
www.it-ebooks.info

http://www.it-ebooks.info/

Practical Data
Science Cookbook

89 hands-on recipes to help you complete real-world data
science projects in R and Python

Tony Ojeda

Sean Patrick Murphy

Benjamin Bengfort

Abhijit Dasgupta

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Practical Data Science Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1180914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-024-6

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Tony Ojeda

Sean Patrick Murphy

Benjamin Bengfort

Abhijit Dasgupta

Reviewers
Richard Heimann

Sarah Kelley

Liang Shi

Will Voorhees

Commissioning Editor
James Jones

Acquisition Editor
James Jones

Content Development Editor
Arvind Koul

Technical Editors
Pankaj Kadam

Sebastian Rodrigues

Copy Editors
Insiya Morbiwala

Sayanee Mukherjee

Stuti Srivastava

Project Coordinator
Priyanka Goel

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Kevin McGowan

Lucy Rowland

Indexers
Rekha Nair

Priya Sane

Graphics
Abhinash Sahu

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Tony Ojeda is an accomplished data scientist and entrepreneur, with expertise in business
process optimization and over a decade of experience creating and implementing innovative
data products and solutions. He has a Master's degree in Finance from Florida International
University and an MBA with concentrations in Strategy and Entrepreneurship from DePaul
University. He is the founder of District Data Labs, a cofounder of Data Community DC, and is
actively involved in promoting data science education through both organizations.

First and foremost, I'd like to thank my coauthors for the tireless work they
put in to make this book something we can all be proud to say we wrote
together. I hope to work on many more projects and achieve many great
things with you in the future.

I'd like to thank our reviewers, specifically Will Voorhees and Sarah Kelley,
for reading every single chapter of the book and providing excellent
feedback on each one. This book owes much of its quality to their great
advice and suggestions.

I'd also like to thank my family and friends for their support and
encouragement in just about everything I do.

Last, but certainly not least, I'd like to thank my fiancée and partner in
life, Nikki, for her patience, understanding, and willingness to stick with
me throughout all my ambitious undertakings, this book being just one of
them. I wouldn't dare take risks and experiment with nearly as many things
professionally if my personal life was not the stable, loving, supportive
environment she provides.

Sean Patrick Murphy spent 15 years as a senior scientist at The Johns Hopkins
University Applied Physics Laboratory, where he focused on machine learning, modeling
and simulation, signal processing, and high performance computing in the Cloud. Now, he
acts as an advisor and data consultant for companies in SF, NY, and DC. He completed his
graduation from The Johns Hopkins University and his MBA from the University of Oxford. He
currently co-organizes the Data Innovation DC meetup and cofounded the Data Science MD
meetup. He is also a board member and cofounder of Data Community DC.

www.it-ebooks.info

http://www.it-ebooks.info/

Benjamin Bengfort is an experienced data scientist and Python developer who has worked
in military, industry, and academia for the past 8 years. He is currently pursuing his PhD in
Computer Science at the University of Maryland, College Park, doing research in Metacognition
and Natural Language Processing. He holds a Master's degree in Computer Science from North
Dakota State University, where he taught undergraduate Computer Science courses. He is
also an adjunct faculty member at Georgetown University, where he teaches Data Science and
Analytics. Benjamin has been involved in two data science start-ups in the DC region: leveraging
large-scale machine learning and Big Data techniques across a variety of applications. He has a
deep appreciation for the combination of models and data for entrepreneurial effect, and he is
currently building one of these start-ups into a more mature organization.

I'd like to thank Will Voorhees for his tireless support in everything I've
been doing, even agreeing to review my technical writing. He made my
chapters understandable, and I'm thankful that he reads what I write. It's
been essential to my career and sanity to have a classmate, a colleague,
and a friend like him. I'd also like to thank my coauthors, Tony and Sean,
for working their butts off to make this book happen; it was a spectacular
effort on their part. I'd also like to thank Sarah Kelley for her input and
fresh take on the material; so far, she's gone on many adventures with us,
and I'm looking forward to the time when I get to review her books! Finally,
I'd especially like to thank my wife, Jaci, who puts up with a lot, especially
when I bite off more than I can chew and end up working late into the night.
Without her, I wouldn't be writing anything at all. She is an inspiration, and
one of the writers in my family, she is the one who students will be reading,
even a hundred years from now.

Abhijit Dasgupta is a data consultant working in the greater DC-Maryland-Virginia area,
with several years of experience in biomedical consulting, business analytics, bioinformatics,
and bioengineering consulting. He has a PhD in Biostatistics from the University of
Washington and over 40 collaborative peer-reviewed manuscripts, with strong interests in
bridging the statistics/machine-learning divide. He is always on the lookout for interesting and
challenging projects, and is an enthusiastic speaker and discussant on new and better ways
to look at and analyze data. He is a member of Data Community DC and a founding member
and co-organizer of Statistical Programming DC (formerly, R Users DC).

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Richard Heimann is a technical fellow and Chief Data Scientist at L-3 National Security
Solutions (NSS) (NYSE:LLL), and is also an EMC-certified data scientist with concentrations in
spatial statistics, data mining, and Big Data. Richard also leads the data science team at the
L-3 Data Tactics Business Unit. L-3 NSS and L-3 Data Tactics are both premier Big Data and
analytics service providers based in Washington DC and serve customers globally.

Richard is an adjunct professor at the University of Maryland, Baltimore County, where he
teaches Spatial Analysis and Statistical Reasoning. Additionally, he is an instructor at George
Mason University, teaching Human Terrain Analysis; he is also a selection committee member
for the 2014-2015 AAAS Big Data and Analytics Fellowship Program and member of the
WashingtonExec Big Data Council.

Richard has recently published a book titled Social Media Mining with R, Packt Publishing.
He recently supported DARPA, DHS, the US Army, and the Pentagon with analytical support.

Sarah Kelley is a junior Python developer and aspiring data scientist. She currently works
at a start-up in Bethesda, Maryland, where she spends most of her time on data ingestion
and wrangling. Sarah holds a Master's degree in Education from Seattle University. She is a
self-taught programmer who became interested in the field through her desire to inspire her
students to pursue careers in Mathematics, Science, and technology.

www.it-ebooks.info

http://www.it-ebooks.info/

Liang Shi received his PhD in Computer Science and a Master's degree in Statistics from
the University of Georgia in 2008 and 2006, respectively. His PhD study is on Machine
Learning and AI, mainly solving surrogate model-assisted optimization problems. After
graduation, he joined the Data Mining Research team at McAfee; his job was to detect
network threats through machine-learning approaches based on Big Data and cloud
computing platforms. He later joined Microsoft as a software engineer, and continued his
security research and development leveraged by machine-learning algorithms, basically
for online advertisement fraud detection on very large, real-time data scales. In 2012, he
rejoined McAfee (Intel) as a senior researcher, conducting network threat research, again
with the help of machine-learning and cloud computing techniques. Early this year, he joined
Pivotal as a senior data scientist; his work is mainly on data scientist projects with clients of
popular companies, mainly for IT and security data analytics. He is very familiar with statistical
and machine-learning modeling and theories, and he is proficient with many programming
languages and analytical tools. He has several journal- and conference-proceeding
publications, and he also published a book chapter.

Will Voorhees is a software developer with experience in all sorts of interesting things from
mobile app development and natural language processing to infrastructure security. After
teaching English in Austria and bootstrapping an education technology start-up, he moved
to the West Coast, joined a big tech company, and is now happily working on infrastructure
security software used by thousands of developers.

In his free time, Will enjoys reviewing technical books, watching movies, and convincing his
dog that she's a good girl, yes she is.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Preparing Your Data Science Environment	 7

Introduction	 7
Understanding the data science pipeline	 9
Installing R on Windows, Mac OS X, and Linux	 11
Installing libraries in R and RStudio	 14
Installing Python on Linux and Mac OS X	 17
Installing Python on Windows	 18
Installing the Python data stack on Mac OS X and Linux	 21
Installing extra Python packages	 24
Installing and using virtualenv	 26

Chapter 2: Driving Visual Analysis with Automobile Data (R)	 31
Introduction	 31
Acquiring automobile fuel efficiency data	 32
Preparing R for your first project	 34
Importing automobile fuel efficiency data into R	 35
Exploring and describing fuel efficiency data	 38
Analyzing automobile fuel efficiency over time	 43
Investigating the makes and models of automobiles	 54

Chapter 3: Simulating American Football Data (R)	 59
Introduction	 59
Acquiring and cleaning football data	 61
Analyzing and understanding football data	 65
Constructing indexes to measure offensive and defensive strength	 74
Simulating a single game with outcomes decided by calculations	 77
Simulating multiple games with outcomes decided by calculations	 81

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 4: Modeling Stock Market Data (R)	 89
Introduction	 89
Acquiring stock market data	 91
Summarizing the data	 93
Cleaning and exploring the data	 96
Generating relative valuations	 103
Screening stocks and analyzing historical prices	 109

Chapter 5: Visually Exploring Employment Data (R)	 117
Introduction	 118
Preparing for analysis	 119
Importing employment data into R	 121
Exploring the employment data	 123
Obtaining and merging additional data	 125
Adding geographical information	 129
Extracting state- and county-level wage and employment information	 133
Visualizing geographical distributions of pay	 136
Exploring where the jobs are, by industry	 140
Animating maps for a geospatial time series	 143
Benchmarking performance for some common tasks	 149

Chapter 6: Creating Application-oriented Analyses
Using Tax Data (Python)	 153

Introduction	 153
Preparing for the analysis of top incomes	 155
Importing and exploring the world's top incomes dataset	 156
Analyzing and visualizing the top income data of the US	 165
Furthering the analysis of the top income groups of the US	 174
Reporting with Jinja2	 179

Chapter 7: Driving Visual Analyses with Automobile Data (Python)	 187
Introduction	 187
Getting started with IPython	 188
Exploring IPython Notebook	 191
Preparing to analyze automobile fuel efficiencies	 196
Exploring and describing fuel efficiency data with Python	 199
Analyzing automobile fuel efficiency over time with Python	 202
Investigating the makes and models of automobiles with Python	 211

Chapter 8: Working with Social Graphs (Python)	 217
Introduction	 217
Preparing to work with social networks in Python	 220
Importing networks	 222

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Exploring subgraphs within a heroic network	 225
Finding strong ties	 230
Finding key players	 234
Exploring the characteristics of entire networks	 246
Clustering and community detection in social networks	 248
Visualizing graphs	 254

Chapter 9: Recommending Movies at Scale (Python)	 259
Introduction	 260
Modeling preference expressions	 261
Understanding the data	 263
Ingesting the movie review data	 266
Finding the highest-scoring movies	 270
Improving the movie-rating system	 273
Measuring the distance between users in the preference space	 276
Computing the correlation between users	 280
Finding the best critic for a user	 282
Predicting movie ratings for users	 285
Collaboratively filtering item by item	 288
Building a nonnegative matrix factorization model	 292
Loading the entire dataset into the memory	 295
Dumping the SVD-based model to the disk	 298
Training the SVD-based model	 300
Testing the SVD-based model	 303

Chapter 10: Harvesting and Geolocating Twitter Data (Python)	 307
Introduction	 308
Creating a Twitter application	 309
Understanding the Twitter API v1.1	 312
Determining your Twitter followers and friends	 317
Pulling Twitter user profiles	 320
Making requests without running afoul of Twitter's rate limits	 322
Storing JSON data to the disk	 323
Setting up MongoDB for storing Twitter data	 325
Storing user profiles in MongoDB using PyMongo	 327
Exploring the geographic information available in profiles	 330
Plotting geospatial data in Python	 333

Chapter 11: Optimizing Numerical Code with NumPy
and SciPy (Python)	 339

Introduction	 340
Understanding the optimization process	 341
Identifying common performance bottlenecks in code	 343

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Reading through the code	 346
Profiling Python code with the Unix time function	 349
Profiling Python code using built-in Python functions	 350
Profiling Python code using IPython's %timeit function	 352
Profiling Python code using line_profiler	 354
Plucking the low-hanging (optimization) fruit	 356
Testing the performance benefits of NumPy	 359
Rewriting simple functions with NumPy	 362
Optimizing the innermost loop with NumPy	 366

Index	 371

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
We live in the age of data. As increasing amounts are generated each year, the need to
analyze and create value from this asset is more important than ever. Companies that know
what to do with their data and how to do it well will have a competitive advantage over
companies that don't. Due to this, there will be increasing demand for people who possess
both the analytical and technical abilities to extract valuable insights from data and the
business acumen to create valuable and pragmatic solutions that put these insights to use.

This book provides multiple opportunities to learn how to create value from data through
a variety of projects that run the spectrum of types of contemporary data science projects.
Each chapter stands on its own, with step-by-step instructions that include screenshots, code
snippets, more detailed explanations where necessary, and with a focus on process and
practical application.

The goal of this book is to introduce you to the data science pipeline, show you how it applies
to a variety of different data science projects, and get you comfortable enough to apply it in
future to projects of your own. Along the way, you'll learn different analytical and programming
lessons, and the fact that you are working through an actual project while learning will help
cement these concepts and facilitate your understanding of them.

What this book covers
Chapter 1, Preparing Your Data Science Environment, introduces you to the data science
pipeline and helps you get your data science environment properly set up with instructions
for the Mac, Windows, and Linux operating systems.

Chapter 2, Driving Visual Analysis with Automobile Data (R), takes you through the process
of analyzing and visualizing automobile data to identify trends and patterns in fuel efficiency
over time.

Chapter 3, Simulating American Football Data (R), provides a fun and entertaining project
where you will analyze the relative offensive and defensive strengths of football teams and
simulate games, predicting which teams should win against other teams.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

Chapter 4, Modeling Stock Market Data (R), shows you how to build your own stock screener
and use moving averages to analyze historical stock prices.

Chapter 5, Visually Exploring Employment Data (R), shows you how to obtain employment and
earnings data from the Bureau of Labor Statistics and conduct geospatial analysis at different
levels with R.

Chapter 6, Creating Application-oriented Analyses Using Tax Data (Python), shows you how
to use Python to transition your analyses from one-off, custom efforts to reproducible and
production-ready code using income distribution data as the base for the project.

Chapter 7, Driving Visual Analyses with Automobile Data (Python), mirrors the automobile
data analyses and visualizations in Chapter 2, Driving Visual Analysis with Automobile Data
(R), but does so using the powerful programming language, Python.

Chapter 8, Working with Social Graphs (Python), shows you how to build, visualize, and
analyze a social network that consists of comic book character relationships.

Chapter 9, Recommending Movies at Scale (Python), walks you through building a movie
recommender system with Python.

Chapter 10, Harvesting and Geolocating Twitter Data (Python), shows you how to connect to
the Twitter API and plot the geographic information contained in profiles.

Chapter 11, Optimizing Numerical Code with NumPy and SciPy (Python), walks you through
how to optimize numerically intensive Python code to save you time and money when dealing
with large datasets.

What you need for this book
For this book, you will need a computer with access to the Internet and the ability to install the
open source software needed for the projects. The primary software we will be using consists
of the R and Python programming languages, with a myriad of freely available packages and
libraries. Installation instructions are available in the first chapter.

Who this book is for
This book is intended for aspiring data scientists who want to learn data science and numerical
programming concepts through hands-on, real-world projects. Whether you are brand new to
data science or a seasoned expert, you will benefit from learning the structure of data science
projects, the steps in the data science pipeline, and the programming examples presented
in this book. Since the book is formatted to walk you through the projects with examples and
explanations along the way, extensive prior programming experience is not required.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Next, you run the included setup.py script with the install flag."

A block of code is set as follows:

atvtype - type of alternative fuel or advanced technology
vehicle
barrels08 - annual petroleum consumption in barrels for
fuelType1 (1)
barrelsA08 - annual petroleum consumption in barrels for
fuelType2 (1)
charge120 - time to charge an electric vehicle in hours at
120 V
charge240 - time to charge an electric vehicle in hours at
240 V

Any command-line input or output is written as follows:

install.packages("lubridate")

install.packages("plyr")

install.packages("reshape2")

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Go to Tools in the menu bar
and select Install Packages …."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from: http://www.packtpub.com/sites/default/files/
downloads/0246OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1
Preparing Your Data

Science Environment

In this chapter, we will cover the following:

ff Understanding the data science pipeline

ff Installing R on Windows, Mac OS X, and Linux

ff Installing libraries in R and RStudio

ff Installing Python on Linux and Mac OS X

ff Installing Python on Windows

ff Installing the Python data stack on Mac OS X and Linux

ff Installing extra Python packages

ff Installing and using virtualenv

Introduction
A traditional cookbook contains culinary recipes of interest to the authors and helps readers
expand their repertoire of foods to prepare. Many might believe that the end product of a
recipe is the dish itself, and one can read this book much in the same way. Every chapter
guides the reader through the application of the stages of the data science pipeline to
different datasets with various goals. Also, just as in cooking, the final product can simply be
the analysis applied to a particular set.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

8

We hope that you will take a broader view, however. Data scientists learn by doing, ensuring
that every iteration and hypothesis improves the practioner's knowledge base. By taking
multiple datasets through the data science pipeline using two different programming
languages (R and Python), we hope that you will start to abstract out the analysis patterns,
see the bigger picture, and achieve a deeper understanding of this rather ambiguous field of
data science.

We also want you to know that, unlike culinary recipes, data science recipes are ambiguous.
When chefs begin a particular dish, they have a very clear picture in mind of what the finished
product will look like. For data scientists, the situation is often different. One does not always
know what the dataset in question will look like, and what might or might not be possible,
given the amount of time and resources. Recipes are essentially a way to dig into the data and
get started on the path towards asking the right questions to complete the best dish possible.

If you are from a statistical or mathematical background, the modeling techniques on display
might not excite you per se. Pay attention to how many of the recipes overcome practical issues
in the data science pipeline, such as loading large datasets and working with scalable tools to
adapting known techniques to create data applications, interactive graphics, and web pages
rather than reports and papers. We hope that these aspects will enhance your appreciation and
understanding of data science and apply good data science to your domains.

Practicing data scientists require a great number and diversity of tools to get the job done.
Data practitioners scrape, clean, visualize, model, and perform a million different tasks with a
wide array of tools. If you ask most people working with data, you will learn that the foremost
component in this toolset is the language used to perform the analysis and modeling of the
data. Identifying the best programming language for a particular task is akin to asking which
world religion is correct, just with slightly less bloodshed.

In this book, we split our attention between two highly regarded, yet very different, languages
used for data analysis—R and Python—and leave it up to you to make your own decision as
to which language you prefer. We will help you by dropping hints along the way as to the
suitability of each language for various tasks, and we'll compare and contrast similar analyses
done on the same dataset with each language.

When you learn new concepts and techniques, there is always the question of depth versus
breadth. Given a fixed amount of time and effort, should you work towards achieving
moderate proficiency in both R and Python, or should you go all in on a single language?
From our professional experiences, we strongly recommend that you aim to master one
language and have awareness of the other. Does that mean skipping chapters on a particular
language? Absolutely not! However, as you go through this book, pick one language and dig
deeper, looking not only to develop conversational ability, but also fluency.

To prepare for this chapter, ensure that you have sufficient bandwidth to download up to
several gigabytes of software in a reasonable amount of time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

Understanding the data science pipeline
Before we start installing any software, we need to understand the repeatable set of steps
that we will use for data analysis throughout the book.

How to do it...
The following five steps are key for data analysis:

1.	 Acquisition: The first step in the pipeline is to acquire the data from a variety of
sources, including relational databases, NoSQL and document stores, web scraping,
and distributed databases such as HDFS on a Hadoop platform, RESTful APIs, flat
files, or, and hopefully this is not the case, PDFs.

2.	 Exploration and understanding: The second step is to come to an understanding
of the data that you will use and how it was collected; this often requires significant
exploration.

3.	 Munging, wrangling, and manipulation: This step is often the single most time-
consuming and important step in the pipeline. Data is almost never in the needed
form for the desired analysis.

4.	 Analysis and modeling: This is the fun part where the data scientist gets to explore
the statistical relationships between the variables in the data and pulls out his or her
bag of machine learning tricks to cluster, categorize, or classify the data and create
predictive models to see into the future.

5.	 Communicating and operationalizing: At the end of the pipeline, we need to give the
data back in a compelling form and structure, sometimes to ourselves to inform the
next iteration, and sometimes to a completely different audience. The data products
produced can be a simple one-off report or a scalable web product that will be used
interactively by millions.

How it works...
Although the preceding list is a numbered list, don't assume that every project will strictly
adhere to this exact linear sequence. In fact, agile data scientists know that this process is
highly iterative. Often, data exploration informs how the data must be cleaned, which then
enables more exploration and deeper understanding. Which of these steps comes first often
depends on your initial familiarity with the data. If you work with the systems producing and
capturing the data every day, the initial data exploration and understanding stage might be
quite short, unless something is wrong with the production system. Conversely, if you are
handed a dataset with no background details, the data exploration and understanding stage
might require quite some time (and numerous non-programming steps, such as talking with
the system developers).

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

10

The following diagram shows the data science pipeline:

As you probably have heard or read by now, data munging or wrangling can often consume 80
percent or more of project time and resources. In a perfect world, we would always be given
perfect data. Unfortunately, this is never the case, and the number of data problems that you
will see is virtually infinite. Sometimes, a data dictionary might change or might be missing,
so understanding the field values is simply not possible. Some data fields may contain
garbage or values that have been switched with another field. An update to the web app that
passed testing might cause a little bug that prevents data from being collected, causing a few
hundred thousand rows to go missing. If it can go wrong, it probably did at some point; the
data you analyze is the sum total of all of these mistakes.

The last step, communication and operationalization, is absolutely critical, but with intricacies
that are not often fully appreciated. Note that the last step in the pipeline is not entitled data
visualization and does not revolve around simply creating something pretty and/or compelling,
which is a complex topic in itself. Instead, data visualizations will become a piece of a larger
story that we will weave together from and with data. Some go even further and say that the
end result is always an argument as there is no point in undertaking all of this effort unless
you are trying to persuade someone or some group of a particular point.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

Installing R on Windows, Mac OS X,
and Linux

Straight from the R project, "R is a language and environment for statistical computing and
graphics". And it has emerged as one of the de facto languages for statistical and data
analysis. For us, it will be the default tool that we use in the first half of the book.

Getting ready
Make sure you have a good broadband connection to the Internet as you may have to
download up to 200 MB of software.

How to do it...
Installing R is easy; use the following steps:

1.	 Go to Comprehensive R Archive Network (CRAN) and download the latest release of
R for your particular operating system:

�� For Windows, go to http://cran.r-project.org/bin/windows/
base/

�� For Linux, go to http://cran.us.r-project.org/bin/linux/

�� For Mac OS X, go to http://cran.us.r-project.org/bin/macosx/

As of February 2014, the latest release of R is Version 3.0.2 from September 2013.

2.	 Once downloaded, follow the excellent instructions provided by CRAN to install the
software on your respective platform. For both Windows and Mac, just double-click on
the downloaded install packages.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

12

3.	 With R installed, go ahead and launch it. You should see a window similar to what is
shown in the following screenshot:

4.	 You can stop at just downloading R, but you will miss out on the excellent Integrated
Development Environment (IDE) built for R, called RStudio. Visit http://www.
rstudio.com/ide/download/ to download RStudio, and follow the online
installation instructions.

5.	 Once installed, go ahead and run RStudio. The following screenshot shows one of our
author's customized RStudio configurations with the Console panel in the upper-left
corner, the editor in the upper-right corner, the current variable list in the lower-left
corner, and the current directory in the lower-right corner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

How it works...
R is an interpreted language that appeared in 1993 and is an implementation of the S
statistical programming language that emerged from Bell Labs in the '70s (S-PLUS is a
commercial implementation of S). R, sometimes referred to as GNU S due to its open source
license, is a domain-specific language (DSL) focused on statistical analysis and visualization.
While you can do many things with R, not seemingly related directly to statistical analysis
(including web scraping), it is still a domain-specific language and not intended for general-
purpose usage.

R is also supported by CRAN, the Comprehensive R Archive Network (http://cran.r-
project.org/). CRAN contains an accessible archive of previous versions of R, allowing
for analyses depending on older versions of the software to be reproduced. Further, CRAN
contains hundreds of freely downloaded software packages greatly extending the capability
of R. In fact, R has become the default development platform for multiple academic
fields, including statistics, resulting in the latest and greatest statistical algorithms being
implemented first in R.

RStudio (http://www.rstudio.com/) is available under the GNU Affero General Public
License v3 and is open source and free to use. RStudio, Inc., the company, offers additional
tools and services for R as well as commercial support.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

14

See also
ff Refer to the Getting Started with R article at https://support.rstudio.com/

hc/en-us/articles/201141096-Getting-Started-with-R

ff Visit the home page for RStudio at http://www.rstudio.com/

ff Refer to the Stages in the Evolution of S article at http://cm.bell-labs.com/
cm/ms/departments/sia/S/history.html

ff Refer to the A Brief History of S PS file at http://cm.bell-labs.com/stat/
doc/94.11.ps

Installing libraries in R and RStudio
R has an incredible number of libraries that add to its capabilities. In fact, R has become the
default language for many college and university statistics departments across the country.
Thus, R is often the language that will get the first implementation of newly developed
statistical algorithms and techniques. Luckily, installing additional libraries is easy, as you will
see in the following sections.

Getting ready
As long as you have R or RStudio installed, you should be ready to go.

How to do it...
R makes installing additional packages simple:

1.	 Launch the R interactive environment or, preferably, RStudio.

2.	 Let's install ggplot2. Type the following command, and then press the Enter key:
install.packages("ggplot2")

Note that for the remainder of the book, it is assumed that when we specify
entering a line of text, it is implicitly followed by hitting the Return or Enter
key on the keyboard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

3.	 You should now see text similar to the following as you scroll down the screen:
trying URL 'http://cran.rstudio.com/bin/macosx/contrib/3.0/
ggplot2_0.9.3.1.tgz'

Content type 'application/x-gzip' length 2650041 bytes (2.5
Mb)

opened URL

==

downloaded 2.5 Mb

The downloaded binary packages are in

/var/folders/db/z54jmrxn4y9bjtv8zn_1zlb00000gn/T//Rtmpw0N1dA/
downloaded_packages

4.	 You might have noticed that you need to know the exact name, in this case,
ggplot2, of the package you wish to install. Visit http://cran.us.r-project.
org/web/packages/available_packages_by_name.html to make sure you
have the correct name.

5.	 RStudio provides a simpler mechanism to install packages. Open up RStudio if you
haven't already done so.

6.	 Go to Tools in the menu bar and select Install Packages …. A new window will pop
up, as shown in the following screenshot:

7.	 As soon as you start typing in the Packages field, RStudio will show you a list of
possible packages. The autocomplete feature of this field simplifies the installation of
libraries. Better yet, if there is a similarly named library that is related, or an earlier or
newer version of the library with the same first few letters of the name, you will see it.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

16

8.	 Let's install a few more packages that we highly recommend. At the R prompt, type
the following commands:

install.packages("lubridate")

install.packages("plyr")

install.packages("reshape2")

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

How it works...
Whether you use RStudio's graphical interface or the install.packages command, you do
the same thing. You tell R to search for the appropriate library built for your particular version
of R. When you issue the command, R reports back the URL of the location where it has found
a match for the library in CRAN and the location of the binary packages after download.

There's more...
R's community is one of its strengths, and we would be remiss if we didn't briefly mention
two things. R-bloggers is a website that aggregates R-related news and tutorials from over
450 different blogs. If you have a few questions on R, this is a great place to look for more
information. The Stack Overflow site (http://www.stackoverflow.com) is a great place
to ask questions and find answers on R using the tag rstats.

Finally, as your prowess with R grows, you might consider building an R package that others
can use. Giving an in-depth tutorial on the library building process is beyond the scope of this
book, but keep in mind that community submissions form the heart of the R movement.

See also
ff Refer to the 10 R packages I wish I knew about earlier article at http://blog.

yhathq.com/posts/10-R-packages-I-wish-I-knew-about-earlier.html

ff Visit the R-bloggers website at http://www.r-bloggers.com/

ff Refer to the Creating R Packages: A Tutorial at http://cran.r-project.org/
doc/contrib/Leisch-CreatingPackages.pdf

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

ff Refer to the Top 100 R packages for 2013 (Jan-May)! article at http://www.r-
bloggers.com/top-100-r-packages-for-2013-jan-may/

ff Visit the Learning R blog website at http://learnr.wordpress.com

Installing Python on Linux and Mac OS X
Luckily for us, Python comes preinstalled on most versions of Mac OS X and many flavors of
Linux (both the latest versions of Ubuntu and Fedora come with Python 2.7 or later versions
out of the box). Thus, we really don't have a lot to do for this recipe, except check whether
everything is installed.

For this book, we will work with Python 2.7.x and not Version 3. Thus, if Python 3 is your
default installed Python, you will have to make sure to use Python 2.7.

Getting ready
Just make sure you have a good Internet connection, just in case we need to install anything.

How to do it...
Perform the following steps in the command prompt:

1.	 Open a new terminal window and type the following command:
which python

2.	 If you have Python installed, you should see something like this:
/usr/bin/python

3.	 Next, check which version you are running with the following command:
python --version

On my MacBook Air, I see the following:
Python 2.7.5

How it works...
If you are planning on using OS X, you might want to set up a separate Python distribution
on your machine for a few reasons. First, each time Apple upgrades your OS, it can and
will obliterate your installed Python packages, forcing a reinstall of all previously installed
packages. Secondly, new versions of Python will be released more frequently than Apple will
update the Python distribution included with OS X. Thus, if you want to stay on the bleeding
edge of Python releases, it is best to install your own distribution. Finally, Apple's Python
release is slightly different from the official Python release and is located in a nonstandard
location on the hard drive.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

18

There are a number of tutorials available online to help walk you through the installation and
setup of a separate Python distribution on your Mac. We recommend an excellent guide,
available at http://docs.python-guide.org/en/latest/starting/install/osx/,
to install a separate Python distribution on your Mac.

There's more...
One of the confusing aspects of Python is that the language is currently straddled between
two versions. The Python 3.0 release is a fundamentally different version of the language that
came out around Python Version 2.5. However, because Python is used in many operating
systems (hence, it is installed by default on OS X and Linux), the Python Software Foundation
decided to gradually upgrade the standard library to Version 3 to maintain backwards
compatibility. Starting with Version 2.6, the Python 2.x versions have become increasingly like
Version 3. The latest version is Python 3.4 and many expect a transition to happen in Python
3.5. Don't worry about learning the specific differences between Python 2.x and 3.x, although
this book will focus primarily on the lastest 2.x version. Further, we have ensured that the
code in this book is portable between Python 2.x and 3.x with some minor differences.

See also
ff Refer to the Python For Beginners guide at http://www.python.org/about/

gettingstarted/

ff Refer to The Hitchhiker's Guide to Python at http://docs.python-guide.org/
en/latest/

ff Refer to the Python Development Environment on Mac OS X Mavericks 10.9 article at
http://hackercodex.com/guide/python-development-environment-on-
mac-osx/

Installing Python on Windows
Installing Python on Windows systems is complicated, leaving you with three different
options. First, you can choose to use the standard Windows release with executable installer
from Python.org available at http://www.python.org/download/releases/. The
potential problem with this route is that the directory structure, and therefore, the paths for
configuration and settings will be different from the standard Python installation. As a result,
each Python package that was installed (and there will be many) might have path problems.
Further, most tutorials and answers online won't apply to a Windows environment, and
you will be left to your own devices to figure out problems. We have witnessed countless
tutorial-ending problems for students who install Python on Windows in this way. Unless you
are an expert, we recommend that you do not choose this option.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

The second option is to install a prebundled Python distribution that contains all scientific,
numeric, and data-related packages in a single install. There are two suitable bundles,
one from Enthought and another from Continuum Analytics. Enthought offers the Canopy
distribution of Python 2.7.6 in both 32- and 64-bit versions for Windows. The free version
of the software, Canopy Express, comes with more than 50 Python packages preconfigured
so that they work straight out of the box, including pandas, NumPy, SciPy, IPython, and
matplotlib, which should be sufficient for the purposes of this book. Canopy Express also
comes with its own IDE reminiscent of MATLAB or RStudio.

Continuum Analytics offers Anaconda, a completely free (even for commercial work)
distribution of Python 2.6, 2.7, and 3.3, which contains over 100 Python packages for
science, math, engineering, and data analysis. Anaconda contains NumPy, SciPy, pandas,
IPython, matplotlib, and much more, and it should be more than sufficient for the work that we
will do in this book.

The third, and best option for purists, is to run a virtual Linux machine within Windows using
the free VirtualBox (https://www.virtualbox.org/wiki/Downloads) from Oracle
software. This will allow you to run Python in whatever version of Linux you prefer. The
downsides to this approach are that virtual machines tend to run a bit slower than native
software, and you will have to get used to navigating via the Linux command line, a skill that
any practicing data scientist should have.

How to do it...
Perform the following steps to install Python using VirtualBox:

1.	 If you choose to run Python in a virtual Linux machine, visit https://www.
virtualbox.org/wiki/Downloads to download VirtualBox from Oracle Software
for free.

2.	 Follow the detailed install instructions for Windows at https://www.virtualbox.
org/manual/ch01.html#intro-installing.

3.	 Continue with the instructions and walk through the sections entitled 1.6
Starting VirtualBox, 1.7 Creating your first virtual machine, and 1.8 Running
your virtual machine.

4.	 Once your virtual machine is running, head over to the Installing Python on Linux and
Mac OS X recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

20

If you want to install Continuum Analytics' Anaconda distribution locally instead, follow
these steps:

1.	 If you choose to install Continuum Analytics' Anaconda distribution, go to http://
continuum.io/downloads and select either the 64- or 32-bit version of the
software (the 64-bit version is preferable) under Windows installers.

2.	 Follow the detailed install instructions for Windows at http://docs.continuum.
io/anaconda/install.html.

How it works...
For many readers, choosing between a prepackaged Python distribution and running a virtual
machine might be easy based on their experience. If you are wrestling with this decision, keep
reading. If you come from a Windows-only background and/or don't have much experience
with a *nix command line, the virtual machine-based route will be challenging and will force
you to expand your skill set greatly. This takes effort and a significant amount of tenacity,
both useful for data science in general (trust us on this one). If you have the time and/or
knowledge, running everything in a virtual machine will move you further down the path to
becoming a data scientist and, most likely, make your code easier to deploy in production
environments. If not, you can choose the backup plan and use the Anaconda distribution,
as many people choose to do.

For the remainder of this book, we will always include Linux/Mac OS X-oriented Python
package install instructions first and supplementary Anaconda install instructions second.
Thus, for Windows users, we will assume you have either gone the route of the Linux virtual
machine or used the Anaconda distribution. If you choose to go down another path, we
applaud your sense of adventure and wish you the best of luck! Let Google be with you.

See also
ff Refer to the Anaconda web page at https://store.continuum.io/cshop/

anaconda/

ff Visit the Enthought Canopy Express web page at https://www.enthought.com/
canopy-express/

ff Visit the VirtualBox website at https://www.virtualbox.org/

ff Various installers of Python packages for Windows at http://www.lfd.uci.
edu/~gohlke/pythonlibs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

Installing the Python data stack on Mac OS
X and Linux

While Python is often said to have "batteries included", there are a few key libraries that
really take Python's ability to work with data to another level. In this recipe, we will install
what is sometimes called the SciPy stack, which includes NumPy, SciPy, pandas, matplotlib,
and IPython.

Getting ready
This recipe assumes that you have a standard Python installed.

If, in the previous section, you decided to install the Anaconda distribution
(or another distribution of Python with the needed libraries included), you
can skip this recipe.

To check whether you have a particular Python package installed, start up your Python
interpreter and try to import the package. If successful, the package is available on your
machine. Also, you will probably need root access to your machine via the sudo command.

How to do it...
The following steps will allow you to install the Python data stack on Linux:

1.	 When installing this stack on Linux, you must know which distribution of Linux you are
using. The flavor of Linux usually determines the package management system that
you will be using, and the options include apt-get, yum, and rpm.

2.	 Open your browser and navigate to http://www.scipy.org/install.html,
which contains detailed instructions for most platforms.

These instructions may change and should supersede the instructions offered here,
if different.

3.	 Open up a shell.

4.	 If you are using Ubuntu or Debian, type the following:
sudo apt-get install build-essential python-dev python-
setuptools python-numpy python-scipy python-matplotlib ipython
ipython-notebook python-pandas python-sympy python-nose

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

22

5.	 If you are using Fedora, type the following:
sudo yum install numpy scipy python-matplotlib ipython python-
pandas sympy python-nose

You have several options to install the Python data stack on your Macintosh running OS X.
These are:

ff The first option is to download prebuilt installers (.dmg) for each tool, and install
them as you would any other Mac application (this is recommended).

ff The second option is if you have MacPorts, a command line-based system to
install software, available on your system. You will also likely need XCode with the
command-line tools already installed. If so, you can enter:
sudo port install py27-numpy py27-scipy py27-matplotlib py27-
ipython +notebook py27-pandas py27-sympy py27-nose

ff As the third option, Chris Fonnesbeck provides a bundled way to install the stack
on the Mac that is tested and covers all the packages we will use here. Refer to
http://fonnesbeck.github.io/ScipySuperpack.

All the preceding options will take time as a large number of files will be installed on
your system.

How it works...
Installing the SciPy stack has been challenging historically due to compilation dependencies,
including the need for Fortran. Thus, we don't recommend that you compile and install from
source code, unless you feel comfortable doing such things.

Now, the better question is, what did you just install? We installed the latest versions of
NumPy, SciPy, matplotlib, IPython, IPython Notebook, pandas, SymPy, and nose. The following
are their descriptions:

ff SciPy: This is a Python-based ecosystem of open source software for mathematics,
science, and engineering and includes a number of useful libraries for machine
learning, scientific computing, and modeling.

ff NumPy: This is the foundational Python package providing numerical computation in
Python, which is C-like and incredibly fast, particularly when using multidimensional
arrays and linear algebra operations. NumPy is the reason that Python can do
efficient, large-scale numerical computation that other interpreted or scripting
languages cannot do.

ff matplotlib: This is a well-established and extensive 2D plotting library for Python that
will be familiar to MATLAB users.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

ff IPython: This offers a rich and powerful interactive shell for Python. It is a
replacement for the standard Python Read-Eval-Print Loop (REPL), among many
other tools.

ff IPython Notebook: This offers a browser-based tool to perform and record work done
in Python with support for code, formatted text, markdown, graphs, images, sounds,
movies, and mathematical expressions.

ff pandas: This provides a robust data frame object and many additional tools to make
traditional data and statistical analysis fast and easy.

ff nose: This is a test harness that extends the unit testing framework in the Python
standard library.

There's more...
We will discuss the various packages in greater detail in the chapter in which they are
introduced. However, we would be remiss if we did not at least mention the Python IDEs. In
general, we recommend using your favorite programming text editor in place of a full-blown
Python IDE. This can include the open source Atom from GitHub, the excellent Sublime Text
editor, or TextMate, a favorite of the Ruby crowd. Vim and Emacs are both excellent choices
not only because of their incredible power but also because they can easily be used to edit
files on a remote server, a common task for the data scientist. Each of these editors is highly
configurable with plugins that can handle code completion, highlighting, linting, and more. If
you must have an IDE, take a look at PyCharm (the community edition is free) from the IDE
wizards at JetBrains, Spyder, and Ninja-IDE. You will find that most Python IDEs are better
suited for web development as opposed to data work.

See also
ff For more information on pandas, refer to the Python Data Analysis Library article at

http://pandas.pydata.org/

ff Visit the NumPy website at http://www.numpy.org/

ff Visit the SciPy website at http://www.scipy.org/

ff Visit the matplotlib website at http://matplotlib.org/

ff Visit the IPython website at http://ipython.org/

ff Refer the History of SciPy article at http://wiki.scipy.org/History_of_
SciPy

ff Visit the MacPorts home page at http://www.macports.org/

ff Visit the XCode web page at https://developer.apple.com/xcode/
features/

ff Visit the XCode download page at https://developer.apple.com/xcode/
downloads/

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

24

Installing extra Python packages
There are a few additional Python libraries that you will need throughout this book. Just as R
provides a central repository for community-built packages, so does Python in the form of the
Python Package Index (PyPI). As of August 28, 2014, there were 48,054 packages in PyPI.

Getting ready
A reasonable Internet connection is all that is needed for this recipe. Unless otherwise
specified, these directions assume that you are using the default Python distribution that
came with your system, and not Anaconda.

How to do it...
The following steps will show you how to download a Python package and install it from the
command line:

1.	 Download the source code for the package in the place you like to keep
your downloads.

2.	 Unzip the package.

3.	 Open a terminal window.

4.	 Navigate to the base directory of the source code.

5.	 Type in the following command:
python setup.py install

6.	 If you need root access, type in the following command:
sudo python setup.py install

To use pip, the contemporary and easiest way to install Python packages, follow these steps:

1.	 First, let's check whether you have pip already installed by opening a terminal and
launching the Python interpreter. At the interpreter, type:
>>>import pip

2.	 If you don't get an error, you have pip installed and can move on to step 5. If you see
an error, let's quickly install pip.

3.	 Download the get-pip.py file from https://raw.github.com/pypa/pip/
master/contrib/get-pip.py onto your machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

4.	 Open a terminal window, navigate to the downloaded file, and type:
python get-pip.py

Alternatively, you can type in the following command:
sudo python get-pip.py

5.	 Once pip is installed, make sure you are at the system command prompt.

6.	 If you are using the default system distribution of Python, type in the following:
pip install networkx

Alternatively, you can type in the following command:
sudo pip install networkx

7.	 If you are using the Anaconda distribution, type in the following command:
conda install networkx

8.	 Now, let's try to install another package, ggplot. Regardless of your distribution,
type in the following command:

pip install ggplot

Alternatively, you can type in the following command:
sudo pip install ggplot

How it works...
You have at least two options to install Python packages. In the preceding "old fashioned"
way, you download the source code and unpack it on your local computer. Next, you run the
included setup.py script with the install flag. If you want, you can open the setup.py
script in a text editor and take a more detailed look at exactly what the script is doing. You
might need the sudo command, depending on the current user's system privileges.

As the second option, we leverage the pip installer, which automatically grabs the package
from the remote repository and installs it to your local machine for use by the system-level
Python installation. This is the preferred method, when available.

There's more...
pip is capable, so we suggest taking a look at the user guide online. Pay special attention
to the very useful pip freeze > requirements.txt functionality so that you can
communicate about external dependencies with your colleagues.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

26

Finally, conda is the package manager and pip replacement for the Anaconda Python
distribution or, in the words of its home page, "a cross-platform, Python-agnostic binary
package manager". Conda has some very lofty aspirations that transcend the Python
language. If you are using Anaconda, we encourage you to read further on what conda
can do and use it, and not pip, as your default package manager.

See also
ff Refer to the pip User Guide at http://www.pip-installer.org/en/latest/

user_guide.html

ff Visit the Conda home page at http://conda.pydata.org

ff Refer to the Conda blog posts from Continuum Blog at http://www.continuum.
io/blog/conda

Installing and using virtualenv
virtualenv is a transformative Python tool. Once you start using it, you will never look back.
virtualenv creates a local environment with its own Python distribution installed. Once this
environment is activated from the shell, you can easily install packages using pip install
into the new local Python.

At first, this might sound strange. Why would anyone want to do this? Not only does this help
you handle the issue of package dependencies and versions in Python but also allows you
to experiment rapidly without breaking anything important. Imagine that you build a web
application that requires Version 0.8 of the awesome_template library, but then your new
data product needs the awesome_template library Version 1.2. What do you do? With
virtualenv, you can have both.

As another use case, what happens if you don't have admin privileges on a particular
machine? You can't install the packages using sudo pip install required for your
analysis so what do you do? If you use virtualenv, it doesn't matter.

Virtual environments are development tools that software developers use to collaborate
effectively. Environments ensure that the software runs on different computers (for example,
from production to development servers) with varying dependencies. The environment
also alerts other developers to the needs of the software under development. Python's
virtualenv ensures that the software created is in its own holistic environment, can be tested
independently, and built collaboratively.

Getting ready
Assuming you have completed the previous recipe, you are ready to go for this one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

How to do it...
Install and test the virtual environment using the following steps:

1.	 Open a command-line shell and type in the following command:
pip install virtualenv

Alternatively, you can type in the following command:
sudo pip install virtualenv

2.	 Once installed, type virtualenv in the command window, and you should be
greeted with the information shown in the following screenshot:

3.	 Create a temporary directory and change location to this directory using the following
commands:
mkdir temp

cd temp

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

28

4.	 From within the directory, create the first virtual environment named venv:
virtualenv venv

5.	 You should see text similar to the following:
New python executable in venv/bin/python

Installing setuptools, pip...done.

6.	 The new local Python distribution is now available. To use it, we need to activate venv
using the following command:
source ./venv/bin/activate

7.	 The activated script is not executable and must be activated using the source
command. Also, note that your shell's command prompt has probably changed
and is prefixed with venv to indicate that you are now working in your new
virtual environment.

8.	 To check this fact, use which to see the location of Python, as follows:
which python

You should see the following output:
/path/to/your/temp/venv/bin/python

So, when you type python once your virtual environment is activated, you will run the
local Python.

9.	 Next, install something by typing the following:
pip install flask

Flask is a micro-web framework written in Python; the preceding command will install
a number of packages that Flask uses.

10.	 Finally, we demonstrate the versioning power that virtual environment and pip offer,
as follows:
pip freeze > requirements.txt

cat requirements.txt

This should produce the following output:

Flask==0.10.1

Jinja2==2.7.2

MarkupSafe==0.19

Werkzeug==0.9.4

itsdangerous==0.23

wsgiref==0.1.2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

11.	 Note that not only the name of each package is captured, but also the exact version
number. The beauty of this requirements.txt file is that if we have a new virtual
environment, we can simply issue the following command to install each of the
specified versions of the listed Python packages:
pip install -r requirements.txt

12.	 To deactivate your virtual environment, simply type the following at the shell prompt:
deactivate

How it works...
virtualenv creates its own virtual environment with its own installation directories that operate
independently from the default system environment. This allows you to try out new libraries
without polluting your system-level Python distribution. Further, if you have an application that
just works and want to leave it alone, you can do so by making sure the application has its
own virtualenv.

There's more...
virtualenv is a fantastic tool, one that will prove invaluable to any Python programmer.
However, we wish to offer a note of caution. Python provides many tools that connect to
C-shared objects in order to improve performance. Therefore, installing certain Python
packages, such as NumPy and SciPy, into your virtual environment may require external
dependencies to be compiled and installed, which are system specific. Even when successful,
these compilations can be tedious, which is one of the reasons for maintaining a virtual
environment. Worse, missing dependencies will cause compilations to fail, producing errors
that require you to troubleshoot alien error messages, dated make files, and complex
dependency chains. This can be daunting to even the most veteran data scientist.

A quick solution is to use a package manager to install complex libraries into the system
environment (aptitude or Yum for Linux, Homebrew or MacPorts for OS X, and Windows will
generally already have compiled installers). These tools use precompiled forms of the third-
party packages. Once you have these Python packages installed in your system environment,
you can use the --system-site-packages flag when initializing a virtualenv. This flag tells
the virtualenv tool to use the system site packages already installed and circumvents the
need for an additional installation that will require compilation. In order to nominate packages
particular to your environment that might already be in the system (for example, when you
wish to use a newer version of a package), use pip install –I to install dependencies
into virtualenv and ignore the global packages. This technique works best when you only
install large-scale packages on your system, but use virtualenv for other types of development.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing Your Data Science Environment

30

For the rest of the book, we will assume that you are using a virtualenv and have the tools
mentioned in this chapter ready to go. Therefore, we won't enforce or discuss the use of
virtual environments in much detail. Just consider the virtual environment as a safety net
that will allow you to perform the recipes listed in this book in isolation.

See also
ff Read an introduction to virtualenv at http://www.virtualenv.org/en/

latest/virtualenv.html

ff Explore virtualenvwrapper at http://virtualenvwrapper.readthedocs.org/
en/latest/

ff Explore virtualenv at https://pypi.python.org/pypi/virtualenv

www.it-ebooks.info

http://www.it-ebooks.info/

2
Driving Visual
Analysis with

Automobile Data (R)

In this chapter, we will cover the following:

ff Acquiring automobile fuel efficiency data

ff Preparing R for your first project

ff Importing automobile fuel efficiency data into R

ff Exploring and describing fuel efficiency data

ff Analyzing automobile fuel efficiency over time

ff Investigating the makes and models of automobiles

Introduction
The first project we will introduce in this book is an analysis of automobile fuel economy data.
The primary tool that we will use to analyze this dataset is the R statistical programming
language. R is often referred to as the lingua franca of data science, as it is currently the most
popular language for statistics and data analysis. As you'll see from the examples in the first
half of this book, R is an excellent tool for data manipulation, analysis, modeling, visualization,
and creating useful scripts to get analytical tasks done.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

32

The recipes in this chapter will roughly follow these five steps in the data science pipeline:

ff Acquisition

ff Exploration and understanding

ff Munging, wrangling, and manipulation

ff Analysis and modeling

ff Communication and operationalization

Process-wise, the backbone of data science is the data science pipeline, and in order to get
good at data science, you need to gain experience going through this process while swapping
various tools and methods along the way so that you always use the ones that are appropriate
for the dataset you are analyzing.

The goal of this chapter is to guide you through an analysis project on automobile fuel
efficiencies via step-by-step examples that you can learn from and apply to other datasets and
analysis projects in the future. Think of this chapter as a warm-up for the longer and more
challenging chapters to come.

Acquiring automobile fuel efficiency data
Every data science project starts with data and this chapter is no different. For this recipe,
we will dive into a dataset that contains fuel efficiency performance metrics, measured in
miles per gallon (MPG) over time, for most makes and models of automobiles available
in the U.S. since 1984. This data is courtesy of the U.S. Department of Energy and the US
Environmental Protection Agency. In addition to fuel efficiency data, the dataset also contains
several features and attributes of the automobiles listed, thereby providing the opportunity
to summarize and group data to determine which groups tend to have better fuel efficiency
historically and how this has changed over the years. The latest version of the dataset is
available at http://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip, and
information about the variables in the dataset can be found at http://www.fueleconomy.
gov/feg/ws/index.shtml#vehicle. The data was last updated on December 4, 2013
and was downloaded on December 8, 2013.

We recommend that you use the copy of the data set provided with the code
for this book to ensure that the results described in this chapter match what
your efforts produce.

Getting ready
To complete this recipe, you will need a computer with access to the Internet and a text editor
of your choice.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

33

How to do it...
Perform the following simple steps to acquire the data needed for the rest of the chapter:

1.	 Download the dataset from http://www.fueleconomy.gov/feg/epadata/
vehicles.csv.zip.

2.	 Unzip vehicles.csv with the decompression tool of your choice and move it to your
working code directory.

3.	 Take a moment and open the unzipped vehicles.csv file with Microsoft Excel,
Google Spreadsheet, or a simple text editor. Comma-separated value (csv) files are
very convenient to work with as they can be edited and viewed with very basic, freely
available tools. With the file open, scroll through some of the data and get a sense of
what you will be working with.

4.	 Navigate to http://www.fueleconomy.gov/feg/ws/index.shtml#vehicle.

5.	 Select and copy all the text below the vehicle heading under Data Description, and
paste it into a text file. Do not include the emissions heading. Save this file in your
working directory as varlabels.txt. The first five lines of the file are as follows:
atvtype - type of alternative fuel or advanced technology
vehicle
barrels08 - annual petroleum consumption in barrels for
fuelType1 (1)
barrelsA08 - annual petroleum consumption in barrels for
fuelType2 (1)
charge120 - time to charge an electric vehicle in hours at
120 V
charge240 - time to charge an electric vehicle in hours at
240 V

Note that this file is provided for your convenience in the repository containing
the chapter's code.

How it works…
There isn't much to explain in this first simple recipe, but note that we are starting off
relatively easily here. In many data science projects, you will not be able to access and view
the data so easily.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

34

Preparing R for your first project
For the following recipes, you will need the R statistical programming language installed on
your computer (either the base R or RStudio, but the authors strongly recommend using the
excellent and free RStudio) and the automobile fuel efficiency dataset. This quick recipe will
help you ensure that you have everything you will need to complete this analysis project.

Getting ready
You will need an Internet connection to complete this recipe, and we assume that you
have installed RStudio for your particular platform, based on the instructions in the
previous chapter.

How to do it...
If you are using RStudio, the following three steps will get you ready to roll:

1.	 Launch RStudio on your computer.

2.	 At the R console prompt, install the two R packages needed for this project:
install.packages("plyr")

install.packages("ggplot2")

install.packages("reshape2")

3.	 Load the R packages, as follows:

library(plyr)

library(ggplot2)

library(reshape2)

How it works...
R's strength comes from the community that has developed around the language and the
packages that have been created and made available by the ones in the community. There
are currently over 4,000 packages and libraries that you can import and utilize to make your
data analysis tasks much easier.

Dr. Hadley Wickham is a notable member of the R community and has produced a large
number of highly regarded and often-used R packages. In this chapter, you will primarily use
two of his biggest hits, plyr and ggplot2 and a third package called reshape2. Plyr will
be used to apply the split-apply-combine data analysis pattern, explained later in this chapter,
to our dataset and ggplot2 will make complex data visualizations significantly easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

See also
ff The R Project for Statistical Computing web page at

http://www.r-project.org/

ff Visit the RStudio home page at http://www.rstudio.com/

ff Refer to the R Tutorial at http://www.cyclismo.org/tutorial/R/

ff A comprehensive guide to R at http://www.statmethods.net/about/
sitemap.html

ff Refer to the plyr reference manual at http://cran.r-project.org/web/
packages/plyr/plyr.pdf

ff Refer to the ggplot2 reference manual at http://cran.r-project.org/web/
packages/ggplot2/ggplot2.pdf

ff Visit Dr. Wickham's home page (http://had.co.nz/)

Importing automobile fuel efficiency
data into R

Once you have downloaded and installed everything in the previous recipe, you can import
the dataset into R to start doing some preliminary analysis and get a sense of what the data
looks like.

Getting ready
Much of the analysis in this chapter is cumulative, and the efforts of the previous recipes will
be used for subsequent recipes. Thus, if you completed the previous recipe, you should have
everything you need to continue.

How to do it...
The following steps will walk you through the initial import of the data into the R environment:

1.	 First, set the working directory to the location where we saved the vehicles.csv.
zip file:
setwd("path")

Substitute the path for the actual directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

36

2.	 We can load the data directly from compressed (ZIP) files, as long as you know the
filename of the file inside the ZIP archive that you want to load:
vehicles <- read.csv(unz("vehicles.csv.zip", "vehicles.csv"),
stringsAsFactors = F)

3.	 To see whether this worked, let's display the first few rows of data using the head
command:
head(vehicles)

You should see the first few rows of the dataset printed on your screen.

Note that we could have used the tail command, which would have
displayed the last few rows of the data frame instead of the first few rows.

4.	 The labels command gives the variable labels for the vehicles.csv file. Note
that we use labels, since labels is a function in R. A quick look at the file shows
that the variable names and their explanations are separated by -. So, we will try to
read the file using - as the separator:
labels <- read.table("varlabels.txt", sep = "-", header =
FALSE)

Error: line 11 did not have 2 elements

5.	 This doesn't work! A closer look at the error shows that in line 11 of the data file, there
are two - symbols, and it thus gets broken into three parts rather than two, unlike the
other rows. We need to change our file-reading approach to ignore hyphenated words:
labels <- do.call(rbind, strsplit(readLines("varlabels.txt"),
" - "))

6.	 To check whether it works, we use the head function again:
head(labels)

 [,1] [,2]

[1,] "atvtype" "type of alternative fuel or advanced
technology vehicle"

[2,] "barrels08" "annual petroleum consumption in barrels for
fuelType1 (1)"

[3,] "barrelsA08" "annual petroleum consumption in barrels for
fuelType2 (1)"

[4,] "charge120" "time to charge an electric vehicle in hours
at 120 V"

[5,] "charge240" "time to charge an electric vehicle in hours
at 240 V"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

How it works...
Let's break down the last complex statement in step 5, piece-by-piece, starting from the
innermost portion and working outward.

First, let's read the file line by line:

x <- readLines("varlabels.txt")

Each line needs to be split at the string -. The spaces are important, so we don't split
hyphenated words (such as in line 11). This results in each line split into two parts as a
vector of strings, and the vectors stored in a single list:

y <- strsplit(x, " - ")

Now, we stack these vectors together to make a matrix of strings, where the first column
is the variable name and the second column is the description of the variable:

labels <- do.call(rbind, y)

There's more...
Astute readers might have noticed that the read.csv function call included
stringsAsFactors = F as its final parameter. By default, R converts strings to a datatype,
known as factors in many cases. Factors are the names for R's categorical datatype, which
can be thought of as a label or tag applied to the data. Internally, R stores factors as integers
with a mapping to the appropriate label. This technique allows older versions of R to store
factors in much less memory than the corresponding character.

Categorical variables do not have a sense of order (where one value is considered greater
than another). In the following snippet, we create a quick toy example converting four values
of the character class to factor and do a comparison:

colors <- c('green', 'red', 'yellow', 'blue')

colors_factors <- factor(colors)

colors_factors

[1] green red yellow blue

Levels: blue green red yellow

colors_factors[1] > colors_factors[2]

[1] NA

Warning message:

In Ops.factor(colors_factors[1], colors_factors[2]) :

>not meaningful for factors

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

38

However, there is an ordered categorical variable, also known in the statistical world as ordinal
data. Ordinal data is just like categorical data, with one exception. There is a sense of scale
or value to the data. It can be said that one value is larger than another, but the magnitude of
the difference cannot be measured.

Further, when importing data into R, we often run into the situation where a column of
numeric data might contain an entry that is non-numeric. In this case, R might import
the column of data as factors, which is often not what was intended by the data scientist.
Converting from factor to character is relatively routine, but converting from factor to numeric
can be a bit tricky.

There's more...
R is capable of importing data from a wide range of formats. In this recipe, we handled a CSV
file, but we could have used a Microsoft Excel file as well. CSV files are preferred as they are
universally supported across operating systems and far more portable. Additionally, R can
import data from numerous popular statistical programs, including SPSS, Stata, and SAS.

See also
ff Refer to the R Data Import/Export guide at http://cran.r-project.org/doc/

manuals/r-release/R-data.html

ff Explore the datatypes in R at http://www.statmethods.net/input/
datatypes.html

Exploring and describing fuel efficiency data
Now that we have imported the automobile fuel efficiency dataset into R and learned a little
about the nuances of importing, the next step is to do some preliminary analysis of the
dataset. The purpose of this analysis is to explore what the data looks like and get your feet
wet with some of R's most basic commands.

Getting ready
If you completed the previous recipe, you should have everything you need to continue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

How to do it...
The following steps will lead you through the initial exploration of our dataset, where we
compute some basic parameters about the dataset:

1.	 First, let's find out how many observations (rows) are in our data:
nrow(vehicles)

34287

2.	 Next, let's find out how many variables (columns) are in our data:
ncol(vehicles)

74

3.	 Now, let's get a sense of which columns of data are present in the data frame using
the name function:
> names(vehicles)

The preceding command will give you the following output:

Luckily, a lot of these column or variable names are pretty descriptive and give us
an idea of what they might contain. Remember, a more detailed description of the
variables is available at http://www.fueleconomy.gov/feg/ws/index.
shtml#vehicle.

4.	 Let's find out how many unique years of data are included in this dataset by
computing a vector of the unique values in the year column, and then computing the
length of the vector:
length(unique(vehicles[, "year"]))

31

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

40

5.	 Now, we determine the first and last years present in the dataset using the min and
max functions:
first_year <- min(vehicles[, "year"])

1984

last_year <- max(vehicles[, "year"])

2014

Note that depending on when you downloaded the dataset, the value
of last_year maybe greater than 2014.

6.	 Also, since we might use the year variable a lot, let's make sure that we have each
year covered. The list of years from 1984 to 2014 should contain 31 unique values.
To test this, use the following command:
> length(unique(vehicles$year))

[1] 31

7.	 Next, let's find out what types of fuel are used as the automobiles' primary fuel types:
table(vehicles$fuelType1)

Diesel Electricity Midgrade Gasoline
Natural Gas

1025 56 41
57

Premium Gasoline Regular Gasoline

8521 24587

From this, we can see that most cars in the dataset use regular gasoline, and the
second most common fuel type is premium gasoline.

8.	 Let's explore the types of transmissions used by these automobiles. We first need to
take care of all missing data by setting it to NA:
vehicles$trany[vehicles$trany == ""] <- NA

9.	 Now, the trany column is text, and we only care whether the car's transmission
is automatic or manual. Thus, we use the substr function to extract the first four
characters of each trany column value and determine whether it is equal to Auto.
If so, we set a new variable, trany2, equal to Auto; otherwise, the value is set to
Manual:
vehicles$trany2 <- ifelse(substr(vehicles$trany, 1, 4) ==
"Auto", "Auto", "Manual")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

10.	 Finally, we convert the new variable to a factor and then use the table function to see
the distribution of values:

vehicles$trany <- as.factor(vehicles$trany)

table(vehicles$trany2)

Auto Manual

22451 11825

We can see that there are roughly twice as many automobile models with automatic
transmission as there are models with manual transmission.

How it works...
The data frame is an incredibly powerful datatype used by R, and we will leverage it heavily
throughout this recipe. The data frame allows us to group variables of different datatypes
(numeric, strings, logical, factors, and so on) into rows of related information. One example will
be a data frame of customer information. Each row in the data frame can contain the name
of the person (a string), along with an age (numeric), a gender (a factor), and a flag to indicate
whether they are a current customer (Boolean). If you are familiar with relational databases,
this is much like a table in a database.

Further, in this recipe, we looked at several ways of getting a quick read on a dataset imported
into R. Most notably, we used the powerful table function to create a count of the occurrence
of values for the fuelType1 variable. This function is capable of much more, including cross
tabulations, as follows:

with(vehicles, table(sCharger, year))

The preceding command will give you the following output:

Here, we looked at the number of automobile models by year, with and without a super
charger (and we saw that super chargers have seemingly become more popular more recently
than they were in the past).

Also, note that we use the with command. This command tells R to use vehicles as the
default data when performing the subsequent command, in this case, table. Thus, we can
omit prefacing the sCharger and year column names with the name of the data frame and
vehicles, followed by the dollar sign.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

42

There's more...
To provide a cautionary tale about data import, let's look at the sCharger and tCharger
columns more closely. Note that these columns indicate whether the car contains a super
charger or a turbo charger, respectively.

Starting with sCharger, we look at the class of the variable and the unique values present in
the data frame:

> class(vehicles$sCharger)

[1] "character"

> unique(vehicles$sCharger)

[1] "" "S"

We next look at tCharger, expecting things to be the same:

> class(vehicles$tCharger)

[1] "logical"

> unique(vehicles$tCharger)

[1] NA TRUE

However, what we find is that these two seemingly similar variables are different datatypes
completely. While the tCharger variable is a logical variable, also known as a Boolean
variable in other languages, and is used to represent the binary values of true and false,
the sCharger variable appears to be the more general character datatype. Something seems
wrong. In this case, because we can, let's check the original data. Luckily, the data is in a
.csv file, and we can use a simple text editor to open and read the file. (Notepad on Windows
and vi on Unix systems are recommended for the task, but feel free to use your favorite, basic
text editor.) When we open the file, we can see that sCharger and tCharger data columns
either are blank or contains an S or T, respectively.

Thus, R has read in the T character in the tCharger column as a Boolean TRUE variable, as
opposed to the character T. This isn't a fatal flaw and might not impact an analysis. However,
undetected bugs such as this can cause problems far down the analytical pipeline and
necessitate significant repeated work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

Analyzing automobile fuel efficiency over
time

We have now successfully imported the data and looked at some important high-level
statistics that provided us with a basic understanding of what values are in the dataset and
how frequently some features appear. With this recipe, we continue the exploration by looking
at some of the fuel efficiency metrics over time and in relation to other data points.

Getting ready
If you completed the previous recipe, you should have everything you need to continue.

How to do it...
The following steps will use both plyr and the graphing library, ggplot2, to explore
the dataset:

1.	 Let's start by looking at whether there is an overall trend of how MPG changes over
time on an average. To do this, we use the ddply function from the plyr package
to take the vehicles data frame, aggregate rows by year, and then, for each group,
we compute the mean highway, city, and combine fuel efficiency. The result is then
assigned to a new data frame, mpgByYr. Note that this is our first example of split-
apply-combine. We split the data frame into groups by year, we apply the mean
function to specific variables, and then we combine the results into a new data frame:
mpgByYr <- ddply(vehicles, ~year, summarise, avgMPG =
mean(comb08), avgHghy = mean(highway08), avgCity =
mean(city08))

2.	 To gain a better understanding of this new data frame, we pass it to the ggplot
function, telling it to plot the avgMPG variable against the year variable, using
points. In addition, we specify that we want axis labels, a title, and even a smoothed
conditional mean (geom_smooth()) represented as a shaded region of the plot:
ggplot(mpgByYr, aes(year, avgMPG)) + geom_point() +
geom_smooth() + xlab("Year") + ylab("Average MPG") +
ggtitle("All cars")

geom_smooth: method="auto" and size of largest group is
<1000, so using

loess. Use 'method = x' to change the smoothing method.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

44

The preceding commands will give you the following plot:

3.	 Based on this visualization, one might conclude that there has been a tremendous
increase in the fuel economy of cars sold in the last few years. However, this can be
a little misleading as there have been more hybrid and non-gasoline vehicles in the
later years, which is shown as follows:
table(vehicles$fuelType1)

Diesel Electricity Midgrade Gasoline
Natural Gas

1025 56 41
57

Premium Gasoline Regular Gasoline

8521 24587

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

4.	 Let's look at just gasoline cars, even though there are not many non-gasoline
powered cars, and redraw the preceding plot. To do this, we use the subset function
to create a new data frame, gasCars, which only contains the rows of vehicles in
which the fuelType1 variable is one among a subset of values:
gasCars <- subset(vehicles, fuelType1 %in% c("Regular
Gasoline", "Premium Gasoline", "Midgrade Gasoline") &
fuelType2 == "" & atvType != "Hybrid")

mpgByYr_Gas <- ddply(gasCars, ~year, summarise, avgMPG =
mean(comb08))

ggplot(mpgByYr_Gas, aes(year, avgMPG)) + geom_point() +
geom_smooth() + xlab("Year") + ylab("Average MPG") +
ggtitle("Gasoline cars")

geom_smooth: method="auto" and size of largest group is
<1000, so using

loess. Use 'method = x' to change the smoothing method.

The preceding commands will give you the following plot:

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

46

5.	 Have fewer large engine cars been made recently? If so, this can explain the
increase. First, let's verify whether cars with larger engines have worse fuel efficiency.
We note that the displ variable, which represents the displacement of the engine in
liters, is currently a string variable that we need to convert to a numeric variable:
typeof(gasCars$displ)

"character"

gasCars$displ <- as.numeric(gasCars$displ)

ggplot(gasCars, aes(displ, comb08)) + geom_point() +
geom_smooth()

geom_smooth: method="auto" and size of largest group is
>=1000, so using

gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to
change the

smoothing method.

Warning: Removed 2 rows containing missing values
(stat_smooth).

Warning: Removed 2 rows containing missing values
(geom_point).

The preceding commands will give you the following plot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

This scatter plot of the data offers the convincing evidence that there is a negative,
or even inverse correlation, between engine displacement and fuel efficiency; thus,
smaller cars tend to be more fuel-efficient.

6.	 Now, let's see whether more small cars were made in later years, which can explain
the drastic increase in fuel efficiency:
avgCarSize <- ddply(gasCars, ~year, summarise, avgDispl =
mean(displ))

ggplot(avgCarSize, aes(year, avgDispl)) + geom_point() +
geom_smooth() + xlab("Year") + ylab("Average engine
displacement (l)")

geom_smooth: method="auto" and size of largest group is
<1000, so using

loess. Use 'method = x' to change the smoothing method.

Warning: Removed 1 rows containing missing values
(stat_smooth).

Warning: Removed 1 rows containing missing values
(geom_point).

The preceding commands will give you the following plot:

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

48

7.	 From the preceding figure, the average engine displacement has decreased
substantially since 2008. To get a better sense of the impact this might have had on
fuel efficiency, we can put both MPG and displacement by year on the same graph.
Using ddply, we create a new data frame, byYear, which contains both the average
fuel efficiency and the average engine displacement by year:
byYear <- ddply(gasCars, ~year, summarise, avgMPG =
mean(comb08), avgDispl = mean(displ))

> head(byYear)

 year avgMPG avgDispl

1 1984 19.12162 3.068449

2 1985 19.39469 NA

3 1986 19.32046 3.126514

4 1987 19.16457 3.096474

5 1988 19.36761 3.113558

6 1989 19.14196 3.133393

8.	 The head function shows us that the resulting data frame has three columns:
year, avgMPG, and avgDispl. To use the faceting capability of ggplot2 to display
Average MPG and Avg engine displacement by year on separate but aligned
plots, we must melt the data frame, converting it from what is known as a wide
format to a long format:
byYear2 = melt(byYear, id = "year")
levels(byYear2$variable) <- c("Average MPG", "Avg engine
displacement")

head(byYear2)

 year variable value

1 1984 Average MPG 19.12162

2 1985 Average MPG 19.39469

3 1986 Average MPG 19.32046

4 1987 Average MPG 19.16457

5 1988 Average MPG 19.36761

6 1989 Average MPG 19.14196

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

If we use the nrow function, we can see that the byYear2 data frame has 62 rows
and the byYear data frame has only 31. The two separate columns from byYear
(avgMPG and avgDispl) have now been melted into one new column (value) in
the byYear2 data frame. Note that the variable column in the byYear2 data frame
serves to identify the column that the value represents:
ggplot(byYear2, aes(year, value)) + geom_point() +
geom_smooth() + facet_wrap(~variable, ncol = 1, scales =
"free_y") + xlab("Year") + ylab("")

geom_smooth: method="auto" and size of largest group is
<1000, so using

loess. Use 'method = x' to change the smoothing method.
geom_smooth: method="auto" and size of largest group is
<1000, so using

loess. Use 'method = x' to change the smoothing method.

Warning: Removed 1 rows containing missing values
(stat_smooth).

Warning: Removed 1 rows containing missing values
(geom_point).

The preceding commands will give you the following plot:

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

50

From this plot, we can see the following:

�� Engine sizes have generally increased until 2008, with a sudden increase in
large cars between 2006 and 2008.

�� Since 2009, there has been a decrease in the average car size, which
partially explains the increase in fuel efficiency.

�� Until 2005, there was an increase in the average car size, but the fuel
efficiency remained roughly constant. This seems to indicate that engine
efficiency has increased over the years.

�� The years 2006–2008 are interesting. Though the average engine size
increased quite suddenly, the MPG remained roughly the same as in
previous years. This seeming discrepancy might require more investigation.

9.	 Given the trend toward smaller displacement engines, let's see whether automatic
or manual transmissions are more efficient for four cylinder engines, and how the
efficiencies have changed over time:
gasCars4 <- subset(gasCars, cylinders == "4")

ggplot(gasCars4, aes(factor(year), comb08)) + geom_boxplot()
+ facet_wrap(~trany2, ncol = 1) + theme(axis.text.x = element_
text(angle = 45)) + labs(x = "Year", y = "MPG")

The preceding command will give you the following plot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

This time, ggplot2 was used to create box plots that help visualize the distribution
of values (and not just a single value, such as a mean) for each year.

10.	 Next, let's look at the change in proportion of manual cars available each year:

ggplot(gasCars4, aes(factor(year), fill = factor(trany2))) +
geom_bar(position = "fill") + labs(x = "Year", y = "Proportion
of cars", fill = "Transmission") + theme(axis.text.x =
element_text(angle = 45)) + geom_hline(yintercept = 0.5,
linetype = 2)

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

52

The preceding command will give you the following plot:

In step 9, it appears that manual transmissions are more efficient than automatic
transmissions, and they both exhibit the same increase, on an average, since 2008. However,
there is something odd here. There appear to be many very efficient cars (less than 40 MPG)
with automatic transmissions in later years, and almost no manual transmission cars with
similar efficiencies in the same time frame. The pattern is reversed in earlier years. Is there a
change in the proportion of manual cars available each year? Yes. What are these very efficient
cars? In the next section, we look at the makes and models of the cars in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

How it works...
With this recipe, we threw you into the deep end of data analysis with R, using two very
important R packages, plyr and ggplot2. Just as traditional software development has
design patterns for common constructs, a few such patterns are emerging in the field of data
science. One of the most notable is the split-apply-combine pattern highlighted by Dr. Hadley
Wickham. In this strategy, one breaks up the problem into smaller, more manageable pieces
by some variable. Once aggregated, you perform an operation on the new grouped data,
and then combine the results into a new data structure. As you can see in this recipe, we
used this strategy of split-apply-combine repeatedly, examining the data from many different
perspectives, as a result.

Beyond plyr, this recipe heavily leveraged the ggplot2 library, which deserves additional
exposition. We will refrain from providing an extensive ggplot2 tutorial as there are a
number of excellent tutorials available online. What is important is that you understand the
important idea of how ggplot2 allows you to construct such complex statistical visualizations
in such a terse fashion.

The ggplot2 library is an open source implementation of the foundational grammar of
graphics by Wilkinson, Anand, and Grossman for R. The Grammar of Graphics attempts
to decompose statistical data visualizations into component parts to better understand
how such graphics are created. With ggplot2, Hadley Wickham, takes these ideas and
implements a layered approach, allowing the user to assemble complex visualizations from
individual pieces very quickly. Take, for example, the first graph for this recipe, which shows
the average fuel efficiency of all models of cars in a particular year over time:

ggplot(mpgByYr, aes(year, avgMPG)) + geom_point() + geom_smooth() +
xlab("Year") + ylab("Average MPG") + ggtitle("All cars")

To construct this plot, we first tell ggplot the data frame that will serve as the data for the
plot (mpgByYr), and then the aesthetic mappings that will tell ggplot2 which variables
will be mapped into visual characteristics of the plot. In this case, aes(year, avgMPG)
implicitly specifies that the year will be mapped to the x axis and avgMPG will be mapped
to the y axis. Geom_point() tells the library to plot the specified data as points and a
second geom, geom_smooth(), adds a shaded region showing the smoothed mean (with a
confidence interval set to 0.95, by default) for the same data. Finally, the xlab(), ylab(),
and ggtitle() functions are used to add labels to the plot. Thus, we can generate a
complex, publication quality graph in a single line of code; ggplot2 is capable of doing far
more complex plots.

Also, it is important to note that ggplot2, and the grammar of graphics in general, does
not tell you how best to visualize your data, but gives you the tools to do so rapidly. If you
want more advice on this topic, we strongly recommend looking into the works of Edward
Tufte, who has numerous books on the matter, including the classic The Visual Display of
Quantitative Information, Graphics Press USA. Further, ggplot2 does not allow for dynamic
data visualizations.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

54

See also
ff Refer to The Split-Apply-Combine Strategy for Data Analysis paper at

http://www.jstatsoft.org/v40/i01/paper

ff Refer to The Grammar of Graphics, Leland Wilkinson, Springer Science &
Business Media

ff Refer to the Package 'ggplot2' article from CRAN at http://cran.r-project.
org/web/packages/ggplot2/ggplot2.pdf

ff Refer to the A Layered Grammar of Graphics article at http://vita.had.co.nz/
papers/layered-grammar.pdf

Investigating the makes and models of
automobiles

With the first set of questions asked and answered about this dataset, let's move on to
additional analyses.

Getting ready
If you completed the previous recipe, you should have everything you need to continue.

How to do it...
This recipe will investigate the makes and models of automobiles and how they have changed
over time:

1.	 Let's look at how the makes and models of cars inform fuel efficiency over time. First,
let's look at the frequency of the makes and models of cars available in the US over
this time and concentrate on four-cylinder cars:
carsMake <- ddply(gasCars4, ~year, summarise, numberOfMakes =
length(unique(make)))

ggplot(carsMake, aes(year, numberOfMakes)) + geom_point() +
labs(x = "Year", y = "Number of available makes") + ggtitle("Four
cylinder cars")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

We see in the following graph that there has been a decline in the number of makes
available over this period, though there has been a small uptick in recent times:

2.	 Can we look at the makes that have been available for every year of this study? We
find there are only 12 manufactures that made four-cylinder cars every year during
this period:
uniqMakes <- dlply(gasCars4, ~year, function(x)
unique(x$make))

commonMakes <- Reduce(intersect, uniqMakes)

commonMakes

[1] "Ford" "Honda" "Toyota" "Volkswagen"
"Chevrolet"

[6] "Chrysler" "Nissan" "Dodge" "Mazda"
"Mitsubishi"

[11] "Subaru" "Jeep"

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

56

3.	 How have these manufacturers done over time with respect to fuel efficiency? We
find that most manufacturers have shown improvement over this time, though several
manufacturers have demonstrated quite sharp fuel efficiency increases in the last 5
years:
carsCommonMakes4 <- subset(gasCars4, make %in% commonMakes)

avgMPG_commonMakes <- ddply(carsCommonMakes4, ~year + make,
summarise, avgMPG = mean(comb08))

ggplot(avgMPG_commonMakes, aes(year, avgMPG)) + geom_line() +
facet_wrap(~make, nrow = 3)

The preceding commands will give you the following plot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

How it works...
In step 2, there is definitely some interesting magic at work, with a lot being done in only a few
lines of code. This is both a beautiful and a problematic aspect of R. It is beautiful because
it allows the concise expression of programmatically complex ideas, but it is problematic
because R code can be quite inscrutable if you are not familiar with the particular library.

In the first line, we use dlply (not ddply) to take the gasCars4 data frame, split it by year,
and then apply the unique function to the make variable. For each year, a list of the unique
available automobile makes is computed, and then dlply returns a list of these lists (one
element each year). Note dlply, and not ddply, because it takes a data frame (d) as input
and returns a list (l) as output, whereas ddply takes a data frame (d) as input and outputs a
data frame (d):

uniqMakes <- dlply(gasCars4, ~year, function(x) unique(x$make))

commonMakes <- Reduce(intersect, uniqMakes)

commonMakes

The next line is even more interesting. It uses the Reduce higher order function, and this is
the same Reduce function and idea in the map reduce programming paradigm introduced
by Google that underlies Hadoop. R is, in some ways, a functional programming language
and offers several higher order functions as part of its core. A higher order function accepts
another function as input. In this line, we pass the intersect function to Reduce, which will
apply the intersect function pairwise to each element in the list of unique makes per year
that was created previously. Ultimately, this results in a single list of automobile makes that is
present every year.

The two lines of code express a very simple concept (determining all automobile makes
present every year) that took two paragraphs to describe.

There's more...
The final graph in this recipe is an excellent example of the faceted graphics capabilities
of ggplot2. Adding + facet_wrap(~make, nrow = 3) tells ggplot2 that we want a
separate set of axes for each make of automobile and distribute these subplots between
three different rows. This is an incredibly powerful data visualization technique as it allows us
to clearly see patterns that might only manifest for a particular value of a variable.

We kept things simple in this first data science project. The dataset itself was small—only 12
megabytes uncompressed, easily stored, and handled on a basic laptop. We used R to import
the dataset, check the integrity of some (but not all) of the data fields, and summarize the
data. We then moved on to exploring the data by asking a number of questions and using
two key libraries, plyr and ggplot2, to manipulate the data and visualize the results. In
this data science pipeline, our final stage was simply the text that we wrote to summarize our
conclusions and the visualizations produced by ggplot2.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analysis with Automobile Data (R)

58

See also
ff Read a great post titled Higher Order Functions in R by John Myles White at

http://www.johnmyleswhite.com/notebook/2010/09/23/higher-order-
functions-in-r/

www.it-ebooks.info

http://www.it-ebooks.info/

3
Simulating American

Football Data (R)

In this chapter, we will cover:

ff Acquiring and cleaning football data

ff Analyzing and understanding football data

ff Constructing indexes to measure offensive and defensive strength

ff Simulating a single game with the outcome decided by calculations

ff Simulating multiple games with the outcomes decided by calculations

Introduction
American football is the most popular sport in the United States and is the ninth most
popular sport worldwide. Every year, football fans look forward to the start of a new season
in September, the 17 weeks of play that follow, the playoffs that start in January, and the
championship game known as the Super Bowl in late January or early February.

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

60

In this chapter, we will obtain some football statistics, analyze them to get a sense of what
the data looks like, determine a way to calculate which team should win when two teams
play each other, and then use this to simulate games to produce a virtual winning team and
losing team. There are many different ways in which you can construct such a simulation. For
example, if you want to construct your simulation at the level of individual plays, you can get
the statistics for every single player on a team and every play that a team runs, and use these
to simulate a game in a play-by-play fashion. This approach would be great if we were football
video game makers, as we would need a very detailed output and a play-by-play simulation
in order to make the experience of playing the game as realistic as possible. However, the
approach we will take will be much simpler. Using aggregated team-level data instead of a
more detailed player and play statistics, we will be able to efficiently determine which team
should win each game.

The goal of this chapter will be to learn how to complete a data science project that involves
obtaining data from a web page, coming up with our own formulas and calculations,
applying the calculations to several scenarios, and setting up a simulation where we can
determine how many times we want the process to run. This project will use the R statistical
programming language and some of its packages for data acquisition, manipulation, and
visualization. This chapter will also showcase R's flexibility to act as a programming language
in addition to showcasing its statistical modeling features.

The recipes in this chapter will roughly follow the data science pipeline. We will adapt the
pipeline to the type of data we are working with and the types of tasks we would like to
perform using this data.

Requirements
For this chapter, you need a computer with access to the Internet. You also need to have R
installed and have the following packages installed and loaded:

install.packages("XML")

install.packages("RSQLite")

install.packages("stringr")

install.packages("ggplot2")

library(XML)

library(RSQLite)

library(stringr)

library(ggplot2)

The XML package will help us with reading the HTML data we pull from the Web, RSQLite and
stringr will help us with data manipulation, and ggplot2 will be used to create graphs and
visualizations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

61

Additionally, if you are not familiar with American football, you can find a brief explanation of
the basics at http://www.nfl.com/rulebook/beginnersguidetofootball.

Acquiring and cleaning football data
There are many places on the Internet to obtain football data, including various websites
that track schedules, scores, and statistics. When looking for datasets, the main things we
take into consideration are the usefulness, quality, and format of the data. For this project,
we will pull data from http://sports.yahoo.com/ as it is a well-established source and
has the necessary stats in a relatively well-organized format, which will only require some
light cleaning.

Getting ready
If you've installed and loaded the packages listed in the Introduction section of this chapter
and set your working directory to the location where you want to save your files, you should
have everything you need to continue.

How to do it…
Perform the following steps to acquire and clean the data:

1.	 The first thing we will do is acquire offensive data for each team for a season. Since
the last complete season, at the time of writing this book, is the 2013 season, it is
the one we will use. So, we will set the year variable to 2013:
year <- 2013

2.	 Next, we will embed the year into the URL where the data is located and assign the
entire URL string to the url variable:
url <-
paste("http://sports.yahoo.com/nfl/stats/byteam?group=Offense&
cat=Total&conference=NFL&year=season_",year,"&sort=530&old_cat
egory=Total&old_group=Offense")

3.	 Now that we have the complete URL, we can pull the data from it:
offense <- readHTMLTable(url, encoding = "UTF-8",
colClasses="character")[[7]]

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

62

This will create a data frame named offense that will contain the offensive stats for
all 32 teams, as shown in the following screenshot:

4.	 The first thing we notice when we take a look at the data that we've just pulled is that
it needs a little bit of cleaning up. There are a lot of blank columns, and we want to
make sure that the fields we've pulled are formatted correctly. So, let's get rid of the
blank columns and then assign data types to each of the remaining columns, using
the following command:
offense <- offense[,-c(2,4,6,8,10,12,14,16,18,20,22,24,26,28)]

offense[,1] <- as.character(offense[,1])

offense[,2:13] <- apply(offense[,2:13],2,as.numeric)

offense[,14] <- as.numeric(substr(offense[,14], 1, 2))*60 +
as.numeric(substr(offense[,14], 4, 6))

The last column, labeled TOP, is the time of possession, or the average
amount of time the team was on offense per game. It was previously
formatted as minutes:seconds, so we just changed it so that it reflects
the total number of seconds per game during which the team's offense
has possession of the ball.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

63

Now, our offense data is clean and formatted properly, as shown in the
following screenshot:

5.	 Next, let's do the same thing with the data for defense. As with offense, we will start
by embedding the year into the URL where we can obtain the defense data:
url <-
paste("http://sports.yahoo.com/nfl/stats/byteam?group=Defense&
cat=Total&conference=NFL&year=season_",year,"&sort=530&old_cat
egory=Total&old_group=Defense")

6.	 Next, we will pass this URL string into the readHTMLTable function to pull the data:
defense <- readHTMLTable(url, encoding = "UTF-8",
colClasses="character")[[7]]

When scraping data from a web page using the readHTMLTable function,
it will initially read the entire page. We add [[7]] at the end because the
table we want to pull data from is the seventh element in the page. For fun,
try changing this number to see what the other page elements look like when
they are read by the function.

The following screenshot shows the data:

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

64

7.	 Just as our offense data needed to be cleaned, so does the defense data. We will
use the exact same commands to do this, just substituting the name offense for
defense. Also, note that since the time of possession does not apply to defense, it is
not included in the defense data:

defense <- defense[,-c(2,4,6,8,10,12,14,16,18,20,22,24,26)]

defense[,1] <- as.character(defense[,1])

defense[,2:13] <- apply(defense[,2:13],2,as.numeric)

Now, our defense data is also clean and formatted, as shown in the following
screenshot:

How it works…
The paste() function in R is used to concatenate two strings together. For those that are
new to manipulating data, concatenation means joining two things together. We used this
function because we wanted to embed the year that we want to pull into the URL for the web
page. This lets us change from year to year by simply changing the value of the year variable.
Try changing the value to 2012 or 2011 and then rerunning the steps in this recipe. It will
automatically pull the stats for the year that you chose, assuming that the data is available.

Another useful R function used in this section is apply(). We use it to format several
columns as numeric with a single line of code. The apply() function can do this with many
mathematical operations as well, and not just for changing field types. For example, if we
wanted to take the mean for columns 2 through 13 in the defense data frame after converting
them to numeric types, we would use the following command:

means <- apply(defense[,2:13],2,mean)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

65

See also
ff The paste() function available at https://stat.ethz.ch/R-manual/R-

devel/library/base/html/paste.html

ff The apply() function available at https://stat.ethz.ch/R-manual/R-
devel/library/base/html/apply.html

ff The XML package available at http://cran.r-project.org/web/packages/
XML/XML.pdf

Analyzing and understanding football data
Now that we have obtained and cleaned the data, let's take some time to explore it, gain an
understanding of what the different fields mean, and learn how we can use them to create
something useful.

Getting ready
If you completed the previous recipe, you should have cleaned and formatted offense and
defense datasets in preparation for this recipe.

How to do it…
In order to analyze the data, complete the following steps:

1.	 The first thing we will do is combine the offense and defense data frames into a
data frame called combined. This will get all of our data in one place and make it
easier for us to do some exploration:
combined <- merge(offense, defense, by.x="Team", by.y="Team")

Since some of the offense and defense columns have the same name, we will
rename them to avoid confusion later. We'll also get rid of the column from the
defense data frame that shows the number of games because it is redundant
now that we have combined data:

colnames(combined)[2] <- "Games"

colnames(combined)[3] <- "OffPPG"

colnames(combined)[4] <- "OffYPG"

colnames(combined)[5] <- "OffPassYPG"

colnames(combined)[6] <- "OffRushYPG"

combined$G.y <- NULL

colnames(combined)[15] <- "DefPPG"

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

66

colnames(combined)[16] <- "DefYPG"

colnames(combined)[17] <- "DefRushYPG"

colnames(combined)[18] <- "DefPassYPG"

2.	 Now, we're ready to start exploring our data! One of the best places to start when
exploring data is histograms. Histograms visually show how every column of the data
frame is distributed so that you can get a sense of which values are normal, which
values are low, and which values are high. First, let's create a histogram of offensive
points per game by each team:
hist(combined$OffPPG, breaks=10, main="Offensive Points Per
Game", xlab="Offensive PPG",ylab="Number of Teams")

The histogram will look like the following diagram:

According to the histogram, most teams score an average of 18 to 28 points per
game. There is one team that averages significantly more, and one team that
averages significantly less.

The average offensive points scored per game is 23.4, and the standard deviation
is 4.36. The highest scoring team averaged 37.9 points per game or 3.32 standard
deviations above the mean. The lowest scoring team averaged 15.4 points per
game or 1.83 standard deviations below the mean. This is shown through the
following commands:

mean(combined$OffPP G)

[1] 23.41875

sd(combined$OffPPG)

[1] 4.361373

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

67

max(combined$OffPPG

[1] 37.9

min(combined$OffPPG)

[1] 15.4

3.	 Next, let's see how points allowed per game, a defensive statistic, are distributed:
hist(combined$DefPPG, breaks=10, main="Defensive Points Per
Game", xlab="Defensive PPG",ylab="Number of Teams")

This produces the following diagram:

There is a little less variability here, as most teams allow between 20 and 30 points
per game. There are only a few teams with very good defenses that limit the offenses
that they face to fewer than 20 points per game on average.

4.	 Let's do one more histogram on the number of first downs per game,
an offensive statistic:
hist(combined$"1stD/G", breaks=10, main="Offensive 1st Downs
Per Game", xlab="1st Downs/Game",ylab="Number of Teams")

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

68

The diagram produced should look like the following:

From this, we can tell that most teams gain between 17 and 20 first downs per
game. Again, as in the points per game histogram, there is one team that gets an
exceedingly high number of first downs per game. In both cases, offensive points per
game and first downs per game, the outlier is the Denver Broncos team.

You can create histograms for any column in your dataset by simply swapping the
name of the column from any of the lines of code we just used. Try a few more and
see what other insights you find!

5.	 The next type of chart we will use is the bar chart. These sometimes look similar to
the histogram, but we will use bar charts to see how figures for the different teams
compare to each other, whereas we binned the values and counted the frequency
(number of teams) that fell into each bin in the case of our histograms. Let's start off
by creating a bar chart for offensive points per game:
ppg <- transform(combined,Team=reorder(Team,combined$OffPPG))

ggplot(ppg,aes(x=Team, y=OffPPG)) +

 geom_bar(stat='identity',color="black",fill="blue") +
coord_flip() + labs(x="Team",y="Avg Points per Game") +

 ggtitle("Avg Points per Game") + theme(plot.title =
element_text(size=18, face="bold"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

69

This produces the following diagram:

Here, you can see the individual point per game figures visually and in
descending order.

6.	 Next, let's try another bar graph for defense yards allowed per game:
ypg <- transform(combined,Team=reorder(Team,-combined$DefYPG))

ggplot(ypg,aes(x=Team, y=DefYPG)) +

 geom_bar(stat='identity',color="black",fill="blue") +
coord_flip() + labs(x="Team",y="Avg Yards Allowed per Game") +

 ggtitle("Avg Yards Allowed per Game") + theme(plot.title =
element_text(size=18, face="bold"))

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

70

You can refer to the following diagram:

From these charts, we can get a visual sense of what fans saw throughout the
season, specifically the incredible offense of the Denver Broncos team and the
unstoppable defense of the Seattle Seahawks team, which ultimately led them to a
Super Bowl victory against the Broncos.

Try creating bar charts for a few more fields and see what other insights about the
teams you can draw.

7.	 The final type of graph we will use in this section is the scatter plot. These graphs
are good at showing relationships and correlations between two different variables
visually. For example, let's see how offensive yards and offensive points per game
are related:
ggplot(combined, aes(x=combined$OffYPG, y=combined$OffPPG)) +

 geom_point(shape=5, size=2) + geom_smooth() +

 labs(x="Yards per Game",y="Points per Game") +
ggtitle("Offense Yards vs. Points per Game") +

 theme(plot.title = element_text(size=18, face="bold"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

This produces the following diagram:

As you can see, these two variables are positively correlated—as yards per game
increases, points per game also usually increases. We can calculate the correlation
coefficient with the following code:
cor(combined$OffYPG,combined$OffPPG) [1] 0.7756408

8.	 Let's look at whether the same is true for defense for yards allowed and points
allowed per game. Theoretically, if a defense is able to limit the number of yards an
offense gains, it should correlate strongly with the number of points (or lack of points)
the offense is able to score:
ggplot(combined, aes(x=combined$DefYPG, y=combined$DefPPG)) +

 geom_point(shape=5, size=2) + geom_smooth() +

 labs(x="Yards Allowed per Game",y="Points Alloed per Game")
+ ggtitle("Defense Yards vs. Points per Game") +

 theme(plot.title = element_text(size=18, face="bold"))

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

72

This produces the following graph:

Looking at the scatter plot, there does seem to be some positive correlation here too,
although not quite as strong as the previous offense relationship. Let's calculate the
correlation for these two variables as well:

cor(combined$DefYPG,combined$DefPPG)

[1] 0.6823588

9.	 Let's try one more correlation. One can postulate that the longer a team is on offense,
the more points per game they are likely to score. To test whether this is true, we can
scatter plot time of possession and offensive points per game:

ggplot(combined, aes(x=combined$TOP, y=combined$OffPPG)) +

 geom_point(shape=5, size=2) + geom_smooth() +

 labs(x="Time of Possession (Seconds)",y="Points per Game") +
ggtitle("Time of Possession vs. Points per Game") +

 theme(plot.title = element_text(size=18, face="bold"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

This produces the following graph:

Oddly enough, the correlation between these two variables is not as strong as we
might have guessed. Apparently, there are teams at different levels of efficiency,
some scoring lots of points in very little time, and others scoring relatively few points
over longer periods of time. When we calculate the correlation coefficient for these,
we find that the value is much lower:

cor(combined$TOP,combined$OffPPG)

[1] 0.2530245

How it works…
When creating histograms in R, an important thing to consider is the number of breaks
(columns) you want the histogram to have. Having more breaks gives you a finer level of detail,
but having too many defeats the purpose of the histogram, which is to bin values that are
close together to compare how often observations occur in a given range of values versus
other ranges. In our experience, using 10 bins is usually a good starting point, and then you
can adjust it higher or lower as you see fit.

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

74

We created the bar charts using the ggplot2 package. We first arranged the data into the
desired order using the transform function and then graphed the resulting data frame. With
ggplot2, you can change just about any feature of the charts that you create, including the
outline and fill colors of the bars, how the axes and chart titles look, and much more!

The same is true of the scatter plots we created in this section with ggplot2. For example,
we changed the plots to be hollow diamonds (shape=5), though we could have chosen from
a number of different shapes and sizes for our plots.

There's more…
Hadley Wickham, the creator of the ggplot2 package, has a great reference website that
you can use to figure out how to make your charts and plots look exactly like you want them
to look. The site can be found at http://docs.ggplot2.org/current/.

See also
ff The ggplot2 package available at http://docs.ggplot2.org/current/

ff American football rules available at http://en.wikipedia.org/wiki/
American_football_rules

Constructing indexes to measure offensive
and defensive strength

At this point, we have clean datasets and a decent understanding of our data fields. Now
it's time to put the data and knowledge to use! In this section, we will build offensive and
defensive indexes out of several of the statistics just analyzed.

Indexes are descriptive statistics that combine information from multiple data fields to give
an observer a sense of what is going on without the observer needing to drill down into the
components of the index. Sticking with the professional football theme, a quarterback is
assigned a passer rating that is designed to communicate his passing ability (relative to other
quarterbacks), without someone having to drill down into his completion percentage, yards
per completion, touchdowns, and so on.

In this section, we will use the underlying team level statistics to construct indexes for the
offensive and defensive strengths of each team. The offense strength index will depend on
the teams' passing and rushing strength, and the defense strength index will depend on the
ability of the teams to defend against the pass and the rush. This will allow us compare the
different aspects of each team's game to other teams and will let us arrive at a winner and a
loser in our simulated games later on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

Getting ready
The recipes in this chapter are cumulative. If you completed the previous recipes, you should
have everything you need to continue.

How to do it…
Perform the following steps to construct the offensive and defensive strength indexes:

1.	 The first thing that we will do in this section is calculate an offensive passing strength
score. The most useful field we have to inform us about passing strength is the
PassYds/G (average passing yards per game) field. The higher this number, the
stronger the team's passing game:
offense$OPassStrength <- max(offense[,5])-offense[,5]

offense$OPassStrength <- (1-
(offense$OPassStrength/max(offense$OPassStrength)))*100

First, we calculated the difference between each team and the team with the most
passing yards per game. Then, we divided the difference by the maximum number
to normalize it, subtracted it from one (since higher the difference from the max, the
worse the team's passing game will be), and then multiplied it by 100 so that we end
up with values between 0 and 100.

Due to the way we normalized this, the team with the strongest statistic will
always get a 100, the team with the weakest statistic will always get a 0. Had
we simply divided the team's value by the maximum value, our index would
not have this characteristic.

2.	 Next, we will do the exact same thing for offensive rushing strength. The field we will
use to calculate this is RushYds/G (average rushing yards per game):
offense$ORushStrength <- max(offense[,6])-offense[,6]

offense$ORushStrength <- (1-
(offense$ORushStrength/max(offense$ORushStrength)))*100

3.	 Let's calculate index values for a couple more fields before aggregating them into a
single offensive strength value. For example, let's choose points and yards per game:
offense$OPPGStrength <- max(offense[,3])-offense[,3]

offense$OPPGStrength <- (1-
(offense$OPPGStrength/max(offense$OPPGStrength)))*100

offense$OYPGStrength <- max(offense[,4])-offense[,4]

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

76

offense$OYPGStrength <- (1-
(offense$OYPGStrength/max(offense$OYPGStrength)))*100

offense$OffStrength <-
(offense$OPassStrength+offense$ORushStrength+offense$OPPGStren
gth+offense$OYPGStrength)/4

In this last line of code, we simply took the average of each of the index values we
calculated previously to come up with the offensive strength index.

4.	 We will now follow the exact same steps for our defense dataset, starting with
calculating a passing defense strength index from the number of passing yards
allowed per game figures:
defense$DPassStrength <- max(defense[,6])-defense[,6]

defense$DPassStrength <-
defense$DPassStrength/max(defense$DPassStrength)*100

5.	 Next, we'll do the same thing with rushing defense strength:
defense$DRushStrength <- max(defense[,5])-defense[,5]

defense$DRushStrength <-
defense$DRushStrength/max(defense$DRushStrength)*100

6.	 As with offense, we will calculate indexes using points allowed per game and total
yards allowed per game before averaging all four to arrive at an overall defensive
strength index:

defense$DPPGStrength <- max(defense[,3])-defense[,3]

defense$DPPGStrength <-
defense$DPPGStrength/max(defense$DPPGStrength)*100

defense$DYPGStrength <- max(defense[,4])-defense[,4]

defense$DYPGStrength <-
defense$DYPGStrength/max(defense$DYPGStrength)*100

defense$DefStrength <-
(defense$DPassStrength+defense$DRushStrength+defense$DPPGStren
gth+defense$DYPGStrength)/4

One difference to note between the offense and defense calculations is that
we are not subtracting from 1 in the second step of each set of formulas. This
is because for defense, lower numbers indicate more strength, whereas for
offense, it is indicated by higher numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

How it works…
As mentioned previously, the purpose of indexes is to simplify and standardize the underlying
statistics so that they can easily be interpreted and compared, and this is essentially what we
did in this recipe. We boiled down several of the offensive and defensive statistics to a single
value for each team.

We kept the examples relatively simple for illustrative purposes, but you can incorporate many
more figures into the index values. We also kept the way to aggregate the individual indexes
as simple as possible, choosing to just take the average of the four that we calculated. As
a more complicated way, you can potentially weigh each of the indexes according to how
important you consider them to be. For example, if you wanted to weigh the offensive ability to
score the highest, followed by the passing strength, the ability to gain yards, and the rushing
strength, respectively, instead of simply dividing by 4, you could assign the weights as follows:

offense$OffStrength <- (offense$OPPGStrength * 0.4) +
(offense$OPassStrength * 0.25) + (offense$OYPGStrength * 0.2) +
(offense$ORushStrength * 0.15)

This way, the values that you believe to be more important will contribute more toward the
overall offensive or defensive index than other values that are relatively not as important, but
important enough to be taken into consideration in your calculations.

See also
ff The index number statistic available at http://mathworld.wolfram.com/

IndexNumber.html

ff The passer rating statistic available at http://en.wikipedia.org/wiki/
Passer_rating

Simulating a single game with outcomes
decided by calculations

Now that we have calculated offensive and defensive strength indexes for each team in the
league, we can start having teams play each other and, using our strength calculations,
determine which team should win each game. The team that wins will be the stronger team
overall, as measured by our recently created indices. We are going to do this by comparing
the offensive strength of one team to the defensive strength of another team and vice versa.
The general idea is that the team with the largest offense-to-defense difference should be the
stronger of the two.

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

78

Getting ready
If you successfully calculated the offensive and defensive strengths for each team, you should
have everything you need to continue.

How to do it…
Use the following steps to create a single game simulation:

1.	 Let's start by simulating a single game between two teams. The first thing we will do
is designate which two teams will play. We will call one team the home team, and the
other, the away team:
home_team <- "Chicago Bears"

away_team <- "New Orleans Saints"

You can choose any two teams you want, just make sure you have typed out the full
name of each team.

2.	 Next, we will bring together the offensive and defensive strengths we calculated for
these teams earlier in the chapter:
off_game <- subset(offense,Team==home_team |
Team==away_team)[,c(1,15,16,19)]

def_game <- subset(defense,Team==home_team |
Team==away_team)[,c(1,14,15,18)]

game <- merge(off_game,def_game,by.x="Team",by.y="Team")

The first command here selects only the records for the two teams indicated from
the offense data frame. The second command performs the same task, but for the
defense data frame. The third command merges the results of the previous two
together so that you can look at all their strength scores in one place.

Here is what the game data frame looks like so far:

Notice that the DRushStrength value for the Chicago Bears team is zero. This means
that they had the worst defense against the rush out of all teams in the league.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

3.	 Now that we have the strength figures in one place, let's perform some calculations
that will help us determine which team is the stronger of the two and, thus, should
win this game. The first thing we will calculate is the difference between the offensive
pass strength of the team and the defensive pass strength of the opposing team. This
will give us a sense of how effective each team's passing game should be:
game$Net_Pass[game$Team==home_team] <-
game$OPassStrength[game$Team==home_team] -
game$DPassStrength[game$Team==away_team]

game$Net_Pass[game$Team==away_team] <-
game$OPassStrength[game$Team==away_team] -
game$DPassStrength[game$Team==home_team]

The game data frame should now look like the following screenshot:

As you can see from the screenshot, in the Net_Pass column, the effectiveness of
the Chicago Bears team's passing game should be very low due to the New Orleans
Saints team's ability to defend against the passing game; New Orleans can be
expected to pass the ball somewhat effectively against the Bears.

4.	 Next, we will perform the exact same calculations for the rushing strength of each
team and for their total strength:
game$Net_Rush[game$Team==home_team] <-
game$ORushStrength[game$Team==home_team] -
game$DRushStrength[game$Team==away_team]

game$Net_Rush[game$Team==away_team] <-
game$ORushStrength[game$Team==away_team] -
game$DRushStrength[game$Team==home_team]

game$Net_Total[game$Team==home_team] <-
game$OffStrength[game$Team==home_team] -
game$DefStrength[game$Team==away_team]

game$Net_Total[game$Team==away_team] <-
game$OffStrength[game$Team==away_team] -
game$DefStrength[game$Team==home_team]

The game data frame should now look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

80

The new columns show us that in addition to the Chicago Bears team having a
disadvantage in passing strength, they also have a disadvantage in rushing strength,
and thus a disadvantage overall. So, now it is becoming clear that we should expect
the New Orleans Saints team to win this game.

5.	 Since the passing, rushing, and overall strengths were originally calculated from
different figures, let's overwrite the values in the Net_Total column with the sum of
the three differences. Then, we will write a conditional statement to evaluate the new
Net_Total figures and have the program output the results of this virtual game:

game$Net_Total <- game$Net_Pass + game$Net_Rush +
game$Net_Total

if(game$Net_Total[game$Team==home_team] >=
game$Net_Total[game$Team==away_team]){

 winner <- home_team

 loser <- away_team

}else{

 winner <- away_team

 loser <- home_team

}

print(paste(winner, "beat", loser))

[1] "New Orleans Saints beat Chicago Bears"

How it works…
In this recipe, we used a few more of R's features.

The subset function lets us filter a dataset by defining the values that we want for specific
fields. This works very much like a query in the database world, where you specify what
data you want to see and what criteria the data should meet. We use this to select only the
calculated strengths for the teams we explicitly designated in the off_game and def_game
data frames.

Another concept we used in this recipe was the conditional assignment. This let us change
values only when certain criteria were met. We were able to do this by embedding the
condition in square brackets ([]) after the field we wanted to assign the conditions to. In R,
conditional assignments look like this:

data_frame$changing_field[condition] <- value_replacing_it

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

The last concept we covered in this recipe was conditional (if and else) statements.
Conditional statements in R work similar to conditional statements in other programming
languages, databases, and spreadsheet programs. In R, conditional statements are always
structured like this:

if(some condition){

 what you want to happen if condition is true

}else{

 what you want to happen if condition is false

}

Simulating multiple games with outcomes
decided by calculations

It turns out that once we build a way to calculate the outcome of a single game, simulating
multiple games doesn't require much more work. In fact, you just need a way to determine a
schedule of games in advance, put the code we used in the last section into a loop, and then
create a way to keep track of how many games each team has won or lost. This is exactly what
we will do in this section.

Getting ready
If you completed the previous recipe, you should already have approximately a third of the
code you will need for this section.

How to do it…
Perform the following steps to simulate multiple games using the same logic as in the
previous recipe:

1.	 As mentioned previously, the first thing we will need to do is create a schedule of
games to know which teams are going to play each other. There are a few ways to do
this, one of which is importing the actual season schedule. For illustrative purposes,
we will generate our own schedule, which will be randomly generated and can be as
many weeks as we want. For players' health reasons, we are glad that the NFL does
not have a 50-game season. We will use the following command:
games_per_team <- 50

for(week in 1:games_per_team){

 home_index <- sample(1:32, 16, replace=F)

 home_teams <- data.frame(HomeTeam=offense[home_index, 1])

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

82

 away_teams <- data.frame(AwayTeam=offense[-home_index, 1])

 if(week==1){

 schedule <-
cbind(Week=week,HomeTeam=home_teams,AwayTeam=away_teams)

 }else{

 temp <-
cbind(Week=week,HomeTeam=home_teams,AwayTeam=away_teams)

 schedule <- rbind(schedule,temp)

 }

}

This should create a data frame that looks something like the following screenshot.
Your games might be different due to the randomness of the sampling.

2.	 Next, we will create a team record tracker that will track the number of wins and
losses for each team:
records <- data.frame(Team=offense$Team)

records$Wins <- 0

records$Losses <- 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

This will create a data frame that looks like the following:

3.	 Now, we need to have our program play out each of the games in the schedule,
and then update the Wins and Losses columns for the winning and losing teams,
respectively. We will accomplish this by taking the code we used in the last section
and embedding it into a for loop. To help you understand what each piece is doing,
we will break the loop up into a few parts:
for(i in 1:nrow(schedule)){

 home_team <- schedule[i,2]

 away_team <- schedule[i,3]

 week <- schedule[i,1]

This snippet of code begins the for loop and tells it to run for as many rows as we
have in the schedule data frame (that is, the number of games we have scheduled).

Then, it automatically assigns the home team and the away team based on the
schedule, and also records the week number.

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

84

4.	 The next part of the loop is where our previous code goes. As we saw earlier in the
chapter, this calculates the differences in the pass, rush, and total strengths of
a team when compared with their opponent, and then uses these calculations to
determine which team wins the game and which team loses:
 off_game <- subset(offense,Team==home_team |
Team==away_team)[,c(1,15,16,19)]

 def_game <- subset(defense,Team==home_team |
Team==away_team)[,c(1,14,15,18)]

 game <- merge(off_game,def_game,by.x="Team",by.y="Team")

 game$Net_Pass[game$Team==home_team] <-
game$OPassStrength[game$Team==home_team] -
game$DPassStrength[game$Team==away_team]

 game$Net_Pass[game$Team==away_team] <-
game$OPassStrength[game$Team==away_team] -
game$DPassStrength[game$Team==home_team]

 game$Net_Rush[game$Team==home_team] <-
game$ORushStrength[game$Team==home_team] -
game$DRushStrength[game$Team==away_team]

 game$Net_Rush[game$Team==away_team] <-
game$ORushStrength[game$Team==away_team] -
game$DRushStrength[game$Team==home_team]

 game$Net_Total[game$Team==home_team] <-
game$OffStrength[game$Team==home_team] -
game$DefStrength[game$Team==away_team]

 game$Net_Total[game$Team==away_team] <-
game$OffStrength[game$Team==away_team] -
game$DefStrength[game$Team==home_team]

 game$Net_Total <- game$Net_Pass + game$Net_Rush +
game$Net_Total

 if(game$Net_Total[game$Team==home_team] >=
game$Net_Total[game$Team==away_team]){

 winner <- home_team

 loser <- away_team

 }else{

 winner <- away_team

 loser <- home_team

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

5.	 The next bit of code records the results of every game, and then updates the win/loss
records and prints out the results of each game, before finally closing our for loop:
if(i==1){

 winnerdf <- data.frame(Winner=winner)

 loserdf <- data.frame(Loser=loser)

 results <- cbind(winnerdf,loserdf)

 }else{

 winnerdf <- data.frame(Winner=winner)

 loserdf <- data.frame(Loser=loser)

 temp <- cbind(winnerdf,loserdf)

 results <- rbind(results,temp)

 }

 records$Wins[records$Team==winner] <-
as.numeric(records$Wins[records$Team==winner]) + 1

 records$Losses[records$Team==loser] <-
as.numeric(records$Losses[records$Team==loser]) + 1

 print(paste("Week", week,":", winner, "beat", loser))

}

[1] "Week 1 : Denver Broncos beat San Diego Chargers"

[1] "Week 1 : Indianapolis Colts beat Chicago Bears"

[1] "Week 1 : San Francisco 49ers beat Philadelphia Eagles"

[1] "Week 1 : Tennessee Titans beat Dallas Cowboys"

[1] "Week 1 : Cincinnati Bengals beat Baltimore Ravens"

[1] "Week 1 : Seattle Seahawks beat Detroit Lions"

[1] "Week 1 : Green Bay Packers beat New England Patriots"

[1] "Week 1 : Pittsburgh Steelers beat Minnesota Vikings"

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

86

The results data frame this generates should look something like this:

6.	 Finally, we will sort our records by the number of wins a team has so that we can
easily see which teams had the best records:

records <- records[order(-records$Wins),]

Here is what the sorted data frame looks like:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

Let's briefly compare this with the results from the actual 2013 season to see how we
performed. Here are the top 10 teams based on their actual win/loss records:

We can see that 7 out of 10 teams in our top 10 list were also in the actual top 10. This tells us
that we did a reasonable job with our simulation, but there is always room for improvement!

How it works…
In this recipe, we used the sample function of R to generate a randomized schedule for the
number of weeks we wanted to play out in our simulation, as follows:

home_index <- sample(1:32, 16, replace=F)

The preceding command basically takes a random sample of 16 from a range of 32 numbers,
without replacement. We then simply make the team numbers select the home teams for the
week, and the teams left over become the away teams for the week. We repeat this for as
many weeks as we designate, and this is how we generated the schedule.

We also use a for loop to play out each game in our schedule, determining a winner and a
loser for each along the way. In R, the basic format for a for loop is as follows:

for (i in times-you-want-to-loop){
 do what you want to repeat
}

As you saw, you can embed anything else you want inside the for loop, and it will repeat it
the number of times you tell it to. In this recipe, we did this with conditional statements
several times.

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating American Football Data (R)

88

There's more…
Throughout this chapter, we used R's flexibility as a calculator, chart generator, and
programming language to complete a project, where we ended up with a simulation engine
that can acquire football statistics for any season from the last decade or so, calculate the
strengths of each team for the season, play teams against each other, and determine the
relative statistical strengths and weaknesses of each team.

So, where do we go from here? Well, now that you have the basics down, you can pursue a
few different avenues on your own, each of which will continue to sharpen the skills we used
in this chapter.

One of these avenues is trying to improve upon the strength index calculations. You can try
including different fields in the calculation, try to add a weighting scheme to the different
inputs, or try a different formula altogether. A key part of data science is experimentation and
iteration, so trying several approaches and recording the quality of the results will get you a
good process to continue down this particular avenue.

Another avenue you can pursue is trying to make the simulation closer to real life. Instead of
randomly generating a schedule, you can use the actual schedules that were used in each
season. You can also try introducing an element of chance into the simulation, for example,
when the strengths indicate that it would have been a close game. Again, experimentation
and iteration will be great for this avenue as well.

If you want to get more granular with the model, you can try incorporating player statistics,
which can help you predict the future performance of teams, and even factor player injuries
and the impact they can have on the team into your model.

Yet another fun avenue would be to pull in teams from different seasons and seeing how they
stack up against each other. How will the current Super Bowl champion Seattle Seahawks fare
against the former Super Bowl champions New England Patriots or New York Giants? You can
generate your own answer to what was truly the best football team of the last decade!

www.it-ebooks.info

http://www.it-ebooks.info/

4
Modeling Stock
Market Data (R)

In this chapter, we will cover:

ff Acquiring stock market data

ff Summarizing the data

ff Cleaning and exploring the data

ff Generating relative valuations

ff Screening stocks and analyzing historical prices

Introduction
This chapter will walk you through a financial analysis project where you will analyze stock
market data, determine whether stocks are over- or under-valued, use this information to
identify a list of target stocks that may make good investments, and visually analyze the price
histories of the target stocks.

We must caution that the goal of this chapter is not to make you an expert in stock market
analysis or to make you rich. Quants on Wall Street study engineering models that perform
significantly more sophisticated operations than those we will touch upon here. Entire books
have been written on stock market models and financial engineering, but we only have a single
chapter to dedicate to this topic. So, given the time and format constraints, the goals of this
chapter will be:

ff To get a basic understanding of the data that we will work with

ff To find useful and interesting ways to analyze and model this data

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

90

ff To learn how to leverage data science tools and techniques to perform the types of
analytical tasks we need to perform on the data

The data we will use for this chapter consists of current data for stocks tracked by the website
finviz.com and daily histories of stock prices obtained from Yahoo! Finance.

As in previous chapters, the tool we will rely on most heavily for this project will be the R
statistical programming language. As you've probably noticed by now, R has strong packages
available that can assist us in the needed analytical tasks; we will be leveraging some of
these packages in this chapter. Additionally, the recipes in this chapter will roughly follow the
data science pipeline, which we will adapt to the type of data we are working with and the
types of analysis we would like to conduct on the data.

Requirements
For this chapter, you will need a computer with access to the Internet. You will also need to
have R installed and the following packages installed and loaded:

install.packages("XML")

install.packages("ggplot2")

install.packages("plyr")

install.packages("reshape2")

install.packages("zoo")

library(XML)

library(ggplot2)

library(plyr)

library(reshape2)

library(zoo)

The XML package will assist us with acquiring data from the Internet, ggplot2 will let us
create beautiful graphs and visualizations from our data, plyr will help us with summarizing
our data, and the zoo package will allow us to calculate moving averages.

You will also want to set a working directory where some of the charts that we generate will
be saved:

setwd("path/where/you/want/to save/charts")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

91

Acquiring stock market data
If you look on the Internet for stock market data, you will quickly find yourself inundated with
sources providing stock quotes and financial data. An important but often overlooked factor
when acquiring data is the efficiency of getting the data. All else being equal, you don't want to
spend hours piecing together a dataset that you could have acquired in far less time. Taking
this into consideration, we will try to obtain the largest amount of data from the least number
of sources. This not only helps to keep the data as consistent as possible, but it also improves
the repeatability of the analysis and the reproducibility of the results.

How to do it...
The first piece of data we want to obtain is a snapshot of the stocks we want to analyze.
One of the best ways to do this is to download data from one of the many stock screener
applications that exist. Our favorite screener to download stock data from belongs to
http://finviz.com.

Let's acquire the stock market data we will use for this chapter with the help of the
following steps:

1.	 First, let's pull up FINVIZ.com's stock screener available at http://finviz.com/
screener.ashx:

As you can see, the site has multiple fields that can be filtered. If you click on the All
tab, you can see all of fields that can be displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

92

2.	 For this project, we want to export all the fields for all the companies in the screener.
You can either customize the screener by checking 69 checkboxes, as of the time of
writing, or you can use the following URL to make all the fields show up automatically:
http://finviz.com/screener.ashx?v=152&c=
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,2
4,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,4
5,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,
66,67,68

You should now see the screener with all the available fields.

3.	 If you scroll all the way to the bottom right of the screen, there should be an export
link. Click on this link and save the CSV file as finviz.csv.

4.	 Finally, we will launch RStudio, read the finviz.csv file from the path where we
saved it, and assign it to a data frame, as follows:
finviz <- read.csv("path/finviz.csv")

In data analysis, it is always better for each step that is performed
to be in code instead of as a series of point-and-click actions that
require human intervention. This way, it is much easier and faster
to reproduce your results.

5.	 After going through steps 1 to 4 for the first time (and some clever reading of
URLs from our browser), we can replace the previous lines of code with the following
two commands:
url_to_open <-
'http://finviz.com/export.ashx?v=152&c=0,1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,5
2,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68'

finviz <- read.csv(url(url_to_open))

Note the structure of the URL in step 2; it contains a comma-separated list
of the checkboxes we wish to select. You can programmatically generate this
URL to easily select whichever combination of companies' data you want to
download.

If you want to avoid typing the numbers 0 through 68, you can use a
combination of the sprintf and paste commands to accomplish the same
thing:
url_to_open <-
sprintf("http://finviz.com/export.ashx?v=152&c=%s",
paste(0:68, collapse = ","))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

93

Summarizing the data
Now that we have acquired our stock data, let's use a couple of commands to find out what fields
our data contains and get some useful information about the values contained in these fields.

Getting ready
You will need the data downloaded from the previous recipe to begin the summary.

How to do it...
The following steps will walk you through a quick summarization of the data:

1.	 Take a look at the fields you imported using the following command:
> head(finviz)

This command will show you the first six rows of your data, as shown in the following
snippet, so that you can see what fields are in your data and also examples of
possible values for the fields. In this example, we can also see that there is some
missing data, identified by NA:

 No. Ticker Company
Sector

1 1 A Agilent Technologies Inc.
Healthcare

2 2 AA Alcoa, Inc. Basic
Materials

3 3 AADR WCM/BNY Mellon Focused Growth ADR ETF
Financial

4 4 AAIT iShares MSCI AC Asia Information Tech
Financial

5 5 AAL American Airlines Group Inc.
Services

6 6 AAMC Altisource Asset Management Corporation
Financial

 Industry Country Market.Cap P.E
Forward.P.E PEG P.S

1 Medical Laboratories & Research USA 19505.83 28.06
16.52 2.92 2.88

2 Aluminum USA 10817.70 40.44
24.72 1.91 0.46

3 Exchange Traded Fund USA NA NA
NA NA NA

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

94

4 Exchange Traded Fund USA NA NA
NA NA NA

5 Major Airlines USA 9861.60 25.97
8.55 NA 0.39

6 Asset Management USA 2406.40 NA
NA NA NA

…

2.	 The next command will return a summary of each field. For numeric fields, it will tell
you what the min, max, mean, median, and quartiles are, and for character fields, it
will tell you which appear most often:

> summary(finviz)

No. Ticker Company

 Min. : 1 A : 1 Banco Bradesco S.A. : 2

 1st Qu.:1677 AA : 1 Banco Santander-Chile : 2

 Median :3354 AADR : 1 Berkshire Hathaway Inc. : 2

 Mean :3354 AAIT : 1 Embotelladora Andina S.A.: 2

 3rd Qu.:5030 AAL : 1 First Bancorp : 2

 Max. :6706 AAMC : 1 Gray Television Inc. : 2

 (Other):6700 (Other) :6694

 Sector Industry
Country

 Financial :2915 Exchange Traded Fund :1382 USA
:5863

 Technology : 867 Closed-End Fund - Debt : 306 Canada
: 175

 Services : 864 Biotechnology : 217 China
: 174

 Basic Materials: 608 Independent Oil & Gas : 112 Israel
: 68

 Healthcare : 578 Application Software : 109 United
Kingdom: 44

 Consumer Goods : 375 Closed-End Fund - Equity: 109
Bermuda : 42

 (Other) : 499 (Other) :4471
(Other) : 340

….

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

95

How it works...
Now that we've taken an initial glance at the data, it's important to take some time out to
identify the fields that will be most important to us, and understand what these fields mean.

The first few fields contain identifying information about the company.

The ticker (sometimes also called the symbol) is the identifier for the stock of a company. No
two companies will have the exact same ticker symbol. So AA is always Alcoa, AAPL is always
Apple, and so on.

Next, we have the company name, sector, industry, and home country of the company. The
sector and industry details serve as ways to classify stocks to inform us of each company's
primary line of business; sector is more general (higher level), and industry is more specific
(lower level). For example, Apple Inc. (AAPL) is in the Consumer Goods sector and primarily
produces consumer goods in the Electronic Equipment industry.

There's more...
Once we get past these fields, most of the other fields in our dataset are numeric. Let's define
some of the most important ones:

ff Price: This indicates the ongoing dollar value to purchase one share of a
company's stock.

ff Volume: This indicates the most recent number of shares of the stock transacted
in a day.

ff Shares Outstanding: This is the total number of stock shares the company
has issued.

ff P/E: The Price to Earnings ratio is the price of the company's stock divided by
the company's earnings per share outstanding.

ff PEG: The P/E Growth ratio is the company's P/E ratio divided by its annual growth
rate, and it gives you a sense of the valuation of the company's earnings relative
to its growth.

ff EPS growth next year: This is the expected rate at which the company's earnings
per share will grow in the next year.

ff Total Debt/Equity: The total debt to equity is used as a measure of financial health
calculated by dividing the dollar value of the company's total debt with the equity in the
company. This gives you a sense of how the company has been financing its growth and
operations. Debt is more risky than equity, so a high ratio will be cause for concern.

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

96

ff Beta: This is a measure of the stock's volatility (swings in its price) relative to the
overall stock market. A beta of 1 means the stock is as volatile as the market. A beta
more than 1 means it's more volatile, while a beta less than 1 means it's less volatile.

ff RSI: The Relative Strength Index is a metric based on stock price activity, which uses
the number of days a stock has closed higher than its opening price and the number
of days a stock has closed lower than its opening price within the last two weeks
to determine a score between 0 and 100. A higher index value indicates that the
stock might be overvalued, and therefore, the price might drop soon; a lower value
indicates that the stock might be undervalued, so the price might rise soon.

If you want to know the definitions of some of the other fields, http://investopedia.com
is a great place to find definitions of financial and investment terms.

Cleaning and exploring the data
Now that we've acquired the data and learned a little about what the fields mean, the next
step is to clean up the data and conduct some exploratory analysis.

Getting ready
Make sure you have the packages mentioned at the beginning of the chapter installed and you
have successfully imported the FINVIZ data into R using the steps in the previous sections.

How to do it...
To clean and explore the data, closely follow the ensuing instructions:

1.	 Imported numeric data often contains special characters such as percentage signs,
dollar signs, commas, and so on. This causes R to think that the field is a character
field instead of a numeric field. For example, our FINVIZ dataset contains numerous
values with percentage signs that must be removed. To do this, we will create a
clean_numeric function that will strip away any unwanted characters using the
gsub command. We will create this function once and then use it multiple times
throughout the chapter:
clean_numeric <- function(s){

 s <- gsub("%|\\$|,|\\)|\\(", "", s)

 s <- as.numeric(s)

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

97

2.	 Next, we will apply this function to the numeric fields in our finviz data frame:
finviz <- cbind(finviz[,1:6],apply(finviz[,7:68], 2,
clean_numeric))

3.	 If you look at the data again, all the pesky percentage signs will be gone, and the
fields will all be numeric.

In this command, and throughout the rest of this chapter, there will be
many instances where we reference columns by their column number. If the
number of columns changes for some reason, the numbers referenced will
need to be adjusted accordingly.

4.	 Now we are ready to really start exploring our data! The first thing to do is take a look
at how the prices are distributed in order to get a visual sense of what is a high stock
price, what is a low stock price, and where the prices of most stocks fall:
hist(finviz$Price, breaks=100, main="Price Distribution",
xlab="Price")

You will get the following graph as output:

Here, we encounter our first problem. Outlier stocks with very high prices cause R
to scale the x axis of the histogram in such a way as to make the graph useless. We
simply cannot see what the distribution for the more normally priced stocks looks
like. This is a very common issue when first histogramming data.

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

98

5.	 Let's put a cap on the x axis of $150 and see what that produces for us:
hist(finviz$Price[finviz$Price<150], breaks=100, main="Price
Distribution", xlab="Price")

You will get the following graph as output:

This is much better! It shows that the majority of stocks in our dataset are
priced under $50. So, in absolute terms, a stock that was priced at $100
would be considered expensive.

6.	 But of course, things aren't so simple. Perhaps different sectors and industries have
different price levels. So, theoretically, a $100 stock might be cheap if all the other
stocks in its industry are priced in the $120 to $150 range. Let's get the average prices
by sector and see how they compare. Note that we are not excluding any stocks:
sector_avg_prices <-
aggregate(Price~Sector,data=finviz,FUN="mean")

colnames(sector_avg_prices)[2] <- "Sector_Avg_Price"

ggplot(sector_avg_prices, aes(x=Sector, y=Sector_Avg_Price,
fill=Sector)) +

 geom_bar(stat="identity") + ggtitle("Sector Avg Prices") +

 theme(axis.text.x = element_text(angle = 90, hjust = 1))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

99

You will get the following graph as output:

This is interesting. Stocks in the financial sector seem to have a significantly higher
average price than stocks in other sectors. I'm willing to bet that this is due to some
of the outliers that messed up our distribution earlier.

7. Let's get to the bottom of this! Let's find out which industries and companies are
responsible for making the average price of the financial sector so much higher than
all the others.

First, we create a summary of the average prices by industry:
industry_avg_prices <-
aggregate(Price~Sector+Industry,data=finviz,FUN="mean")

industry_avg_prices <-
industry_avg_prices[order(industry_avg_prices$Sector,industry_
avg_prices$Industry),]

colnames(industry_avg_prices)[3] <- "Industry_Avg_Price"

Then, we isolate the industries in the financial sector:

industry_chart <-
subset(industry_avg_prices,Sector=="Financial")

Finally, we create a chart showing the average price of each industry in the financial
sector:
ggplot(industry_chart, aes(x=Industry, y=Industry_Avg_Price,
fill=Industry)) +

 geom_bar(stat="identity") + theme(legend.position="none") +
ggtitle("Industry Avg Prices") +

 theme(axis.text.x = element_text(angle = 90, hjust = 1))

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

100

You will get the following graph as output:

From this graph, it looks like the Property & Casualty Insurance industry is the main
culprit that is driving the average prices up.

8.	 Next, we will drill down further into the Property & Casualty Insurance industry to
identify which companies are the outliers:
company_chart <- subset(finviz,Industry=="Property & Casualty
Insurance")

ggplot(company_chart, aes(x=Company, y=Price, fill=Company)) +

 geom_bar(stat="identity") + theme(legend.position="none") +

 ggtitle("Company Avg Prices") +

 theme(axis.text.x = element_text(angle = 90, hjust = 1))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

101

You will get the following graph as output:

It's hard to see because there are so many companies, but if you zoom in on the
graph, it is clear that the outlier company is Berkshire Hathaway, where the stock
price is currently over $172,000 per share.

9.	 Since their stock price is so extreme, let's remove them from our dataset and
then re-average the sectors so that we have a more realistic average price for the
financial sector:

finviz <- subset(finviz, Ticker!="BRK-A")

sector_avg_prices <-
aggregate(Price~Sector,data=finviz,FUN="mean")

colnames(sector_avg_prices)[2] <- "Sector_Avg_Price"

ggplot(sector_avg_prices, aes(x=Sector, y=Sector_Avg_Price,
fill=Sector)) +

 geom_bar(stat="identity") + ggtitle("Sector Avg Prices") +

 theme(axis.text.x = element_text(angle = 90, hjust = 1))

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

102

You will get the following graph as output:

Now, our averages look much better and we have a decent basis to compare stock
prices to their industry and sector averages.

How it works...
In this section, we used the aggregate command to summarize our data. Here's a reminder
of the code we used:

sector_avg_prices <- aggregate(Price~Sector,data=finviz,FUN="mean")

An alternative way to do this is with the ddply command that is part of the plyr package:

sector_avg_prices <- ddply(finviz, "Sector", summarise,
Price=mean(Price, na.rm=TRUE))

Wherever you see the aggregate command used in this chapter, feel free to challenge
yourself by also trying to summarize the data, using ddply.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

103

See also
ff The gsub command at http://stat.ethz.ch/R-manual/R-devel/library/

base/html/grep.html

ff The cbind command at http://stat.ethz.ch/R-manual/R-devel/
library/base/html/cbind.html

ff The plyr documentation at http://cran.r-project.org/web/packages/
plyr/plyr.pdf

ff The aggregate command at http://stat.ethz.ch/R-manual/R-devel/
library/stats/html/aggregate.html

Generating relative valuations
One of the most interesting things that you can do with stock market data is come up with a
valuation model. The ultimate goal is to arrive at a decision about whether the stock might be
overvalued or undervalued. There are two main ways to do this. Intrinsic valuation is generally
more time consuming because it involves digging into the financial statements of a company
to arrive at a valuation decision. The alternative method is relative valuation, which will quickly
provide a sense of how the stock is valued but does not take into account a comprehensive
set of factors. The basic idea is that it compares a stock's price and valuation ratios to similar
stocks to arrive at a conclusion. In this section, we will value stocks using the simpler relative
valuation method.

Getting ready
This recipe requires the data downloaded and cleaned in the previous recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

104

How to do it...
We will essentially do three major things in this section. First, we calculate sector averages for
fields that we can use in our relative valuation efforts. Then, we do the same at the industry
level. Finally, we compare the stocks' statistics to the averages to arrive at an index value for
each stock that indicates whether it might be undervalued. The following steps will guide you:

1.	 In order to calculate averages in multiple columns in R, we first need to melt the data.
This will make every column after Sector a row and then display its value, essentially
making the data long instead of wide. Take a look at the following screenshots for
the different steps in this recipe to better understand how the data changes shape.
It goes from being wide to long, and then back to wide again, but in summary form.

We will use the following command to perform this action:

sector_avg <- melt(finviz, id="Sector")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

105

2.	 Next, we need to filter so that the data frame contains only the fields we want
to average:
sector_avg <-
subset(sector_avg,variable%in%c("Price","P.E","PEG","P.S","P.B"))

Now your sector_avg data frame should look like this:

Each column heading (variable) is now listed vertically alongside its value. This allows
us to do some grouping later to get the averages for each variable.

3.	 Not all stocks in our original dataset had all of these values; where the values were
null, we wanted to remove the records. We also wanted to make sure all of our values
are numeric:
sector_avg <- (na.omit(sector_avg))

sector_avg$value <- as.numeric(sector_avg$value)

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

106

4.	 The next step is to cast the data to make it wide again. This will produce a column for
each of the fields we filtered, and will now contain the average by sector. We will also
rename the columns so that we know they are sector averages:
sector_avg <- dcast(sector_avg, Sector~variable, mean)

colnames(sector_avg)[2:6] <-
c("SAvgPE","SAvgPEG","SAvgPS","SAvgPB","SAvgPrice")

You will get the following plot as output:

5.	 We will now do the exact same thing, but at the industry level:
industry_avg <- melt(finviz, id=c("Sector","Industry"))

industry_avg <- subset(industry_avg,variable %in%
c("Price","P.E","PEG","P.S","P.B"))

industry_avg <- (na.omit(industry_avg))

industry_avg$value <- as.numeric(industry_avg$value)

industry_avg <- dcast(industry_avg, Sector+Industry~variable,
mean)

industry_avg <- (na.omit(industry_avg))

colnames(industry_avg)[3:7] <-
c("IAvgPE","IAvgPEG","IAvgPS","IAvgPB","IAvgPrice")

6.	 We will now add the sector and industry average columns to our original
finviz dataset:
finviz <- merge(finviz, sector_avg, by.x="Sector",
by.y="Sector")

finviz <- merge(finviz, industry_avg,
by.x=c("Sector","Industry"), by.y=c("Sector","Industry"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

107

You might have noticed that the number of records in the finviz data frame
decreased when we executed the last line of code. It removed all stock that didn't
have an industry average from the dataset. This is fine since the overall goal is to
narrow down the list of stocks, and we wouldn't have had sufficient information to
generate a valuation for these stocks anyway.

7.	 Now, it's time to put these new fields to use. First, we will add 10 placeholder fields
that contain all 0s. These will be used to track whether a stock is undervalued, based
on being lower than the sector or industry average:
finviz$SPEUnder <- 0

finviz$SPEGUnder <- 0

finviz$SPSUnder <- 0

finviz$SPBUnder <- 0

finviz$SPriceUnder <- 0

finviz$IPEUnder <- 0

finviz$IPEGUnder <- 0

finviz$IPSUnder <- 0

finviz$IPBUnder <- 0

finviz$IPriceUnder <- 0

8.	 Next, we will replace the 0s with 1s wherever the respective value for the stock is
less than the average to indicate that these stocks might be undervalued based
on that metric:
finviz$SPEUnder[finviz$P.E<finviz$SAvgPE] <- 1

finviz$SPEGUnder[finviz$PEG<finviz$SAvgPEG] <- 1

finviz$SPSUnder[finviz$P.S<finviz$SAvgPS] <- 1

finviz$SPBUnder[finviz$P.B<finviz$SAvgPB] <- 1

finviz$SPriceUnder[finviz$Price<finviz$SAvgPrice] <- 1

finviz$IPEUnder[finviz$P.E<finviz$IAvgPE] <- 1

finviz$IPEGUnder[finviz$PEG<finviz$IAvgPEG] <- 1

finviz$IPSUnder[finviz$P.S<finviz$IAvgPS] <- 1

finviz$IPBUnder[finviz$P.B<finviz$IAvgPB] <- 1

finviz$IPriceUnder[finviz$Price<finviz$IAvgPrice] <- 1

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

108

9.	 Finally, we will sum these 10 columns to create a new column with the index value
telling you, on a scale of 1 to 10, how undervalued the stock is based on the different
dimensions that were considered:
finviz$RelValIndex <- apply(finviz[79:88],1,sum)

How it works...
Relative valuation involves comparing a stock's statistics with that of similar stocks in order
to determine whether the stock is overvalued or undervalued. In an overly simplified example,
a stock with a lower P/E ratio relative to the industry average P/E ratio for their industry (all
else being equal) can be considered undervalued and might make a decent investment if the
company has good financial health. Once we have this, we can filter for the stocks that look
most promising, such as ones that have a RelValIndex of 8 or higher:

potentially_undervalued <- subset(finviz,RelValIndex>=8)

The potentially_undervalued data frame we just created should look like this:

We admit that this is an overly simplistic approach. However, it provides a framework to expand
into more complex calculations. For example, once comfortable with this process, you can:

ff Add in customized criteria to assign a 1 to indicate that the stock is undervalued

ff Weigh the values differently

ff Add or remove criteria

ff Create more precise index values than just 1s and 0s, and so on

The sky is the limit here, but the process is the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

109

Screening stocks and analyzing historical
prices

When we are looking for stocks to invest in, we need to have a way to narrow the list down.
In other words, we need to eliminate stocks that we don't think will be good investments.
The definition of a good investment varies from person to person, but in this section, we will
use some basic criteria to reduce our master list of stocks to just a few that we think might
make good prospects. Once comfortable with the process, we encourage you to modify the
criteria based on your own opinion of what defines a stock worth investing in. Once we have
our prospects, we will analyze their historical prices and see what conclusions we can draw
from them.

Getting ready
We will start with the finviz dataset as it was at the end of the previous section, along with
the sector and industry averages columns, the binary undervalued columns, and the index
values that summed up the values in the binary columns.

In addition to the packages we have used so far in this chapter, we will also need the zoo
package for this section. This will help us calculate moving averages for the historical stock
prices that we will pull.

How to do it...
The steps that you are about to embark upon will allow you to screen stocks:

1.	 First, choose some stock screening criteria, that is, a way to select the stocks within
the finviz dataset that we feel have the potential to be good investments. Here are
some sample criteria to start with:

�� Only US companies

�� Price per share between $20 and $100

�� Volume greater than 10,000

�� Positive earnings per share currently and projected for the future

�� Total debt to equity ratio less than 1

�� Beta less than 1.5

�� Institutional ownership less than 30 percent

�� Relative valuation index value greater than 8

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

110

2.	 As mentioned, these are just examples. Feel free to remove criteria, add criteria, or
make changes based on what you think will give you the best output. The goal is to
narrow the list down to less than 10 stocks.

3.	 Next, we apply our criteria to subset the finviz data frame into a new data frame
called target_stocks:
target_stocks <- subset(finviz, Price>20 & Price<100 &
Volume>10000 &

 Country=="USA" &

 EPS..ttm.>0 &

 EPS.growth.next.year>0 &

 EPS.growth.next.5.years>0 &

 Total.Debt.Equity<1 & Beta<1.5 &

 Institutional.Ownership<30 &

 RelValIndex>8)

At the time of writing this book, this produces a target list of six stocks, as shown
in the following screenshot. You might get a different number or different stocks
altogether if you pull updated data from the Web.

4.	 Now, let's go out and get historical prices for our target list of stocks so that we can
see how their prices have looked over time. We will use a for loop to iterate through
the list of symbols and pull prices for each one, but we will break up the loop across
several steps and explain what each chunk is doing:
counter <- 0

for (symbol in target_stocks$Ticker){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

111

The preceding command initializes a counter to keep track of where we are in our list
of target stocks. Immediately after, we begin the for loop by telling every symbol in
our target list to do the following:
 url <-
paste0("http://ichart.finance.yahoo.com/table.csv?s=",symbol,"&a=0
8&b=7&c=1984&d=01&e=23&f=2014&g=d&ignore=.csv")

 stock <- read.csv(url)

 stock <- na.omit(stock)

 colnames(stock)[7] <- "AdjClose"

 stock[,1] <- as.Date(stock[,1])

 stock <- cbind(Symbol=symbol,stock)

This code assigns a URL to the url variable that has the current stock symbol
embedded into it. Then, we read the data located at this URL and assign it to a data
frame called stock. We then do some clean up and formatting by removing all null
values from the data frame, renaming the last column, making sure the Date column
is formatted as a date that R can recognize, and adding the stock's symbol to the first
row of the data frame.

5.	 The next few lines of our for loop will calculate some moving averages so that we
can compare them with the daily stock prices. For this step, make sure you have the
zoo package mentioned at the beginning of this section installed and loaded.

The first part will calculate both a 50-day moving average and a 200-day
moving average:
 maxrow <- nrow(stock)-49

 ma50 <-
cbind(stock[1:maxrow,1:2],rollmean(stock$AdjClose,50,align="ri
ght"))

 maxrow <- nrow(stock)-199

 ma200 <-
cbind(stock[1:maxrow,1:2],rollmean(stock$AdjClose,200,align="r
ight"))

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

112

The second part will combine the moving average data frames with the data frame
containing the historical stock prices so that everything is part of the same dataset:

 stock <-
merge(stock,ma50,by.x=c("Symbol","Date"),by.y=c("Symbol",
"Date"),all.x=TRUE)

 colnames(stock)[9] <- "MovAvg50"

 stock <-
merge(stock,ma200,by.x=c("Symbol","Date"),by.y=c("Symbol",
"Date"),all.x=TRUE)

 colnames(stock)[10] <- "MovAvg200"

6.	 Next, we will plot a historical chart for each stock that our for loop iterates through,
and then save that plot:
 price_chart <-
melt(stock[,c(1,2,8,9,10)],id=c("Symbol","Date"))

 qplot(Date, value, data=price_chart, geom="line",
color=variable,

 main=paste(symbol,"Daily Stock Prices"),ylab="Price")

 ggsave(filename=paste0("stock_price_",counter,".png"))

The charts that get generated and saved should look like the following two charts:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

113

The next part of our loop summarizes the opening, high, low, and closing prices of
the current stock:
price_summary <- ddply(stock, "Symbol", summarise,
open=Open[nrow(stock)],

 high=max(High),
low=min(Low),close=AdjClose[1])

Then, it accumulates the summarized opening, high, low, and closing prices in
a data frame called stocks so that the different stocks can be compared later.
Also, it separately accumulates all the daily historical prices for the stocks in a
data frame called price summaries so that they can be compared as well:
 if(counter==0){

 stocks <- rbind(stock)

 price_summaries <- rbind(price_summary)

 }else{

 stocks <- rbind(stocks, stock)

 price_summaries <- rbind(price_summaries, price_summary)

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

114

At the end of the loop, we increment our counter by one, and then close our for loop
with a curly bracket:

counter <- counter+1

}

We broke our loop into pieces in order to explain what each part of the
loop does. If you want to see what the entire for loop should look like,
check the accompanying code file for this chapter.

7.	 Once we have iterated through all the stock symbols, we are left with a data frame
named stocks that contains the historical prices for all the symbols in our target list
and a data frame named price_summaries that holds the summaries for all our
stocks. Let's graph them and see what they look like.

First, we will graph the historical prices for all our stocks:
qplot(Date, AdjClose, data=stocks, geom="line", color=Symbol,

 main="Daily Stock Prices")

ggsave(filename=("stock_price_combined.png"))

The preceding commands will produce the following graph:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

115

8.	 Then, let's graph the price summaries:

summary <- melt(price_summaries,id="Symbol")

ggplot(summary, aes(x=variable, y=value, fill=Symbol)) +

 geom_bar(stat="identity") + facet_wrap(~Symbol)

ggsave(filename=("stock_price_summaries.png"))

The resulting graph should look similar to this:

How it works...
Daily stock price charts are very "spiky" or volatile, and this sometimes makes them difficult
to read. Moving averages smooth out the price fluctuations of a stock so that you can get a
better sense of whether the stock is moving up or down over time.

Moving averages are also used to time investment in stocks. In other words, they are used as
a guide to determine whether to invest in a stock now or to wait. There are varying opinions
about what signals the best time, but one example is when the stock's 50-day moving average
is below its 200-day moving average but is trending up. For more on moving averages, please
see http://www.investopedia.com/university/movingaverage/.

www.it-ebooks.info

http://www.it-ebooks.info/

Modeling Stock Market Data (R)

116

The combined historical price chart we generated in this section shows us the degree to which
our target stocks' prices move in tandem. If you are looking to invest in multiple stocks, it can
be good to invest in ones where the prices are not too highly correlated. You can also visualize
how volatile one stock has been when compared to another. In our graph, you can see that
the symbols WPZ and NRCIB have been fairly volatile, while the other symbols have been
somewhat less volatile.

Another way to look at the price comparisons is by examining the price summaries' bar chart
we created. This chart shows the opening, high, low, and closing prices for the period analyzed.
The opening price is the very first price the stock traded at, the closing price is the very last price
the stock has traded at thus far, the high price is the highest price the stock has been at during
the period, and the low price is the lowest price the stock has been at during the period. The
volatility mentioned previously can be viewed in a different way on this graph, as you can clearly
see the difference between the highs and the lows of our two most volatile stocks. This chart
also lets you see where the stock's closing price is relative to its all-time high and all-time low,
which might help to give you a clue of the fairness of its current valuation.

www.it-ebooks.info

http://www.it-ebooks.info/

5
Visually Exploring

Employment Data (R)

In this chapter, we will cover:

ff Preparing for analysis

ff Importing employment data into R

ff Exploring the employment data

ff Obtaining and merging additional data

ff Adding geographical information

ff Extracting state- and county-level wage and employment information

ff Visualizing geographical distributions of pay

ff Exploring where the jobs are, by industry

ff Animating maps for a geospatial time series

ff Benchmarking performance for some common tasks

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

118

Introduction
This project will introduce you to the US employment data provided by the Bureau of Labor
Statistics (BLS) of the United States government. The BLS is the federal agency responsible
for measuring labor market activity and working conditions and prices in the US economy. Its
mission is the collection, analysis, and dissemination of essential economic information to
support public and private decision-making. In this project, we will use the aggregate annual
data on employment and pay, stratified by geography and industry, from 2012, derived from
the Quarterly Census of Employment and Wages (QCEW). This data can be downloaded as
a compressed comma-separated value (csv) file at http://www.bls.gov/cew/data/
files/2012/csv/2012_annual_singlefile.zip, which contains the single file 2012.
annual.singlefile.csv. This file has 15 columns and about 3.5 million rows.

The QCEW is a quarterly collection of data, via the corporate tax collection system, related
to employment and wages reported by employers. This census covers about 98 percent of
the US civilian jobs, and excludes proprietors, unincorporated self-employed, unpaid family
members, and some farm and domestic workers. The data is available as the aggregate data
by county, metropolitan area (MSA), state, and national levels by industry. This government
program has been in place since the 1930s in some form, and the current form has been
in existence since 2003. The data is based on corporate reports to federal and local
governments that are required by law, so it should be relatively free of reporting bias. This
data gives a snapshot, in aggregate, of the wages and employment levels in the country by
geography and industry.

The basic questions that we will address in this chapter are the geographical distribution of
pay and employment in the US in 2012 and the last available full year of data at the time
of writing this book. We will look at state and county levels as well as drill down to a few
industries. We will also look at the temporal change in the geographical distribution of pay for
the period 2003-2012 and what this reveals about the changing employment landscape in
the US.

The goal of this chapter, is to guide you through the data science pipeline using a step-by-step
example, which, in this case, is the exploration of government employment data freely available
at the U.S. Government's BLS. We will work through ingesting the data into R, transforming
and manipulating the data, creating subsets of the data, and generating visualizations that
might provide some insight about patterns in the data. We hope that this example will serve as
another exemplar that you can transfer to other projects for similar purposes.

Please be aware that the content in this chapter is more advanced than
some of the previous chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

119

We assume that you have already gone through Chapter 1, Preparing Your Data Science
Environment, and have RStudio readily available on the computer that you will use to
complete the recipes in this chapter.

Preparing for analysis
This recipe will prepare the groundwork with the tools you need to complete this project. If you
do not have R installed on your computer, please see the instructions in Chapter 1, Preparing
Your Data Science Environment.

Getting ready
You need a computer with R installed and an Internet connection.

How to do it…
The following steps will get you prepared for the remainder of this chapter by downloading the
dataset from the BLS website and ensuring that we have the needed R packages:

1.	 Download the 27.5 MB compressed data from http://www.bls.gov/cew/data/
files/2012/csv/2012_annual_singlefile.zip, and save it to a location that
you will remember.

2.	 Uncompress the file by right-clicking on it in Explorer or Finder, and use the
appropriate menu item.

If you are familiar with the command line in the terminal in Linux/Mac OS
X, you can easily uncompress the downloaded file using unzip 2012_
annual_singlefile.zip.

3.	 Launch the RStudio IDE on your computer (or just plain R for purists).

4.	 Load the R packages we will need for this project:
library(data.table)

library(plyr)

library(dplyr)

library(stringr)

library(ggplot2)

library(maps)

library(bit64)

library(RColorBrewer)

library(choroplethr)

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

120

If you do not have one of these packages installed on your machine, you can
easily install it using the following command, exchanging data.table for
the package name to be installed:
install.packages('data.table',repos='http://cran.r-
project.org')

The R package repository, known as CRAN, has several mirrors around the world.
A "mirror," in this usage, is a duplicate copy of the software repository that is run
on a server in a different region, providing faster access for individuals near the
location. You can, and should, choose a mirror geographically closest to your location
to speed up the package download. In the preceding code snippet, you change
http://cran.r-project.org to the URL of your preferred CRAN mirror.

5.	 Finally, set your working directory to the path where you have saved the file. This will
tell R where you want it to look for the file:
setwd('path')

How it works…
We will primarily use three different R packages that are extremely useful in importing,
manipulating, and transforming large datasets.

The package data.table improves upon the data.frame object in R, making operations
faster and allowing the specification of an index variable in a dataset, a concept familiar to
database experts. It also allows the fast aggregation of large data, including very fast-ordered
joins. We will primarily use the data.table package for its function fread, which allows
(very) fast importing of large-structured datasets into R. We will also investigate the relative
performance of functions in this package against other functions we use in the benchmarking
recipe later in this chapter.

The stringr package provides tools for text and string manipulation. This package
streamlines and syntactically unifies available string manipulation functionalities available
in R, making tasks involving string search, manipulation, and extraction much easier. We will
need these functionalities here.

The dplyr package is the next iteration of the popular package, plyr, by Dr. Hadley
Wickham. It is targeted at rectangular data and allows very fast aggregation, transformation,
summarization, column selection, and joins. It also provides syntactical sugar to allow
commands to be strung together, piping the results of one command into the next. This will be
our workhorse in this project.

The ggplot2 package will be our visualization workhorse. It implements the Grammar of
Graphics paradigm in R and provides a very flexible means of creating visualizations.

The maps package provides geographical information about the US that we will use in
our visualizations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

121

See also
ff Refer to the dplyr reference material available at https://github.com/

hadley/dplyr/blob/master/README.md, which has links to vignettes and other
reference materials

ff Refer to the ggplot2 reference manual available at http://cran.r-project.
org/web/packages/ggplot2/ggplot2.pdf

ff Refer to the sqldf reference materials available at https://code.google.
com/p/sqldf/

Importing employment data into R
Our first step in this project is to import the employment data into R so that we can start
assessing the data and perform some preliminary analysis.

Getting ready
You should be ready to go ahead after completing the previous recipe.

How to do it…
The following steps will guide you through two different ways of importing the CSV file:

1.	 We can directly load the data file into R (even from the compressed version) using the
following command:
ann2012 <-
read.csv(unz('2012_annual_singlefile.zip','2012.annual.singlef
ile.csv'),stringsAsFactors=F)

However, you will find that this takes a very long time with this file. There are
better ways.

2.	 We chose to import the data directly into R since there are further manipulations
and merges we will do later. We will use the fread function from the data.table
package to do this:

library(data.table)

ann2012 <- fread('data/2012.annual.singlefile.csv')

That's it. Really! It is also many times faster than the other method. It will not convert
character variables to factors by default, so if you need factors later, you will have to
convert them, but that is, in our opinion, a desirable feature in any case.

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

122

How it works…
We were familiar with read.csv from Chapter 2, Driving Visual Analysis with Automobile Data
(R). It basically reads the data line by line, separating columns by commas. As the data we are
using for this project is 3.5 million rows, it is still small enough to fit into the memory of most
modern personal computers, but will take quite some time to import using read.csv().

The fread function from the data.table package uses an underlying C-level function to
figure out, from the file, the length, number of fields, data types, and delimiters in the file, and it
then reads the file using the parameters it has learned. As a result, it is significantly faster than
read.csv. There is an extensive description of the details of fread in the R documentation.

There's more…
One of the limitations currently in R is that data imported into R needs to fit into the memory
of the host computer. For large datasets, using a SQL-based database for data storage and
manipulation takes advantage of the speed of the SQL-based database and circumvents R's
memory limitation. Often, in enterprise environments, data is stored in Oracle, SAP, MySQL or
PostgreSQL databases.

The sqldf package is extremely useful if you are from a SQL background, and many entering
the world of data science have such a background. This package allows you to use SQL
commands and queries within R, and treats data.frame objects in R just as you would treat
tables in a SQL database. It also allows you to connect with most SQL-based databases that
you have access to, including SQLite, MySQL, and PostgreSQL, among others.

As a demonstration, we can import data into a SQLite database, and then read and
manipulate it there:

sqldf('attach blsdb as new')

read.csv.sql('data/2012.annual.singlefile.csv',

sql='create table main.ann2012 as select * from file',

dbname='blsdb')

You must have SQLite installed and available on your machine for the
preceding code to work. We will leave the installation to you.

This will also take some time, but you'll have the data in SQLite. The preceding command
actually doesn't ingest the data into R, but just imports it into SQLite.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

123

You can import the data into R using the following command:

ann2012<- sqldf("select * from main.ann2012", dbname='blsdb')

You can also choose to do your manipulations using SQL within SQLite with sqldf. For some
users, it will be easier to manipulate the data using SQL, and then merely import the munged
data into R.

As the first part of the book is focused on R, we will not delve deeper into the use of sqldf
beyond what was presented here. However, if you are more familiar with SQL, you are
welcome to replicate the steps presented in R in the various recipes with SQL commands,
but we'll leave this as an exercise for you.

See also
ff Refer to the SQLite documentation available at http://www.sqlite.org

ff Refer to the data.table documentation available at http://datatable.r-
forge.r-project.org/

Exploring the employment data
Now that the data is imported into R and we have learned some strategies to import larger
datasets into R, we will do some preliminary analysis of the data. The purpose is to see what
the data looks like, identify idiosyncrasies, and ensure that the rest of the analysis plan can
move forward.

Getting ready
If you completed the last recipe, you should be ready to go.

How to do it…
The following steps will walk you through this recipe to explore the data:

1.	 First, let's see how large this data is:
>dim(ann2012)

[1] 3556289 15

Good, it's only 15 columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

124

2.	 Let's take a peek at the first few rows so that we can see what the data looks like:
head(ann2012)

You can refer to the following screenshot:

What are the variables own_code, industry_code, and so on, and what do they
mean? We might need more data to understand this data.

3.	 There is also a weird idiosyncrasy in this data. Some of the values for total_
annual_wages, taxable_annual_wages and annual_contributions look
impossibly small. A peek at the actual data shows that these numbers don't appear
to be correct. However, fread actually gives an indication of what is going on:
ann2012 <- fread('data/2012.annual.singlefile.csv', sep=',',
colClasses=c('character', 'integer', 'integer', 'integer',
'integer', 'integer', 'character',rep('integer',8)))

You can refer to the following screenshot:

4.	 This points to the fact that the bit64 package might be needed to properly display
these large numbers. Installing and loading this package, and then reimporting the
data corrects the problem, as seen in the following command lines:

install.packages('bit64')

library('bit64')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

125

ann2012 <- fread('data/2012.annual.singlefile.csv', sep=',',
colClasses=c('character', 'integer', 'integer', 'integer',
'integer', 'integer', 'character',rep('integer',8)))

You can refer to the following screenshot:

How it works…
The head command displays the first few lines (the default is the top six lines) of a data
frame. We notice that some of the headings are self-explanatory, but some allude to codes
that we currently don't have access to. We will have to obtain additional data in order to make
a meaningful analysis. We could have looked at the data without importing it into R. The UNIX
command, less, and the Windows PowerShell command, type, could have shown us the
same thing as head did.

See also
ff Refer to the documentation for the dataset available at http://www.bls.gov/

cew/doc/layouts/csv_annual_layout.htm

Obtaining and merging additional data
In the previous recipe, we found that additional data was needed to understand what the data
in the csv file actually represents, and this recipe will directly address this need.

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

126

Getting ready
We can find additional data on the BLS website at http://www.bls.gov/cew/datatoc.
htm under the header Associated Codes and Titles. There are five files there, which we will
download to our computer. They are as follows:

ff agglevel_titles.csv (http://www.bls.gov/cew/doc/titles/agglevel/
agglevel_titles.csv)

ff area_titles.csv (http://www.bls.gov/cew/doc/titles/area/area_
titles.csv)

ff industry_titles.csv (http://www.bls.gov/cew/doc/titles/industry/
industry_titles.csv)

ff ownership_titles.csv (http://www.bls.gov/cew/doc/titles/
ownership/ownership_titles.csv)

ff size_titles.csv (http://www.bls.gov/cew/doc/titles/size/size_
titles.csv)

We download them to our computer, remembering where we stored them. We need to get
ready to import them into R and merge them with our original data.

How to do it…
The following steps will lead you through loading these files into R and joining them into a
larger data frame:

1.	 We will now import these data files into R using the following command lines:
for(u in c('agglevel','area','industry',

'ownership','size')){

assign(u,read.csv(paste('data/',u,'_titles.csv',sep=''),
stringsAsFactors=F))

}

This is an example of code that makes it easier for us to do repeated tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

127

2.	 Each of these datasets has exactly one variable (column header) in common with our
original data, which is ann2012, as shown in the following screenshot:

So, it should be fairly easy to put the datasets together. We'll join four of these
datasets with ann2012 now, and save area, that is, the data from area_titles.
csv, for the next recipe, since we want to manipulate it a bit:
codes <- c('agglevel','industry','ownership','size')

ann2012full <- ann2012

for(i in 1:length(codes)){

eval(parse(text=paste('ann2012full <- left_join(ann2012full,
',codes[i],')', sep='')))

}

The end result is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

128

How it works…
In step 1 of the How to do it… section, we want to assign each dataset to its own object.
We can write an individual line of code for each import, but this code allows us to do this
much faster, and it will be easier to maintain in the future. The assign command takes
two basic inputs: a variable name and a value to be assigned to the variable name. The
for loop here doesn't iterate over numbers, but over objects. At the first iteration, u takes
the value agglevel. The assign function takes the name agglevel and assigns it the
result of the read.csv command. Within the paste command, we again use the value of
u, since all the files we are importing have the same naming convention. It is this common
naming convention that allows us to use this type of coding. Thus, the first iteration gives
assign('agglevel', read.csv('data/agglevel_title.csv')), and so forth.

In step 2, we join the datasets together. We first copy the original data to a new name,
ann2012full, so that we can build up this new dataset without corrupting the original data
in case something goes wrong. We then use a macro-like construct to join all the new datasets
to the original one, iterating over numbers in the for loop and the indices of the vector code.

Let's work our way inside out in this complex command (a sound strategy to understand
complex code in general). Within the paste command, we create the command we would
like evaluated. We want to do a left_join (this is from the dplyr package), joining
ann2012full with agglevel in the first iteration. The left_join ensures that all the rows
of ann2012full are preserved, and the rows of agglevel are appropriately replicated to
match the number of rows in ann2012full. Since there is only one common variable in the
two datasets, left_join automatically chooses to join using this.

In general, left_join will join the two datasets using all the variable names
it finds common between the two. If you do not want this, you can specify
which variables you want to use for the join by specifying, for example, left_
join(ann2012full, agglevel, by="agglvl_code ").

The eval statement then evaluates the command we constructed using the paste
command. We iterate over the names in code so that each of the four datasets gets joined
with ann2012full.

A quick check will show that the number of rows in ann2012full after the joins, and in
ann2012, is the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

129

Adding geographical information
The main purpose of this chapter is to look at the geographical distribution of wages across
the US. Mapping this out requires us to first have a map. Fortunately, maps of the US, both
at the state-and county-levels, are available in the maps package, and the data required to
make the maps can be extracted. We will align our employment data with the map data in this
recipe so that the correct data is represented at the right location on the map.

Getting ready
We already have the area dataset imported into R, so we are ready to go.

How to do it…
The following steps will guide you through the process of creating your first map in R:

1.	 Let's first look at the data in area:
head (area)

The output is shown in the following screenshot:

We see that there is something called area_fips here. Federal Information
Processing Standards (FIPS) codes are used by the Census Bureau to designate
counties and other geographical areas in the US.

2.	 We want to capitalize all the names, according to the conventions. We'll write a small
function to do this:
simpleCap <-function(x){

if(!is.na(x)){

s <- strsplit(x,' ')[[1]]

paste(toupper(substring(s,1,1)), substring(s,2),

sep='', collapse=' ')

} else {NA}

}

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

130

3.	 The maps package contains two datasets that we will use; they are county.fips
and state.fips. We will first do some transformations. If we look at county.fips,
we notice that the FIPS code there is missing a leading 0 on the left for some of the
codes. All the codes in our employment data comprise five digits:
> data(county.fips)

> head(county.fips)

 fips polyname

1 1001 alabama,autauga

2 1003 alabama,baldwin

3 1005 alabama,barbour

4 1007 alabama,bibb

5 1009 alabama,blount

6 1011 alabama,bullock

4.	 The stringr package will help us out here:
county.fips$fips <- str_pad(county.fips$fips, width=5,
pad="0")

5.	 We want to separate the county names from the polyname column in county.
fips. We'll get the state names from state.fips in a minute:
county.fips$polyname <- as.character(county.fips$polyname)

county.fips$county <- sapply(

 gsub('[a-z\]+,([a-z\]+)','\\1',county.fips$polyname),

 simpleCap)

county.fips <- unique(county.fips)

6.	 The state.fips data involves a lot of details:
> data(state.fips)

The output is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

131

7.	 We'll again pad the fips column with a 0, if necessary, so that they have two digits,
and capitalize the state names from polyname to create a new state column. The
code is similar to the one we used for the county.fips data:
state.fips$fips <- str_pad(state.fips$fips, width=2, pad="0",

side='left')

state.fips$state <- as.character(state.fips$polyname)

state.fips$state <-
 gsub("([a-z\]+):[a-z\ \\']+",'\\1',state.fips$state)

state.fips$state <- sapply(state.fips$state, simpleCap)

8.	 We make sure that we have unique rows. We need to be careful here, since we only
need to have uniqueness in the fips and state values, and not in the other code:
mystatefips <-unique(state.fips[,c('fips','abb','state')])

The unique function, when applied to a data.frame object, returns the unique
rows of the object. You might be used to using unique on a single vector to find the
unique elements in the vector.

9.	 We get a list of the lower 48 state names. We will filter our data to look only at
these states:
lower48 <-
setdiff(unique(state.fips$state),c('Hawaii','Alaska'))

The setdiff set operation looks for all the elements in the first set that are
not in the second set.

10.	 Finally, we put all this information together into a single dataset, myarea:
myarea <- merge(area, county.fips,
by.x='area_fips',by.y='fips', all.x=T)

myarea$state_fips <- substr(myarea$area_fips, 1,2)

myarea <- merge(myarea,
mystatefips,by.x='state_fips',by.y='fips', all.x=T)

11.	 Lastly, we join the geographical information with our dataset, and filter it to keep only
data on the lower 48 states:
ann2012full <- left_join(ann2012full, myarea)

ann2012full <- filter(ann2012full, state %in% lower48)

12.	 We now store the final dataset in an R data (rda) file on disk. This provides an
efficient storage mechanism for R objects:

save(ann2012full, file='data/ann2014full.rda',compress=T)

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

132

How it works…
The 12 steps of this recipe covered quite a bit of material, so let's dive into some of the
details, starting with step 2. The simpleCap function is an example of a function in R. We use
functions to encapsulate repeated tasks, reducing code duplication and ensuring that errors
have a single point of origin. If we merely repeat code, changing the input values manually, we
can easily make errors in transcription, break hidden assumptions, or accidentally overwrite
important variables. Further, if we want to modify the code, we have to do it manually at every
duplicate location. This is tedious and error-prone, and so we make functions, a best practice
that we strongly encourage you to follow.

The simpleCap function uses three functions: strsplit, toupper and substring. The
strsplit function splits strings (or a vector of strings) whenever it finds the string fragment
to split on (in our case, ' ' or a space). The substring function extracts substrings from
strings between the character locations specified. Specifying only one character location
implies extracting from this location to the end of the string. The toupper function changes
the case of a string from lowercase to uppercase. The reverse operation is done by tolower.

From step 3, packages often have example data bundled with them. county.fips and
state.fips are examples of datasets that have been bundled into the maps package.

The stringr package, used in step 4, is another package by Dr. Wickham, which provides
string manipulation functions. Here, we use str_pad, which pads a string with a character
(here, 0) to give the string a particular width.

In step 5, we use the inbuilt regular expression (regex) capabilities in R. We won't talk
about regular expressions too much here. The gsub function looks for the first pattern and
substitutes the second pattern in the string specified as third. Here, the pattern we're looking
for comprises one or more letters or spaces ([a-z\]+), then a comma, and then one or
more letters or spaces. The second set of letters and spaces is what we want to keep, so we
put parentheses around it. The \\1 pattern says to replace the entire pattern with the first
pattern we used parentheses around. This replacement happens for every element of the
polyname field.

Since we want capitalization for every element in polyname, we can use a for loop, but
choose to use the more efficient sapply instead. Every element in polyname is passed
through the simpleCap function, and is thus capitalized in step 7.

In step 10, we join the area, county.fips, and mystatefips datasets together. We use
the merge function rather than left_join, since the variables we want to join on have
different names for different data.frame objects. The merge function in the R standard
library allows this flexibility. To ensure a left join, we specify all.x=TRUE.

In step 11, we join the myarea data frame to our ann2014full dataset. We then use the
filter function to subset the data, restricting it to data from the lower 48 states. The
filter function is from the dplyr package. We'll speak about the functionalities in dplyr
in the next recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

133

See also
ff Read about regular expressions in R at http://stat.ethz.ch/R-manual/R-

patched/library/base/html/regex.html

ff Refer to information about the stringr library available at http://journal.r-
project.org/archive/2010-2/RJournal_2010-2_Wickham.pdf

Extracting state- and county-level wage and
employment information

So far, we worked to get the data into shape for analysis. We'll now start with looking at the
geographical distribution of the average annual pay per state and per county.

Getting ready
If you have thoroughly followed the recipes in this chapter till now, you will have the data in a
form from where you can extract information at different levels. We're good to go!

How to do it…
We will first extract data from ann2014full at the state-level. We need to perform the
following steps:

1.	 We look at the aggregate state-level data. A peek at agglevel tells us that the code
for the level of data that we want is 50. Also, we only want to look at the average
annual pay (avg_annual_pay) and the average annual employment level (annual_
avg_emplvl), and not the other variables:
d.state <- filter(ann2014full, agglvl_code==50)

d.state <- select(d.state, state, avg_annual_pay,
annual_avg_emplvl)

2.	 We create two new variables, wage and empquantile, which discretizes the pay
and employment variables:
d.state$wage <- cut(d.state$avg_annual_pay,

quantile(d.state$avg_annual_pay, c(seq(0,.8, by=.2), .9, .95,
.99, 1)))

d.state$empquantile <- cut(d.state$annual_avg_emplvl,
quantile(d.state$annual_avg_emplvl,
c(seq(0,.8,by=.2),.9,.95,.99,1)))

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

134

3.	 We also want the levels of these discretized variables to be meaningful. So, we run
the following commands:
x <- quantile(d.state$avg_annual_pay, c(seq(0,.8,by=.2),.9,
.95, .99, 1))

xx <- paste(round(x/1000),'K',sep='')

Labs <- paste(xx[-length(xx)],xx[-1],sep='-')

levels(d.state$wage) <- Labs

x <- quantile(d.state$annual_avg_emplvl,

c(seq(0,.8,by=.2),.9, .95, .99, 1))

xx <- ifelse(x>1000, paste(round(x/1000),'K',sep=''),

round(x))

Labs <- paste(xx[-length(xx)],xx[-1],sep='-')

levels(d.state$empquantile) <- Labs

4.	 We repeat this process at the county-level. We will find that the appropriate
aggregation level code is 70 (agglvl_code==70). Everything else will be the
same. Let's try to be a bit smarter this time around. First of all, we will discretize our
variables the same way, and then change the labels to match. A function might be a
good idea! The following command lines depict this:
Discretize <- function(x, breaks=NULL){

 if(is.null(breaks)){

 breaks <- quantile(x, c(seq(0,.8,by=.2),.9, .95, .99, 1))

 if (sum(breaks==0)>1) {

 temp <- which(breaks==0, arr.ind=TRUE)

 breaks <- breaks[max(temp):length(breaks)]

 }

 }

 x.discrete <- cut(x, breaks, include.lowest=TRUE)

 breaks.eng <- ifelse(breaks > 1000,

 paste0(round(breaks/1000),'K'),

 round(breaks))

 Labs <- paste(breaks.eng[-length(breaks.eng)], breaks.eng[-
1],

 sep='-')

 levels(x.discrete) <- Labs

 return(x.discrete)

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

135

5.	 We alluded to the syntactic sugar of dplyr before; now, we see it in action. The
dplyr package allows you to string together different operations, piping the results
of one operation as input for the next, using the %.% operator. We'll describe the
main operations of dplyr in the next recipe. Using some function encapsulation, the
following code achieves everything that we spent significantly more lines of code to
achieve in steps 1-3:

d.cty <- filter(ann2012full, agglvl_code==70)%.%

select(state,county,abb, avg_annual_pay, annual_avg_emplvl)%.%

mutate(wage=Discretize(avg_annual_pay),

empquantile=Discretize(annual_avg_emplvl))

We now have the basic datasets we need to visualize the geographic patterns in the data.

How it works…
The preceding five steps covered a lot of R code, so let's start breaking things down. The
two functions filter and select are from dplyr. The dplyr package provides five basic
functions, which are as follows:

ff filter: This creates subsets of the data based on specified criteria

ff select: This selects columns or variables from the dataset

ff mutate: This creates new columns or variables in a dataset, which are derived from
other variables in the dataset

ff group_by: This splits the data by a variable or set of variables, and subsequent
functions operate on each component defined by a unique variable value or
combination

ff arrange: This rearranges the data (or sorts it) according to variable(s) in the dataset

Each of these functions can operate on a data.frame, data.table, or tbl object, which is
part of dplyr.

The cut function discretizes a continuous variable based on specified breakpoints or
thresholds. Here, we specify the thresholds based on quantiles of the variable. We specify
which quantiles we want by a sequence of fractions:

c(seq(0, .8, by=.2), .9, .95, .99, 1)

This is done using the seq function to create a regular sequence of numbers with a start
value, an end value, and the difference between two successive values.

In step 3, we take the specified thresholds and format them. Numbers above 1,000 are
truncated at the thousands place and appended with a K, as is conventionally seen. Using
round without specifying the number of decimal places implies no decimal places.

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

136

Further, in step 3, we want our labels to represent a range. So, we need to create the labels
by putting a dash (-) between successive values of our formatted thresholds. One way of
doing this is to create two copies of the vector of thresholds, one without the last element and
another without the first element. We then paste them together with -. Notice that this trick
allows successive thresholds to be aligned and pasted together. If you're not convinced, print
out xx[-length(xx)] and xx[-1], and see for yourself.

The Discretize function encapsulates the work we were doing in discretizing our outcomes
and formatting their labels.

This code snippet uses the syntax of dplyr to string together functions. We first subset the
original data, keeping only data that has agglvl_code=50 (note the == in the code). We
then pipe the resulting reduced data into the second function, select, which keeps only the
four variables we're interested in. This further reduces data, and it is then inputted into the
mutate function, which then creates two new variables in the data object. This final object is
then stored with the variable name d.cty.

See also
ff Get more details about dplyr at http://blog.rstudio.org/2014/01/17/

introducing-dplyr/

Visualizing geographical distributions of pay
We created datasets that contain the data we need to visualize average pay and employment
by county and state. In this recipe, we will visualize the geographical distribution of pay by
shading the appropriate areas of the map with a color that maps to a particular value or
range of values. This is commonly referred to as a chloropleth map; this visualization type
has become increasingly popular over the last few years as it has become much simpler to
make such maps, especially online. Other geographic visualizations will overlay a marker or
some other shape to denote data; there is no need to fill specific shapes with geographically
meaningful boundaries.

Getting ready
After the last recipe, you should be ready to use the datasets we created to visualize
geographical distributions. We will use the ggplot2 package to generate our visualizations.
We will also use the RColorBrewer package, which provides "palettes" of colors that are
visually appealing. If you don't currently have RColorBrewer, install it using install.
packages('RColorBrewer', repos='http://cran.r-project.org').

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

137

How to do it…
The following steps walk you through the creation of this geospatial data visualization:

1.	 We first need to get some data on the map itself. The ggplot2 package
provides a convenient function, map_data, to extract this from data bundled
in the maps package:
library(ggplot2)

library(RColorBrewer)

state_df <- map_data('state')

county_df <- map_data('county')

2.	 We now do a bit of transforming to make this data conform to our data:
transform_mapdata <- function(x){

 names(x)[5:6] <- c('state','county')

 for(u in c('state','county'){

 x[,u] <- sapply(x[,u],simpleCap)

 }

 return(x)

}

state_df <- transform_mapdata(state_df)

county_df <- transform_mapdata(county_df)

3.	 The data.frame objects, state_df and county_df, contain the latitude and
longitude of points. These are our primary graphical data and need to be joined with
the data we created in the previous recipe, which contains what is in effect the color
information for the map:
chor <- left_join(state_df, d.state, by='state')

ggplot(chor, aes(long,lat,group=group))+

geom_polygon(aes(fill=wage))+geom_path(color='black',size=0.2)
+ scale_fill_brewer(palette='PuRd') +

theme(axis.text.x=element_blank(),
axis.text.y=element_blank(), axis.ticks.x=element_blank(),
axis.ticks.y=element_blank())

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

138

This gives us the following figure that depicts the distribution of average annual pay
by state:

4.	 We can similarly create a visualization of the average annual pay by county, which
will give us a much more granular information about the geographical distribution
of wages:

chor <- left_join(county_df, d.cty)

ggplot(chor, aes(long,lat, group=group))+

 geom_polygon(aes(fill=wage))+

 geom_path(color='white',alpha=0.5,size=0.2)+

 geom_polygon(data=state_df, color='black',fill=NA)+

 scale_fill_brewer(palette='PuRd')+

 labs(x='',y='', fill='Avg Annual Pay')+

 theme(axis.text.x=element_blank(), axis.text.y=element_blank(),
axis.ticks.x=element_blank(), axis.ticks.y=element_blank())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

139

This produces the following figure showing the geographical distribution of average
annual pay by county:

It is evident from the preceding figure that there are well-paying jobs in western North
Dakota, Wyoming, and northwestern Nevada, most likely driven by new oil exploration
opportunities in these areas. The more obvious urban and coastal areas also show
up quite nicely.

How it works…
Let's dive into the explanation of how the preceding 4 steps work. The map_data function is
provided by ggplot2 to extract map data from the maps package. In addition to county and
state, it can also extract data for the france, italy, nz, usa, world, and world2 maps
provided by the maps package.

The columns that contain state and county information in county_df and state_df are
originally named region and subregion. In step 2, we need to change their names to
state and county, respectively, to make joining this data with our employment data easier.
We also capitalize the names of the states and counties to conform to the way we formatted
the data in our employment dataset.

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

140

For the creation of the map in step 3, we create the plotting dataset by joining state_df
and d.state using the name of the state. We then use ggplot to draw the map of the
US and fill in each state with a color corresponding to the level of wage and the discretized
average annual pay created in the previous recipe. To elaborate, we establish that the data
for the plot comes from chor, and we draw polygons (geom_polygon) based on the latitude
and longitude of the borders of each state, filling them with a color depending on how high
wage is, and then we draw the actual boundaries of the states (geom_path) in black. We
specify that we will use a color palette that starts at white, goes through purple, and has
red corresponding to the highest level of wage. The remainder of the code is formatted by
specifying labels and removing axis annotations and ticks from the plot.

For step 4, the code is essentially the same as step 3, except that we draw polygons for
the boundaries of the counties rather than the states. We add a layer to draw the state
boundaries in black (geom_polygon(data=state_df, color='black', fill=NA)),
in addition to the county boundaries in white.

See also
ff Refer to the ggplot2 documentation available at http://www.ggplot2.org

Exploring where the jobs are, by industry
In the previous recipe, we saw how to visualize the top-level aggregate data on pay. The
employment dataset has more granular data, divided by public/private sectors and types of
jobs. The types of jobs in this data follow a hierarchical coding system called North American
Industry Classification System (NIACS). In this recipe, we will consider four particular
industries and look at visualizing the geographical distribution of employment in these
industries, restricted to private sector jobs.

We will look at four industrial sectors in this recipe:

ff Agriculture, forestry, fishing, and hunting (NIACS 11)

ff Mining, quarrying, and oil and gas extraction (NIACS 21)

ff Finance and insurance (NIACS 52)

ff Professional and technical services (NIACS 54)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

141

How to do it…
We need to create a subset of the employment data, including the data for industrial sectors,
but restricting it to the private sector, by performing the following steps:

1.	 We start by filtering the data by the conditions we are imposing on the industry and
private sectors, and keep only relevant variables:
d.sectors <- filter(ann2012full, industry_code %in%
c(11,21,54,52),

own_code==5, # Private sector

agglvl_code == 74 # county-level

) %.%

select(state,county,industry_code, own_code,agglvl_code,
 industry_title, own_title, avg_annual_pay,
 annual_avg_emplvl)%.%

mutate(wage=Discretize(avg_annual_pay),

emplevel=Discretize(annual_avg_emplvl))

d.sectors <- filter(d.sectors, !is.na(industry_code))

Here, our selection is based on a set of industry codes, and we restrict
ourselves to county-level data. This code is different from before since
we're now looking at industry-specific data.

2.	 We now create the visualization using ggplot2. This visualization will be an array
of four panels, one for each industrial sector. Each panel will have a county-level
map of the US, with colors signifying the level of employment in each county in 2012
in each particular industry. We will also choose a blue-dominated palette for this
visualization:

chor <- left_join(county_df, d.sectors)

ggplot(chor, aes(long,lat,group=group))+

 geom_polygon(aes(fill=emplevel))+

 geom_polygon(data=state_df, color='black',fill=NA)+

 scale_fill_brewer(palette='PuBu')+

 facet_wrap(~industry_title, ncol=2, as.table=T)+

 labs(fill='Avg Employment Level',x='',y='')+

 theme(axis.text.x=element_blank(),
axis.text.y=element_blank(),
 axis.ticks.x=element_blank(),
axis.ticks.y=element_blank())

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

142

This produces the following visualization, showing geographical distribution of
employment by industry:

How it works…
In this recipe, we used the dplyr functions for data munging. One of our filter criteria was
that the industry_code variable should have one of the values out of 11, 21, 52, or 54.
This was achieved by the %in% operator, which is a set operations. It asks if an element
on the left is a member of the set on the right. We have multiple criteria in the filter
statement, separated by commas. This implies an AND relationship in that all of the criteria
must be satisfied in order for the data to pass the filter.

We noticed that there were some missing values in the industry code. This resulted in an extra
panel in the visualization, corresponding to data where the industry code was missing. We
didn't want this, so we filtered out this data in this first step.

In the second step, the command to create the visualization is essentially the same as in the
previous recipe, except for the following line:

facet_wrap(~industry_title, ncol=2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

143

This command splits the data up by the value of industry_title, creates separate
visualizations for each value of industry_title, and puts them back onto a grid with two
columns and an appropriate number of rows. We also used industry_title instead of
industry_code here (they give the same visualization) so that the labeling of the panels is
understandable, rather than comprising just some numbers that require the reader to look up
their meaning.

There's more…
This recipe is the tip of the iceberg for this dataset. There are many levels that can be
explored with this data, both in terms of private/public sectors and in terms of drilling down
into different industries. The additional quarterly data from 2012 is also available and can
shed light on temporal patterns. The annual and quarterly data is available from 1990
onwards. Further analyses are possible association of temporal patterns of employment
with other socioeconomic events. The choroplethr and rMaps packages provide ways of
creating animations over time for this type of data.

See also
ff Read about the rMaps package at http://rmaps.github.io and http://

rmaps.github.io/blog/posts/animated-choropleths/

ff Read about the choroplethr package at https://github.com/trulia/
choroplethr

ff Have a look at the choropleth challenge results at
http://blog.revolutionanalytics.com/2009/11/choropleth-
challenge-result.html

ff Look at examples of animated maps at http://www.r-bloggers.com/
animated-choropleths-using-animation-ggplot2-rcharts-googlevis-
and-shiny-to-visualize-violent-crime-rates-in-different-us-
states-across-5-decades/

Animating maps for a geospatial time series
One of the real interests in this project is to see how wage patterns, as a surrogate for income
patterns, changed over time. The QCEW site provides data from 2003 to 2012. In this recipe,
we will look at the overall average annual pay by county for each of these years and create an
animation that displays the changes in the pay pattern over this period.

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

144

Getting ready
For this recipe, we need to download the annual data for the years 2003 to 2011 from the
BLS website, at http://www.bls.gov/cew/datatoc.htm. You will need to download the
files corresponding to these years for the QCEW NIACS-based data files in the column CSVs
Single Files-Annual Averages. Store these files (which are compressed .zip files) in the
same location as the zipped 2012 data you downloaded at the beginning of this project. Don't
unzip them! You must also download and install the choroplethr package using install.
packages('chloroplethr'), if you haven't already done so.

Note that this recipe is relatively memory-intensive. Those running on 32-bit
machines might face out-of-memory issues.

How to do it…
What we need to do is import the data for all the years from 2003 through 2012 and extract
data for the county-level (agglvl_code==70) average annual pay (avg_annual_pay)
for each county, plot it, and then string the pay values together in an animation. Since we
basically need to do the same things for each year's data, we can do this in a for loop, and
we can create functions to encapsulate the repeated actions. We start by writing code for a
single year, performing the following steps:

1.	 We import the data from the ZIP file that we call zipfile in this prototype code. In
reality, the file names are of the pattern 2003_annual_singlefile.zip, and the
CSV files in them are of the pattern 2003.annual.singlefile.csv. We will use
the common patterns in the ZIP and CSV files in our code to automate the process.
For me, the data lies in a folder called data, which is reflected in the following code:
unzip(file.path('data',zipfile), exdir='data') # unzips the
file

csvfile <- gsub('zip','csv', zipfile) # Change file name

csvfile <- gsub('_','.',csvfile) # Change _ to . in name

dat <- fread(file.path('data', csvfile)) # read data

2.	 We now join the employment data with the geographical data from myarea:
dat <- left_join(dat, myarea)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

145

3.	 We then use the dplyr functions to extract the county-level aggregate pay data,
keeping the state and county information:
dat <- filter(dat, agglvl_code==70) %.% # County-level
aggregate

select(state, county, avg_annual_pay) # Keep variables

4.	 We then encapsulate the actions in steps 1 through 3 in a function:
get_data <- function(zipfile){

unzip(file.path('data',zipfile), exdir='data') # unzips the
file

csvfile <- gsub('zip','csv', zipfile) # Change file name

csvfile <- gsub('_','.',csvfile) # Change _ to . in name

dat <- fread(file.path('data', csvfile)) # read data

dat <- left_join(dat, myarea)

dat <- filter(dat, agglvl_code==70) %.% # County-level
aggregate

select(state, county, avg_annual_pay) # Keep variables

return(dat)

}

5.	 We now have to repeat this for each of the 10 years and store the data. For this type
of data, a list object usually makes sense:
files <- dir('data', pattern='annual_singlefile.zip') # file
names

n <- length(files)

dat_list <- vector('list',n) # Initialize the list

for(i in 1:n){

dat_list[[i]]<- get_data(files[i]) # ingest data

names(dat_list)[i] <- substr(files[i],1,4) #label list with
years

}

6.	 Next, we start creating the visualizations. Since we are essentially creating 10
visualizations, the colors need to mean the same thing on all of them for comparison
purposes. So, the discretization needs to be the same for all the years:
annpay <- ldply(dat_list) # puts all the data together

breaks <- quantile(annpay$avg_annual_pay,
 c(seq(0,.8,.2),.9,.95,.99,1)) # Makes a common set of
breaks

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

146

7.	 We will create the same visualization for each year, using the same breaks. Let's
create a function for this common visualization to be produced. We will use ggplot2
for the visualizations. The input values are the data that we create using get_data,
and the output is a plot object that can create the visualization:
mychoro <- function(d, fill_label=''){

d has a variable "outcome" that

is plotted as the fill measure

chor <- left_join(county_df, d)

plt <- ggplot(chor, aes(long,lat, group=group))+

geom_polygon(aes(fill=outcome))+

geom_path(color='white',alpha=0.5,size=0.2)+

geom_polygon(data=state_df, color='black',fill=NA)+

scale_fill_brewer(palette='PuRd')+

labs(x='',y='', fill=fill_label)+

theme(axis.text.x=element_blank(),
axis.text.y=element_blank(),

axis.ticks.x=element_blank(),axis.ticks.y=element_blank())

return(plt)

}

8.	 We now create plot objects for each year using a for loop. We store these objects
in a list, with each element corresponding to each year. In the process, we create
a new variable, outcome, which is the discretized pay variable, using the common
breaks. This variable needs to be called outcome because of the way we designed
the mychoro function:
plt_list <- vector('list',n)

for(i in 1:n){

dat_list[[i]] <- mutate(dat_list[[i]],

outcome=Discretize(avg_annual_pay,breaks=breaks))

plt_list[[i]] <-

mychoro(dat_list[[i]])+ggtitle(names(dat_list)[i])

}

9.	 The choroplethr package has the utility function, choroplethr_animate,
which takes a list of plot objects created with ggplot2 and makes a web page
with an animated GIF, layering the plots we created in order. The default web file is
animated_choropleth.html:

library(choroplethr)

choroplethr_animate(plt_list)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

147

We extract three panels from this animation here to give you a flavor of what the
animation looks like:

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

148

Even from this limited view of the data, we can see the striking growth of employment
and wealth in western North Dakota, Wyoming and northeast Nevada, probably
due to the discovery, exploration, and mining of shale oil in this region. We can also
see that generally, over the 8 years shown here, pay has risen across the country;
however, regions throughout the heart of the continental United States have seen
almost no change in average pay over this period. We also see a clear increase and
expansion of high pay in both California and the northeast. Recall that all three plots
are on the same color scale, and so, the interpretation is consistent across them.

How it works…
We covered the individual functionality used in this recipe in previous recipes and so will not
repeat them. However, looking at the big picture here shows us two key points worth noting.
First, we had to run through a common set of steps multiple times to create a single image.
As we had to go through the same steps to create each image used in the final animation, we
started to "operationalize" the code a bit, refactoring repeated code blocks into functions.

Secondly, the set of steps needed to create each image is another demonstration of the
stages of the data science pipeline. In stage one, we acquire the data through the ingestion
of CSV files. Our understanding of the dataset has been built in previous recipes, so the
exploration and understanding stage (stage 2 of the pipeline) is a bit light. We join disparate
datasets and filter them for stage 3, the munging, wrangling, and manipulation stage. For
stage 4, analysis and modeling, we simply discretize the data and then map it to a particular
but consistent color scale. Finally, the final data product, the animated choropleth, is used to
communicate the vast amount of data in a concise and quickly understandable fashion.

There is more…
The R package choroplethr can directly create the individual choropleths using the
choropleth function, which uses ggplot2. However, we didn't like the default appearance
of the output, and customization was easier using ggplot2 directly.

Dr. Vaidyanathan, the creator of the popular rCharts package, also created the rMaps
package. It creates choropleths from R using JavaScript visualization libraries for presentation
on the Web, and it can also create animated choropleths using the function ichoropleth.
However, the package is still in development at the time of writing this book, so we didn't
have the facility to create county-level maps. An example with state-level maps is shown in the
rMaps blog at http://rmaps.github.io/blog/posts/animated-choropleths/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

149

Benchmarking performance for some
common tasks

R and its package ecosystem often provide several alternative ways of performing the same
task. R also promotes users to create their own functions for particular tasks. When execution
time is important, benchmarking performance is necessary to see which strategy works best.
We will concentrate on speed in this recipe. The two tasks we will look at are loading the
data into R and joining two data objects based on a common variable. All tests are done on a
Windows 7 desktop running a 2.4 GHz Intel processor with 8 GB of RAM.

Getting ready
We will use the ann2012full and industry data objects for our performance experiments
here, along with the 2012 annual employment data CSV file for data loading. Since you
already have these, you are good to go. If you don't, you will need to install the two functions,
rbenchmark and microbenchmark, using the install.packages() command.

How to do it…
The following steps will walk us through benchmarking two different tasks in R:

1.	 Our first task is to load the employment data into R. The 2012.annual.
singlefile.csv file has 3,556,289 lines of data and 15 columns. While we used
fread in this chapter, there are many other possible ways of importing this data,
which are as follows:

�� The first and most standard way is to use read.csv to read the CSV file

�� You can also unzip the original 2012_annual_singlefile.zip data file
on the fly and read the data using read.csv

�� We can save the data to an RData file the first time we load it, and also
subsequent times we load this file, to import the data into R

2.	 The most basic way to benchmark speed is using the system.time function,
which measures the time (both elapsed and actual computing time) taken for the
task to be performed:
> system.time(fread('data/2012.annual.singlefile.csv'))

 user system elapsed

 14.817 0.443 15.23

Note that the times you see will be different than those listed in the
preceding command.

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

150

3.	 However, there are packages in R that make benchmarking and comparing
different functions much easier. We will introduce the rbenchmark package,
which provides the benchmark function that allows the simultaneous comparison
of different functions:
library(rbenchmark)

opload <- benchmark(

 CSV=read.csv('data/2012.annual.singlefile.csv',
 stringsAsFactors=F),

 CSVZIP=read.csv(unz('data/2012_annual_singlefile.zip',

 '2012.annual.singlefile.csv'), stringsAsFactors=F),

 LOAD = load('data/ann2012full.rda'),

 FREAD = fread('data/2012.annual.singlefile.csv'),

 order='relative', # Report in order from shortest to longest

 replications=5

)

You can refer to the following screenshot for the output of the preceding commands:

Note that the results are ordered, and the relative times are recorded under the
relative column. This shows that fread is quite a bit faster than reading using
read.csv. The very interesting thing is that, on an average, it is 4 times faster than
loading the data from an RData file, which is the usual storage method for R data. It
is apparently faster to load the data from the file using fread than storing the data in
R's own serialized format!

4.	 Our second task is to perform a left outer join of two data objects. We'll look at a task
that we have already performed—a left join of the employment data with the industry
codes. A left join ensures that the rows of data on the left of the operation will be
preserved through the operation, and the other data will be expanded by repetition or
missing data to have the same number of rows. We used left_join in this chapter,
but there are three other strategies we can take, which are as follows:

�� The merge function available in R's standard library

�� The join function from the plyr package

�� The merge function from the data.table package, first transforming the
data into data.table objects

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

151

5.	 We will again use the benchmark function to compare these strategies with
left_join:

ann2012full_dt <- data.table(ann2012full, key='industry_code')

industry_dt <- data.table(industry, key='industry_code')

op <- benchmark(

 DT = data.table::merge(ann2012full_dt, industry_dt,

 by='industry_code', all.x=T),

 PLYR = plyr::join(ann2012full, industry,
 by='industry_code',type='left'),

 DPLYR = dplyr::left_join(ann2012full, industry),

 DPLYR2 = dplyr::left_join(ann2012full_dt, industry_dt),

 MERGE = merge(ann2012full, industry,

 by='industry_code', all.x=T),

 order='relative',

 replications=5

)

You can refer to the following screenshot for the output of the preceding commands:

Here, we see that the data.table method is a lot faster than any other strategy.
Using dplyr is about 12 times slower for this particular task, plyr is about 100
times slower, and the standard merge method is 200 times slower. There is a bit of
overhead in converting the data.frame objects to data.table objects, but the
margin of advantage in this task overcomes this overhead.

How it works…
The basic workhorse of time benchmarking in R is the system.time function. This function
records the time when evaluation of an expression starts, runs the expression, and then notes
the time when it finishes. It then reports the difference of the two times. By default, garbage
collection takes place before each evaluation so that the results are more consistent and
maximal memory is freed for each evaluation.

www.it-ebooks.info

http://www.it-ebooks.info/

Visually Exploring Employment Data (R)

152

The benchmark function in the rbenchmark package provides additional flexibility. It wraps
the system.time function and allows several expressions to be evaluated in a single run. It
also does some basic computations, such as relative times, to simplify reporting.

In terms of our tasks here, fread uses a powerful optimized C function to read the data,
resulting in a high degree of speed optimization. The read.csv function just reads the
datafile line by line and parses the fields by the comma separator. We can get some speed
improvements in our experiments by specifying the column types in read.csv, using the
colClasses option, since determining data types consumes some execution time. The load
function reads the data from the RData files created using the save function, which stores
binary representations of R objects. It compresses the size of the data a lot, but we see that
there are more efficient ways of reading data than loading the RData file.

The second task we set ourselves to benchmark is a left outer join of the employment
data ann2014full, with the data object of the industry industry codes. The former
has 3,556,289 rows and 15 columns, and the latter has 2,469 rows and 2 columns. They
are merged based on the common variable, industry_code. In a left join, all the rows of
ann2014full will be preserved. For this, the merge commands will use the all.x=T option.
The join function has the type='left' option for a left join. For the data.table merge,
we first convert the data.frame objects to data.table objects, specifying that each has
the same key variable, (think index in a database) industry_code. The data.table
objects are then merged using this key variable.

There is a bit of new code formatting in this code snippet. We use plyr::join and
dplyr::left_join, rather than just join and left_join. This style of coding explicitly
specifies that we are using a particular function from a particular package to avoid confusion.
Sometimes, this style of coding is useful when you have functions with the same name in two
different packages that are both loaded in R.

There's more…
The data.table package provides very fast tools for data loading, munging, and joining.
The data.table object is a derivative object of the data.frame package, and many of the
functions in R that input data.frame objects can also import data.table objects. It is for
this reason that the data.table object becomes your default container for rectangular data.

See also
ff Hadley Wickham has a very nice exposition on benchmarking that is part of his online

book, available at http://adv-r.had.co.nz/Performance.html. He promotes
the microbenchmark package for benchmarking purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

6
Creating Application-

oriented Analyses
Using Tax Data (Python)

In this chapter, we will cover:

ff Preparing for the analysis of top incomes

ff Importing and exploring the world's top incomes dataset

ff Analyzing and visualizing the top income data of the US

ff Furthering the analysis of the top income groups of the US

ff Reporting with Jinja2

Introduction
So far in the book, we've taken a practical approach to data analysis with R. With relative
ease, we've been able to answer questions about particular datasets, produce models,
and export visualizations. For this reason, R is an excellent choice for rapid prototyping and
analytics; it is a domain-specific language designed for statistical data analysis, and it does its
job well.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

154

In the next half of the book, we will take a look at a different approach to analytics, one that
is more geared toward production environments and applications. The data science pipeline
of hypothesis, acquisition, cleaning and munging, analysis, modeling, visualization, and
application is not a clean and linear process by any means. Moreover, when the analysis is
meant to be reproducible at scale in an automated fashion, many new considerations and
requirements enter into the picture. Thus, many data applications require a broader toolkit.
This toolkit should still provide rapid prototyping, be generally available on all systems, and
provide full support for a range of computing operations, including network operations, data
operations, and scientific operations. Given these requirements, Python becomes a clear
contender as the tool of choice for application-oriented analyses.

Python is an interpreted language (sometimes referred to as a scripting language), much
like R. It requires no special IDE or software compilation tools and is therefore as fast as
R to develop with and prototype. Like R, it also makes use of C shared objects to improve
computational performance. Additionally, Python is a default system tool on Linux, Unix,
and Mac OS X machines and is available on Windows. Python comes with "batteries
included," which means that the standard library is widely inclusive of many modules, from
multiprocessing to compression toolsets. Python is a flexible computing powerhouse that can
tackle any problem domain. If you find yourself in need of libraries that are outside of the
standard library, Python also comes with a package manager (like R) that allows the download
and installation of other code bases.

Python's computational flexibility means that some analytical tasks take more lines of code
than their counterpart in R. However, Python does have the tools that allow it to perform the
same statistical computing. This leads to an obvious question: "When do we use R over Python
and vice versa?" This chapter attempts to answer this question by taking an application-
oriented approach to statistical analyses.

An introduction to application-oriented approaches
Data applications and data products are interminably becoming part of our everyday lives.
These products have much farther reach than simple, data-driven web applications, which
include all manner of frontend web and mobile applications that are backed by a database
and include middleware to handle transactions. By this definition, a simple blog is not
fundamentally different from a large-scale e-commerce site. Instead, data products and
appliances acquire their value from the data itself and create more data as a result. These
types of applications can be utilized to enrich traditional applications, such as semantic
tagging for the blog or recommendation engines for an e-commerce site. On the other hand,
they can be standalone data products in their own right, including everything from quantified
self devices to self-driving vehicles.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

155

The treatment and analyses of data in a live or streaming context seem to be the defining
characteristic of application-oriented analyses, unlike more traditional data mining or
statistical evaluations of a static dataset. In order to deal with such data, a fair amount of
programmatic nimbleness or dynamic approaches are required, and flexibility is precisely
where Python shines in the data science context.

Consider a specific example for a reporting task. Taking a snapshot of a data window and
manually compiling a report from gathered analytics with charting graphics and visualizations
is good practice to understand changing data and get a feel for larger patterns. When this
report needs to be run daily on lower data volumes, schedulers could merely dump the report
out to a file every day. However, when the reporting task becomes hourly, or on demand, it
means the visualization application has become a static web application and will probably
require a central location. As this task and the data size grow, adding constraints or queries
on the report becomes important. This is a typical life cycle for data applications, and Python
development is well suited to handle these changing requirements.

In this chapter, we will repeat the task of one of the first chapters in R to perform analyses of
a dataset to discover interesting trends and features. We will describe, model, and visualize
a dataset that contains the world's top incomes and discuss the statistical toolkit in Python.
However, as we go through this chapter, we will also include notes on how the analyses and
methodologies we are utilizing can be framed in an application-oriented context.

Preparing for the analysis of top incomes
For the following recipes, you will need Python installed on your computer and you will need
the world's top incomes dataset. This recipe will help ensure you have set up everything you
need to complete this analysis project.

Getting ready
To step through this recipe, you will need a computer with access to the Internet.

Make sure you have downloaded and installed Python and the necessary Python libraries to
complete this project.

Refer to Chapter 1, Preparing Your Data Science Environment, to set up a
Python development environment using virtualenv and install the required
libraries for matplotlib and NumPy.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

156

How to do it...
The following steps will guide you to download the world's top incomes dataset and install the
necessary Python libraries to complete this project:

The original dataset for the world's top incomes can be downloaded from
http://topincomes.g-mond.parisschoolofeconomics.eu/.
However, the site has been updated several times, which has changed the
output format of the data (from .csv to .xlsx). This recipe assumes a
.csv file format.

This chapter's repository contains the properly formatted version of the input
data file.

1.	 Save the world's top incomes dataset to a location on your computer where you will
be able to find it.

2.	 Open up a terminal window and start a Python interpreter.

3.	 Check to make sure that the following three libraries, NumPy, matplotlib, and Jinja2,
are installed; try to import each:
>>> import numpy as np

>>> import jinja2

>>> import matplotlib as plt

4.	 Each of the preceding libraries should import without a comment or remark from
Python. If they do, you are good to go. If not, refer to Chapter 1, Preparing Your Data
Science Environment, to set up your system.

How it works...
NumPy is the fundamental scientific computing library for Python; it is therefore essential
to any data science toolkit, and we will leverage it in many places throughout the Python
chapters. However, since NumPy is an external library that must be compiled for your system,
we will discuss alternative native-Python approaches alongside the NumPy approach.

Importing and exploring the world's top
incomes dataset

Once you have downloaded and installed everything in the previous recipe, you can read the
dataset with Python and then start doing some preliminary analysis to get a sense of what the
data you have looks like.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

157

The dataset that we'll explore in this chapter was created by Alvaredo, Facundo, Anthony B.
Atkinson, Thomas Piketty, and Emmanuel Saez, The World Top Incomes Database, http://
topincomes.g-mond.parisschoolofeconomics.eu/, 10/12/2013. It contains global
information about the highest incomes per country for approximately the past 100 years,
gleaned from tax records.

Getting ready
If you've completed the previous recipe, you should have everything you need to continue.

How to do it...
Let's use the following sequence of steps to import the data and start our exploration of this
dataset in Python:

1.	 With the following snippet, we create a Python list in memory that contains
dictionaries of each row, where the keys are the column names (the first row of
the CSV contains the header information) and the values are the values for that
particular row:
#Reading this data is straightforward with the built
in csv module:

import csv

data_file = "../data/income_dist.csv"

with open(data_file, 'r') as csvfile:

 reader = csv.DictReader(csvfile)

 data = list(reader)

Note that the input file, income_dist.csv, might be in a different directory
on your system depending on where you place it.

2.	 We perform a quick check with len to reveal the number of records:
len(data)

2180

3.	 When utilizing CSV data with headers, we check the field names on the CSV reader
itself, as well as getting the number of variables:
print reader.fieldnames

['Country', 'Year', 'Top 10% income share', ...]

len(reader.fieldnames)

354

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

158

4.	 While this data is not too large, let's start using best practices when accessing it.
Rather than holding all of the data in memory, we use a generator to access the data
one row at a time.

Generators are Python expressions that allow you to create functions that act as
iterables; rather than returning all of the data, they yield data one "part" at a time
in a memory-efficient iteration context. As our datasets get larger, it's useful to use
generators to perform filtering on demand and clean data as you read it.
def dataset(path):

 with open(path, 'r') as csvfile:

 reader = csv.DictReader(csvfile)

 for row in reader:

 yield row

Also, take note of the with open(path, 'r') as csvfile statement. This
statement ensures that the CSV file is closed when the with block is exited, even (or
especially) if there is an exception. Python with blocks replace the try, except,
and finally statements, and are syntactically brief while semantically more correct
programming constructs.

5.	 Using our new function, we can take a look to determine which countries are involved
in our dataset:
print set([row["Country"] for row in dataset(data_file)])

set(['Canada', 'Italy', 'France', 'Netherlands', 'Ireland',
...])

6.	 We can also inspect the range of years that this dataset covers, as follows:
print min(set([int(row["Year"]) for row in
dataset(data_file)]))

1875

print max(set([int(row["Year"]) for row in
dataset(data_file)]))
2010

In both of these previous examples, we used a Python list comprehension to generate
a set. A comprehension is a concise statement that generates an iterable, much like
the earlier memory-safe generators. The output variable (or variables) is specified,
along with the for keyword, and the iterable to express the variable, along with an
optional if condition. In Python 2.7, set and dictionary comprehensions also exist.
The previous country set could also be expressed as follows:

{row["Country"] for row in dataset(data_file)}
set(['Canada', 'Italy', 'France', 'Netherlands', 'Ireland',
...])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

159

7.	 Finally, let's filter just the data for the United States so we can analyze it exclusively:
filter(lambda row: row["Country"] == "United States",

 dataset(data_file))

The Python filter function creates a list from all of the values of a sequence
or iterable (the second parameter) that make the function specified by the first
parameter true. In this case, we use an anonymous function (a lambda function) to
check whether the value in the specified row's Country column is equal to United
States.

8.	 With this initial discovery and exploration of the dataset, we can now take a look
at some of the data using matplotlib, one of the main scientific plotting packages
available for Python and very similar to the plotting capabilities of MATLAB:
import csv

import numpy as np

import matplotlib.pyplot as plt

def dataset(path, filter_field=None, filter_value=None):

 with open(path, 'r') as csvfile:

 reader = csv.DictReader(csvfile)

 if filter_field:

 for row in filter(lambda row:
 row[filter_field]==filter_value, reader):

 yield row

 else:

 for row in reader:

 yield row

def main(path):

 data = [(row["Year"], float(row["Average income per tax
 unit"]))

 for row in dataset(path, "Country", "United
 States")]

 width = 0.35

 ind = np.arange(len(data))

 fig = plt.figure()

 ax = plt.subplot(111)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

160

 ax.bar(ind, list(d[1] for d in data))

 ax.set_xticks(np.arange(0, len(data), 4))

 ax.set_xticklabels(list(d[0] for d in data)[0::4],
 rotation=45)

 ax.set_ylabel("Income in USD")

 plt.title("U.S. Average Income 1913-2008")

 plt.show()

if __name__ == "__main__":

 main("income_dist.csv")

The preceding snippet will give us the following output:

The preceding example of data exploration with Python should seem familiar from
many of the R chapters. Loading the dataset, filtering, and computing ranges required
a few more lines of code and specific typecasting, but we quickly created analyses in
a memory-safe fashion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

161

9.	 When we moved on to creating charts, we started using NumPy and matplotlib a bit
more. NumPy can be used in a very similar fashion to R, to load data from a CSV file
to an array in memory and dynamically determine the type of each column. To do this,
the following two module functions can be used:

�� genfromtext: This function creates an array from tabular data stored in a
text file with two main loops. The first converts each line of the file to string
sequences, and the second converts each string to an appropriate datatype.
It is a bit slower and not as memory efficient, but the result is a convenient
data table stored in memory. This function also handles missing data, which
other faster and simpler functions cannot.

�� recfromcsv: This function is a helper function based on genfromtext
that has default arguments set to provide access to a CSV file.

Have a look at the following snippet:
import numpy as np

dataset = np.recfromcsv(data_file, skip_header=1)

dataset

array([[nan, 1.93200000e+03, nan, ...,

 nan, 1.65900000e+00, 2.51700000e+00],

 [nan, 1.93300000e+03, nan, ...,

 nan, 1.67400000e+00, 2.48400000e+00],

 [nan, 1.93400000e+03, nan, ...,

 nan, 1.65200000e+00, 2.53400000e+00],

 ...,

 [nan, 2.00600000e+03, 4.52600000e+01, ...,

 1.11936337e+07, 1.54600000e+00, 2.83000000e+00],

 [nan, 2.00700000e+03, 4.55100000e+01, ...,

 1.19172976e+07, 1.53000000e+00, 2.88500000e+00],

 [nan, 2.00800000e+03, 4.56000000e+01, ...,

 9.14119000e+06, 1.55500000e+00, 2.80300000e+00]])

The first argument to the function should be the data source. It should be either a
string that points to a local or remote file or a file-like object with a read method.
URLs will be downloaded to the current working directory before they are loaded.
Additionally, the input can be either text or a compressed file. The function recognizes
gzip and bzip2. These files need to have the .gz or .bz2 extensions to be readable.
Notable optional arguments to genfromtext include the delimiter, , (comma) by
default in recfromcsv; skip_header and skip_footer, which take an optional
number of lines to skip from the top or bottom respectively; and dtype, which
specifies the datatype of the cells. By default, the dtype is None, and NumPy will
attempt to detect the correct format.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

162

10.	 We can now get an overall sense of the scope of our data table:
dataset.size

771720

dataset.shape

(2179, 354)

Depending on your version of NumPy, you might see slightly different
output. The dataset.size statement might report back the number
of rows of data (2179), and the shape might output as (2179,).

The size property on ndarray returns the number of elements in the matrix. The
shape property returns a tuple of the dimensions in our array. CSVs are naturally two-
dimensional, therefore the (m, n) tuple indicates the number of rows and columns,
respectively.

However, there are a couple of gotchas with using this method. First, note that
we had to skip our header line; genfromtxt does allow named columns by
setting the keyword argument names to True (and in this case, you won't set
skip_headers=1). Unfortunately, in this particular dataset, the column names
might contain commas. The CSV reader deals with this correctly since the strings that
contain commas are quoted, but genfromtxt is not a CSV reader in general. To fix
this, either the headers have to be fixed, or some other names need to be added.
Secondly, the Country column has been reduced to NaN, and the Year column has
been turned into a floating point integer, which is not ideal.

11.	 A manual fix on the dataset is necessary, and this is not uncommon. Since we know
that there are 354 columns and the first two columns are Country and Year, we
can precompute our column names and datatypes:
names = ["country", "year"]

names.extend(["col%i" % (idx+1) for idx in xrange(352)])

dtype = "S64,i4," + ",".join(["f18" for idx in xrange(352)])

dataset = np.genfromtxt(data_file, dtype=dtype, names=names,
delimiter=",", skip_header=1, autostrip=2)

We name the first two columns country and year, respectively, and assign them
datatypes of S64 or string-64, then assign the year column as i4 or integer-4. For the
rest of the columns, we assign them the name coln, where n is an integer from 1 to
352, and the datatype is f18 or float-18. These character lengths allow us to capture
as much data as possible, including exponential floating point representations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

163

Unfortunately, as we look through the data, we can see a lot of nan values that
represent Not a Number, a fixture in floating point arithmetic used to represent
values that are not numbers nor are equivalent to infinity. Missing data is a very
common issue in the data wrangling and cleaning stage of the pipeline. It appears
that the dataset contains many missing or invalid entries, which makes sense given
the historical data, and countries that may not have had effective data collection for
given columns.

12.	 In order to clean the data, we use a NumPy masked array, which is actually a
combination of a standard NumPy array and a mask, a set of Boolean values that
indicate whether the data in that position should be used in computations or not. This
can be done as follows:

import numpy.ma as ma

ma.masked_invalid(dataset['col1'])

masked_array(data = [-- -- -- ..., 45.2599983215332
45.5099983215332 45.599998474121094],

mask = [True True True ..., False False False],fill_value =
1e+20)

How it works...
Our dataset function has been modified to filter on a single field and value if desired. If no
filter has been specified, it generates the entire CSV. The main piece of interest is what
happens in the main function. Here, we generate a bar chart of average incomes in the United
States per year using matplotlib. Let's walk through the code.

We collect our data as (year, avg_income) tuples in a list comprehension that utilizes our
special dataset method to filter data only for the United States.

We have to cast the average income per tax unit to a float in order to compute
on it. In this case, we leave the year as a string since it simply acts as a label;
however, in order to perform datetime computations, we might want to
convert that year to a date using datetime.strptime (row['Year'],
'%Y').date().

After we have performed our data collection, filtering, and conversions, we set up the chart.
The width is the maximum width of a bar. An ind iterable (ndarray) refers to the x axis
locations for each bar; in this case, we want one location for every data point in our set. A
NumPy np.arange function is similar to the built-in xrange functions; it returns an iterable
(ndarray) of evenly spaced values in the given interval. In this case, we provide a stop value
that is the length of the list and use the default start value of 0 and step size of 1, but these
can also be specified. The use of arange allows floating point arguments, and it is typically
much faster than simply instantiating the full array of values.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

164

The figure and subplot module functions utilize the matplotlab.pyplot module to
create the base figure and axes, respectively. The figure function creates a new figure,
or returns a reference to a previously created figure. The subplot function returns a
subplot axis positioned by the grid definition with the following arguments: the number of
rows, number of columns, and plot number. This function has a convenience when all three
arguments are less than 10; simply supply a three-digit number with the respective values, for
example, plot.subplot (111) creates 1 x 1 axes in subplot 1.

We then use the subplot to create a bar chart from our data. Note the use of another
comprehension that passes the values of the incomes from our dataset along with the indices
we created with np.arange. On setting the x axis labels, however, we notice that if we add
all years as individual labels, the x axis is unreadable. Instead, we add ticks for every 4 years,
starting with the first year. In this case, you can see that we use a step size of 4 in np.arange
to set our ticks, and similarly, in our labels, we use slices on the Python list to step through
every four labels. For example, for a given list, we will use:

mylist[s:e:t]

The slice of the list starts at s, ends at e, and has the step size t. Negative numbers are
also supported in slices to be iterated from the end of the list; for example, mylist[-1] will
return the last item of the list.

There's more...
NumPy is an incredibly useful and powerful library, but we should note some very important
differences. The list datatype in Python is wildly different from the numpy array. The Python list
can contain any number of different datatypes, including lists. Thus, the following example list
is perfectly valid:

python_list = ['bob' , 5.1, True, 1, [5, 3, 'sam']]

Underneath the hood, the Python list contains pointers to the memory locations of the
elements of the list. To access the first element of the list, Python goes to the memory location
for the list and grabs the first value stored there. This value is a memory address for the first
element. Python then jumps to this new memory location to grab the value for the actual first
element. Thus, "grabbing" the first element of the list requires two memory lookups.

NumPy arrays are very much like C. They must contain a single datatype, and this allows
the array to be stored in a contiguous block of memory, which makes reading the array
significantly faster. When reading the first element of the array, Python goes to the appropriate
memory address that contains the actual value to be retrieved. When the next element in the
array is needed, it is right next to the location of the first element in memory, which makes
reading much faster.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

165

See also
ff The NumPy documentation at http://docs.scipy.org/doc/numpy/

reference/

ff A strong tutorial on NumPy and SciPy at http://www.engr.ucsb.edu/~shell/
che210d/numpy.pdf

Analyzing and visualizing the top income
data of the US

Now that we've imported and explored the top incomes dataset a bit, let's drill down on a
specific country and conduct some analyses on their income distribution data. In particular,
the United States has excellent data relating to the top incomes by percentile, so we'll use the
data of the United States in the following exercises. If you choose other countries to leverage
their datasets, beware that you may need to use different fields to get the same analyses.

Getting ready
In order to conduct our analyses, we're going to create a few helper methods that we will use
continually throughout this chapter. Application-oriented analyses typically produce reusable
code that performs singular tasks in order to adapt quickly to changing data or analysis
requirements. In particular, let's create two helper functions: one that extracts data by a
particular country and one that creates a time series from a set of particular rows:

def dataset(path, country="United States"):

 """

 Extract the data for the country provided. Default is United
 States.

 """

 with open(path, 'r') as csvfile:

 reader = csv.DictReader(csvfile)

 for row in filter(lambda row: row["Country"]==country,
 reader):

 yield row

def timeseries(data, column):

 """

 Creates a year based time series for the given column.

 """

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

166

 for row in filter(lambda row: row[column], data):

 yield (int(row["Year"]), row[column])

The first function iterates through the dataset using the csv.DictReader filter on a
particular country using Python's built-in filter function. The second function leverages the
fact that there is a Year column to create a time series for the data, a generator that yields
(year, value) tuples for a particular column in the dataset. Note that this function should
be passed in a generator created by the dataset function. We can now utilize these two
functions for a series of analyses across any column for a single country.

How to do it...
Generally speaking, the data for the United States is broken up into six groups:

ff Top 10 percent income share

ff Top 5 percent income share

ff Top 1 percent income share

ff Top 0.5 percent income share

ff Top 0.1 percent income share

ff Average income share

These groups reflect aggregations for data points collected in those specific bins. An easy and
quick first analysis is to simply plot these percentages of income shares over time for each of
the top income groups. Since plotting several time series is going to be a common task, let's
once again create a helper function that wraps matplotlib and generates a line chart for
each time series that is passed to it:

def linechart(series, **kwargs):

 fig = plt.figure()

 ax = plt.subplot(111)

 for line in series:

 line = list(line)

 xvals = [v[0] for v in line]

 yvals = [v[1] for v in line]

 ax.plot(xvals, yvals)

 if 'ylabel' in kwargs:

 ax.set_ylabel(kwargs['ylabel'])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

167

 if 'title' in kwargs:

 plt.title(kwargs['title'])

 if 'labels' in kwargs:

 ax.legend(kwargs.get('labels'))

 return fig

This function is very simple. It creates a matplotlib.pyplot figure as well as the axis
subplot. For each line in the series, it gets the x axis values (remember that the first item
in our time series time tuple is Year) as the first item of the tuple and the y axis, which is
the second value. It splits these into separate generators and then plots them on the figure.
Finally, any options we want for our chart, such as labels or legends, we can simply pass as
keyword arguments, and our function will handle them for us! The following steps will walk you
through this recipe of application-oriented analysis:

1.	 In order to generate our chart, we simply need to use our timeseries function on
the columns we would like and pass them to the linechart function. This simple
task is now repeatable, and we'll use it a few times for the next few charts:
def percent_income_share(source):

 """

 Create Income Share chart

 """

 columns = (

 "Top 10% income share",

 "Top 5% income share",

 "Top 1% income share",

 "Top 0.5% income share",

 "Top 0.1% income share",

)

 source = list(dataset(source))

 return linechart([timeseries(source, col) for col in
 columns],

 labels=columns,

 title="U.S. Percentage Income Share",

 ylabel="Percentage")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

168

Note that I wrapped the generation of this chart in a function as well; this way, we
modify the chart as needed, and the function wraps the configuration and generation
of the chart itself. The function identifies the columns for the line series and then
fetches the dataset. For each column, it creates a time series and then passes these
time series to our linechart function with our configuration options.

2.	 To generate the plot, we define the input parameter to the percent_income_
source function:
percent_income_share(data_file)

plt.show()

The following screenshot shows the result, and you will use a similar pattern in the
rest of the chapter to use the functions to create the needed plots:

This graph tells us that the raw percentages for the income groups tend to move in
the same direction. When one group's income increases, the other groups' incomes
also increase. This seems like a good sanity check as folks who are in the top 0.1
percent income bracket are also in the top 10 percent income bracket, and they
contribute a lot to the overall mean for each bin. There is also a clear, persistent
difference between each of the lines.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

169

3.	 Looking at the raw percentages is useful, but we may also want to consider how the
percentages have changed over time, relative to what the average percentage has been
for that income group. In order to do this, we can calculate the means of each group's
percentages and then divide all of the group's values by the mean we just calculated.

Since mean normalization is another common function that we might want to perform
on a range of datasets, we will once again create a function that will accept a time
series as input and return a new time series whose values are divided by the mean:

def normalize(data):

 """

 Normalizes the data set. Expects a timeseries input

 """

 data = list(data)

 norm = np.array(list(d[1] for d in data), dtype="f8")

 mean = norm.mean()

 norm /= mean

 return zip((d[0] for d in data), norm)

4.	 We can now easily write another function that takes these columns and computes the
mean normalized time series:
def mean_normalized_percent_income_share(source):

 columns = (

 "Top 10% income share",

 "Top 5% income share",

 "Top 1% income share",

 "Top 0.5% income share",

 "Top 0.1% income share",

)

 source = list(dataset(source))

 return linechart([normalize(timeseries(source, col)) for
 col in columns],

 labels=columns,

 title="Mean Normalized U.S. Percentage
 Income Share",

 ylabel="Percentage")

mean_normalized_percent_income_share(data_file)

plt.show()

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

170

Note how the following command snippet is very similar to the
previous function, except when it performs the normalization:
>>> fig = mean_normalized_percent_income_
share(DATA)
>>> fig.show()

The preceding commands give us the following graph:

This graph shows us that the wealthier the group, the larger the percentage-wise
swings we tend to see in their incomes.

5.	 The dataset also breaks the group's income into categories, such as income that
includes capital gains versus income without capital gains. Let's take a look at how
each group's capital gains income fluctuates over time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

171

Another common functionality is to compute the difference between two columns
and plot the resulting time series. Computing the difference between two NumPy
arrays is also very easy, and since it is common for our task, we write yet another
function to do the job:
def delta(first, second):

 """

 Returns an array of deltas for the two arrays.

 """

 first = list(first)

 years = yrange(first)

 first = np.array(list(d[1] for d in first), dtype="f8")

 second = np.array(list(d[1] for d in second), dtype="f8")

 # Not for use in writing

 if first.size != second.size:

 first = np.insert(first, [0,0,0,0], [None, None, None,
 None])

 diff = first - second

 return zip(years, diff)

Furthermore, the following is an appropriate helper function:
def yrange(data):

 """

 Get the range of years from the dataset

 """

 years = set()

 for row in data:

 if row[0] not in years:

 yield row[0]

 years.add(row[0])

This function once again creates NumPy arrays from each dataset, casting the
datatype to floats. Note that we need to get the list of years from one of the datasets,
so we gather it from the first dataset.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

172

6.	 We also need to keep in mind that first.size needs to be the same as second.
size, for example, that each array shares the same dimensionality. The difference is
computed and the years are once again zipped to the data to form a time series:

def capital_gains_lift(source):

 """

 Computes capital gains lift in top income percentages over
 time chart

 """

 columns = (

 ("Top 10% income share-including capital gains", "Top
 10% income share"),

 ("Top 5% income share-including capital gains", "Top
 5% income share"),

 ("Top 1% income share-including capital gains", "Top
 1% income share"),

 ("Top 0.5% income share-including capital gains", "Top
 0.5% income share"),

 ("Top 0.1% income share-including capital gains", "Top
 0.1% income share"),

 ("Top 0.05% income share-including capital gains",
 "Top 0.05% income share"),

)

 source = list(dataset(source))

 series = [delta(timeseries(source, a), timeseries(source,
 b)) for a, b in columns]

 return linechart(series,labels=list(col[1] for col in
 columns), title="U.S. Capital Gains Income Lift",
 ylabel="Percentage Difference")

capital_gains_lift(data_file)
plt.show()

The preceding code stores the columns as tuples of two columns—first and second—
and then uses the delta function to compute the difference between the two. Like
our previous graphs, it then creates a line chart as shown:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

173

This is interesting as the graph shows the volatility of the capital gains income over
time. If you are familiar with U.S. financial history, you can see the effect on the
capital gains income of the well-known stock market booms and busts in this chart.

How it works...
The easiest way to perform operations on big datasets is to use NumPy's array class. As
we've already seen, this class allows us to perform common operations, including basic
mathematical operations between a scalar and an array. Converting the generator to an array,
however, requires us to load the data into memory. Python's built-in list function takes an
iterator and returns a list. This is required because the NumPy array must know the length of
the data in order to allocate the correct amount of memory. With the array, it is easy enough
to calculate the mean and then perform the divide equals scalar operation across the entire
array. This broadcasts the division operation so that each element in the array is divided by
the mean. We are, in essence, normalizing the elements of the array by their mean. We can
then zip together our years with the newly computed data and return the time series.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

174

Furthering the analysis of the top income
groups of the US

So far in this chapter, we have focused on the analysis of income percentages over time.
Next, we will continue our analysis by taking a look at some of the other interesting figures
that we have in our dataset, specifically the actual income figures and income categories that
comprise these figures.

Getting ready
If you've completed the previous recipe, you should have everything you need to continue.

How to do it...
With the following steps, we dive deeper into the dataset and examine additional
income figures:

1.	 The dataset also contains the average incomes by year of the different groups. Let's
graph these and see how they have changed over time, relative to each other:
def average_incomes(source):

 """

 Compares percentage average incomes

 """

 columns = (

 "Top 10% average income",

 "Top 5% average income",

 "Top 1% average income",

 "Top 0.5% average income",

 "Top 0.1% average income",

 "Top 0.05% average income",

)

 source = list(dataset(source))

 return linechart([timeseries(source, col) for col in
columns], labels=columns, title="U.S. Average Income",
ylabel="2008 US Dollars")

average_incomes(data_file)

plt.show()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

175

Since we have the foundation in place to create line charts, we can immediately
analyze this new dataset with the tools we already have. We simply choose a different
collection of columns and then customize our chart accordingly! The following is the
resulting graph:

The results shown by this graph are quite fascinating. Until the 1980s, the wealthy
have been about $1-1.5 million richer than the lower income groups. From the 1980s
forward, the disparity has increased dramatically.

2.	 We can also use the delta functionality to see how much richer the rich are than the
average American:
def average_top_income_lift(source):

 """

 Compares top percentage avg income over total avg

 """

 columns = (

 ("Top 10% average income", "Top 0.1% average income"),

 ("Top 5% average income", "Top 0.1% average income"),

 ("Top 1% average income", "Top 0.1% average income"),

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

176

 ("Top 0.5% average income", "Top 0.1% average
 income"),

 ("Top 0.1% average income", "Top 0.1% average
 income"),

)

 source = list(dataset(source))

 series = [delta(timeseries(source, a), timeseries(source,
 b)) for a, b in columns]

 return linechart(series,

 labels=list(col[0] for col in columns),

 title="U.S. Income Disparity",

 ylabel="2008 US Dollars")

We still haven't written new code other than the selection of our columns and
utilization of the functionality that we have already added to our project. This
reveals the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

177

3.	 In our last analysis, we'll show off a different kind of chart to look at the
composition of the income of the wealthiest Americans. Since the composition is
a percentage-based time series, a good chart for this task is a stacked area. Once
again, we can utilize our time series code and simply add a function to create stacked
area charts as follows:
def stackedarea(series, **kwargs):

 fig = plt.figure()

 axe = fig.add_subplot(111)

 fnx = lambda s: np.array(list(v[1] for v in s), dtype="f8")

 yax = np.row_stack(fnx(s) for s in series)

 xax = np.arange(1917, 2008)

 polys = axe.stackplot(xax, yax)

 axe.margins(0,0)

 if 'ylabel' in kwargs:

 axe.set_ylabel(kwargs['ylabel'])

 if 'labels' in kwargs:

 legendProxies = []

 for poly in polys:

 legendProxies.append(plt.Rectangle((0, 0), 1, 1,
 fc=poly.get_facecolor()[0]))

 axe.legend(legendProxies, kwargs.get('labels'))

 if 'title' in kwargs:

 plt.title(kwargs['title'])

 return fig

The preceding function expects a group of time series, the total percentages of
which add up to 100. We create a special, anonymous function that will convert each
series into a NumPy array. The NumPy row_stack function creates a sequence of
arrays stacked vertically; this is what will generate our stackplot using the subplot.
stackplot function. The only other surprise in this function is the requirement to use
a legend proxy to create rectangles with the fill color from the stackplot in the legend.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

178

4.	 Now, we can take a look at the income composition of the wealthiest Americans:

def income_composition(source):

 """

 Compares income composition

 """

 columns = (

 "Top 10% income composition-Wages, salaries and
 pensions",

 "Top 10% income composition-Dividends",

 "Top 10% income composition-Interest Income",

 "Top 10% income composition-Rents",

 "Top 10% income composition-Entrepreneurial income",

)

 source = list(dataset(source))

 labels = ("Salary", "Dividends", "Interest", "Rent",
 "Business")

 return stackedarea([timeseries(source, col) for col in
 columns], labels=labels, title="U.S. Top 10% Income
 Composition", ylabel="Percentage")

The preceding code generates the following plot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

179

As you can see, the top 10 percent of American earners make most of their money from
a salary income; however, business income also plays a large role. Dividends played
a bigger role earlier in the century than they do towards the end of the century, which
is true for interest and rent as well. Interestingly, for the first part of the 20th century,
the percentage of income that is related to entrepreneurial income declines, until the
1980s, when it starts to grow again, possibly because of the technology sector.

How it works...
This recipe really helps to demonstrate the value of the application-oriented approach. We
continue to abstract out portions of code that perform singular tasks and use them as functions.
As our library of functions increases, our analysis, often filled with repeated but slightly different
tasks, becomes more composition than creation. Even better, these individual pieces are much
easier to test and evaluate. Over time, with additional analyses, we will build a rich and fully
customized library of tools that will drastically speed up future investigations.

This recipe also reveals how Python code can be created to construct more R-like analyses. As
we performed further evaluations, we leveraged functions and tools that we had already built
for our dataset and created new ones, such as the stacked area function that built off our
older tools. However, unlike an analysis-oriented approach, these tools now exist in a
data-specific library of code that can be used to build applications and reports, as we'll see in
the next recipe.

Reporting with Jinja2
Visualizations and graphs are excellent for identifying obvious patterns in the dataset.
However, as trends emerge from multiple sources, more in-depth reporting is required, as
well as descriptions of the techniques used for those not directly involved in the project.
Instead of creating these reports by hand, application-oriented analyses make use of template
languages to dynamically construct documents at the time of analysis. Jinja2 is a Python
library that is used to generate documents by combining a template—usually an HTML file, but
can be any kind of text file—with a context, a data source that is used to fill in the template.
This combination is ideal to report on the analyses that we're performing.

Getting ready
The Jinja2 template library should be installed and ready to use.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

180

How to do it...
The following steps will walk us through using the Jinja2 templating library to create flexible
and appealing reporting output:

1.	 Jinja2 is simple and has familiar Python-esque syntax (though it is not Python).
Templates can include logic or control flow, including iteration, conditionals, and
formatting, which removes the need to have the data adapt to the template. A simple
example is as follows:
>>> from jinja2 import Template

>>> template = Template(u'Greetings, {{ name }}!')

>>> template.render(name='Mr. Praline')

Greetings, Mr. Praline!

2.	 However, we should decouple our templates from our Python code, and instead, store
the templates as text files on our system. Jinja2 provides a central Environment
object, which is used to store configurations and global objects to load templates
either from the filesystem or other Python packages:
from jinja2 import Environment, PackageLoader, , FileSystemLoader

'templates' should be the path to the templates folder

as written, it is assumed to be in the current directory

jinjaenv = Environment(loader = FileSystemLoader('templates'))

template = jinjaenv.get_template('report.html')

Here, the Jinja2 environment is configured to look for template files in the
templates directory of our Python module. Another recommended loader is
FileSystemLoader, which should be provided a search path to look for template
files. In this case, the template called report.html is fetched from the Python
module and is ready to be rendered.

Rendering can be as simple as template.render(context), which will return a
Unicode string of generated output. The context should be a Python dictionary whose
keys are the variable names that will be used in the template. Alternatively, the context
can be passed in as keyword arguments; template.render({'name':'Terry'})
is equivalent to template.render(name='Terry'). However, for large templates
(and large datasets) it is far more efficient to use the Template.stream method;
it does not render the entire template at once, but evaluates each statement
sequentially and yields it as a generator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

181

3.	 The stream can then be passed to a file-like object to be written to disk or serialized
over the network:
template.stream(items=['a', 'b', 'c'],
name='Eric').dump('report-2013.html')

This seemingly simple technique is incredibly powerful, especially when combined
with the JSON module. JSON data can be dumped directly into JavaScript snippets for
interactive charting and visualization libraries on the Web, such as D3, Highcharts,
and Google Charts.

4.	 Let's take a look at a complete example using the world's top incomes dataset:
import csv

import json

from datetime import datetime

from jinja2 import Environment, PackageLoader, FileSystemLoader

from itertools import groupby

from operator import itemgetter

def dataset(path, include):

 column = 'Average income per tax unit'

 with open(path, 'r') as csvfile:

 reader = csv.DictReader(csvfile)

 key = itemgetter('Country')

 # Use groupby: memory efficient collection by country

 for key, values in groupby(reader, key=key):

 # Only yield countries that are included

 if key in include:

 yield key, [(int(value['Year']),
 float(value[column]))

 for value in values if value[column]]

def extract_years(data):

 for country in data:

 for value in country[1]:

 yield value[0]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

182

def extract_series(data, years):

 for country, cdata in data:

 cdata = dict(cdata)

 series = [cdata[year] if year in cdata else None for
 year in years]

 yield {

 'name': country,

 'data': series,

 }

def write(context):

 path = "report-%s.html" %datetime.now().strftime("%Y%m%d")

 jinjaenv = Environment(loader = FileSystemLoader('templates'))

 template = jinjaenv.get_template('report.html')

 template.stream(context).dump(path)

def main(source):

 # Select countries to include

 include = ("United States", "France", "Italy",

 "Germany", "South Africa", "New Zealand")

 # Get dataset from CSV

 data = list(dataset(source, include))

 years = set(extract_years(data))

 # Generate context

 context = {

 'title': "Average Income per Family, %i - %i" %
 (min(years), max(years)),

 'years': json.dumps(list(years)),

 'countries': [v[0] for v in data],

 'series': json.dumps(list(extract_series(data, years))),

 }

 # Write HTML with template

 write(context)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

183

if __name__ == '__main__':

 source = '../data/income_dist.csv'

 main(source)

This is a lot of code, so let's go through it step by step. The dataset function reads
our CSV file for the Average income column and filters based on a set of included
countries. It uses a functional iteration helper, groupby, that collects the rows of
our CSV file by the Country field, which means that we get a dataset per country.
Both the itemgetter and groupby functions are common, memory-safe helper
functions in Python that do a lot of heavy lifting during large-scale data analyses.

After we extract the dataset, we have two helper methods. The first, extract_
years, generates all the year values from every country. This is necessary because
not all countries have values for every year in the dataset. We'll also use this function
to determine the range of years for our template. This brings us to the second
function, extract_series, that normalizes the data, replacing empty years with
None values to ensure our time series is correct.

The write method wraps the template-writing functionality. It creates a file called
report-{date}.html, adding the current date for reference. It also loads the
Environment object, finds the report template, and writes the output to disk. Finally,
the main method gathers all the data and context together and connects the functions.

5.	 The report template is as follows:

<html>

<head>

 <title>{{ title }}</title>

</head>

<body>

 <div class="container">

 <h1>{{ title }}</h1>

 <div id="countries">

 {% for country in countries %}

 {{ country }}

 {% endfor %}

 </div>

 <div id="chart"></div>

 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

184

 <script type="text/javascript"
src="http://codeorigin.jquery.com/jquery-
2.0.3.min.js"></script>

 <script src="http://code.highcharts.com/highcharts.js">
 </script>

 <script type="text/javascript">

 $.noConflict();

 jQuery(document).ready(function($) {

 $('#chart').highcharts({

 xAxis: {

 categories: JSON.parse('{{ years }}'),

 tickInterval: 5,

 },

 yAxis: {

 title: {

 text: "2008 USD"

 }

 },

 plotOptions: {

 line: {

 marker: {

 enabled: false

 }

 }

 },

 series: JSON.parse('{{ series }}')

 });

 });

 </script>

</body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

185

The preceding template fills in the title in the correct spot, then creates an
unordered list of the countries included in our dataset. Additionally, it uses
Highcharts to create an interactive chart. Highcharts is an option-based, JavaScript
chart library. Note that we're using JSON.parse to parse the JSON data that we
dumped in Python. This will ensure there are no conflicts when converting Python
datatypes to JavaScript ones. When you open up the report in a browser, it should
look something like the following screenshot:

How it works...
Performing analytics and data mining in Python parallels R closely, especially when using the
NumPy library. NumPy, like R, is designed for scientific computing and has a similar set of
functionality when dealing with multidimensional arrays. However, as a general rule, Python
takes more lines of code, especially when creating charts with matplotlib. This is caused by
Python's generic approach to data, particularly because it is used in many problem domains,
not specifically statistical analyses, and this is also Python's strength.

In particular, data analyses with Python tend to have an application-oriented approach,
typically involving live or streaming data that is routinely updated, rather than analyses
on a single dataset. This usually means that analyses performed in Python leverage fast
prototyping and statistical exploration with tools such as NumPy, but then leverage an
extremely inclusive standard library to handle the data in all phases of the data pipeline.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Application-oriented Analyses Using Tax Data (Python)

186

There's more...
There are several different Python template languages, each with a different approach to
combining a predefined template with data to form human-readable output. Many of these
template languages are intended as the backbone of web application frameworks, such as
Django and Flask, that are used to construct dynamic web pages from a database. Since
these languages are well suited to generate HTML, reporting with these tools creates an easy
transition, from one-off reporting, to scheduled reporting, to on-demand reporting from a web
application. Jinja2 is the primary template language for Flask and has a Django-like syntax,
making it an excellent choice for future implementations.

See also
ff For the data source, go to

http://topincomes.g-mond.parisschoolofeconomics.eu/

ff The Templating in python article at
https://wiki.python.org/moin/Templating

ff The What is Data Science? article at
http://radar.oreilly.com/2010/06/what-is-data-science.html

ff The Setting up Python and Matplotlib in OSX Mountain Lion article at
http://www.tapir.caltech.edu/~dtsang/python.html

www.it-ebooks.info

http://www.it-ebooks.info/

7
Driving Visual Analyses

with Automobile Data
(Python)

In this chapter, we will cover:

ff Getting started with IPython

ff Exploring IPython Notebook

ff Preparing to analyze automobile fuel efficiencies

ff Exploring and describing fuel efficiency data with Python

ff Analyzing automobile fuel efficiency over time with Python

ff Investigating the makes and models of automobiles with Python

Introduction
In the first chapter on R (Chapter 2, Driving Visual Analysis with Automobile Data (R)), we
walked through an analysis project that examined automobile fuel economy data using the R
statistical programming language. This dataset, available at http://www.fueleconomy.
gov/feg/epadata/vehicles.csv.zip, contains fuel efficiency performance metrics over
time for all makes and models of automobiles in the United States of America. This dataset
also contains numerous other features and attributes of the automobile models other than
fuel economy, providing an opportunity to summarize and group the data so that we can
identify interesting trends and relationships.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

188

Unlike the first chapter on R, we will perform the entire analysis using Python. However, we
will ask the same questions and follow the same sequence of steps as before, again following
the data science pipeline. With study, this will allow you to see the similarities and differences
between the two languages for a mostly identical analysis.

In Chapter 6, Creating Application-oriented Analyses Using Tax Data (Python), we used
mostly pure Python with some help from NumPy and SciPy, either straight from the Python
command line—also known as Read-Eval-Print Loop (REPL)—or from executable script files.
In this chapter, we will take a very different approach using Python as a scripting language in
an interactive fashion that is more similar to R. We will introduce the reader to the unofficial
interactive environment of Python, IPython, and the IPython notebook, showing how to
produce readable and well-documented analysis scripts. Further, we will leverage the data
analysis capabilities of the relatively new but powerful pandas library and the invaluable data
frame data type that it offers. pandas often allows us to complete complex tasks with fewer
lines of code. The drawback to this approach is that while you don't have to reinvent the wheel
for common data manipulation tasks, you do have to learn the API of a completely different
package, which is pandas.

The goal of this chapter is not to guide you through an analysis project that you have already
completed but to show you how that project can be completed in another language. More
importantly, we want to get you, the reader, to become more introspective with your own code
and analysis. Think not only about how something is done but why something is done that way
in that particular language. How does the language shape the analysis?

Getting started with IPython
IPython is the interactive computing shell for Python that will change the way you think about
interactive shells. It brings to the table a host of very useful functionalities that will most likely
become part of your default toolbox, including magic functions, tab completion, easy access
to command-line tools, and much more. We will only scratch the surface here and strongly
recommend that you keep exploring what can be done with IPython.

Getting ready
If you have completed the installation instructions in the first chapter, you should be ready
to tackle the following recipes. Note that IPython 2.0, which is a major release, was launched
in 2014.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

189

How to do it…
The following steps will get you up and running with the IPython environment:

1.	 Open up a terminal window on your computer and type ipython. You should be
immediately presented with the following text:
Python 2.7.5 (default, Mar 9 2014, 22:15:05)

Type "copyright", "credits" or "license" for more information.

IPython 2.1.0 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra
details.

In [1]:

Note that your version might be slightly different than what
is shown in the preceding command-line output.

2.	 Just to show you how great IPython is, type in ls, and you should be greeted with the
directory listing! Yes, you have access to common Unix commands straight from your
Python prompt inside the Python interpreter.

3.	 Now, let's try changing directories. Type cd at the prompt, hit space, and now hit Tab.
You should be presented with a list of directories available from within the current
directory. Start typing the first few letters of the target directory, and then, hit Tab
again. If there is only one option that matches, hitting the Tab key automatically will
insert that name. Otherwise, the list of possibilities will show only those names that
match the letters that you have already typed. Each letter that is entered acts as a
filter when you press Tab.

4.	 Now, type ?, and you will get a quick introduction to and overview of IPython's features.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

190

5.	 Let's take a look at the magic functions. These are special functions that IPython
understands and will always start with the % symbol. The %paste function is one
such example and is amazing for copying and pasting Python code into IPython
without losing proper indentation.

6.	 We will try the %timeit magic function that intelligently benchmarks Python code.
Enter the following commands:
n = 100000

%timeit range(n)

%timeit xrange(n)

We should get an output like this:
1000 loops, best of 3: 1.22 ms per loop

1000000 loops, best of 3: 258 ns per loop

This shows you how much faster xrange is than range (1.22 milliseconds versus
2.58 nanoseconds!) and helps show you the utility of generators in Python.

7.	 You can also easily run system commands by prefacing the command with an
exclamation mark. Try the following command:
!ping www.google.com

You should see the following output:

PING google.com (74.125.22.101): 56 data bytes

64 bytes from 74.125.22.101: icmp_seq=0 ttl=38 time=40.733 ms

64 bytes from 74.125.22.101: icmp_seq=1 ttl=38 time=40.183 ms

64 bytes from 74.125.22.101: icmp_seq=2 ttl=38 time=37.635 ms

8.	 Finally, IPython provides an excellent command history. Simply press the up arrow
key to access the previously entered command. Continue to press the up arrow key
to walk backwards through the command list of your session and the down arrow
key to come forward. Also, the magic %history command allows you to jump to a
particular command number in the session. Type the following command to see the
first command that you entered:
%history 1

9.	 Now, type exit to drop out of IPython and back to your system command prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

191

How it works…
There isn't much to explain here and we have just scratched the surface of what IPython
can do. Hopefully, we have gotten you interested in diving deeper, especially with the
wealth of new features offered by IPython 2.0, including dynamic and user-controllable
data visualizations.

See also
ff IPython at http://ipython.org/

ff The IPython Cookbook at https://github.com/ipython/ipython/
wiki?path=Cookbook

ff IPython: A System for Interactive Scientific Computing at http://fperez.org/
papers/ipython07_pe-gr_cise.pdf

ff Learning IPython for Interactive Computing and Data Visualization, Cyrille Rossant,
Packt Publishing, available at http://www.packtpub.com/learning-ipython-
for-interactive-computing-and-data-visualization/book

ff The future of IPython at http://www.infoworld.com/print/236429

Exploring IPython Notebook
IPython Notebook is the perfect complement to IPython. As per the IPython website:

"The IPython Notebook is a web-based interactive computational environment
where you can combine code execution, text, mathematics, plots and rich media
into a single document."

While this is a bit of a mouthful, it is actually a pretty accurate description. In practice, IPython
Notebook allows you to intersperse your code with comments and images and anything else
that might be useful. You can use IPython Notebooks for everything from presentations (a
great replacement for PowerPoint) to an electronic laboratory notebook or a textbook.

Getting ready
If you have completed the installation instructions in the first chapter, you should be ready to
tackle the following recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

192

How to do it…
These steps will get you started with exploring the incredibly powerful IPython Notebook
environment. We urge you to go beyond this simple set of steps to understand the true power
of the tool.

1.	 Type ipython notebook --pylab=inline in the command prompt. The
--pylab=inline option should allow your plots to appear inline in your notebook.
You should see some text quickly scroll by in the terminal window, and then, the
following screen should load in the default browser (for me, this is Chrome). Note
that the URL should be http://127.0.0.1:8888/, indicating that the browser is
connected to a server running on the local machine at port 8888.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

193

2.	 You should not see any notebooks listed in the browser (note that IPython Notebook
files have a .ipynb extension) as IPython Notebook searches the directory you
launched it from for notebook files. Let's create a notebook now. Click on the New
Notebook button in the upper right-hand side of the page. A new browser tab or
window should open up, showing you something similar to the following screenshot:

3.	 From the top down, you can see the text-based menu followed by the toolbar for
issuing common commands, and then, your very first cell, which should resemble the
command prompt in IPython.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

194

4.	 Place the mouse cursor in the first cell and type 5+5. Next, either navigate to Cell |
Run or press Shift + Enter as a keyboard shortcut to cause the contents of the cell
to be interpreted. You should now see something similar to the following screenshot.
Basically, we just executed a simple Python statement within the first cell of our first
IPython Notebook.

5.	 Click on the second cell, and then, navigate to Cell | Cell Type | Markdown. Now,
you can easily write markdown in the cell for documentation purposes.

6.	 Close the two browser windows or tabs (the notebook and the notebook browser).

7.	 Go back to the terminal in which you typed ipython notebook, hit Ctrl + C, then hit
Y, and press Enter. This will shut down the IPython Notebook server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

195

How it works…
For those of you coming from either more traditional statistical software packages, such as
Stata, SPSS, or SAS, or more traditional mathematical software packages, such as MATLAB,
Mathematica, or Maple, you are probably used to the very graphical and feature-rich interactive
environments provided by the respective companies. From this background, IPython Notebook
might seem a bit foreign but hopefully much more user friendly and less intimidating than
the traditional Python prompt. Further, IPython Notebook offers an interesting combination of
interactivity and sequential workflow that is particularly well suited for data analysis, especially
during the prototyping phases. R has a library called Knitr (http://yihui.name/knitr/)
that offers the report-generating capabilities of IPython Notebook.

When you type in ipython notebook, you are launching a server running on your local
machine, and IPython Notebook itself is really a web application that uses a server-client
architecture. The IPython Notebook server, as per ipython.org, uses a two-process kernel
architecture with ZeroMQ (http://zeromq.org/) and Tornado. ZeroMQ is an intelligent
socket library for high-performance messaging, helping IPython manage distributed
compute clusters among other tasks. Tornado is a Python web framework and asynchronous
networking module that serves IPython Notebook's HTTP requests. The project is open source
and you can contribute to the source code if you are so inclined.

IPython Notebook also allows you to export your notebooks, which are actually just text
files filled with JSON, to a large number of alternative formats using the command-line tool
called nbconvert (http://ipython.org/ipython-doc/rel-1.0.0/interactive/
nbconvert.html). Available export formats include HTML, LaTex, reveal.js HTML slideshows,
Markdown, simple Python scripts, and reStructuredText for the Sphinx documentation.

Finally, there is IPython Notebook Viewer (nbviewer), which is a free web service where
you can both post and go through static, HTML versions of notebook files hosted on remote
servers (these servers are currently donated by Rackspace). Thus, if you create an amazing
.ipynb file that you want to share, you can upload it to http://nbviewer.ipython.org/
and let the world see your efforts.

There's more…
We will try not to sing too loudly the praises of Markdown, but if you are unfamiliar with the
tool, we strongly suggest that you try it out. Markdown is actually two different things: a syntax
for formatting plain text in a way that can be easily converted to a structured document and
a software tool that converts said text into HTML and other languages. Basically, Markdown
enables the author to use any desired simple text editor (VI, VIM, Emacs, Sublime editor,
TextWrangler, Crimson Editor, or Notepad) that can capture plain text yet still describe
relatively complex structures such as different levels of headers, ordered and unordered lists,
and block quotes as well as some formatting such as bold and italics. Markdown basically
offers a very human-readable version of HTML that is similar to JSON and offers a very
human-readable data format.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

196

See also
ff IPython Notebook at http://ipython.org/notebook.html

ff The IPython Notebook documentation at http://ipython.org/ipython-doc/
stable/interactive/notebook.html

ff An interesting IPython Notebook collection at https://github.com/ipython/
ipython/wiki/A-gallery-of-interesting-IPython-Notebooks

ff The IPython Notebook development retrospective at http://blog.fperez.
org/2012/01/ipython-notebook-historical.html

ff Setting up a remote IPython Notebook server at http://nbviewer.ipython.
org/github/Unidata/tds-python-workshop/blob/master/ipython-
notebook-server.ipynb

ff The Markdown home page at https://daringfireball.net/projects/
markdown/basics

Preparing to analyze automobile fuel
efficiencies

In this recipe, we are going to start our Python-based analysis of the automobile fuel
efficiencies data.

Getting ready
If you completed the first chapter successfully, you should be ready to get started.

How to do it…
The following steps will see you through setting up your working directory and IPython for the
analysis for this chapter:

1.	 Create a project directory called fuel_efficiency_python.

2.	 Download the automobile fuel efficiency dataset from http://fueleconomy.gov/
feg/epadata/vehicles.csv.zip and store it in the preceding directory. Extract
the vehicles.csv file from the zip file into the same directory.

3.	 Open a terminal window and change the current directory (cd) to the fuel_
efficiency_python directory.

4.	 At the terminal, type the following command:
 ipython notebook

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

197

5.	 Once the new page has loaded in your web browser, click on New Notebook.

6.	 Click on the current name of the notebook, which is untitled0, and enter in a new
name for this analysis (mine is fuel_efficiency_python).

7.	 Let's use the top-most cell for import statements. Type in the following commands:
import pandas as pd

import numpy as np

from ggplot import *

%matplotlib inline

Then, hit Shift + Enter to execute the cell. This imports both the pandas and
numpy libraries, assigning them local names to save a few characters while typing
commands. It also imports the ggplot library. Please note that using the from
ggplot import * command line is not a best practice in Python and pours the
ggplot package contents into our default namespace. However, we are doing this
so that our ggplot syntax most closely resembles the R ggplot2 syntax, which is
strongly not Pythonic. Finally, we use a magic command to tell IPython Notebook that
we want matploblib graphs to render in the notebook.

8.	 In the next cell, let's import the data and look at the first few records:

vehicles = pd.read_csv("vehicles.csv")

vehicles.head

Then, press Shift + Enter. The following text should be shown:

However, notice that a red warning message appears as follows:
/Library/Python/2.7/site-packages/pandas/io/parsers.py:1070:
DtypeWarning: Columns (22,23,70,71,72,73) have mixed types.
Specify dtype option on import or set low_memory=False. data
= self._reader.read(nrows)

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

198

This tells us that columns 22, 23, 70, 71, 72, and 73 contain mixed data types. Let's
find the corresponding names using the following commands:
column_names = vehicles.columns.values

column_names[[22, 23, 70, 71, 72, 73]]

array([cylinders, displ, fuelType2, rangeA, evMotor, mfrCode],
dtype=object)

Mixed data types sounds like it could be problematic so make a
mental note of these column names. Remember, data cleaning
and wrangling often consume 90 percent of project time.

How it works…
With this recipe, we are simply setting up our working directory and creating a new IPython
Notebook that we will use for the analysis. We have imported the pandas library and
very quickly read the vehicles.csv data file directly into a data frame. Speaking from
experience, pandas' robust data import capabilities will save you a lot of time.

Although we imported data directly from a comma-separated value file into a data frame,
pandas is capable of handling many other formats, including Excel, HDF, SQL, JSON, Stata,
and even the clipboard using the reader functions. We can also write out the data from data
frames in just as many formats using writer functions accessed from the data frame object.

Using the bound method head that is part of the Data Frame class in pandas, we have
received a very informative summary of the data frame, including a per-column count of
non-null values and a count of the various data types across the columns.

There's more…
The data frame is an incredibly powerful concept and data structure. Thinking in data frames
is critical for many data analyses yet also very different from thinking in array or matrix
operations (say, if you are coming from MATLAB or C as your primary development languages).

With the data frame, each column represents a different variable or characteristic and can
be a different data type, such as floats, integers, or strings. Each row of the data frame
is a separate observation or instance with its own set of values. For example, if each row
represents a person, the columns could be age (an integer) and gender (a category or
string). Often, we will want to select the set of observations (rows) that match a particular
characteristic (say, all males) and examine this subgroup. The data frame is conceptually very
similar to a table in a relational database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

199

See also
ff Data structures in pandas at http://pandas.pydata.org/pandas-docs/

stable/dsintro.html

ff Data frames in R at http://www.r-tutor.com/r-introduction/data-frame

Exploring and describing fuel efficiency data
with Python

Now that we have imported the automobile fuel efficiency dataset into IPython and witnessed
the power of pandas, the next step is to replicate the preliminary analysis performed in R from
the earlier chapter, getting your feet wet with some basic pandas functionality.

Getting ready
We will continue to grow and develop the IPython Notebook that we started in the
previous recipe. If you've completed the previous recipe, you should have everything
you need to continue.

How to do it…
1.	 First, let's find out how many observations (rows) are in our data using the

following command:
len(vehicles)

34287

If you switch back and forth between R and Python, remember that in R, the function
is length and in Python, it is len.

2.	 Next, let's find out how many variables (columns) are in our data using the
following command:
len(vehicles.columns)

74

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

200

3.	 Let's get a list of the names of the columns using the following command:
print(vehicles.columns)

Index([u'barrels08', u'barrelsA08', u'charge120',
u'charge240', u'city08', u'city08U', u'cityA08', u'cityA08U',
u'cityCD', u'cityE', u'cityUF', u'co2', u'co2A',
u'co2TailpipeAGpm', u'co2TailpipeGpm', u'comb08', u'comb08U',
u'combA08', u'combA08U', u'combE', u'combinedCD',
u'combinedUF', u'cylinders', u'displ', u'drive', u'engId',
u'eng_dscr', u'feScore', u'fuelCost08', u'fuelCostA08',
u'fuelType', u'fuelType1', u'ghgScore', u'ghgScoreA',
u'highway08', u'highway08U', u'highwayA08', u'highwayA08U',
u'highwayCD', u'highwayE', u'highwayUF', u'hlv', u'hpv',
u'id', u'lv2', u'lv4', u'make', u'model', u'mpgData',
u'phevBlended', u'pv2', u'pv4', u'range', u'rangeCity',
u'rangeCityA', u'rangeHwy', u'rangeHwyA', u'trany', u'UCity',
u'UCityA', u'UHighway', u'UHighwayA', u'VClass', u'year',
u'youSaveSpend', u'guzzler', u'trans_dscr', u'tCharger',
u'sCharger', u'atvType', u'fuelType2', u'rangeA', u'evMotor',
u'mfrCode'], dtype=object)

The u letter in front of each string indicates that the strings
are represented in Unicode (http://docs.python.
org/2/howto/unicode.html)

4.	 Let's find out how many unique years of data are included in this dataset and what
the first and last years are using the following command:
len(pd.unique(vehicles.year))

31

min(vehicles.year)

1984

max(vehicles["year"])

2014

Note that again, we have used two different syntaxes
to reference individual columns within the vehicles
data frame.

5.	 Next, let's find out what types of fuel are used as the automobiles' primary fuel types.
In R, we have the table function that will return a count of the occurrences of a
variable's various values. In pandas, we use the following:
pd.value_counts(vehicles.fuelType1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

201

Regular Gasoline 24587

Premium Gasoline 8521

Diesel 1025

Natural Gas 57

Electricity 56

Midgrade Gasoline 41

dtype: int64

6.	 Now if we want to explore what types of transmissions these automobiles have,
we immediately try the following command:

pd.value_counts(vehicles.trany)

However, this results in a bit of unexpected and lengthy output:

What we really want to know is the number of cars with automatic and manual
transmissions. We notice that the trany variable always starts with the letter A
when it represents an automatic transmission and M for manual transmission. Thus,
we create a new variable, trany2, that contains the first character of the trany
variable, which is a string:
vehicles["trany2"] = vehicles.trany.str[0]

pd.value_counts(vehicles.trany2)

The preceding command yields the answer that we wanted or twice as many
automatics as manuals:
A 22451

M 11825

dtype: int64

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

202

How it works…
In this recipe, we looked at some basic functionality in Python and pandas. We have used two
different syntaxes (vehicles['trany'] and vehicles.trany) to access variables within
the data frame. We have also used some of the core pandas functions to explore the data,
such as the incredibly useful unique and the value_counts function.

There's more...
In terms of the data science pipeline, we have touched on two stages in a single recipe: data
cleaning and data exploration. Often, when working with smaller datasets where the time
to complete a particular action is quite short and can be completed on our laptop, we will
very quickly go through multiple stages of the pipeline and then loop back, depending on the
results. In general, the data science pipeline is a highly iterative process. The faster we can
accomplish steps, the more iterations we can fit into a fixed time, and often, we can create a
better final analysis.

See also
ff The pandas API overview at http://pandas.pydata.org/pandas-docs/

stable/api.html

Analyzing automobile fuel efficiency over
time with Python

In this recipe, we are going to look at some of the fuel efficiency metrics over time and in
relation to other data points. To do so, we are going to have to replicate the functionality of
two very popular R libraries, which are plyr and ggplot2, in Python. The split-apply-combine
data analysis capabilities that are so handily covered by the plyr R library are handled
equally well but in a slightly different fashion by pandas right out of the box. The
data visualization abilities of ggplot2—an R library implementation of the grammar of
graphics—are not handled as readily, as we shall see in this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

203

Getting ready
If you've completed the previous recipe, you should have almost everything you need to
continue. However, we are going to use a Python clone of the ggplot2 library for R, which is
conveniently named ggplot. If you didn't complete the entire setup chapter and haven't yet
installed the ggplot package, open up a terminal and type the following:

pip install ggplot (or sudo pip install ggplot)

This should work on Windows machines as well.

Wait for the installation to complete. After you do this, you will have to restart the IPython
Notebook server to be able to import this newly installed ggplot library.

How to do it…
We dive into the analysis stage with the following steps:

1.	 Let's start by looking at whether there is an overall trend of how mpg changes over
time on average. We first want to group the data by year:
grouped = vehicles.groupby("year")

2.	 Next, we want to compute the mean of three separate columns by the
previous grouping:
averaged = grouped['comb08', 'highway08',
'city08'].agg([np.mean])

This produces a new data frame with three columns containing the mean of comb08,
highway08, and city08 variables, respectively. Notice that we are using the mean
function supplied by NumPy (np).

3.	 To make life easier, we will rename the columns and then create a new column
named year, which contains the data frame's index:
averaged.columns = ['comb08_mean','highway08_mean',
'city08_mean']

averaged['year'] = averaged.index

Note how easy renaming columns is compared to what we had to do in R! The
columns attribute of the data frame contains the name of the columns and what we
need to modify in order to rename the columns.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

204

4.	 Finally, we want to plot the results as a scatter plot using the new ggplot package
for the Python library:
print ggplot(averaged, aes('year', 'comb08_mean')) +
geom_point(color='steelblue') + xlab("Year") + ylab("Average
MPG") + ggtitle("All cars")

Refer to the following graph:

This plot might be misleading as hybrid cars with excellent mileage have recently
become more popular. Let's see whether we can screen out these automobile makes.
Astute observers will recognize that this figure does not include the geom_smooth()
method of the matching image in the R chapter. While the current ggplot library
(0.4.7 as of February 11, 2014) has the potentially equivalent stat_smooth()
method, the current version still has some bugs that caused erroneous results to be
plotted (and not shown).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

205

5.	 To remove hybrid cars, we create three Boolean arrays. The criteria1 array selects
those rows of the data frame where fuelType1 is Regular Gasoline, Premium
Gasoline, or Midgrade Gasoline. The criteria2 array makes sure that the
rows contain a null for fuelType2, and criteria3 ensures that the atvType is
not Hybrid. We can perform the logical AND operation over these three Boolean
arrays together to select only the desired rows from the data frame:
criteria1 = vehicles.fuelType1.isin(["Regular Gasoline",
"Premium Gasoline", "Midgrade Gasoline"])

criteria2 = vehicles.fuelType2.isnull()

criteria3 = vehicles.atvType != "Hybrid"

vehicles_non_hybrid = vehicles[criteria1 & criteria2 &
criteria3]

len(vehicles_non_hybrid)

31659

6.	 We group the resulting data frame by year and then compute the mean combination
fuel efficiency for each year, resulting in the following data frame:
grouped = vehicles_non_hybrid.groupby(['year'])

averaged = grouped['comb08'].agg([np.mean])

print(averaged)

The preceding command results in this output:
mean

year

1984 19.121622

1985 19.394686

1986 19.320457

1987 19.164568

1988 19.367607

1989 19.141964

…

2007 18.987512

2008 19.191781

2009 19.738095

2010 20.466736

2011 20.961755

2012 21.496767

2013 22.335118

2014 22.248027

Based on the preceding data, we see that there is still a marked rise in the average
miles per gallon even after eliminating hybrids.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

206

7.	 The next question that we can ask is whether there have been fewer cars with large
engines built more recently? If this is true, it could explain the increase in average
miles per gallon. First, let's verify that larger engine cars have poorer miles per gallon.
To look at this, we need to dig into the displ variable that represents the engine
displacement in liters. Remember, pandas gave us a warning about this variable
containing multiple data types, so let's compute the unique displ values:
pd.unique(vehicles_non_hybrid.displ)

array([2.0, 4.9, 2.2, 5.2, 1.8, 1.6, 2.3, 2.8, 4.0, 5.0, 3.3,
3.1, 3.8,

 4.6, 3.4, 3.0, 5.9, 2.5, 4.5, 6.8, 2.4, 2.9, 5.7, 4.3,
3.5, 5.8,

 3.2, 4.2, 1.9, 2.6, 7.4, 3.9, 1.5, 1.3, 4.1, 8.0, 6.0,
3.6, 5.4,

 5.6, 1.0, 2.1, 1.2, 6.5, 2.7, 4.7, 5.5, 1.1, 5.3, 4.4,
3.7, 6.7,

 4.8, 1.7, 6.2, 8.3, 1.4, 6.1, 7.0, 8.4, 3.3, 3.8, 3.5,
4.5, 5.0,

 4.6, 4.2, 5.5, 6.0, 3.0, 1.5, 2.0, 2.8, 2.4, 2.7, 2.3,
3.2, 2.5,

 4.0, 4.7, 5.4, 5.7, 4.3, 3.7, 4.8, 2.2, 1.8, 6.5, 3.6,
6.1, 6.2,

 1.6, 1.0, 4.4, 5.9, 1.3, 6.7, 5.6, 3.4, 7.0, 5.2, 3.9,
5.3, 4.9,

 2.9, 5.8, 3.1, 8.4, 1.1, 2.1, 2.6, 1.4, 6.8, 1.7, 4.1,
1.9, 8.0,

 6.3, nan, 6.6, 6.4, 1.2, 7.4], dtype=object)

8.	 We see that there are some values that might not be numeric, including the nan
value. Let's remove all rows from the vehicles_non_hybrid data frame that have
nan displ values and then do the same for the comb08 variable. In the process,
let's use the astype method to ensure that each value is of type float, just in case:
criteria = vehicles_non_hybrid.displ.notnull()

vehicles_non_hybrid = vehicles_non_hybrid[criteria]

vehicles_non_hybrid.displ =
vehicles_non_hybrid.displ.astype('float')

criteria = vehicles_non_hybrid.comb08.notnull()

vehicles_non_hybrid = vehicles_non_hybrid[criteria]

vehicles_non_hybrid.comb08 =
vehicles_non_hybrid.comb08.astype('float')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

207

9.	 Finally, we will produce a scatter plot of the results again using the ggplot library:
print ggplot(vehicles_non_hybrid, aes('displ', 'comb08')) +
geom_point(color='steelblue') + xlab("Engine Displacement") +
ylab("Average MPG") + ggtitle("Gasoline cars")

Refer to the following graph:

The preceding plot seems to confirm a negative relationship between fuel economy
and engine displacement.

Now, have there been fewer cars with large engines made recently?

10.	 Let's see whether smaller cars were made in later years on average:
grouped_by_year = vehicles_non_hybrid.groupby(['year'])

avg_grouped_by_year = grouped_by_year['displ',
'comb08'].agg([np.mean])

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

208

11.	 Next, let's plot both the average displ value and the average comb08 value by
year on the same plot to look for trends. To do this, we need to reshape the avg_
grouped_by_year data frame to convert it from the wide format to the long format:
avg_grouped_by_year['year'] = avg_grouped_by_year.index

melted_avg_grouped_by_year = pd.melt(avg_grouped_by_year,
id_vars='year')

Then, let's create our faceted plot:
p = ggplot(aes(x='year', y='value', color = 'variable_0'),
data=melted_avg_grouped_by_year)

p + geom_point() + facet_wrap("variable_0")

Refer to the following graph:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

209

How it works…
Let's ignore the actual findings of the analysis, as they are the same as the ones in the
chapter using R. The truly interesting part is the numerous important data analysis techniques
that were used in this chapter. Let's break each technique down individually.

First and foremost, let's take a look at the general data analysis pattern known as split-apply-
combine, which was previously mentioned in the companion R chapter. When analyzing a
dataset, it is often desirable to group the data by one or more characteristics, perform an
operation on the grouped subsets of data, and then put the results together. In this chapter,
we grouped our data by year, computed averages on different variables, and then combined
these results. In the previous chapter, we used the plyr package by Hadley Wickham.
With plyr, we called the ddply function passing in the data frame to be analyzed, the
characteristic or set of characteristics to group by, and then the functions to be used on
the group data. The ddply function then returns the resulting data frame. One line of code
performs the split-apply-combine pattern.

The pandas library in Python takes a slightly different approach and splits up the functionality
that is subsumed in a single function call in plyr. First, we can group a pandas object such
as a data frame by a specified characteristic as in this line of code—grouped_by_year =
vehicles_non_hybrid.groupby(['year'])—where we are grouping the rows of the
vehicles_non_hybrid data frame by the year variable. Note that we are not limited to
grouping by a single variable and can create groupings with multiple characteristics (year and
car company, for example).

Once we have the grouped_by_year object, we can iterate through the groups if we
wanted to:

for (name, group) in grouped_by_year:

 print name

 print group

This will print out each group name and the resulting data frame. Next, we use the
aggregrate method on the GroupBy object using the mean function from the NumPy library
(np.mean). In the following code, we are choosing to only aggregate a single variable, which is
comb08, from the grouped_by_year data frame:

averaged = grouped['comb08'].agg([np.mean])

In pandas, this very robust split-apply-combine functionality is built into the library, and we
have only scratched the surface of what it is capable of.

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

210

There's more…
We have also used the ggplot package from yhat instead of the venerable matplotlib. The
Grammar of Graphics offers a very concise, although highly non-Pythonic, way of describing
graphs. The back cover of the seminal book, The Grammar of Graphics, Leland Wilkinson,
Springer states that:

"The Grammar of Graphics presents a unique foundation for producing almost
every quantitative graphic found in scientific journals, newspapers, statistical
packages, and data visualization systems. While the tangible results of this work
have been several visualization software libraries, this book focuses on the deep
structures involved in producing quantitative graphics from data. What are the rules
that underlie the production of pie charts, bar charts, scatterplots, function plots,
maps, mosaics, and radar charts?"

The ggplot2 package in R is one of R's greatest assets, and Python now has a functioning
ggplot clone. Unfortunately, as shown by some of the experiences in this chapter, the
ggplot Python library is not quite feature-complete at this time.

As the Python ggplot library is still under development (and we had a few issues with the
smoothing functionality), you might be interested to know that there is a Python library that
allows you to use R from within your Python program. The rpy2 package, at http://rpy.
sourceforge.net/rpy2.html, offers both a low-level and a high-level interface to R
from Python. The low-level interface is somewhat similar to R's C API. The high-level interface
exposes R objects as instances of Python classes. In order to use rpy2, ensure that you have
R installed on your system. Any packages that you call from Python must be available in R!

See also
ff pandas: indexing and selecting data at http://pandas.pydata.org/pandas-

docs/stable/indexing.html

ff The Matplotlib and the Future of Visualization in Python article at http://
jakevdp.github.io/blog/2013/03/23/matplotlib-and-the-future-of-
visualization-in-python/

ff The home page of Hadley Wickham at http://had.co.nz/

ff The ggplot package for Python at http://blog.yhathq.com/posts/ggplot-
for-python.html

ff More ggplot for Python at http://blog.yhathq.com/posts/aggregating-
and-plotting-time-series-in-python.html

ff The article The Split-Apply-Combine Strategy fro Data Analysis, Hadley Wickham,
Journal of Statistical Software at http://www.jstatsoft.org/v40/i01/paper

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

211

Investigating the makes and models of
automobiles with Python

To continue our investigation of this dataset, we are going to examine the makes and models
of the various automobiles more closely, repeating many of the steps from the previous
chapter while translating from R to Python.

Getting ready
If you've completed the previous recipe, you should have everything you need in order
to continue.

How to do it…
The following steps will lead us through our investigation:

1.	 Let's look at how makes and models of cars inform us about fuel efficiency over
time. First, let's look at the frequency of makes and models of cars available in the
U.S., concentrating on 4-cylinder cars. To select the 4-cylinder cars, we first make the
cylinders variable unique to see what the possible values are:
pd.unique(vehicles_non_hybrid.cylinders)

array([4.0, 12.0, 8.0, 6.0, 5.0, 10.0, 2.0, 3.0, 16.0, 6, 8,
12, 4, 3, 5, 2, 10, 16, nan], dtype=object)

Both 4.0 and 4 are listed as unique values; this fact should
raise your suspicion. Remember, when we imported the
data, pandas warned us that several variables were mixed
types, and one of these variables was cylinders.

2.	 Let's convert the cylinders variable to float so that we can then easily subset the
data frame:
vehicles_non_hybrid.cylinders =
vehicles_non_hybrid.cylinders.astype('float')

pd.unique(vehicles_non_hybrid.cylinders)

array([4., 12., 8., 6., 5., 10., 2., 3., 16.,
nan])

vehicles_non_hybrid_4 =
vehicles_non_hybrid[(vehicles_non_hybrid.cylinders == 4.0)]

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

212

3.	 Now, let's look at the numbers of makes that have 4-cylinder cars over the time frame
that is available:
import matplotlib.pyplot as plt

%matplotlib inline

grouped_by_year_4_cylinder =
vehicles_non_hybrid_4.groupby(['year']).make.nunique()

fig = grouped_by_year_4_cylinder.plot()

fig.set_xlabel('Year')

fig.set_ylabel('Number of 4-Cylinder Makes')

print fig

Note that we have switched from ggplot to matplotlib as we are trying to plot
a series object. In Python, it is considered bad form to have your code littered with
random import statements. Therefore, we will move the import statement to the
top of our IPython Notebook. Remember, if you restart your IPython Notebook, make
sure that you execute the import statements at the top of the Notebook first so that
the rest of your code will run.

Refer to the following graph:

We can see in the preceding graph that there has been a decline in the number of
makes with 4-cylinder engines available since 1980. However, as a caveat, this plot
could be misleading, as we do not know if the total number of available makes per
year has changed over the same period of time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

213

4.	 Can we look at the makes that have been available every year of this study? First, we
want to find a list of the automobile makes with 4-cylinder engines that were present
in every year of this study. To do this, we first compute the unique list of makes per
model year:
grouped_by_year_4_cylinder =
vehicles_non_hybrid_4.groupby(['year'])

unique_makes = []

for name, group in grouped_by_year_4_cylinder:

 unique_makes.append(set(pd.unique(group['make'])))

unique_makes = reduce(set.intersection, unique_makes)

print unique_makes

Set(['Dodge', 'Mitsubishi', 'Jeep', 'Chevrolet', 'Nissan',
'Honda', 'Toyota', 'Volkswagen', 'Mazda', 'Subaru',
'Chrysler', 'Ford'])

We find that there are only 12 manufacturers that made 4-cylinder cars every year
during this period.

5.	 Now, we ask the question how these car manufacturers' models have performed
over time in terms of fuel efficiency. To do this, we decide to take the long way. First,
we create an empty list that will eventually be populated by Booleans. We then
iterate over each row in the data frame using the iterrows generator that yields
both an index and row (we choose to do nothing with the index in the loop). We then
test whether the make of the current row is in the unique_makes set computed
previously and append the Boolean to the Boolean_mask set. After the loop is
completed, we subset the data frame to contain only rows with a make within the set
of unique_makes:
boolean_mask = []

for index, row in vehicles_non_hybrid_4.iterrows():

 make = row['make']

 boolean_mask.append(make in unique_makes)

df_common_makes = vehicles_non_hybrid_4[boolean_mask]

6.	 Next, we must group the data frame by both year and make and then compute the
mean for each grouping:
df_common_makes_grouped =
df_common_makes.groupby(['year','make']).agg(np.mean).reset_in
dex()

www.it-ebooks.info

http://www.it-ebooks.info/

Driving Visual Analyses with Automobile Data (Python)

214

7.	 Finally, we display the results of our efforts using a faceted plot, courtesy of ggplot:
 ggplot(aes(x='year', y='comb08'), data =
df_common_makes_grouped) + geom_line() + facet_wrap('make')

Refer to the following graph:

How it works…
A lot of the steps were spelled out in detail during the recipe itself, so we won't belabor the
points here. However, there are a few things that are certainly worth pointing out. First, did
you notice the .reset_index() call at the end of the last split-apply-combine step? The
following command shows this:

df_common_makes.groupby(['year','make']).agg(np.mean).reset_index()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

215

When performing the groupby step, pandas returns the key by which rows were grouped
as an index and not as a simple data column. In the case of multiple grouping keys, pandas
returns a multilevel index. Unfortunately, this will not work for ggplot, and we need to tell
pandas to treat these indices as data columns with the .reset_index() method.

Second, we used a for loop, iterating over the rows of the data frame to determine whether
the make was in the list of unique_makes of interest. If this block of code seemed a bit
verbose, it is because it was. Pandas has an incredible amount of functionalities built in,
and we could have performed the row selection using the .isin() method, as shown in the
following command:

test =
vehicles_non_hybrid_4[vehicles_non_hybrid_4['make'].isin(unique_makes
)]

If there is a data analysis step that you wish to perform on your data frame, chances are there
is a method that has already been built to do this.

From a performance standpoint, we committed a very obvious sin in the for loop by
appending the loop to a list, thus growing the size of the list with each iteration. To speed this
up, we should have pre-allocated the list to the size of the number of rows in the data frame
filled with false Boolean values. Preallocating arrays is a very general technique that speeds
up code in most languages; this trick is especially powerful in matplotlib.

To perform the set intersection that we used in order to identify all of the makes present
in every year of the data, we needed the sets Python package that is part of the Python
distribution. Again, we would move this import statement to the top of our script in order to
follow best Python practices.

See also
ff The matplotlib home page at http://matplotlib.org/

ff The groupby documentation at http://pandas.pydata.org/pandas-docs/
stable/groupby.html

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8
Working with Social

Graphs (Python)

In this chapter, we will cover:

ff Preparing to work with social networks in Python

ff Importing networks

ff Exploring subgraphs within a heroic network

ff Finding strong ties

ff Finding key players

ff Exploring characteristics of entire networks

ff Clustering and community detection in social networks

ff Visualizing graphs

Introduction
Social networks have become a fixture of modern life, thanks to social networking sites such
as Facebook and Twitter. Social networks themselves are not new, however. The study of such
networks dates back to the early twentieth century, particularly in the fields of sociology and
anthropology. It is their prevalence in mainstream applications that has moved these types of
studies to the purview of data science.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

218

It turns out that social networks are extremely interesting as models for human behavior.
Human civilization stems from tribal societies, and as a result, Dunbar's number—a hypothesis
that at any given time we can only have 150 people in our extended social network—has
famously been proven through the analysis of the most active networks. Latent social
networks exist everywhere, not just in popular Web 2.0 applications. We manage our lives
through connections to various networks, and, because of that, we generate a lot of related,
rich data that can be used to make predictions about ourselves and our relationships.

Networks, like the ones we'll discuss in this chapter, take a relationship-centered view of the
world. By leveraging an existing data structure of people-to-people relationships (a social
network), we can produce analyses about the larger network with clustering techniques
to discover communities, reveal insights into the role of important members of the graph,
and even generate behavioral predictions through relational inference. These analyses
have a number of practical applications from law enforcement to election prediction and
recommendations to application optimization.

The mathematical underpinnings of these analyses stem from graph theory. Therefore,
the techniques for the analyses in this chapter will focus on the cardinality, traversal, and
clustering of graphs. To introduce these techniques, we will make use of an excellent Python
graph library, NetworkX. We'll go through several analyses at various levels of the network,
such as pairwise comparisons at the individual level, community detection at the group level,
and cohesion analyses at the network level. Finally, we'll look at visualizing and drawing our
graphs and subgraphs with various tools.

Understanding graphs and networks
The basis for the analyses in this chapter comes from graph theory—the mathematical study
of the application and properties of graphs, originally motivated by the study of games of
chance. Generally speaking, this involves the study of network encoding and measuring
properties of a graph. Graph theory can be traced back to Euler's work on the Seven Bridges
of Königsberg problem in the year 1735. However, in recent decades, the rise of the social
network has influenced the discipline, particularly with computer science graph data
structures and databases.

Let's start with a point of contention. What is the difference between a network and a graph?
The term graph can be used to imply visual representations of variables and functions, the
mathematical concept of a set of nodes and edges, or the data structure based on that
concept. Similarly, the term network has multiple definitions; it can be an interconnected
system or a specialized type of mathematical graph. Therefore, either term, social network or
social graph, is appropriate in this case, particularly as we are referring to the mathematical
concept and data structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

219

A graph is a symbolic representation of a network that is composed of a set of vertices
(nodes) and their connections (relationships or edges). More formally, a graph can be defined
as: G = (V, E), an entity consisting of a finite set of nodes denoted by V (vertices) or V(G) and
a collection E (edges) or E(G) of unordered pairs {u, v} where u, v ∈ V. A visual example, as
shown in the following figure, should be familiar to the reader:

Graphs can be either directed or undirected. Directed graphs have ordered relationships;
undirected graphs can be seen as bidirectional directed graphs. A directed graph in a social
network tends to have directional semantic relationships, for example, "friends", where Abe
might be friends with Jane, but Jane might not reciprocate. Undirected social networks have
more general semantic relationships, for example, "knows". Any directed graph can easily be
converted to the more general undirected graph. In this case, the adjacency matrix becomes
symmetric; every relationship is reciprocal.

Adjacency matrices are two-dimensional graph representations, where each cell or element
(i, j) is 1 if the ith node and jth node are connected; it is 0 otherwise. This is certainly not
the most compact manner of storing information about graphs; a byte must be stored for
every pair of nodes, even if the majority of nodes do not share an edge with most other
nodes. However, this representation is computationally effective and is used for many graph
algorithms. Consider that a node can be represented in this scheme as a vector of its edges.
An example of a small adjacency matrix for an undirected graph with four nodes is shown in
the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

220

A few final terms will help us in our discussion. The cardinality of vertices is called the order
of the graph, whereas the cardinality of the edges is called the size. In the graph pictured in
the preceding figure, the order is 7 and the size is 10. Two nodes are adjacent if they share
an edge; if this is true, they are also called neighbors. The neighborhood of a vertex is the
set of all vertices that the vertex is connected to. The degree of a vertex is the size of its
neighborhood, the number of nodes that share an edge with the vertex.

With this in mind, graph problems generally fall into a few categories. Existence problems
attempt to determine if a node, path, or subgraph exists, particularly if there is a constraint.
Construction problems focus on the construction of a graph, given a set of nodes and paths,
within given constraints. Enumeration problems attempt to determine the list of vertices and
relationships within a set of constraints. Finally, optimization problems determine the shortest
path between two nodes.

Preparing to work with social networks in
Python

One of Python's key advantages that merits repeating is the number of excellent premade
packages available for the language; fortunately for us, network analysis is no exception. This
short recipe will walk you through installing the libraries you'll need for the rest of this chapter.

Getting ready
The required external libraries for the tasks in this chapter are as follows:

ff NetworkX

ff matplotlib

ff python-louvain

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

221

How to do it...
We will use the following steps that should be familiar at this point to prepare for the
remaining recipes:

1.	 Open a new terminal or command prompt and change to your project directory.

2.	 If you are using a virtual environment, activate your virtual environment and type
the following:
pip install networkx

If you are not using a virtual environment, you will most likely need to use sudo,
as follows:

sudo pip install networkx

3.	 Now, we must install the python-louvain package:

pip install python-louvain

How it works...
NetworkX is a well-maintained Python library for the creation, manipulation, and study of the
structure of complex networks. Its tools allow for the quick creation of graphs, and the library
also contains many common graph algorithms. In particular, NetworkX complements Python's
scientific computing suite of SciPy/NumPy, matplotlib, and Graphviz and can handle graphs
in memory of 10M's of nodes and 100M's of links. NetworkX should be part of every data
scientist's toolkit.

NetworkX and Python are the perfect combination to do social network analysis. NetworkX is
designed to handle data at scale. The core algorithms that are included are implemented on
extremely fast legacy code. Graphs are hugely flexible (nodes can be any hashable type), and
there is an extensive set of native IO formats. Finally, with Python, you'll be able to access or
use a myriad of datasources from databases on the Internet.

Python-louvain is a small Python library built for a singular purpose, which is to use the
Louvain method for community detection, as described in the Fast unfolding of communities
in large networks paper (Journal of Statistical Mechanics: Theory and Experiment, 2008 (10)).
A C++ implementation is also available.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

222

There's more...
While we will use NetworkX exclusively in this chapter, there are a number of excellent
alternative social network analysis libraries that are worth mentioning. First, igraph (http://
igraph.org/redirect.html) can be programmed and used from R, Python, and C/
C++, with the underlying tools built in C/C++ for performance. The second library to take a
look at is graph-tool (http://graph-tool.skewed.de/). Underneath its Python usability,
it can also be implemented in C++, but with the added benefit of leveraging OpenMP for
parallelization across multicore machines.

Importing networks
The dataset we will explore in this chapter is fun. It's the Marvel Universe Social Graph dataset
constructed by Cesc Rosselló, Ricardo Alberich, and Joe Miro as part of their research on
disordered systems and neural networks (http://bioinfo.uib.es/~joemiro/marvel.
html). They created the network by compiling characters with the comic books in which they
appear; as it turns out, the network actually mimics a real-world social network. Since then,
there have been many visualizations of, and other mashups using this famous dataset (as well
as extensions). In this recipe, we will import the needed data into our Python environment.

Getting ready
Once you have installed the needed libraries from the preceding recipe, you will need to use
the dataset provided with the chapter.

How to do it...
Perform the following steps to import the data:

1.	 In order to get this graph into a NetworkX graph representation, iterate over the
dataset and add edges (which automatically creates the nodes) for each hero pair:
import networkx as nx

import unicodecsv as csv

def graph_from_csv(path):

 graph = nx.Graph(name="Heroic Social Network")

 with open(path, 'rU') as data:

 reader = csv.reader(data)

 for row in reader:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

223

 graph.add_edge(*row)

 return graph

Each row is a (hero, hero) tuple. Using the *row notation, we expand the tuple so that
the function definition is actually graph.add_edge(hero, hero).

2.	 The dataset is large, weighing in at 21 MB, and takes a second or two to load into
memory; you can compute the size and the order of the graph as follows:
>>> graph.order() # graph.number_of_nodes()

6426

>>> graph.size() # graph.number_of_edges()

167219

Keep this function handy; we'll need it to get the graph for most of the rest of the
chapter!

3.	 The alternate dataset, from which the social network was derived, includes the
comics in which the characters appeared. A slightly different graph generation
mechanism is necessary for this format:
def graph_from_gdf(path):

 graph = nx.Graph(name="Characters in Comics")

 with open(path, 'rU') as data:

 reader = csv.reader(data)

 for row in reader:

 if 'nodedef' in row[0]:

 handler = lambda row,G: G.add_node(row[0],
 TYPE=row[1])

 elif 'edgedef' in row[0]:

 handler = lambda row,G: G.add_edge(*row)

 else:

 handler(row, graph)

 return graph

In this tab-separated value (TSV) file, there is a banner that says nodedef or
edgedef before the rows of nodes or edge definitions. While we loop through each
row, we create a handler function, lambda, depending on whether we've seen the
banner. Then, for every row under the banner, we use the defined handler as we're in
the section for either nodes or edges.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

224

4.	 At this point, we can calculate some quick information for the graph using built-in
methods from NetworkX:

>>> nx.info(graph)

Name: Heroic Social Network

Type: Graph

Number of nodes: 6426

Number of edges: 167219

Average degree: 52.0445

Note that the name for the graph was added when we instantiated nx.Graph, an
optional feature that makes it easier to track multiple graphs in your code.

How it works...
Data import can be a challenge in any data science project and graph data can come
in a variety of formats. For this recipe, the data is simple; it is a TSV file of hero-to-hero
connections with the implied "knows" relationship.

There is also an alternate dataset that expands the "knows" relationship by including
the source of their relationship, the comic book that the heroes appear in together. This
expansion adds additional hops between the hero-to-hero network by expanding the comic-to-
hero network via "appears in" relationships. This expanded network might allow us to compute
the strength of the "knows" relationships; for example, the more comics that heroes appear
in together, the better they probably know each other. It is interesting to note that this type of
dataset has been shown to be effective at community discovery and relationship clustering.

The graph_from_gdf function determines whether we're reading edges or nodes, and it
handles each line of the TSV file appropriately by implementing a new handler via a lambda
function when it sees a row banner called nodedef or edgedef, indicating that the rows
below it are nodes or edges, respectively. This function also gives us the opportunity to create
a property graph.

A property graph extends our current graph definition with the inclusion of key/value pairs
on nodes and edges, and even potentially on the graph itself. Property graphs are more
expressive, and they are the basis of many graph databases because they can hold more
information per node and per relationship (thus making it a possible replacement for
traditional relational databases). NetworkX also allows you to specify additional properties for
both nodes and edges.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

225

Note the add_node method; additional keyword arguments are saved as a
property. In this case, we set a TYPE property to determine whether the node
is a comic book or a hero. NetworkX also allows the setting and retrieving of
properties in bulk on nodes, using set_node_attributes (G, name,
attributes) and get_node_attributes(G, name), which return
a dictionary mapping the nodes to the attribute requested (or saving the
attribute to the group of nodes).

Exploring subgraphs within a heroic
network

The graph in the previous recipe is much too large for us to get a feel for what is happening
at the individual level, although we'll soon look at analyses that tell us interesting things
about populations and communities. However, in order for us to see something interesting
immediately, let's extract a subgraph to play with. In particular, we'll collect a subgraph for a
particular hero in our dataset. When a subgraph is generated with a single person or actor as
a focal point, it is called an ego network, and, in fact, the degree of an ego network might be a
measure of an individual's self-worth!

Getting ready
As long as you completed the previous recipe, you will be prepared for this one.

How to do it…
The following steps will lead you through extracting subgraphs from our large dataset and
visualizing the ego networks:

1.	 Every social network has as many egos as nodes. The neighbors of an ego are called
alters. The definition of the ego subgraph is bound by an n-step neighborhood,
defining how many hops away from the ego to include in the subgraph. NetworkX
provides a very simple mechanism to extract an ego graph, as shown in the following
command:
>>> ego = nx.ego_graph(graph, actor, 1)

This function returns a subgraph of all the neighbors of the actor node, with a
maximum path length as specified by the third argument.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

226

2.	 To draw the graph of the ego network, we use the following function:
def draw_ego_graph(graph, character, hops=1):

 """

 Expecting a graph_from_gdf

 """

 # Get the Ego Graph and Position

 ego = nx.ego_graph(graph, character, hops)

 pos = nx.spring_layout(ego)

 plt.figure(figsize=(12,12))

 plt.axis('off')

 # Coloration and Configuration

 ego.node[character]["TYPE"] = "center"

 valmap = { "comic": 0.25, "hero": 0.54, "center": 0.87 }

 types = nx.get_node_attributes(ego, "TYPE")

 values = [valmap.get(types[node], 0.25) for node in
 ego.nodes()]

 # Draw

 nx.draw_networkx_edges(ego, pos, alpha=0.4)

 nx.draw_networkx_nodes(ego, pos,

 node_size=80,

 node_color=values,

 cmap=plt.cm.hot, with_labels=False)

 plt.show()

3.	 Let's take a look at the ego networks for LONGBOW/AMELIA GREER, starting with a
one-hop network:
>>> graph = graph_from_gdf('comic-hero-network.gdf'))

>>> draw_ego_graph(graph, "LONGBOW/AMELIA GREER")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

227

The preceding commands will give you the following graph:

The preceding figure shows this one-hop ego network, which is derived from the
expanded comic-to-hero social graph. Since there are two different types of nodes, we
have visually colored them differently; orange nodes are characters and blue nodes
are comic books. The ego node is white, LONGBOW/AMELIA GREER herself.

4.	 Let's create a two-hop ego network for the same character:

>>> draw_ego_graph(graph, "LONGBOW/AMELIA GREER", 2)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

228

The preceding command will give you the following graph as output:

How it works...
Amelia Greer (also known as Longbow) is part of a mercenary special operations unit called
the Harriers. She appears in two Marvel comics, particularly The Uncanny X-Men Vol 1 #261
in May of 1990. Her ego network is very close knit (containing mostly members from the
Harriers), as you can see in the preceding one-hop network figure.

The preceding two-hop network considerably expands the volume of the network. The black
nodes represent the second hop to the next comic book community of characters. Clusters
are readily apparent, even in this small ego network. Still, even one-hop network can say a lot
about group membership and the importance of an actor. We will talk about how to build such
graphs later on in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

229

There's more...
The ego can or cannot be a part of the network. In fact, membership testing on the ego is not
important since the subgraph was generated based on the neighborhood of the ego! Instead,
removal of the ego can show structural configurations of the network. Consider the social
networks shown in the following figure:

In the preceding figure, the ego is included as part of the graph; the structure of the network
seems unified and cohesive.

As you can see, without the ego, isolations become important, as do obvious outliers.
Aggregating these isolations across egos is how group membership and communities are
discovered. We'll explore this more in the next sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

230

Finding strong ties
Currently, our hero network simply measures whether two characters are connected. This
computation is simple; do they appear in the same comic book together? We assume that
in the small temporal space of a comic book, even cameos mean that the characters have
interacted with each other. However, this does not tell us who the most important relations for
a particular character are.

In order to determine the most important folks in an ego network (or to determine relative
affinity between two actors), we need to determine edge weights. Since edges represent
interaction, affiliation, or social relations, adding a weight determines the distance between
two actors, relative to other actors with similar connections. Proxies for edge weights in social
networks include:

ff Frequency, for example, how often two actors communicate

ff Reciprocity, for example, whether or not the relationship is reciprocal

ff Type or attributes, for example, married actors have a stronger tie than college
roommates

ff Structure of the neighborhood, for example, the number of mutual friends

In our heroic social graph, we'll use the number of comic books in which a pair of characters
appears together as a proxy for the strength of their tie. This seems to make sense; if one
character is a villain that appears in the same comics as a hero, their relationship is that of
a nemesis, it's not a simple protagonist/antagonist relationship! Another example is that of
two heroes appearing together often. They might be part of a heroic team (for example, The
Avengers) or share a sidekick relationship (for example, Bucky to Captain America).

Getting ready
If you completed the previous recipes, you should be ready to tackle this one.

How to do it...
The following steps will walk us through finding the strong ties in the network:

1.	 In order to compute the ties, we'll recreate the hero network graph from the comic
hero network dataset. Since this represents an entire graph computation (for
example, we will iterate through every node in the graph), we'll need to use a memory-
safe iterator and save the intermediate data to disk. Here is the complete code; we'll
go over it line by line, as follows:
def transform_to_weighted_heros(comics):

 # Create new graph to fill in

 heros = nx.Graph(name="Weighted Heroic Social Network")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

231

 # Iterate through all the nodes and their properties

 for node, data in graph.nodes(data=True):

 # We don't care about comics, only heros

 if data['TYPE'] == 'comic': continue

 # Add the hero and their properties (this will also
 update data)

 heros.add_node(node, **data)

 # Find all the heros connected via the comic books

 for comic in graph[node]:

 for alter in graph[comic]:

 # Skip the hero that we're on

 if alter == node: continue

 # Setup the default edge

 if alter not in heros[node]:

 heros.add_edge(node, alter, weight=0.0,
 label="knows")

 # The weight of the hero is the fraction of
 connections / 2

 heros[node][alter]["weight"] += 1.0 /
 (graph.degree(comic) *2)

 return heros

2.	 Let's see Longbow's social weighted graph now:

def draw_weighted_ego_graph(graph, character, hops=1):

 # Graph and Position

 ego = nx.ego_graph(graph, character, hops)

 pos = nx.spring_layout(ego)

 plt.figure(figsize=(12,12))

 plt.axis('off')

 # Coloration and Configuration

 ego.node[character]["TYPE"] = "center"

 valmap = { "hero": 0.0, "center": 1.0 }

 types = nx.get_node_attributes(ego, "TYPE")

 values = [valmap.get(types[node], 0.25) for node in
 ego.nodes()]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

232

 char_edges = ego.edges(data=True, nbunch=[character,])

 nonchar_edges = ego.edges(nbunch=[n for n in ego.nodes()
 if n != character])

 elarge=[(u,v) for (u,v,d) in char_edges if d['weight'] >=0.12]

 esmall=[(u,v) for (u,v,d) in char_edges if d['weight'] < 0.12]

 print set([d['weight'] for (u,v,d) in char_edges])

 # Draw

 nx.draw_networkx_nodes(ego, pos,

 node_size=200,

 node_color=values,

 cmap=plt.cm.Paired,
 with_labels=False)

 nx.draw_networkx_edges(ego,pos,edgelist=elarge,

 width=1.5, edge_color='b')

 nx.draw_networkx_edges(ego,pos,edgelist=esmall,

 width=1,alpha=0.5,
 edge_color='b',style='dashed')

 nx.draw_networkx_edges(ego,pos,edgelist=nonchar_edges,

 width=0.5,alpha=0.2,style='dashed')

plt.show()

The preceding commands will give you the following graph as output:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

233

As you can see, Longbow shares two strong ties (represented by the heavy dark
blue line), and this makes sense since she is in two comic books with only two other
characters. The other characters she's directly related to have light blue dashed lines,
representing her weaker ties to them.

Note that all characters are connected to the other characters with whom they share
ties in the ego network (represented by light grey dashed lines). Already, we can start
to see clustering, as the characters from different comic books have moved to either
side of Longbow's red node. Characters that have affinities with characters from both
comics are in the middle.

How it works...
The transform_to_weighted_heros function is key to this recipe, and we explain it line
by line here. First, we create an empty graph in which to add our transformation. Note that
in NetworkX, there are functions such as create_empty_graph and Graph.subgraph;
however, the former won't transfer the data that we need and the latter will transfer too much
data. We'll go over each node in the original graph, skipping over comic books. Note that we'll
add heroes twice using the heros.add_node method because every time we add an edge,
it creates the node, if it doesn't exist already. However, to ensure that we get all the data over,
we call add_node for each hero, and it will simply update the node's properties if it is already
in the graph.

Next, we'll connect the heroes together through their comic-book relationships. We'll gather
all the heroes connected to the same comic books our current hero is in (skipping the current
hero to prevent self-loops). If there is no edge, we'll create a default edge, before adding our
weight computation. The weight we'll assign is related to the number of characters in a comic
book. It stands to reason that if a comic book has more characters in it, they are more loosely
connected. Therefore, we compute our weight as the inverse of the degree of the comic book,
divided by two. The division by two is required since this is an undirected graph, otherwise we
will double all the weights!

There's more...
Weighted edges are essential to be able to make predictions on a graph, partially because
they allow ranking of paths, but mostly because they reflect the underlying semantic
associations of the social network. Making predictions relies on relationships that create
homophily—this is the tendency of people with similar interests to gather together, and it leads
to the formation of homogenous groups called clusters. Homophilous ties can be strong or
weak; for instance, folks who go to the same school together represent a stronger tie than
people who live in the same city.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

234

Transitivity is the property of edges that allow us to make predictions. Simply stated, it offers
the ability to perform triadic closures. If nodes A and B are connected, and A and C are also
connected, then it is likely that B and C are connected too. Transitivity is evidence of the
existence of strong ties, but is not a necessary or sufficient condition, and it might not be
applied equally to weak ties.

Bridges, on the other hand, are edges that connect nodes across groups. Bridges
facilitate cluster communication, and are usually the product of weak ties or heterophilous
relationships. Knowing and understanding these properties as they relate to your particular
social graph are essential for unlocking key insights and being able to make future predictions
about how the graph might change.

Finding key players
In the previous recipe, we began exploring ego networks and strong ties between individuals
in our social network. We started to see that actors with strong ties with other actors created
clusters that centered on themselves. This leads to the obvious question: who are the key
figures in the graph, and what kind of pull do they have? We'll look at a couple of measures
to determine how important a node is or its "centrality" to try to discover the degree centrality,
betweenness centrality, closeness centrality, and eigenvector centrality.

Getting ready
If you completed the previous recipes, you will be ready to start this one.

How to do it...
The following steps will identify key players in this network of comic book characters:

1.	 To find the top ten nodes in the heroes network, we compute the nodes' degree and
sort them:
import operator

>>> degrees = sorted(graph.degree().items(), key=operator.
itemgetter(1), reverse=True)

>>> for node in degrees: print node

2.	 Additionally, we compute the percent of nodes in the graph that a node is connected to;
NetworkX provides a helpful function, degree_centrality, to do this for us. While
we're at it, we might as well also set this as a property for our nodes for easy lookup:
>>> centrality = nx.degree_centrality(graph)

>>> nx.set_node_attribues(graph, 'centrality', centrality)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

235

>>> degrees = sorted(centrality.items(), key=itemgetter(1),
reverse=True)

>>> for item in degrees[0:10]: print "%s: %0.3f" % item

The preceding commands give us our top ten key players in the dataset, and I think
it's obvious that they are the most influential characters in the Marvel universe:
1. CAPTAIN AMERICA: 0.297 (1908)

2. SPIDER-MAN/PETER PAR: 0.270 (1737)

3. IRON MAN/TONY STARK : 0.237 (1522)

4. THING/BENJAMIN J. GR: 0.220 (1416)

5. MR. FANTASTIC/REED R: 0.215 (1379)

6. WOLVERINE/LOGAN : 0.213 (1371)

7. HUMAN TORCH/JOHNNY S: 0.212 (1361)

8. SCARLET WITCH/WANDA : 0.206 (1325)

9. THOR/DR. DONALD BLAK: 0.201 (1289)

10. BEAST/HENRY &HANK& P: 0.197 (1267)

These characters are hugely influential with a high number of connections,
considering the average degree is 52.045! While we're at it, we might as well create
a histogram of the connectedness of the graph. A quick note before I show you the
histogram: NetworkX does have a function, degree_histogram, which will return a
list of the frequencies of degrees. However, in this case, the list's index is the degree
value, and the bin width is 1; this means the length of the list can be very large
(Order(len(edges))). Using graph.degree().values() is a bit more efficient,
particularly for social network graphs, as we'll see next.

3.	 With the following little snippet, you should now be able to see just how far from
normal our top characters are in terms of influence:
>>> import matplotlib.pyplot as plt

>>> plt.hist(graph.degree().values(), bins=500)

>>> plt.title("Connectedness of Marvel Characters")

>>> plt.xlabel("Degree")

>>> plt.ylabel("Frequency")

>>> plt.show()

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

236

The preceding snippet will give you the following graph as output:

4.	 In fact, you can filter out the number of characters whose node degree is greater than
500, that is the top 1 percent. This filter returns 98.8 percent of characters:
>>> filter(lambda v: v < 500, graph.degree().values())

If you do so, the curve becomes slightly more apparent:
>>> import matplotlib.pyplot as plt

>>> plt.hist(graph.degree().values(), bins=500)

>>> plt.title("Connectedness of Marvel Characters")

>>> plt.xlabel("Degree")

>>> plt.ylabel("Frequency")

The preceding commands will give you the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

237

5.	 To compute other centrality metrics, we will use NetworkX built-in functions. To
compute betweenness centrality, use the following functions:
>>> centrality = nx.betweenness_centrality(graph)

>>> normalied = nx.betweenness_centrality(graph, normalized=True)

>>> weighted = nx.betweenness_centrality(graph, weight="weight")

The preceding function allows you to compute betweenness centrality, which will be
discussed later, and can be normalized or weighted.

6.	 To compute the closeness centrality, we can use the following functions, which are
similar to the betweenness centrality:
>>> centrality = nx.closeness_centrality(graph)

>>> normalied = nx.closeness_centrality(graph,
normalized=True)

>>> weighted = nx.closeness_centrality(graph,
distance="weight")

7.	 Finally, to compute the eigenvector centrality, you have two choices with NetworkX:
>>> centrality = nx.eigenvector_centality(graph)

>>> centrality = nx.eigenvector_centrality_numpy(graph)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

238

8.	 In order to easily explore these centrality metrics on our graph, let's create a function
that generically prints the top 10 nodes based on the centrality metric:
def nbest_centrality(graph, metric, n=10,
attribute="centrality", **kwargs):

 centrality = metric(graph, **kwargs)

 nx.set_node_attributes(graph, attribute, centrality)

 degrees = sorted(centrality.items(), key=itemgetter(1),
 reverse=True)

 for idx, item in enumerate(degrees[0:n]):

 item = (idx+1,) + item

 print "%i. %s: %0.3f" % item

9.	 Now, we can simply use this function with our centrality metric to find the nbest (by
default top 10) nodes according to their centrality. The usage is as follows:

>>> nbest_centrality(graph, nx.degree_centrality)

>>> nbest_centrality(graph, nx.betweenness_centrality,
normalized=True)

>>> nbest_centrality(graph, nx.closeness_centrality)

>>> nbest_centrality(graph, nx.eigenvector_centrality_numpy)

How it works...
Clearly, there are far more minor characters in the Marvel Universe, and 100 or so major
characters. Interestingly, this compares favorably with the real world! There are far more
actors with few connections in real-world social graphs, and relatively few top echelon
characters with a lot of ties. We know this intuitively, and we call the actors in the top 1
percent of connections celebrities.

In fact, celebrities are such extreme outliers who exert strong influence on their social
graphs that we tend to call them "super nodes". Super nodes have the property that to a
far enough hop distance, all traversals of the graph will inevitably find their shortest path
through a super node. This can be very bad for computation; even the earlier Longbow graph
experienced a huge computational lag, and we had a tough time drawing the graph because
of the two super nodes Longbow was connected to: Wolverine and Jean Grey. While it's not
only proof of Kevin Bacon's six degrees of separation, dealing with super nodes is also an
important part of graph computation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

239

On the other end of the scale, we can calculate Dunbar's number for our social network.
Dunbar identified and measured the correlation between neocortical volume and social group
size not only for human communities, but also for primates. In order to calculate this number,
we cannot simply compute the average degree across all nodes due to the strong left-hand
skew in this dataset. Let's compare the mean, mode, and median as our corollary to Dunbar's
number. Later, we'll look at using weighted relationships to further induce strong ties:

>>> import numpy as np

>>> import scipy.stats as st

>>> data = np.array(graph.degree().values())

>>> np.mean(data)

52.0445066916

>>> st.mode(data)

(array([11.]), array([254.]))

>>> np.median(data)

20.0

Dunbar's number for comic book heroes appears to be much lower than a typical social graph,
but proportional to natural scale graphs (consider that your social graph in high school was
probably smaller than your adult social graph). It seems that the heroic Dunbar's number
is somewhere between 11 and 20 connections. Could this be because alien or mutant
neocortical volume is less than a human's? Or, is it because our heroes are naturally isolated
given their abilities that set them apart?

There's more…
The most common, and perhaps simplest, technique to find the key actors of a graph is to
measure the degree of each vertex. Degree is a signal that determines how connected a node
is, which can be a metaphor for influence or popularity. At the very least, the most connected
nodes are the ones that spread information the fastest, or have the greatest effect on their
community. Measures of degree tend to suffer from dilution, and benefit from statistical
techniques to normalize datasets.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

240

The betweenness centrality
A path is a sequence of nodes between a start node and an end node, where no node
appears twice on the path and is measured by the number of edges included (also called
hops). The most interesting path to compute for two given nodes is the shortest path, for
example, the minimum number of edges required to reach another node, which is also called
the node distance.

Note that paths can be of length 0, the distance from a node to itself. Consider the following
graph as an example:

The shortest distance between D and F is the path {D, C, E, F}, which is a distance of three. On
the other hand, the shortest paths from A to E are the two paths {A, C, E} and {A, B, E}, which
share a path length of 2 (highlighted in purple and red).

Finding the shortest paths between two nodes brings up a question from the last section.
If key nodes are often traversed to find the shortest path, is there a shortest path-based
measure of centrality? The answer is yes. The betweenness centrality identifies the nodes that
are more likely to be in the shortest path than others. This is extremely useful at discovering
not only strong points in the social graph, but also weak points that will be cut off if a central
node is removed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

241

The computation for the betweenness centrality for a given node is as follows. For a node, v,
the betweenness centrality is defined as the sum of the fraction of all the pairs of shortest
paths that pass through v. The betweenness centrality can also be normalized for the number
of nodes in the graph, or weighted to accept edge weights:

>>> centrality = nx.betweeenness_centrality(graph)

>>> normalied = nx.betweenness_centrality(graph, normalized=True)

>>> weighted = nx.betweenness_centrality(graph, weight="weight")

The preceding commands will give you the following output:

When the betweenness centrality is computed for our small example graph, B and C have
good centrality scores (0.1 and 0.433, respectively). This is because they are in the middle
of a large part of the network. E, however, has a centrality score of 0.6, which is because E
connects two different sections of the network (there are no other paths to G and F).

As before, we can check the betweenness centrality for our heroic graph, and find the heroes
that have the top betweenness centralities:

Note that this computation is extremely expensive and could take a long time
on your computer!

>>> nbest_centrality(graph, nx.betweenness_centrality, normalized=True)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

242

The following is the output:

1. SPIDER-MAN/PETER PAR: 0.074

2. CAPTAIN AMERICA: 0.057

3. IRON MAN/TONY STARK: 0.037

4. WOLVERINE/LOGAN: 0.036

5. HAVOK/ALEX SUMMERS: 0.036

6. DR. STRANGE/STEPHEN: 0.029

7. THING/BENJAMIN J. GR: 0.025

8. HAWK: 0.025

9. HULK/DR. ROBERT BRUC: 0.024

10. MR. FANTASTIC/REED R: 0.024

Compared to the degree centrality results, these numbers are very different. Spider-Man and
Captain America have switched places at numbers one and two, but still share the top three
spots with Iron Man. Wolverine has been promoted to number 4, and Mr. Fantastic and The
Thing have been demoted. Truly interesting, however, are the new appearances of Hawk,
The Hulk, Dr. Stange, and Havok to the list, replacing Beast, Thor, The Scarlet Witch, and The
Human Torch, who, while popular, are not as able to link characters together!

The closeness centrality
Another centrality measure, closeness, takes a statistical look at the outgoing paths for
a particular node, v. What is the average number of hops to reach any other node in the
network from v? This is simply computed as the reciprocal of the mean distance to all other
nodes in the graph, which can be normalized to n-1 / size(G)-1, where n is all nodes in the
neighborhood, if all nodes in the graph are connected. The reciprocal ensures that nodes
that are closer (for example, fewer hops) score better, for example closer to one as in other
centrality scores:

>>> centrality = nx.closeness_centrality(graph)

>>> normalied = nx.closeness_centrality(graph, normalized=True)

>>> weighted = nx.closeness_centrality(graph, distance="weight")

Again, when we run this metric on our social network of heroes, you should find that it
takes a while to run; however, if you use the normalized method, the process can be
accelerated drastically:

>>> nbest_centrality(graph, nx.closeness_centrality)

1. CAPTAIN AMERICA: 0.584

2. SPIDER-MAN/PETER PAR: 0.574

3. IRON MAN/TONY STARK : 0.561

4. THING/BENJAMIN J. GR: 0.558

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

243

5. MR. FANTASTIC/REED R: 0.556

6. WOLVERINE/LOGAN : 0.555

7. HUMAN TORCH/JOHNNY S: 0.555

8. SCARLET WITCH/WANDA : 0.552

9. THOR/DR. DONALD BLAK: 0.551

10. BEAST/HENRY &HANK& P: 0.549

Once again, we return to our original list, obtained via the degree centrality. In this case, Kevin
Bacon's rule applies. These very popular super node celebrities are going to have the most
reach, that is, they have the ability to get to all other nodes in the fastest amount of time.
Things have changed for our smaller graph, however:

Here, we see that C and E are the most central nodes in terms of closeness; they can reach
all other nodes equally. B is less close than C and E, but fares pretty well, and A, because it
has two connections, does slightly better than D, G, or F at being able to reach all other nodes
in the network.

The eigenvector centrality
The eigenvector centrality of a node, v, is proportional to the sum of the centrality scores of its
neighbors. For example, the more important people you are connected to, the more important
you are. This centrality measure is very interesting because an actor with a small number of
hugely influential contacts might outrank ones with many more mediocre contacts. For our
social network, it will hopefully allow us to get underneath the celebrity structure of heroic
teams and see who actually is holding the social graph together.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

244

To compute the eigenvector centrality, calculate the argmax of the eigendecomposition of the
pairwise adjacency matrix of the graph. The ith element in the eigenvector gives the centrality
of the ith node. If you're familiar with Google's PageRank, then this should sound familiar, and
in fact, PageRank is a modified eigenvector centrality measure, where instead of computing
against an adjacency matrix, Google uses probabilities and computes eigendecomposition
across a stochastic matrix.

Adjacency matrices are two-dimensional matrices where each node's vector is a flag indicating
if it and the other node share an edge. Undirected graphs always have symmetric adjacency
matrices, while directed graphs can be more complex. For our simple graph example in this
section, here is the adjacency matrix:

However, we won't implement the algorithm to compute the eigenvector centrality, instead, we
will rely on the many graph algorithms already built into NetworkX. In this case, we have two
choices to compute the eigenvector centrality:

>>> centrality = nx.eigenvector_centality(graph)

>>> centrality = nx.eigenvector_centrality_numpy(graph)

The first choice uses the power method to find the eigenvector, and will only run up to the
preset maximum number of iterations, offering no guarantee of convergence. The second
choice will use the NumPy eigenvalue solver. You should use the second algorithm whenever
possible to ensure a complete result. Why should you, you might ask? The NumPy version
will continue to run until convergence, which means it has the possibility of getting stuck
depending on the input data. The NumPy version can also be made to overfit the solution.
However, the number one reason for which you'd use the power method is speed; very
typically, the power method will solve the eigenvalue faster than the NumPy method does
because of the fixed number of iterations. These properties of the solver, however, are all
completely dependent on the size of the graph (the input data). For larger graphs, you might
be forced to use the power method because anything else will become intractable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

245

Note that there are also corresponding pagerank and pagerank_numpy module functions
to compute these scores. Let's see how our heroes did:

>>> nbest_centrality(graph, nx.eigenvector_centrality_numpy)

1. CAPTAIN AMERICA: 0.117

2. IRON MAN/TONY STARK: 0.103

3. SCARLET WITCH/WANDA: 0.101

4. THING/BENJAMIN J. GR: 0.101

5. SPIDER-MAN/PETER PAR: 0.100

6. MR. FANTASTIC/REED R: 0.100

7. VISION: 0.099

8. HUMAN TORCH/JOHNNY S: 0.099

9. WOLVERINE/LOGAN: 0.098

10. BEAST/HENRY &HANK& P: 0.096

Once again, there is some upheaval in our top ten list! Captain America takes the top spot
again, but Spider-Man loses more than just a place, dropping half way down the list. The
Thing, Scarlet Witch, and Iron Man move up the list, and, as a surprise, a new actor, Vision,
moves onto the list. Our smaller graph has now ranked our nodes a bit more strongly:

Now, B and C are the most strongly ranked nodes. E is also highly ranked, but it is not as
central as before, and A is more central than it was. Additionally, F, D, and G have moved
above zero for their centrality score, which can be important when determining thresholds.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

246

Deciding on centrality algorithm
So, which measure of centrality should you use? Well, it depends on what you're looking for,
as each centrality mechanism is designed to deal with different features of social networks.
The following are a few measures of centrality:

ff Degree: This is a measure of popularity, and it is useful in determining nodes that
can quickly spread information to a localized area, for example, the neighborhood.
Think celebrities; these are nodes that can reach many people directly.

ff Betweenness: This shows which nodes are likely pathways of information, and can
be used to determine where the graph will break apart if the node is removed. It is
also used to show the direct path to other clusters or groups in the network.

ff Closeness: This is a measure of reach, that is, how fast information will spread to all
other nodes from this particular node. Nodes with the most central closeness enjoy
short durations during broadcast communication.

ff Eigenvector: This is a measure of related influence. Who is closest to the most
important people in the graph? This can be used to show the power behind the
scenes, or to show relative influence beyond popularity.

For many analyses, all measures of closeness can be used to achieve critical results for a
single social network!

Exploring the characteristics of entire
networks

In the next set of recipes, we will characterize our social network as a whole, rather than from
the perspective of individual actors. This task is usually secondary to getting a feel of the
most important nodes, but it is a chicken and an egg problem; determining the techniques to
analyze and splitting the whole graph can be informed by key player analyses, and vice versa.

Getting ready
If you completed the previous recipes, you will be ready to proceed with this one.

How to do it...
The following steps will walk us through our first exploration of graph characteristics at the
level of the whole graph:

1.	 Let's compute both the density of the entire network and that of the ego graphs:
>>> nx.density(graph)

0.00810031232554

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

247

>>> ego = nx.ego_graph(graph, "LONGBOW/AMELIA GREER")

>>> nx.density(ego)

0.721014492754

As you can see, our heroic social network is not very dense, it's not very cliquish as
a whole. However, Longbow's social network is very dense and extremely cliquish.
Typically speaking, density is used to compare subgraphs of the entire social network
(like ego graphs), rather than as a model for how a particular graph will behave by itself.

2.	 Graphs can also be analyzed in terms of distance (the shortest path between
two nodes). The longest distance in a graph is called the diameter of the social
graph, and it represents the longest information flow along the graph. Typically,
less dense (sparse) social networks will have a larger diameter than more dense
networks. Additionally, the average distance is an interesting metric as it can give you
information about how close nodes are to each other:
>>> for subgraph in nx.connected_component_subgraphs(graph):

... print nx.diameter(subgraph)

... print nx.average_shortest_path_length(subgraph)

diameter: 5

average distance: 2.638

Note that our heroic social graph is not completely connected, there are some
isolated subgraphs, and therefore, we use the nx.connected_component_
subgraphs generator to capture each subgraph. You can test if the social graph is
connected with nx.is_connected(G) and determine the number of components
via nx.number_connected_components. In the heroic social graph, there are four
components, but only two have a significant number of nodes.

3.	 Finally, we can compute the reciprocity of the network, that is, the ratio of the number
of relationships that are reciprocated (for example, if there is a bidirectional link) to
the total number of relationships in the social network. Currently, there is no built-in
NetworkX method to perform this computation. However, this methodology will work,
using the NetworkX.DiGraph subclass of Graph:

>>> unigraph = digraph.to_undirected()

>>> return len(unigraph.edges()) / len(digraph.edges())

The reciprocal flag in the to_undirected method ensures that only edges that
appear in both directions will be kept.

This method will only work for directed graphs. Unfortunately, our heroic network is
completely reciprocal since we use the knows relationship, and it has a reciprocity of
1.00, as a result.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

248

How it works...
In this recipe, we examined three different graph characteristics. The density of a network is
the ratio of the number of edges in the network to the total number of possible edges in the
network. The possible number of edges for a graph of n vertices is n(n-1)/2 for an undirected
graph (remove the division for a directed graph). Perfectly connected networks (every node
shares an edge with every other node) have a density of 1, and are often called cliques.

Graphs can also be analyzed in terms of distance (the shortest path between two nodes). The
longest distance in a graph is called the diameter of the social graph, and it represents the
longest information flow along the graph. Typically, less dense (sparse) social networks will
have a larger diameter than more dense networks. Additionally, the average distance is an
interesting metric as it can give you information about how close nodes are to each other.

The last social network measure we'll discuss is reciprocity. This is the ratio of the number
of relationships that are reciprocated (for example, there is a bidirectional link) to the total
number of relationships in the social network. This only makes sense for directed graphs.
For example, the Twitter social network is a directed graph; you can follow others, but this
does not necessarily mean that they will also follow you. Since our social network of heroes is
semantically undirected, we cannot perform this computation.

Clustering and community detection in
social networks

Graphs exhibit clustering behavior, and identification of communities is an important task
in social networks. A node's clustering coefficient is the number of triadic closures (closed
triples) in the node's neighborhood. This is an expression of transitivity. Nodes with higher
transitivity exhibit higher subdensity, and if completely closed, form cliques that can be
identified as communities. In this recipe, we will look at clustering and community detection in
social networks.

Getting ready
You will again need NetworkX and, for the first time in this chapter, the python-louvain library.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

249

How to do it...
These steps will guide you through the detection of communities within social networks:

1.	 Let's actually get into some clustering. The python-louvain library uses NetworkX to
perform community detection with the louvain method. Here is a simple example of
cluster partitioning on a small, built-in social network:
G = nx.karate_club_graph()

#first compute the best partition

partition = community.best_partition(G)

#drawing

pos = nx.spring_layout(G)

plt.figure(figsize=(12,12))

plt.axis('off')

nx.draw_networkx_nodes(G, pos, node_size=200,
cmap=plt.cm.RdYlBu, node_color=partition.values())

nx.draw_networkx_edges(G,pos, alpha=0.5)

plt.savefig("figure/karate_communities.png")

The following is the resulting graph with shades of grey and/or colors representing
different partitions:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

250

This is pretty neat! We can see there are yellow, light blue, and dark red cliques,
but dark blue is pretty homogenous. We'll talk more about how to create graph
visualizations with matplotlib later.

2.	 To partition our comic book characters, we'll add their partitions to each of their
nodes; we'll then look at the relative sizes of each partition:
>>> graph = graph_from_csv(HERO_NETWORK)

>>> partition = community.best_partition(graph)

>>> print "%i partitions" % len(set(partition.values()))

25 partitions

>>> nx.set_node_attributes(graph, 'partition', partition)

As you can see, the louvain method has discovered 25 communities without our
social graph.

3.	 To examine the relative size of each community, a histogram view may be helpful. To
create the histogram, add the following function to your file:
 import matplotlib.pyplot as plt

 def communities_histogram(graph):

 graph, partition = detect_communities(graph)

 numbins = len(partition.values())

 plt.hist(partition.values(), bins=numbins),
 color="#0f6dbc")

 plt.title("Size of Marvel Communities")

 plt.xlabel("Community")

 plt.ylabel("Nodes")

 plt.show()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

251

This should produce the following figure:

There are three major communities containing over a thousand nodes each. However,
we also have eight medium-size communities around 400 actors strong. The other
communities are much smaller, but it does appear that the Marvel social graph is
indeed a real-world and small-world graph, much like the natural social networks
observed in human culture!

4.	 An alternate, area-based approach to visualizing the size of the Marvel communities is
to use a bubble chart. The area of each circle represents the size of each community.
Graphs such as the following are often used to collapse large graphs into subgraphs
based on community. To create this code, add the following function to your file:

 def communities_bubblechart(graph):

 graph, partition = detect_communities(graph)

 parts = defaultdict(int)

 for part in partition.values():

 parts[part] += 1

 bubbles = nx.Graph()

 for part in parts.items():

 bubbles.add_node(part[0], size=part[1])

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

252

 pos = nx.random_layout(bubbles)

 plt.figure(figsize=(12,12))

 plt.axis('off')

 nx.draw_networkx_nodes(bubbles, pos,

 alpha=0.6, node_size=map(lambda x: x*6, parts.
 values()),

 node_color=[random.random() for x in parts.values()],

 cmap=plt.cm.RdYlBu)

 plt.show()

When run, this code should produce the following figure for our Hero network:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

253

How it works...
NetworkX has several mechanisms to compute clusters:

>>> nx.transitivity(graph)

0.194539747093

>>> nx.average_clustering(graph)

0.774654121711

The nx.transitivity function uses the nx.triangles function to compute the ratio of
the number of triangles to the number of possible triangles. The nx.clustering function
computes the clustering coefficient for each node, and the nx_average_clustering
function computes the average coefficient for the graph. Higher transitivity and clustering
coefficients mean that the graph exhibits the small-world effect.

The small world is a network that appears random, but it has a high transitivity and a
short average path length. This is a very common structure for social networks because
the semantics of modern networks have strong ties and, therefore, strong transitivity. This
essentially means that there are a series of large clusters with few bridge nodes. The heroes'
social network exhibits both the small-world effect as well as a preferential attachment; the
majority of new edges are to nodes with an already high degree, thus creating a long-tail, left-
skewed distribution as we've seen in our graph.

There's more...
The Louvian method is a greedy optimization method that partitions the network, optimizing
the modularity of each network partition. First, the method identifies small communities by
attempting to optimize local modularity, then it aggregates the nodes belonging to the same
community and performs the process again. In this way, a hierarchical data structure of
communities is returned. The method is simple, efficient, and works against large networks of
millions of nodes with billions of links.

The original method was developed by Etienne Lefebvre at UCL (Louvain-la-Neuve), then
co-authored and improved along with Vincent Blondel, Jean-Loup Guillaume, and Renaud
Lambiotte. It is the "Louvain method" because the method is devised when all the members
of the team were at the Université catholique de Louvain. Together, the authors have created
a Python method to compute these hierarchical communities, a method that depends on
NetworkX. The basic detection algorithm is as follows:

 import community

 import networkx as nx

 def detect_communities(graph):

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

254

 partition = community.best_partition(graph)

 nx.set_node_attributes(graph, 'partition', partition)

 return graph, partition

This function expects an nx.Graph and uses the community module to compute the
best root partition. The partition is hierarchical, so to get the subcommunities, we simply
iterate over the parts in the partition and assign the nodes in our graph an attribute called
partition which identifies a node with their community. The function then returns both the
modified graph and the partition to use in visualization.

Visualizing graphs
Throughout this chapter, we have been visualizing social networks to help develop our
understanding and intuition around graphs. In this recipe, we dig a little bit deeper into
graph visualization.

Getting ready
Ensure that you have networkx and matplotlib installed.

How to do it...
Complete this list of steps to gain a better understanding of graph visualization in Python:

1.	 NetworkX wraps matplotlib or graphviz to draw simple graphs using the same charting
library we saw in the previous chapter. This is effective for smaller-size graphs, but with
larger graphs, memory can quickly be consumed. To draw a small graph, simply use the
networkx.draw function, and then use pyplot.show to display it:
>>> import networkx as nx

>>> import matplotlib.pyplot as plt

>>> nx.draw(graph)

>>> plt.show()

2.	 There is, however, a rich drawing library underneath that lets you customize how the
graph looks and is laid out with many different layout algorithms. Let's take a look at
an example using one of the social graphs that comes with the NetworkX library, the
Davis Southern Club Women graph:
import networkx as nx

import matplotlib.pyplot as plt

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

255

Generate the Graph

G=nx.davis_southern_women_graph()

Create a Spring Layout

pos=nx.spring_layout(G)

Find the center Node

dmin=1

ncenter=0

for n in pos:

 x,y=pos[n]

 d=(x-0.5)**2+(y-0.5)**2

 if d<dmin:

 ncenter=n

 dmin=d

3.	 Next, we'll colorize the graph. First, we have to determine the center node, as
we'll color this the darkest. Then, all nodes that are farther away will be colored
lighter, until they become white. The spring layout has already determined the (x,
y) coordinates for each node, so it's simple to compute the Euclidean distance of
each node to the center of the graph (the point (0.5, 0.5), in this case), and
find the node that has the lowest distance. Once determined, we compute the
number of hops (for example, the path length) of every node to the center node.
The nx.single_source_shortest_path_length function returns a dictionary
of nodes and their distance to the node supplied as an argument. We will then use
these distances to determine colors:
p=nx.single_source_shortest_path_length(G,ncenter)

4.	 Up next, it's time to draw the graph. We create a matplotlib figure, and then draw the
edges using the NetworkX draw function. Then, we draw the nodes. This function
uses a colormap (the cmap argument) to determine the range of colors to use,
determined by the hop distance:

plt.figure(figsize=(8,8))

nx.draw_networkx_edges(G,pos,nodelist=[ncenter],alpha=0.4)

nx.draw_networkx_nodes(G,pos,nodelist=p.keys(),

 node_size=90,

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Social Graphs (Python)

256

 node_color=p.values(),

 cmap=plt.cm.Reds_r)

plt.show()

Calling this function will result in a graph as shown in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

257

How it works...
In the preceding code, we create a graph, G, via the davis_southern_women_graph
function, one of the many built-in graph generation functions that is included with NetworkX.
We then find the position of every node in G using a layout. Layouts are algorithms that
are designed to determine where nodes are placed on the graph to create an effective
visualization. NetworkX comes with five positioning algorithms, by default. Circular
layouts position nodes in a circle, and shell layouts position nodes in concentric circles.
Random layouts uniformly distribute the nodes, and the spectral layout positions using the
eigenvectors of the Laplacian graph.

The spring layout is perhaps the most common. Spring layouts are a force-directed
layout, which means each node repulses other nodes around it, while edges hold them
together. All the nodes are dropped onto the graph, and the repulsion/attraction is computed
in a recursive manner. For each iteration, nodes will repulse and attract each other
into a stable layout. There are several force-directed algorithms, but NetworkX uses the
Fruchterman-Reingold algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

9
Recommending Movies

at Scale (Python)

In this chapter, we will cover the following recipes:

ff Modeling preference expressions

ff Understanding the data

ff Ingesting the movie review data

ff Finding the highest-scoring movies

ff Improving the movie-rating system

ff Measuring the distance between users in the preference space

ff Computing the correlation between users

ff Finding the best critic for a user

ff Predicting movie ratings for users

ff Collaboratively filtering item by item

ff Building a nonnegative matrix factorization model

ff Loading the entire dataset into the memory

ff Dumping the SVD-based model to the disk

ff Training the SVD-based model

ff Testing the SVD-based model

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

260

Introduction
From books to movies to people to follow on Twitter, recommender systems carve the
deluge of information on the Internet into a more personalized flow, thus improving the
performance of e-commerce, web, and social applications. It is no great surprise, given the
success of Amazon-monetizing recommendations and the Netflix Prize, that any discussion of
personalization or data-theoretic prediction would involve a recommender. What is surprising
is how simple recommenders are to implement yet how susceptible they are to vagaries of
sparse data and overfitting.

Consider a non-algorithmic approach to eliciting recommendations; one of the easiest ways to
garner a recommendation is to look at the preferences of someone we trust. We are implicitly
comparing our preferences to theirs, and the more similarities you share, the more likely you
are to discover novel, shared preferences. However, everyone is unique, and our preferences
exist across a variety of categories and domains. What if you could leverage the preferences
of a great number of people and not just those you trust? In the aggregate, you would be
able to see patterns, not just of people like you, but also "anti-recommendations"— things to
stay away from, cautioned by the people not like you. You would, hopefully, also see subtle
delineations across the shared preference space of groups of people who share parts of your
own unique experience.

It is this basic premise that a group of techniques called "collaborative filtering" use to make
recommendations. Simply stated, this premise can be boiled down to the assumption that
those who have similar past preferences will share the same preferences in the future. This
is from a human perspective, of course, and a typical corollary to this assumption is from
the perspective of the things being preferred—sets of items that are preferred by the same
people will be more likely to preferred together in the future—and this is the basis for what is
commonly described in the literature as user-centric collaborative filtering versus item-centric
collaborative filtering.

The term collaborative filtering was coined by David Goldberg in a paper titled
Using collaborative filtering to weave an information tapestry, ACM, where
he proposed a system called Tapestry, which was designed at Xerox PARC
in 1992, to annotate documents as interesting or uninteresting and to give
document recommendations to people who are searching for good reads.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

261

Collaborative filtering algorithms search large groupings of preference expressions to find
similarities to some input preference or preferences. The output from these algorithms is a
ranked list of suggestions that is a subset of all possible preferences, and hence, it's called
"filtering". The "collaborative" comes from the use of many other peoples' preferences in
order to find suggestions for themselves. This can be seen either as a search of the space of
preferences (for brute-force techniques), a clustering problem (grouping similarly preferred
items), or even some other predictive model. Many algorithmic attempts have been created in
order to optimize or solve this problem across sparse or large datasets, and we will discuss a
few of them in this chapter.

The goals of this chapter are:

ff Understanding how to model preferences from a variety of sources

ff Learning how to compute similarities using distance metrics

ff Modeling recommendations using matrix factorization for star ratings

These two different models will be implemented in Python using readily available datasets on
the Web. To demonstrate the techniques in this chapter, we will use the oft-cited MovieLens
database from the University of Minnesota that contains star ratings of moviegoers for their
preferred movies.

Please note that this chapter is considered an advanced chapter and will
most likely require significantly more time to complete than earlier chapters.

Modeling preference expressions
We have already pointed out that companies such as Amazon track purchases and page views
to make recommendations, Goodreads and Yelp use 5 star ratings and text reviews, and sites
such as Reddit or Stack Overflow use simple up/down voting. You can see that preference can
be expressed in the data in different ways, from Boolean flags to voting to ratings. However,
these preferences are expressed by attempting to find groups of similarities in preference
expressions in which you are leveraging the core assumption of collaborative filtering.

More formally, we understand that two people, Bob and Alice, share a preference for a specific
item or widget. If Alice too has a preference for a different item, say, sprocket, then Bob has a
better than random chance of also sharing a preference for a sprocket. We believe that Bob and
Alice's taste similarities can be expressed in an aggregate via a large number of preferences,
and by leveraging the collaborative nature of groups, we can filter the world of products.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

262

How to do it…
We will model preference expressions over the next few recipes, including:

ff Understanding the data

ff Ingesting the movie review data

ff Finding the highest rated movies

ff Improving the movie rating system

How it works…
A preference expression is an instance of a model of demonstrable relative selection. That
is to say, preference expressions are data points that are used to show subjective ranking
between a group of items for a person. Even more formally, we should say that preference
expressions are not simply relative, but also temporal—for example, the statement of
preference also has a fixed time relativity as well as item relativity.

Preference expression is an instance of a model of
demonstrable relative selection.

While it would be nice to think that we can subjectively and accurately express our preferences
in a global context (for example, rate a movie as compared to all other movies), our tastes, in
fact, change over time, and we can really only consider how we rank items relative to each
other. Models of preference must take this into account and attempt to alleviate biases that are
caused by it. The most common types of preference expression models simplify the problem of
ranking by causing the expression to be numerically fuzzy, for example:

ff Boolean expressions (yes or no)

ff Up and down voting (such as abstain, dislike)

ff Weighted signaling (the number of clicks or actions)

ff Broad ranked classification (stars, hated or loved)

The idea is to create a preference model for an individual user—a numerical model of the set
of preference expressions for a particular individual. Models build the individual preference
expressions into a useful user-specific context that can be computed against. Further
reasoning can be performed on the models in order to alleviate time-based biases or to
perform ontological reasoning or other categorizations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

263

As the relationships between entities get more complex, you can express their relative
preferences by assigning behavioral weights to each type of semantic connection. However,
choosing the weight is difficult and requires research to decide relative weights, which is
why fuzzy generalizations are preferred. As an example, the following table shows you some
well-known ranking preference systems:

Reddit Voting Online Shopping Star Reviews
Up Vote 1 Bought 2 Love 5
No Vote 0 Viewed 1 Liked 4
Down Vote -1 No purchase 0 Neutral 3

Dislike 2
Hate 1

For the rest of this chapter, we will only consider a single, very common preference
expression: star ratings on a scale of 1 to 5.

Understanding the data
Understanding your data is critical to all data-related work. In this recipe, we acquire and take
a first look at the data that we will be using to build our recommendation engine.

Getting ready
To prepare for this recipe, and the rest of the chapter, download the MovieLens data from
the GroupLens website of the University of Minnesota. You can find the data at http://
grouplens.org/datasets/movielens/.

In this chapter, we will use the smaller MoveLens 100k dataset (4.7 MB in size) in order to
load the entire model into the memory with ease.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

264

How to do it…
Perform the following steps to better understand the data that we will be working with
throughout this chapter:

1.	 Download the data from http://grouplens.org/datasets/movielens/.
The 100K dataset is the one that you want (ml-100k.zip).

2.	 Unzip the downloaded data into the directory of your choice.

3.	 The two files that we are mainly concerned with are u.data, which contains the user
movie ratings, and u.item, which contains movie information and details. To get
a sense of each file, use the head command at the command prompt for Mac and
Linux or the more command for Windows:

head -n 5 u.item

Note that if you are working on a computer running the Microsoft Windows
operating system and not using a virtual machine (not recommended), you do
not have access to the head command; instead, use the following command:
more u.item 2 n

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

265

The preceding command gives you the following output:
1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-
exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0
|0

2|GoldenEye (1995)|01-Jan-1995||http://us.imdb.com/M/title-
exact?GoldenEye%20(1995)|0|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0

3|Four Rooms (1995)|01-Jan-1995||http://us.imdb.com/M/title-
exact?Four%20Rooms%20(1995)|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|1|
0|0

4|Get Shorty (1995)|01-Jan-1995||http://us.imdb.com/M/title-
exact?Get%20Shorty%20(1995)|0|1|0|0|0|1|0|0|1|0|0|0|0|0|0|0|0|
0|0

5|Copycat (1995)|01-Jan-1995||http://us.imdb.com/M/title-
exact?Copycat%20(1995)|0|0|0|0|0|0|1|0|1|0|0|0|0|0|0|0|1|0|0

The following command will produce the given output:

head -n 5 u.data

For Windows, you can use the following command:

more u.item 2 n

196 242 3 881250949

186 302 3 891717742

22 377 1 878887116

244 51 2 880606923

166 346 1 886397596

How it works…
The two main files that we will be using are as follows:

ff u.data: This contains the user moving ratings

ff u.item: This contains the movie information and other details

Both are character-delimited files; u.data, which is the main file, is tab delimited, and
u.item is pipe delimited.

For u.data, the first column is the user ID, the second column is the movie ID, the third is the
star rating, and the last is the timestamp. The u.item file contains much more information,
including the ID, title, release date, and even a URL to IMDB. Interestingly, this file also has
a Boolean array indicating the genre(s) of each movie, including (in order) action, adventure,
animation, children, comedy, crime, documentary, drama, fantasy, film-noir, horror, musical,
mystery, romance, sci-fi, thriller, war, and western.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

266

There's more…
Free, web-scale datasets that are appropriate for building recommendation engines are few
and far between. As a result, the movie lens dataset is a very popular choice for such a task
but there are others as well. The well-known Netflix Prize dataset has been pulled down by
Netflix. However, there is a dump of all user-contributed content from the Stack Exchange
network (including Stack Overflow) available via the Internet Archive (https://archive.
org/details/stackexchange). Additionally, there is a book-crossing dataset that
contains over a million ratings of about a quarter million different books (http://www2.
informatik.uni-freiburg.de/~cziegler/BX/).

Ingesting the movie review data
Recommendation engines require large amounts of training data in order to do a good job,
which is why they're often relegated to big data projects. However, to build a recommendation
engine, we must first get the required data into memory and, due to the size of the data, must
do so in a memory-safe and efficient way. Luckily, Python has all of the tools to get the job
done, and this recipe shows you how.

Getting ready
You will need to have the appropriate movie lens dataset downloaded, as specified in
the preceding recipe. If you skipped the setup in Chapter 1, Preparing Your Data Science
Environment, you will need to go back and ensure that you have NumPy correctly installed.

How to do it…
The following steps guide you through the creation of the functions that we will need in order
to load the datasets into the memory:

1.	 Open your favorite Python editor or IDE. There is a lot of code, so it should be far
simpler to enter directly into a text file than Read-Eval-Print Loop (REPL).

2.	 We create a function to import the movie reviews:
import csv

import datetime

def load_reviews(path, **kwargs):

 """

 Loads MovieLens reviews

 """

 options = {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

267

 'fieldnames': ('userid', 'movieid', 'rating',
'timestamp'),

 'delimiter': '\t',

 }

 options.update(kwargs)

 parse_date = lambda r,k:
datetime.fromtimestamp(float(r[k]))

 parse_int = lambda r,k: int(r[k])

 with open(path, 'rb') as reviews:

 reader = csv.DictReader(reviews, **options)

 for row in reader:

 row['userid'] = parse_int(row, 'userid')

 row['movieid'] = parse_int(row, 'movieid')

 row['rating'] = parse_int(row, 'rating')

 row['timestamp'] = parse_date(row, 'timestamp')

 yield row

We create a helper function to help import the data:

import os

def relative_path(path):

 """

 Returns a path relative from this code file

 """

 dirname = os.path.dirname(os.path.realpath('__file__'))

 path = os.path.join(dirname, path)

 return os.path.normpath(path)

3.	 We create another function to load the movie information:
def load_movies(path, **kwargs):

 """

 Loads MovieLens movies

 """

 options = {

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

268

 'fieldnames': ('movieid', 'title', 'release',
'video', 'url'),'delimiter': '|','restkey': 'genre',

 }

 options.update(kwargs)

 parse_int = lambda r,k: int(r[k])

 parse_date = lambda r,k: datetime.strptime(r[k], '%d-%b-
%Y') if r[k] else None

 with open(path, 'rb') as movies:

 reader = csv.DictReader(movies, **options)

 for row in reader:

 row['movieid'] = parse_int(row, 'movieid')

 row['release'] = parse_date(row, 'release')

 row['video'] = parse_date(row, 'video')

 yield row

4.	 Finally, we start creating a MovieLens class that will be augmented in later recipes:
from collections import defaultdict

class MovieLens(object):

 """

 Data structure to build our recommender model on.

 """

 def __init__(self, udata, uitem):

 """

 Instantiate with a path to u.data and u.item

 """

 self.udata = udata

 self.uitem = uitem

 self.movies = {}

 self.reviews = defaultdict(dict)

 self.load_dataset()

 def load_dataset(self):

 """

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

269

 Loads the two datasets into memory, indexed on the ID.

 """

 for movie in load_movies(self.uitem):

 self.movies[movie['movieid']] = movie

 for review in load_reviews(self.udata):

 self.reviews[review['userid']][review['movieid']]
= review

5.	 Ensure that the functions have been imported into your REPL or the IPython
workspace, and type the following, making sure that the path to the data files is
appropriate for your system:

data = relative_path('data/ml-100k/u.data')

item = relative_path('data/ml-100k/u.item')

model = MovieLens(data, item)

How it works…
The methodology that we use for the two data-loading functions (load_reviews and load_
movies) is simple, but it takes care of the details of parsing the data from the disk. We created
a function that takes a path to our dataset and then any optional keywords. We know that we
have specific ways in which we need to interact with the csv module, so we create default
options, passing in the field names of the rows along with the delimiter, which is \t. The
options.update(kwargs) line means that we'll accept whatever users pass to this function.

We then created internal parsing functions using a lambda function in Python. These simple
parsers take a row and a key as input and return the converted input. This is an example
of using lambda as internal, reusable code blocks and is a common technique in Python.
Finally, we open our file and create a csv.DictReader function with our options. Iterating
through the rows in the reader, we parse the fields that we want to be int and datetime,
respectively, and then yield the row.

Note that as we are unsure about the actual size of the input file, we are
doing this in a memory-safe manner using Python generators. Using yield
instead of return ensures that Python creates a generator under the hood
and does not load the entire dataset into the memory.

We'll use each of these methodologies to load the datasets at various times through our
computation that uses this dataset. We'll need to know where these files are at all times,
which can be a pain, especially in larger code bases; in the There's more… section, we'll
discuss a Python pro-tip to alleviate this concern.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

270

Finally, we created a data structure, which is the MovieLens class, with which we can hold
our reviews' data. This structure takes the udata and uitem paths, and then, it loads the
movies and reviews into two Python dictionaries that are indexed by movieid and userid,
respectively. To instantiate this object, you will execute something as follows:

 data = relative_path('../data/ml-100k/u.data')

 item = relative_path('../data/ml-100k/u.item')

 model = MovieLens(data, item)

Note that the preceding commands assume that you have your data in a folder called data.
We can now load the whole dataset into the memory, indexed on the various IDs specified in
the dataset.

Did you notice the use of the relative_path function? When dealing with fixtures such
as these to build models, the data is often included with the code. When you specify a path
in Python, such as data/ml-100k/u.data, it looks it up relative to the current working
directory where you ran the script. To help ease this trouble, you can specify the paths that are
relative to the code itself:

 import os

 def relative_path(path):

 """

 Returns a path relative from this code file

 """

 dirname = os.path.dirname(os.path.realpath('__file__'))

 path = os.path.join(dirname, path)

 return os.path.normpath(path)

Keep in mind that this holds the entire data structure in memory; in the case of the 100k
dataset, this will require 54.1 MB, which isn't too bad for modern machines. However, we
should also keep in mind that we'll generally build recommenders using far more than just
100,000 reviews. This is why we have configured the data structure the way we have—very
similar to a database. To grow the system, you will replace the reviews and movies
properties with database access functions or properties, which will yield data types expected
by our methods.

Finding the highest-scoring movies
If you're looking for a good movie, you'll often want to see the most popular or best rated
movies overall. Initially, we'll take a naïve approach to compute a movie's aggregate rating
by averaging the user reviews for each movie. This technique will also demonstrate how to
access the data in our MovieLens class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

271

Getting ready
These recipes are sequential in nature. Thus, you should have completed the previous recipes
in the chapter before starting with this one.

How to do it…
Follow these steps to output numeric scores for all movies in the dataset and compute
a top-10 list:

1.	 Augment the MovieLens class with a new method to get all reviews for a
particular movie:
class MovieLens(object):

 ...

 def reviews_for_movie(self, movieid):

 """

 Yields the reviews for a given movie

 """

 for review in self.reviews.values():

 if movieid in review:

 yield review[movieid]

2.	 Then, add an additional method to compute the top 10 movies reviewed by users:
import heapq

from operator import itemgetter

class MovieLens(object):

 ...

 def average_reviews(self):

 """

 Averages the star rating for all movies.

 Yields a tuple of movieid,

 the average rating, and the number of reviews.

 """

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

272

 for movieid in self.movies:

 reviews = list(r['rating'] for r in
self.reviews_for_movie(movieid))

 average = sum(reviews) / float(len(reviews))

 yield (movieid, average, len(reviews))

 def top_rated(self, n=10):

 """

 Yields the n top rated movies

 """

 return heapq.nlargest(n, self.average_reviews(),
key=itemgetter(1))

Note that the … notation just below class MovieLens(object):
signifies that we will be appending the average_reviews method to the
existing MovieLens class.

3.	 Now, let's print the top-rated results:
for mid, avg, num in model.top_rated(10):

 title = model.movies[mid]['title']

 print "[%0.3f average rating (%i reviews)] %s" % (avg,
num,title)

4.	 Executing the preceding commands in your REPL should produce the
following output:

[5.000 average rating (1 reviews)] Entertaining Angels: The
Dorothy Day Story (1996)

 [5.000 average rating (2 reviews)] Santa with Muscles (1996)

 [5.000 average rating (1 reviews)] Great Day in Harlem, A (1994)

 [5.000 average rating (1 reviews)] They Made Me a Criminal (1939)

 [5.000 average rating (1 reviews)] Aiqing wansui (1994)

 [5.000 average rating (1 reviews)] Someone Else's America (1995)

 [5.000 average rating (2 reviews)] Saint of Fort Washington,
The (1993)

 [5.000 average rating (3 reviews)] Prefontaine (1997)

 [5.000 average rating (3 reviews)] Star Kid (1997)

 [5.000 average rating (1 reviews)] Marlene Dietrich: Shadow
and Light (1996)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

273

How it works…
The new reviews_for_movie() method that is added to the MovieLens class iterates
through our review dictionary values (which are indexed by the userid parameter), checks
whether the movieid value has been reviewed by the user, and then presents that review
dictionary. We will need such functionality for the next method.

With the average_review() method, we have created another generator function that
goes through all of our movies and all of their reviews and presents the movie ID, the average
rating, and the number of reviews. The top_rated function uses the heapq module to
quickly sort the reviews based on the average.

The heapq data structure, also known as the priority queue algorithm, is the Python
implementation of an abstract data structure with interesting and useful properties. Heaps
are binary trees that are built so that every parent node has a value that is either less than
or equal to any of its children nodes. Thus, the smallest element is the root of the tree, which
can be accessed in constant time, which is a very desirable property. With heapq, Python
developers have an efficient means to insert new values in an ordered data structure and also
return sorted values.

There's more…
Here, we run into our first problem—some of the top-rated movies only have one review (and
conversely, so do the worst-rated movies). How do you compare Casablanca, which has a
4.457 average rating (243 reviews), with Santa with Muscles, which has a 5.000 average
rating (2 reviews)? We are sure that those two reviewers really liked Santa with Muscles,
but the high rating for Casablanca is probably more meaningful because more people liked
it. Most recommenders with star ratings will simply output the average rating along with the
number of reviewers, allowing the user to determine their quality; however, as data scientists,
we can do better in the next recipe.

See also
ff The heapq documentation available at https://docs.python.org/2/library/

heapq.html

Improving the movie-rating system
We don't want to build a recommendation engine with a system that considers the likely
straight-to-DVD Santa with Muscles as generally superior to Casablanca. Thus, the naïve
scoring approach used previously must be improved upon and is the focus of this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

274

Getting ready
Make sure that you have completed the previous recipes in this chapter first.

How to do it…
The following steps implement and test a new movie-scoring algorithm:

1.	 Let's implement a new Bayesian movie-scoring algorithm as shown in the following
function, adding it to the MovieLens class:
def bayesian_average(self, c=59, m=3):

 """

 Reports the Bayesian average with parameters c and m.

 """

 for movieid in self.movies:

 reviews = list(r['rating'] for r in self.reviews_for_
movie(movieid))

 average = ((c * m) + sum(reviews)) /

 float(c + len(reviews))

 yield (movieid, average, len(reviews))

2.	 Next, we will replace the top_rated method in the MovieLens class with the
version in the following commands that uses the new Bayesian_average method
from the preceding step:
def top_rated(self, n=10):

 """

 Yields the n top rated movies

 """

 return heapq.nlargest(n, self.bayesian_average(),
key=itemgetter(1))

3.	 Printing our new top-10 list looks a bit more familiar to us and Casablanca is now
happily rated number 4:

 [4.234 average rating (583 reviews)] Star Wars (1977)

 [4.224 average rating (298 reviews)] Schindler's List (1993)

 [4.196 average rating (283 reviews)] Shawshank Redemption,
The (1994)

 [4.172 average rating (243 reviews)] Casablanca (1942)

 [4.135 average rating (267 reviews)] Usual Suspects, The (1995)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

275

 [4.123 average rating (413 reviews)] Godfather, The (1972)

 [4.120 average rating (390 reviews)] Silence of the Lambs,
The (1991)

 [4.098 average rating (420 reviews)] Raiders of the Lost Ark
(1981)

 [4.082 average rating (209 reviews)] Rear Window (1954)

 [4.066 average rating (350 reviews)] Titanic (1997)

How it works…
Taking the average of movie reviews, as in shown the previous recipe, simply did not work
because some movies did not have enough ratings to give a meaningful comparison to movies
with more ratings. What we'd really like is to have every single movie critic rate every single
movie. Given that this is impossible, we could derive an estimate for how the movie would
be rated if an infinite number of people rated the movie; this is hard to infer from one data
point, so we should say that we would like to estimate the movie rating if the same number of
people gave it a rating on an average (for example, filtering our results based on the number
of reviews).

This estimate can be computed with a Bayesian average, implemented in the bayesian_
average() function, to infer these ratings based on the following equation:

Here, m is our prior for the average of stars, and C is a confidence parameter that is equivalent
to the number of observations in our posterior.

Determining priors can be a complicated and magical art. Rather than taking the complex
path of fitting a Dirichlet distribution to our data, we can simply choose an m prior of 3 with
our 5-star rating system, which means that our prior assumes that star ratings tend to be
reviewed around the median value. In choosing C, you are expressing how many reviews are
needed to get away from the prior; we can compute this by looking at the average number of
reviews per movie:

print float(sum(num for mid, avg, num in model.average_reviews())) /
len(model.movies)

This gives us an average number of 59.4, which we use as the default value in our
function definition.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

276

There's more…
Play around with the C parameter. You should find that if you change the parameter so that
C = 50, the top-10 list subtly shifts; in this case, Schindler's List and Star Wars are swapped
in rankings, as are Raiders of the Lost Ark and Rear Window— note that both the swapped
movies have far more reviews than the former, which means that the higher C parameter was
balancing the fewer ratings of the other movie.

See also
ff See how Yelp deals with this challenge at http://venturebeat.

com/2009/10/12/how-yelp-deals-with-everybody-getting-four-
stars-on-average/

Measuring the distance between users in
the preference space

The two most recognizable types of collaborative filtering systems are user-based
recommenders and item-based recommenders. If one were to imagine that the preference
space is an N-dimensional feature space where either users or items are plotted, then we
would say that similar users or items tend to cluster near each other in this preference
space; hence, an alternative name for this type of collaborative filtering is nearest neighbor
recommenders.

A crucial step in this process is to come up with a similarity or distance metric with which
we can compare critics to each other or mutually preferred items. This metric is then used
to perform pairwise comparisons of a particular user to all other users, or conversely, for an
item to be compared to all other items. Normalized comparisons are then used to determine
recommendations. Although the computational space can become exceedingly large, distance
metrics themselves are not difficult to compute, and in this recipe, we will explore a few as
well as implement our first recommender system.

In this recipe, we will measure the distance between users; in the recipe after this one, we will
look at another similarity distance indicator.

Getting ready
We will continue to build on the MovieLens class from the section titled Modeling Preference.
If you have not had the opportunity to review this section, please have the code for that class
ready. Importantly, we will want to access the data structures, MovieLens.movies and
MovieLens.reviews, that have been loaded from the CSV files on the disk.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

277

How to do it…
The following set of steps provide instructions on how to compute the Euclidean distance
between users:

1.	 Augment the MovieLens class with a new method, shared_preferences, to pull
out movies that have been rated by two critics, A and B:
class MovieLens(objects):

 ...

 def shared_preferences(self, criticA, criticB):

 """

 Returns the intersection of ratings for two critics

 """

 if criticA not in self.reviews:

 raise KeyError("Couldn't find critic '%s' in
data" % criticA)

 if criticB not in self.reviews:

 raise KeyError("Couldn't find critic '%s' in
data" % criticB)

 moviesA = set(self.reviews[criticA].keys())

 moviesB = set(self.reviews[criticB].keys())

 shared = moviesA & moviesB # Intersection operator

 # Create a reviews dictionary to return

 reviews = {}

 for movieid in shared:

 reviews[movieid] = (

 self.reviews[criticA][movieid]['rating'],

 self.reviews[criticB][movieid]['rating'],

)

 return reviews

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

278

2.	 Then, implement a function that computes the Euclidean distance between
two critics using their shared movie preferences as a vector for the computation.
This method will also be part of the MovieLens class:
from math import sqrt

 ...

 def euclidean_distance(self, criticA, criticB):

 """

 Reports the Euclidean distance of two critics, A&B by

 performing a J-dimensional Euclidean calculation of

 each of their preference vectors for the intersection

 of movies the critics have rated.

 """

 # Get the intersection of the rated titles in the
data.

 preferences = self.shared_preferences(criticA,
criticB)

 # If they have no rankings in common, return 0.

 if len(preferences) == 0: return 0

 # Sum the squares of the differences

 sum_of_squares = sum([pow(a-b, 2) for a, b in
preferences.values()])

 # Return the inverse of the distance to give a higher
score to

 # folks who are more similar (e.g. less distance) add
1 to prevent

 # division by zero errors and normalize ranks in [0,
1]

 return 1 / (1 + sqrt(sum_of_squares))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

279

3.	 With the preceding code implemented, test it in REPL:

>>> data = relative_path('data/ml-100k/u.data')

>>> item = relative_path('data/ml-100k/u.item')

>>> model = MovieLens(data, item)

>>> print model.euclidean_distance(232, 532)

 0.1023021629920016

How it works…
The new shared_preferences() method of the MovieLens class determines the shared
preference space of two users. Critically, we can only compare users (the criticA and
criticB input parameters) based on the things that they have both rated. This function uses
Python sets to determine the list of movies that both A and B reviewed (the intersection of
the movies A has rated and the movies B has rated). The function then iterates over this set,
returning a dictionary whose keys are the movie IDs and the values are a tuple of ratings, for
example, (ratingA, ratingB) for each movie that both users have rated. We can now use
this dataset to compute similarity scores, which is done by the second function.

The euclidean_distance() function takes two critics as the input, A and B, and computes
the distance between users in preference space. Here, we have chosen to implement
the Euclidean distance metric (the two-dimensional variation is well known to those who
remember the Pythagorean theorem), but we could have implemented other metrics as well.
This function will return a real number from 0 to 1, where 0 is less similar (farther apart)
critics and 1 is more similar (closer together) critics.

There's more…
The Manhattan distance is another very popular metric and a very simple one to understand.
It can simply sum the absolute values of the pairwise differences between elements of each
vector. Or, in code, it can be executed in this manner:

manhattan = sum([abs(a-b) for a, b in preferences.values()])

This metric is also called the city-block distance because, conceptually, it is as if you were
counting the number of blocks north/south and east/west one would have to walk between
two points in the city. Before implementing it for this recipe, you would also want to invert and
normalize the value in some fashion to return a value in the [0, 1] range.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

280

See also
ff The distance overview from Wikipedia available at http://en.wikipedia.org/

wiki/Distance

ff The Taxicab geometry from Wikipedia available at http://en.wikipedia.org/
wiki/Taxicab_geometry

Computing the correlation between users
In the previous recipe, we used one out of many possible distance measures to capture the
distance between the movie reviews of users. This distance between two specific users is not
changed even if there are five or five million other users.

In this recipe, we will compute the correlation between users in the preference space. Like
distance metrics, there are many correlation metrics. The most popular of these are Pearson
or Spearman correlations or Cosine distance. Unlike distance metrics, the correlation will
change depending on the number of users and movies.

Getting ready
We will be continuing the efforts of the previous recipes again, so make sure you understand
each one.

How to do it…
The following function implements the computation of the pearson_correlation function
for two critics, which are criticA and criticB, and is added to the MovieLens class:

 def pearson_correlation(self, criticA, criticB):

 """

 Returns the Pearson Correlation of two critics, A and B by

 performing the PPMC calculation on the scatter plot of (a, b)

 ratings on the shared set of critiqued titles.

 """

 # Get the set of mutually rated items

 preferences = self.shared_preferences(criticA, criticB)

 # Store the length to save traversals of the len computation.

 # If they have no rankings in common, return 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

281

 length = len(preferences)

 if length == 0: return 0

 # Loop through the preferences of each critic once and
compute the

 # various summations that are required for our final
calculation.

 sumA = sumB = sumSquareA = sumSquareB = sumProducts = 0

 for a, b in preferences.values():

 sumA += a

 sumB += b

 sumSquareA += pow(a, 2)

 sumSquareB += pow(b, 2)

 sumProducts += a*b

 # Calculate Pearson Score

 numerator = (sumProducts*length) - (sumA*sumB)

 denominator = sqrt(((sumSquareA*length) - pow(sumA, 2)) *
((sumSquareB*length) - pow(sumB, 2)))

 # Prevent division by zero.

 if denominator == 0: return 0

 return abs(numerator / denominator)

How it works…
The Pearson correlation computes the "product moment", which is the mean of the product of
mean adjusted random variables and is defined as the covariance of two variables (a and b,
in our case) divided by the product of the standard deviation of a and the standard deviation
of b. As a formula, this looks like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

282

For a finite sample, which is what we have, the detailed formula, which was implemented in
the preceding function, is as follows:

Another way to think about the Pearson correlation is as a measure of the linear dependence
between two variables. It returns a score of -1 to 1, where negative scores closer to -1
indicate a stronger negative correlation, and positive scores closer to 1 indicate a stronger,
positive correlation. A score of 0 means that the two variables are not correlated.

In order for us to perform comparisons, we want to normalize our similarity metrics in the
space of [0, 1] so that 0 means less similar and 1 means more similar, so we return the
absolute value:

 >>> print model.pearson_correlation(232, 532)

0.06025793538385047

There's more…
We have explored two distance metrics: the Euclidean distance and the Pearson correlation.
There are many more, including the Spearman correlation, Tantimoto scores, Jaccard
distance, Cosine similarity, and Manhattan distance, to name a few. Choosing the right
distance metric for the dataset of your recommender along with the type of preference
expression used is crucial to ensuring success in this style of recommender. It's up to the
reader to explore this space further based on his or her interest and particular dataset.

Finding the best critic for a user
Now that we have two different ways to compute a similarity distance between users, we
can determine the best critics for a particular user and see how similar they are to an
individual's preferences.

Getting ready
Make sure that you have completed the previous recipes before tackling this one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

283

How to do it…
Implement a new method for the MovieLens class, similar_critics(), that locates the
best match for a user:

import heapq

 ...

 def similar_critics(self, user, metric='euclidean', n=None):

 """

 Finds, ranks similar critics for the user according to the

 specified distance metric. Returns the top n similar critics

 if n is specified.

 """

 # Metric jump table

 metrics = {

 'euclidean': self.euclidean_distance,

 'pearson': self.pearson_correlation,

 }

 distance = metrics.get(metric, None)

 # Handle problems that might occur

 if user not in self.reviews:

 raise KeyError("Unknown user, '%s'." % user)

 if not distance or not callable(distance):

 raise KeyError("Unknown or unprogrammed distance metric
'%s'." % metric)

 # Compute user to critic similarities for all critics

 critics = {}

 for critic in self.reviews:

 # Don't compare against yourself!

 if critic == user:

 continue

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

284

 critics[critic] = distance(user, critic)

 if n:

 return heapq.nlargest(n, critics.items(),
key=itemgetter(1))

 return critics

How it works…
The similar_critics method, added to the MovieLens class, serves as the heart of this
recipe. It takes as parameters the targeted user and two optional parameters: the metric
to be used, which defaults to euclidean, and the number of results to be returned, which
defaults to None. As you can see, this flexible method uses a jump table to determine what
algorithm is to be used (you can pass in euclidean or pearson to choose the distance
metric). Every other critic is compared to the current user (except a comparison of the user
against themselves). The results are then sorted using the flexible heapq module and the top
n results are returned.

To test out our implementation, print out the results of the run for both similarity distances:

>>> for item in model.similar_critics(232, 'euclidean', n=10):

 print "%4i: %0.3f" % item

 688: 1.000

 914: 1.000

 47: 0.500

 78: 0.500

 170: 0.500

 335: 0.500

 341: 0.500

 101: 0.414

 155: 0.414

 309: 0.414

 >>> for item in model.similar_critics(232, 'pearson', n=10):

 print "%4i: %0.3f" % item

 33: 1.000

 36: 1.000

 155: 1.000

 260: 1.000

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

285

 289: 1.000

 302: 1.000

 309: 1.000

 317: 1.000

 511: 1.000

 769: 1.000

These scores are clearly very different, and it appears that Pearson thinks that there are
much more similar users than the Euclidean distance metric. The Euclidean distance metric
tends to favor users who have rated fewer items exactly the same. Pearson correlation favors
more scores that fit well linearly, and therefore, Pearson corrects grade inflation where two
critics might rate movies very similarly, but one user rates them consistently one star higher
than the other.

If you plot out how many shared rankings each critic has, you'll see that the data is very
sparse. Here is the preceding data with the number of rankings appended:

Euclidean scores:

 688: 1.000 (1 shared rankings)

 914: 1.000 (2 shared rankings)

 47: 0.500 (5 shared rankings)

 78: 0.500 (3 shared rankings)

 170: 0.500 (1 shared rankings)

 Pearson scores:

 33: 1.000 (2 shared rankings)

 36: 1.000 (3 shared rankings)

 155: 1.000 (2 shared rankings)

 260: 1.000 (3 shared rankings)

 289: 1.000 (3 shared rankings)

Therefore, it is not enough to find similar critics and use their ratings to predict our users'
scores; instead, we will have to aggregate the scores of all of the critics, regardless of
similarity, and predict ratings for the movies we haven't rated.

Predicting movie ratings for users
To predict how we might rate a particular movie, we can compute a weighted average of critics
who have also rated the same movies as the user. The weight will be the similarity of the critic
to user—if a critic has not rated a movie, then their similarity will not contribute to the overall
ranking of the movie.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

286

Getting ready
Ensure that you have completed the previous recipes in this large, cumulative chapter.

How to do it…
The following steps walk you through the prediction of movie ratings for users:

1.	 First, add the predict_ranking function to the MovieLens class in order to
predict the ranking a user might give a particular movie with similar critics:
 def predict_ranking(self, user, movie, metric='euclidean',
critics=None):

 """

 Predicts the ranking a user might give a movie based on
the

 weighted average of the critics similar to the that user.

 """

 critics = critics or self.similar_critics(user,
metric=metric)

 total = 0.0

 simsum = 0.0

 for critic, similarity in critics.items():

 if movie in self.reviews[critic]:

 total += similarity * self.reviews[critic]
[movie]['rating']

 simsum += similarity

 if simsum == 0.0: return 0.0

 return total / simsum

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

287

2.	 Next, add the predict_all_rankings method to the MovieLens class:
def predict_all_rankings(self, user, metric='euclidean',
n=None):

 """

 Predicts all rankings for all movies, if n is
specified returns

 the top n movies and their predicted ranking.

 """

 critics = self.similar_critics(user, metric=metric)

 movies = {

 movie: self.predict_ranking(user, movie, metric,
critics)

 for movie in self.movies

 }

 if n:

 return heapq.nlargest(n, movies.items(),
key=itemgetter(1))

 return movies

How it works…
The predict_ranking method takes a user and a movie along with a string specifying
the distance metric and returns the predicted rating for that movie for that particular user. A
fourth argument, critics, is meant to be an optimization for the predict_all_rankings
method, which we'll discuss shortly. The prediction gathers all critics who are similar to the
user and computes the weighted total rating of the critics, filtered by those who actually did
rate the movie in question. The weights are simply their similarity to the user, computed by the
distance metric. This total is then normalized by the sum of the similarities to move the rating
back into the space of 1 to 5 stars:

>>> print model.predict_ranking(422, 50, 'euclidean')

 4.35413151722

 >>> print model.predict_ranking(422, 50, 'pearson')

 4.3566797826

Here, we can see the predictions for Star Wars (ID 50 in our MovieLens dataset) for the user
422. The Euclidean and Pearson computations are very close to each other (which isn't
necessarily to be expected), but the prediction is also very close to the user's actual rating,
which is 4.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

288

The predict_all_rankings method computes the ranking predictions for all movies
for a particular user according to the passed-in metric. It optionally takes a value, n, to
return the top n best matches. This function optimizes the similar critics' lookup by only
executing it once and then passing those discovered critics to the predict_ranking
function in order to improve the performance. However, this method must be run on every
single movie in the dataset:

>>> for mid, rating in model.predict_all_rankings(578, 'pearson',
10):

 ... print "%0.3f: %s" % (rating, model.movies[mid]['title'])

 5.000: Prefontaine (1997)

 5.000: Santa with Muscles (1996)

 5.000: Marlene Dietrich: Shadow and Light (1996)

 5.000: Star Kid (1997)

 5.000: Aiqing wansui (1994)

 5.000: Someone Else's America (1995)

 5.000: Great Day in Harlem, A (1994)

 5.000: Saint of Fort Washington, The (1993)

 4.954: Anna (1996)

 4.817: Innocents, The (1961)

As you can see, we have now computed what our recommender thinks the top movies for
this particular user are, along with what we think the user will rate the movie! The top-10
list of average movie ratings plays a huge rule here and a potential improvement could be to
use the Bayesian averaging in addition to the similarity weighting, but that is left for the reader
to implement.

Collaboratively filtering item by item
So far, we have compared users to other users in order to make our predictions. However, the
similarity space can be partitioned in two ways. User-centric collaborative filtering plots users in
the preference space and discovers how similar users are to each other. These similarities are
then used to predict rankings, aligning the user with similar critics. Item-centric collaborative
filtering does just the opposite; it plots the items together in the preference space and makes
recommendations according to how similar a group of items are to another group.

Item-based collaborative filtering is a common optimization as the similarity of items
changes slowly. Once enough data has been gathered, reviewers adding reviews does not
necessarily change the fact that Toy Story is more similar to Babe than The Terminator, and
users who prefer Toy Story might prefer the former to the latter. Therefore, you can simply
compute item similarities once in a single offline-process and use that as a static mapping for
recommendations, updating the results on a semi-regular basis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

289

This recipe will walk you through item-by-item collaborative filtering.

Getting ready
This recipe requires the completion of the previous recipes in this chapter.

How to do it…
Construct the following function to perform item-by-item collaborative filtering:

 def shared_critics(self, movieA, movieB):

 """

 Returns the intersection of critics for two items, A and B

 """

 if movieA not in self.movies:

 raise KeyError("Couldn't find movie '%s' in data" %movieA)

 if movieB not in self.movies:

 raise KeyError("Couldn't find movie '%s' in data" %movieB)

 criticsA = set(critic for critic in self.reviews if movieA
in self.reviews[critic])

 criticsB = set(critic for critic in self.reviews if movieB
in self.reviews[critic])

 shared = criticsA & criticsB # Intersection operator

 # Create the reviews dictionary to return

 reviews = {}

 for critic in shared:

 reviews[critic] = (

 self.reviews[critic][movieA]['rating'],

 self.reviews[critic][movieB]['rating'],

)

 return reviews

 def similar_items(self, movie, metric='euclidean', n=None):

 # Metric jump table

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

290

 metrics = {

 'euclidean': self.euclidean_distance,

 'pearson': self.pearson_correlation,

 }

 distance = metrics.get(metric, None)

 # Handle problems that might occur

 if movie not in self.reviews:

 raise KeyError("Unknown movie, '%s'." % movie)

 if not distance or not callable(distance):

 raise KeyError("Unknown or unprogrammed distance metric
'%s'." % metric)

 items = {}

 for item in self.movies:

 if item == movie:

 continue

 items[item] = distance(item, movie, prefs='movies')

 if n:

 return heapq.nlargest(n, items.items(),
key=itemgetter(1))

 return items

How it works…
To perform item-by-item collaborative filtering, the same distance metrics can be used but
must be updated to use the preferences from shared_critics rather than shared_
preferences (for example, item similarity versus user similarity). Update the functions to
accept a prefs parameter that determines which preferences are to be used, but I'll leave
that to the reader as it is only two lines of code (note that the answer is contained in the
sim.py source file in the directory that contains the code for Chapter 8, Working with Social
Graphs (Python)).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

291

If you print out the list of similar items for a particular movie, you can see some interesting
results. For example, review the similarity results for The Crying Game (1992), which has an
ID of 631:

for movie, similarity in model.similar_items(631, 'pearson').items():

 print "%0.3f: %s" % (similarity, model.movies[movie]['title'])

 0.127: Toy Story (1995)

 0.209: GoldenEye (1995)

 0.069: Four Rooms (1995)

 0.039: Get Shorty (1995)

 0.340: Copycat (1995)

 0.225: Shanghai Triad (Yao a yao yao dao waipo qiao) (1995)

 0.232: Twelve Monkeys (1995)

 ...

This crime thriller is not very similar to Toy Story, which is a children's movie, but is more
similar to Copycat, which is another crime thriller. Of course, critics who have rated many
movies skew the results, and more movie reviews are needed before this normalizes into
something more compelling.

It is presumed that the item similarity scores are run regularly but do not need to be
computed in real time. Given a set of computed item similarities, computing
recommendations are as follows:

 def predict_ranking(self, user, movie, metric='euclidean'):

 movies = self.similar_items(movie, metric=metric)

 total = 0.0

 simsum = 0.0

 for relmovie, similarity in movies.items():

 # Ignore movies already reviewed by user

 if relmovie in self.reviews[user]:

 total += similarity *
self.reviews[user][relmovie]['rating']

 simsum += similarity

 if simsum == 0.0: return 0.0

 return total / simsum

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

292

This method simply uses the inverted item-to-item similarity scores rather than the
user-to-user similarity scores. Since similar items can be computed offline, the lookup for
movies via the self.similar_items method should be a database lookup rather than a
real-time computation.

 >>> print model.predict_ranking(232, 52, 'pearson')

 3.980443976

You can then compute a ranked list of all possible recommendations in a similar way as the
user-to-user recommendations.

Building a nonnegative matrix factorization
model

A general improvement on the basic cross-wise nearest-neighbor similarity scoring of
collaborative filtering is a matrix factorization method, which is also known as Singular Value
Decomposition (SVD). Matrix factorization methods attempt to explain the ratings through
the discovery of latent features that are not easily identifiable by analysts. For instance, this
technique can expose possible features such as the amount of action, family friendliness, or
fine-tuned genre discovery in our movies dataset.

What's especially interesting about these features is that they are continuous and not discrete
values and can represent an individual's preference along a continuum. In this sense, the
model can explore shades of characteristics, for example, perhaps a critic in the movie
reviews' dataset, such as action flicks with a strong female lead that are set in European
countries. A James Bond movie might represent a shade of that type of movie even though it
only ticks the set in European countries and action genre boxes. Depending on how similarly
reviewers rate the movie, the strength of the female counterpart to James Bond will determine
how they might like the movie.

Also, extremely helpfully, the matrix factorization model does well on sparse data, that is data
with few recommendation and movie pairs. Reviews' data is particularly sparse because not
everyone has rated the same movies and there is a massive set of available movies. SVD can
also be performed in parallel, making it a good choice for much larger datasets.

In the remaining recipes in this chapter, we will build a nonnegative matrix factorization model
in order to improve our recommendation engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

293

How to do it…
In the remaining recipes in this chapter, we will build a nonnegative matrix factorization model
in order to improve our recommendation engine:

1.	 Loading the entire dataset into the memory.

2.	 Dumping the SVD-based model to the disk.

3.	 Training the SVD-based model.

4.	 Testing the SVD-based model.

How it works…
Matrix factorization, or SVD works, by finding two matrices such that when you take their dot
product (also known as the inner product or scalar product), you will get a close approximation
of the original matrix. We have expressed our training matrix as a sparse N x M matrix of users
to movies where the values are the 5-star rating if it exists, otherwise, the value is blank or 0.
By factoring the model with the values that we have and then taking the dot product of the two
matrices produced by the factorization, we hope to fill in the blank spots in our original matrix
with a prediction of how the user would have rated the movie in that column.

The intuition is that there should be some latent features that determine how users rate an
item, and these latent features are expressed through the semantics of their previous ratings.
If we can discover the latent features, we will be able to predict new ratings. Additionally, there
should be fewer features than there are users and movies (otherwise, each movie or user
would be a unique feature). This is why we compose our factored matrices by some feature
length before taking their dot product.

Mathematically, this task is expressed as follows. If we have a set of U users and M movies,
let R of size |U| x |M| be the matrix that contains the ratings of users. Assuming that we
have K latent features, find two matrices, P and Q, where P is |U| x K and Q is |M| x K such
that the dot product of P and Q transpose approximates R. P, which therefore represent the
strength of the associations between users and features and Q represents the association of
movies with features.

There are a few ways to go about factorization, but the choice we made was to perform
gradient descent. Gradient descent initializes two random P and Q matrices, computes their
dot product, and then minimizes the error compared to the original matrix by traveling down a
slope of an error function (the gradient). This way, the algorithm hopes to find a local minimum
where the error is within an acceptable threshold.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

294

Our function computed the error as the squared difference between the predicted value and
the actual value.

To minimize the error, we modify the values pik and qkj by descending along the gradient of
the current error slope, differentiating our error equation with respect to p yields:

We then differentiate our error equation with respect to the variable q yields in the
following equation:

We can then derive our learning rule, which updates the values in P and Q by a constant learning
rate, which is α. This learning rate, α, should not be too large because it determines how big of a
step we take towards the minimum, and it is possible to step across to the other side of the error
curve. It should also not be too small, otherwise it will take forever to converge.

We continue to update our P and Q matrices, minimizing the error until the sum of the error
squared is below some threshold, 0.001 in our code, or until we have performed a maximum
number of iterations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

295

Matrix factorization has become an important technique for recommender systems,
particularly those that leverage Likert-scale-like preference expressions—notably, star ratings.
The Netflix Prize challenge has shown us that matrix-factored approaches perform with a high
degree of accuracy for ratings prediction tasks. Additionally, matrix factorization is a compact,
memory-efficient representation of the parameter space for a model and can be trained in
parallel, can support multiple feature vectors, and can be improved with confidence levels.
Generally, they are used to solve cold-start problems with sparse reviews and in an ensemble
with more complex hybrid-recommenders that also compute content-based recommenders.

See also
ff Wikipedia's overview of the dot product available at http://en.wikipedia.org/

wiki/Dot_product

Loading the entire dataset into the memory
The first step in building a nonnegative factorization model is to load the entire dataset in the
memory. For this task, we will be leveraging NumPy highly.

Getting ready
In order to complete this recipe, you'll have to download the MovieLens database from
the University of Minnesota GroupLens page at http://grouplens.org/datasets/
movielens/ and unzip it in a working directory where your code will be. We will also use
NumPy in this code significantly, so please ensure that you have this numerical analysis
package downloaded and ready. Additionally, we will use the load_reviews function from
the previous recipes. If you have not had the opportunity to review the appropriate section,
please have the code for that function ready.

How to do it…
To build our matrix factorization model, we'll need to create a wrapper for the predictor that
loads the entire dataset into memory. We will perform the following steps:

1.	 We create the following Recommender class as shown. Please note that this class
depends on the previously created and discussed load_reviews function:
import numpy as np

import csv

 class Recommender(object):

 def __init__(self, udata):

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

296

 self.udata = udata

 self.users = None

 self.movies = None

 self.reviews = None

 self.load_dataset()

 def load_dataset(self):

 """

 Load an index of users & movies as a heap

 and reviews table as a N x M array where N is

 the number of users and M is the number of movies.

 Note that order matters so that we can look up values

 outside of the matrix!

 """

 self.users = set([])

 self.movies = set([])

 for review in load_reviews(self.udata):

 self.users.add(review['userid'])

 self.movies.add(review['movieid'])

 self.users = sorted(self.users)

 self.movies = sorted(self.movies)

 self.reviews = np.zeros(shape=(len(self.users),
len(self.movies)))

 for review in load_reviews(self.udata):

 uid = self.users.index(review['userid'])

 mid = self.movies.index(review['movieid'])

 self.reviews[uid, mid] = review['rating']

2.	 With this defined, we can instantiate a model by typing the following command:

data_path = '../data/ml-100k/u.data'

model = Recommender(data_path)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

297

How it works…
Let's go over this code line by line. The instantiation of our recommender requires a path to
the u.data file; creates holders for our list of users, movies, and reviews; and then loads the
dataset. We need to hold the entire dataset in memory for reasons that we will see later.

The basic data structure to perform our matrix factorization on is an N x M matrix where N is
the number of users and M is the number of movies. To create this, we will first load all the
movies and users into an ordered list so that we can look up the index of the user or movie by
its ID. In the case of MovieLens, all of the IDs are contiguous from 1; however, this might not
always be the case. It is good practice to have an index lookup table. Otherwise, you will be
unable to fetch recommendations from our computation!

Once we have our index lookup lists, we create a NumPy array of all zeroes in the size of
the length of our users' list by the length of our movies list. Keep in mind that the rows are
users and the columns are movies! We then go through the ratings data a second time and
then add the value of the rating at the uid, mid index location of our matrix. Note that if a
user hasn't rated a movie, their rating is 0. This is important! Print the array out by entering
model.reviews, and you should see something as follows:

[[5. 3. 4. ..., 0. 0. 0.]

 [4. 0. 0. ..., 0. 0. 0.]

 [0. 0. 0. ..., 0. 0. 0.]

 ...,

 [5. 0. 0. ..., 0. 0. 0.]

 [0. 0. 0. ..., 0. 0. 0.]

 [0. 5. 0. ..., 0. 0. 0.]]

There's more…
Let's get a sense of how sparse or dense our dataset is by adding the following two methods
to the Recommender class:

def sparsity(self):

 """

 Report the percent of elements that are zero in the array

 """

 return 1 - self.density()

 def density(self):

 """

 Return the percent of elements that are nonzero in the array

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

298

 """

 nonzero = float(np.count_nonzero(self.reviews))

 return nonzero / self.reviews.size

Adding these methods to our Recommender class will help us evaluate our recommender,
and it will also help us identify recommenders in the future.

Print out the results:

print "%0.3f%% sparse" % model.sparsity()

print "%0.3f%% dense" % model.density()

You should see that the MovieLens 100k dataset is 0.937 percent sparse and 0.063
percent dense.

This is very important to keep note of along with the size of the reviews dataset. Sparsity,
which is common to most recommender systems, means that we might be able to use sparse
matrix algorithms and optimizations. Additionally, as we begin to save models, this will help us
identify the models as we load them from serialized files on the disk.

Dumping the SVD-based model to the disk
Before we build our model, which will take a long time to train, we should create a mechanism
for us to load and dump our model to the disk. If we have a way of saving the parameterization
of the factored matrix, then we can reuse our model without having to train it every time we
want to use it—this is a very big deal since this model will take hours to train! Luckily, Python
has a built-in tool for serializing and deserializing Python objects—the pickle module.

How to do it…
Update the Recommender class as follows:

 import pickle

 class Recommender(object):

 @classmethod

 def load(klass, pickle_path):

 """

 Instantiates the class by deserializing the pickle.

 Note that the object returned may not be an exact match

 to the code in this class (if it was saved

 before updates).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

299

 """

 with open(pickle_path, 'rb') as pkl:

 return pickle.load(pkl)

 def __init__(self, udata, description=None):

 self.udata = udata

 self.users = None

 self.movies = None

 self.reviews = None

 # Descriptive properties

 self.build_start = None

 self.build_finish = None

 self.description = None

 # Model properties

 self.model = None

 self.features = 2

 self.steps = 5000

 self.alpha = 0.0002

 self.beta = 0.02

 self.load_dataset()

 def dump(self, pickle_path):

 """

 Dump the object into a serialized file using the pickle module.

 This will allow us to quickly reload our model in the future.

 """

 with open(pickle_path, 'wb') as pkl:

 pickle.dump(self, pkl)

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

300

How it works…
The @classmethod feature is a decorator in Python for declaring a class method instead of
an instance method. The first argument that is passed in is the type instead of an instance
(which we usually refer to as self). The load class method takes a path to a file on the disk
that contains a serialized pickle object, which it then loads using the pickle module. Note
that the class that is returned might not be an exact match with the Recommender class at
the time you run the code—this is because the pickle module saves the class, including
methods and properties, exactly as it was when you dumped it.

Speaking of dumping, the dump method provides the opposite functionality, allowing you to
serialize the methods, properties, and data to disk in order to be loaded again in the future. To
help us identify the objects that we're dumping and loading from disk, we've also added some
descriptive properties including a description, some build parameters, and some timestamps
to our __init__ function.

Training the SVD-based model
We're now ready to write our functions that factor our training dataset and build our
recommender model. You can see the required functions in this recipe.

How to do it…
We construct the following functions to train our model. Note that these functions are not part
of the Recommender class:

def initialize(R, K):

 """

 Returns initial matrices for an N X M matrix,

 R and K features.

 :param R: the matrix to be factorized

 :param K: the number of latent features

 :returns: P, Q initial matrices of N x K and M x K sizes

 """

 N, M = R.shape

 P = np.random.rand(N,K)

 Q = np.random.rand(M,K)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

301

 return P, Q

 def factor(R, P=None, Q=None, K=2, steps=5000, alpha=0.0002,
beta=0.02):

 """

 Performs matrix factorization on R with given parameters.

 :param R: A matrix to be factorized, dimension N x M

 :param P: an initial matrix of dimension N x K

 :param Q: an initial matrix of dimension M x K

 :param K: the number of latent features

 :param steps: the maximum number of iterations to optimize in

 :param alpha: the learning rate for gradient descent

 :param beta: the regularization parameter

 :returns: final matrices P and Q

 """

 if not P or not Q:

 P, Q = initialize(R, K)

 Q = Q.T

 rows, cols = R.shape

 for step in xrange(steps):

 for i in xrange(rows):

 for j in xrange(cols):

 if R[i,j] > 0:

 eij = R[i,j] - np.dot(P[i,:], Q[:,j])

 for k in xrange(K):

 P[i,k] = P[i,k] + alpha * (2 * eij * Q[k,j]
- beta * P[i,k])

 Q[k,j] = Q[k,j] + alpha * (2 * eij * P[i,k]
- beta * Q[k,j])

 e = 0

 for i in xrange(rows):

 for j in xrange(cols):

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

302

 if R[i,j] > 0:

 e = e + pow(R[i,j] - np.dot(P[i,:], Q[:,j]), 2)

 for k in xrange(K):

 e = e + (beta/2) * (pow(P[i,k], 2) +
pow(Q[k,j], 2))

 if e < 0.001:

 break

 return P, Q.T

How it works…
We discussed the theory and the mathematics of what we are doing in the previous
recipe, Building a nonnegative matrix factorization model, so let's talk about the code.
The initialize function creates two matrices, P and Q, that have a size related to the
reviews matrix and the number of features, namely N x K and M x K, where N is the number
of users and M is the number of movies. Their values are initialized to random numbers that
are between 0.0 and 1.0. The factor function computes P and Q using gradient descent
such that the dot product of P and Q is within a mean squared error of less than 0.001 or
5000 steps that have gone by, whichever comes first. Especially note that only values that
are greater than 0 are computed. These are the values that we're trying to predict; therefore,
we do not want to attempt to match them in our code (otherwise, the model will be trained
on zero ratings)! This is also the reason that you can't use NumPy's built-in Singular Value
Decomposition (SVD) function, which is np.linalg.svd or np.linalg.solve.

There's more…
Let's use these factorization functions to build our model and to save the model to disk once it
has been built—this way, we can load the model at our convenience using the dump and load
methods in the class. Add the following method to the Recommender class:

def build(self, output=None):

 """

 Trains the model by employing matrix factorization on training

 data set, (sparse reviews matrix). The model is the dot product

 of the P and Q decomposed matrices from the factorization.

 """

 options = {

 'K': self.features,

 'steps': self.steps,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

303

 'alpha': self.alpha,

 'beta': self.beta,

 }

 self.build_start = time.time()

 self.P, self.Q = factor(self.reviews, **options)

 self.model = np.dot(self.P, self.Q.T)

 self.build_finish = time.time()

 if output:

 self.dump(output)

This helper function will allow us to quickly build our model. Note that we're also saving P and
Q—the parameters of our latent features. This isn't necessary, as our predictive model is the
dot product of the two factored matrices. Deciding whether or not to save this information in
your model is a trade-off between re-training time (you can potentially start from the current
P and Q parameters although you must beware of the overfit) and disk space, as pickle will
be larger on the disk with these matrices saved. To build this model and dump the data to the
disk, run the following code:

model = Recommender(relative_path('../data/ml-100k/u.data'))

model.build('reccod.pickle')

Warning! This will take a long time to build! On a 2013 MacBook Pro with a 2.8 GHz processor,
this process took roughly 9 hours 15 minutes and required 23.1 MB of memory; this is not
insignificant for most of the Python scripts you might be used to writing! It is not a bad idea
to continue through the rest of the recipe before building your model. It is also probably not a
bad idea to test your code on a smaller test set of 100 records before moving on to the entire
process! Additionally, if you don't have the time to train the model, you can find the pickle
module of our model in the errata of this book.

Testing the SVD-based model
This recipe brings this chapter on recommendation engines to a close. We use our new
nonnegative matrix factorization-based model and take a look at some of the predicted reviews.

www.it-ebooks.info

http://www.it-ebooks.info/

Recommending Movies at Scale (Python)

304

How to do it…
The final step in leveraging our model is to access the predicted reviews for a movie based
on our model:

 def predict_ranking(self, user, movie):

 uidx = self.users.index(user)

 midx = self.movies.index(movie)

 if self.reviews[uidx, midx] > 0:

 return None

 return self.model[uidx, midx]

How it works…
Computing the ranking is relatively easy; we simply need to look up the index of the user
and the index of the movie and look up the predicted rating in our model. This is why it is so
essential to save an ordered list of the users and movies in our pickle module; this way, if
the data changes (we add users or movies) but the change isn't reflected in our model, an
exception is raised. Because models are historical predictions and not sensitive to changes
in time, we need to ensure that we continually retrain our model with new data. This method
also returns None if we know the ranking of the user (for example, it's not a prediction); we'll
leverage this in the next step.

There's more…
To predict the highest-ranked movies, we can leverage the previous function to order the
highest predicted rankings for our user:

 import heapq

 from operator import itemgetter

 def top_rated(self, user, n=12):

 movies = [(mid, self.predict_ranking(user, mid)) for
mid in self.movies]

 return heapq.nlargest(n, movies, key=itemgetter(1))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

305

We can now print out the top-predicted movies that have not been rated by the user:

 >>> rec = Recommender.load('reccod.pickle')

 >>> for item in rec.top_rated(234):

 ... print "%i: %0.3f" % item

 814: 4.437

 1642: 4.362

 1491: 4.361

 1599: 4.343

 1536: 4.324

 1500: 4.323

 1449: 4.281

 1650: 4.147

 1645: 4.135

 1467: 4.133

 1636: 4.133

 1651: 4.132

It's then simply a matter of using the movie ID to look up the movie in our movies database.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10
Harvesting and

Geolocating Twitter
Data (Python)

In this chapter, we will cover the following recipes:

ff Creating a Twitter application

ff Understanding the Twitter API v1.1

ff Determining your Twitter followers and friends

ff Pulling Twitter user profiles

ff Making requests without running afoul of Twitter's rate limits

ff Storing JSON data to the disk

ff Setting up MongoDB for storing the Twitter data

ff Storing user profiles in MongoDB using PyMongo

ff Exploring the geographic information available in profiles

ff Plotting geospatial data in Python

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

308

Introduction
In this chapter, we are going to dive into the world of social media analysis through the use of
RESTful web-service APIs. Twitter is a microblogging social network whose stream is invaluable
for data mining, particularly text mining, and they have an excellent API that we will learn how
to interact with via Python. We will use the API to fetch Twitter social connections and collect
and store JSON data using both traditional file storage and the popular NoSQL database,
MongoDB[SK1]. Our analysis will attempt to ascertain the geographic location of connections
and produce a visualization from the data. Throughout the chapter, you should begin to notice
patterns about how APIs are designed and their intended use. Interaction with APIs is an
extremely important data science topic, and having a solid understanding of them will unlock
a whole new world of data upon which you can perform a myriad of analyses.

API stands for Application Programming Interface, and in traditional computer science, it
refers to methods that allow software applications to interact with each other. These days,
most references to APIs refer to a web API—the use of the Internet to share data between
your software application and a web application (such as Twitter). Data acquisition and
management is an important part of the data science pipeline, and knowing how to use APIs
is essential for getting actionable data sets off the Internet.

A special subset of APIs, called RESTful APIs, are actually the backbone of most web
applications, and they are everywhere. Although we can avoid most of the technical jargon,
we should point out that REST stands for Representational State Transfer, which is a fancy
way of saying that documents or objects exist as representations, and modifications to their
state should be transferred via the API. RESTful APIs are a direct extension of the Hypertext
Transfer Protocol (HTTP) that the World Wide Web was built upon, which is why they are so
popular as web APIs. HTTP allows for clients to connect to servers by making requests in the
form of verbs: GET, POST, DELETE, and PUT. Traditionally, the response is an HTML document.
Similarly, a RESTful API uses these verbs to make requests whose response is a JSON
document. The former is for human consumption (such as when you visit a website such as
http://www.google.com) and the latter is for application consumption.

For this chapter, we will only use HTTP GET requests and the occasional POST request. A
GET request is just like it sounds; it asks the server to give you a particular resource. A POST
request, on the other hand, means that a client is trying to provide data to the server (as in,
submitting a form or uploading a file). An API provider, such as Twitter, allows us to make HTTP
GET requests to a particular resource URL, which is often called an endpoint. For example, the
endpoint to GET all the most recent tweets for a particular user is https://api.twitter.
com/1.1/statuses/user_timeline.json. If we make the correctly authenticated HTTP
GET request to this endpoint, Twitter will supply the data that composes the current user's
timeline in the JSON format.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

309

Creating a Twitter application
Twitter is the ubiquitous microblogging social media platform with 253 million active members
as of 2014. Fortunately for us, Twitter makes the service's data more open and available to
third parties than just about any other social media site of similar size and standing in the
tech community. Additionally, Twitter offers a rich and user-friendly RESTful API that we will
make use of extensively. This recipe will show you how to create a new Twitter application,
which is a required step to access Twitter data programmatically.

Getting ready
Make sure that you have a web browser installed, and open up a new browser tab or window.

How to do it...
The following steps will walk you through the creation of a new Twitter application:

Note that Twitter does like to update its user interface (UI) frequently and
these steps, or the web-based forms, might change accordingly.

1.	 First, make sure that you have created a Twitter account. If you have not created one,
go to http://twitter.com and sign up. If you have an account, simply log in to
your Twitter account with your web browser.

2.	 Next, go to https://dev.twitter.com/apps and select the light blue button
labeled Create an Application on the right-hand side of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

310

3.	 Here, it will prompt you to enter your application details in three mandatory fields
and one optional one. Choose a name for your application that is no more than
32 characters.

4.	 Next, supply a brief description of your application between 10 and 200 characters.

5.	 You must supply a website for your application, although it is not applicable for our
use case. Also, there is a specific format that is required for the form to be submitted
successfully. Enter http://127.0.0.1.

6.	 Finally, you can ignore the Callback URL field, which is the last field on the form.

7.	 Go ahead and take some time to read the Developer Rules of the Road section, as
this document details in plain and simple text what you should and should not do
using your application.

8.	 Click on the Create your Twitter Application. After a few moments, you should be on
the main settings page of your new application with a tabbed menu at the top of the
screen. The current tab should be labeled Details.

9.	 Click on the API Keys tab and you should see the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

311

10.	 Now, click on Create my access token in the Token actions gray box at the bottom
to authorize your application for your own account (you might have to click the button
more than once). The result should look like the following screenshot:

11.	 Record the API key, API secret, access token, and access token secret in a text
file. These are important but must be protected like you would protect your e-mail
password or ATM pin. You can take a screenshot to save the information, but it would
be easier to copy and paste these values into a text file for now.

Now that you have MinGW and MSYS, there's no need to be jealous of those
with a Linux installation anymore, since they implement in your system the
most important parts of a Linux development environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

312

How it works...
You might be asking yourself why we needed to create an application if all we want to do is to
pull some simple data from Twitter. Early versions (1.0 and before) of the Twitter API allowed
applications to make anonymous API requests, retrieving data from Twitter without Twitter
knowing who was actually making the request. Since the deprecated Version 1.0 of the
company's API was retired on June 11, 2013, all API requests to Twitter require authentication.
This allows Twitter to keep track of who requests what information and how much information
was requested.

In general, there are several signs in the industry that the halcyon days of social media
data harvesting might be waning. Facebook's newest set of APIs, specifically Version 2.0 of
Facebook Login, has strongly locked down what data can be obtained from the social graph.
Further, Twitter acquired Gnip in April, 2014; Gnip is a reseller of Twitter data, and it allows its
customers to buy large portions of Twitter data. This move suggests that Version 2.0 of the
Twitter API might limit further access to Twitterverse.

See also
ff The Obtaining access tokens article at https://dev.twitter.com/docs/auth/

obtaining-access-tokens

ff The Tokens from dev.twitter.com article at https://dev.twitter.com/docs/
auth/tokens-devtwittercom

Understanding the Twitter API v1.1
APIs are both a blessing and a curse. Application Programming Interfaces make it much
easier to gather data from services such as Twitter, Facebook, or LinkedIn and define exactly
what data the company wants, and does not want, you to have. Unfortunately, companies
set rate limits on accessing their APIs in order to control the frequency (and therefore, the
amount) of data that can be harvested. They have also been known to radically alter their
APIs from one version to the next, thus resulting in a great deal of code rewrites for all efforts
dependent on the original API. Twitter's large API change from Version 1.0 to Version 1.1 offers
a cautionary tale.

Twitter offers three main APIs: the search API, the REST API, and the streaming API. The
search API gives us a programmatic method that makes queries to Twitter in order to retrieve
historical content, namely tweets. The REST API offers access to Twitter's core features,
including timelines, status updates, and user information. Finally, the streaming API is the
real-time API designed for "low latency access to Twitter's global stream of Tweet data".

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

313

With the streaming API, one must keep a persistent HTTP connection open to Twitter. For
our data mining and analysis purposes, this is an overkill, as we will only be periodically
requesting data from Twitter. Thus, we will be focusing on the first two APIs and don't have to
concern ourselves with the streaming API.

Getting ready
Once you have created your application in the preceding recipe and copied your keys, you are
ready to proceed.

How to do it...
Perform the following steps in order to access the Twitter API programmatically using Python:

1.	 First, install the Twython library. Open a new command prompt and type the
following:
(sudo) pip install twython

The sudo command is needed if your current user account does not have sufficient
privileges.

2.	 Next, open a new terminal and start the default Python REPL or IPython. If you want
to go the extra mile, you can also use IPython Notebook.

3.	 Enter and execute the following Python code, filling in the needed application keys:
from twython import Twython

API_KEY = 'INSERT HERE'

API_SECRET = 'INSERT HERE'

ACCESS_TOKEN = 'INSERT HERE'

ACCESS_TOKEN_SECRET = 'INSERT HERE'

 twitter = Twython(API_KEY, API_SECRET,

 ACCESS_TOKEN, ACCESS_TOKEN_SECRET)

Note that Twitter updates its developer interface frequently and the API_
KEY used to be called CONSUMER_KEY. Also, note that the keys given in
the code snippet need to be replaced with the values collected during the
previous recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

314

4.	 If you are using IPython, type the following at the REPL and then hit the Tab key:
In [12]: twitter.

This will bring up the impressive list of API calls that are now available to you.

5.	 As a test, we can enter the following at the Python prompt:
In [14]: temp = twitter.get_user_timeline()

This command will fetch the last 20 status updates from your timeline as a
20-element list of Python dictionaries.

6.	 Further, Twython gives us access to the response headers received from Twitter:

In [15]: twitter.get_lastfunction_header('x-rate-limit-
remaining')

Out[15]: '179'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

315

How it works...
With the preceding code, we are setting up our API keys and access tokens that we pass in
order to instantiate an instance of the Twython class. This new object serves as our main
interface to the Twitter API and defaults to using OAuth v1 for authentication purposes. As this
is a pretty common requirement, we can wrap this functionality in its own function as shown
in the following snippet. Before using the following function code, make sure that you enter
the needed application keys:

def twitter_oauth_login():

 API_KEY = 'INSERT HERE'

 API_SECRET = 'INSERT HERE'

 ACCESS_TOKEN = 'INSERT HERE'

 ACCESS_TOKEN_SECRET = 'INSERT HERE'

 twitter = Twython(API_KEY, API_SECRET, ACCESS_TOKEN,
 ACCESS_TOKEN_SECRET)

 return(twitter)

If you are checking your code into GitHub or another cloud-based version
control solution (such as Bitbucket), please check whether that repository is
public or private. All free repositories on GitHub are public. If your repository is
public, the world will have access to your secret Twitter API keys. We strongly
advise that you only use private repositories for such matters and note that
bitbucket.org provides private repositories for free.

OAuth, which stands for the Open Authentication protocol, allows a user to give permission
to a third-party application to access an aspect of the user's account (in this case, his or her
Twitter account) without giving up the user's login and password. Diving into the details of
how OAuth works is outside the scope of this recipe. However, it is important to discuss the
two different types of resource authentication for Twitter applications. The most common
authentication is the application-user authentication, which we will not use. In this mode,
your application makes a request on behalf of a user who has granted the needed
permissions to your application. For our project, we care about the application-only
authentication, where our application makes API requests not for a user but for itself. Note
that some API calls do not support application-only requests and that the rate limits for such
requests are typically different.

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

316

There's more...
The Twython library is not the only Python library available to simplify access to Twitter's API.
The following are three popular choices, including the popular Python Twitter Tools, and you
are free to explore or choose whichever you see fit:

ff Python Twitter Tools (https://github.com/sixohsix/twitter): This is a
minimalist Python API for Twitter that includes a command-line tool in order to get
friends' tweets and send your own announcements.

ff Twython 3.1.2 (https://github.com/ryanmcgrath/twython): This is a pure
Python wrapper that supports both search and streaming APIs, which are actively
maintained. This is the library that we will be using.

ff python-twitter (https://github.com/bear/python-twitter): This is a pure
Python interface for the current v1.1 Twitter API.

Twitter maintains a list of alternatives across programming languages at https://dev.
twitter.com/docs/twitter-libraries. Please note that the code from this chapter
uses Twython exclusively but it could be a useful exercise for the reader to rewrite examples
using the other Python libraries.

See also
ff The Twython documentation at

http://twython.readthedocs.org/en/latest/

ff Detailed OAuth 1.0 Guide at http://hueniverse.com/oauth/guide/

ff The Twitter's OAuth implementation at
https://dev.twitter.com/docs/auth/oauth

ff Twitter's OAuth FAQ web page
https://dev.twitter.com/docs/auth/oauth/faq

ff The OAuth home page at http://oauth.net/

ff Additional Twitter libraries at
https://dev.twitter.com/docs/twitter-libraries

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

317

Determining your Twitter followers and
friends

In the Twitter social network, users are labeled either as followers or friends relative to a
particular user. Your friends are the people that you follow and your followers are the people
that follow you. In this recipe, we determine who your friends are, who your followers are, and
how much overlap there is in each group.

Getting ready
For this recipe, we will be using the results of the previous two recipes and the twitter_
oauth_login() function. Also, we will be working in IPython or the default Python REPL, if
you prefer that instead. Feel free to use an editor in order to start capturing and modifying the
code as it grows in complexity.

How to do it...
The following steps will allow you to determine all of your Twitter friends and followers:

1.	 In IPython or your favorite REPL, enter the following:
twitter = twitter_oauth_login()

friends_ids = twitter.get_friends_ids(count=5000)

friends_ids = friends_ids['ids']

followers_ids = twitter.get_followers_ids(count=5000)

followers_ids = followers_ids['ids']

2.	 With all of your followers' and friends' Twitter IDs collected, let's see how
many you have:
In [26]: len(friends_ids), len(followers_ids)

Out[26]: (352, 554)

3.	 We will use Python sets, which are based on the sets that you might have
encountered in math class, to examine some properties of our friends and followers:

friends_set = set(friends_ids)

followers_set = set(followers_ids)

print('Number of Twitter users who either are our friend or
follow you (union):')

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

318

print(len(friends_set.union(followers_set)))

print('Number of Twitter users who follow you and are your
friend (intersection):')

print(len(friends_set & followers_set))

print("Number of Twitter users you follow that don't follow
you (set difference):")

print(len(friends_set - followers_set))

print("Number of Twitter users who follow you that you don't
follow (set difference):")

print(len(followers_set - friends_set))

The preceding snippet should result in the following output:

The numbers shown in the preceding screenshot will most likely be different
based on the number of friends and followers you have.

How it works...
This recipe demonstrates just how useful the Twython package is and how easy it makes
certain tasks. After we logged in using the twitter_oauth_login function, we make two
basic calls using the twitter object, one to get friends' IDs and one to get followers' IDs.
Note that we set the count parameter to 5000, which is the maximum value allowed by the
Twitter API. The twitter object returns a dictionary from which we extract the actual IDs.

One of the nice things about the Twython interface is how closely it mirrors the Twitter API. If
you ever have a question about a particular function, just check the Twitter documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

319

Once we have collected our list of friends' and followers' IDs, we turn to the Python set type for
some quick navel gazing. The Python set type, which has been built into Python since Version
2.4, is an unordered collection of unique objects. The key word for us is the word unique. If we
create a set from a list with duplicates, we will get a set with only unique elements; set([1,
2, 2, 3, 3, 3]) will return {1, 2, 3}.

We unite the set of friends' IDs with the followers' IDs to determine the total set of unique IDs
of Twitter users that either follow or are followed by us. In the preceding code, we use the union
method of the set type, but there are several other ways in which we could have done this:

(friends_set | followers_set)

(set(friends_ids + followers_ids))

There's more...
While Twython's beautiful abstraction hides some of the complexity of using the API,
this simplicity or magic can be problematic if we don't have an understanding of what
is actually happening behind the scenes. When we call the twitter.get_friends_
ids(count=5000) method, we are sending an HTTP GET request to a particular URL. In the
case of twitter.get_friends_ids(), the URL is https://api.twitter.com/1.1/
friends/ids.json.

The count=5000 input parameter to the function call shows up as field-value pairs in the
URL and as such, the URL becomes https://api.twitter.com/1.1/friends/ids.
json?count=5000.

Now, the actual API endpoint requires some default parameter values that Twython fills in for
us, as shown in the following URL for clarity:

https://api.twitter.com/1.1/friends/ids.json?cursor=-
1&screen_name=sayhitosean&count=5000

The Twitter v1.1 API requires all requests to be authenticated using OAuth. The required
information is actually embedded in the header of the GET request, and the process of
constructing the appropriate header is extensive (for more information, go to https://dev.
twitter.com/docs/auth/authorizing-request). Thus, Twython not only forms the
proper URL for making the request, but also handles the relatively painful Open Authorization
so that we don't have to. If you are interested, you can go down a level lower and construct
your own GET requests using the excellent request library or an alternative of your choosing.
We leave this for the reader to explore.

Note that different Twitter API endpoints have different rate limits. In the case
of GET friends/IDs, we are only allowed 15 calls over a 15 minute period for
Version 1.1 of the API as of May 2014. Other endpoints are less stingy with
their data.

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

320

See also
ff The GET friends/ids article at https://dev.twitter.com/docs/api/1.1/get/

friends/ids

ff The GET followers/ids article at https://dev.twitter.com/docs/api/1.1/
get/followers/ids

ff The Requests: HTTP for Humans article at http://docs.python-requests.
org/en/latest/

Pulling Twitter user profiles
For this recipe, we are going to use the Twitter API to pull JSON data about Twitter users. Each
Twitter user, identified by either a screen name (such as SayHiToSean) or a unique integer, has
a profile containing a rich set of information about someone.

Getting ready
You will need the list of followers' and friends' IDs from the previous recipe.

How to do it...
The following steps guide you through retrieving a set of Twitter users' profiles:

1.	 First, we create a function that will manage pulling twitter profiles:
def pull_users_profiles(ids):

 users = []

 for i in range(0, len(ids), 100):

 batch = ids[i:i + 100]

 users += twitter.lookup_user(user_id=batch)

 print(twitter.get_lastfunction_header('x-rate-limit-
 remaining'))

 return (users)

2.	 We put this function to use, pulling profiles of both friends and followers:
friends_profiles = pull_users_profiles(friends_ids)

followers_profiles = pull_users_profiles(followers_ids)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

321

3.	 To check whether everything works, we use a list comprehension to extract all of the
friends' screen names from the profiles:
friends_screen_names = [p['screen_name'] for p in
friends_profiles]

4.	 Using the following command, you should be greeted by a list of your friends'
screen names:
print(friends_screen_names)

How it works...
The first step in this recipe was the creation of a function that manages the twitter.
lookup_user method call. The Twitter users/lookup endpoint accepts 100 user IDs at a
time. Thus, we need to loop over our list of friends' or followers' IDs and batch them into
groups of 100 for the requests. Twitter returns a JSON object that Twython converts into a list
of Python dictionaries, ready for use.

There is an alternative way of retrieving profiles. Instead of pulling friends' and followers' IDs
and then using those to request user profiles, we could have queried the friends/list endpoint
with simply the current user's screen name (in this case, mine, which is @SayHiToSean)
or user ID. Twitter would then return up to 200 user profiles per request. If you work out the
API limits, either path works out to the same number of user profiles pulled in the 15 minute
default time window that Twitter uses for rate-limiting purposes.

There's more...
The pull_users_profiles function that we created has an extra feature in the last line of
the loop:

print(twitter.get_lastfunction_header('x-rate-limit-remaining'))

We retrieve the header of the response from the last API call and check the x-rate-limit-
remaining value. This value tells us exactly how many API calls we have left in a given 15
minute window. Although we print this value out with each loop, we do absolutely nothing to
prevent us from slamming up against Twitter's rate limit, which varies by the endpoint.

Further, the list comprehension that we used in step 3 can fail if, for some reason, one of the
Twitter user profiles that were received did not have a screen_name key. Thus, it would be
better to add a condition to the comprehension:

friends_screen_names = [p['screen_name'] for p in friends_profiles if
'screen_name' in p]

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

322

Or, as an alternative and potentially, a more Pythonic way, we could use the GET method of
the dictionary:

friends_screen_names = [p.get('screen_name') for p in friends_profiles]

In this case, profiles that do not have a screen_name key are not skipped but are replaced
with None, instead.

See also
ff The description of the Twitter user profile JSON at https://dev.twitter.com/

docs/platform-objects/users

ff The GET users/lookup documentation at https://dev.twitter.com/docs/
api/1.1/get/users/lookup

ff The GET friends/list documentation at https://dev.twitter.com/docs/
api/1.1/get/friends/list

Making requests without running afoul of
Twitter's rate limits

For this recipe, we are going to modify the function created in the previous recipe in order to
avoid hitting the dreaded Twitter API rate limits.

Getting ready
You will again need the list of followers' and friends' IDs from the previous recipe as well as
the authenticated Twython object.

How to do it...
The following function demonstrates how you can retrieve a set of Twitter users' profiles in a
rate-limit-aware fashion:

import time

import math

def pull_users_profiles_limit_aware(ids):

 users = []

 start_time = time.time()

 # Must look up users in

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

323

 for i in range(0, len(ids), 10):

 batch = ids[i:i + 10]

 users += twitter.lookup_user(user_id=batch)

 calls_left = float(twitter.get_lastfunction_header('x-rate-
 limit-remaining'))

 time_remaining_in_window = rate_limit_window - (time.time()-
 start_time)

 sleep_duration =
 math.ceil(time_remaining_in_window/calls_left)

 print('Sleeping for: ' + str(sleep_duration) + ' seconds; ' +
 str(calls_left) + ' API calls remaining')

 time.sleep(sleep_duration)

 return (users)

How it works...
This function is a modified version of the previous recipe's function that pulls users' profiles so
that we do not run afoul of Twitter's ubiquitous rate limit. We insert a dynamic pause into each
iteration of the loop with the length determined by the number of API calls remaining in the
time window. Before the loop starts, we capture the current system time in the start_time
variable. After each API call made by the twitter object, we grab the header of the response
and check the number of API calls remaining in the 15-minute time window. We compute the
time that has elapsed since start_time and subtract this from 900 seconds, yielding the
time left in the 15-minute window. Finally, we compute the number of seconds needed per
remaining API calls and sleep for the required period. We use the math.ceil function to
round up and make sure that we always give just a little bit of extra time so as to not hit the
rate limit.

You might ask why one would care about hitting the Twitter API rate limit. Why not just keep
hitting the API even after the limit has been reached? The simple answer is that Twitter can
and will block applications that abuse the prescribed rate limits too often. Thus, it is in your
best interest to play by the rules. Further, you can't pull any additional information if you try
once the rate limit has been exceeded, so why bother?

Storing JSON data to the disk
Calls to the API can be expensive in terms of bandwidth and the rate limits that service
providers place on their API. While Twitter is quite generous about these limits, other services
are not. Regardless, it is good practice to save the retrieved JSON structures to the disk for
later use.

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

324

Getting ready
For this recipe, you will need previously retrieved data, preferably from the previous recipes.

How to do it...
The following steps walk us through saving the JSON data to the disk and then loading it back
into the Python interpreter's memory:

1.	 First, we must import the json package and create two helper functions:
import json

def save_json(filename, data):

 with open(filename, 'wb') as outfile:

 json.dump(data, outfile)

def load_json(filename):

 with open(filename) as infile:

 data = json.load(infile)

 return data

2.	 At the Python prompt, let's test our functions by saving our friends' JSON-based
Twitter profiles to the disk:
fname = "test_friends_profiles.json"

save_json(fname, friends_profiles)

3.	 Check to make sure that the file was created. If you are using IPython, simply type ls
or open up a terminal shell, change to the current directory, and type ls. You should
see test_friends_profiles.json in the current directory.

4.	 Now, let's load the file back into our Python workspace:

test_reload = load_json(fname)

print(test_reload[0])

How it works...
The json library, which is part of the Python standard library, provides a simple but effective
JSON encoder and decoder. When writing a file via the save_json function, we use the
json.dump method to serialize the data object (in this case, a Python dictionary) as a JSON-
formatted stream with a default UTF-8 encoding and send it to the outfile. Conversely, the
load_json function uses json.load, which deserializes the infile to a Python object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

325

Setting up MongoDB for storing Twitter data
The default response format for the REST API is JSON, and thus, it is easiest to store this
data as JSON in order to avoid extra data wrangling. While there are a number of different
databases and data stores that can handle JSON data, we want to choose one that is
relatively easy to set up, handles JSON data natively, is free to use, and is relatively popular.
Thus, we will go with MongoDB.

Getting ready
For this recipe, you will need to download MongoDB on your local machine, so make sure that
you have a broadband connection to the Internet.

How to do it...
The following steps will walk you through setting up MongoDB and using it through the
command shell:

1.	 The first step for this stage is to install MongoDB. The easiest way to do this is to
download the latest binary distribution (currently, 2.6) from the http://www.
mongodb.org/downloads. 64-bit binary distributions that are available for
Windows, Linux, Mac OS X, and Solaris.

2.	 Once downloaded, follow the pertinent installation guide at http://docs.
mongodb.org/manual/installation/

3.	 Next, we need to start MongoDB by typing in mongod at the command prompt.

4.	 With the DB running, we need to connect to it via the included mongo shell. For
this, open another terminal window or command line and type the following:
mongo

5.	 This command assumes that MongoDB is running on port 27017 and at localhost. If
this is not the case, start the mongo shell as shown, with the correct address of host
and port number specified:
mongo address_of_host:port_number

6.	 Now that we are running the mongo shell, we can get to work. Let's create a database
named test, so type in the following:
use test

7.	 Once the test database has been created, we need to create the tweets collection
that will actually store all of the tweets that we are going to harvest. For this, use
the following:
db.createCollection('user_profiles')

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

326

8.	 We want to check whether the collection was created, so we must first switch to the
current database by using the following command:
use test

9.	 Ask the mongo shell to show all collections in this database, and you will receive a
simple list of collections in the local database:
show collections

How it works...
In this straightforward recipe, we have laid the foundation on how to use the popular
MongoDB. We have installed and run MongoDB and have connected to it using the mongo
shell. Further, we have named a new database, which is test , and created a document
collection called user_profiles. Collections in MongoDB are groupings of MongoDB
documents that are somewhat similar to a table in a relational database, such as Postgres.
These documents are usually similar in structure and purpose but, unlike relational
databases, do not have to be completely uniform and can evolve easily over time. For our
purposes, the group of Twitter users' profiles make a great collection.

Personally, we don't like to run the mongod process either in the background or upon login, so
we start MongoDB from the command line. This way, when we're not using MongoDB, it is not
running in the background, consuming CPU cycles, or draining the battery.

There's more...
MongoDB is not the only NOSQL document store that is well suited for JSON data and many
alternatives exist, including CouchDB (http://couchdb.apache.org/). Most key/value
stores such as Amazon's Dynamo or Riak from Basho are great for storing JSON data with
relatively minimal setup and configuration as well. With Amazon's Dynamo, you also get the
added benefit of it being a fully cloud-based, pay-as-you-go solution that can scale almost
infinitely. Finally, some relational databases, including Postgres, natively support a JSON
datatype and perform error checking on the data in order to make sure that the stored
data is valid JSON. However, the setup and configuration of Postgres tends to be a bit more
challenging than MongoDB.

An additional advantage with MongoDB, although not an exclusive advantage, is that free,
hosted platform-as-a-service options exist. In other words, you can provision a completely
configured MongoDB database running in the cloud without doing anything more than walking
through a fairly straightforward, web-based interface to log in and create your database. The
best part is that both MongoLab and MongoHQ offer a free service tier, which means that you
set up and use your own MongoDB database in the cloud without paying any money!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

327

Since this section was first written, authors have had the opportunity to test
and use RethinkDB (http://rethinkdb.com/), which is a relatively
new open-sourced distributed database that easily handles JSON datatypes
yet offers joins across tables of documents much like a relational database.
If we were to rewrite this chapter, we would do so using RethinkDB.

See also
ff The MongoDB v2.4 Manual at http://docs.mongodb.org/v2.4/

ff The Getting Started with MongoDB guide at http://docs.mongodb.org/
manual/tutorial/getting-started/

ff CRUD in MongoDB at http://docs.mongodb.org/manual/crud/

ff The CouchDB home page at http://couchdb.apache.org/

ff The MongoLab home page https://mongolab.com/welcome/

ff The MongoHQ home page at http://www.mongohq.com/

Storing user profiles in MongoDB using
PyMongo

With user profile data retrieved and MongoDB installed and ready for action, we need to store
the user profile JSON into the appropriate collection, and we want to do so from within our
Python scripts and not using the mongo shell. For this, we are going to use PyMongo, which
is the recommended way to work with MongoDB from Python, as per the MongoDB people
themselves. As of January 2014, PyMongo was sitting at Version 2.6.3 (http://api.
mongodb.org/python/current/).

Getting ready
You must already have MongoDB installed and have some sample user profile data to be
ready pulled for this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

328

How to do it...
The following steps will guide you through saving Python dictionaries as JSON documents
within MongoDB:

1.	 To get started, we must install PyMongo on our systems. On a command-line
prompt, type the following:
pip install pymongo

2.	 Depending on your current user privileges, you might have to use sudo with
these commands:
sudo pip install pymongo

3.	 If the preceding installations do not work and report errors, please see the more
detailed instructions online at http://api.mongodb.org/python/current/
installation.html, as there are some potential C dependencies that might
have to be compiled separately, depending on your system.

4.	 With PyMongo installed, drop in to a Python, IPython, or IPython Notebook session
and enter the following:

import pymongo

host_string = "mongodb://localhost"

port = 27017

mongo_client = pymongo.MongoClient(host_string, port)

get a reference to the mongodb database 'test'

mongo_db = mongo_client['test']

get a reference to the 'user profiles' collection in the 'test'
database

user_profiles_collection = mongo_db['user_profiles']

user_profiles_collection.insert(friends_profiles)

user_profiles_collection.insert(followers_profiles)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

329

How it works...
After we installed pymongo, there weren't many steps required to get us connected to and
then storing JSON, in our local MongoDB database.

We first created a MongoClient that is connected to the mongod specified in the host string
and port. We then use dictionary-style access to access the needed mongo_db database (in
this case, test) and the particular collection (in this case, user_profiles). We call the
insert method of the collection and pass it the JSON data to save. For this effort, we receive
either one ObjectID or a list of ObjectIDs for the newly stored objects.

There are a number of things to be noted here. We choose to use the dictionary-style access
(mongo_client['test']) just in case the database name contains characters such as -
that would prevent the attribute style access to the database (client.test). Also, please
note that MongoDB does nothing until a document is actually stored in the collection.

Alternatively, we can wrap the preceding commands in a function for easier reuse later. In
the following command, save_json_data_to_mongo takes either a single JSON document
or an iterable list of JSON documents and the specifications required in order to access the
particular database and collection in MongoDB. The host_string parameter defaults to
localhost and the port defaults to 27017:

def save_json_data_to_mongo(data, mongo_db,

 mongo_db_collection,

 host_string = "localhost",

 port = 27017):

 mongo_client = pymongo.MongoClient(host_string, port)

 mongo_db = mongo_client[mongo_db]

 collection = mongo_db[mongo_db_collection]

 inserted_object_ids = collection.insert(data)

 return(inserted_object_ids)

We can improve this function by performing a check to see whether the number of
JSON documents matches the number of ObjectIDs returned, but we will leave this exercise
to the reader.

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

330

Exploring the geographic information
available in profiles

The Twitter users' profiles contain two different, potential sources of geographic information:
the profile itself and the most recently tweeted status update. We will utilize both options in this
recipe with an eye toward usability in constructing a geographic visualization of our friends.

Getting ready
You will need the harvested friends' and/or followers' profiles from Twitter, as directed in the
previous recipes.

How to do it...
Perform the following steps to extract the geographic data that we need to visualize the
approximate locations of our connections:

1.	 We start this exercise in IPython or your favorite Python REPL. Load your friends'
profiles from the file:
In[1]: fname = 'test_friends_profiles.json'

In[2]: load_json(fname)

2.	 Next, we build lists from all of the values of the geo_enabled field in the user
profiles' data structures for our friends. Then, we use the count method to find the
number of user profiles that have the geo_enabled flag set to true:
In[3]: geo_enabled = [p['geo_enabled'] for p in
friends_profiles]

In[4]: geo_enabled.count(1)

Out[4]: 127

3.	 We repeat a very similar process to the one used in the second step to count how
many friends' user profiles have a blank location field:
In[5]: location = [p['location'] for p in friends_profiles]

In [6]: location.count('')

Out[6]: 79

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

331

4.	 To get a quick ID of the data contained in the location field of user profiles, we
print out a unique list and note the "messiness" of the data. It would appear that
location is a free text field, which is very disappointing:
In[7]: print(set(location))

Out[7]:

…

u'Washington D.C.',

u'Washington DC',

u'iPhone: 50.122643,8.670158',

u'london',

u'new world of work',

u'san francisco',

u'seattle, wa',

u'usually in Connecticut',

u'washington, dc',

…

5.	 Now, we turn our attention to the time_zone field:
In[8]: time_zone = [p['time_zone'] for p in friends_profiles]

In[9]: time_zone.count(None)

Out[9]: 62

In[10]: print(set(time_zone))

Out[10]:

{None,

u'Alaska',

u'Amsterdam',

u'Arizona',

u'Atlantic Time (Canada)',

u'Berlin',

…

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

332

6.	 Finally, as each user profile contains that user's most recent status update (or
tweet), we want to check how many of these tweets were geotagged by the user.
Note the logical and conditional portion of the list comprehension. We only want
p['status']['geo'] if these keys are present in the data structure:

In[11]: status_geo = [p['status']['geo'] for p in
friends_profiles if ('status' in p and p['status']['geo'] is
not None)]

In [12]: if status_geo: print status_geo[0]

Out[12]: {u'coordinates': [38.91431189, -77.0211878], u'type':
u'Point'}

In[13]: len(status_geo)

Out[13]: 13

How it works...
In this recipe, we are using list comprehensions to extract potentially useful geographic
information contained in the user profiles of friends. With each data element, we are asking
two questions:

ff What percentage of profiles contain this information, as coverage is important?

ff What form and, therefore, how useful is the information that is available in
the profiles?

We find that about 80 percent of profiles have a location set in their profile (very promising)
and an even higher percentage have a time zone set (an even coarser grained geographic
indicator). Of the last status update that is captured in the user profile data, more than 90
percent is not geocoded even though a third of user profiles (127/352) have geo_enabled
set to True, which means that users might sometimes opt to geocode a tweet. Thus, if we
harvested historical tweets for our friends, we should be able to get locations for about a third
of them, at best.

With the coverage established, we look back at the actual data available, which paints a more
complicated picture of the problem. The location characteristic of the user profile is available
in most profiles, but it is a jumble of content. Some locations are a latitude and longitude
value (highly useful), some are a recognizable address as a text string, some are a city and
state, and some are not quite a traditional address format or even a location. The time zone
data appears to be less obviously problematic, but we would still have to ensure that the time
zone names captured by Twitter cleanly and unambiguously map to real times zones.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

333

There's more...
If we want to plot our friends on Twitter, we can do so using a few approaches, listed as follows:

ff If we use the coordinates of geotagged tweets, we can immediately jump to plotting.
The only concern here is the sparsity of the data. To ameliorate this situation, we
should pull tweets for each friend in an attempt to uncover more geotagged tweets.
Doing this, we would expect to uncover geographic data for as much as a third of
our friends.

ff Although the location characteristic is quite messy, we can run the results through
a geocoding service such as Google Maps or Bing and see what happens. Given
the creativity of some of the locations in user profiles, this might not be the
most productive path possible. Alternatively, we could attempt to pull out state
abbreviations or ZIP codes using regular expressions, but this too would be a bit
messy and time consuming.

ff Graphing the count of friends in different time zones can be really interesting, and it
would appear that this data might be easy to extract. The one question that becomes
relevant is how hard will it be to graph time zones?

See also
ff The Users Twitter documentation at https://dev.twitter.com/docs/

platform-objects/users

Plotting geospatial data in Python
One of Python's greatest strengths is the number and diversity of available packages that
make many complex tasks as simple as someone else has already written most of the code.
As a result, we sometimes encounter the paradox of choice where too many options confuse
the issue and we just want one good option. In this recipe, we will plot a set of latitude and
longitude coordinates using an excellent Python package—folium—that wraps a JavaScript
library, which is leaflet.js. You will learn more about folium further along in the recipe.

Getting ready
You will need the geographic data extracted in the previous recipes (a set of longitude and
latitude coordinates). Also, we need to install the folium package, which is shown in the
following section, so you will need an Internet connection.

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

334

How to do it...
The following steps will help you convert the latitude and longitude data you have to plot
on a map:

1.	 Open your terminal. We need to install the Python package folium:
(sudo) pip install folium

2.	 Change to your source directory and start up IPython or your favorite Python REPL. We
first need to create two lists that will contain the geographic data and the associated
screen names that we will use for labels. The following code is very similar to the last
list comprehension in the previous recipe but is represented as a loop:
status_geo = []

status_geo_screen_names = []

for fp in friends_profiles:

 if ('status' in fp and fp['status']['geo'] is not None and
 'screen_name' in fp):

 status_geo.append(fp['status']['geo'])

 status_geo_screen_names.append(fp['screen_name'])

3.	 We now import the two libraries that we will need:
import folium

from itertools import izip

4.	 We instantiate the Map object, setting the desired initial view location and level of zoom,
add markers and labels to the map in a loop, and finally, render the map to HTML:
map = folium.Map(location=[48, -102], zoom_start=3)

for sg, sn in izip(status_geo,status_geo_screen_names):

 map.simple_marker(sg['coordinates'], popup=str(sn))

map.create_map(path='us_states.html')

5.	 Now, there should be an HTML file in your working directory. Double-click on it and
you should see something similar to what is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

335

How it works...
It is impressive that we went from less than a dozen lines of code to a fully interactive map,
complete with geographic markers denoting the location of some of the users that follow us
on Twitter. For this, we leveraged the power of the folium Python package, which in turn, is
a Pythonic wrapper for the Leaflet.js JavaScript library. Folium allows us to bind data from
Python to a map for choropleth visualizations or render markers at specific map locations, as
we did in the fourth step.

Folium uses the Jinja2 template package to create an HTML file containing a very simple HTML
page with a single div container that holds the map and the customized JavaScript code in order
to use the leaflet.js library. It is the leaflet.js library that handles the actual map generation:

<!DOCTYPE html>
<head>
 <link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-
 0.5/leaflet.css" />
 <script src="http://cdn.leafletjs.com/leaflet-
 0.5/leaflet.js"></script>

<style>
#map {
 position:absolute;
 top:0;
 bottom:0;
 right:0;
 left:0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Harvesting and Geolocating Twitter Data (Python)

336

</style>
</head>
<body>
 <div id="map" style="width: 960px; height: 500px"></div>
<script>
var map = L.map('map').setView([48, -102], 4);

L.tileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
 maxZoom: 18,
 attribution: 'Map data (c) OpenStreetMap
 contributors'
}).addTo(map);

var marker_1 = L.marker([38.56127809, -76.04610616]);
marker_1.bindPopup("Pop Text");
map.addLayer(marker_1)

</script>
</body>

We highly recommend that you take a closer look at both the additional features of folium
(and leaflet.js) and the underlying source code of this library.

There's more...
Visualizing geographic data is complex. Not only do you need the ability to render one or more
complex coordinate systems, but you also need the original map data that defines countries,
roads, rivers, and anything else you might want on display, in addition to your own data. We
are fortunate that Python provides so many options when tackling this problem.

These packages tend to fall into two broad categories. The first class of geospatial
visualization packages arose out of scientific and research needs that have existed for
decades. For this software, the renderer and the required geographic data reside on the
user's local machine. This typically necessitates the compilation and installation of several
additional layers of the software in order to get the Python package working.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

337

The very powerful Matplotlib Basemap Toolkit is an excellent example of this. Browsing the
instructions, we see numerous dependencies. While we have already handled matplotlib and
NumPy, two additional requirements—GEOS and Proj4 map library—stand out as potentially
problematic. The C++ source code for the Geometry Engine - Open Source (GEOS) is actually
included with the basemap but must be compiled and built separately. This need to compile
software in another language is a giant red flag. For Python packages, this often leads one down
a rabbit hole of compile errors and technical issues (missing header files, slightly nonstandard
directory structures, wrong compiler, and so on) that can take hours or days to resolve. If you
are on Mac OS X, especially Mavericks, you are in for even more fun, as Apple has a tendency
to make slight alterations with each release, which break previously functional makefiles. As a
result, we chose a mapping library from category two, which is described as follows.

The second class of the package provides a Pythonic way of interacting with a JavaScript
library that actually handles the rendering of maps and data. This often requires us to output
our results as HTML, which is more often than not fine. These JavaScript libraries themselves
fall into two categories. First, there are more "pure" mapping libraries such as Google
Maps and Leaflet.js that were built to render maps online but can be repurposed for more
specialized geospatial data visualization needs. Second, there is D3.js, the all-purpose library
for manipulating documents based on data that is capable of some beautiful geographic
visualizations. We chose folium due to its simplicity and elegance; when software works, it
makes our lives and analyses easier.

See also
ff The GEOS home page at http://trac.osgeo.org/geos/

ff The Cartopy home page at http://scitools.org.uk/cartopy/

ff The Shapely home page at http://toblerity.org/shapely/

ff The Kartograph home page at http://kartograph.org/

ff The Leaflet.js home page at http://leafletjs.com/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11
Optimizing Numerical
Code with NumPy and

SciPy (Python)

In this chapter, we will cover the following recipes:

ff Understanding the optimization process

ff Identifying common performance bottlenecks in code

ff Reading through the code

ff Profiling Python code with the Unix time function

ff Profiling Python code using built-in Python functions

ff Profiling Python code using IPython's %timeit function

ff Profiling Python code using line_profiler

ff Plucking the low-hanging (optimization) fruit

ff Testing the performance benefits of NumPy

ff Rewriting simple functions with NumPy

ff Optimizing the innermost loop with NumPy

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

340

Introduction
Optimizing code to decrease the execution time can be a very rewarding task. Unfortunately,
in most situations, optimization is almost always the last step in writing software and is only
performed if absolutely necessary. If your code executes in an acceptable amount of time,
optimization is not required.

Given this, why bother with code optimization? As data scientists, we often face ever-larger
datasets where the code that executes on a single data element might be executed billions
of times to generate results. If this code is written poorly, the analysis could literally take
days to run. Further, in many scientific and numeric applications, software is computationally
bound and not limited to bandwidth. As the models employed by data practitioners grow in
complexity, every drop of performance matters. Why else do we optimize code? The reasons
are as follows:

ff Time is money: If you are running software in the cloud, time is money. Each extra
minute of processing is going to cost you, especially if it is spread across a thousand
machines. Also remember that Amazon EC2 still charges by the hour and not by
the minute, like Google Compute Engine does; 61 minutes of EC2 time are twice as
expensive as 59 minutes.

ff Number of iterations: Cycle time, or the number of iterations you can achieve before
a fixed deadline, is another critical issue. If your entire analytics process requires
a week to run and generate results, you cannot learn from this iteration, tweak the
process, and regenerate updated results nearly as fast as you can if that process only
consumed 24 hours. Trust us, it is virtually impossible to get an exploratory analysis
perfect the first time or even the third time. Iterations matter.

ff Deployment to production: A production environment can introduce new execution
time requirements on your code. Does your code need to run in real time? Must your
calculation complete to return a result to a user who is otherwise left waiting? Or,
does your code run in the batch mode overnight and have a window of time in which
to complete? As you transition your code from prototype to production, the execution
time can become a critical issue.

ff Power savings: Code that performs the same task with fewer instructions, less
memory, and fewer CPU cycles results in power savings. Thus, if you must worry about
the power consumption for your mobile device or the thermal performance of your
server, optimized code is better.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

341

ff Preparing for the coming transition from big data to big computation: In the world
of big data (potentially, more relevant to the average data scientist), once people
get bored of counting clicks and computing simple statistics at scale, practitioners
will move on to performing much more interesting calculations. All of a sudden, we
will transition from big data to big computation with CPU cycles being the scarce
commodity as opposed to the storage bandwidth. At this point, the code optimization
will become critically important, and much of the work done in the High Performance
Computing (HPC) world will transition from fringe to mainstream.

ff Fun, enjoyment, and personal development: Coercing better performance out of the
code is a fantastic puzzle that requires one to understand the target programming
language at a much deeper level (often, understanding key design decisions made
by the authors of the language) and, in more extreme cases, the constraints and
capabilities of the underlying hardware. Plus, in today's world of high-level languages,
prebuilt libraries, and frameworks that handle almost anything for you, many people
do not have this type of programming depth.

Understanding the optimization process
In this abstract recipe, we will talk about the steps required to optimize software.

How to do it…
Perform the following steps to learn about the optimization process that we will be employing:

1.	 Establish the baseline performance of your existing code in terms of the relevant
parameters (execution time, memory consumed, peak I/O bandwidth, and so on).

2.	 Determine the performance targets or system constraints. One of the seven habits of
highly effective people was to always start with the end in mind, and optimization is
no different. How quickly must the code get executed? What is the longest acceptable
time to complete the processes? What is the maximum amount of memory that can
be consumed by your software? How accurate must the computed results be? Don't
forget about the fidelity of the results.

3.	 Set up a development and measurement environment that allows you to easily and
rapidly measure and record the relevant performance characteristics. The easier it
is for you to measure the performance of your code line by line, the faster you will
optimize your code. If it is painful or difficult or requires you to remember commands
that you keep forgetting, the optimization will be painful and slow.

4.	 Capture and record all test parameters and a snapshot of the current state of
the code.

5.	 Identify the bottlenecks in the code using the profiler.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

342

6.	 Attempt to address the bottlenecks, starting with the largest bottleneck first.
Depending on the code complexity, it is often safest to address a single issue with
each testing cycle.

7.	 Rerun the code with the implemented change(s) using the profiler. Check whether the
computed results or output remain unchanged!

8.	 Jump to step 4 and repeat as many times as necessary.

How it works…
Just like when painting a room, you set yourself up for success by preparing properly. Before
the paintbrush touches the wall, you must move all of the furniture away from the walls and
cover each piece with a sheet or cloth. The floor must be protected, often with a drop cloth, and
pictures, shelves, and other items hanging on the walls must be taken down and nails removed.
The walls need to be wiped down with a wet cloth in order to remove dust and dirt and then
address any areas that need repair. Finally, you should tape the areas where you don't want the
paint to go, such as the trim, windows, and electrical sockets. With all of this done, the actual
application of the paint to walls takes very little time. Optimization is similar in that you must
create an environment where optimization is a simple extension of what you are doing. Thus, the
setup of your development and measurement environment—the third step—is crucial.

When optimizing code, you will be constantly tweaking and testing small (and sometimes,
large) changes to your source code. Some changes will break the code, some changes
won't. Some changes will enhance the performance, some changes won't. As you continue
to tweak and test, it becomes increasingly important that you can recover that change you
tried five or six attempts back that worked best. It is equally important to keep a record of the
performance impact of each tweak so that when you are testing an array of possible changes,
you know which one(s) to keep. Git, Mercurial, or whatever source code versioning tool you
prefer, is your best friend.

In the sixth step, the order in which we address bottlenecks is usually a function of the ease
by which the bottleneck can be eliminated. Smaller performance bottlenecks that can be
easily fixed by a new line of code, or similarly, a quick change should be considered if the
main bottleneck requires a much larger rewrite of the code to the address.

There's more…
Every change in code that might increase performance can also create a bug. Thus, whenever
optimizing code, never do more than you have to in order to achieve the desired gain in
performance. That last brilliant update might introduce a particularly difficult-to-find bug or,
worse yet, a numerical discrepancy. Also, be aware that as you optimize the code, you risk
making it more difficult to read both for yourself and the next person who will use it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

343

Identifying common performance
bottlenecks in code

When optimizing a data science project, it is crucial to look at the entire analytics pipeline and
understand the time and effort spent at each stage and their interdependencies.

Let's simplify the problem to decrease the execution time of the software implemented in a
particular language. We won't worry about shuffling around large blocks of data, say, from a
production database to the analytics data store.

At its most abstract level, the execution time of your code is a function of the code itself and
the hardware used to run it. If you want to decrease the time required to run your code, you
can upgrade the hardware, modify the software, or do both.

For optimization purposes, we want to start with the end in mind: what type of optimization
must be achieved or how much faster must the software run. Decreasing the execution time
by a factor of two often mandates a very different course of action than an order of magnitude
decrease that might require more radical code changes.

How to do it…
While a profiler (software that provides information about the execution behavior of
other software) will help highlight your slowest lines or blocks of code, there are certain
types of code / patterns / problem areas, that you can learn to spot, that are often ripe for
speed improvements:

1.	 Highlight any and all loops, especially nested loops: the higher the level of nesting,
the slower they often are.

2.	 Locate slow mathematical operations such as square roots, trigonometric functions,
and so on, or anything that is not an addition or subtraction.

3.	 Shrink the size of key data structures.

4.	 Determine the precision (float, double, int, uint8, and so on) of often used variables.

5.	 Avoid unnecessary calculations when possible.

6.	 Attempt to simplify mathematical equations.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

344

How it works…
For step 1, loops indicate areas of code that are executed multiple times, with nested loops
often indicating a much larger number of repetitions. Most of the code that is repeatedly
executed represents a prime area for optimization, as the loop will magnify even a small gain
in the performance. Further, there are some languages, especially domain specific languages
such as R and MATLAB, where loops perform poorly due to properties of the language itself. In
these cases, loops can often be replaced by a different programmatic construct (a functional
approach in the case of R or a vectorized method in MATLAB).

For step 2, locating slow mathematical operations is often another opportunity to radically
speed up the execution of computationally intense code. A surprisingly large number of
natural phenomena are described by equations using the square root, including the simple
Euclidean distance measure between two points in n-dimensional space. Unfortunately, the
square root calculation itself is quite slow compared to basic multiplication, division, addition,
subtraction, and logical comparisons. Even then, multiplications and divisions are usually
significantly slower than your basic addition, subtraction, and logical comparisons.

Basically, all of those extra buttons on your TI-85 graphing calculator or, dare I say, your HP
48G for all of those engineers out there (long live the reverse Polish notation!) represent
mathematical functions that are significantly slower than the basic four operations. This
means stay on the look out for:

ff cos: cosine

ff sin: sine

ff tan: tangent

ff acos: arc cosine

ff asin: arc sine

ff atan: arc tangent

ff exp: exponentiation

ff pow: log—base 10 logarithm

ff ln: natural (or base e) logarithm

ff cosh: hyperbolic cos

ff sinh: hyperbolic sin

ff tanh: hyperbolic tan

ff acosh: inverse hyperbolic cos

ff asinh: inverse hyperbolic sin

ff atan: inverse hyperbolic tangent

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

345

We see this a lot in numeric code where a conditional is dependent on a distance calculation.
For example, take a look at the following command:

if distance_between(point1, point2) > 1.0 ...

Or, take a look at this even more explicitly written command:

if square_root((x1-x2)^2 + (y1-y2)^2) > 1.0 ...

Both signify an opportunity. If one squares both sides, the computationally expensive square
root can be eliminated. The only thing to be concerned about is the behavior of the square
root and squares at 1, -1, and 0. Negative numbers become positive when squared and
fractional values get closer to zero when squared. When dealing with distances and other
physical quantities, negative values aren't often an issue.

As a general rule, the smaller the data structure, the faster your computation. Smaller data
structures fit in faster levels of the hierarchy of the memory available to your CPU. Ideally, all
calculations would be done on values that are already stored in registers on the CPU with no
need to access L1, L2 or slower levels of cache memory, let alone the massive performance
hit that going into the system memory incurs. Object-oriented languages can be especially
problematic, as there might be many unused methods attached to your large data structures
that need to be moved around with each loop iteration.

Technically, step 4 could fall into the shrinking your data size step discussed previously but is
worth a separate mention. Some languages default to 64-bit integers and 64-bit floats. The
problem with these data types is that they are 64-bits in size. For integers, many numbers are
simply not that large and do not require 64-bits of space. In fact, often, an 8-bit integer will
do, and sometimes an unsigned integer, which is incapable of expressing a negative value, is
even better.

Many calculations with floating point numbers simply do not require this level of precision. Will
a 16-bit float do? How about a 32-bit float? You can literally reduce your data size by a factor
of two to four, resulting in large performance gains.

For step 5, look for calculations that were performed right before any type of branching
code, especially calculations involving expensive mathematical operators. If an infrequently
executed code path requires an expensive operation or function call, only perform the
calculation when that branch is taken.

When writing computationally complex code, most code is written as simply and as clearly as
possible so that the author gets it correct the first time. Often, this means that slow, complicated
calculations are done unnecessarily, especially when situated near conditional statements.
If you are using a compiled language, the compiler might be smart enough to reorder the
sequence of calculations, but it is safer to assume it is not (and in dynamic languages or
languages that run within the JVM, it is often difficult to know exactly what will happen).

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

346

For step 6, most equations were written to express a particular mathematical point for
humans and were not written in a form that was optimized for modern software and hardware.
It often pays to simplify the equation by canceling terms or to express it in a slightly different
form that transforms a multiplication into an addition or even a division into a multiplication.
For equations that get repeated millions or billions of times, these simple steps can save large
numbers of calculations and an impressive amount of time. Additions and subtractions are
faster than multiplications that are usually faster than division operations.

Reading through the code
The Python code to be optimized calculates the Accessible Surface Area (ASA) of a molecule.
The ASA quantifies the surface area of a molecule that is open or available to a solvent
and has many uses in biology and biochemistry. For the purposes of this recipe, a deeper
background into the ASA is unnecessary. However, for those curious, I highly recommend that
you read Bosco K. Ho's excellent post about both this code and the ASA. He is the author of
the original code that was written for clarity and accuracy but not speed.

For the purpose of optimization, this code was going to be integrated into a web application
that would compute the ASA for a molecule upon an upload by the user. As all calculations were
computed synchronously, the longer the code takes, the longer the user waits for a result.

In this recipe, we are going to read through the critical portions of the code, which are
contained primarily in the asa.py source file, in order to gain an understanding of what the
code does and identify potential performance bottlenecks.

Getting ready
Open the asa.py file in your text editor or IDE. This file is included in the code from the
book's repository.

How to do it…
The following steps will have you look through the code that we will be optimizing in more
detail. The How it works… section will thoroughly explain how the code works.

1.	 Scroll through the asa.py file in your text editor. Take note of the packages being
imported, the functions defined in the beginning, and read through the comments left
in the code.

2.	 Move to the main() function and note the sequence of function calls that occurs.
What is the role of main() in asa.py?

3.	 Next, read through each function in depth, starting with the workhorse function,
which is calculate_asa.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

347

How it works…
The main() function of asa.py handles the required command-line arguments including
the filename of the molecule to be analyzed. Once it has successfully imported the molecule's
structure using methods from molecule.py, it calls the calculate_asa function that
handles all calculations.

Jumping to the top of the file, we encounter the first function, generate_sphere_
points(), which computes the number of equidistance points on a sphere of a given radius
and returns the points as a list of three elements.

This function uses the golden section spiral algorithm, which is one of the several different
methods that generate equidistant points on a sphere (check the See also section for
additional alternatives). The single input parameter to the function increases or decreases the
number of points that were used to represent a sphere—a higher or lower fidelity or resolution
sphere. If we increased this value to infinity, we would eventually get a perfect sphere.

In terms of performance optimization, let's start with some details. The list points are
initialized to empty and are appended with each iteration of the loop. Growing data structures
are often a cardinal sin when trying to write fast code.

Second, range(int(n)) generates a list of int(n) elements from 0 to int(n)-1. For this,
the memory needs to be allocated for the entire n-element list, which is a process that can
be time consuming for large n. It would be better to use a generator, and replacing the range
function with xrange(). xrange only allocates memory for the xrange object and provides
numbers on demand and as required. Also, xrange() is implemented in pure C.

This only applies to Python versions up to before 3.0 as range now provides
an iterator.

Finally, and most importantly, Python for loops are often ripe for performance
improvements. The underlying idea is that we want to get the loop out of the interpreter
and into the compiled C code.

The find_neighbor_indices function accepts three variables as inputs:

ff atoms: This is a list of the atoms in the molecule as type atoms

ff probe: This is the probe distance, which is usually set to 1.4

ff k: This is the atom for which we are finding neighbors

It then returns a list of the indices of the atoms that are within the specified distance (probe)
from the atom of interest.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

348

We see a loop over the number of indices, a neighbor_indices list that is growing with
each iteration, and a call to the pos_distance function defined in vector3d.py. Looking
at this function, we see that it computes the squared distance between points p1 and p2 and
then takes the square root via nested function calls shown in the following commands:

def pos_distance(p1, p2):
 return math.sqrt(pos_distance_sq(p2, p1))

def pos_distance_sq(p1, p2):
 x = p1.x - p2.x
 y = p1.y - p2.y
 z = p1.z - p2.z
 return x*x + y*y + z*z;

Note the call to the math.sqrt function, as this can be computationally expensive.

The calculate_asa(atoms, probe, n_sphere_point=960) function is the main
workhorse function that handles and orchestrates the required calculations. It takes three
variables as inputs:

ff atoms: This is a list of atoms in the molecule

ff probe: This is the probe distance (usually, 1.4)

ff n_sphere_point: This is the number of equidistant points that we will use to
approximate a sphere (more points is better but takes longer)

The most important input here is the list of atoms for which the ASA is to be computed. Each
atom will have an x, y, z coordinate plus an associated radius. Atom is a class that is defined
in the molecule.py file.

The function starts out by generating a set of spherical points via the generate_sphere_
points function and initializing an empty list. We then see a triple-nested set of for loops.
The outermost loop walks across all atoms in the list of atoms. For a typical molecule, this
will be hundreds or thousands of atoms. For each atom, it generates a list of the closest
neighboring atoms using find_neighbor_indices, which involves a for loop.

We then hit the second for loop where we loop over every point in sphere_points. If we
use the default 960 points, this loop will have 960 iterations. For each point in our set of
equidistant spherical points, we add the center coordinate of the current atom.

We then hit the innermost loop where we loop over all neighboring atoms. For each neighbor,
we compare the distance of the test_point variable to the center of the neighbor atom.
If the two points are within a particular distance of each other, we say that that particular
test_point variable is not accessible to a solvent molecule.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

349

Explained another way, the inner two loops take the pregenerated sphere of equidistant points
and translate it to the atom being tested. For each of these points, it checks to see whether
at least one neighboring atom is within a specified distance. If so, the point on the sphere is
considered not accessible.

We then compute the accessible area for an atom as the fraction of a sphere surrounding the
atom that is not blocked by neighboring atoms.

Three nested loops and a lot of calculations suggest that most likely, there is a lot of room to
improve the code's performance.

See also
ff The Calculating the Solvent Accessible Surface-Area article available at http://

boscoh.com/protein/calculating-the-solvent-accessible-surface-
area-asa.html.

ff The original paper on calculating the accessible surface area—Environment and
exposure to solvent of protein atoms. Lysozyme and insulin, A. Shrake, J.A. Rupley. J
Mol Biol 79 (2): 351–71. doi:10.1016/0022-2836(73)90011-9.

Profiling Python code with the Unix time
function

There are a large number of tools that one can use to profile the performance of code in
Python. The simplest option for most is the Unix time command, which measures the amount
of time or resources that executing a particular command requires. This recipe demonstrates
the usage of this command.

Getting ready
Fortunately, the Unix time command is available on virtually every Linux distribution and
on OS X at the command line. The time command is even available in Cygwin on Windows
machines. Thus, you should be ready for this recipe.

How to do it…
Perform the following simple steps to conduct your first Python benchmark:

1.	 Open a new terminal window.

2.	 Change the directory to the location of asa.py.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

350

3.	 At the command prompt, type the following:
time python asa.py 1R0R.pdb

4.	 After about a minute—depending on your machine—the time command will report
back two to three pieces of information—depending on your operating system—that
describe the length of time consumed by executing your code:
12078.1 angstrom squared.

python asa.py 1R0R.pdb 49.60s user 0.15s system 97% cpu
51.194 total

The asa.py script required 51.194 seconds to complete while running on a
Mac Book Air with a 1.8 GHz Intel Core I5 processor, 8 GB 1600 MHz DDR3,
and OSX 10.9.2. Also note that we are using the default setting of 960 sphere
points in the script.

How it works…
There isn't much complexity to the time command, and it is a great tool to get a quick idea of
how long a program or script takes to execute. As per the main page (enter man time at the
command line to access), the time utility has output-formatting options that allow you to see
various metrics that describe the memory and input/output usage. Also, the output is a little
bit cryptic. In this case, 51.194 total is the elapsed actual time that the command took to
complete with a 97% CPU utilization. The user and sys time values can be ignored.

See also
ff http://unixhelp.ed.ac.uk/CGI/man-cgi?time

Profiling Python code using built-in Python
functions

Python comes with two profiling options, profile and cProfile, which share the same
interface but differ in their impact on the profiled program's performance. The profile
module is pure Python but adds significant overhead to the software being profiled and,
therefore, isn't well suited for long running programs. The cProfile profiling option is a C
extension and has much lower overhead, thus impacting program execution times to a lesser
degree. As a result, we will use cProfile.

Getting ready
Part of the beauty of Python is its batteries included nature. The cProfile and profile
profiling options both come built in to the Python distribution that you are using.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

351

How to do it…
Perform the following steps to benchmark the code using cProfile:

1.	 To benchmark the preceding asa code, we need to be at the command line in the
directory of the source code.

2.	 Type the following into the command line:
python -m cProfile asa.py '1R0R.pdb'

3.	 You should see output similar to the following screenshot. Note that the screenshot is
truncated and your output should be longer.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

352

How it works…
We see that benchmarking the original asa.py script consumed 65 seconds, which is slightly
more than the amount used by the Unix time command, probably due to the overhead of
cProfile.

The output from cProfile consists of plain text organized into five columns as follows:

ff ncalls: This shows you how many times the function is called

ff tottime: This shows you the time spent on the function, excluding the time spent on
calling other functions

ff percall: This shows you the total time, divided by ncalls

ff cumtime: This shows you the time spent on the function, including calls to
other functions

ff percall: This shows you the cumtime value divided by tottime

The last column identifies the relevant filename, function, and line number.

The cProfile profiling option sheds some light on which functions are consuming the bulk
of our execution time and suggests some possible issues. We see over 5 million calls to the
math.sqrt function, over 2 million calls to the extend method of list, and over 4 million
calls to the range function.

See also
ff The Python profilers at http://docs.python.org/2/library/profile.html

Profiling Python code using IPython's
%timeit function

Often, when we are working in the Python REPL, we would like to be able to quickly and easily
benchmark a line of code or a function. IPython makes this possible through a magic function
called timeit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

353

How to do it…
Perform the following set of steps to try out %timeit to profile the code:

1.	 Open up a new terminal and change to the direction of the asa.py source code.

2.	 Fire up IPython by typing the following:
ipython

3.	 Let's see how fast or slow the built-in square root function is, as follows:
In [1]: import math

In [2]: %timeit math.sqrt(10000)

4.	 This should produce output similar to the following:
10000000 loops, best of 3: 166 ns per loop

5.	 We see that %timeit, due to the rapid execution of the math.sqrt()
method, tested the function execution 10,000,000 times to get a more
accurate measurement.

6.	 Next, we will use %timeit to test the main loop of the asa code calculation. For this,
we must first import the relevant functions:
In [2]: from asa import *

In [3]: import math

In [4]: from vector3d import pos_distance, Vector3d,
pos_distance_sq

In [5]: import molecule

7.	 We then create the variables that are required to call the calculate_asa function:
In [13]: mol = molecule.Molecule('1R0R.pdb')

In [14]: atoms = mol.atoms()

In [15]: molecule.add_radii(atoms)

In [16]: n_sphere = 960

8.	 We then use the magic %timeit command to profile the function in question:
In [18]: %timeit asas = calculate_asa(atoms, 1.4, n_sphere)

9.	 This produces the output that agrees relatively well with the simple Unix
time command:

1 loops, best of 3: 52.5 s per loop

Notice that there appears to be a bit of an overhead added to the execution time using
%timeit.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

354

How it works…
The %timeit magic function is a bit smarter than the previously mentioned profiling tools
in that it will run the specified code multiple times to get a better estimate of the code's
true execution time. If the code takes longer to run, it will reduce the number of repetitions
performed for benchmarking.

Profiling Python code using line_profiler
Only cProfile gave us comprehensive information about the performance of all functions
in the asa.py file. However, what happens if you want to drill down further and understand
the performance of each line in the Python code? Robert Kern's line_profiler module is
a Python module that enables you to do just this, and this is exactly the level of detail that you
want for this chapter.

Getting ready
The installation and setup of the line profiler is a little bit more complicated than usual, so we
will discuss this in the next recipe.

How to do it…
The steps that are listed will introduce you to profiling with the line_profiler module:

1.	 To use the line_profiler module, we must first install it using the pip command:
(sudo) pip install line_profiler

2.	 Next, we want to grab the kernprof.py Python script from the website (http://
pythonhosted.org/line_profiler/) and place it in the directory where we are
running asa.py.

3.	 Open the asa.py script in your favorite editor, and we will decorate the function that
we wish to profile line by line. Note that you can profile multiple functions if you so
desire. In this case, we decorate the main workhorse function, which is calculate_
asa, as follows:
@profile

def calculate_asa(atoms, probe, n_sphere_point=960):

4.	 From the command line and not the Python interpreter, we run the following:
python kernprof.py -l asa.py "1R0R.pdb"

5.	 Once complete, we see a new file, which is the asa.py.lprof output file, in the
current directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

355

6.	 To view the results, type the following:
python -m line_profiler asa.py.lprof

7.	 The line_profiler module provides the treasure trove of information displayed in
the following screenshot:

How it works…
Note that the line_profiler module is reporting back detailed information for each of the
lines, referenced by line number, in each profiled function (in this case, calculate_asa),
including the all-important percentage of total time (% Time).

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

356

From this output, we see that the lines of code in the innermost loop (78-81) of the
calculate_asa function are eating up over half of the execution time, and it is here that we
should focus our optimization effort. Also, notice that there are a lot of variable assignments,
lines 70–72 that are chewing up time as well.

There's more…
Also, notice that the total execution time is a whopping 309.418 seconds. Profiling line by line
adds a great deal of overhead to the execution and slows it down by a factor of five. Since
optimizing is highly iterative, we do not want to wait 5 minutes for each run to complete.
Thus, we want to find some way of decreasing the execution time so that each instrumented
profiling run gets completed much faster.

Given the nature of this code, the easiest fix would be to decrease the number of "sphere
points" that the code loops over. The default value is 960, and if we lower the value, we should
expect much lower execution times. Changing this value to 60 and rerunning the time Unix
command, we see that the code executes in 11 seconds.

See also
ff More details about the line_profiler module at http://pythonhosted.org/

line_profiler/

ff A great post on optimization at http://www.huyng.com/posts/python-
performance-analysis/

Plucking the low-hanging (optimization) fruit
When optimizing, always perform just enough to get the job done so as to not introduce new
bugs. In this recipe, we introduce some simple optimizations that require minimal modification
to the source code and test how effective they are at decreasing the execution time.

Getting ready
To prepare, change the directory to the source directory and open asa.py in an editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

357

How to do it…
The following steps walk you through establishing a new performance baseline for the code
and implementing several small optimizations:

1.	 In the main function, edit the line that sets the number of sphere points, changing it
from 960 to 60:
n_sphere = 60

2.	 At the command line, use the Unix time command to benchmark the new code
configuration and compute the new result:
time python asa.py 1R0R.pdb

12114.7 angstrom squared.

python asa.py 1R0R.pdb 11.05s user 0.04s system 97% cpu
11.334 total

3.	 Let's copy asa.py into a new file as a local code-versioning system. You can also just
use Git if you are comfortable using it to roll back to previous versions of the code. At
the command line, enter the following command:
cp asa.py asa_v1.py

4.	 Next, we will make several small code changes to test simple optimizations. In the
calculate_asa function, change the original version:
for point in sphere_points:
is_accessible = True
test_point.x = point[0]*radius + atom_i.pos.x
test_point.y = point[1]*radius + atom_i.pos.y
test_point.z = point[2]*radius + atom_i.pos.z

To:

atom_i_pos_x = atom_i.pos.x
atom_i_pos_y = atom_i.pos.y
atom_i_pos_z = atom_i.pos.z
n_accessible_point = 0
for point in sphere_points:
is_accessible = True
test_point.x = point[0]*radius + atom_i_pos_x
test_point.y = point[1]*radius + atom_i_pos_y
test_point.z = point[2]*radius + atom_i_pos_z

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

358

5.	 Next, we eliminate one of the math.sqrt functions in the find_neighbor_
indices function, transforming the original code:
dist = pos_distance(atom_k.pos, atom_i.pos)
if dist < radius + atom_i.radius:

Into:

dist = pos_distance_sq(atom_k.pos, atom_i.pos)
if dist < (radius + atom_i.radius)**2:

6.	 Now, let's use the Unix time command again to see the end result:
time python asa_v1.py 1R0R.pdb

12114.7 angstrom squared.

python asa_v1.py 1R0R.pdb 9.42s user 0.03s system 99% cpu
9.500 total

7.	 Check whether the output returned in the optimized code, 12114.7, is the same
value that was computed previously (which it is).

How it works…
With this first optimization effort, we tried to make only very small tweaks to the code and not
introduce any new libraries or radical restructuring.

The first trick was to use local variables inside the loops to remove unneeded dereferencing.
In the original code, , we must locate the pos attribute of the atom_i object for each point in
sphere_points and then access the x attribute of the vector3d.Vector3d object:

for point in sphere_points:
…
test_point.x = point[0]*radius + atom_i.pos.x

We perform this same lookup for each iteration of this loop despite the fact that atom_i
has not changed. The simple solution is to pull this lookup to just before the loop and cache
the value in a local variable used inside the loop. This is shown in the new version of the code
as follows:

atom_i_pos_x = atom_i.pos.x
…
for point in sphere_points:
…
test_point.x = point[0]*radius + atom_i_pos_x

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

359

The second optimization we used was to remove an unnecessary call to the square root.
Remember, square roots are painfully expensive in comparison to other mathematical
operations that can be tested:

In [1]: %timeit sqrt(29111)

10000000 loops, best of 3: 116 ns per loop

In [2]: %timeit 29111 + 372.1

10000000 loops, best of 3: 30.9 ns per loop

This factor of approximately 4x differential is actually on the low side and we have seen
square root calculations require ten times the time of additions and multiplications.

In the original code, a square root was concealed in the pos_distance function call.
We then test the result against the sum of radius and atom_i.radius:

dist = pos_distance(atom_k.pos, atom_i.pos)
if dist < radius + atom_i.radius:

Assuming that the smallest possible dist value is greater than 1, we can square both sides
of the inequality and remove the need for the original square root:

dist = pos_distance_sq(atom_k.pos, atom_i.pos)
if dist < (radius + atom_i.radius)**2:

The two simple changes in the preceding code resulted in an approximately 15 percent
decrease in the execution time of the code. We can take these two ideas and roll them out to
all other locations in asa.py. We can also implement a number of other simple changes such
as preallocating lists that could offer additional performance increases. However, our target is
to get the code execution time down from 60 seconds to 1 second, and it is unlikely that these
little changes will yield the improvement we need.

Testing the performance benefits of NumPy
Minor changes to the original code did not get the job done, so we must consider more
drastic approaches. Luckily, with Python, we have the NumPy library. NumPy provides a very
fast n-dimensional array (called ndarray) data structure for Python and offers a number of
operations on this data type that have been implemented in C and are highly optimized.

Before we make any major changes to asa.py, we use this recipe to try a few toy examples
to see how much faster the NumPy library's faster yet less flexible ndarray arrays are versus
naïve Python lists.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

360

Getting ready
For this recipe, we only need to fire up the Python REPL or, even better, start up IPython. Also,
this recipe assumes that you have NumPy installed.

How to do it…
Perform the following steps to test out the performance differential between Python
and NumPy:

1.	 We must import both the NumPy, random, and math libraries:
import numpy as np

import math, random

Note that it is standard practice to import NumPy as np.

2.	 Next, we create two different input variables, one a Python list and the other
a NumPy ndarray:
s = 100000

x_py = [random.random() for i in xrange(s)]

x_np = np.random.rand(1,s)

Both variables contain the same number of elements.

3.	 We define two test functions, one using pure Python and the other using
NumPy functions:
def slow(x):
output = [0] * len(x)
for i,num in enumerate(x):
output[i] = num * 5.2 + num*num + math.cos(num)
return(output)

def fast(x):
return(5.2 * x + x*x + np.cos(x))

4.	 We then use IPython's magic %timeit function to measure the
performance differential:

%timeit slow(x_py)

10 loops, best of 3: 51.2 ms per loop

%timeit fast(x_np)

10000 loops, best of 3: 184 µs per loop

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

361

How it works…
What we did in this recipe was create a slow function and a fast function that take in a list or
ndarray of random values and perform some simple mathematics, returning an output list or
array. The slow function uses a for loop and the fast function uses the NumPy library's ability
to operate over an entire array. In the function named slow, we made sure that we preallocated
the output array to ensure a more equitable test as NumPy handles that for us by default:

output = [0] * len(x)

We then tested the performance of each function using a 100000 element test vector, and
the results are incredible. The NumPy-based version is over two orders of magnitude faster.

One of the keys to NumPy's performance is that each element of the array must be of the
same data type. This homogeneity allows for very efficient memory packing and locality of
reference. This is in stark contrast to Python lists, which can contain objects of varied data
types and occupy different amounts of memory. In a Python list, each element is simply a
memory address that points to the actual element in the list (an object, string, integer, and so
on). Thus, to access the first element of a Python list, you retrieve the first pointer that then
redirects you to the memory location of the item that you are looking for. When accessing the
first element of ndarray, you simply grab the first element of the array without the additional
level of indirection. This locality of reference provided by NumPy's ndarray offers over two
orders of magnitude speed improvements! This is simply incredible.

Also, notice that the computation in the NumPy-based function does not contain a single loop,
yet NumPy is smart enough to know that the specified calculations should be performed on
each element in ndarray. This is a very simple case of array broadcasting, where NumPy
intelligently handles calculations between arrays (and scalars) with different shapes and
vectorizes the operations, thus pushing the looping into the C code instead of Python (the loop
still happens but in highly optimized C code in the NumPy library).

There's more…
Hopefully, you are impressed by the incredible performance gain that NumPy can
offer. However, this performance gain comes at a cost of several trade-offs. NumPy is
practically a separate language with its own data types and opinions about how the world
should work. Thus, there is an added cognitive burden for the developer. Second, NumPy
has numerous C dependencies and can be difficult to install on some machines and in some
environments. This can be a cause for concern when working with code that must run on a
specific platform-as-a-service, such as Heroku or Google App Engine. Many times, it can be
difficult or simply not possible to use NumPy in these environments. Finally, NumPy allows one
to construct very complex mathematical expressions over multidimensional data structures in
very terse syntax that can be challenging to understand.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

362

See also
ff Broadcasting in NumPy at http://docs.scipy.org/doc/numpy/user/

basics.broadcasting.html

Rewriting simple functions with NumPy
With the impressive test results from the previous recipe, this recipe will focus on rewriting
some of the smaller functions in asa.py using NumPy. We will start with the smaller,
more manageable find_neighbor_indices function as a prototype for changes to the
main function.

Getting ready
To prepare for this recipe, we will create a copy of asa.py and call it asa_np_v1.py.

How to do it…
The following steps will walk you through this recipe:

1.	 First, add the @profile decorator to the find_neighbor_indices function in
asa.py:
@profile
def find_neighbor_indices(points, radii, probe, k):

2.	 We will use line_profile to benchmark the original find_neighbor_indices
function:
python kernprof.py -l asa_np_v1.py "1R0R.pdb"

3.	 The results are shown in the following command-line output, and the computed result
matches the reference value:
12114.7 angstrom squared.

Wrote profile results to asa_np_v1.py.lprof

4.	 We use line_profiler again to visualize the results:
python -m line_profiler asa_np_v1.py.lprof

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

363

You can refer to the following screenshot:

5.	 Inspecting the results, we see that the pos_distance function call takes up over 50
percent of the total execution time for this function.

6.	 The atoms data structure is somewhat problematic, as it packages the spatial
coordinates and the radius together. At the top of the calculate_asa function,
we decompose the list of atoms into two separate data structures:
points = np.array([[a.pos.x, a.pos.y, a.pos.z] for a in
atoms])
radii = np.array([a.radius for a in atoms])

7.	 We then rewrite the find_neighbor_indices function using NumPy:
def find_neighbor_indices(points, radii, probe, k):
"""
Returns list of atom indices in probe dist to atom k
"""
radius = radii[k] + probe + probe
test_radii = (radius + radii) ** 2
dist_sq = np.sum(((points - points[k,:])** 2), axis=1)
neighbor_indices = (dist_sq < test_radii)

#Must remove self distance
neighbor_indices[k] = False

#Need to return an array of ints not Booleans
return (np.where(neighbor_indices)[0])

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

364

8.	 Make sure that we update the calculate_asa function with the correct function
call just inside the first loop:
neighbor_indices = find_neighbor_indices(points, radii, probe, i)

9.	 We now profile the newest function using line_profiler:
python kernprof.py -l asa_np_v1.py "1R0R.pdb"

10.	 Take a look at the results:
python -m line_profiler asa_np_v1.py.lprof

You will see the following screenshot:

Note that this result matches the correct area for the test calculation, which is
12114.7 angstrom squared.

11.	 Finally, we use the Unix time command to benchmark the run after commenting out
the @profile decorator above the find_neighbor_indices function:

time python asa_np_v1.py '1R0R.pdb'

12114.7 angstrom squared.

python asa_np_v1.py '1R0R.pdb' 3.32s user 0.05s system 99%
cpu 3.397 total

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

365

How it works…
First, let's discuss the results and end product. We completely removed the original loop using
NumPy and achieved an incredible increase in speed, with the total time dropping from 11
seconds to less than 3.5 seconds.

The first step and one of the keys is that the largest data structure in the code is the list of
atoms of the Atom class. Each object of the Atom class has an x, y, z coordinate, a radius
attribute, and a number of other attributes. Using the Python sys.getsizeof method for
a single Atom object reveals that each atom consumes 72 bytes of memory. For the ASA
calculation, only the x, y, z coordinates and the radii are needed. Thus, the first thing we did
was to create an ndarray for the atoms' coordinates and an ndarray for the radii using list
comprehensions:

 points = np.array([[a.pos.x, a.pos.y, a.pos.z] for a in atoms])
 radii = np.array([a.radius for a in atoms])

We can perform this step either within the find_neighbor_indices function or in the
main calling function, which is calculate_asa. If we had created the points and radii arrays
in the find_neighbor_indices function, this variable creation and memory allocation
would be performed each time the function is called. Thus, it is far better to do this once, in
the main calculate_asa function, and simply pass in slightly different parameters to the
find_neighbor_indices function.

Now, let's examine the new version of the find_neighbor_indices function that
returns a list of atom indices within a certain distance to atom k. The first line of the
function remains unchanged:

radius = radii[k] + probe + probe

We then encounter the heart of this function— a single line of code that computes the
distance between the atom k and every other atom in the molecule:

dist_sq = np.dot(((points - points[k,:])** 2), np.ones(3))

Let's unpack this code. The innermost set of parentheses is:

(points - points[k,:])

This uses NumPy to compute the coordinate-wise differences between atom k and every other
atom in the molecule. This results in an array with length equal to the number of atoms and
width equal to three:

((points - points[k,:])** 2)

We square each value in this array, yielding an array of length equal to the number of atoms
and width equal to three, which is the number of coordinates:

np.sum(((points - points[k,:])** 2), axis=1)

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

366

Finally, we sum the squared coordinate-wise differences together to yield the squared distance:

test_radii = (radius + radii) ** 2

We then create a test_radii NumPy array that contains the square of the sum of the radius
and every other atom in the molecule:

neighbor_indices = (dist_sq < test_radii)

In a single line of code, we compare the dist_sq array to the test_radii array, creating
a Boolean array of the same size. A true value in the array indicates that the corresponding
atom is a neighbor to atom k:

#Must remove self distance
neighbor_indices[k] = False

We don't want to return the k atom's own index, so we set this value to False (k can't be a
neighbor of itself). We use the np.where function in the following line of code:

return (np.where(neighbor_indices)[0])

As we need to return integer indexes and not a Boolean array, we use the np.where function
to find the indices of all True values of the array.

Optimizing the innermost loop with NumPy
In this recipe, we are going to rewrite the calculate_asa function, replacing a
double-nested loop with NumPy and SciPy functions that have been heavily optimized
for performance.

Getting ready
Take a moment and review the original calculate_asa function in the asa.py source file.
Note the three levels of for loops present. Copy the asa_np_v1.py file to a new file named
asa_np_v2.py, and open this in your editor of choice. Again, if you are proficient with the
code-versioning tool of your choice, feel free to use it to handle the versioning for you.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

367

How to do it…
The following steps complete this chapter:

1.	 First, we heavily modify the calculate_asa function as shown in the following code:
def calculate_asa(atoms, probe, n_sphere_point=960):
"""
Returns accessible surface areas for atoms, using the probe
and atom radius to define the surface.
"""
sphere_points =
np.array(generate_sphere_points(n_sphere_point))
points = np.array([[a.pos.x, a.pos.y, a.pos.z] for a in
atoms])

radii = np.array([a.radius for a in atoms])
radii_plus_probe = radii + probe
radii_plus_probe_sq = (radii_plus_probe)**2

const = 4.0 * math.pi / float(n_sphere_point)

num_atoms = len(atoms)
areas = np.zeros(num_atoms)

for i in xrange(0, num_atoms):
 neighbor_indices = find_neighbor_indices(points,
radii,
 probe, i)
 test_sphere_points =
sphere_points*radii_plus_probe[i] + points[i, :]
 neighbor_radii_sq =
radii_plus_probe_sq[neighbor_indices]
 diff_sq = cdist(test_sphere_points,
 points[neighbor_indices, :],
 'sqeuclidean')
 dist_test = (diff_sq < neighbor_radii_sq)
 inaccessible_points = np.any(dist_test,1)
 areas[i] = np.sum(inaccessible_points)

areas = (n_sphere_point-areas)*const*radii_plus_probe_sq
return areas

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

368

2.	 This new calculate_asa function depends on a key function from SciPy that must
be imported:
from scipy.spatial.distance import cdist

3.	 As we are now using Boolean indexing, we want find_neighbor_indices to
return a Boolean array and not a list of integers. We therefore modify the return
statement of the find_neighbor_indices function, thus eliminating the
expensive np.where function call:

#return (np.where(neighbor_indices)[0])
return(neighbor_indices)

How it works…
The first thing that you should notice is that this version is much shorter compared to the
original. There is now a single loop over all atoms in place of the triple-nested original. Let's
explain what happened, starting with the simpler changes that occur before the main loop.

First, the outermost for loop has moved on from walking along a list of Atom objects:

 for i, atom_i in enumerate(atoms):

It has moved to iterating from zero to the number of atoms:

 for i in xrange(0, num_atoms):

We no longer use the Atom object anywhere in the calculate_asa function except to
extract the three-dimensional coordinates and radii of the atoms. In the original code, we
initialized an empty list of areas to capture the accessible surface area of each atom. Now,
we use the NumPy zeros function to allocate the memory for the entire array upfront:

areas = np.zeros(num_atoms)

Finally, and potentially most confusing at this point, we precompute several arrays that we will
need in the main loop including the probe distance added to the radius of each atom and this
squared value:

radii_plus_probe = radii + probe
radii_plus_probe_sq = (radii_plus_probe)**2

To help explain the new main loop of calculate_asa, it will help us walk through the
original loop and explain what is happening conceptually. For each atom k, we find all
neighboring atoms within a particular probe distance. We then test to see whether any of
these neighboring atoms are within a probe range of a shell of points surrounding our current
atom k. If there are no atoms near that point on the surrounding sphere, we consider that
area of the sphere around atom k to be accessible. We perform this test for all 960 points
that compose our test sphere and sum the accessible areas. We perform this entire process
for each atom in the molecule, one by one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

369

In the new version of the calculate_asa function, we still iterate over each atom in the
molecule. For each atom, we perform the following steps. First, we find the atoms that are
neighbors to the current atom of interest:

neighbor_indices = find_neighbor_indices(points, radii, probe, i)

We scale and translate the entire sphere of test points to the center of the current atom of
interest at the same time, which is a bit clearer intuitively. Thanks to NumPy's broadcasting
abilities, we execute this in a single line of code:

test_sphere_points = sphere_points*radii_plus_probe[i] + points[i, :]

We select only the squared radii values of the neighboring atoms:

neighbor_radii_sq = radii_plus_probe_sq[neighbor_indices]

Luckily for us, the SciPy Python library contains a very useful function, scipy.spatial.
distance.cdist, that takes two arrays of points as inputs and computes the pairwise
distance between each. While we used to compute the distance between the neighboring
atoms and a single test point one by one, we now use cdist to compute the pairwise
distance between the neighboring atoms and the entire sphere of test points:

diff_sq = cdist(test_sphere_points, points[neighbor_indices, :],
'sqeuclidean')

We compare these distances to the squared radii plus the probe distance of all the neighbors
and determine which test points are not accessible using the np.any function:

dist_test = (diff_sq < neighbor_radii_sq)
inaccessible_points = np.any(dist_test,1)

We finish up the calculations for a single atom by totaling the number of inaccessible points
on the test sphere:

areas[i] = np.sum(inaccessible_points)

When moving loops into array operations, it is always good to check the dimensions of the
arrays to see whether they are what we expect. For the first atom in the molecule, we see that
there are 19 neighboring atoms and the neighbor_radii_sq array is (19, 3). The array of
squared distances between the sphere of test points and the neighboring atoms is (60, 19).
Comparing this array of distances to the neighbor's radii yields a (60, 19) array. Summing up
the number of accessible points yields a (60,) vector, which is what we would expect, given
that there are 60 test sphere points.

Performance-wise, we have used NumPy and SciPy to push arithmetically intense calculations
and loops out of the Python code and into native, highly optimized C-code. Further, we have
changed our basic data structures from Python objects to NumPy arrays in order to exploit the
performance gains possible when leveraging the locality of reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Optimizing Numerical Code with NumPy and SciPy (Python)

370

There's more…
We see that the function now runs in a blazing fast 0.78 seconds compared to the original
function time of 21 seconds. We set n_sphere back to the original value of 960 and rerun
the code. The entire script now gets executed in just under 2 seconds compared to 50 plus
seconds before we started optimizing.

Can we do better? If we use the line_profiler module, we see that 30 percent of the
execution time is spent computing which atoms are neighbors and 40 percent of the time
is spent computing the distance between neighboring atoms and the sphere of test points.
To try to milk additional performance gains from the code, we would most likely have to
drastically rethink how this calculation is performed. Thus, we will stop here, satisfied with a
25x speed increase.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
@classmethod feature 300
.isin() method 215
.reset_index() method 215
%timeit function

used, for profiling Python code 352-354

A
Accessible Surface Area (ASA) 346
additional data

merging 125-128
obtaining 125-128

adjacency matrices 219
agglevel_titles.csv

URL 126
aggregate command

about 102
URL 103

alters 225
American football rules

URL 74
Anaconda web page

URL 20
analysis

preparing for 119, 120
analysis, top incomes

preparing 155, 156
animated maps, examples

URL 143
APIs

REST API 312
search API 312
streaming API 312

application-oriented approaches 154, 155
apply() function

URL 65
area_titles.csv

URL 126
assign command 128
automobile fuel efficiency

analyzing 196-198
analyzing, over time 43-53, 202-210

automobile fuel efficiency data
about 38-42
exploring 38-42
importing, into R 35-38
obtaining 32, 33
URL 196

average_review() method 273

B
benchmark function 151, 152
best critic

finding, for user 282-285
betweenness centrality 240, 241, 246
bridges 234
built-in Python functions

used, for profiling Python code 350-352
Bureau of Labor Statistics (BLS) 118

C
calculate_asa function 347
Cartopy home page

URL 337
cbind command

URL 103

www.it-ebooks.info

http://www.it-ebooks.info/

372

centrality algorithm
betweenness 246
closeness 246
deciding on 246
degree 246
eigenvector 246

choropleth challenge results
URL 143

choroplethr package
about 146
URL 143

clean_numeric function 96
closeness centrality 242, 243, 246
code

benchmarking, cProfile used 351, 352
performance bottlenecks,

identifying 343-346
reading through 346-349

code optimization
about 340
reasons 340, 341

collaborative filtering 260
comma-separated value (csv) 33, 118
communities

detecting, within social networks 249-253
Comprehensive R Archive Network (CRAN)

about 11
URL 13

Conda
URL 26

correlation
between users, computing 280-282

CouchDB
URL 326, 327

count method 330
county-level data

extracting 133-136
cProfile

about 352
cumtime 352
ncalls 352
percall 352
tottime 352
used, for benchmarking code 351, 352

CRUD, MongoDB
URL 327

cut function 135

D
data

about 263-266
cleaning 96-102
exploring 96-102
summarizing 93-96
URL 263

data analysis, steps
acquisition 9
analysis 9
communicating 9, 10
exploration 9
manipulation 9
modeling 9
munging 9
operationalizing 9, 10
understanding 9
wrangling 9

data frames, R
URL 199

data science pipeline
data analysis, steps 9
working 9, 10

data scientists 8
dataset

Beta 96
EPS growth next year 95
P/E 95
PEG 95
price 95
RSI 96
Shares Outstanding 95
Total Debt/Equity 95
URL 32
volume 95

dataset documentation
URL 125

dataset function 183
dataset, top incomes

URL 156
data source

URL 186
data structures, pandas

URL 199
data.table documentation

URL 123

www.it-ebooks.info

http://www.it-ebooks.info/

373

data.table object 152
data.table package 152
datatypes, R

URL 38
ddply function 43, 209
degree 239
degree centrality 246
delta function 172
directed graphs 219
Discretize function 136
disk

JSON data, storing to 323, 324
SVD-based model, dumping to 298-300

displ variable 206
distance overview

URL 280
domain-specific language (DSL) 13
dot product

URL 295
dplyr package

about 120, 135
arrange function 135
filter function 135
group_by function 135
mutate function 135
select function 135
URL 136

dplyr reference
URL 121

E
ego networks

about 225
visualizing 225-229

eigenvector centrality 243-246
employment data

exploring 123-125
importing, into R 121-123

Enthought Canopy Express web page
URL 20

entire dataset
loading, into memory 295-298

entire networks, characteristics
exploring 246-248

Environment object 180

euclidean_distance() function 279
eval statement 128

F
Federal Information Processing Standards

(FIPS) 129
figure function 164
filter function 135, 159
filtering 261
find_neighbor_indices function

about 347, 365
atoms 347
k 347
probe 347

first project
R, preparing for 34

football data
acquiring 61-64
analyzing 65-74
cleaning 61-64

fread function 122
fuel efficiency data

about 199-202
exploring 199-202

fuel efficiency performance metrics
URL 187

functions
rewriting, with NumPy 362-366

G
generate_sphere_points() function 347
genfromtext function 161
geographical information

adding 129-132
geographic data

extracting 330-333
GEOS

about 337
URL 337

geospatial data
plotting, in Python 333-337

geospatial data visualization
creating 136-139

geospatial time series
maps, animating for 143-146

www.it-ebooks.info

http://www.it-ebooks.info/

374

get-pip.py file
downloading, URL 24

ggplot2 documentation
URL 140

ggplot2 library 53
ggplot2 package

about 120
URL 74

ggplot2 reference manual
URL 35, 121

ggplot package, for Python
URL 210

graph characteristics
exploring 246, 247

graph_from_gdf function 224
graphs

about 218-220
directed graphs 219
undirected graphs 219
visualizing 254-257

graph-tool
URL 222

groupby documentation
URL 215

group_by function 135
gsub command

about 96
URL 103

H
Hadley Wickham

URL 210
head function 48
heapq data structure 273
heapq documentation

URL 273
helper function 166
highest-scoring movies

finding 270-273
High Performance Computing (HPC) 341
historical prices

analyzing 109-116
Hypertext Transfer Protocol (HTTP) 308

I
igraph

URL 222
indexes

constructing, to measure defensive
strength 74-77

constructing, to measure offensive
strength 74-77

index number statistic
URL 77

industrial sectors
exploring 140-143

industry_titles.csv
URL 126

innermost loop
optimizing, with NumPy 366-370

Integrated Development
Environment (IDE) 12

Internet Archive
URL 266

IPython
about 23, 188-190
URL 23, 191

IPython Cookbook
URL 191

IPython Notebook
about 23
collection, URL 196
development retrospective, URL 196
documentation, URL 196
exploring 191-196
URL 196

IPython Notebook server
URL 195

item by item
collaborative filtering 288-291

J
Jinja2

reporting with 179-186
Jinja2 templating library

using 180-186
JSON data

storing, to disk 323, 324

www.it-ebooks.info

http://www.it-ebooks.info/

375

K
Kartograph home page

URL 337
key players

betweenness centrality 240, 241
centrality algorithm, deciding on 246
closeness centrality 242, 243
eigenvector centrality 243-245
finding 234-239

Knitr
URL 195

L
labels command 36
Leaflet.js home page

URL 337
libraries, installing in R

about 14-16
references 16
steps 14-16
working 16

libraries, installing in RStudio
about 14-16
references 17
steps 14, 15
working 16

line_profiler
URL 354-356
used, for profiling Python code 354-356

Linux
Python data stack, installing on 21-23
Python, installing on 17, 18

list function 173
load class method 300
load function 152
louvain method 249

M
Mac OS X

Python data stack, installing on 21, 22
Python, installing on 17, 18
R, installing on 11-13

MacPorts homepage
URL 23

main() function 347
makes and models, automobiles

investigating 54-57, 211-215
maps

animating, for geospatial time
series 143-148

package 120
Markdown home page

URL 196
math.ceil function 323
matplotlib

about 22
URL 23, 215

memory
entire dataset, loading into 295-298

miles per gallon (MPG) 32
Modeling Stock Market Data (R)

about 89, 90
data, cleaning 96-102
data, exploring 96-102
data, summarizing 93-96
historical prices, analyzing 109-116
relative valuations, generating 103-108
requisites 90
stock market data, acquiring 91, 92
stocks, screening 109-116

MongoDB
setting up, for storing Twitter data 325, 326
user profiles storage, PyMongo

used 327-329
MongoHQ home page

URL 327
MongoLab home page

URL 327
MovieLens database

URL 295
movie ratings

predicting, for users 285-288
movie-rating system

improving 273-275
movie review data

ingesting 266-270
moving averages

URL 115
multiple games

simulating 81-88
mutate function 135

www.it-ebooks.info

http://www.it-ebooks.info/

376

N
nbconvert

URL 195
networks

about 218-220
importing 222-224

NetworkX 221
nonnegative matrix factorization model

building 292-295
North American Industry Classification

System (NIACS) 140
nose 23
NumPy

about 22, 361
functions, rewriting with 362-366
innermost loop, optimizing with 366-370
URL 23, 165

NumPy, broadcasting
URL 362

NumPy documentation
URL 165

nx_average_clustering function 253
nx.clustering function 253
nx.single_source_shortest_path_length

function 257
nx.transitivity function 253

O
OAuth

URL 315, 316
OAuth implementation

URL 316
Obtaining access tokens article

URL 312
optimization process

about 341, 342
URL 356

ownership_titles.csv
URL 126

P
pandas

about 23
URL 23

pandas API overview
URL 202

pandas, indexing data
URL 210

pandas, selecting data
URL 210

passer rating statistic
URL 77

paste() function
about 64
URL 65

performance baseline, for code
establishing 356-359

performance benefits, NumPy
testing 359-361

performance bottlenecks
identifying, in code 343-346

pip
about 25
user guide, URL 26

Plyr documentation
URL 103

plyr reference manual
URL 35

predict_all_rankings method 288
preference expression

about 262
modeling 261, 262

profile module 350
proxies, edge weights 230
PyMongo, using

user profiles, storing in MongoDB 327-329
Python

about 154
geospatial data, plotting in 333-337
installing, on Linux 17, 18
installing, on Mac OS X 17, 18
installing, on Windows 18-20
social networks, working 220-222

Python code
profiling, built-in Python functions

used 350-352
profiling, line_profiler used 354-356
profiling, %timeit function

used 352-354
profiling, with Unix time function 349, 350

www.it-ebooks.info

http://www.it-ebooks.info/

377

Python data stack
installing, on Linux 21, 22
installing, on Mac OS X 21, 22

Python data stack installation, on Linux
about 21, 22
references 23
steps 21
working 23

Python data stack installation, on Mac OS X
about 21
options 22
references 23
URL 22
working 22, 23

Python installation, on Linux
about 17
references 18
steps 17
working 17, 18

Python installation, on Mac OS X
about 17
steps 17
URL 18
working 17, 18

Python installation, on Windows
about 18, 19
references 20
steps 19, 20
URL 18, 19
working 20

Python Package Index (PyPI) 24
Python packages

downloading, steps 24
installing 24, 25
installing, options 25
references 26

Python profilers
URL 352

python-twitter
about 316
URL 316

Python Twitter Tools
about 316
URL 316

Q
Quarterly Census of Employment and Wages

(QCEW) 118

R
R

automobile fuel efficiency data,
importing into 35-38

employment data, importing into 121-123
installing, on Linux 11-13
installing, on Mac OS X 11-13
installing, on Windows 11-13
libraries, installing in 14
preparing, for first project 34
tasks, benchmarking 149-152

rate limits
Twitter user profiles, retrieving 322, 323

R-bloggers
site, URL 16

R Data Import/Export guide
URL 38

read.csv function 152
Read-Eval-Print Loop (REPL) 23, 188, 266
recfromcsv function 161
regular expressions

URL 133
relative valuations

generating 103-108
remote IPython Notebook server, setting up

URL 196
REST API 312
RESTful APIs 308
RethinkDB

URL 327
reviews_for_movie() method 273
R guide

URL 35
R installation, on Linux

references 14
steps 11, 12
URL 11
working 13

www.it-ebooks.info

http://www.it-ebooks.info/

378

R installation, on Mac OS X
references 14
steps 11, 12
URL 11
working 13

R installation, on Windows
references 13
steps 11, 12
URL 11
working 13

rMaps package
URL 143

row_stack function 177
rpy2 package

URL 210
RStudio

libraries, installing in 14
URL 13, 35

R Tutorial
URL 35

S
SciPy

about 22
history, URL 23
URL 21, 23, 165

search API 312
select function 135
Shapely home page

URL 337
simpleCap function 132
Simulating American Football Data (R)

about 59, 60
football data, acquiring 61-64
football data, analyzing 65-74
football data, cleaning 61-64
index construction, for measuring defensive

strength 74-77
index construction, for measuring offensive

strength 74-77
multiple games, simulating 81-88
requisites 60
single game simulation, creating 77-81

single game simulation
creating 77-81

Singular Value Decomposition (SVD) 292, 302
size property 162
size_titles.csv

URL 126
small optimizations

implementing 356-359
social networks

about 217, 218
communities, detecting within 249-253

social networks, Python
working with 220-222

spring layout 256
sqldf reference materials

URL 121
SQLite documentation

URL 123
Stack Overflow

URL 16
state-level data

extracting 133-136
stock data

URL 91
stock market data

acquiring 91, 92
stocks

screening 109-116
streaming API 312
stringr information

URL 133
stringr package 120
strong ties

finding 230-233
strsplit function 132
subgraphs

extracting, within heroic network 225-229
subplot function 164
subset function 80
substr function 40
substring function 132
SVD-based model

dumping, to disk 298-300
testing 303, 304
training 300-303

system.time function 151

www.it-ebooks.info

http://www.it-ebooks.info/

379

T
table function 41, 200
tab-separated value (TSV) 223
tasks

benchmarking, in R 149-152
Taxicab geometry

URL 280
Templating in python article

URL 186
top income data, US

analyzing 165-173
visualizing 165-173

top income groups, US
analyzing 174-179

toupper function 132
traditional cookbook 7
transform function 74
transitivity 234
Twitter

about 308
URL 309

Twitter API v1.1 312-315
Twitter application

creating 309-311
Twitter data

storing, through MongoDB setup 325, 326
Twitter followers

determining 317-319
Twitter friends

determining 317-319
Twitter libraries

URL 316
Twitter user profiles

retrieving 320-322
retrieving, in rate limits 322, 323

Twython 3.1.2
about 316
URL 316

Twython documentation
URL 316

U
undirected graphs 219
Unicode

URL 200

unique 319
Unix time function

Python code, profiling with 349, 350
user interface (UI) 309
user profiles storage

PyMongo, used in MongoDB 327-329
users

best critic, finding for 282-285
movie ratings, predicting for 285-288

users, preference space
distance, measuring between 276-279

V
variables, dataset

URL 32
VirtualBox

URL 19
virtualenv

about 26, 29
installing 26-29
testing 27-29
URL 30
using 26-30

virtualenvwrapper
URL 30

W
What is Data Science? article

URL 186
Windows

Python, installing on 18, 19
R, installing on 11-13

with command 41
world's top incomes dataset

exploring 156-164
importing 156-164

X
XCode

download page, URL 23
URL, for webpage 23

XML package
about 60
URL 65

www.it-ebooks.info

http://www.it-ebooks.info/

380

Y
Yelp website

URL 276

Z
ZeroMQ

URL 195
zeros function 368

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

Practical Data Science Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Manipulation with R
ISBN: 978-1-78328-109-1 Paperback: 102 pages

Perform group-wise data manipulation and deal with
large datasets using R efficiently and effectively

1.	 Perform factor manipulation and string
processing.

2.	 Learn group-wise data manipulation using plyr.

3.	 Handle large datasets, interact with database
software, and manipulate data using sqldf.

Big Data Analytics with R and
Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop to
turn your data analytics into Big Data analytics

1.	 Write Hadoop MapReduce within R.

2.	 Learn data analytics with R and the
Hadoop platform.

3.	 Handle HDFS data within R.

4.	 Understand Hadoop streaming with R.

5.	 Encode and enrich datasets into R.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to R for
Quantitative Finance
ISBN: 978-1-78328-093-3 Paperback: 164 pages

Solve a diverse range of problems with R, one of the
most powerful tools for quantitative finance

1.	 Use time series analysis to model and forecast
house prices.

2.	 Estimate the term structure of interest rates using
prices of government bonds.

3.	 Detect systemically important financial institutions
by employing financial network analysis.

Python Data Visualization
Cookbook
ISBN: 978-1-78216-336-7 Paperback: 280 pages

Over 60 recipes that will enable you to learn how to
create attractive visualizations using Python's most
popular libraries

1.	 Learn how to set up an optimal Python
environment for data visualization.

2.	 Understand the topics such as importing data for
visualization and formatting data for visualization.

3.	 Understand the underlying data and how to use
the right visualizations.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Preparing Your Data Science Environment
	Introduction
	Understanding the data science pipeline
	Installing R on Windows, Mac OS X, and Linux
	Installing libraries in R and RStudio
	Installing Python on Linux and Mac OS X
	Installing Python on Windows
	Installing the Python data stack on Mac OS X and Linux
	Installing extra Python packages
	Installing and using virtualenv

	Chapter 2: Driving Visual
Analysis with Automobile Data (R)
	Introduction
	Acquiring automobile fuel efficiency data
	Preparing R for your first project
	Importing automobile fuel efficiency
data into R
	Exploring and describing the fuel efficiency data
	Analyzing automobile fuel efficiency over time
	Investigating the makes and models of automobiles

	Chapter 3: Simulating American Football Data (R)
	Introduction
	Acquiring and cleaning football data
	Analyzing and understanding football data
	Constructing indexes to measure offensive and defensive strength
	Simulating a single game with outcomes decided by calculations
	Simulating multiple games with outcomes decided by calculations

	Chapter 4: Modeling Stock
Market Data (R)
	Introduction
	Acquiring stock market data
	Summarizing the data
	Cleaning and exploring the data
	Generating relative valuations
	Screening stocks and analyzing historical prices

	Chapter 5: Visually Exploring Employment Data (R)
	Introduction
	Preparing for analysis
	Importing employment data into R
	Exploring the employment data
	Obtaining and merging additional data
	Adding geographical information
	Extracting state- and county-level wage and employment information
	Visualizing geographical distributions of pay
	Exploring where the jobs are, by industry
	Animating maps for a geospatial time series
	Benchmarking performance for some common tasks

	Chapter 6: Creating Application-oriented Analyses Using Tax Data (Python)
	Introduction
	Preparing for the analysis of top incomes
	Importing and exploring the world top incomes dataset
	Analyzing and visualizing U.S. top income data
	Furthering the analysis of U.S. top income groups
	Reporting with Jinja2

	Chapter 7: Driving Visual Analyses with Automobile Data (Python)
	Introduction
	Getting started with IPython
	Exploring IPython Notebook
	Preparing to analyze automobile fuel efficiencies
	Exploring and describing the fuel efficiency data
	Analyzing automobile fuel efficiency over time
	Investigating the makes and models of automobiles

	Chapter 8: Working with Social Graphs (Python)
	Introduction
	Preparing to work with social networks in Python
	Importing networks
	Exploring subgraphs within a heroic network
	Finding the strong ties
	Finding key players
	Exploring the characteristics of entire networks
	Clustering and community detection in social networks
	Visualizing graphs

	Chapter 9: Recommending Movies at Scale (Python)
	Introduction
	Modeling preference expressions
	Understanding the data
	Ingesting the movie review data
	Finding the highest-scoring movies
	Improving the movie-rating system
	Measuring the distance between users in the preference space
	Computing the correlation between users
	Finding the best critic for a user
	Predicting movie ratings for users
	Collaboratively filtering item by item
	Building a nonnegative matrix factorization model
	Loading the entire dataset into the memory
	Dumping the SVD-based model to the disk
	Training the SVD-based model
	Testing the SVD-based model

	Chapter 10: Harvesting and Geolocating Twitter Data (Python)
	Introduction
	Creating a Twitter application
	Understanding the Twitter API v1.1
	Determining your Twitter followers and friends
	Pulling Twitter user profiles
	Making requests without running afoul of Twitter's rate limits
	Storing the JSON data to the disk
	Setting up MongoDB for storing Twitter data
	Storing user profiles in MongoDB using PyMongo
	Exploring geographic information available in profiles
	Plotting geospatial data in Python

	Chapter 11: Optimizing Numerical Code with NumPy and SciPy (Python)
	Introduction
	Understanding the optimization process
	Identifying common performance bottlenecks in code
	Reading through the code
	Profiling the Python code with the Unix time function
	Profiling Python code using built-in Python functions
	Profiling the Python code using IPython's %timeit function
	Profiling Python code using line_profiler
	Plucking the low-hanging (optimization) fruit
	Testing the performance benefits of NumPy
	Rewriting simple functions with NumPy
	Optimizing the innermost loop with NumPy

	Index

