXXXXXXXXXXXXXXXXXXX'	

TWITTER_ACCESS_TOKEN_SECRET	=	'XXXXXXXXXXXXXXXXXXXXX'	

t	=	Twython(app_key=TWITTER_APP_KEY,	

											app_secret=TWITTER_APP_KEY_SECRET,	

											oauth_token=TWITTER_ACCESS_TOKEN,	

											

oauth_token_secret=TWITTER_ACCESS_TOKEN_SECRET)

def	get_tweets(twython_object,	query,	n):

			count	=	0

			result_generator	=	

twython_object.cursor(twython_object.search,	q	=	

query)

			result_set	=	[]

			for	r	in	result_generator:

							result_set.append(r['text'])

							count	+=	1

							if	count	==	n:	break				return	result_set

Now,	we	have	access	to	the	tweets	and	can	fetch	them.

We'll	analyze	the	sentiment	of	tweets	from	Obama,	Putin,	Modi,	Xi	Jin
Ping,	and	David	Cameron.	Here	are	a	few	assumptions	that	we'll	be
making	for	our	analysis:

1.	 The	tweets	are	in	English.
2.	 We	set	a	limit	of	a	maximum	of	500	tweets.

You	can	load	the	tweets	from	the	following	JSON	file:

>>>	with	open('./Data/politician_tweets.json',	'w')	as	

fp:

>>>	tweets=json.load(fp)

You	can	fetch	fresh	tweets	of	these	politicians:

>>>	tweets	=	{}

>>>	max_tweets	=	500

>>>	tweets['obama']	=	[re.sub(r'[-.#/?!,":;()\']','	

',tweet.lower())	for	tweet	in	get_tweets(t,'#obama',	

max_tweets	)]



>>>	tweets['putin']	=	[re.sub(r'[-.#/?!,":;()\']','	

',tweet.lower())	for	tweet	in	get_tweets(t,'#putin',	

max_tweets	)]

>>>	tweets['modi']	=	[re.sub(r'[-.#/?!,":;()\']','	

',tweet.lower())	for	tweet	in	get_tweets(t,'#modi',	

max_tweets	)]

>>>	tweets['xijinping']	=	[re.sub(r'[-.#/?!,":;

()\']','	',tweet.lower())	for	tweet	in	

get_tweets(t,'#xijinping',	max_tweets	)]

>>>	tweets['davidcameron']	=	[re.sub(r'[-.#/?!,":;

()\']','	',tweet.lower())	for	tweet	in	

get_tweets(t,'#davidcameron',	max_tweets	)]

Now,	let's	define	a	function	to	score	the	sentiments	of	the	tweets.	We
have	a	positive	and	negative	word	list	from	Hu	and	Liu's	lexicon	at
http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html.

This	will	be	used	to	compare	the	tweets	and	give	them	a	score.	Every
positive	word	that	matches	will	be	given	a	+1	point	and	every	negative
score	that	is	matched	will	be	given	a	-1	point:

>>>	positive_words	=	open('./Data/positive-

words.txt').read().split('\n')

>>>	negative_words	=	open('./Data/negative-

words.txt').read().split('\n')

>>>	def	sentiment_score(text,	pos_list,	neg_list):

						positive_score	=	0

						negative_score	=	0							for	w	in	text.split('	

'):

										if	w	in	pos_list:	positive_score+=1

										if	w	in	neg_list:	negative_score+=1							

return	positive_score	-	negative_score

Let's	now	score	the	sentiments	of	each	tweet	in	the	list:

>>>	tweets_sentiment	=	{}

>>>	tweets_sentiment['obama']	=	[	

sentiment_score(tweet,positive_words,negative_words)	

for	tweet	in		tweets['obama']	]

>>>	tweets_sentiment['putin']	=	[	

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html


sentiment_score(tweet,positive_words,negative_words)	

for	tweet	in	tweets['putin']	]

>>>	tweets_sentiment['modi']	=	[	

sentiment_score(tweet,positive_words,negative_words)	

for	tweet	in	tweets['modi']	]

>>>	tweets_sentiment['xijinping']	=	[	

sentiment_score(tweet,positive_words,negative_words)	

for	tweet	in	tweets['xijinping']	]

>>>	tweets_sentiment['davidcameron']	=	[	

sentiment_score(tweet,positive_words,negative_words)	

for	tweet	in	tweets['davidcameron']	]

We	have	defined	dict	and	called	tweets_sentiment	where	we	have
scored	the	sentiments	of	each	of	the	tweets	for	the	politicians.

Now,	as	we	have	the	sentiment	score	for	each	of	the	politicians,	we'll	now
analyze	the	sentiments	for	each	politician.

Let's	see	how	people	feel	about	Obama:

>>>	obama	=	plt.hist(tweets_sentiment['obama'],	5,	

facecolor='green',	alpha=0.5)

>>>	plt.xlabel('Sentiment	Score')

>>>	_=plt.xlim([-4,4])

After	the	preceding	code	is	executed	we'll	get	the	following	output:



We	mostly	see	neutral	tweets	about	Obama.

Let's	see	the	tweets	for	Putin:

>>>	putin	=	plt.hist(tweets_sentiment['putin'],	5,	

facecolor='green',	alpha=0.5)

>>>	plt.xlabel('Sentiment	Score')

>>>	_=plt.xlim([-4,4])

After	the	preceding	code	is	executed	we'll	get	the	following	output:



Most	tweets	are	neutral	with	a	slight	negativity.

Let's	see	the	tweets	for	Modi:

>>>	modi	=	plt.hist(tweets_sentiment['modi'],	5,	

facecolor='green',	alpha=0.5)

>>>	plt.xlabel('Sentiment	Score')

>>>	_=plt.xlim([-4,4])

After	the	preceding	code	is	executed	we'll	get	the	following	output:



Most	tweets	are	neutral	for	Modi	with	a	slight	positivity.

Let's	see	the	tweets	for	Xi	Jin	Ping:

>>>	xijinping	=	

plt.hist(tweets_sentiment['xijinping'],	5,	

facecolor='green',	alpha=0.5)

>>>	plt.xlabel('Sentiment	Score')

>>>	_=plt.xlim([-4,4])

After	the	preceding	code	is	executed	we'll	get	the	following	output:



So,	the	tweets	for	Xi	Jin	Ping	are	mostly	negative:

>>>	davidcameron	=	

plt.hist(tweets_sentiment['davidcameron'],	5,	

facecolor='green',	alpha=0.5)

>>>	plt.xlabel('Sentiment	Score')

>>>	_=plt.xlim([-4,4])

After	the	preceding	code	is	executed	we'll	get	the	following	output:



The	tweets	for	David	Cameron	are	more	toward	positive	in	nature.



Summary
In	this	chapter,	you	learned	how	to	clean	unstructured	text	data	and	then
plotted	a	wordcloud	out	of	this	data.	You	learned	how	to	tokenize	words
and	sentences	using	NLTK.	You	learned	how	to	perform	parts	of	speech
tagging	and	also	the	concepts	of	stemming	and	lemmatization.	You	were
introduced	to	Named	Entity	Recognition	and	learned	how	to	apply	it	using
Stanford	NER.	Finally,	you	learned	how	to	fetch	tweets	using	the	Twitter
API	and	then	perform	sentiment	analysis	on	it.

In	the	next	chapter,	you'll	learn	how	to	use	Python	in	the	world	of	big
data.



Chapter	12.	Leveraging	Python	in
the	World	of	Big	Data
We	are	generating	more	and	more	data	day	by	day.	We	have	generated
more	data	this	century	than	in	the	previous	century	and	we	are	currently
only	15	years	into	this	century.	big	data	is	the	new	buzz	word	and
everyone	is	talking	about	it.	It	brings	new	possibilities.	Google	Translate
is	able	to	translate	any	language,	thanks	to	big	data.	We	are	able	to
decode	our	human	genome	due	to	it.	We	can	predict	the	failure	of	a
turbine	and	do	the	required	maintenance	on	it	because	of	big	data.

There	are	three	Vs	of	big	data	and	they	are	defined	as	follows:

Volume:	This	defines	the	size	of	the	data.	Facebook	has	petabytes
of	data	on	its	users.
Velocity:	This	is	the	rate	at	which	data	is	generated.
Variety:	Data	is	not	only	in	a	tabular	form.	We	can	get	data	from	text,
images,	and	sound.	Data	comes	in	the	form	of	JSON,	XML,	and
other	types	as	well.

Let's	take	a	look	at	the	following	screenshot:



In	this	chapter,	we'll	learn	how	to	use	Python	in	the	world	of	big	data	by
doing	the	following:

Understanding	Hadoop
Writing	a	MapReduce	program	in	Python
Using	a	Hadoop	library

What	is	Hadoop?
According	to	the	Apache	Hadoop's	website,	Hadoop	stores	data	in	a
distributed	manner	and	helps	in	computing	it.	It	has	been	designed	to
scale	easily	to	any	number	of	machines	with	the	help	of	computing	power
and	storage.	Hadoop	was	created	by	Doug	Cutting	and	Mike	Cafarella	in



the	year	2005.	It	was	named	after	Doug	Cutting's	son's	toy	elephant.

The	programming	model
Hadoop	is	a	programming	paradigm	that	takes	a	large	distributed
computation	as	a	sequence	of	distributed	operations	on	large	datasets	of
key-value	pairs.	The	MapReduce	framework	makes	use	of	a	cluster	of
machines	and	executes	MapReduce	jobs	across	these	machines.	There
are	two	phases	in	MapReduce—a	mapping	phase	and	a	reduce	phase.
The	input	data	to	MapReduce	is	key	value	pairs	of	data.

During	the	mapping	phase,	Hadoop	splits	the	data	into	smaller	pieces,
which	is	then	fed	to	the	mappers.	These	mappers	are	distributed	across
machines	within	the	cluster.	Each	mapper	takes	the	input	key-value	pairs
and	generates	intermediate	key-value	pairs	by	invoking	a	user-defined
function	within	them.



After	the	mapper	phase,	Hadoop	sorts	the	intermediate	dataset	by	key
and	generates	a	set	of	key-value	tuples	so	that	all	the	values	belonging
to	a	particular	key	are	together.

During	the	reduce	phase,	the	reducer	takes	in	the	intermediate	key-value
pair	and	invokes	a	user-defined	function,	which	then	generates	a	output
key-value	pair.	Hadoop	distributes	the	reducers	across	the	machines	and
assigns	a	set	of	key-value	pairs	to	each	of	the	reducers.

Data	processing	through	MapReduce

The	MapReduce	architecture
MapReduce	has	a	master-slave	architecture,	where	the	master	is	the
JobTracker	and	TaskTracker	is	the	slave.	When	a	MapReduce	program
is	submitted	to	Hadoop,	the	JobTracker	assigns	the	mapping/reducing
task	to	the	TaskTracker	and	it	takes	of	the	task	over	executing	the
program.

The	Hadoop	DFS



Hadoop's	distributed	filesystem	has	been	designed	to	store	very	large
datasets	in	a	distributed	manner.	It	has	been	inspired	by	the	Google	File
system,	which	is	a	proprietary	distributed	filesystem	designed	by	Google.
The	data	in	HDFS	is	stored	in	a	sequence	of	blocks,	and	all	blocks	are	of
the	same	size	except	for	the	last	block.	The	block	sizes	are	configurable
in	Hadoop.

Hadoop's	DFS	architecture
It	also	has	a	master/slave	architecture	where	NameNode	is	the	master
machine	and	DataNode	is	the	slave	machine.	The	actual	data	is	stored	in
the	data	node.	The	NameNode	keeps	a	tab	on	where	certain	kinds	of
data	is	stored	and	whether	it	has	the	required	replication.	It	also	helps	in
managing	a	filesystem	by	creating,	deleting,	and	moving	directories	and
files	in	the	filesystem.



Python	MapReduce
Hadoop	can	be	downloaded	and	installed	from
https://hadoop.apache.org/.	We'll	be	using	the	Hadoop	streaming	API	to
execute	our	Python	MapReduce	program	in	Hadoop.	The	Hadoop
Streaming	API	helps	in	using	any	program	that	has	a	standard	input	and
output	as	a	MapReduce	program.

We'll	be	writing	three	MapReduce	programs	using	Python,	they	are	as
follows:

A	basic	word	count
Getting	the	sentiment	Score	of	each	review
Getting	the	overall	sentiment	score	from	all	the	reviews

The	basic	word	count
We'll	start	with	the	word	count	MapReduce.	Save	the	following	code	in	a
word_mapper.py	file:

import	sys

for	l	in	sys.stdin:

				#	Trailing	and	Leading	white	space	is	removed

				l	=	l.strip()

				#	words	in	the	line	is	split

				word_tokens	=	l.split()

		#	Key	Value	pair	is	outputted

		for	w	in	word_tokens:

				print	'%s\t%s'	%	(w,	1)

In	the	preceding	mapper	code,	each	line	of	the	file	is	stripped	of	the
leading	and	trailing	white	spaces.	The	line	is	then	divided	into	tokens	of
words	and	then	these	tokens	of	words	are	outputted	as	a	key	value	pair
of	1.

Save	the	following	code	in	a	word_reducer.py	file:

https://hadoop.apache.org/


from	operator	import	itemgetter

import	sys

current_word_token	=	None

counter	=	0

word	=	None

#	STDIN	Input

for	l	in	sys.stdin:

		#	Trailing	and	Leading	white	space	is	removed

		l	=	l.strip()

		#	input	from	the	mapper	is	parsed

		word_token,	counter	=	l.split('\t',	1)

		#	count	is	converted	to	int

		try:

				counter	=	int(counter)

				except	ValueError:

						#	if	count	is	not	a	number	then	ignore	the	line

						continue

		#Since	Hadoop	sorts	the	mapper	output	by	key,	the	

following

		#	if	else	statement	works

		if	current_word_token	==	word_token:

				current_counter	+=	counter

		else:

				if	current_word_token:

						print	'%s\t%s'	%	(current_word_token,	

current_counter)

						current_counter	=	counter

						current_word_token	=	word_token

#	The	last	word	is	outputed

if	current_word_token	==	word_token:

		print	'%s\t%s'	%	(current_word_token,	

current_counter)

In	the	preceding	code,	we	use	the	current_word_token	parameter	to	keep
track	of	the	current	word	that	is	being	counted.	In	the	for	loop,	we	use
the	word_token	parameter	and	a	counter	to	get	the	value	out	of	the	key-
value	pair.	We	then	convert	the	counter	to	an	int	type.

In	the	if/else	statement,	if	the	word_token	value	is	same	as	the	previous
instance,	which	is	current_word_token,	then	we	keep	counting	else



statement's	value.	If	it's	a	new	word	that	has	come	as	the	output,	then	we
output	the	word	and	its	count.	The	last	if	statement	is	to	output	the	last
word.

We	can	check	out	if	the	mapper	is	working	fine	by	using	the	following
command:

$	echo	'dolly	dolly	max	max	jack	tim	max'	|	

./BigData/word_mapper.py

The	output	of	the	preceding	command	is	shown	as	follows:

dolly1

dolly1

max1

max1

jack1

tim1

max1

Now,	we	can	check	if	the	reducer	is	also	working	fine	by	piping	the
reducer	to	the	sorted	list	of	the	mapper	output:

$	echo	"dolly	dolly	max	max	jack	tim	max"	|	

./BigData/word_mapper.py	|	sort	-k1,1	|	

./BigData/word_reducer.py

The	output	of	the	preceding	command	is	shown	as	follows:

dolly2

jack1

max3

tim1

Now,	let's	try	to	apply	the	same	code	on	a	local	file	containing	the
summary	of	mobydick:

$	cat	./Data/mobydick_summary.txt	|	

./BigData/word_mapper.py	|	sort	-k1,1		|	

./BigData/word_reducer.py



The	output	of	the	preceding	command	is	shown	as	follows:

a28

A2

abilities1

aboard3

about2

A	sentiment	score	for	each	review
We	had	written	a	program	in	the	preceding	chapter	to	calculate	the
sentiment	score.	We'll	extend	this	to	write	a	MapReduce	program	to
determine	the	sentiment	score	for	each	review.	Write	the	following	code
in	the	senti_mapper.py	file:

import	sys

import	re

positive_words	=	open('positive-

words.txt').read().split('\n')

negative_words	=	open('negative-

words.txt').read().split('\n')

def	sentiment_score(text,	pos_list,	neg_list):

		positive_score	=	0

		negative_score	=	0

		for	w	in	text.split(''):

				if	w	in	pos_list:	positive_score+=1

				if	w	in	neg_list:	negative_score+=1

		return	positive_score	-	negative_score

for	l	in	sys.stdin:

		#	Trailing	and	Leading	white	space	is	removed

		l	=	l.strip()

		#Convert	to	lower	case

		l	=	l.lower()

		#Getting	the	sentiment	score

		score	=	sentiment_score(l,	positive_words,	

negative_words)

		#	Key	Value	pair	is	outputted

		print	'%s\t%s'	%	(l,	score)



In	the	preceding	code,	we	used	the	sentiment_score	function	from	the
preceding	chapter.	For	each	line,	we	strip	the	leading	and	trailing	white
spaces	and	then	get	the	sentiment	score	for	a	review.	Finally,	we	output	a
sentence	and	the	score.

For	this	program,	we	don't	require	a	reducer	as	we	can	calculate	the
sentiment	in	the	mapper	itself	and	we	just	have	to	output	the	sentiment
score.

Let's	test	whether	the	mapper	is	working	fine	locally	with	a	file	containing
the	reviews	for	Jurassic	World:

$	cat	./Data/jurassic_world_review.txt	|	

./BigData/senti_mapper.py

there	is	plenty	here	to	divert,	but	little	to	leave	

you	enraptored.	such	is	the	fate	of	the	sequel:	

bigger.	louder.	fewer	teeth.0

if	you	limit	your	expectations	for	jurassic	world	to	

"more	teeth,"	it	will	deliver	on	that	promise.	if	you	

dare	to	hope	for	anything	more-relatable	characters,	

narrative	coherence-you'll	only	set	yourself	up	for	

disappointment.-1

there's	a	problem	when	the	most	complex	character	in	a	

film	is	the	dinosaur-2

not	so	much	another	bloated	sequel	as	it	is	the	

fruition	of	dreams	deferred	in	the	previous	films.	too	

bad	the	genre	dictates	that	those	dreams	are	once	

again	destined	for	disaster.-2

We	can	see	that	our	program	is	able	to	calculate	the	sentiment	score
well.

The	overall	sentiment	score
To	calculate	the	overall	sentiment	score,	we	would	require	the	reducer
and	we'll	use	the	same	mapper	but	with	slight	modifications.

Here	is	the	mapper	code	that	we'll	use	stored	in	the
overall_senti_mapper.py	file:



import	sys

import	hashlib

positive_words	=	open('./Data/positive-

words.txt').read().split('\n')

negative_words	=	open('./Data/negative-

words.txt').read().split('\n')

def	sentiment_score(text,	pos_list,	neg_list):

		positive_score	=	0

		negative_score	=	0

		for	w	in	text.split(''):

				if	w	in	pos_list:	positive_score+=1

				if	w	in	neg_list:	negative_score+=1

		return	positive_score	-	negative_score

for	l	in	sys.stdin:

		#	Trailing	and	Leading	white	space	is	removed

		l	=	l.strip()

		#Convert	to	lower	case

		l	=	l.lower()

		#Getting	the	sentiment	score

		score	=	sentiment_score(l,	positive_words,	

negative_words)

		#Hashing	the	review	to	use	it	as	a	string

		hash_object	=	hashlib.md5(l)

		#	Key	Value	pair	is	outputted

		print	'%s\t%s'	%	(hash_object.hexdigest(),	score)

This	mapper	code	is	similar	to	the	previous	mapper	code,	but	here	we
use	the	MD5	hash	library	to	review	and	then	to	get	the	output	as	the	key.

Here	is	the	reducer	code	that	is	utilized	to	determine	the	overall
sentiments	score	of	the	movie.	Store	the	following	code	in	the
overall_senti_reducer.py	file:

from	operator	import	itemgetter

import	sys

total_score	=	0

#	STDIN	Input

for	l	in	sys.stdin:

		#	input	from	the	mapper	is	parsed

		key,	score	=	l.split('\t',	1)

		#	count	is	converted	to	int



		try:

				score	=	int(score)

		except	ValueError:

				#	if	score	is	not	a	number	then	ignore	the	line

				continue

		#Updating	the	total	score		

		total_score	+=	score

print	'%s'	%	(total_score,)

In	the	preceding	code,	we	strip	the	value	containing	the	score	and	we
then	keep	adding	to	the	total_score	variable.	Finally,	we	output	the
total_score	variable,	which	shows	the	sentiment	of	the	movie.

Let's	locally	test	the	overall	sentiment	on	Jurassic	World,	which	is	a	good
movie,	and	then	test	the	sentiment	for	the	movie,	Unfinished	Business,
which	was	critically	deemed	poor:

$	cat	./Data/jurassic_world_review.txt	|	

./BigData/overall_senti_mapper.py	|	sort	-k1,1	|	

./BigData/overall_senti_reducer.py

19

$	cat	./Data/unfinished_business_review.txt	|	

./BigData/overall_senti_mapper.py	|	sort	-k1,1	|	

./BigData/overall_senti_reducer.py

-8

We	can	see	that	our	code	is	working	well	and	we	also	see	that	Jurassic
World	has	a	more	positive	score,	which	means	that	people	have	liked	it	a
lot.	On	the	contrary,	Unfinished	Business	has	a	negative	value,	which
shows	that	people	haven't	liked	it	much.

Deploying	the	MapReduce	code	on
Hadoop
We'll	create	a	directory	for	data	on	Moby	Dick,	Jurassic	World,	and
Unfinished	Business	in	the	HDFS	tmp	folder:

$	Hadoop	fs	-mkdir	tmpmoby_dick



$	Hadoop	fs	-mkdir	tmpjurassic_world

$	Hadoop	fs	-mkdir	tmpunfinished_business

Let's	check	if	the	folders	are	created:

$	Hadoop	fs	-ls	tmp

Found	6	items

drwxrwxrwx			-	mapred	Hadoop										0	2014-11-14	

15:42	tmpHadoop-mapred

drwxr-xr-x			-	samzer	Hadoop										0	2015-06-18	

18:31	tmpjurassic_world

drwxrwxrwx			-	hdfs			Hadoop										0	2014-11-14	

15:41	tmpmapred

drwxr-xr-x			-	samzer	Hadoop										0	2015-06-18	

18:31	tmpmoby_dick

drwxr-xr-x			-	samzer	Hadoop										0	2015-06-16	

18:17	tmptemp635459726

drwxr-xr-x			-	samzer	Hadoop										0	2015-06-18	

18:31	tmpunfinished_business

Once	the	folders	are	created,	let's	copy	the	data	files	to	the	respective
folders.

$	Hadoop	fs	-copyFromLocal	./Data/mobydick_summary.txt	

tmpmoby_dick

$	Hadoop	fs	-copyFromLocal	

./Data/jurassic_world_review.txt	tmpjurassic_world

$	Hadoop	fs	-copyFromLocal	

./Data/unfinished_business_review.txt	

tmpunfinished_business

Let's	verify	that	the	file	is	copied:

$	Hadoop	fs	-ls	tmpmoby_dick

$	Hadoop	fs	-ls	tmpjurassic_world

$	Hadoop	fs	-ls	tmpunfinished_business

Found	1	items

-rw-r--r--			3	samzer	Hadoop							5973	2015-06-18	

18:34	tmpmoby_dick/mobydick_summary.txt

Found	1	items

-rw-r--r--			3	samzer	Hadoop							3185	2015-06-18	

18:34	tmpjurassic_world/jurassic_world_review.txt

Found	1	items

-rw-r--r--			3	samzer	Hadoop							2294	2015-06-18	



18:34	

tmpunfinished_business/unfinished_business_review.txt

We	can	see	that	files	have	been	copied	successfully.

With	the	following	command,	we'll	execute	our	mapper	and	reducer's
script	in	Hadoop.	In	this	command,	we	define	the	mapper,	reducer,	input,
and	output	file	locations,	and	then	use	Hadoop	streaming	to	execute	our
scripts.

Let's	execute	the	word	count	program	first:

$	Hadoop	jar	usrlib/Hadoop-0.20-

mapreduce/contrib/streaming/Hadoop-*streaming*.jar	-

file	./BigData/word_mapper.py	-mapper	word_mapper.py	-

file	./BigData/word_reducer.py	-reducer	

word_reducer.py	-input	tmpmoby_dick/*	-output	

tmpmoby_output

Let's	verify	that	the	word	count	MapReduce	program	is	working
successfully:

$	Hadoop	fs	-cat	tmpmoby_output/*

The	output	of	the	preceding	command	is	shown	as	follows:

(Queequeg1

A2

Africa1

Africa,1

After1

Ahab13

Ahab,1

Ahab's6

All1

American1

As1

At1

Bedford,1

Bildad1

Bildad,1

Boomer,2

Captain1



Christmas1

Day1

Delight,1

Dick6

Dick,2

The	program	is	working	as	intended.	Now,	we'll	deploy	the	program	that
calculates	the	sentiment	score	for	each	of	the	reviews.	Note	that	we	can
add	the	positive	and	negative	dictionary	files	to	the	Hadoop	streaming:

$	Hadoop	jar	usrlib/hadoop-0.20-

mapreduce/contrib/streaming/hadoop-*streaming*.jar	-

file	./BigData/word_mapper.py	-mapper	word_mapper.py	-

file	./BigData/word_reducer.py	-reducer	

word_reducer.py	-input	tmpmoby_dick/*	-output	

tmpmoby_output

In	the	preceding	code,	we	use	the	Hadoop	command	with	the	Hadoop
streaming	JAR	file	and	then	define	the	mapper	and	reducer	files,	and
finally,	the	input	and	output	directories	in	Hadoop.

Let's	check	the	sentiments	score	of	the	movies	review:

$	Hadoop	fs	-cat	tmpjurassic_output/*

The	output	of	the	preceding	command	is	shown	as	follows:

"jurassic	world,"	like	its	predecessors,	fills	up	the	

screen	with	roaring,	slathering,	earth-shaking	

dinosaurs,	then	fills	in	mere	humans	around	the	edges.	

it's	a	formula	that	works	as	well	in	2015	as	it	did	in	

1993.3

a	perfectly	fine	movie	and	entertaining	enough	to	keep	

you	watching	until	the	closing	credits.4

an	angry	movie	with	a	tragic	moral	...	meta-adoration	

and	criticism	ends	with	a	genetically	modified	

dinosaur	fighting	off	waves	of	dinosaurs.-3

if	you	limit	your	expectations	for	jurassic	world	to	

"more	teeth,"	it	will	deliver	on	that	promise.	if	you	

dare	to	hope	for	anything	more-relatable	characters,	

narrative	coherence-you'll	only	set	yourself	up	for	

disappointment.-1



This	program	is	also	working	as	intended.	Now,	we'll	try	out	the	overall
sentiment	of	a	movie:

$	Hadoop	jar	usrlib/Hadoop-0.20-

mapreduce/contrib/streaming/Hadoop-*streaming*.jar	-

file	./BigData/overall_senti_mapper.py	-mapper

Let's	verify	the	result:

$	Hadoop	fs	-cat	tmpunfinished_business_output/*

The	output	of	the	preceding	command	is	shown	as	follows:

-8

We	can	see	that	the	overall	sentiment	score	comes	out	correctly	from
MapReduce.	Here	is	a	screenshot	of	the	JobTracker	status	page:	

The	preceding	image	shows	a	portal	where	the	jobs	submitted	to	the
JobTracker	can	be	viewed	and	the	status	can	be	seen.	This	can	be	seen
on	port	50070	of	the	master	system.

From	the	preceding	image,	we	can	see	that	a	job	is	running,	and	the



status	above	the	image	shows	that	the	job	has	been	completed
successfully.



File	handling	with	Hadoopy
Hadoopy	is	a	library	in	Python,	which	provides	an	API	to	interact	with
Hadoop	to	manage	files	and	perform	MapReduce	on	it.	Hadoopy	can	be
downloaded	from
http://www.Hadoopy.com/en/latest/tutorial.html#installing-Hadoopy.

Let's	try	to	put	a	few	files	in	Hadoop	through	Hadoopy	in	a	directory
created	within	HDFS,	called	data:

$	Hadoop	fs	-mkdir	data

Here	is	the	code	that	puts	the	data	into	HDFS:

importHadoopy

import	os

hdfs_path	=	''

def	read_local_dir(local_path):

		for	fn	in	os.listdir(local_path):

				path	=	os.path.join(local_path,	fn)

				if	os.path.isfile(path):

						yield	path

def	main():

		local_path	=	'./BigData/dummy_data'

		for	file	in		read_local_dir(local_path):

				Hadoopy.put(file,	'data')

				print"The	file	%s	has	been	put	into	hdfs"%	(file,)

if	__name__	=='__main__':

		main()

The	file	./BigData/dummy_data/test9	has	been	put	into	

hdfs

The	file	./BigData/dummy_data/test7	has	been	put	into	

hdfs

The	file	./BigData/dummy_data/test1	has	been	put	into	

hdfs

The	file	./BigData/dummy_data/test8	has	been	put	into	

hdfs

The	file	./BigData/dummy_data/test6	has	been	put	into	

hdfs

The	file	./BigData/dummy_data/test5	has	been	put	into	

hdfs

The	file	./BigData/dummy_data/test3	has	been	put	into	

http://www.Hadoopy.com/en/latest/tutorial.html#installing-Hadoopy


hdfs

The	file	./BigData/dummy_data/test4	has	been	put	into	

hdfs

The	file	./BigData/dummy_data/test2	has	been	put	into	

hdfs

In	the	preceding	code,	we	list	all	the	files	in	a	directory	and	then	put	each
of	the	files	into	Hadoop	using	the	put()	method	of	Hadoopy.

Let's	check	if	all	the	files	have	been	put	into	HDFS:

$	Hadoop	fs	-ls	data

The	output	of	the	preceding	command	is	shown	as	follows:

Found	9	items

-rw-r--r--			3	samzer	Hadoop										0	2015-06-23	

00:19	data/test1

-rw-r--r--			3	samzer	Hadoop										0	2015-06-23	

00:19	data/test2

-rw-r--r--			3	samzer	Hadoop										0	2015-06-23	

00:19	data/test3

-rw-r--r--			3	samzer	Hadoop										0	2015-06-23	

00:19	data/test4

-rw-r--r--			3	samzer	Hadoop										0	2015-06-23	

00:19	data/test5

-rw-r--r--			3	samzer	Hadoop										0	2015-06-23	

00:19	data/test6

-rw-r--r--			3	samzer	Hadoop										0	2015-06-23	

00:19	data/test7

-rw-r--r--			3	samzer	Hadoop										0	2015-06-23	

00:19	data/test8

-rw-r--r--			3	samzer	Hadoop										0	2015-06-23	

00:19	data/test9

So,	we	have	successfully	been	able	to	put	files	into	HDFS.



Pig
Pig	is	a	platform	that	has	a	very	expressive	language	to	perform	data
transformations	and	querying.	The	code	that	is	written	in	Pig	is	done	in	a
scripting	manner	and	this	gets	compiled	to	MapReduce	programs,	which
execute	on	Hadoop.	The	following	image	is	the	logo	of	Pig	Latin:	

The	Pig	logo

Pig	helps	in	reducing	the	complexity	of	raw-level	MapReduce	programs,
and	enables	the	user	to	perform	fast	transformations.

Pig	Latin	is	the	textual	language	that	can	be	learned	from
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html.

We'll	be	covering	how	to	perform	the	top	10	most	occurring	words	with
Pig,	and	then	we'll	see	how	you	can	create	a	function	in	Python	that	can
be	used	in	Pig.

Let's	start	with	the	word	count.	Here	is	the	Pig	Latin	code,	which	you	can
save	in	the	pig_wordcount.py	file:

http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html


data	=	load	'tmpmoby_dick/';

word_token	=	foreach	data	generate	

flatten(TOKENIZE((chararray)$0))	as	word;

group_word_token	=	group	word_token	by	word;

count_word_token	=	foreach	group_word_token	generate	

COUNT(word_token)	as	cnt,	group;

sort_word_token	=	ORDER	count_word_token	by	cnt	DESC;

top10_word_count	=	LIMIT	sort_word_token	10;

DUMP	top10_word_count;

In	the	preceding	code,	we	can	load	the	summary	of	Moby	Dick,	which	is
then	tokenized	line	by	line	and	is	basically	split	into	individual	elements.
The	flatten	function	converts	a	collection	of	individual	word	tokens	in	a
line	to	a	row-by-row	form.	We	then	group	by	the	words	and	then	take	a
count	of	the	words	for	each	word.	Finally,	we	sort	the	count	of	words	in	a
descending	order	and	then	we	limit	the	count	of	the	words	to	the	first	10
rows	to	get	the	top	10	most	occurring	words.

Let's	execute	the	preceding	pig	script:

$	pig	./BigData/pig_wordcount.pig

The	output	of	the	preceding	command	is	shown	as	follows:

(83,the)

(36,and)

(28,a)

(25,of)

(24,to)

(15,his)

(14,Ahab)

(14,Moby)

(14,is)

(14,in)

We	are	able	to	get	our	top	10	words.	Let's	now	create	a	user-defined
function	with	Python,	which	will	be	used	in	Pig.

We'll	define	two	user-defined	functions	to	score	positive	and	negative
sentiments	of	a	sentence.

The	following	code	is	the	UDF	used	to	score	the	positive	sentiment	and



it's	available	in	the	positive_sentiment.py	file:

positive_words	=	[	'a+',	'abound',	'abounds',	

'abundance',	'abundant',	'accessable',	'accessible',	

'acclaim',	'acclaimed',	'acclamation',	'acco$	]

@outputSchema("pnum:int")

def	sentiment_score(text):

		positive_score	=	0

		for	w	in	text.split(''):

				if	w	in	positive_words:	positive_score+=1

		return	positive_score

In	the	preceding	code,	we	define	the	positive	word	list,	which	is	used	by
the	sentiment_score()	function.	The	function	checks	for	the	positive
words	in	a	sentence	and	finally	outputs	their	total	count.	There	is	an
outputSchema()	decorator	that	is	used	to	tell	Pig	what	type	of	data	is
being	outputted,	which	in	our	case	is	int.

Here	is	the	code	to	score	the	negative	sentiment	and	it's	available	in	the
negative_sentiment.py	file.	The	code	is	almost	similar	to	the	positive
sentiment:

negative_words	=	['2-faced',	'2-faces',	'abnormal',	

'abolish',	'abominable',	'abominably',	'abominate',	

'abomination',	'abort',	'aborted',	'ab$....]

@outputSchema("nnum:int")

def	sentiment_score(text):

		negative_score	=	0

		for	w	in	text.split(''):

				if	w	in	negative_words:	negative_score-=1

		return		negative_score

The	following	code	is	used	by	Pig	to	score	the	sentiments	of	the	Jurassic
World	reviews	and	its	available	in	the	pig_sentiment.pig	file:

register	'positive_sentiment.py'	using	

org.apache.pig.scripting.jython.JythonScriptEngine	as	

positive;

register	'negative_sentiment.py'	using	

org.apache.pig.scripting.jython.JythonScriptEngine	as	

negative;



data	=	load	'tmpjurassic_world/*';

feedback_sentiments	=	foreach	data	generate	

LOWER((chararray)$0)	as	feedback,	

positive.sentiment_score(LOWER((chararray)$0))	as	

psenti,

negative.sentiment_score(LOWER((chararray)$0))	as	

nsenti;

average_sentiments	=	foreach	

feedback,feedback_sentiments	generate	psenti	+	nsenti;

dump	average_sentiments;

In	the	preceding	Pig	script,	we	first	register	the	Python	UDF	scripts	using
the	register	command	and	give	them	an	appropriate	name.	We	then	load
our	Jurassic	World	review.	We	then	convert	our	reviews	to	lowercase	and
score	the	positive	and	negative	sentiments	of	a	review.	Finally,	we	add
the	score	to	get	the	overall	sentiments	of	a	review.

Let's	execute	the	Pig	script	and	see	the	results:

$	pig	./BigData/pig_sentiment.pig

The	output	of	the	preceding	command	is	shown	as	follows:

(there	is	plenty	here	to	divert,	but	little	to	leave	

you	enraptored.	such	is	the	fate	of	the	sequel:	

bigger.	louder.	fewer	teeth.,0)

(if	you	limit	your	expectations	for	jurassic	world	to	

"more	teeth,"	it	will	deliver	on	that	promise.	if	you	

dare	to	hope	for	anything	more-relatable	characters,	

narrative	coherence-you'll	only	set	yourself	up	for	

disappointment.,-1)

(there's	a	problem	when	the	most	complex	character	in	

a	film	is	the	dinosaur,-2)

(not	so	much	another	bloated	sequel	as	it	is	the	

fruition	of	dreams	deferred	in	the	previous	films.	too	

bad	the	genre	dictates	that	those	dreams	are	once	

again	destined	for	disaster.,-2)

(a	perfectly	fine	movie	and	entertaining	enough	to	

keep	you	watching	until	the	closing	credits.,4)

(this	fourth	installment	of	the	jurassic	park	film	

series	shows	some	wear	and	tear,	but	there	is	still	



some	gas	left	in	the	tank.	time	is	spent	to	set	up	the	

next	film	in	the	series.	they	will	keep	making	more	of	

these	until	we	stop	watching.,0)

We	have	successfully	scored	the	sentiments	of	the	Jurassic	World	review
using	the	Python	UDF	in	Pig.



Python	with	Apache	Spark
Apache	Spark	is	a	computing	framework	that	works	on	top	of	HDFS	and
provides	an	alternative	way	of	computing	that	is	similar	to	MapReduce.	It
was	developed	by	AmpLab	of	UC	Berkeley.	Spark	does	its	computation
mostly	in	the	memory	because	of	which,	it	is	much	faster	than
MapReduce,	and	is	well	suited	for	machine	learning	as	it's	able	to	handle
iterative	workloads	really	well.

Spark	uses	the	programming	abstraction	of	RDDs	(Resilient	Distributed
Datasets)	in	which	data	is	logically	distributed	into	partitions,	and
transformations	can	be	performed	on	top	of	this	data.

Python	is	one	of	the	languages	that	is	used	to	interact	with	Apache
Spark,	and	we'll	create	a	program	to	perform	the	sentiment	scoring	for
each	review	of	Jurassic	Park	as	well	as	the	overall	sentiment.

You	can	install	Apache	Spark	by	following	the	instructions	at
https://spark.apache.org/docs/1.0.1/spark-standalone.html.

Scoring	the	sentiment
Here	is	the	Python	code	to	score	the	sentiment:

from	__future__	import	print_function

import	sys

from	operator	import	add

from	pyspark	import	SparkContext

positive_words	=	open('positive-

words.txt').read().split('\n')

negative_words	=	open('negative-

words.txt').read().split('\n')

def	sentiment_score(text,	pos_list,	neg_list):

		positive_score	=	0

https://spark.apache.org/docs/1.0.1/spark-standalone.html


		negative_score	=	0

		for	w	in	text.split(''):

				if	w	in	pos_list:	positive_score+=1

				if	w	in	neg_list:	negative_score+=1

		return	positive_score	-	negative_score

if	__name__	==	"__main__":

		if	len(sys.argv)	!=	2:

				print("Usage:	sentiment	<file>",	file=sys.stderr)

				exit(-1)

		sc	=	SparkContext(appName="PythonSentiment")

		lines	=	sc.textFile(sys.argv[1],	1)

		scores	=	lines.map(lambda	x:	(x,	

sentiment_score(x.lower(),	positive_words,	

negative_words)))

		output	=	scores.collect()

		for	(key,	score)	in	output:

				print("%s:	%i"	%	(key,	score))

		sc.stop()

In	the	preceding	code,	we	define	our	standard	sentiment_score()
function,	which	we'll	be	reusing.	The	if	statement	checks	whether	the
Python	script	and	the	text	file	is	given.	The	sc	variable	is	a	Spark	Context
object	with	the	PythonSentiment	app	name.	The	filename	in	the	argument
is	passed	into	Spark	through	the	textFile()	method	of	the	sc	variable.	In
the	map()	function	of	Spark,	we	define	a	lambda	function,	where	each	line
of	the	text	file	is	passed,	and	then	we	obtain	the	line	and	its	respective
sentiment	score.	The	output	variable	gets	the	result,	and	finally,	we	print
the	result	on	the	screen.

Let's	score	the	sentiment	of	each	of	the	reviews	of	Jurassic	World.
Replace	the	<hostname>	with	your	hostname,	this	should	suffice:

$	~/spark-1.3.0-bin-cdh4/bin/spark-submit	--master	

spark://<hostname>:7077	./BigData/spark_sentiment.py	

hdfs://localhost:8020/tmp/jurassic_world/*

We'll	get	the	following	output	for	the	preceding	command:

There	is	plenty	here	to	divert	but	little	to	leave	you	

enraptured.	Such	is	the	fate	of	the	sequel:	Bigger,	

Louder,	Fewer	teeth:	0

If	you	limit	your	expectations	for	Jurassic	World	to	

more	teeth,	it	will	deliver	on	this	promise.	If	you	

dare	to	hope	for	anything	more—relatable	characters	or	



narrative	coherence—you'll	only	set	yourself	up	for	

disappointment:-1

We	can	see	that	our	Spark	program	was	able	to	score	the	sentiment	for
each	of	the	reviews.	The	number	in	the	end	of	the	output	of	the	sentiment
score	shows	that	if	the	review	has	been	positive	or	negative,	the	higher
the	number	of	the	sentiment	score—the	better	the	review	and	the	more
negative	the	number	of	the	sentiment	score—the	more	negative	the
review	has	been.

We	use	the	Spark	Submit	command	with	the	following	parameters:

A	master	node	of	the	Spark	system
A	Python	script	containing	the	transformation	commands
An	argument	to	the	Python	script

The	overall	sentiment
Here	is	a	Spark	program	to	score	the	overall	sentiment	of	all	the	reviews:

from	__future__	import	print_function

import	sys

from	operator	import	add

from	pyspark	import	SparkContext

positive_words	=	open('positive-

words.txt').read().split('\n')

negative_words	=	open('negative-

words.txt').read().split('\n')

def	sentiment_score(text,	pos_list,	neg_list):

		positive_score	=	0

		negative_score	=	0

		for	w	in	text.split(''):

				if	w	in	pos_list:	positive_score+=1

				if	w	in	neg_list:	negative_score+=1

		return	positive_score	-	negative_score

if	__name__	=="__main__":

		if	len(sys.argv)	!=	2:

				print("Usage:	Overall	Sentiment	<file>",	

file=sys.stderr)

				exit(-1)

		sc	=	SparkContext(appName="PythonOverallSentiment")

		lines	=	sc.textFile(sys.argv[1],	1)

		scores	=	lines.map(lambda	x:	("Total",	

sentiment_score(x.lower(),	positive_words,	



negative_words)))\

		.reduceByKey(add)

		output	=	scores.collect()

		for	(key,	score)	in	output:

				print("%s:	%i"%	(key,	score))

		sc.stop()

In	the	preceding	code,	we	have	added	a	reduceByKey()	method,	which
reduces	the	value	by	adding	the	output	values,	and	we	have	also	defined
the	key	as	Total,	so	that	all	the	scores	are	reduced	based	on	a	single
key.

Let's	try	out	the	preceding	code	to	get	the	overall	sentiment	of	Jurassic
World.	Replace	the	<hostname>	with	your	hostname,	this	should	suffice:

$	~/spark-1.3.0-bin-cdh4/bin/spark-submit	--master	

spark://<hostname>:7077	

./BigData/spark_overall_sentiment.py	

hdfs://localhost:8020/tmp/jurassic_world/*

The	output	of	the	preceding	command	is	shown	as	follows:

Total:	19

We	can	see	that	Spark	has	given	an	overall	sentiment	score	of	19.

The	applications	that	get	executed	on	Spark	can	be	viewed	in	the
browser	on	the	8080	port	of	the	Spark	master.	Here	is	a	screenshot	of	it:	



We	can	see	that	the	number	of	nodes	of	Spark,	applications	that	are
getting	executed	currently,	and	the	applications	that	have	been	executed.



Summary
In	this	chapter,	you	were	introduced	to	big	data,	learned	about	how	the
Hadoop	software	works,	and	the	architecture	associated	with	it.	You	then
learned	how	to	create	a	mapper	and	a	reducer	for	a	MapReduce
program,	how	to	test	it	locally,	and	then	put	it	into	Hadoop	and	deploy	it.
You	were	then	introduced	to	the	Hadoopy	library	and	using	this	library,
you	were	able	to	put	files	into	Hadoop.	You	also	learned	about	Pig	and
how	to	create	a	user-defined	function	with	it.	Finally,	you	learned	about
Apache	Spark,	which	is	an	alternative	to	MapReduce	and	how	to	use	it	to
perform	distributed	computing.

With	this	chapter,	we	have	come	to	an	end	in	our	journey,	and	you	should
be	in	a	state	to	perform	data	science	tasks	with	Python.	From	here	on,
you	can	participate	in	Kaggle	Competitions	at	https://www.kaggle.com/	to
improve	your	data	science	skills	with	real-world	problems.	This	will	fine-
tune	your	skills	and	help	understand	how	to	solve	analytical	problems.

Also,	you	can	sign	up	for	the	Andrew	NG	course	on	Machine	Learning	at
https://www.coursera.org/learn/machine-learning	to	understand	the
nuances	behind	machine	learning	algorithms.

https://www.kaggle.com/
https://www.coursera.org/learn/machine-learning
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