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Random variable and standard distributions

1 Random variables

Definition 1.1. If a real variable X be associated with the outcome of a random

experiment, then since the values which X takes depend on chance, it is called a

random variable or a stochastic variable or simply a variate.

If in a random experiment, the event corresponding to a number a occurs, then the

corresponding random variable X is said to assume the value a and the probability

of the event is denoted by P (X = a) = p(a). That is, P (X = a) = P{w|X(w) = x}.

This is known as probability mass function(pmf) (or) probability density

function(pdf) of X. The pdf must satisfy

(i) p (xi) ≥ 0 for all i (ii)
∑

∞

i=1
p (xi) = 1

For example, in a random experiment of tossing three coins, X denote the number

of heads, then X is a random variable.
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The pdf of X is given by

X 0 1 2 3

P(X=x) 1
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If a random variable takes a finite set of values, it is called a discrete variate. On

the other hand, if it assumes an infinite number of uncountable values, it is called a

continuous variate.

The distribution function F (x) of the discrete variate X is defined by F (x) =

P (X ≤ x) =
∑x

i=1
p (xi) where x is any integer. The graph of F (x) will be stair step

form. The distribution function is also sometimes called cumulative distribution

function(cdf). In continuous RV, F (x) =
∫ x

−∞
f(x)dx In the above example,

X 0 1 2 3

F(x) 1
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Note 1.2. 1. F (x) is non-decreasing function

2. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0

3. P (a ≤ x ≤ b) =
∫ b

a
f(x)dx =

∫ b

−∞
f(x)dx−

∫ a

−∞
f(x)dx = F (b)− F (a).

Problem 1.3. A random variable X has the following probability distribution :

x : 0 1 2 3 4 5 6 7

p(x) : 0 k 2k 2k 3k k2 2k2 7k2 + k

(i) Find k,(Ans: 1

10
)

(ii) Evaluate P (X < 6), P (X ≥ 6), and P (0 < X < 5),(Ans: 81

100
, 19

100
,4
5
)

(iii) If P (X ≤ c) > 1

2
, find the minimum value of c,(Ans: 4) and

(iv) Determine the distribution function of X.

( F (x) : 0 1
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(1)The mean value (µ) of the probability distribution of a variateX is commonly

known as its expectation and is denoted by E(X). If f(x) is the probability

density function of the variate X, then

E(X) =
∫

∞

−∞
xf(x)dx = Σ∞

−∞
xf(x)

Theorem 1.4. • E(X + Y ) = E(X) + E(Y )

• Let X1, X2, . . . , Xn be any n random variables and if a1, a2, ; !, an are any n

constants, then

E

(

n
∑

i=1

aiXi

)

=
n
∑

i=1

aiE (Xi)

provided all the expectations exist.

• If X ≥ 0 then E(X) ≥ 0

• |E(X)| ≤ E|X| provided the expectations exist.

Note 1.5. 1. E(X) exists iff E|X| exists.

2. Now

f(x) =
1

π
·

1

1 + x2
; −∞ < x < ∞

which is p.d.f. of Standard Cauchy distribution.

∫

∞

−∞

|x|f(x)dx =
1

π

∫

∞

−∞

|x|

1 + x2
dx =

2

π

∫

∞

0

x

1 + x2
dx
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(∵ Integrand is an even function of x)

=
1

π

∣

∣log
(

1 + x2
)
∣

∣

∞

0
→ ∞

Since this integral does not converge to finite limit, E(X) does not exist.

(2) Variance of a distribution is given by

σ2 =
∑

i (xi − µ)2 f (xi)

σ2 =
∫

∞

−∞
(x− µ)2f(x)dx

where σ is the standard deviation of the distribution.

Theorem 1.6.

V (aX + b) = a2V (X)

where a and b are constants.

(3) The rth moment about the mean (denoted by µr ) is defined by

µr = Σi (xi − µ)r f (xi)

µr =
∫

∞

−∞
(x− µ)rf(x)dx

(4) The rth moment about zero or simply rth moment (denoted by µ′

r )

is defined by

µr = Σi (xi)
r f (xi)

µr =
∫

∞

−∞
(x)rf(x)dx

(5) Mean deviation from the mean is given by

Σ |xi − µ| f (xi)
∫

∞

−∞
|x− µ|f(x)dx

(6) The moment generating function (mgf) of X denoted by MX(t) is de-

fined as E(etX).

The moments can be found from mgf as µ′

r =
[

dr

dtr
MX(t)

]

t=0
.

(7) The characteristic function of X denoted by φX(t) is defined as E(eitX).
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(8) The cumulunt generating function of X denoted by KX(t) is defined as

log MX(t).

(9) The probability generating function (p.g.f.) of X denoted by Px(t), is

defined as Px(t) = p0 + p1t+ p2t
2 + . . . =

∑

∞

n=0
pnt

n = E (tx)

The probability can be found from pgf as
[

dk

dtk
PX(t)

]

t=0

= k!pk, k = 1, 2, . . . n.

(10) Median is the point which divides the entire distribution in two equal parts.

In case of continuous distribution, median is the point which divides the total area

into two equal parts. Thus if M is the median, then

∫ M

a

f(x)dx =

∫ b

M

f(x)dx =
1

2

Example 1.7. In a lottery, m tickets are drawn at a time out of n tickets numbered

from 1 to n. Find the expected value of the sum of the numbers on the tickets drawn.

Solution. Let x1, x2, . . . , xn be the variables representing the numbers on the first,

second, ..., n th ticket. The probability of drawing a ticket out of n tickets being in

each case 1/n, we have

E (xi) = 1 ·
1

n
+ 2 ·

1

n
+ 3 ·

1

n
+ . . .+ n ·

1

n
=

1

2
(n+ 1)

∴ expected value of the sum of the numbers on the tickets drawn

= E (x1 + x2 + . . .+ xm) = E (x1) + E (x2) + . . .+ E (xm)

= mE (xi) =
1

2
m(n + 1)

Example 1.8. Consider

x : −3 6 9

P (X = x) : 1/6 1/2 1/3

Find E(X) and E (X2) . Hence evaluate E(2X + 1)2. (ANS: 11

2
, 93

2
,209)

Problem 1.9. If X be a random variable with probability generating function PX(t),

find the probability generating function of (i) X + 2 and (ii) 2X.

(ANS: t2PX(t) and PX(t
2))

Theorem 1.10. McX(t) = MX(ct), c being a constant.

Theorem 1.11. The moment generating function of the sum of a number of inde-

pendent random variables is equal to the product of their respective moment gener-
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ating functions.

That is, MXi+X2+...+X0
(t) = MX1

(t)M1 (2(t) . . .MXn
(t)

Theorem 1.12. Cauchy-Schwartz Inequality: If X and Y are random vari-

ables taking. real values, then

[E(XY )]2 ≤ E
(

X2
)

· E
(

Y 2
)

Theorem 1.13. Jenson’s Inequality:. If g is continuous and convex function on

the interval, and X is a random variable whose values are in I with probability 1,

then

E[g(X)] ≥ g[E(X)]

provided the expectations exist.

Theorem 1.14. If g is a continuous and concave function on the interval I and X

is a r.v. whose values are in I with probability 1, then

E[g(X)],≤ g[E(X)]

provided the expectations exist.

Theorem 1.15. If X ≥ 0, E[log(X)] ≤ log[E(X)], if exist.

Theorem 1.16. Chebychev’s Inequality: If X is a random variable with mean

µ and variance σ2, then for any positive number k, we have

P{|X − µ| ≥ kσ} ≤ 1/k2

or P{|X − µ |< kσ} ≥ 1− (1/k2)

Problem 1.17. If X is a r.v. such that E(X) = 3 and E (X2) = 13, use Cheby-

chev’s inequality to determine a lower bound for P (−2 < X < 8).(ANS: P ≥ 21

25
as

k = 2.5)

2 Standard distributions

Definition 2.1. Bernoulli distribution: A random variable X which takes two

values 0 and 1, with probabilities q and p respectively, i.e., P (X = 1) = p, P (X =

6
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0) = q, q = 1− p is called a Bernoulli variate and is said to have Bernoulli distribu-

tion.

Definition 2.2. Binomial distribution: Consider a sct of n independent Bernoul-

lian trials ( n being finite), in :vhich the probability ’ p ’ of success in any trial is

constant for each trial. Then q = 1−p, is the probability of failure in any trial. The

probability distribution of the number of successes, so,obtained is alled! the Binomial

probability distribution, for the obvious rason that the probabilities.

A random variable X is said to follow binomial distribution if it assumes only

non-negative values and its’probability mass function is given by

P (X = x) = p(x) =















(

n

x

)

pxq̇n−x; x = 0, 1, 2, . . . , n; q = 1− p

0, otherwise

The two independent constants n and p in the distribution, e known as the parame-

ters of the distribution. ’ n ’ is also, sometimes, known as the degree of the binoznial

distribution.

In symbol, we write X ∼ B(n, p).

Remark 2.3. Conditions for Binomial Distribution. We get the binomial

distribution under the following experimental-conditions.

(i) Each trial results in two mutually disjoint outcomes, termed as success and fail-

ure.

(ii) The number of trials ’ n ’ is finite.

(iii) The’trials are independent of each other.

(iv) The probability of success ’ p ’ is constant for each trial.

Applications of Binomial distribution. This distribution is applied to prob-

lems concerning : ( i ) Number of defectives in a sample from production line, (ii)

Estimation of reliability of systems, (iii) Number of rounds fired from a gun hitting

a target, (iii) Radar detection.

Theorem 2.4. Let X ∼ B(n, p).

• Mean of X = np.
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• Var of X = npq.

• Var ≤ mean.

• mgf of X is

MX(t) = E
(

etx
)

= ΣnCxp
xqn−xetx = ΣnCx

(

pet
)x

qn−x =
(

q + pet
)n

• skewness = (1− 2p)/
√

(npq), kurtosis = 3 + 1−6pq

npq

• Mode of X =







[(n+ 1)p] if (n+1)p is not an integer

(n+ 1)p& (n+ 1)p− 1 if (n+1)p is an integer

• If Y = n−X, Y ∼ B(n, q).

• pgf, PX(t) = (pt+ q)n

• characteristic function:

ϕX(t) = E
(

eit
)

=
n
∑

x=0

eitp(x) =
(

q + peit
)n

Theorem 2.5. (Sum of binomial with common p, is again binomial:) If

Xi, (i = 1, 2, . . . , k) are independent binomial variates with parameters (ni, p) , (i =

1, 2, . . . , k) then their sum
∑k

i=1
Xi ∼ B

(

∑k

i=1
ni, p

)

.

Theorem 2.6.

Problem 2.7. The m.g.f. of a r.v. X is
(

2

3
+ 1

3
et
)9
. Find mean and variance.

Hint: X ∼ B
(

n = 9, p = 1

3

)

.

Problem 2.8. Determine the binomial distribution for which mean = 2(variance)

andmean + variance = 3 . Also find P (X ≤ 3) .

Problem 2.9. Random variable X follows binomial distribution ’with parameters

n = 40 and p = 1

4
· Use Chebyhev’s inequality to find bounds for (i) P [|X − 10| <

8]; (ii)P [|X − 10| > 10]

( Ans. (i) 113/128 (lower bound), (ii) 3/40 (upper bound).)
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