Fest Booklet No.

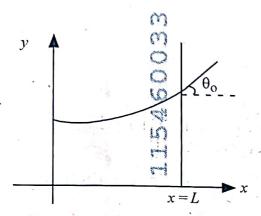
Test Booklet Code

ENGLISH

NARMADA

This Booklet contains 32 pages, including Rough Page.

Do not open this Test Booklet until you are asked to do so.


Important Instructions:

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on ORIGINAL Copy carefully with blue/black ball point pen only.
- The test is of 3 hours duration and the Test Booklet contains 180 multiple-choice questions (four options with a single correct answer) from Physics, Chemistry and Biology (Botany and Zoology).
- Wherever the symbols/constants are not mentioned, they are to be considered as per their standard meaning/ value.
- Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses on Answer
- Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must hand over the Answer Sheet (ORIGINAL and OFFICE Copy) to the Invigilator before leaving the Room/ Hall. The candidates are allowed to take away this Test Booklet with them.
- The CODE for this Booklet is "45". Make sure to enter this code in the OMR answer sheet.

- The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/ Answer Sheet.
- 10. Use of white fluid for correction is NOT permissible on the Answer Sheet.
- Each candidate must show on-demand his/her Admit Card to the Invigilator.
- No candidate, without special permission of the centre Superintendent or Invigilator, would leave his/her seat.
- The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign (with time) the Attendance Sheet twice. Cases, where a candidate has not signed the Attendance Sheet second time, will be deemed not to have handed over the Answer Sheet and dealt with as an Unfair Means case.
- 14. Use of Electronic/Manual Calculator is prohibited.
- The candidates are governed by all Rules an Regulations of the examination with regard to the conduct in the Examination Room/Hall. All cases of unfair means will be dealt with as per the Rules and Regulations of this examination along with Public Examinations (Prevention of unfair means act 2024).
- No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.
- 18. If a candidate marks more than one answers for a question in the OMR Sheet, it will be treated as incorrect and negative marking will be applicable.

Name of the Candidate (in Capitals): UPAMA KAR.	
Roll Number : in figures 1702106097	selection to be
in words One million Seven	<u></u>
Centre of Examination (in Capitals):	
Candidate's Signature :	
Facsimile signature stamp of Centre Superintendent:	7
45_English]	[Contd

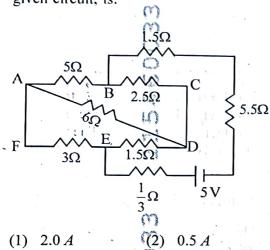
1 Consider a water tank shown in the figure. It has one wall at $x \cap L$ and can be taken to be very wide in the z direction. When filled with a liquid of surface tension S and density ρ , the liquid surface makes angle $\theta_0(\theta_0 \ll 1)$ with the x-axis at x = L. If y(x) is the height of the surface then the equation for y(x) is:

(take $\theta(x) = \sin \theta(x) = \frac{dy}{dx}$, g is the acceleration due to gravity)

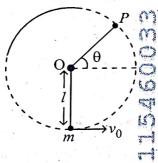
(1)
$$\frac{d^2y}{dx^2} = \frac{\rho g}{S}x$$
 (2) $\frac{d^2y}{dx^2} = \frac{\rho g}{S}y$

(3)
$$\frac{d^2y}{dx^2} = \sqrt{\frac{\rho g}{S}}$$
 (4)
$$\frac{dy}{dx} = \sqrt{\frac{\rho g}{S}}x$$

- A microscope has an objective of focal length 2 cm, eyepiece of focal length 4 cm and the tube length of 40 cm. If the distance of distinct vision of eye is 25 cm, the magnification in the microscope is
 - (1) 100
- (2) 125
- (3) 150
- (4) 250

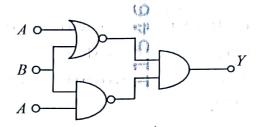

- An electron (mass 9×10^{-31} kg and charge 1.6×10^{-19} C) moving with speed c/100 (c = speed of light) is injected into a magnetic field B of magnitude 9×10^{-4} T perpendicular to its direction of motion. We wish to apply an uniform electric field E together with the magnetic field so that the electron does not deflect from its path. Then (speed of light c = 3×10^8 ms⁻¹)
 - (1) $\stackrel{\rightarrow}{E}$ is perpendicular to $\stackrel{\rightarrow}{B}$ and its magnitude is $27 \times 10^4 \text{ V } m^{-1}$
 - (2) $\stackrel{\rightarrow}{E}$ is perpendicular to $\stackrel{\rightarrow}{B}$ and its magnitude is $27 \times 10^2 \text{ V m}^{-1}$
 - (3) $\stackrel{\rightarrow}{E}$ is parallel to $\stackrel{\frown}{B}$ and its magnitude is $27 \times 10^2 \text{ V m}^{-1}$
 - (4) \overrightarrow{E} is parallel to \overrightarrow{B} and its magnitude is $27 \times 10^4 \text{ V m}^{-1}$
- There are two inclined surfaces of equal length (L) and same angle of inclination 45° with the horizontal. One of them is rough and the other is perfectly smooth. A given body takes 2 times as much time to slide down on rough surface than on the smooth surface. The coefficient of kinetic friction (µ_L) between the object and

kinetic friction (μ_k) between the object and the rough surface is close to


- (1) 0.25(3) 0.5
- (2) 0.40
- (4) 0.7:
- The kinetic energies of two similar cars A and B are 100 J and 225 J respectively. On applying breaks, car A stops after 1000 m and car B stops after 1500 m. If F_A and F_B are the forces applied by the breaks on cars A and B, respectively, then the ratio F_A/F_B is
 - (1) $\frac{3}{2}$
- $(2) \frac{2}{3}$
- (3) $\frac{1}{3}$
- (4) $\frac{1}{2}$

N'= Hisp

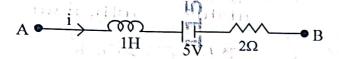
6 The current passing through the battery in the given circuit, is:



- (3) 2.5 A
- (4) 1.5 A
- A bob of heavy mass m is suspended by a light string of length l. The bob is given a horizontal velocity v_0 as shown in figure. If the string gets slack at some point P making an angle θ from the horizontal, the ratio of the speed v of the bob at point P to its initial speed v_0 is:

- (1) $(\sin \theta)^{1/2}$
- $(2) \quad \left(\frac{1}{2+3\sin\theta}\right)^{1/2} \stackrel{\text{on}}{\sim}$
- $(3) \left(\frac{\cos\theta}{2+3\sin\theta}\right)^{1/2}$
- $(4) \left(\frac{\sin\theta}{2+3\sin\theta}\right)^{1/2}$

8 The output (Y) of the given logic implementation is similar to the output of an/a gate


- (1) AND
- (2) NAND
- (3) OR
- (4) NOR
- 10
- The electric field in a plane electromagnetic wave is given by

$$E_z = 60\cos(5x + 1.5 \times 10^9 t)V/m$$
.

Then expression for the corresponding magnetic field is (here subscripts denote the direction of the field):

- (1) $B_y = 2 \times 10^{-7} \cos (5x + 1.5 \times 10^9 t)T$
- (2) $B_x = 2 \times 10^{-7} \cos (5x + 1.5 \times 10^9 t)T$
- (3) $B_z = 60\cos(5x + 1.5 \times 10^9 t)T$
- (4) $B_y = 60 \sin (5x + 1.5 \times 10^9 t) T$
- A ball of mass 0.5 kg is dropped from a height of 40 m. The ball hits the ground and rises to a height of 10 m. The impulse imparted to the ball during its collision with the ground is $(\text{Take } g = 9.8 \text{ m/s}^2)$
 - (1) 21 NS
- (2) 7 NS
- (3) 0
- (4) 84 NS

11 AB is a part of an electrical circuit (see figure). The potential difference " $V_A - V_B$ ", at the instant when current i 2 A and is increasing at a rate of 1 amp / second is:

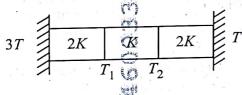
- (1) 5 volt
- (2) 6 volt
- (3) 9 volt
- (4) 10 volt
- 12 A 2 amp current is flowing through two different small circular copper coils having radii ratio 1:2. The ratio of their respective magnetic moments will be
 - (1) 1:4
- 1:2
- (3) 2:1
- 4:1
- In a certain camera, al combination of four 13 similar thin convex lenses are arranged axially in contact. Then the power of the combination and the total magnification in comparison to the power (p) and magnification (m) for each lens will be, respectively -
 - (1) 4p and 4m
- (2) p^4 and 4m.
- (3) $4p \text{ and } m^4$
- (4) p^4 and m^4

An oxygen cylinder of volume 30 litre has 18.20 moles of oxygen. After some oxygen is withdrawn from the cylinder, its gauge pressure drops to II atmospheric pressure at temperature 27°C. The mass of the oxygen withdrawn from the cylinder is nearly equal to:

[Given, $R = \frac{100}{12} J mol^{-1} K^{-1}$, and

molecular mass of $O_2 = 32$,

1 atm pressure = $\frac{1}{2} \sqrt{0.01} \times 10^5 \ N/m$]


- (1) 0.125 kg (2) 0.144 kg (3) 0.116 kg (4) 0.156 kg
- In some appropriate units, time (t) and position 15 (x) relation of a moving particle is given by $t = x^2 + x$. The acceleration of the particle is

(1)
$$-\frac{2}{(x+2)^3}$$
 (2) $-\frac{2}{(2x+1)^3}$

(3)
$$+\frac{2}{(x+1)^3}$$
 (4) $+\frac{2}{2x+1}$

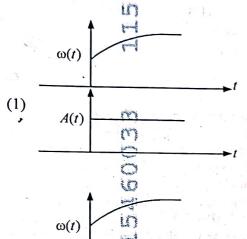
- 16 To an ac power supply of 220 V at 50 Hz, a resistor of 20 Ω , a capacitor of reactance 25Ω and an inductor of reactance $45\,\Omega$ are connected in series. The corresponding current in the circuit and the phase angle between the current and the voltage is, respectively -
 - (1) 7.8 A and 30°
 - (2) 7.8 A and 450
 - (3) 15.6 A and 30°
 - (4) 15.6 A and 45°

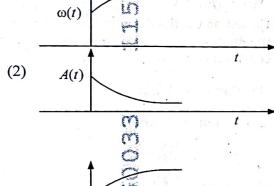
- The Sun rotates around its centre once in 17 27 days. What will be the period of revolution if the Sun were to expand to twice its present radius without any external influence? Assume the Sun to be a sphere of uniform density.
 - 100 days (1) (2) 105 days
 - (4) 108 days 115 days
- 18 A model for quantized motion of an electron in a uniform magnetic field B states that the flux passing through the orbit of the electron is n(h/e) where n_{i} is an integer, h is Planck's constant and e is the magnitude of electron's charge. According to the model, the magnetic moment of an electron in its lowest energy state will be (*m* is the mass of the electron)
- Three identical heat conducting rods are 19 connected in series as shown in the figure. The rods on the sides have thermal conductivity 2Kwhile that in the middle has thermal conductivity K. The left end of the combination is maintained at temperature 3T and the right end at T. The rods are thermally insulated from outside. In steady state, temperature at the left junction is T_1 and that at the right junction is T_2 . The ratio T_1/T_2 is

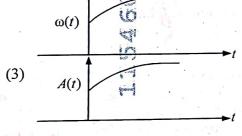
The plates of a parallel plate capacitor are separated by d. Two slabs of different dielectric

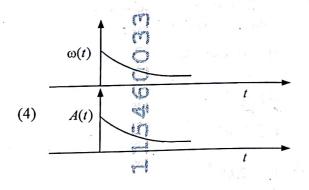
> constant K_1 and K_2 with thickness $\frac{3}{8}d$ and $\frac{d}{2}$, respectively are inserted in the capacitor. Due

> to this, the capacitance becomes two times larger than when there is nothing between the


If $K_1 = 1.25 K_2$ the value of K_1 is:
(1) 2.66
(2) 2.33
(3) 1.60
(4) 1.33


- Two cities X and Y are connected by a regular bus service with a bus leaving in either direction every T min. A girl is driving scooty with a speed of 60 km/h in the direction X to Y notices that a bus goes past her every 30 minutes in the direction of her motion, and every 10 minutes in the opposite direction. Choose the correct option for the period T of the bus service and the speed (assumed constant) of the buses.
 - (1) 9 min, 40 km/h
 - (2) 25 min, 100 km/h
 - 10 min, 90 km/h
 - (4) 15 min, 120 km/h
- A uniform rod of mass 20 kg and length 5 m leans against a smooth vertical wall making an angle of 60° with it. The other end rests on a rough horizontal floor. The friction force that the floor exerts on the rod is
 - 100 N

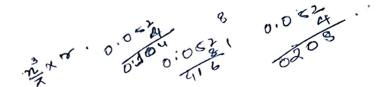

 $(take g = 10 \text{ m/s}^2)$


In an oscillating spring mass system, a spring is connected to a box filled with sand. As the box oscillates, sand leaks slowly out of the box vertically so that the average frequency $\omega(t)$ and average amplitude A(t) of the system change with time t. Which one of the following

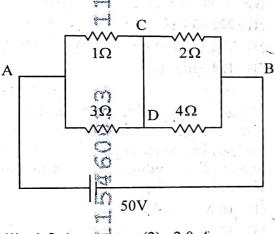
change with time t. Which one of the following options schematically depicts these changes correctly?

A balloon is made of a material of surface tension S and its inflation outlet (from where gas is filled in it) has small area Λ . It is filled with a gas of density ρ and takes a spherical shape of radius R. When the gas is allowed to flow freely out of it, its radius r changes from R to 0 (zero) in time T. If the speed v(r) of gas coming out of the balloon depends on r as r^{α} and $T \propto S^{\alpha} A^{\beta} \rho \gamma R^{\delta}$ then

(1) $a = \frac{1}{2}, \alpha = \frac{1}{2}, \beta = -1, \gamma = +1, \delta = \frac{3}{2}$

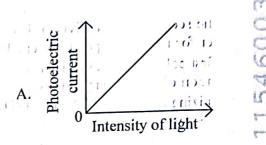

- (2) $a = -\frac{1}{2}, \alpha = -\frac{1}{2}, \beta = -1, \gamma = -\frac{1}{2}, \delta = \frac{5}{2}$
- (3) $a = -\frac{1}{2}, \alpha = -\frac{1}{2}, \beta = -1, \gamma = \frac{1}{2}, \delta = \frac{7}{2}$
- (4) $a = \frac{1}{2}, \alpha = \frac{1}{2}, \beta = -\frac{1}{2}, \gamma = \frac{1}{2}, \delta = \frac{7}{2}$
- 25 Consider the diameter of a spherical object being measured with the help of a Vernier callipers. Suppose its 10 Vernier Scale Divisions (V.S.D.) are equal to its 9 Main Scale Divisions (M.S.D.). The least division in the M.S. is 0.1 cm and the zero of V.S. is at x = 0.1 cm when the jaws of Vernier callipers are closed.

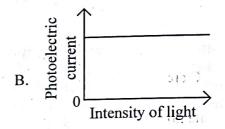
If the main scale reading for the diameter is M = 5 cm and the number of coinciding vernier division is 8, the measured diameter after zero error correction, is

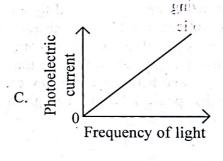

- (1) 5.18 cm (2) 5.08 cm
- (3) 4.98 cm (4) 5.00 cm
- A parallel plate capacitor made of circular plates is being charged such that the surface charge density on its plates is increasing at a constant rate with time. The magnetic field arising due to displacement current is:
 - (1) zero at all places
 - (2) constant between the plates and zero outside the plates
 - (3) non-zero everywhere with maximum at the imaginary cylindrical surface connecting peripheries of the plates
 - (4) zero between the plates and non-zero outside

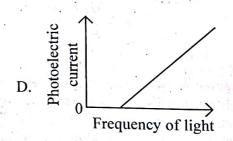
- An unpolarized light beam travelling in air is incident on a medium of refractive index 1.73 at Brewster's angle. Then-
 - (1) reflected light is completely polarized and the angle of reflection is close to 60°
 - (2) reflected light is partially polarized and the angle of reflection is close to 30°
 - (3) both reflected and transmitted light are perfectly polarized with angles of reflection and refraction close to 60° and 30°, respectively.
 - (4) transmitted light is completely polarized with angle of refraction close to 30°
- 28 Two identical charged conducting spheres A and B have their centres separated by a certain distance. Charge on each sphere is q and the force of repulsion between them is F. A third identical uncharged conducting sphere is brought in contact with sphere A first and then with B and finally removed from both. New force of repulsion between spheres A and B (Radii of A and B are negligible compared to the distance of separation so that for calculating force between them they can be considered as point charges) is best given as:
 - (1) $\frac{3F}{5}$ (2) $\frac{2F}{3}$
 - $(3) \quad \frac{F}{2} \qquad \qquad (4) \quad \frac{3F}{8}$
- A container has two chambers of volumes $V_1 = 2$ litres and $V_2 = 3$ litres separated by a partition made of a thermal insulator. The chambers contains $n_1 = 5$ and $n_2 = 4$ moles of ideal gas at pressures $p_1 = 1$ atm and $p_2 = 2$ atm, respectively. When the partition is removed, the mixture attains an equilibrium pressure of:
 - (1) 1.3 atm (2) 1.6 atm
 - (3) 1.4 atm (4) 1.8 atm

- A particle of mass m is moving around the origin with a constant force F pulling it towards the origin. If Bohr model is used to describe its motion, the radius r of the nth orbit and the particle's speed v in the orbit depend on n as
 - $(1) \quad r \propto n^{1/3}; \quad v \propto n^{1/3}$
 - $(2) \quad r \propto n^{1/3}, \quad v \propto n^{2/3}$
 - (3) $r \propto n^{2/3}$; $v \propto n^{1/3}$
 - (4) $r \propto n^{4/3}$; $v \propto n^{-1/3}$
- The radius of Martian orbit around the Sun is about 4 times the radius of the orbit of Mercury. The Martian year is 687 Earth days. Then which of the following is the length of 1 year on Mercury?
 - (1) 88 earth days
 - (2) 225 earth days
 - (3) 172 earth days
 - (4) 124 earth days
- A body weighs 48 N on the surface of the earth. The gravitational force experienced by the body due to the earth at a height equal to one-third the radius of the earth from its surface is:
 - (1) 16 N (2) 27 N
 - (3) 32 N (4) 36 N
- A wire of resistance R is cut into 8 equal pieces. From these pieces two equivalent resistances are made by adding four of these together in parallel. Then these two sets are added in series. The net effective resistance of the combination is:
 - (1) $\frac{R}{64}$ (2) $\frac{R}{32}$
 - (3) $\frac{R}{16}$ (4) $\frac{R}{8}$




- 34 De-Broglie wavelength of an electron orbiting in the n = 2 state of hydrogen atom is close to (Given Bohr radius = 0.052 nm)
 - (1) $0.067 \, nm$
- (2) 0.67 nm
- (3) 1.67 nm
- 2.67 nm
- 117 11 NO 1 11 An electric dipole with dipole moment 5×10^{-6} Cm is aligned with the direction of a uniform electric field of magnitude 4×10^5 N/C. The dipole is then rotated through an angle of 60° with respect to the electric field. The change in the potential energy of the dipole is:
- 0×12/2(1) 0.8 J
- 1.0 J
- (3) 1.2 J
- 1.5 J
- 36 A constant voltage of 50 V is maintained between the points A and B of the circuit shown in the figure. The current through the branch CD of the circuit is:




- (1) 1.5 A
- 2.0~A(2)
- 2.5 A
- 3.0 A
- 37 A photon and an electron (mass m) have same Wenergy E.The the $(\lambda_{photon}/\lambda_{electron})$ of their de Broglie wavelengths is (c) is the speed of light)

Which of the following options represent the 38 variation of photoelectric current with property of light shown on the x-axis?

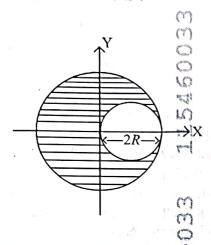
- (1) A only
- A and C
- (3) A and D
- B and D

[Contd...

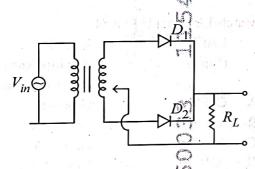
1

(77)

0


O 13

1 frank


1

=IR

A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is:

- (1) $\frac{7}{8}$
- $(2) \frac{\sqrt{3}}{40}$
- (3) $\frac{7}{57}$
- $(4) = \frac{7}{64}$
- 40 A full wave rectifier circuit with diodes (D_1) and (D_2) is shown in the figure. If input supply voltage $V_{in} = 220\sin(100\pi t)$ volt, then at t = 15 msec

- (1) D_1 is forward biased, D_2 is reverse biased
- (2) D_1 is reverse biased, D_2^1 is forward biased
- (3) D_1 and D_2 both are forward biased
- (4) D_1 and D_2 both are reverse biased

Two gases Λ and B are filled at the same pressure in separate cylinders with movable pistons of radius r_{Λ} and r_{B} , respectively. On supplying an equal amount of heat to both the systems reversibly under constant pressure, the pistons of gas Λ and B are displaced by 16 cm and 9 cm, respectively. If the change in their internal energy is the same, then the ratio

 r_A/r_B is equal to

- (1) $\frac{4}{3}$ (2) $\frac{3}{4}$
- (3) $\frac{2}{\sqrt{3}}$ (4) $\frac{\sqrt{3}}{\sqrt{3}}$
- 42 A physical quantity P^{\perp} is related to four observations a, b, c and d as follows:

$$P = a^3b^2 / c\sqrt{d}$$

(1)

The percentage errors of measurement in a, b, c and d are 1%, 3%, 2%, and 4% respectively. The percentage error in the quantity P is

- (1) 10%
- (2) 2%
- (3) 13%
- (4) 15%

- The intensity of transmitted light when a polaroid sheet, placed between two crossed polaroids at 22.5° from the polarization axis of one of the polaroid, is (I_0) is the intensity of polarised light after passing through the first polaroid):
 - (1) $\frac{I_0}{2}$ (2) $\frac{I_0}{4}$
 - (3) $\frac{I_0}{8}$ (4) $\frac{I_0}{16}$
- Two identical point masses P and Q, suspended from two separate massless springs of spring constants k_1 and k_2 , respectively, oscillate vertically. If their maximum speeds are the same, the ratio (A_Q/A_P) of the amplitude A_Q of mass Q to the amplitude A_P of mass P is:
 - (1) $\frac{k_2}{k_1}$ (2) $\frac{k_1}{k_2}$ (3) $\sqrt{\frac{k_2}{k_1}}$ (4) $\sqrt{\frac{k_1}{k_2}}$
- A pipe open at both ends has a fundamental frequency f in air. The pipe is now dipped vertically in a water drum to half of its length.

 The fundamental frequency of the air column is now equal to:
 - (1) $\frac{f}{2}$ (2) f (3) $\frac{3f}{2}$ (4) 2f

- The ratio of the wavelengths of the light absorbed by a Hydrogen atom when it undergoes $n = 2 \rightarrow n = 3$ and $n = 4 \rightarrow n = 6$ transitions, respectively, is
 - (1) $\frac{1}{36}$ (2) $\frac{1}{16}$
 - (3) $\frac{1}{9}$ $\frac{1}{4}$
- Which of the following statements are true?
 - A. Unlike Ga that has a very high melting point, Cs has a very low melting point.
 - B. On Pauling scale, the electronegativity values of N and Cl are not the same.
 - C. Ar, K⁺, Cl⁻, Ca²⁺, and S²⁻ are all isoelectronic species.
 - D. The correct order of the first ionization enthalpies of Na, Mg, Al, and
 Si is Si > Al Mg > Na.
 - E. The atomic radius of Cs is greater than that of Li and Rb.

- (1) A, B, and E only
- (2) C and E only
- (3) C and D only
- (4) A, C, and E only
- 48 Match List I with List II
 - List I

 (Ion)

 List II

 (Group Number in Cation Analysis)
 - A. Co²⁺ I. Group-I
 - B. Mg²⁺ II. Group-III
 - C. Pb²⁺ III. Group-IV
 - D. Al³⁺ QIV. Group-VI

Choose the correct answer from the options given below:

- (1) A-III, B-IV, C-II, D-I
- (2) A-III, B-IV, C-I, D-II
- (3) A-III, B-II, C-IV, D-I
 - (4) A-III, B-II, C-I, D-IV

(per 35

49 Predict the major product 'P' in the following sequence of reactions -

(1)

Energy and radius of first Bohr orbit of 50 He⁺ and Li²⁺ are

[Given $R_H = 2.18 \times 10^{-18} \text{ J}$, $a_0 = 52.9 \text{ pm}$]

- (1) $E_n(Li^{2+}) = -\frac{1}{19}.62 \times 10^{-18} J;$ $r_n(Li^{2+}) = 17.6 \text{ pm}$ $E_n(He^+) = -8.72 \times 10^{-18} J;$
- $r_n(He^+) = 26.4 \text{ pm}$ (2) $E_n(Li^{2+}) = -8.72 \times 10^{-18} \text{ J};$ $r_n(Li^{2+}) = 26.4$ pm $E_n(He^+) = -19.62 \times 10^{-18} \text{ J};$ $r_n(He^+) = 17.64 \text{ pm}$
- (3) $E_n(Li^{2+}) = -19.62 \times 10^{-16} J;$ $r_n(Li^{2+}) = 17.6 \text{ pm}$ $E_n(He^+) = -\frac{8}{3},72 \times 10^{-16} J;$ $r_n(He^+) = 26.4 \text{ pm}$
- (4) $E_n(Li^{2+}) = -8.72 \times 10^{-16} J;$ $r_n(Li^{2+}) = 17.6 \text{ pm}$ $E_n(He^+) = -19.62 \times 10^{-16} \text{ J};$ $r_n(He^+) = 17.6 \text{ pm}$

- Which of the following are paramagnetic?
 - A. $[\text{NiCl}_4]^{2-}$ $\stackrel{\text{(Y)}}{\text{(Y)}}$ B. $\text{Ni}(\text{CO})_4$
 - C. $[Ni(CN)_4]^2$ D. $[Ni(H_2O)_6]^{2+}$
 - E. Ni(PPh₃)₄

Choose the correct answer from the options given below:

- (1) A and C only (2) B and E only
- (3) A and D only (4) A, D and E only
- Given below are two statements: 52

Statement I: Like nitrogen that can form ammonia, arsenic can form arsine.

Statement II: Antimony cannot form antimony pentoxide

In the light of the above statements, choose the most appropriate answer from the options given below:

- Both Statement I and Statement II are correct
- (2) Both Statement II and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct
- 53 Which among the following electronic configurations belong to main group elements?
 - A. [Ne]3s¹
- B. $[Ar]3d^34s^2$
- C. $[Kr]4d^{10}5s^25p^5$ D. $[Ar]3d^{10}4s^1$
- E. $[Rn]5f^{0}6d^{2}7s^{2}$

Choose the correct answer from the option given below:

- (1) B and E only (2) A and C only
- (3) D and E only (4) A, C and D only

45 English]

[Contd...

MIDIL

- Dalton's Atomic theory could not explain which of the following?
 - (1) Law of conservation of mass
 - (2) Law of constant proportion
 - (3) Law of multiple proportion
 - (4), Law of gaseous volume
- 55 Consider the following compounds:

 \underline{KO}_2 , $\underline{H_2O}_2$ and $\underline{H_2SO}_4$.

The oxidation states of the underlined elements in them are, respectively,

- (1) +1, -1, and +6
- (2) +2, -2, and +6
- (3) +1, -2, and +4
- (4) +4, -4, and +6
- If the half-life $(t_{1/2})$ for a first order reaction is 1 minute, then the time required for 99.9% completion of the reaction is closest to:
 - (1) 2 minutes
- (2) 4 minutes
- (3) 5 minutes
- (4) 10 minutes
- 57 The correct order of the wavelength of light absorbed by the following complexes is,
 - A. $\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{3+}$ B. $\left[\operatorname{Co}(\operatorname{CN})_6\right]^{3-}$
 - C. $\left[\operatorname{Cu}(H_2O)_4\right]^{2+1}$ D. $\left[\operatorname{Ti}(H_2O)_6\right]^{3+1}$

Choose the **correct** answer from the options given below:

- (1) B < D < A < C (2) B < A < D < C
- (3) C < D < A < B (4) C < A < D < B
- Which one of the following compounds can exist as cis-trans isomers?
 - (1) Pent-1-ene
 - (2) 2-Methylhex-2-ene
 - (3) 1,1-Dimethylcyclopropane
 - (4) 1,2-Dimethylcyclohexane

Phosphoric acid ionizes in three steps with their ionization constant values

 K_{a_1} , K_{a_2} and K_{a_3} , respectively,

while K is the overall ionization constant. Which of the following statements are true?

- A. $\log K = \log K_{a_1} + \log K_{a_2} + \log K_{a_3}$
- B. H_3PO_4 is a stronger acid than H_2PO_4 and HPO_4^2 .
- C. $K_{a_1} > K_{a_2} > K_{a_3}$
- D. $K_{a_1} = \frac{K_{a_3} + K_{a_2}}{C^2}$

Choose the **correct** answer from the options given below:

- (1) A and B only
- (2) A and C only
- (3) B, C and D only
- (4) A, B and C only
- Which one of the following reactions does NOT give benzene as the product?

 - (2) n-hexane Mo₂O₃ Mo₂O₃ 773K, 10 20 atm.
 - (3) H-C≡C-H red hot Iron Tube at 873 K
 - $(4) \qquad \begin{array}{c} \bigoplus_{N \equiv N} \bigoplus_{O} \frac{H_2O}{warm} \end{array}$
- 61 If the molar conductivity (Λ_m) of a 0.050 mol L⁻¹ solution of a monobasic weak acid is 90 S cm² mol⁻¹, its extent (degree) of dissociation will be

[Assume $\Lambda_{+}^{\circ} = 349.6 \,\mathrm{S \,cm^{2} \,mol^{-1}}$ and

- $\Lambda_{-}^{\circ} = 50.4 \,\mathrm{S \,cm^2} \,\mathrm{mol^{-1}}.$
- (1) 0.115 (2) 0.125
- (3) 0.225 (4) 0.215

12 $\frac{1}{1} = \frac{\kappa_2}{\kappa_1}$ $\frac{1}{1} = \frac{\kappa_2}{\kappa_1}$ $\frac{1}{1} = \frac{\kappa_2}{\kappa_2}$ $\frac{1}{1} = \frac{\kappa_2}{\kappa_2}$ $\frac{1}{1} = \frac{\kappa_2}{\kappa_2}$

45_English]

Given below are two statements: 62

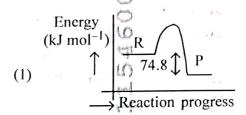
> Statement I: Athypothetical diatomic molecule with bond order zero is quite stable.

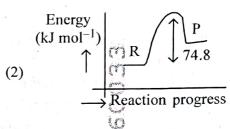
> Statement II: As bond order increases, the bond length increases.

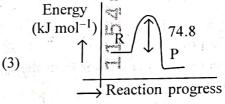
> In the light of the above statements, choose the most appropriate answer from the options given below:

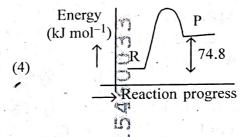
- (1) Both Statement I and Statement II are true
- Both Statement I and Statement II are false
- (3) Statement I is true but Statement II is false
- Statement I is false but Statement II is true (200
- Out of the following complex compounds, 63 which of the compound will be having the minimum conductance in solution?
 - (1) $\left[\text{Co}(\text{NH}_3)_3 \text{Cl}_3 \right]$

 - (2) $\left[\text{Co}(\text{NH}_3)_4 \text{Cl}_2 \right]$ (3) $\left[\text{Co}(\text{NH}_3)_6 \right] \text{Cl}_3$
 - (4) $\left[\text{Co(NH}_3)_5 \text{ CICI} \right]$
- Match List I with: List II
 - List-I


List-II


- A. XeO₃
- sp³d; linear
- XeF₂
- sp³; pyramidal II.
- XeOF₄
- FIII. sp³d³; distorted
- octahedral
- sp³d²; square XeF₆
- pyramidal


Choose the correct answer from the options given below:


- (1) A-II, B-I, C-IV, Ď-III
- (2) A-II, B-I, C-III, D-IV
- (3) A-IV, B-II, C-III, D-I
- (4) A-IV, B-II, C-I, D-III

 $C(s) + 2H_2(g) \rightarrow CH_4(g); \Delta H = -74.8 \text{ kJ mol}^{-1}$ 65 Which of the following diagrams gives an accurate representation of the above reaction? $[R \rightarrow reactants; P \rightarrow products]$

Match List - I with List - II 66

List-I	Concession	List-II
(Examp	le)	(Type of Solution)

- Humidity
- Solid in solid I.
- B. Alloys
- Liquid in gas II.
- C. **Amalgams**
- III. Solid in gas
- Smoke
- IV. Liquid in solid

Choose the correct answer from the options given below:

- (1) A-II, B-IV, CI, D-III
- (2) A-II, B-I, C-IV, D-III
- (3) A-III, B-I, C-IV, D-II
- (4) A-III, B-II, C-I, D-IV

- The correct order of decreasing basic strength of the given amines is:
 - (1) N-methylaniline > benzenamine > ethanamine > N-ethylethanamine
 - (2) N-ethylethanamine > ethanamine > benzenamine > N-methylaniline
 - (3) N-ethylethanamine > ethanamine >N-methylaniline > benzenamine
 - (4) benzenamine > ethanamine > N-methylaniline > N-ethylethanamine
- Among the following, choose the ones with equal number of atoms.
 - A. $212 \text{ g of Na}_2\text{CO}_3$ (s) [molar mass = 106 g]
 - B. 248 g of Na_2O (s) [molar mass = 62 g]
 - C. 240 g of NaOH (s) [molar mass = 40 g]
 - D. $12 g \text{ of } H_2(g) \text{ [molar mass} = 2 g]$
 - E. 220 g of $CO_2(g)$ [molar mass = 44 g]

- (1) A, B, and C only
- (2) A, B, and D only
- (3) B, C, and D only
 - (4) B, D, and E only
- 69 Match List I with List II.

List I List II
(Name of (Deficiency

Vitamin)

- disease)
- A. Vitamin B₁₂ I. Cheilosis
 B. Vitamin D II. Convulsions
- C. Vitamin B₂ III. Rickets
- D. Vitamin B_6 \bigcirc IV. Pernicious anaemia Choose the **correct** answer from the options given below:
- (1) A-I, B-III, C-II, D-IV
- (2) A-IV, B-III, C-I, D-II
- (3) A-II, B-III, C-I, D-IV
- (4) A-IV, B-III, C-II, D-I

- 70 The correct order of decreasing acidity of the following aliphatic acids is:
 - (1) $(CH_3)_3CCOOH > (CH_3)_2CHCOOH > CH_3COOH > HCOOH$
 - (2) $CH_3COOH > (CH_3)_2CHCOOH >$ $(CH_3)_3CCOOH > HCOOH$
 - (3) $HCOOH > CH_3COOH >$ $(CH_3)_2CHCOOH > (CH_3)_3CCOOH$
 - (4) HCOOH > (CH₃)₃CCOOH > (CH₃)₂CHCOOH > CH₃COOH
- 71 Given below are two statements:

Statement I: Ferromagnetism is considered as an extreme form of paramagnetism.

Statement II: The number of unpaired electrons in a Cr^{2t} ion (Z=24) is the same as that of a Nd^{3+} ion (Z=60).

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is true but Statement II is false
- (4) Statement I is false but Statement II is true

45_English]

248

24 24 126 X2=12 67 36 26 X2=12 H N Ar [Contd... 167 Ke

230 442 230 442 24 28 2 72 Match List I with List II
List I

(Mixture)

List II (Method of Separation)

- A. $CHCl_3 + C_6H_5NH_2$
- Distillation under reduced pressure
- B. Crude oil in 17 petroleum industry
- II. Steam
 distillation
- C. Glycerol from spent-lye
- III. Fractional distillation
- D. Aniline water
- IV. Simple distillation

Choose the **correct** answer from the options given below:

1.

- (1) A-IV, B-III, E-I, D-II ·
- (2) A-IV, B-III, C-II, D-I
- (3) A-III, B-IV, G-I, D-II
- (4) A-III, B-IV, C-II, D-I
- 73 For the reaction $A(g) \rightleftharpoons 2B(g)$, the backward reaction rate constant is higher than the forward reaction rate constant by a factor of 2500, at 1000 K.

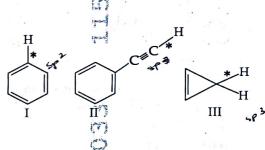
[Given: R = 0.0831 L atm mol⁻¹ K⁻¹] $K_{\rm p}$ for the reaction at 1000 K is

- (1) 83.1
- (2) 2.077×10^5
- (3) 0.033
- (4) 0.021
- 74 Given below are two statements:

Statement I: Benzenediazonium salt is prepared by the reaction of aniline with nitrous acid at 273 - 278 K. It decomposes easily in the dry state.

Statement II: Insertion of iodine into the benzene ring is difficult and hence iodobenzene is prepared through the reaction of benzenediazonium salt with KI.

In the light of the above statements, choose the most appropriate answer from the options given below:


- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

How many products (including stereoisomers) are expected from monochlorination of the following compound?

- (1) 2
- (2) 3
- (3) 5
- (4) 6

(7)

Among the given compounds I-III, the correct order of bond dissociation energy of C-H bond marked with * is:

- (1) II > I > III
- (2) I > II > III
- (3) III > II > II > II > I
- 77 Which one of the following compounds does not decolourize bromine water?
 - (1) (1)
 - (2) OH

 - $(4) \quad \bigcirc \longrightarrow NH_2$

>~~ ⁴

[Contd...

78 The major product of the following reaction is:

$$\begin{array}{c}
\text{O} & \text{(i)} & \text{CH}_3\text{MgBr} \\
\text{CN} & \text{(excess)} \\
\text{(ii)} & \text{H}_3\text{O}^+
\end{array}$$

(2)
$$CH_3$$
 OH CH_3

- 79 Which of the following aqueous solution will exhibit highest boiling point?
 - (1) 0.01M Urea
 - (2) $0.01M \text{ KNO}_3$
 - (3) $0.01 \text{MeNa}_2 \text{SO}_4$
 - (4) $0.015MC_6H_{12}O_6$
- 80 Match List I with List II

List-I

List-II

- A. Haber process
- I. Fe catalyst
- B. Wacker oxidation
- II. PdCl₂
- C. Wilkinson catalyst
- III. $[(PPh_3)_3RhCl]$ IV. $TiCl_4$ with
- D. Ziegler catalyst
- $Al(CH_3)_3$

Choose the correct answer from the options given below:

- (1) A-I, B-II, C-IV, D-III
- (2) A-II, B-III, C-I, D-IV
- . (3) A-I, B-II, C-III, D-IV
 - (4) A-I, B-IV, C-III, D-II

- solution? Solution for the following is true regarding the described solution?
 - (1) The solution shows positive deviation.
 - (2) The solution shows negative deviation.
 - (3) The solution is ideal.
 - (4) The solution has volume greater than the sum of individual volumes.

C

- 82 Sugar 'X'
 - A. is found in honey.
 - B. is a keto sugar.
 - C. exists in α and β anomeric forms.
 - D. is laevorotatory.

'X' is:

- (1) D-Glucose
- (2) D-Fructose
- (3) Maltose
- (4) Sucrose

N

83 Identify the suitable reagent for the following conversion.

- (1) (i) LiAlH₄, (ii) H⁺/H₂O
- (2) (i) AlḤ(iBu)₂ (ii) H₂O
- (3) (i) NaBH₄, (ii) H⁺/H₂O
- (4) H₂ / Pd-BaSO₄

[Contd...

Given below are two statements: one is 84 labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): 1 undergoes S_N^2 reaction faster than CI.

Reason (R): lodine is a better leaving group because of its large size.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is not the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true
- The standard heat of formation, in 85 kcal/mol of Ba²⁺ is:

[Given: standard heat of formation of SO_4^{2-} ion (aq) = -216 kcal/mol, standard heat of crystallisation of

 $BaSO_4(s) = -4.5$ kcal/mol, standard heat of formation of BaSO₄(s) = -349 kcal/mol]

- (1) 128.5
- (2) 133.0
- (3) + 133.0
- (4) + 220.5
- Total number of possible isomers (both 86 structural as well as stereoisomers) of cyclic ethers of molecular formula C₄H₈O is:
 - (1) 6
- (2) 8
- (3) 10
- (4) 11
- Identify the correct orders against the property 87 mentioned
 - At $H_2O > NH_3 > CHCl_3 dipole moment$
 - B $XeF_4 > XeO_3 > XeF_2$ number of lone pairs on central atom C = O-H > C-H > N-O bond length

 - $N_2 > N_2 > H_2$ bond enthalpy

Choose the correct answer from the options given below:

- (1) A, D only
- (2) B, D only
- (3) A, C only
- (4) B, C only

45 English]

K=0,03

Higher yield of NO in

obtained at

given below:

 $0.9 \text{ mol } L^{-1}$?

(4) 69.3 s

(3) 210 s

(Given: $\log 2 = 0.301$)

(I) A, D only

B)

GI

89

90

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ can be

higher concentration of N₂

Choose the correct answer from the options

If the rate constant of a reaction is 0.03 s⁻¹,

how much time does it take for 7.2 mol L⁻¹

concentration of the reactant to get reduced to

(2) 23.1 s

Which one of the following reactions does

NOT belong to "Lassaigne's test"?

 $Na + C + N \xrightarrow{\Lambda} NaCN$

(4) $2CuO + C \xrightarrow{\Lambda} 2Cu + CO_2$

 $(3) Na + X \xrightarrow{\Delta} + NaX$

(3) B, C, D only (4) A, C, D only

(2) B, C only

D. higher concentration of O_2

higher temperature

lower temperature

 ΔH of the reaction = + 180.7 kJ mol⁻¹]

- 91 The complex II of mitochondrial electron transport chain is also known as
 - (1) Cytochrome bc₁
 - .(2) Succinate dehydrogenase
 - (3) Cytochrome c oxidase
 - (4) NADH dehydrogenase
- 92 Polymerase chain reaction (PCR) amplifies DNA following the equation.
 - (1) N^2
- · (2) 2ⁿ
- (3) 2n + 1
- $(4) 2N^2$
- What are the potential drawbacks in adoption of the IVF method?
 - A. High fatality risk to mother
 - B. Expensive instruments and reagents
 - C. Husband/wife necessary for being donors
 - D. Less adoption of orphans
 - E. Not available in India
 - F. Possibility that the early embryo does not survive

- (1) B, D, F only •
- (2) A, C, D, F, only
- (3) A, B, C, D, only
- (4) A, B, C, E, F only
- What is the name of the blood vessel that carries deoxygenated blood from the body to the heart in a frog?
 - (1) Aorta
 - (2) Pulmonary artery
 - (3) Pulmonary vein
 - (4) Vena cava
- Which one of the following statements refers to Reductionist Biology?
 - (1) Physico-chemical approach to study and understand living organisms.
 - (2) Physiological approach to study and understand living organisms.
 - (3) Chemical approach to study and understand living organisms.
 - (4) Behavioural approach to study and understand living organisms.

96 Given below are two statements:

Statement I: In the RNA world, RNA is considered the first genetic material evolved to carry out essential life processes. RNA acts as a genetic material and also as a catalyst for some important biochemical reactions in living systems. Being reactive, RNA is unstable.

Statement III: DNA evolved from RNA and is a more stable genetic material. Its double helical strands being complementary, resist changes by evolving repairing mechanism.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both statement I and statement II are correct
- (2) Both statement I and statement II are incorrect
- (3) Statement I is correct but statement II is incorrect
- (4) Statement I is incorrect but statement II is correct
- 97 Epiphytes that are growing on a mango branch is an example of which of the following?
 - ,(1) Commensalism
 - (2) Mutualism
 - (3) Predation
 - (4) Amensalism
- 98 From the statements given below choose the correct option:
 - A. The eukaryotic ribosomes are 80S and prokaryotic ribosomes are 70S.
 - B. Each ribosome has two sub-units.
 - C. The two sub-units of 80S ribosome are 60S and 40S while that of 70S are 50S and 30S.
 - D. The two sub-units of 80S ribosome are 60S and 20S and that of 70S are 50S and 20S.
 - E. The two sub-units of 80S are 60S and 30S and that of 70S are 50S and 30S.
 - (1) A, B, Care true
 - (2) A, B, D are true
 - (3) A, B, E are true
 - (4) B, D, E are true

- Which one of the following is an example of ex-situ conservation?
 - (1) National Park
 - (2) Wildlife Sanctuary
 - (3) Zoos and botanical gardens
 - (4) Protected areas
- 100 Given below are two statements:

Statement 1: The primary source of energy in an ecosystem is solar energy.

Statement 11: The rate of production of organic matter during photosynthesis in an ecosystem is called net primary productivity (NPP).

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both statement I and statement II are correct
- (2) Both statement I are incorrect
- (3) Statement I is correct but statement II is incorrect
- (4) Statement I is incorrect but statement II is correct
- 101 Match List I with List II.

List - I

List - II

- A. Emphysema

 I. Rapid spasms in muscle
 due to low Ca⁺⁺ in
 body fluid
- B. Angina
 Pectoris
 Pectoris
 Pectoris
 Pectoris
 Pectoris
 Pectoris
 Pectoris
 Pamaged alveolar
 Permaged alveolar
 Permaged alveolar
 Permaged alveolar
 Permaged alveolar
 Permaged alveolar
- C. Glomerulonephritis
 not enough oxygen
 is reaching to heart
 muscle
- D. Tetany IV Inflammation of glomeruli of kidney

Choose the correct answer from the options given below:

- (1) A-III, B-I, C-IV, D-II
- (2) A-III, B-I, C-II, D-IV
- (3) A-II, B-IV, C-III, D-I
- (4) A-II, B-III, C-IV, D-I

102 Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Both wind and water pollinated flowers are not very colourful and do not produce nectar.

Reason (R): The flowers produce enormous amount of pollen grains in wind and water pollinated flowers.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is NOT the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true
- Which of the following is an example of non-distilled alcoholic beverage produced by yeast?
 - (1) Whisky
- (2) Brandy
- (3) Beer
- (4) Rum
- 104 Given below are two statements:

Statement I: In a floral formula \oplus stands for zygomorphic nature of the flower, and \underline{G} stands for inferior ovary.

Statement II: In a floral formula \oplus stands for actinomorphic nature of the flower and \underline{G} stands for superior ovary.

In the light of the above statements, choose the correct answer from the options given below:

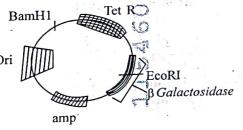
- (1) Both Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

105	Streptokinase produced by bacterium	110	Match List - I with List - II.
100	Streptococcus is used for		List - I
	(1) Curd production		A. Head 🔘 I. Enzymes
	(2) Ethanol production		B. Middle piece II. Sperm motility
	(3) Liver disease treatment		C. Acrosome III. Energy
			D. Tail. IV. Genetic material
	(4) Removing clots from blood vessels		Choose the correct answer from the options
9	Marrie of		given below:
106	Which chromosome in the human genome has		,(1) A-IV, B-III, C-I, D-II
	the highest number of genes?		(2) A-IV, B-III, C-II, D-I
	(1) Chromosome X		(3) A-III, B-IV, C-II, D-I
	(2) Chromosome Y		(4) A-III, B-II, C-I, D-IV
	(3) Chromosome 1	E more	
	(4) Chromosome 10	111	
		li	pteridophytes. Arrange the following stages in the correct sequence.
107	Which of the following statement is correct		A. Prothallus stage
	about location of the male frog copulatory		B. Meiosis in spore mother cells
	pad?		C. Fertilisation
	(1) First and Second digit of fore limb		D. Formation of archegonia and antheridia in
	(2) First digit of hind limb at bolling >		gametophyte.
	(3) Second digit of fore limb and the second digit of the second d	J. 1	E. Transfer of antherozoids to the archegonia
	(4) First digit of the fore limb		in presence of water.
	843	1	Choose the correct answer from the options
108	Which one of the following phytohormones	1	given below:
1	promotes nutrient mobilization which helps in	1.74	(1) B, A, D, E, C
9.2	the delay of leaf senescence in plants?		(2) B, A, E, Ĉ, D
	(1) Ethylene (2) Abscisic acid	V.a	(3) D, E, C, A, B
	(3) Gibberellin (4) Cytokinin		(4) E, D, C, B, A
	and a state of the	112	2 Cardiac activities of the heart are regulated by :
109	While trying to find out the characteristic of a	1112	A. Nodal tissue
207	newly found animal, a researcher did the	1	B. A special neural centre in the medulla
	histology of adult animal and observed a cavity	1	oblongata O
	with presence of mesodermal tissue towards	1	C. Adrenal medullary hormones
	the body wall but no mesodermal tissue was		D. Adrenal cortical hormones
	observed towards the alimentary canal. What	,	Choose the correct answer from the options
	could be the possible coelome of that animal?	-1.	given below:
	·(1) Acoelomate	1	(1) A, B and C Only
	(2) Pseudocoelomate	}	(2) A, B, C and D
	(3) Schizocoelomate	,	(3) A, C and D Only
	(4) Spongocoelomate		(4) A, B and D Only

- Which of following organisms cannot fix nitrogen?
 - A. Azotobacter
- B. Oscillatoria
- C. Anabaena
- D. Volvox
- E. Nostoc

- (1) A only
- (2) D only
- (3) B only
- (4) E only
- 114 Given below are two statements:

Statement I: Transfer RNAs and ribosomal RNA do not interact with mRNA.


Statement II: RNA interference (RNAi) takes place in all eukaryotic organisms as a method of cellular defence.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement Fand Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II

 is correct

115

In the above represented plasmid an alien piece of DNA is inserted at EcoRI site. Which of the following strategies will be chosen to select the recombinant colonies?

- (1) Using ampicillin & tetracyclin containing medium plate.
- (2) Blue color colonies will be selected.
- (3) White color colonies will be selected.
- (4) Blue color colonies grown on ampicillin plates can be selected.

- Which of the following genetically engineered organisms was used by Eli Lilly to prepare human insulin?
 - (1) Bacterium
- (2) Yeast
- (3) Virus
- (4) Phage
- Name the class of enzyme that usually catalyze the following reaction:

$$S - G + S^{\#} \rightarrow S + S^{\#} G$$

Where, $G \rightarrow a$ group other than hydrogen

 $S \rightarrow a$ substrate

 $S^{\#} \rightarrow another substrate$

- (1) Hydrolase
- (2) Lyase
- . (3) Transferase
- (4) Ligase
- Find the statement that is **NOT** correct with regard to the structure of monocot stem.
 - (1) Hypodermis is parenchymatous.
 - (2) Vascular bundles are scattered.
 - (3) Vascular bundles are conjoint and closed.
 - (4) Phloem parenchy in a is absent.
- The correct sequence of events in the life cycle of bryophytes is
 - A. Fusion of antherozoid with egg.
 - B. Attachment of gametophyte to substratum.
 - C. Reduction division to produce haploid spores.
 - D. Formation of sporophyte.
 - E. Release of antherozoids into water.

Choose the **correct** answer from the options given below:

- (1) D, E, A, C, B
- (2) B, E, A, C, D
- ·(3) B, E, A, D, C
- (4) D, E, A, B, C

120 Which are correct:

- Computed tomography and magnetic resonance imaging detect cancers of internal organs.
- Chemotherapeutics drugs are used to kill non-cancerous cells.
- C. \alpha -interferon activate the cancer patients' immune system and helps in destroying the tumour.
- D. Chemotherapeutic drugs are biological response modifiers.
- E. In the case of leukaemia blood cell counts are decreased.

Choose the correct answer from the options given below:

- (1) B and D only (2) D and E only
- (3) C and D only (4) A and C only

121 Match List - I with List - II.

List - I

List - II

- Centromere * A.
- Mitochondrion I.
- B. . Cilium
- II. Cell division
- Cristae C.
- III. Cell movement
- D. Cell membrane
- IV. Phospholipid Bilayer .

Choose the correct answer from the options given below:

- (1) A-I, B-II, C-III, D-IV
- (2) A-II, B-I, C-IV, D-III
- (3) A-IV, B-II, CIII, D-I
- (4) A-II, B-III, C-I, D-IV

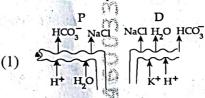
122 Match List I with List II:

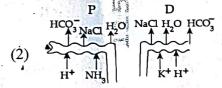
List I

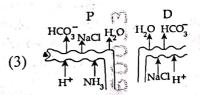
List II

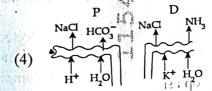
- A. Chlorophyll a
- Yellow-green
- Chlorophyll b II. B.
 - Yellow
- Xanthophylls.
- III. Blue-green
- - Carotenoids IV. Yellow to Yellow-orange

Choose the option with all correct matches.

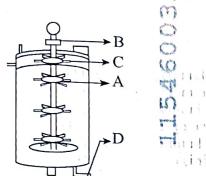

I.


- (1) A-III, B-IV, C-II, D-I
- (2) A-III, B-I, C-II, D-IV.
- (3) A-I, B-II, C-IV, D-III
- (4) A-I, B-IV, C-III, D-II


- 123 Find the correct statements:
 - In human pregnancy, the major organ systems are formed at the end of 12 weeks.
 - In human pregnancy the major organ systems are formed at the end of 8 weeks.
 - In human pregnancy heart is formed after one month of gestation.
 - In human pregnancy, limbs and digits develop by the end of second month.
 - In human pregnancy the appearance of E. hair is usually observed in the fifth month.


Choose the correct answer from the options given below:

- (1) A and E Only
- (2) B and C Only
- (3) B, C, D and E Only
- (4) A, C, D and E Only
- In the seeds of cereals, the outer covering 124 of endosperm separates the embryo by a protein-rich layer called:
 - (1) Coleoptile
- (2) Coleorhiza
- (3) Integument
- (4) Aleurone layer
- Which of the following diagrams is correct 125 with regard to the proximal (P) and distal (D) tubule of the Nephron.



126 Identify the part of a bio-reactor which is used as a foam braker from the given figure.

- (1) A (2) B (3) D (4) C
- Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R)

Assertion (A): A typical unfertilised, angiosperm embryo sac at maturity is 8 nucleate and 7-celled.

Reason (R): The egg apparatus has 2 polar nuclei.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is NOT the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true
- 128 A specialised membranous structure in a prokaryotic cell which helps in cell wall formation, DNA replication and respiration is:
 - (1) Mesosome,
 - (2) Chromatophores
 - (3) Cristae
 - (4) Endoplasmic Reticulum

- 129 Which of the following are the post-transcriptional events in an eukaryotic cell?
 - A. Transport of pre-mRNA to cytoplasm prior to splicing
 - B. Removal of introns and joining of exons.
 - C. Addition of methyl group at 5' end of hnRNA.
 - D. Addition of adenine residues at 3' end of hnRNA.
 - E. Base pairing of two complementary RNAs.

Choose the correct answer from the options given below:

- (1) A, B, C only
- , (2) B, C, D only
- (3) B, C, E only
- (4) C, D, E only
- What is the pattern of inheritance for polygenic trait?
 - (1) Mendelian inheritance pattern
 - (2) Non-mendelian inheritance pattern
 - (3) Autosomal dominant pattern
 - (4) X-linked recessive inheritance pattern
- Which one of the following enzymes contains 'Haem' as the prosthetic group?
 - (1) RuBisCo
 - (2) Carbonic anhydrase
 - (3) Succinate dehydrogenase
 - (4) Catalase

 Each of the following characteristics represent a Kingdom proposed by Whittaker. Arrange the following in increasing order of complexity of body organization. A. Multicellular heterotrophs with cell wall made of chitin. B. Heterotrophs with tissue/organ/organ system level of body organization. C. Prokaryotes with cell wall made of polysaccharides and amino acids. D. Eukaryotic autotrophs with tissue/organ level of body organization. 	A. A mass of proliferating cell B. Rapid growth of cells C. Invasion and damage to the surrounding tissue D. Those confined to original location Choose the correct answer from the options given below: (1) A, B only (3) A, B, D only (4) B, C, D only
E. Eukaryotes with cellular body organization. Choose the correct answer from the options given below: (1) A, C, E, B, D (2) C, E, A, D, B (3) A, C, E, D, B (4) C, E, A, B, D	136 Given below are two statements: Statement I: The DNA fragments extracted from gel electrophoresis can be used in construction of recombinant DNA. Statement II: Smaller size DNA fragments are observed near anode while larger fragments
 Who is known as the father of Ecology in India? S. R. Kashyap Ramdeo Misra Ram Udar Birbal Sahni Match List I with List II: List-I A. Alfred Hershey and Martha pneumoniae 	are found near the wells in an agarose gel. In the light of the above statements, choose the most appropriate answer from the options given below: (1) Both statement I and statement II are correct (2) Both statement I and statement II are incorrect (3) Statement I is correct but statement II is incorrect (4) Statement I is incorrect but statement II
Chase B. Euchromatin II. Densely packed and dark stained C. Frederick Griffith D. Heterochromatin IV. DNA as genetic material	is correct 137 Match List I with List II. List I List II A. Adenosine I. Nitrogen base B. Adenylic acid II. Nucleotide
confirmation Choose the correct answer from the options given below: (1) A-II, B-IV, C-I, D-III (2) A-IV, B-II, C-I, D-III (3) A-IV, B-III, C-I, D-II (4) A-III, B-II, C-IV, D-I	C. Adenine III. Nucleoside D. Alanine IV. Amino acid Choose the option with all correct matches. (1) A-III, B-IV, C-II, D-I (2) A-III, B-II, C-IV, D-I (3) A-III, B-II, C-I, D-IV (4) A-II, B-III, C-I, D-IV
45_English] (A) 2	4 Contd

- 138 Consider the following:
 - A. The reductive division for the human female gametogenesis starts earlier than that of the male gametogenesis.
 - B. The gap between the first meiotic division and the second meiotic division is much shorter for males compared to females.
 - C. The first polar body is associated with the formation of the primary oocyte.
 - D. Luteinizing Hormone (LH) surge leads to disintegration of the endometrium and onset of menstrual bleeding.

- (1) A and B are true
- (2) A and C are true.
- (3) B and D are true
- (4) B and C are true
- 139 All living members of the class Cyclostomata are:
 - (1) Free living
- (2) Endoparasite
- (3) Symbiotic
- (4) Ectoparasite
- 140 Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): The primary function of the Golgi apparatus is to package the materials made by the endoplasmic reticulum and deliver it to intracellular targets and outside the cell.

Reason (R): Vesicles containing materials made by the endoplasmic reticulum fuse with the cis face of the Golgi apparatus, and they are modified and released from the trans face of the Golgi apparatus.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is not the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true

141 Match List I with List II:

List I List II A. Scutellum Persistent I. nucellus 197 II. Cotyledon of B. Non-albuminous 3 Monocot seed seed III. Groundnut C. Epiblast Rudimentary D. Perisperm cotyledon

Choose the option with all correct matches.

- (1) A-II, B-III, C-IV, D-I-
- (2) A-IV, B-III, C-II, D-I
- (3) A-IV, B-III, C-I, D-II
- (4) A-II, B-IV, C-III, D-I
- 142 Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): All vertebrates are chordates but all chordates are not vertebrate.

Reason (R): The members of subphylum vertebrata possess notochord during the embryonic period, the notochord is replaced by a cartilaginous or bony vertebral column in adults.

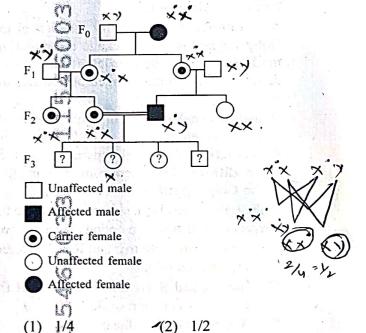
In the light of the above statements, choose the correct answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is not the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true
- 143 Identify the statement that is NOT correct.
 - (1) Each antibody has two light and two heavy chains.
 - (2) The heavy and light chains are held together by disulfide bonds.
 - (3) Antigen binding site is located at C-terminal region of antibody molecules.
 - (4) Constant region of heavy and light chains are located at C-terminus of antibody molecules.

- 144 Silencing of specific mRNA is possible via RNAi because of -
 - .(1) Complementary dsRNA
 - (2) Inhibitory ssRNA
 - (3) Complementary tRNA
 - (4) Non-complementary ssRNA
- 145 Genes R and Y follow independent assortment. If RRYY produce round yellow seeds and rryy produce wrinkled green seeds, what will be the phenotypic ratio of the F2 generation?
 - (1) Phenotypic ratio 1:2:1
 - (2) Phenotypic ratio 3:1
 - (3) Phenotypic ratio 9:3:3:1
 - (4) Phenotypic ratio 9:7
- 146 Histones are enriched with -
 - (1) Lysine & Arginine
 - (2) Leucine & Lysine
 - (3) Phenylalanine & Leucine
 - (4) Phenylalanine & Arginine
- 147 The first menstruation is called:
 - (1) Menopause
- (2) Menarche
- (3) Diapause
- (4) Ovulation
- 148 Match List I with List II.

List - I

List - II


- A. Heart
- I. Erythropoietin
- B. Kidney
- II. Aldosterone
- C. Gastro-intestinal III. Atrial natriuretic

tract

factor

- D. Adrenal Cortex IV. Secretin
- Choose the correct answer from the options given below:
- (1) A-II, B-I, C-III, D-IV
- (2) A-IV, B-III, C-II, D-I
- (3) A-I, B-III, C-IV, D-II
- (4) A-III, B-I, C-IV, D-II

- 149 The protein portion of an enzyme is called:
 - (1) Cofactor
 - (2) Coenzyme
 - (3) Apoenzyme
 - (4) Prosthetic group
- 150 Which of the following is the unit of productivity of an Ecosystem?
 - (1) gm^{-2}
 - (2) KCal m⁻²
 - (3) KCal m^{-3}
 - (4) (KCal m^{-2})yr⁻¹
- 151 Sweet potato and potato represent a certain type of evolution. Select the correct combination of terms to explain the evolution.
 - (1) Analogy, convergent
 - (2) Homology, divergent
 - (3) Homology, convergent
 - (4) Analogy, divergent
- With the help of given pedigree, find out the probability for the birth of a child having no disease and being a carrier (has the disease mutation in one allele of the gene) in F₃ generation.

Zero

(4)

(3) 1/8

153	Given below are two statements: One is labelled as Assertion (A) and the other is	13
	labelled as Reason (R).	
	Assertion (A): Cells of the tapetum possess dense cytoplasm and generally have more than one nucleus.	
	section is the section of the sectio	
	Reason (R): Presence of more than one nucleus	
	in the tapetum increases the efficiency of	
	nourishing the developing microspore mother	j
	cells.	15
	In light of the above statements, choose the	1.
	most appropriate answer from the options	1
Day.	given below:	-
	(1) Both A and R are true and R is the correct	
	explanation of A	
	the sale out it is not the	
	correct explanation of A	
	(3) A is true but R is false	
	(4) A is false but R is true	
154	How many majorio and missis is it	
134	How many meiotic and mitotic divisions need to occur for the development of a mature	
	female gametophyte from the megaspore	,
	mother cell in an angiosperm plant?	
		15
	(1) 2 Meiosis and 3 Mitosis	
	(2) 1 Meiosis and 2 Mitosis	
	(3) 1 Meiosis and 3 Mitosis	j
	(4) No Meiosis and 2 Mitosis	
		15
		13
155	Which of the following is an example of a	
	zygomorphic flower?	
	(1) Petunia (2) Datura	1
	(3) Pea (4) Chilli	

56 After maturation, in primary lymphoid organs, the lymphocytes migrate for interaction with antigens to secondary lymphoid organ(s) / tissue(s) like: A. thymus В. bone marrow C. spleen D. lymph nodes Peyer's patches Choose the *correct* answer from the options given below: (1) B, C, D only (2) A, B, C only (4) C, D, E only (3) E, A, B only Given below are two statements: Statement I: Fig fruit is a non-vegetarian fruit as it has enclosed fig wasps in it. Statement II: Fig wasp and fig tree exhibit mutual relationship as fig wasp completes its life cycle in fig fruit and fig fruit gets pollinated by fig wasp: In the light of the above statements, choose the most appropriate answer from the options given below: (1) Both statement I and statement II are correct (2) Both statement I and statement II (T) are incorrect (3) Statement I is correct but statement II is incorrect (4) Statement I is incorrect but statement II

- (4) Statement I is incorrect but statement II is correct
- What is the main function of the spindle fibers during mitosis?
 - •(1) To separate the chromosomes
 - (2) To synthesize new DNA
 - (3) To repair damaged DNA
 - (4) To regulate cell growth
- Which one of the following is the characteristic feature of gymnosperms?
 - (1) Seeds are enclosed in fruits.
 - (2) Seeds are naked.
 - (3) Seeds are absent.
 - (4) Gymnosperms have flowers for reproduction.

- 160 Consider the following statements regarding function of adrenal medullary hormones:
 - A. It causes pupilary constriction
 - B. It is a hyperglycemic hormone
 - C. It causes piloerection
 - D. It increases strength of heart contraction Choose the **correct** answer from the options given below:
 - (1) C and D Only
 - (2) B, C and D Only
 - (3) A, C and D Only
 - (4) D Only
- Why can't insulin be given orally to diabetic patients?
 - (1) Human body will elicit strong immune response
 - (2) It will be digested in Gastro-Intestinal (GI) tract
 - (3) Because of structural variation
 - (4) Its bioavailability will be increased
- 162 Match List I with List II.

List I

List II

- A. Pteridophyte,
- I. Salvia
- B. Bryophyte 1
- II. Ginkgo
- C. Angiosperm
- III. Polytrichum
- D. Gymnosperm
- IV. Salvinia
- Choose the option with all correct matches.
- (1) A-III, B-IV, C-II, D-I
- (2) A-IV, B-III, C-I, D-II.
- (3) A-III, B-IV, C-I, D-II
- (4) A-IV, B-III, C-II, D-I
- Who proposed that the genetic code for amino acids should be made up of three nucleotides?
 - (1) George Gamow'
 - (2) Francis Crick
 - (3) Jacque Monod
 - (4) Franklin Stahl

164 Match List I with List II:

List I

List II

- A. The Evil Quartet
- I. Cryopreservation
- B. Ex situ conservation
- II. Alien species invasion
- C. Lantana
- III. Causes of biodiversity
- camara in blodiv
- D. Dodo IV. Extinction
- Choose the option with all correct matches.
- (1) A-III, B-II, C-I, D-IV
- (2) A-III, B-I, C-II, D-IV
- (3) A-III, B-IV, C-II, D-I
- (4) A-III, B-II, C-IV, D-I
- Which of the following hormones released from the pituitary is actually synthesized in the hypothalamus ?
 - (1) Luteinizing hormone (LH)
 - (2) Anti-diuretic hormone (ADH)
 - (3) Follicle-stimulating hormone (FSH)
 - (4) Adenocorticotrophic hormone (ACTH)
- 166 Role of the water vascular system in Echinoderms is:
 - A. Respiration and Locomotion
 - B. Excretion and Locomotion
 - C. Capture and transport of food
 - D. Digestion and Respiration
 - E. Digestion and Excretion
 - Choose the correct answer from the options given below:
 - (1) A and B Only
 - (2) A and C Only
 - (3) B and C Only
 - (4) B, D and E Only
- Which of the following type of immunity is present at the time of birth and is a non-specific type of defence in the human body?
 - (1) Acquired Immunity
 - (2) Innate Immunity
 - (3) Cell-mediated Immunity
 - (4) Humoral Immunity

168	In bryophytes, the gemmae help in which one of the following?	Which of the following enzyme(s) are NOT essential for gene cloning?
	(1) Sexual reproduction	A. Restriction enzymes
	(2) Asexual reproduction •	B. DNA ligase
	(3) Nutrient absorption	C. DNA mutase
	- Kenada	D. DNA recombinase
	(4) Gaseous exchange	E. DNA polymerase
	della series	Choose the correct answer from the options
169	In frog, the Renal portal system is a special	given below:
	venous connection that acts to link:	(1) C and D only (2) A and B only
	(1) Liver and intestine	(3) D and E only (4) B and C only
	(2) Liver and kidney	173 Read the following statements on plant growth
	(3) Kidney and intestine	and development.
	2 6	A. Parthenocarpy can be induced by auxins.
	(4) Kidney and lower part of body	B. Plant growth regulators can be involved
		in promotion as well as inhibition of
170	Given below are two statements:	growth.
	Statement I: In ecosystem, there is	C. Dedifferentiation is a pre-requisite for
ere Se	unidirectional flow of energy of sun from	re-differentiation.
	producers to consumers.	D. Abscisic acid is a plant growth promoter.
	Statement II: Ecosystems are exempted from	E. Apical dominance promotes the growth of
	2 nd law of thermodynamics.	lateral buds.
	In the light of the above statements, choose the	Choose the option with all correct statements.
	most appropriate answer from the options	(1) A, B, C only (2) A, C, E only (3) A, D, E only (4) B, D, E only
	given below:	(3) A, D, E only (4) B, D, E only
1-110	(1) Both statement Land statement II	174 Which factor is important for termination of
	are correct	transcription?
	(2) Both statement Land statement II	(1) α (alpha) (2) σ (sigma)
MAL N	are incorrect	(3) ρ (rho) (4) γ (gamma)
TA.	(3) Statement I is correct but statement II	Resembly
	is incorrect	175 Frogs respire in water by skin and buccal
	(4) Statement I is incorrect but statement II	cavity and on land by skin, buccal cavity and
	is correct	lungs.
	m	Choose the correct answer from the
171	Which of the following statements about	following:
F	RuBisCO is true?	(1) The statement is true for water but false for land
	(1) It is active only in the dark.	(2) The statement is true for both the
	(2) It has higher affinity for oxygen than	environment
ł.,	carbon dioxide.	(3) The statement is false for water but true
	(3) It is an enzyme involved in the photolysis	for land
	of water.	(4) The statement is false for both the

of water.

(4) It catalyzes the carboxylation of RuBP.

(4) The statement is false for both the

environment

- 176 Twins are born to a family that lives next door to you. The twins are a boy and a girl. Which of the following must be true?
 - (1) They are monozygotic twins.
 - (2) They are fraternal twins.
 - (3) They were conceived through in vitro fertilization;
 - (4) They have 75% identical genetic content.
- 177 Which of the following microbes is NOT involved in the preparation of household products?
 - A. Aspergillus niger
 - B. Lactobacillus
 - C. Trichoderma polysporum
 - D. Saccharomyces cerevisiae
 - E. Propionibacterium sharmanii

- (1) A and B only
- (2) A and C only
- (3) C and D only
- (4) C and E only
- 178 Match List I with List II.

List - I

List - II

- A. Progesterone
- I. Pars intermedia
- B. Relaxin
- II. Ovary
- C. Melanocyte
- III. Adrenal
- stimulating hormone

Medulla

- D. Catecholamines
- IV. Corpus luteum

Choose the **correct** answer from the options given below:

- (1) A-IV, B-II, C-I, D-III
- (2) A-IV, B-II, C-III, D-I
- (3) A-II, B-IV, C-I, D-III
- (4) A-III, B-II, C-IV, D-I

179 The blue and white selectable markers have been developed which differentiate recombinant colonies from non-recombinant colonies on the basis of their ability to produce colour in the presence of a chromogenic substrate.

Given below are two statements about this method:

Statement I: The blue coloured colonies have DNA insert in the plasmid and they are identified as recombinant colonies.

Statement II: The colonies without blue colour have DNA insert in the plasmid and are identified as recombinant colonies.

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct.
- Which one of the following equations represents the Verhulst-Pearl Logistic Growth of population?

$$(1) \quad \frac{dN}{dt} = r \left(\frac{K - N}{K} \right)$$

(2)
$$\frac{dN}{dt} = rN \left(\frac{K - N}{K} \right)$$

(3)
$$\frac{dN}{dt} = rN \left(\frac{N - K}{N} \right)$$

$$(4) \quad \frac{dN}{dt} = N \left(\frac{r - K}{K} \right)$$

r. ibilit

3(1) + 2(3) + 2 + 5/

AND THE PROPERTY OF THE PARTY O

45_English]

32