
Reinforcement
Learning

With Open AI, TensorFlow and
Keras Using Python
—
Abhishek Nandy
Manisha Biswas

Reinforcement
Learning

With Open AI, TensorFlow and
Keras Using Python

Abhishek Nandy

Manisha Biswas

Reinforcement Learning

Abhishek Nandy 				 Manisha Biswas
Kolkata, West Bengal, India			 North 24 Parganas, West Bengal, India

ISBN-13 (pbk): 978-1-4842-3284-2		 ISBN-13 (electronic): 978-1-4842-3285-9
https://doi.org/10.1007/978-1-4842-3285-9

Library of Congress Control Number: 2017962867

Copyright © 2018 by Abhishek Nandy and Manisha Biswas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Technical Reviewer: Avirup Basu
Coordinating Editor: Sanchita Mandal
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-3284-2. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3285-9
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-3284-2
www.apress.com/978-1-4842-3284-2
http://www.apress.com/source-code
http://www.apress.com/source-code

iii

Contents

About the Authors��� vii

About the Technical Reviewer��� ix

Acknowledgments��� xi

Introduction��� xiii

■■Chapter 1: Reinforcement Learning Basics������������������������������������� 1

What Is Reinforcement Learning?�� 1

Faces of Reinforcement Learning�� 6

The Flow of Reinforcement Learning��� 7

Different Terms in Reinforcement Learning��� 9

Gamma�� 10

Lambda�� 10

Interactions with Reinforcement Learning��� 10

RL Characteristics��� 11

How Reward Works��� 12

Agents��� 13

RL Environments�� 14

Conclusion�� 18

■■Chapter 2: RL Theory and Algorithms�� 19

Theoretical Basis of Reinforcement Learning�� 19

Where Reinforcement Learning Is Used��� 21

Manufacturing��� 22

Inventory Management�� 22

■ Contents

iv

Delivery Management�� 22

Finance Sector��� 23

Why Is Reinforcement Learning Difficult?�� 23

Preparing the Machine��� 24

Installing Docker�� 36

An Example of Reinforcement Learning with Python����������������������������� 39

What Are Hyperparameters?��� 41

Writing the Code�� 41

What Is MDP?��� 47

The Markov Property��� 48

The Markov Chain�� 49

MDPs��� 53

SARSA�� 54

Temporal Difference Learning��� 54

How SARSA Works��� 56

Q Learning�� 56

What Is Q?��� 57

How to Use Q��� 57

SARSA Implementation in Python�� 58

The Entire Reinforcement Logic in Python�� 64

Dynamic Programming in Reinforcement Learning������������������������������� 68

Conclusion�� 69

■■Chapter 3: OpenAI Basics�� 71

Getting to Know OpenAI��� 71

Installing OpenAI Gym and OpenAI Universe�� 73

Working with OpenAI Gym and OpenAI�� 75

More Simulations��� 81

■ Contents

v

OpenAI Universe��� 84

Conclusion�� 87

■■Chapter 4: Applying Python to Reinforcement Learning��������������� 89

Q Learning with Python�� 89

The Maze Environment Python File��� 91

The RL_Brain Python File�� 94

Updating the Function��� 95

Using the MDP Toolbox in Python��� 97

Understanding Swarm Intelligence�� 109

Applications of Swarm Intelligence��� 109

Swarm Grammars�� 111

The Rastrigin Function��� 111

Swarm Intelligence in Python�� 116

Building a Game AI��� 119

The Entire TFLearn Code�� 124

Conclusion�� 128

■■�Chapter 5: Reinforcement Learning with Keras,
TensorFlow, and ChainerRL��� 129

What Is Keras?��� 129

Using Keras for Reinforcement Learning��� 130

Using ChainerRL��� 134

Installing ChainerRL��� 134

Pipeline for Using ChainerRL��� 137

Deep Q Learning: Using Keras and TensorFlow������������������������������������ 145

Installing Keras-rl�� 146

Training with Keras-rl�� 148

Conclusion�� 153

vi

■ Contents

vi

■■�Chapter 6: Google’s DeepMind and the Future of
Reinforcement Learning�� 155

Google DeepMind��� 155

Google AlphaGo�� 156

What Is AlphaGo?��� 157

Monte Carlo Search��� 159

Man vs. Machines�� 161

Positive Aspects of AI�� 161

Negative Aspects of AI��� 161

Conclusion�� 163

Index��� 165

vii

About the Authors

Abhishek Nandy has a B.Tech. in information
technology and considers himself a constant learner.
He is a Microsoft MVP in the Windows platform, an
Intel Black Belt Developer, as well as an Intel software
innovator. Abhishek has a keen interest in artificial
intelligence, IoT, and game development. He is
currently serving as an application architect at an IT
firm and consults in AI and IoT, as well does projects
in AI, Machine Learning, and deep learning. He is also
an AI trainer and drives the technical part of Intel AI
student developer program. He was involved in the first
Make in India initiative, where he was among the top
50 innovators and was trained in IIMA.

Manisha Biswas has a B.Tech. in information
technology and currently works as a software developer
at InSync Tech-Fin Solutions Ltd in Kolkata, India. She
is involved in several areas of technology, including
web development, IoT, soft computing, and artificial
intelligence. She is an Intel Software innovator and was
awarded the Shri Dewang Mehta IT Awards 2016 by
NASSCOM, a certificate of excellence for top academic
scores. She very recently formed a “Women in
Technology” community in Kolkata, India to empower
women to learn and explore new technologies. She
likes to invent things, create something new, and
invent a new look for the old things. When not in front
of her terminal, she is an explorer, a foodie, a doodler,
and a dreamer. She is always very passionate to share
her knowledge and ideas with others. She is following

her passion currently by sharing her experiences with the community so that others can
learn, which lead her to become Google Women Techmakers, Kolkata Chapter Lead.

ix

About the Technical
Reviewer

Avirup Basu is an IoT application developer at
Prescriber360 Solutions. He is a researcher in robotics
and has published papers through the IEEE.

xi

Acknowledgments

I want to dedicate this book to my parents.
—Abhishek Nandy

I want to dedicate this book to my mom and dad. Thank you to my teachers and my
co-author, Abhishek Nandy. Thanks also to Abhishek Sur, who mentors me at work
and helps me adapt to new technologies. I would also like to dedicate this book to my
company, InSync Tech-Fin Solutions Ltd., where I started my career and have grown
professionally.

—Manisha Biswas

xiii

Introduction

This book is primarily based on a Machine Learning subset known as Reinforcement
Learning. We cover the basics of Reinforcement Learning with the help of the Python
programming language and touch on several aspects, such as Q learning, MDP, RL with
Keras, and OpenAI Gym and OpenAI Environment, and also cover algorithms related
to RL.

Users need a basic understanding of programming in Python to benefit from this
book.

The book is meant for people who want to get into Machine Learning and learn more
about Reinforcement Learning.

1© Abhishek Nandy and Manisha Biswas 2018
A. Nandy and M. Biswas, Reinforcement Learning,
https://doi.org/10.1007/978-1-4842-3285-9_1

CHAPTER 1

Reinforcement Learning
Basics

This chapter is a brief introduction to Reinforcement Learning (RL) and includes some
key concepts associated with it.

In this chapter, we talk about Reinforcement Learning as a core concept and then
define it further. We show a complete flow of how Reinforcement Learning works. We
discuss exactly where Reinforcement Learning fits into artificial intelligence (AI). After
that we define key terms related to Reinforcement Learning. We start with agents and
then touch on environments and then finally talk about the connection between agents
and environments.

What Is Reinforcement Learning?
We use Machine Learning to constantly improve the performance of machines or
programs over time. The simplified way of implementing a process that improves
machine performance with time is using Reinforcement Learning (RL). Reinforcement
Learning is an approach through which intelligent programs, known as agents, work
in a known or unknown environment to constantly adapt and learn based on giving
points. The feedback might be positive, also known as rewards, or negative, also
called punishments. Considering the agents and the environment interaction, we then
determine which action to take.

In a nutshell, Reinforcement Learning is based on rewards and punishments.
Some important points about Reinforcement Learning:

•	 It differs from normal Machine Learning, as we do not look at
training datasets.

•	 Interaction happens not with data but with environments,
through which we depict real-world scenarios.

https://doi.org/10.1007/978-1-4842-3285-9_1

Chapter 1 ■ Reinforcement Learning Basics

2

•	 As Reinforcement Learning is based on environments, many
parameters come in to play. It takes lots of information to learn
and act accordingly.

•	 Environments in Reinforcement Learning are real-world
scenarios that might be 2D or 3D simulated worlds or game-
based scenarios.

•	 Reinforcement Learning is broader in a sense because the
environments can be large in scale and there might be a lot of
factors associated with them.

•	 The objective of Reinforcement Learning is to reach a goal.

•	 Rewards in Reinforcement Learning are obtained from the
environment.

The Reinforcement Learning cycle is depicted in Figure 1-1 with the help of a robot.

Figure 1-1.  Reinforcement Learning cycle

Chapter 1 ■ Reinforcement Learning Basics

3

A maze is a good example that can be studied using Reinforcement Learning, in
order to determine the exact right moves to complete the maze (see Figure 1-2).

In Figure 1-3, we are applying Reinforcement Learning and we call it the
Reinforcement Learning box because within its vicinity the process of RL works. RL starts
with an intelligent program, known as agents, and when they interact with environments,
there are rewards and punishments associated. An environment can be either known
or unknown to the agents. The agents take actions to move to the next state in order to
maximize rewards.

Figure 1-2.  Reinforcement Learning can be applied to mazes

Chapter 1 ■ Reinforcement Learning Basics

4

In the maze, the centralized concept is to keep moving. The goal is to clear the maze
and reach the end as quickly as possible.

The following concepts of Reinforcement Learning and the working scenario are
discussed later this chapter.

•	 The agent is the intelligent program

•	 The environment is the maze

•	 The state is the place in the maze where the agent is

•	 The action is the move we take to move to the next state

•	 The reward is the points associated with reaching a particular
state. It can be positive, negative, or zero

We use the maze example to apply concepts of Reinforcement Learning. We will be
describing the following steps:

	 1.	 The concept of the maze is given to the agent.

	 2.	 There is a task associated with the agent and Reinforcement
Learning is applied to it.

	 3.	 The agent receives (a-1) reinforcement for every move it
makes from one state to other.

	 4.	 There is a reward system in place for the agent when it moves
from one state to another.

Figure 1-3.  Reinforcement Learning flow

Chapter 1 ■ Reinforcement Learning Basics

5

The rewards predictions are made iteratively, where we update the value of each
state in a maze based on the value of the best subsequent state and the immediate reward
obtained. This is called the update rule.

The constant movement of the Reinforcement Learning process is based on
decision-making.

Reinforcement Learning works on a trial-and-error basis because it is very difficult to
predict which action to take when it is in one state. From the maze problem itself, you can
see that in order get the optimal path for the next move, you have to weigh a lot of factors.
It is always on the basis of state action and rewards. For the maze, we have to compute
and account for probability to take the step.

The maze also does not consider the reward of the previous step; it is specifically
considering the move to the next state. The concept is the same for all Reinforcement
Learning processes.

Here are the steps of this process:

	 1.	 We have a problem.

	 2.	 We have to apply Reinforcement Learning.

	 3.	 We consider applying Reinforcement Learning as a
Reinforcement Learning box.

	 4.	 The Reinforcement Learning box contains all essential
components needed for applying the Reinforcement Learning
process.

	 5.	 The Reinforcement Learning box contains agents,
environments, rewards, punishments, and actions.

Reinforcement Learning works well with intelligent program agents that give rewards
and punishments when interacting with an environment.

The interaction happens between the agents and the environments, as shown in
Figure 1-4.

From Figure 1-4, you can see that there is a direct interaction between the agents and
its environments. This interaction is very important because through these exchanges,
the agent adapts to the environments. When a Machine Learning program, robot, or
Reinforcement Learning program starts working, the agents are exposed to known or
unknown environments and the Reinforcement Learning technique allows the agents to
interact and adapt according to the environment’s features.

Accordingly, the agents work and the Reinforcement Learning robot learns. In order
to get to a desired position, we assign rewards and punishments.

Figure 1-4.  Interaction between agents and environments

Chapter 1 ■ Reinforcement Learning Basics

6

Now, the program has to work around the optimal path to get maximum rewards if
it fails (that is, it takes punishments or receives negative points). In order to reach a new
position, which also is known as a state, it must perform what we call an action.

To perform an action, we implement a function, also known as a policy. A policy is
therefore a function that does some work.

Faces of Reinforcement Learning
As you see from the Venn diagram in Figure 1-5, Reinforcement Learning sits at the
intersection of many different fields of science.

Figure 1-5.  All the faces of Reinforcement Learning

Chapter 1 ■ Reinforcement Learning Basics

7

The intersection points reveal a very strong feature of Reinforcement Learning—it
shows the science of decision-making. If we have two paths and have to decide which
path to take so that some point is met, a scientific decision-making process can be
designed.

Reinforcement Learning is the fundamental science of optimal decision-making.
If we focus on the computer science part of the Venn diagram in Figure 1-5, we

see that if we want to learn, it falls under the category of Machine Learning, which is
specifically mapped to Reinforcement Learning.

Reinforcement Learning can be applied to many different fields of science. In
engineering, we have devices that focus mostly on optimal control. In neuroscience, we
are concerned with how the brain works as a stimulant for making decisions and study
the reward system that works on the brain (the dopamine system).

Psychologists can apply Reinforcement Learning to determine how animals make
decisions. In mathematics, we have a lot of data applying Reinforcement Learning in
operations research.

The Flow of Reinforcement Learning
Figure 1-6 connects agents and environments.

The interaction happens from one state to another. The exact connection starts
between an agent and the environment. Rewards are happening on a regular basis.

We take appropriate actions to move from one state to another.
The key points of consideration after going through the details are the following:

•	 The Reinforcement Learning cycle works in an interconnected
manner.

•	 There is distinct communication between the agent and the
environment.

•	 The distinct communication happens with rewards in mind.

•	 The object or robot moves from one state to another.

•	 An action is taken to move from one state to another

Figure 1-6.  RL structure

Chapter 1 ■ Reinforcement Learning Basics

8

Figure 1-7 simplifies the interaction process.

An agent is always learning and finally makes a decision. An agent is a learner, which
means there might be different paths. When the agent starts training, it starts to adapt and
intelligently learns from its surroundings.

The agent is also a decision maker because it tries to take an action that will get it the
maximum reward.

When the agent starts interacting with the environment, it can choose an action and
respond accordingly.

From then on, new scenes are created. When the agent changes from one place to
another in an environment, every change results in some kind of modification. These
changes are depicted as scenes. The transition that happens in each step helps the agent
solve the Reinforcement Learning problem more effectively.

Figure 1-7.  The entire interaction process

Chapter 1 ■ Reinforcement Learning Basics

9

Let’s look at another scenario of state transitioning, as shown in Figures 1-8 and 1-9.

Learn to choose actions that maximize the following:

r0 +γr1 +γ2r2 +............... where 0< γ<1

At each state transition, the reward is a different value, hence we describe reward
with varying values in each step, such as r0, r1, r2, etc. Gamma (γ) is called a discount
factor and it determines what future reward types we get:

•	 A gamma value of 0 means the reward is associated with the
current state only

•	 A gamma value of 1 means that the reward is long-term

Different Terms in Reinforcement Learning
Now we cover some common terms associated with Reinforcement Learning.

There are two constants that are important in this case—gamma (γ) and lambda (λ),
as shown in Figure 1-10.

Figure 1-8.  Scenario of state changes

Figure 1-9.  The state transition process

Chapter 1 ■ Reinforcement Learning Basics

10

Gamma is common in Reinforcement Learning problems but lambda is used
generally in terms of temporal difference problems.

Gamma
Gamma is used in each state transition and is a constant value at each state change.
Gamma allows you to give information about the type of reward you will be getting in
every state. Generally, the values determine whether we are looking for reward values in
each state only (in which case, it’s 0) or if we are looking for long-term reward values (in
which case it’s 1).

Lambda
Lambda is generally used when we are dealing with temporal difference problems. It is
more involved with predictions in successive states.

Increasing values of lambda in each state shows that our algorithm is learning fast.
The faster algorithm yields better results when using Reinforcement Learning techniques.

As you’ll learn later, temporal differences can be generalized to what we call
TD(Lambda). We discuss it in greater depth later.

Interactions with Reinforcement Learning
Let’s now talk about Reinforcement Learning and its interactions. As shown in
Figure 1-11, the interactions between the agent and the environment occur with a reward.
We need to take an action to move from one state to another.

Figure 1-10.  Showing values of constants

Chapter 1 ■ Reinforcement Learning Basics

11

Reinforcement Learning is a way of implementing how to map situations to actions
so as to maximize and find a way to get the highest rewards.

The machine or robot is not told which actions to take, as with other forms of
Machine Learning, but instead the machine must discover which actions yield the
maximum reward by trying them.

In the most interesting and challenging cases, actions affect not only the immediate
reward but also the next situation and all subsequent rewards.

RL Characteristics
We talk about characteristics next. The characteristics are generally what the agent does
to move to the next state. The agent considers which approach works best to make the
next move.

The two characteristics are

•	 Trial and error search.

•	 Delayed reward.

As you probably have gathered, Reinforcement Learning works on three things
combined:

(S,A,R)

Where S represents state, A represents action, and R represents reward.
If you are in a state S, you perform an action A so that you get a reward R at time

frame t+1. Now, the most important part is when you move to the next state. In this case,
we do not use the reward we just earned to decide where to move next. Each transition
has a unique reward and no reward from any previous state is used to determine the next
move. See Figure 1-12.

Figure 1-11.  Reinforcement Learning interactions

Chapter 1 ■ Reinforcement Learning Basics

12

The T change (the time frame) is important in terms of Reinforcement Learning.
Every occurrence of what we do is always a combination of what we perform in terms

of states, actions, and rewards. See Figure 1-13.

How Reward Works
A reward is some motivator we receive when we transition from one state to another. It
can be points, as in a video game. The more we train, the more accurate we become, and
the greater our reward.

Figure 1-13.  Another way of representing the state transition

Figure 1-12.  State change with time

Chapter 1 ■ Reinforcement Learning Basics

13

Agents
In terms of Reinforcement Learning, agents are the software programs that make
intelligent decisions. Agents should be able to perceive what is happening in the
environment. Here are the basic steps of the agents:

	 1.	 When the agent can perceive the environment, it can make
better decisions.

	 2.	 The decision the agents take results in an action.

	 3.	 The action that the agents perform must be the best, the
optimal, one.

Software agents might be autonomous or they might work together with other agents
or with people. Figure 1-14 shows how the agent works.

Figure 1-14.  The flow of the environment

Chapter 1 ■ Reinforcement Learning Basics

14

RL Environments
The environments in the Reinforcement Learning space are comprised of certain factors
that determine the impact on the Reinforcement Learning agent. The agent must adapt
accordingly to the environment. These environments can be 2D worlds or grids or even a
3D world.

Here are some important features of environments:

•	 Deterministic

•	 Observable

•	 Discrete or continuous

•	 Single or multiagent.

Deterministic
If we can infer and predict what will happen with a certain scenario in the future, we say
the scenario is deterministic.

It is easier for RL problems to be deterministic because we don’t rely on the
decision-making process to change state. It’s an immediate effect that happens with state
transitions when we are moving from one state to another. The life of a Reinforcement
Learning problem becomes easier.

When we are dealing with RL, the state model we get will be either deterministic or
non-deterministic. That means we need to understand the mechanisms behind how DFA
and NDFA work.

DFA (Deterministic Finite Automata)

DFA goes through a finite number of steps. It can only perform one action for a state. See
Figure 1-15.

Figure 1-15.  Showing DFA

Chapter 1 ■ Reinforcement Learning Basics

15

We are showing a state transition from a start state to a final state with the help of
a diagram. It is a simple depiction where we can say that, with some input value that is
assumed as 1 and 0, the state transition occurs. The self-loop is created when it gets a
value and stays in the same state.

NDFA (Nondeterministic Finite Automaton)

If we are working in a scenario where we don’t know exactly which state a machine will
move into, this is a case of NDFA. See Figure 1-16.

The working principle of the state diagram in Figure 1-16 can be explained as
follows. In NDFA the issue is when we are transitioning from one state to another, there is
more than one option available, as we can see in Figure 1-16. From State S0 after getting
an input such as 0, it can stay in state S0 or move to state S1. There is decision-making
involved here, so it becomes difficult to know which action to take.

Observable
If we can say that the environment around us is fully observable, we have a perfect
scenario for implementing Reinforcement Learning.

An example of perfect observability is a chess game. An example of partial
observability is a poker game, where some of the cards are unknown to any one player.

Figure 1-16.  NDFA

Chapter 1 ■ Reinforcement Learning Basics

16

Discrete or Continuous
If there is more than one choice for transitioning to the next state, that is a continuous
scenario. When there are a limited number of choices, that’s called a discrete scenario.

Single Agent and Multiagent Environments
Solutions in Reinforcement Learning can be of single agent types or multiagent types.

Let’s take a look at multiagent Reinforcement Learning first.
When we are dealing with complex problems, we use multiagent Reinforcement

Learning. Complex problems might have different environments where the agent is doing
different jobs to get involved in RL and the agent also wants to interact. This introduces
different complications in determining transitions in states.

Multiagent solutions are based on the non-deterministic approach.
They are non-deterministic because when the multiagents interact, there might be

more than one option to change or move to the next state and we have to make decisions
based on that ambiguity.

In multiagent solutions, the agent interactions between different environments are
enormous. They are enormous because the amount of activity involved in references to
environments is very large. This is because the environments might be different types and
the multiagents might have different tasks to do in each state transition.

The difference between single-agent and multiagent solutions are as follows:

•	 Single-agent scenarios involve intelligent software in which the
interaction happens in one environment only. If there is another
environment simultaneously, it cannot interact with the first
environment.

•	 When there is little bit of convergence in Reinforcement
Learning. Convergence is when the agent needs to interact far
more often in different environments to make a decision. This
scenario is tackled by multiagents, as single agents cannot tackle
convergence. Single agents cannot tackle convergence because
it connects to other environments when there might be different
scenarios involving simultaneous decision-making.

•	 Multiagents have dynamic environments compared to
single agents. Dynamic environments can involve changing
environments in the places to interact with.

Chapter 1 ■ Reinforcement Learning Basics

17

Figure 1-17 shows the single-agent scenario.

Figure 1-18 shows how multiagents work. There is an interaction between two agents
in order to make the decision.

Figure 1-17.  Single agent

Chapter 1 ■ Reinforcement Learning Basics

18

Conclusion
This chapter touched on the basics of Reinforcement Learning and covered some key
concepts. We covered states and environments and how the structure of Reinforcement
Learning looks.

We also touched on the different kinds of interactions and learned about single-
agent and multiagent solutions.

The next chapter covers algorithms and discusses the building blocks of
Reinforcement Learning.

Figure 1-18.  Multiagent scenario

19© Abhishek Nandy and Manisha Biswas 2018
A. Nandy and M. Biswas, Reinforcement Learning,
https://doi.org/10.1007/978-1-4842-3285-9_2

CHAPTER 2

RL Theory and Algorithms

This chapter covers how Reinforcement Learning works and explains the concepts
behind it, including the different algorithms that form the basis of Reinforcement
Learning.

The chapter explains these algorithms, but to start with, you will learn why
Reinforcement Learning can be hard and see some different scenarios. The chapter also
covers different ways that Reinforcement Learning can be implemented.

Along the way, the chapter formulates the Markov Decision Process (MDP) and
describes it. The chapter also covers SARSA and touches on temporal differences. Then,
the chapter touches on Q Learning and dynamic programming.

Theoretical Basis of Reinforcement Learning
This section touches on the theoretical basis of Reinforcement Learning. Figure 2-1 shows
how you are going to implement MDP, which is described later.

https://doi.org/10.1007/978-1-4842-3285-9_2

Chapter 2 ■ RL Theory and Algorithms

20

Environments in Reinforcement Learning are represented by the Markov Decision
Process (discussed later in this chapter).

•	 SS is a finite set of states. AA is a finite set of actions.

•	 T:S×A×S→[0,1]T:S×A×S→[0,1] is a transition model that maps
(state, action, state) triples to probabilities.

•	 T(s,a,s′)T(s,a,s′) is the probability that you’ll land in state s′s′
if you were in state ss and took action aa.

Figure 2-1.  Theoretical basis of MDP

Chapter 2 ■ RL Theory and Algorithms

21

In terms of conditional probabilities, the following is true:

T(s,a,s′)=P(s′|s,a)T(s,a,s′)=P(s′|s,a)

R:S×S→RR:S×S→R is a reward function that gives a real number that represents
the amount of reward (or punishment) the environment will grant for a state transition.
R(s,s′)R(s,s′) is the reward received after transitioning to state s′s′ from state ss.

If the transition model is known to the agent, i.e., the agent knows where it would
probably go from where it stands, it’s fairly easy for the agent to know how to act in a way
that maximizes its expected utility from its experience with the environment.

We can define the expected utility for the agent to be the accumulated rewards it
gets throughout its experience with the environment. If the agent goes through the states
s0,s1,…,sn−1,sns0,s1,…,sn−1,sn, you could formally define its expected utility as follows:

∑nt=1γtE[R(st−1,st)]∑t=1nγtE[R(st−1,st)]

where γγ is a discount factor used to decrease the values (and hence the importance) of
past rewards, and EE is the expected value.

The problem arises when the agents have no clue about the probabilistic model
behind the transitions, and this where RL comes in. The RL problem can formally be
defined now as the problem of learning a set of parameters in order to maximize the
expected utility.

RL comes in two flavors:

•	 Model-based: The agent attempts to sample and learn the
probabilistic model and use it to determine the best actions it can
take. In this flavor, the set of parameters that was vaguely referred
to is the MDP model.

•	 Model-free: The agent doesn’t bother with the MDP model and
instead attempts to develop a control function that looks at
the state and decides the best action to take. In that case, the
parameters to be learned are the ones that define the control
function.

Where Reinforcement Learning Is Used
This section discusses the different fields of Reinforcement Learning, as shown in
Figure 2-2.

https://en.wikipedia.org/wiki/Expected_value#_blank

Chapter 2 ■ RL Theory and Algorithms

22

Manufacturing
In manufacturing, factory robots use Reinforcement Learning to move an object from one
box and then keep it in another container.

If it fails or finds success upon delivering, the robot remembers the object and learns
again, with the end result to get the best results with the greatest accuracy.

Inventory Management
In terms of inventory management, Reinforcement Learning can be used to reduce
transit time in stocking and can be applied to placing products in warehouses for utilizing
space optimally.

Delivery Management
Reinforcement Learning is applied to solve the problem of split delivery vehicle routing.
Q Learning is used to serve appropriate customers with one vehicle.

Figure 2-2.  Different fields of Reinforcement Learning

Chapter 2 ■ RL Theory and Algorithms

23

Finance Sector
Reinforcement Learning is being used for accounting, using trading strategies.

Why Is Reinforcement Learning Difficult?
One of the toughest parts of Reinforcement Learning is having to map the environment
and include all possible moves. For example, consider a board game.

You have to apply artificial intelligence to what is learned. In theory, Reinforcement
Learning should work perfectly because there are a lot of state jumps and complex moves
in a board game. However, applying Reinforcement Learning by itself becomes difficult.

To get the best results, we apply a rule-based engine with Reinforcement Learning.
If we don’t apply a rule-based engine, there are so many options in board games that the
agent will take forever to discover the path.

First of all, we apply simple rules so that the AI learns quickly and then, as the
complexity increases, we apply Reinforcement Learning.

Figure 2-3 shows how applying Reinforcement Learning can be difficult.

Figure 2-3.  Reinforcement Learning with rules

Chapter 2 ■ RL Theory and Algorithms

24

Preparing the Machine
Before you can run the examples, you need to perform certain steps to install the
software. The examples in this book use the Anaconda version of Python, so this section
explains how to find and download it. First, you need to open a terminal. The process of
starting the terminal is shown in Figure 2-4.

Next, you need to update the packages. Write the following command in the terminal
to do so. See Figure 2-5.

sudo apt-get update

Figure 2-4.  Opening the terminal

Chapter 2 ■ RL Theory and Algorithms

25

After you run the update command, the required installation content is installed, as
shown in Figure 2-6.

Now you can use another command for installing the required packages. Figure 2-7
shows the process.

Figure 2-5.  Updating the packages

Figure 2-6.  Everything has been updated

Chapter 2 ■ RL Theory and Algorithms

26

sudo apt-get install golang python3-dev python-dev libcupti-dev libjpeg-
turbo8-dev make tmux htop chromium-browser git cmake zlib1g-dev libjpeg-dev
xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig.

As shown in Figure 2-8, you’ll need to type y and then press Enter to continue.

Figure 2-8.  Continue with the installation

Figure 2-7.  Fetching the updates

Chapter 2 ■ RL Theory and Algorithms

27

In the next step, the essential packages are downloaded and updated accordingly, as
shown in Figure 2-9.

You have now installed the Anaconda distribution of Python. Next, you need to
open a browser window for Ubuntu. This example shows Mozilla Firefox. Search for the
Anaconda installation, as shown in Figure 2-10.

Figure 2-9.  Downloading and extracting the packages

Chapter 2 ■ RL Theory and Algorithms

28

Now you have to find the download that’s appropriate for your particular operating
system. The Anaconda page is shown in Figure 2-11.

Figure 2-10.  Downloading Anaconda

Figure 2-11.  Anaconda page

Select the appropriate distribution of Anaconda, as shown in Figure 2-12.

Chapter 2 ■ RL Theory and Algorithms

29

Save the file next, as shown in Figure 2-13.

Figure 2-12.  Selecting the Anaconda version

Figure 2-13.  Saving the file

Chapter 2 ■ RL Theory and Algorithms

30

Now, using the terminal, you have to get inside the downloads folder. You should also
check for the file that was being saved. See Figure 2-14.

You now have to use the bash command to run the shell script (see Figure 2-15):

bash Anaconda3-4.4.0-Linux-x86_64.sh

To select the platform, type yes and press Enter. Anaconda will be installed into the
home location, as shown in Figure 2-16.

Figure 2-14.  Getting inside the downloads folder

Figure 2-15.  Running the shell script

Figure 2-16.  Setting up the Anaconda environment

Chapter 2 ■ RL Theory and Algorithms

31

The next step, shown in Figure 2-17, will install all the important packages for
Anaconda so that it is configured properly.

Figure 2-17.  Installing the key packages for Anaconda

Chapter 2 ■ RL Theory and Algorithms

32

After the Anaconda installation is complete, you need to open a new terminal to set
up your Anaconda environment. You have to create a new environment for Anaconda
using the conda create command (see Figure 2-18).

This command keeps all the packages in an isolated place.

conda create --name universe python=3.6 anaconda

In the next step, the Anaconda environment will install the necessary packages. See
Figure 2-19.

Figure 2-18.  Creating an environment

Chapter 2 ■ RL Theory and Algorithms

33

Figure 2-19.  The packages for installing or updating Anaconda

Chapter 2 ■ RL Theory and Algorithms

34

Type y and then press Enter to continue. Then the entire process will be
complete after every package is updated in the environment. You can now activate the
environment. See Figure 2-20.

Some additional updates might need to be installed. You also need to install Swig, as
shown in Figure 2-21.

conda install pip six libgcc swig

Figure 2-20.  The packages for installing or updating Anaconda

Figure 2-21.  Installing Swig too

Chapter 2 ■ RL Theory and Algorithms

35

You will also have to install OpenCV in order to update certain packages, as shown in
Figure 2-22.

If there are updates to OpenCV, type y to install them too. See Figure 2-23.

Next, you need to install TensorFlow. This chapter shows how to install the CPU
version. See Figure 2-24.

pip install --upgrade tensorflow

Figure 2-22.  Installing OpenCV

Figure 2-23.  Installing OpenCV

Chapter 2 ■ RL Theory and Algorithms

36

Figure 2-25 shows the packages being installed for TensorFlow.

The next step, shown in Figure 2-26, asks for the privileges to install the other
packages. Type y to continue.

In the next section, we install Docker. We will first learn what Docker is.

Installing Docker
When you want to keep your containers in the cloud, Docker is the best option.
Developers generally use Docker to minimize workloads on a single machine, because
the entire architecture can be hosted on the developer environment. Enterprises use
Docker to maintain an agile environment. Operators generally use Docker to keep an eye
on apps and to run and manage them effectively.

Figure 2-24.  Installing TensorFlow

Figure 2-25.  TensorFlow installs the packages

Figure 2-26.  Package installation happens

Chapter 2 ■ RL Theory and Algorithms

37

Now you will install Docker, as it is essential for OpenAI Gym and Universe to work.
You need to install Docker because, when you are training an environment, Docker is
very responsive to simulations since it runs with low resources.

The command to be entered in the terminal is shown here:

$ sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

The next command to enter is:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add
-

You use curl and the http link so that Docker can access these trusted key values.
Now download the Docker type using this command:

$ sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

Type this command to update Docker, as shown in Figure 2-27:

$ sudo apt-get update

Figure 2-27.  Updating the package

Type this command to install Docker, as shown in Figure 2-28:

$ sudo apt-get install docker-ce

Chapter 2 ■ RL Theory and Algorithms

38

To test Docker, use this command (see Figure 2-29):

$ sudo service docker start
$ sudo docker run hello-world

Figure 2-28.  Docker installation

Figure 2-29.  Testing docker

Chapter 2 ■ RL Theory and Algorithms

39

An Example of Reinforcement Learning with
Python
This section goes through an example of Reinforcement Learning and explains the flow of
the algorithm. You’ll see how Reinforcement Learning can be applied. This section uses
an open source GitHub repo that has a very good example of Reinforcement Learning.
You will need to clone it to work with it.

The GitHub repo link is https://github.com/MorvanZhou/Reinforcement-
learning-with-tensorflow. Within the Ubuntu module, get inside the terminal and start
cloning the repo, as shown in Figure 2-30.

Figure 2-30.  Cloning the repo

https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow
https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow

Chapter 2 ■ RL Theory and Algorithms

40

Figure 2-31 shows how the repo is replicated.

You will next get inside the folder that you used, as shown in Figure 2-32.

Figure 2-31.  Replication of the repo

Figure 2-32.  Getting inside the folder

Chapter 2 ■ RL Theory and Algorithms

41

We are working with a scenario of Reinforcement Learning where we are applying
the letter O as a wanderer. That wanderer wants to get the treasure T as fast as it can.

The condition looks like this:

O-----T

The wanderer tries to find the quickest path to reach the treasure. During each
episode, the steps the wanderer takes to reach the treasure are counted. With each
episode, the condition improves and the number of steps declines.

Here are some of the basic steps in terms of Reinforcement Learning:

•	 The program tries to work with actions, as actions are very
important in terms of Reinforcement Learning.

•	 The available actions for this wanderer is moving left or right:

ACTIONS = ['left','right']

•	 The wanderer can be considered the agent.

•	 The number of states (also called the number of steps) is limited
to 6 in this example:

N_States = 6;

Now you need to apply hyperparameters for Reinforcement Learning.

What Are Hyperparameters?
Hyperparameters are variables that were set before setting the model’s parameters.
Generally, they are different from the parameters of the model for the underlying system
under analysis.

We introduce epsilon, alpha, and gamma.

•	 Epsilon is the greedy factor

•	 Alpha is the learning rate

•	 Gamma is the discount factor

The maximum number of episodes in this case is 13. The refresh rate is when the
scenario is refreshed.

Writing the Code
To create the process from which the computer learns, we have to formulate a table. This
process is known as Q Learning and the table is called a Q table (You will learn more
about Q Learning in the next chapter.) All the key elements are stored in the Q table and
all the decisions are made based on the Q table.

Chapter 2 ■ RL Theory and Algorithms

42

def build_q_table(n_states, actions):
 table = pd.DataFrame(
 np.zeros((n_states, len(actions))), # q_table initial values
 columns=actions, # actions's name
)
 # print(table) # show table
 return table

Now we have to take actions. To do so, we use this code:

def choose_action(state, q_table):
 # This is how to choose an action
 state_actions = q_table.iloc[state, :]
 �if (np.random.uniform() > EPSILON) or (state_actions.all() == 0): # act

non-greedy or state-action have no value
 action_name = np.random.choice(ACTIONS)
 else: # act greedy
 action_name = state_actions.argmax()
 return action_name

Now we create the environment and determine how the agents will work within the
environment:

def get_env_feedback(S, A):
 # This is how the agent will interact with the environment
 if A == 'right': # move right
 if S == N_STATES - 2: # terminate
 S_ = 'terminal'
 R = 1
 else:
 S_ = S + 1
 R = 0
 else: # move left
 R = 0
 if S == 0:
 S_ = S # reach the wall
 else:
 S_ = S - 1
 return S_, R

This function prints the wanderer and treasure hunt conditions:

def update_env(S, episode, step_counter):
 # This is how the environment be updated
 env_list = ['-']*(N_STATES-1) + ['T'] # '---------T' our environment
 if S == 'terminal':
 �interaction = 'Episode %s: total_steps = %s' % (episode+1, step_

counter)

Chapter 2 ■ RL Theory and Algorithms

43

 print('\r{}'.format(interaction), end='')
 time.sleep(2)
 print('\r ', end='')
 else:
 env_list[S] = 'o'
 interaction = ''.join(env_list)
 print('\r{}'.format(interaction), end='')
 time.sleep(FRESH_TIME)

The rl() method calls the Q Learning scenario, which we discuss in next chapter:

def rl():
 # main part of RL loop
 q_table = build_q_table(N_STATES, ACTIONS)
 for episode in range(MAX_EPISODES):
 step_counter = 0
 S = 0
 is_terminated = False
 update_env(S, episode, step_counter)
 while not is_terminated:

 A = choose_action(S, q_table)
 �S_, R = get_env_feedback(S, A) # take action & get next state

and reward
 q_predict = q_table.ix[S, A]
 if S_ != 'terminal':
 �q_target = R + GAMMA * q_table.iloc[S_, :].max() # next

state is not terminal
 else:
 q_target = R # next state is terminal
 is_terminated = True # terminate this episode

 q_table.ix[S, A] += ALPHA * (q_target - q_predict) # update
 S = S_ # move to next state

 update_env(S, episode, step_counter+1)
 step_counter += 1
 return q_table

if __name__ == "__main__":
 q_table = rl()
 print('\r\nQ-table:\n')
 print(q_table)

Chapter 2 ■ RL Theory and Algorithms

44

The full code looks like this:

import numpy as np
import pandas as pd
import time

np.random.seed(2) # reproducible

N_STATES = 6 # the length of the 1 dimensional world
ACTIONS = ['left', 'right'] # available actions
EPSILON = 0.9 # greedy police
ALPHA = 0.1 # learning rate
GAMMA = 0.9 # discount factor
MAX_EPISODES = 13 # maximum episodes
FRESH_TIME = 0.3 # fresh time for one move

def build_q_table(n_states, actions):
 table = pd.DataFrame(
 np.zeros((n_states, len(actions))), # q_table initial values
 columns=actions, # actions's name
)
 # print(table) # show table
 return table

def choose_action(state, q_table):
 # This is how to choose an action
 state_actions = q_table.iloc[state, :]
 if (np.random.uniform() > EPSILON) or (state_actions.all() == 0): # act
non-greedy or state-action have no value
 action_name = np.random.choice(ACTIONS)
 else: # act greedy
 action_name = state_actions.argmax()
 return action_name

def get_env_feedback(S, A):
 # This is how agent will interact with the environment
 if A == 'right': # move right
 if S == N_STATES - 2: # terminate
 S_ = 'terminal'
 R = 1
 else:
 S_ = S + 1
 R = 0
 else: # move left
 R = 0
 if S == 0:
 S_ = S # reach the wall
 else:

Chapter 2 ■ RL Theory and Algorithms

45

 S_ = S - 1
 return S_, R

def update_env(S, episode, step_counter):
 # This is how environment be updated
 env_list = ['-']*(N_STATES-1) + ['T'] # '---------T' our environment
 if S == 'terminal':
 �interaction = 'Episode %s: total_steps = %s' % (episode+1, step_

counter)
 print('\r{}'.format(interaction), end='')
 time.sleep(2)
 print('\r ', end='')
 else:
 env_list[S] = 'o'
 interaction = ''.join(env_list)
 print('\r{}'.format(interaction), end='')
 time.sleep(FRESH_TIME)

def rl():
 # main part of RL loop
 q_table = build_q_table(N_STATES, ACTIONS)
 for episode in range(MAX_EPISODES):
 step_counter = 0
 S = 0
 is_terminated = False
 update_env(S, episode, step_counter)
 while not is_terminated:

 A = choose_action(S, q_table)
 �S_, R = get_env_feedback(S, A) # take action & get next state

and reward
 q_predict = q_table.ix[S, A]
 if S_ != 'terminal':
 �q_target = R + GAMMA * q_table.iloc[S_, :].max() # next

state is not terminal
 else:
 q_target = R # next state is terminal
 is_terminated = True # terminate this episode

 q_table.ix[S, A] += ALPHA * (q_target - q_predict) # update
 S = S_ # move to next state

 update_env(S, episode, step_counter+1)
 step_counter += 1
 return q_table

if __name__ == "__main__":
 q_table = rl()
 print('\r\nQ-table:\n')
 print(q_table)

Chapter 2 ■ RL Theory and Algorithms

46

Let’s now run the program and analyze the output. You need to get inside the cloned
GitHub repo and into the required folder, as shown in Figure 2-33.

Now you need to get inside the directory to run the program, as shown in Figure 2-34.

Now you have to run the program called treasure_on_right.py, which places the
treasure to the right of the agent. See Figure 2-35.

Figure 2-33.  Getting inside the cloned repo

Figure 2-34.  Checking the directory

Chapter 2 ■ RL Theory and Algorithms

47

The program is running iterations, as shown in Figure 2-36.

As the program and the simulation complete, the final result is interpreted as a
Q table, where on each step of completing the cycle, the values reflect how much time
it spent in the left and right directions. Figure 2-37 shows the completed Q table.

What Is MDP?
MDP (Markov Decision Process) is a framework that involves creating mathematical
formulas and models for decision making where part of it is random and part of it
remains in the hands of a decision maker.

Figure 2-35.  Running the Python file

Figure 2-36.  As the iteration happens

Figure 2-37.  The Q table created as a result

Chapter 2 ■ RL Theory and Algorithms

48

MDPs have many different applications, as shown in Figure 2-38.

Every state in MDP satisfies the Markov property.

The Markov Property
In the world of Reinforcement Learning, the Markov property refers to a memory-less
property that is stochastic. Stochastic means a general mathematical object consisting of
random variables. When we are not storing a value of a variable because in each iteration
there is a change, we call it stochastic. See Figure 2-39.

We talk about the Markov Chain in the next section.

Figure 2-38.  MDP and its applications

Figure 2-39.  The Markov property process

Chapter 2 ■ RL Theory and Algorithms

49

The Markov Chain
If a mathematical property has either a discrete state space or a discrete index set, it is
known as a Markov Chain. The Markov Chain works in two ways, as shown in Figure 2-40.

Let’s look at Markov Chains using an example. This example compares sales of Rin
detergent versus the other detergents in the market. Assume that sales of Rin is 20 percent
of the total detergent sales, which means the rest comprise 80 percent. People who use
Rin detergent are defined as A; the others are A¢.

Now we define a rule. Of the people who use Rin detergent, 90% of them continue to
use it after a week whereas 10% shift to another brand.

Similarly, 70% of the people who use another detergent shift to Rin after a week, and
the rest continue to use the other detergent.

Figure 2-40.  Markov Chain

Chapter 2 ■ RL Theory and Algorithms

50

To analyze these conditions, we need a state diagram. See Figure 2-41.

In the state diagram, we have created a scenario where the circular points represent
states. From this state diagram, we have to assign a transition probability matrix.

The transition probability matrix we get from the state diagram is shown in Figure 2-42.

Figure 2-41.  Rin detergent state diagram

Figure 2-42.  The transition probability matrix

Chapter 2 ■ RL Theory and Algorithms

51

To determine the use of Rin after two weeks, we have to apply a principle. This
principle is common for each and every process you try.

It can be shown as a line connection, as shown in Figure 2-43.

From the origin, we have two paths—one for Rin detergent (through A) and the other
for the rest (that is A¢). Here is how the path is created.

	 1.	 From the origin, we create a path for A, so we have to focus on
the transition probability matrix.

	 2.	 We trace the path of A.

	 3.	 From the starting market share, the detergent Rin has a
market value of 20%.

	 4.	 From the starting point A, we focus on the transition
probability matrix.

There is a 90% probability of staying on A, so the other 10% change to the alternate
path (to A¢).

Figure 2-43.  A connected graph

Chapter 2 ■ RL Theory and Algorithms

52

Figure 2-44 shows this path calculation graphically.

The total path probability is determined as so: P = .2 *.9 + .8*.7 = .18 + .56 = .74.
This is the percentage of people using Rin after one week.
This formula can also be conceptualized as the current market share (SO) and

transition probability (P):

S0 * P = market share after one week
See Figure 2-45.

Figure 2-44.  Path calculation

Figure 2-45.  The matrix created for the next week

Chapter 2 ■ RL Theory and Algorithms

53

The calculation is .2 * .9 + .8*.7 = .74
.2*.1 + .8*.3 =.26
[.74 .26] = S1

Let’s work on a first state matrix. After one week, the sale of Rin detergent is 74% of
the market. The other brands then make up 26% of the market.

Now try to find the percentage of people using Rin detergent after two weeks.
Figure 2-46 shows the calculation that we need to do after two weeks.

So the result is:

A A’
= [.848 .152]

After two weeks, 84.8% of the people will use Rin and 15.2% will use other detergents.
One question you might have is whether the sale of Rin will ever maximize to 100%

of the market. As we go along, the matrix will become stationary after a certain number of
iterations and finally settle at:

A A’
= [.75 .25]

After going through the basics of the Markov state and the Markov Chain, it’s time to
focus on MDPs again.

MDPs
Almost all Reinforcement Learning problems can be formalized as MDPs. MDPs create a
condition that’s prevalent for applying Reinforcement Learning. The essentials of MDPs
are a continued Markov process.

Figure 2-46.  The next transition matrix

Chapter 2 ■ RL Theory and Algorithms

54

A state (St) is Markov if and only if it meets the criteria shown in Figure 2-47.

The state captures all relevant information from the history. We do not have to retain
everything in history because only the previous state determines what will happen now.

For a Markov state (s) and successor state (s’), the state transition probability is
defined in Figure 2-48.

MDP is a Markov reward process with a decision factor in it. It is a type of
environment where all the states are Markov.

An MDP is a five tuple < S, A, P, R, Gamma>:

•	 S stands for state

•	 A stands for action

•	 P is a policy

•	 R stands for reward

Policy (π) is a distribution over actions in a given state. A policy is a function or a
decision-making process that allows transitions from one state to another.

SARSA
SARSA stands for State Action Reward next State and next Action. It is a different kind
of Reinforcement Learning approach and is generally derived from temporal difference
learning. We’ll discuss temporal difference learning first.

Temporal Difference Learning
This type of learning is based on its own vicinity or its own range. We generally apply
temporal difference learning when we are in a state and want to know what is happening
in successive states.

Figure 2-47.  The Markov state property

Figure 2-48.  The transitive probability

Chapter 2 ■ RL Theory and Algorithms

55

The general idea is that we want to predict the best path over a period of time.
We go from state S0 to state SF. We get rewards in each state. We will be trying to

predict the discounted sum of rewards. See Figure 2-49.

We start by looking at the Markov Chain, as shown in Figure 2-50.

The equation states that the value function maps the state to some number. This
number is set to 0 if it is in the final state (see Figure 2-51).

Figure 2-49.  State transition

Figure 2-50.  The Markov Chain

Figure 2-51.  The value function

Chapter 2 ■ RL Theory and Algorithms

56

For any state, the value is the expected value of the reward (r) and the discounted
value of the ending state.

How SARSA Works
Now we get into SARSA. SARSA is known as an own policy Reinforcement Learning. An
own policy means that we can see only our own experiences.

It accumulates updates in one or more steps and learns to update from its
experiences.

From the current state, we choose an action and then get to the next state. At the next
state, we choose another state and use the current state and the current action with the
next state and next action. We then update all the values together as a Q value.

Here is the algorithm:

	 1.	 Initialize Q(s, a) arbitrarily.

	 2.	 Initialize s.

	 3.	 Choose a from s using the policy derived from Q. Repeat these
two steps for each episode.

	 4.	 Take action a and observe r and s’.

	 5.	 Choose a’ from s’ using the policy derived from Q (for
example, ----E-greedy).

Q(s, a) ß----- Q(s, a) + α[r +γQ(s', a') - Q(s,a)]
Sß---s'; aß-- a';

	 6.	 Repeat these steps for each episode until s is terminal.

Q Learning
Q Learning is a model-free Reinforcement Learning technique. Figure 2-52 illustrates the
general procedure for Q Learning.

Chapter 2 ■ RL Theory and Algorithms

57

What Is Q?
Q can be stated as a function that consists of two parameters—s and a. The a parameter
can also be referred to as a table.

Q represents the value that an action a takes with state s.

Q[s, a] = Immediate reward + discounted reward

The immediate reward is the point given when the agent moves from one state to
another while doing an action.

The discounted reward is the point given for future references.

How to Use Q
We generally come up with scenarios where we have to find out where we can utilize the
Q table values or the Q value so Q is implemented in this process.

We are looking at what action to take or which policy to implement when we are in
state s. We use the Q table to get the best result.

Figure 2-52.  The Q Learning process

Chapter 2 ■ RL Theory and Algorithms

58

If we are in state s, we need to determine which action is the best. We do not change
s, but we go through all the values of a and determine which one is the largest. That
will be the action we should take. Mathematically, this idea is represented as shown in
Figures 2-53 and 2-54.

For MDP, the policy we should implement depends on the current state. We
maximize the rewards to get the optimal solution.

SARSA Implementation in Python
Recall that SARSA is as self policy Reinforcement Learning approach.

Figure 2-53.  The policy equation

Figure 2-54.  How policy works

Chapter 2 ■ RL Theory and Algorithms

59

For example, SARSA can be used to solve a maze. Using the SARSA approach, we
cannot compare two different maze environments. We have to stick to one maze and we’ll
use the previous as an example. Also, we cannot compare this maze with another outside
maze; we have to stick to the maze that we are working on.

The best thing about SARSA is that it can learn from the current state compared to
the next state or to subsequent states. We accumulate all the experiences and learn from
them.

Let’s break this idea down more. This scenario states that the update can be done
on a Q table by comparing the changes in subsequent steps and then making a decision.
This idea is illustrated in Figure 2-55.

Figure 2-55.  Updating results using the SARSA table

Chapter 2 ■ RL Theory and Algorithms

60

The learning method in Python is different for SARSA. It looks like this:

def learn(self, s, a, r, s_, a_)

This method depends on the state, the action, the reward, the next state, and the next
action.

If we compare the algorithm and convert it to Python, the construct for this equation
is shown in Figure 2-56.

It’s converted to the following:

q_target = r + self.gamma * self.q_table.ix [s_, a_]

The difference between this equation and Q Learning is the change in this equation:

q_target = r + self.gamma * self.q_table.ix [s_, :].max()

The max() value is present in Q Learning but not in SARSA.
The logic for implementing a policy using SARSA is shown here:

on-policy
class SarsaTable(RL):

 �def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_
greedy=0.9):

 �super(SarsaTable, self).__init__(actions, learning_rate, reward_
decay, e_greedy)

 def learn(self, s, a, r, s_, a_):
 self.check_state_exist(s_)
 q_predict = self.q_table.ix[s, a]
 if s_ != 'terminal':
 �q_target = r + self.gamma * self.q_table.ix[s_, a_] # next

state is not terminal
 else:
 q_target = r # next state is terminal
 self.q_table.ix[s, a] += self.lr * (q_target - q_predict) # update

The learning process is somewhat different than with Q Learning. The logic works
according to the principle discussed previously.

Figure 2-56.  The SARSA equation

Chapter 2 ■ RL Theory and Algorithms

61

We combine the state and action of the current status with the next state and next
action. This in turn updates the Q table. This is the way the learning works.

def update():
 for episode in range(100):
 # initial observation
 observation = env.reset()

 # RL choose action based on observation
 action = RL.choose_action(str(observation))

 while True:
 # fresh env
 env.render()

 # RL take action and get next observation and reward
 observation_, reward, done = env.step(action)

 # RL choose action based on next observation
 action_ = RL.choose_action(str(observation_))

 # RL learn from this transition (s, a, r, s, a) ==> Sarsa
 �RL.learn(str(observation), action, reward, str(observation_),

action_)

 # swap observation and action
 observation = observation_
 action = action_

 # break while loop when end of this episode
 if done:
 break

Here is the code for creating the maze:

import numpy as np
import time
import sys
if sys.version_info.major == 2:
 import Tkinter as tk
else:
 import tkinter as tk

UNIT = 40 # pixels
MAZE_H = 4 # grid height
MAZE_W = 4 # grid width

Chapter 2 ■ RL Theory and Algorithms

62

class Maze(tk.Tk, object):
 def __init__(self):
 super(Maze, self).__init__()
 self.action_space = ['u', 'd', 'l', 'r']
 self.n_actions = len(self.action_space)
 self.title('maze')
 self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT))
 self._build_maze()

 def _build_maze(self):
 self.canvas = tk.Canvas(self, bg='white',
 height=MAZE_H * UNIT,
 width=MAZE_W * UNIT)

 # create grids
 for c in range(0, MAZE_W * UNIT, UNIT):
 x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
 self.canvas.create_line(x0, y0, x1, y1)
 for r in range(0, MAZE_H * UNIT, UNIT):
 x0, y0, x1, y1 = 0, r, MAZE_H * UNIT, r
 self.canvas.create_line(x0, y0, x1, y1)

 # create origin
 origin = np.array([20, 20])

 # hell
 hell1_center = origin + np.array([UNIT * 2, UNIT])
 self.hell1 = self.canvas.create_rectangle(
 hell1_center[0] - 15, hell1_center[1] - 15,
 hell1_center[0] + 15, hell1_center[1] + 15,
 fill='black')
 # hell
 hell2_center = origin + np.array([UNIT, UNIT * 2])
 self.hell2 = self.canvas.create_rectangle(
 hell2_center[0] - 15, hell2_center[1] - 15,
 hell2_center[0] + 15, hell2_center[1] + 15,
 fill='black')

 # create oval
 oval_center = origin + UNIT * 2
 self.oval = self.canvas.create_oval(
 oval_center[0] - 15, oval_center[1] - 15,
 oval_center[0] + 15, oval_center[1] + 15,
 fill='yellow')

Chapter 2 ■ RL Theory and Algorithms

63

 # create red rect
 self.rect = self.canvas.create_rectangle(
 origin[0] - 15, origin[1] - 15,
 origin[0] + 15, origin[1] + 15,
 fill='red')

 # pack all
 self.canvas.pack()

 def reset(self):
 self.update()
 time.sleep(0.5)
 self.canvas.delete(self.rect)
 origin = np.array([20, 20])
 self.rect = self.canvas.create_rectangle(
 origin[0] - 15, origin[1] - 15,
 origin[0] + 15, origin[1] + 15,
 fill='red')
 # return observation
 return self.canvas.coords(self.rect)

 def step(self, action):
 s = self.canvas.coords(self.rect)
 base_action = np.array([0, 0])
 if action == 0: # up
 if s[1] > UNIT:
 base_action[1] -= UNIT
 elif action == 1: # down
 if s[1] < (MAZE_H - 1) * UNIT:
 base_action[1] += UNIT
 elif action == 2: # right
 if s[0] < (MAZE_W - 1) * UNIT:
 base_action[0] += UNIT
 elif action == 3: # left
 if s[0] > UNIT:
 base_action[0] -= UNIT

 �self.canvas.move(self.rect, base_action[0], base_action[1]) # move
agent

 s_ = self.canvas.coords(self.rect) # next state

 # reward function
 if s_ == self.canvas.coords(self.oval):
 reward = 1
 done = True
 �elif s_ in [self.canvas.coords(self.hell1), self.canvas.coords

(self.hell2)]:

Chapter 2 ■ RL Theory and Algorithms

64

 reward = -1
 done = True
 else:
 reward = 0
 done = False

 return s_, reward, done

 def render(self):
 time.sleep(0.1)
 self.update()

The Entire Reinforcement Logic in Python
When you are implementing the algorithm in Python, the structure looks like the
following. The content is in the repo.

import numpy as np
import pandas as pd

class RL(object):
 �def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9,

e_greedy=0.9):
 self.actions = action_space # a list
 self.lr = learning_rate
 self.gamma = reward_decay
 self.epsilon = e_greedy

 self.q_table = pd.DataFrame(columns=self.actions)

 def check_state_exist(self, state):
 if state not in self.q_table.index:
 # append new state to q table
 self.q_table = self.q_table.append(
 pd.Series(
 [0]*len(self.actions),
 index=self.q_table.columns,
 name=state,
)
)

 def choose_action(self, observation):
 self.check_state_exist(observation)
 # action selection
 if np.random.rand() < self.epsilon:
 # choose best action

Chapter 2 ■ RL Theory and Algorithms

65

 state_action = self.q_table.ix[observation, :]
 �state_action = state_action.reindex(np.random.permutation(state_

action.index)) # some actions have the same value
 action = state_action.argmax()
 else:
 # choose random action
 action = np.random.choice(self.actions)
 return action

 def learn(self, *args):
 Pass

off-policy
class QLearningTable(RL):
 �def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_

greedy=0.9):
 �super(QLearningTable, self).__init__(actions, learning_rate, reward_

decay, e_greedy)

 def learn(self, s, a, r, s_):
 self.check_state_exist(s_)
 q_predict = self.q_table.ix[s, a]
 if s_ != 'terminal':
 �q_target = r + self.gamma * self.q_table.ix[s_, :].max() # next

state is not terminal
 else:
 q_target = r # next state is terminal
 self.q_table.ix[s, a] += self.lr * (q_target - q_predict) # update

on-policy
class SarsaTable(RL):

 �def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_
greedy=0.9):

 �super(SarsaTable, self).__init__(actions, learning_rate, reward_
decay, e_greedy)

 def learn(self, s, a, r, s_, a_):
 self.check_state_exist(s_)
 q_predict = self.q_table.ix[s, a]
 if s_ != 'terminal':
 �q_target = r + self.gamma * self.q_table.ix[s_, a_] # next

state is not terminal
 else:
 q_target = r # next state is terminal
 self.q_table.ix[s, a] += self.lr * (q_target - q_predict) # update

Chapter 2 ■ RL Theory and Algorithms

66

The learning process in its entirety looks like this in the code (RL_brain.py):

from maze_env import Maze
from RL_brain import SarsaTable

def update():
 for episode in range(100):
 # initial observation
 observation = env.reset()

 # RL choose action based on observation
 action = RL.choose_action(str(observation))

 while True:
 # fresh env
 env.render()

 # RL take action and get next observation and reward
 observation_, reward, done = env.step(action)

 # RL choose action based on next observation
 action_ = RL.choose_action(str(observation_))

 # RL learn from this transition (s, a, r, s, a) ==> Sarsa
 �RL.learn(str(observation), action, reward, str(observation_),

action_)

 # swap observation and action
 observation = observation_
 action = action_

 # break while loop when end of this episode
 if done:
 break

 # end of game
 print('game over')
 env.destroy()

if __name__ == "__main__":
 env = Maze()
 RL = SarsaTable(actions=list(range(env.n_actions)))

 env.after(100, update)
 env.mainloop()

Chapter 2 ■ RL Theory and Algorithms

67

Let’s run the program and check it.
You can do this in the Anaconda environment, as shown in Figure 2-57.

You then have to consider the SARSA maze, as shown in Figure 2-58.

Now you have to call the run_this.py file to get the program running, as shown in
Figure 2-59.

Figure 2-57.  Activating the environment

Figure 2-58.  Considering the SARSA maze

Figure 2-59.  Running run_this.py

Chapter 2 ■ RL Theory and Algorithms

68

To run the program from the terminal, use this command:

python run_this.py

After running the code, the program will play the maze, as shown in Figure 2-60.

Dynamic Programming in Reinforcement
Learning
Problems that are sequential or temporal can be solved using dynamic programming.
If you have a complex problem, you have to break it down into subproblems. Dynamic
programming is the process of breaking a problem into subproblems, solving those
subproblems, and finally combining them to solve the overall problem. The optimal
substructure and the principle of optimality apply. The solution can be cached and
reused. See Figure 2-61.

Figure 2-60.  The program playing maze

Chapter 2 ■ RL Theory and Algorithms

69

Conclusion
This chapter went through different algorithms related to Reinforcement Learning. You
also saw a simple example of Reinforcement Learning using Python. You then learned
about SARSA with the help of an example in Python. The chapter ended by discussing
dynamic programming basics.

Figure 2-61.  Dynamic problem-solving approach

71© Abhishek Nandy and Manisha Biswas 2018
A. Nandy and M. Biswas, Reinforcement Learning,
https://doi.org/10.1007/978-1-4842-3285-9_3

CHAPTER 3

OpenAI Basics

This chapter introduces the world of OpenAI and uses it in relation to Reinforcement
Learning.

First, we go through environments that are important to Reinforcement Learning. We
talk about two supportive platforms that are useful for Reinforcement Learning—Google
DeepMind and OpenAI, the latter of which is supported by Elon Musk. The completely
open sourced OpenAI is discussed in this chapter and Google DeepMind is discussed in
Chapter 6.

The chapter first covers OpenAI basics and then moves toward describing them and
discusses the OpenAI Gym and OpenAI Universe environments. Then we cover installing
OpenAI Gym and OpenAI Universe on the Ubuntu and Anaconda distributions. Finally, we
discuss using OpenAI Gym and OpenAI Universe for the purpose of Reinforcement Learning.

Getting to Know OpenAI
To start, you need to access the OpenAI web site at https://openai.com/.

The web site is shown in Figure 3-1.

Figure 3-1.  The OpenAI web site

https://doi.org/10.1007/978-1-4842-3285-9_3
http://dx.doi.org/10.1007/978-1-4842-3285-9_6
https://openai.com/

Chapter 3 ■ OpenAI Basics

72

The OpenAI web site is full of content and resources. It has lots of resources for you
to learn and research accordingly. Let’s see schematically how OpenAI Gym and OpenAI
Universe are connected. See Figure 3-2.

Figure 3-2 shows how OpenAI Gym and OpenAI Universe are connected, by using
their icons.

The OpenAI Gym page of the web site is shown in Figure 3-3.

OpenAI Gym is a toolkit that helps you run simulation games and scenarios to
apply Reinforcement Learning as well as to apply Reinforcement Learning algorithms. It
supports teaching agents for doing lots of activities, such as playing, walking, etc.

Figure 3-2.  OpenAI Gym and OpenAI Universe

Figure 3-3.  OpenAI Gym web site

Chapter 3 ■ OpenAI Basics

73

The OpenAI Universe web site is shown in Figure 3-4.

OpenAI Universe is a software platform that measures and trains an AI’s general
intelligence across different kinds of games and applications.

Installing OpenAI Gym and OpenAI Universe
In this section, you learn how to install OpenAI Gym and OpenAI Universe in an Ubuntu
machine using version 16.04.

Go into the Anaconda environment to install OpenAI Gym from GitHub. See
Figure 3-5.

You can clone and install OpenAI Gym from GitHub using this command:

$ source activate universe
(universe) $ cd ~
(universe) $ git clone https://github.com/openai/gym.git
(universe) $ cd gym
(universe) $ pip install -e '.[all]'

Figure 3-4.  The OpenAI Universe web site

Figure 3-5.  Cloning OpenAI Gym

Chapter 3 ■ OpenAI Basics

74

Now install OpenAI Universe as follows:

(universe) $ cd ~
(universe) $ git clone https://github.com/openai/universe.git
(universe) $ cd universe
(universe) $ pip install -e

The packages are being installed. Figure 3-6 shows the cloning process for OpenAI
Universe.

The entire process, with all the important files, is downloaded, as shown in Figure 3-7.

Figure 3-6.  Cloning OpenAI Universe

Figure 3-7.  Important steps of the installation process

Figure 3-8.  More steps of the installation process

The process installation continues, as shown in Figure 3-8.

Chapter 3 ■ OpenAI Basics

75

In the next section, you learn how to start working in the OpenAI Gym and OpenAI
environment.

Working with OpenAI Gym and OpenAI
The OpenAI cycle for a sample process is shown in Figure 3-9.

Figure 3-9.  The basic OpenAI Gym structure

Chapter 3 ■ OpenAI Basics

76

The process works this way. We are dealing with a simple Gym project. The language
of choice here is Python, but we are more focused on the logic of how an environment is
being utilized.

	 1.	 We import the Gym library.

	 2.	 We create an instance of the simulation to perform using the
make function.

	 3.	 We reset the simulation so that the condition that we are going
to apply can be realized.

	 4.	 We do looping and then render.

The output is a simulated result of the environment using OpenAI Reinforcement
Learning techniques.

The program using Python is shown here, whereby we are using the cart-pole
simulation example:

import gym
 env = gym.make('CartPole-v0')
env.reset()
for _ in range(1000):
env.render()
env.step(env.action_space.sample()) # take a random action

The program that we created runs from the terminal; we can also run the program on
a jupyter notebook. Jupyter notebook is a special place where you can run Python code
very easily.

To use the properties or the file structure of OpenAI, you need to be in the universe
directory, as shown in Figure 3-10.

Figure 3-10.  Inside the universe directory

Chapter 3 ■ OpenAI Basics

77

To work with the Gym components, you need to get inside the gym directory, as
shown in Figure 3-11.

You then need to open the jupyter notebook. Enter this command from the terminal
to open the jupyter notebook (see Figure 3-12):

jupyter notebook

Figure 3-11.  Inside the gym directory

Chapter 3 ■ OpenAI Basics

78

When you issue the command, the jupyter notebook engine side-loads essential
components so that everything related to the jupyter notebook is loaded, as shown in
Figure 3-13.

Figure 3-12.  Using the jupyter notebook

Figure 3-13.  The essential components of jupyter notebooks

Chapter 3 ■ OpenAI Basics

79

Once the jupyter notebook is loaded, you will see that the interface has an option for
working with Python files. The type of distribution you have for Python is shown in the
interface. Figure 3-14 shows that Python 3 is installed in this case.

You can now start working with the Gym interface and start importing Gym libraries,
as shown in Figure 3-15.

The process continues until the program flow is completed. Figure 3-16 shows the
process flow.

Figure 3-14.  Opening a new Python file

Figure 3-15.  Working with Gym inside the jupyter notebook

Chapter 3 ■ OpenAI Basics

80

After being reset, the environment shows an array, as shown in Figure 3-17.

Figure 3-16.  The flow of the program

Figure 3-17.  An array is being created

Chapter 3 ■ OpenAI Basics

81

Figure 3-18 shows the simulation. The cart-pole shifts by a margin that’s reflected by
the array’s values.

More Simulations
This section shows you how to try different simulations. There are many different
environment types in OpenAI. One of them is the logarithmic type, discussed next.

There is variety of tasks involved in algorithms. Run this code to include the
environment in the jupyter notebook (see Figure 3-19):

import gym
env = gym.make('Copy-v0')
env.reset()
env.render()

Figure 3-18.  The simulation in action

Figure 3-19.  Including the environment in the jupyter notebook

Chapter 3 ■ OpenAI Basics

82

The output looks like Figure 3-20. The prime motive for this simulation is to copy
symbols from an input sequence.

This section uses an example of classic arcade games. First, open the required
Anaconda environment using the following command:

source activate universe

Then go to the appropriate directory, say gym:

cd gym

From the terminal, start the jupyter notebook using this command:

jupyter notebook

This enables you to start working with the Python option. Figure 3-21 shows the
process using the classic arcade games.

Figure 3-20.  The output after running the render function

Figure 3-21.  Using classic arcade games

Chapter 3 ■ OpenAI Basics

83

After using env.reset(), an array is generated, as shown in Figure 3-22.

Figure 3-22.  The array is being created

Chapter 3 ■ OpenAI Basics

84

If you use env.render(), you’ll generate the output shown in Figure 3-23.

This example is simply simulating different kinds of game environments and setting
them up for Reinforcement Learning.

Here is the code to simulate the Space Invaders game:

import gym
env = gym.make('SpaceInvaders-v0')
env.reset()
env.render()

In the next section, you will learn how to work with OpenAI Universe.

OpenAI Universe
In this example, you will be using the jupyter notebook to simulate a game environment
and then will apply Reinforcement Learning to it. Go to the universe directory and start
the jupyter notebook.

import gym
import universe # register the universe environments

env = gym.make('flashgames.DuskDrive-v0')

Figure 3-23.  Rendering the output

Chapter 3 ■ OpenAI Basics

85

env.configure(remotes=1) # automatically creates a local docker container
observation_n = env.reset()

while True:
 �action_n = [[('KeyEvent', 'ArrowUp', True)] for ob in observation_n] #
your agent here

 observation_n, reward_n, done_n, info = env.step(action_n)
 env.render()

Figure 3-24 shows the code needed to set up the environment for the DuskDrive
game.

Now it will access the image and start the image remotely. It will run the game and
start playing remotely with the help of an agent. See Figure 3-25.

Figure 3-24.  Setting up the environment for the DuskDrive game

Chapter 3 ■ OpenAI Basics

86

First, you import the gym library, which is the base on which OpenAI Universe is
built. You also must import universe, which registers all the Universe environments.

You import the gym library, as you will simulate on OpenAI Gym and Universe:

import gym
import universe # register the universe environments

After that, you create an environment for loading the Flash game that will be
simulated (in this case, the DuskDrive game).

env = gym.make('flashgames.DuskDrive-v0')
env = gym.make('flashgames.DuskDrive-v0')

You call configure, which creates a dockerized environment for running the
simulation locally.

env.configure(remotes=1)

Figure 3-25.  The game played by the agent

https://github.com/openai/gym
https://github.com/openai/universe/blob/master/universe/__init__.py

Chapter 3 ■ OpenAI Basics

87

You then call Env.reset () to instantiate the proper simulation environment
asynchronously

observation_n = env.reset()

You then define the keyEvent and Arrowup actions to move the car in the simulated
environment:

action_n = [[('KeyEvent', 'ArrowUp', True)] for ob in observation_n]

To get rewards and to check the status of the episodes, you use the following code
and render accordingly.

observation_n, reward_n, done_n, info = env.step(action_n)
env.render()

Conclusion
This chapter explained the details of OpenAI. First, it described OpenAI in general and
then described OpenAI Gym and OpenAI Universe.

We touched on installing OpenAI Gym and OpenAI Universe and then started
coding for them using the Python language. Finally, we looked at some examples of both
OpenAI Gym and OpenAI Universe.

89© Abhishek Nandy and Manisha Biswas 2018
A. Nandy and M. Biswas, Reinforcement Learning,
https://doi.org/10.1007/978-1-4842-3285-9_4

CHAPTER 4

Applying Python to
Reinforcement Learning

This chapter explores the world of Reinforcement Learning in terms of Python. First
we go through Q learning with Python and then cover a more in-depth analysis of
Reinforcement Learning. We start off by going through Q learning in terms of Python.
Then we describe Swarm intelligence in Python, with an introduction to what exactly
Swarm intelligence is. The chapter also covers the Markov decision process (MDP)
toolbox.

Finally, you will be implementing a Game AI and will apply Reinforcement Learning
to it. The chapter will be a good experience, so let’s begin!

Q Learning with Python
Let’s start with a maze problem. The object of the game is to reach the yellow circle while
avoiding the black squares. Figure 4-1 shows the maze. We use the numpy library in this
example.

https://doi.org/10.1007/978-1-4842-3285-9_4

Chapter 4 ■ Applying Python to Reinforcement Learning

90

We have to choose an action based on the Q table, which is why we have the function
called choose_action. When we want to move from one state to another, we apply the
decision-making process to the choose_action method as follows.

def choose_action(self,observation):

The learning process function takes the transition from state, award, reward and goes
to the next state.

def check_State_exist(self,state)

The check_State_exist function allows us to check if the state exists and then to
append it to the Q table if it does.

The content of the function we have discussed is actually for RL_brain, which
is the basis of the project. The rules are updated for Q learning, as shown in the run
_this.py file.

Figure 4-1.  The maze that demonstrates Q learning

Chapter 4 ■ Applying Python to Reinforcement Learning

91

The Maze Environment Python File
The maze environment Python file, shown here, lists all the concepts for making moves.
We declare rewards as well as ability to take the next step.

"""
Reinforcement learning maze example.

Red rectangle: explorer.
Black rectangles: hells [reward = -1].
Yellow bin circle: paradise [reward = +1].
All other states: ground [reward = 0].

This script is the environment part of this example. The RL is in RL_brain.
py.

View more on my tutorial page: https://morvanzhou.github.io/tutorials/
"""

import numpy as np
import time
import sys
if sys.version_info.major == 2:
 import Tkinter as tk
else:
 import tkinter as tk

UNIT = 40 # pixels
MAZE_H = 4 # grid height
MAZE_W = 4 # grid width

class Maze(tk.Tk, object):
 def __init__(self):
 super(Maze, self).__init__()
 self.action_space = ['u', 'd', 'l', 'r']
 self.n_actions = len(self.action_space)
 self.title('maze')
 self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT))
 self._build_maze()

 def _build_maze(self):
 self.canvas = tk.Canvas(self, bg='white',
 height=MAZE_H * UNIT,
 width=MAZE_W * UNIT)

Chapter 4 ■ Applying Python to Reinforcement Learning

92

 # create grids
 for c in range(0, MAZE_W * UNIT, UNIT):
 x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
 self.canvas.create_line(x0, y0, x1, y1)
 for r in range(0, MAZE_H * UNIT, UNIT):
 x0, y0, x1, y1 = 0, r, MAZE_H * UNIT, r
 self.canvas.create_line(x0, y0, x1, y1)

 # create origin
 origin = np.array([20, 20])

 # hell
 hell1_center = origin + np.array([UNIT * 2, UNIT])
 self.hell1 = self.canvas.create_rectangle(
 hell1_center[0] - 15, hell1_center[1] - 15,
 hell1_center[0] + 15, hell1_center[1] + 15,
 fill='black')
 # hell
 hell2_center = origin + np.array([UNIT, UNIT * 2])
 self.hell2 = self.canvas.create_rectangle(
 hell2_center[0] - 15, hell2_center[1] - 15,
 hell2_center[0] + 15, hell2_center[1] + 15,
 fill='black')

 # create oval
 oval_center = origin + UNIT * 2
 self.oval = self.canvas.create_oval(
 oval_center[0] - 15, oval_center[1] - 15,
 oval_center[0] + 15, oval_center[1] + 15,
 fill='yellow')

 # create red rect
 self.rect = self.canvas.create_rectangle(
 origin[0] - 15, origin[1] - 15,
 origin[0] + 15, origin[1] + 15,
 fill='red')

 # pack all
 self.canvas.pack()

 def reset(self):
 self.update()
 time.sleep(0.5)
 self.canvas.delete(self.rect)
 origin = np.array([20, 20])
 self.rect = self.canvas.create_rectangle(
 origin[0] - 15, origin[1] - 15,
 origin[0] + 15, origin[1] + 15,

Chapter 4 ■ Applying Python to Reinforcement Learning

93

 fill='red')
 # return observation
 return self.canvas.coords(self.rect)

 def step(self, action):
 s = self.canvas.coords(self.rect)
 base_action = np.array([0, 0])
 if action == 0: # up
 if s[1] > UNIT:
 base_action[1] -= UNIT
 elif action == 1: # down
 if s[1] < (MAZE_H - 1) * UNIT:
 base_action[1] += UNIT
 elif action == 2: # right
 if s[0] < (MAZE_W - 1) * UNIT:
 base_action[0] += UNIT

 elif action == 3: # left
 if s[0] > UNIT:
 base_action[0] -= UNIT

 �self.canvas.move(self.rect, base_action[0], base_action[1]) # move
agent

 s_ = self.canvas.coords(self.rect) # next state

 # reward function
 if s_ == self.canvas.coords(self.oval):
 reward = 1
 done = True
 �elif s_ in [self.canvas.coords(self.hell1), self.canvas.coords(self.

hell2)]:
 reward = -1
 done = True
 else:
 reward = 0
 done = False

 return s_, reward, done

 def render(self):
 time.sleep(0.1)
 self.update()

def update():
 for t in range(10):
 s = env.reset()
 while True:

Chapter 4 ■ Applying Python to Reinforcement Learning

94

 env.render()
 a = 1
 s, r, done = env.step(a)
 if done:
 break

if __name__ == '__main__':
 env = Maze()
 env.after(100, update)
 env.mainloop()

The RL_Brain Python File
Now for the RL_brain Python file. We define the Q learning table structure that is
generated while moving from one state to another. In the QLearningTable class, we
structure the way the entire maze learns. We also declare hyperparameters for learning
and determine the rate at which the program learns in the next chunk of code:

import numpy as np

import pandas as pd

class QLearningTable:
 �def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_

greedy=0.9):
 self.actions = actions # a list
 self.lr = learning_rate
 self.gamma = reward_decay
 self.epsilon = e_greedy
 self.q_table = pd.DataFrame(columns=self.actions)

 def choose_action(self, observation):
 self.check_state_exist(observation)
 # action selection
 if np.random.uniform() < self.epsilon:
 # choose best action
 state_action = self.q_table.ix[observation, :]
 �state_action = state_action.reindex(np.random.permutation(state_

action.index)) # some actions have same value
 action = state_action.argmax()
 else:
 # choose random action
 action = np.random.choice(self.actions)
 return action

 def learn(self, s, a, r, s_):
 self.check_state_exist(s_)

Chapter 4 ■ Applying Python to Reinforcement Learning

95

 q_predict = self.q_table.ix[s, a]
 if s_ != 'terminal':
 �q_target = r + self.gamma * self.q_table.ix[s_, :].max() # next

state is not terminal
 else:
 q_target = r # next state is terminal
 self.q_table.ix[s, a] += self.lr * (q_target - q_predict) # update

 def check_state_exist(self, state):
 if state not in self.q_table.index:
 # append new state to q table
 self.q_table = self.q_table.append(
 pd.Series(
 [0]*len(self.actions),
 index=self.q_table.columns,
 name=state,
)
)

Updating the Function
This code segment declares a function that receives updates on the movement in the
maze from one state to another. It also gives out rewards when the player transitions from
one state to another.

from maze_env import Maze

from RL_brain import QLearningTable

def update():
 for episode in range(100):
 # initial observation
 observation = env.reset()

 while True:
 # fresh env
 env.render()

 # RL choose action based on observation
 action = RL.choose_action(str(observation))

 # RL take action and get next observation and reward
 observation_, reward, done = env.step(action)

 # RL learn from this transition
 RL.learn(str(observation), action, reward, str(observation_))

Chapter 4 ■ Applying Python to Reinforcement Learning

96

 # swap observation
 observation = observation_

 # break while loop when end of this episode
 if done:
 break

 # end of game
 print('game over')
 env.destroy()

if __name__ == "__main__":
 env = Maze()
 RL = QLearningTable(actions=list(range(env.n_actions)))

 env.after(100, update)
 env.mainloop()

If you get inside the folder, you’ll see the run_this.py file and can get the output, as
shown in Figure 4-2.

Figure 4-2.  Running the file

Chapter 4 ■ Applying Python to Reinforcement Learning

97

Figure 4-3 shows the code running.

Using the MDP Toolbox in Python
The MDP toolbox provides classes and functions for the resolution of discrete time
Markov decision processes. The list of algorithms that have been implemented includes
backwards induction, linear programming, policy iteration, Q learning, and value
iteration along with several variations.

The following are the features of the MDP toolbox (see Figure 4-4):

•	 Eight MDP algorithms

•	 Fast array manipulation using NumPy

•	 Full sparse matrix support using Scipy’s sparse package

•	 Optional linear programming support using cvxopt

Figure 4-3.  The maze file being run

Chapter 4 ■ Applying Python to Reinforcement Learning

98

Next, you see how to install and configure MDP toolbox for Python. First, switch to
the Anaconda environment, as shown in Figure 4-5.

Figure 4-4.  MDP toolbox features

Figure 4-5.  Activating the Anaconda environment

Chapter 4 ■ Applying Python to Reinforcement Learning

99

Now install the dependencies using this command (see Figure 4-6):

sudo apt-get install python3-numpy python3-scipy liblapack-dev libatlas-
base-dev libgsl0-dev fftw-dev libglpk-dev libdsdp-dev

When it asks you if it should install the dependencies, choose yes, as shown in
Figure 4-7.

Figure 4-6.  Installing the dependencies

Chapter 4 ■ Applying Python to Reinforcement Learning

100

All the dependencies are then installed, as shown in Figure 4-8.

Figure 4-8.  The dependencies are installed

Figure 4-7.  Choose yes to proceed

Chapter 4 ■ Applying Python to Reinforcement Learning

101

Now you can go ahead and install the MDP toolbox, as shown in Figure 4-9.

Figure 4-9.  Installing the MDP toolbox

Chapter 4 ■ Applying Python to Reinforcement Learning

102

The important packages are being installed, as shown in Figure 4-10.

Figure 4-10.  Installing the important packages

Chapter 4 ■ Applying Python to Reinforcement Learning

103

If everything works as expected, you’ll get all the packages installed, as shown in
Figure 4-11.

Figure 4-11.  All the packages have been installed

Chapter 4 ■ Applying Python to Reinforcement Learning

104

Now you need to clone the repo from GitHub (see Figure 4-12):

git clone https://github.com/sawcordwell/pymdptoolbox.git

Figure 4-12.  Cloning the repo

Chapter 4 ■ Applying Python to Reinforcement Learning

105

Switch to the mdptoolbox folder to see the details shown in Figure 4-13.

You now need to switch to Python mode, as shown in Figure 4-14.

Figure 4-13.  Getting inside the folder

Figure 4-14.  Inside Python mode

Chapter 4 ■ Applying Python to Reinforcement Learning

106

We will now use an example to see how the MDP toolbox works. First, import the
MDP example, as shown in Figure 4-15.

A Markov problem assumes that future states depend only on the current state, not
on the events that occurred before. We will set up an example Markov problem using
a discount value of 0.8. To use the built-in examples in the MDP toolbox, you need to
import the mdptoolbox.example and solve it using a value iteration algorithm. Then you’ll
need to check the optimal policy. The optimal policy is a function that allows the state to
transition to the next state with maximum rewards.

You can check the policy with the vi.policy command, as shown in Figure 4-16.

The output for the policy is (0,0,0). The results show the discounted reward for the
implemented policy.

Here is the full program:

import mdptoolbox.example
P, R = mdptoolbox.example.forest()
vi = mdptoolbox.mdp.ValueIteration(P, R, 0.8)
vi.run()
vi.policy # result is (0, 0, 0)

Let’s consider another example. First you need to import the toolbox and the toolbox
example. Using the import example, you are bringing in the built-in examples that are in
the MDP toolbox (see Figure 4-17).

import mdptoolbox, mdptoolbox.example

Figure 4-15.  Importing the modules

Figure 4-16.  Doing operations

Chapter 4 ■ Applying Python to Reinforcement Learning

107

We implemented verbose mode in the previous example so we can display the
current stage and policy transpose.

>>> import mdptoolbox, mdptoolbox.example
>>> P, R = mdptoolbox.example.forest()
>>> fh = mdptoolbox.mdp.FiniteHorizon(P, R, 0.9, 3)
>>> fh.run()
>>> fh.V
array([[2.6973, 0.81 , 0. , 0.],
[5.9373, 3.24 , 1. , 0.],
[9.9373, 7.24 , 4. , 0.]])
>>> fh.policy
array([[0, 0, 0],
[0, 0, 1],
[0, 0, 0]])

The next example is also in verbose mode and each iteration displays the number of
different actions between policy n-1 and n (see Figure 4-18).

Figure 4-17.  Another example of MDP

Chapter 4 ■ Applying Python to Reinforcement Learning

108

We are getting help from the built-in example of MDP, where we are trying to find
the discounted MDP using a value iteration. As is the case with MDP, some of the values
are randomly generated by using rand(10,3) and some of the values are provided by the
decision-making process.

We try to solve an MDP by applying RL with a value iteration in this example:

>>> import mdptoolbox, mdptoolbox.example
>>> P, R = mdptoolbox.example.rand(10, 3)
>>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
>>> pi.run()
>>> P, R = mdptoolbox.example.forest()
>>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
>>> pi.run()
>>> expected = (26.244000000000014, 29.484000000000016, 33.484000000000016)
>>> all(expected[k] - pi.V[k] < 1e-12 for k in range(len(expected)))
 True
8.2. Markov Decision Process (MDP) Toolbox: mdp module 21
Python Markov Decision Process Toolbox Documentation, Release 4.0-b4
>>> pi.policy
(0, 0, 0)

Figure 4-18.  Policy between n-1 and n

Chapter 4 ■ Applying Python to Reinforcement Learning

109

Understanding Swarm Intelligence
Swarm intelligence is an important part of AI. It is the collective behavior of a
decentralized, self-organized system, whether it be natural or artificial.

Swarm intelligence typically consists of a population of simple agents or boids
(artificial life programs) interacting locally with one another and with their environment,
as illustrated in Figure 4-19.

Applications of Swarm Intelligence
Figure 4-20 shows some applications of swarm intelligence.

Figure 4-19.  Swarm intelligence interactions

Chapter 4 ■ Applying Python to Reinforcement Learning

110

Ant-Based Routing
When you are dealing with something similar to telecommunication networks, this is
called ant-based routing. The idea of ant based routing is based on RL, as there is lot of
forward and backward movement along a particular network packet, which can be called
the ant. This results in flooding the entire network.

Crowd Simulations
In the movies, crowd simulations are done with the help of swarm optimization.

Human Swarming
The concept of human swarming is based on the collective usage of different minds to
predict an answer. It’s when all of the brains of different human beings attempt to find a
particular solution to a complex problem. Using collective brains in the form of human
swarming results in more accurate results.

Figure 4-20.  Applications of swarm intelligence

Chapter 4 ■ Applying Python to Reinforcement Learning

111

Swarm Grammars
Swarm grammars are particular characteristics that act as different swarms working
together to get varied results. The results can be similar to art or architecture.

Swarmic Art
Combining different characteristics of swarm behaviors between different species of birds
and fish can lead to swarmic art that shows patterns in swarm behavior.

Before we cover swarm intelligence in more detail, we touch on the Rastrigin
function. Swarm optimization is based on different functions, one of which is the
Rastrigin function, so you need to understand how it works.

The Rastrigin Function
In mathematical optimization problems, the Rastrigin function is a nonconvex function
used as a performance test problem for optimization algorithms.

The formula is shown in Figure 4-21 and Figure 4-22 shows its typical output.

Figure 4-21.  Depiction of the Rastrigin function

Chapter 4 ■ Applying Python to Reinforcement Learning

112

Let’s get started with using the Rastrigin function in Python.

Figure 4-22.  Rastrigin function output

Chapter 4 ■ Applying Python to Reinforcement Learning

113

You need to activate the Anaconda environment first:

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$

Now switch to Python mode:

(universe) abhi@ubuntu:~$ python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

As we start building important libraries, Python will cache them if they are not
created, as shown in Figure 4-23.

The entire flow of the Python program is as follows:

python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from matplotlib import cm
>>> from mpl_toolkits.mplot3d import Axes3D
/home/abhi/anaconda3/envs/universe/lib/python3.5/site-packages/matplotlib/
font_manager.py:280: UserWarning: Matplotlib is building the font cache
using fc-list. This may take a moment.
 'Matplotlib is building the font cache using fc-list. '
>>> import math
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def rastrigin(*X, **kwargs):
... A = kwargs.get('A', 10)

Figure 4-23.  Cache being created

Chapter 4 ■ Applying Python to Reinforcement Learning

114

... return A + sum([(x**2 - A * np.cos(2 * math.pi * x)) for x in X])

...
>>> if __name__ == '__main__':
... X = np.linspace(-4, 4, 200)
... Y = np.linspace(-4, 4, 200)
...
>>> X, Y = np.meshgrid(X, Y)
 File "<stdin>", line 1
 X, Y = np.meshgrid(X, Y)
 ^
IndentationError: unexpected indent
>>>
>>> Z = rastrigin(X, Y, A=10)
 File "<stdin>", line 1
 Z = rastrigin(X, Y, A=10)
 ^
IndentationError: unexpected indent
>>>
>>> fig = plt.figure()
 File "<stdin>", line 1
 fig = plt.figure()
 ^
IndentationError: unexpected indent
>>> ax = fig.gca(projection='3d')
 File "<stdin>", line 1
 ax = fig.gca(projection='3d')
 ^
IndentationError: unexpected indent
>>>
>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.plasma,
linewidth=0, antialiased=False)
 File "<stdin>", line 1
 �ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.plasma,

linewidth=0, antialiased=False)
 ^
IndentationError: unexpected indent
>>> plt.savefig('rastrigin.png')
 File "<stdin>", line 1
 plt.savefig('rastrigin.png')
 ^
IndentationError: unexpected indent
>>> if __name__ == '__main__':
... X = np.linspace(-4, 4, 200)
... Y = np.linspace(-4, 4, 200)
...
>>> X, Y = np.meshgrid(X, Y)
>>> Z = rastrigin(X, Y, A=10)
>>> fig = plt.figure()

Chapter 4 ■ Applying Python to Reinforcement Learning

115

>>> ax = fig.gca(projection='3d')
>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.plasma,
linewidth=0, antialiased=False)
<mpl_toolkits.mplot3d.art3d.Poly3DCollection object at 0x7f79cfc73780>
>>> plt.savefig('rastrigin.png')
>>>

If you go back to the folder, you can see that the rastrigin.png file was created, as
shown in Figure 4-24.

The rastrigin.png file’s output from the problem shows the minima, as shown in
Figure 4-25. It is very difficult to find the global optimum.

Figure 4-24.  Rastrigin function PNG file being saved

Chapter 4 ■ Applying Python to Reinforcement Learning

116

Swarm Intelligence in Python
This section looks at a program in Python that works with the concept of swarm
intelligence. You will therefore get to know particle swarm optimization (PSO) within
Python. You can achieve this with the help of a research toolkit known as PySwarms.

PySwarms is a good tool to implement optimization algorithms with the PSO
method, such as:

•	 Star topology

•	 Ring topology

First, you need to install PySwarms. Get inside the terminal and activate the
Anaconda environment using the following command.

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$

The dependencies prior to installing PySwarms are as follows:

numpy >= 1.13.0
scipy >= 0.17.0
matplotlib >= 1.3.1

Figure 4-25.  The Rastrigin function PNG file

Chapter 4 ■ Applying Python to Reinforcement Learning

117

Now install PySwarms as follows:

(universe) abhi@ubuntu:~$ pip install pyswarms

Now the process is complete.
Figure 4-26 shows that PySwarms is completely installed.

Now we move to Python mode.

(universe) abhi@ubuntu:~$ python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

First, you need to import the PySwarms utilities as follows:

>>> import pyswarms as ps

There are different functions that you can use in PySwarms for that you have to
import:

>>> from pyswarms.utils.functions import single_obj as fx

Figure 4-26.  PySwarms are installed

Chapter 4 ■ Applying Python to Reinforcement Learning

118

Next, you need to declare these hyperparameters:

>>> options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}

In this case, we are configuring the swarm as a dictionary, so call it a dictionary.
In the next step, you create the instance of the optimizer by passing the dictionary

with the necessary arguments.

>>> optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2,
options=options)

After that, call the optimizer method and store the optimal cost and position after
optimization. Figure 4-27 shows the results.

After going through the results, you can see that optimizer was able to find a good
minima.

You will now do the same using the local best PSO. You configure and similarly
declare a dictionary as follows:

>>> options = {'c1': 0.5, 'c2': 0.3, 'w':0.9, 'k': 2, 'p': 2}

Create the instance of the optimizer:

>>> optimizer = ps.single.LocalBestPSO(n_particles=10, dimensions=2,
options=options)

Figure 4-27.  Showing the result

Chapter 4 ■ Applying Python to Reinforcement Learning

119

Now you call the optimize method to store the value as you did before.
By using the verbose argument, you can control the verbosity of the argument and

use print_step to count after a certain number of steps.

>>> cost, pos = optimizer.optimize(fx.sphere_func, print_step=50,
iters=1000, verbose=3)

The output is shown in Figure 4-28.

Building a Game AI
We have already discussed the game AI with OpenAI Gym and environment simulation,
but we take it further in this section. First, we will clone one of the most important and
simplest examples of game AI, as shown in Figure 4-29.

Figure 4-28.  The output of the swarm optimization

Chapter 4 ■ Applying Python to Reinforcement Learning

120

You first need to set up the environment. The requirements are as follows:

•	 TensorFlow

•	 OpenAI Gym

•	 virtualenv

•	 TFLearn

There is one dependency to install—the virtual environment. You install it using this
command:

conda install -c anaconda virtualenv

It will ask you whether you want to install the new virtualenv package, as shown in
Figure 4-30. Choose yes.

Figure 4-29.  Cloning the repo

Chapter 4 ■ Applying Python to Reinforcement Learning

121

When the package installation is successful and complete, you’ll see the screen in
Figure 4-31.

Figure 4-30.  Getting the virtualenv package

Chapter 4 ■ Applying Python to Reinforcement Learning

122

Now you can install TFLearn using this command:

conda install -c derickl tflearn

When you attempt to install TFLearn, you may get this error about an OS version
mismatch:

conda install -c derickl tflearn
Fetching package metadata
Solving package specifications: .
PackageNotFoundError: Package not found: '' Package missing in current
linux-64 channels:
 - tflearn
You can search for packages on anaconda.org with
 anaconda search -t conda tflearn
(universe) abhi@ubuntu:~$ anaconda search -t conda tflearn
Using Anaconda API: https://api.anaconda.org
Run 'anaconda show <USER/PACKAGE>' to get more details:

Figure 4-31.  Package installation is complete

Chapter 4 ■ Applying Python to Reinforcement Learning

123

Packages:
 Name | Version | Package Types | Platforms
 ------------------------- | ------ | --------------- | -------------
--
 asherp/tflearn | 0.2.2 | conda | osx-64
 contango/tflearn | 0.3.2 | conda | linux-64
 derickl/tflearn | 0.2.2 | conda | osx-64
Found 3 packages

If this happens, be sure to install the one that’s for linux-64:

(universe) abhi@ubuntu:~$ anaconda show contango/tflearn
Using Anaconda API: https://api.anaconda.org
Name: tflearn
Summary:
Access: public
Package Types: conda
Versions:
 + 0.3.2

To install this package with Anaconda, run the following command:

conda install --channel https://conda.anaconda.org/contango tflearn

It will ask for installation of other packages, as shown in Figure 4-32.

Figure 4-32.  Installation of other packages

Chapter 4 ■ Applying Python to Reinforcement Learning

124

Now import the relevant libraries using this command:

(universe) abhi@ubuntu:~$ python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gym
>>> import random
>>> import numpy as np
>>> import tflearn
>>> from tflearn.layers.core import input_data, dropout, fully_connected
>>> from tflearn.layers.estimator import regression
>>> from statistics import median, mean
>>> from collections import Counter
>>> LR = 1e-3
>>> env = gym.make("CartPole-v0")
[2017-09-22 08:22:15,933] Making new env: CartPole-v0
>>> env.reset()
array([-0.03283849, -0.04877971, 0.0408221 , -0.01600674])

The Entire TFLearn Code
To start with, you need to import the important libraries. TFLearn creates the prototyping
so the program can implement RL very quickly.

Add a learning rate. You do this by initializing a simulated environment and then
indicating the movement pattern with the following command:

action = env.action_space.sample()

This example pairs the observation with is the movement of the balanced cart-
pole (moving left or right). In the given problem, the basis of RL is the score that we are
referencing.

After applying the RL, we are training the model with TFLearn, a module for
TensorFlow that’s used to create a fully connected neural network and produce a faster
training process.

import gym
import random
import numpy as np
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
from statistics import median, mean
from collections import Counter
LR = 1e-3
env = gym.make("CartPole-v0")

Chapter 4 ■ Applying Python to Reinforcement Learning

125

env.reset()
goal_steps = 500
score_requirement = 50
initial_games = 10000
def some_random_games_first():
 # Each of these is its own game.
 for episode in range(5):
 env.reset()
 # this is each frame, up to 200...but we wont make it that far.
 for t in range(200):
 # This will display the environment
 # Only display if you really want to see it.
 # Takes much longer to display it.
 env.render()

 # This will just create a sample action in any environment.
 # �In this environment, the action can be 0 or 1, which is left

or right
 action = env.action_space.sample()

 # this executes the environment with an action,
 # and returns the observation of the environment,
 # the reward, if the env is over, and other info.
 observation, reward, done, info = env.step(action)
 if done:
 break

some_random_games_first()
def initial_population():
 # [OBS, MOVES]
 training_data = []
 # all scores:
 scores = []
 # just the scores that met our threshold:
 accepted_scores = []
 # iterate through however many games we want:
 for _ in range(initial_games):
 score = 0
 # moves specifically from this environment:
 game_memory = []
 # previous observation that we saw
 prev_observation = []
 # for each frame in 200
 for _ in range(goal_steps):
 # choose random action (0 or 1)
 action = random.randrange(0,2)
 # do it!
 observation, reward, done, info = env.step(action)

Chapter 4 ■ Applying Python to Reinforcement Learning

126

 # notice that the observation is returned FROM the action
 # so we'll store the previous observation here, pairing
 # the prev observation to the action we'll take.
 if len(prev_observation) > 0 :
 game_memory.append([prev_observation, action])
 prev_observation = observation
 score+=reward
 if done: break
 # IF our score is higher than our threshold, we'd like to save
 # every move we made
 # NOTE the reinforcement methodology here.
 # all we're doing is reinforcing the score, we're not trying
 # to influence the machine in any way as to HOW that score is
 # reached.
 if score >= score_requirement:
 accepted_scores.append(score)
 for data in game_memory:
 # �convert to one-hot (this is the output layer for our

neural network)
 if data[1] == 1:
 output = [0,1]
 elif data[1] == 0:
 output = [1,0]

 # saving our training data
 training_data.append([data[0], output])
 # reset env to play again
 env.reset()
 # save overall scores
 scores.append(score)

 # just in case you wanted to reference later
 training_data_save = np.array(training_data)
 np.save('saved.npy',training_data_save)

 # some stats here, to further illustrate the neural network magic!
 print('Average accepted score:',mean(accepted_scores))
 print('Median score for accepted scores:',median(accepted_scores))
 print(Counter(accepted_scores))

 return training_data
 def neural_network_model(input_size):
 network = input_data(shape=[None, input_size, 1], name='input')
 network = fully_connected(network, 128, activation='relu')
 network = dropout(network, 0.8)
 network = fully_connected(network, 256, activation='relu')
 network = dropout(network, 0.8)
 network = fully_connected(network, 512, activation='relu')

Chapter 4 ■ Applying Python to Reinforcement Learning

127

 network = dropout(network, 0.8)
 network = fully_connected(network, 256, activation='relu')
 network = dropout(network, 0.8)
 network = fully_connected(network, 128, activation='relu')
 network = dropout(network, 0.8)
 network = fully_connected(network, 2, activation='softmax')
 �network = regression(network, optimizer='adam', learning_rate=LR,

loss='categorical_crossentropy', name='targets')
 model = tflearn.DNN(network, tensorboard_dir='log')
 �return model
def �train_model(training_data, model=False):
 �X = np.array([i[0] for i in training_data]).reshape(-1,len(training_

data[0][0]),1)
 y = [i[1] for i in training_data]
 if not model:
 model = neural_network_model(input_size = len(X[0]))
 x = np.reshape(x, (-1, 30, 9))

 �model.fit({'input': X}, {'targets': y}, n_epoch=5, snapshot_step=500,
show_metric=True, run_id='openai_learning')

 return model
 model = train_model(training_data)
 �scores = []
choices = []
for each_game in range(10):
 score = 0
 game_memory = []
 prev_obs = []
 env.reset()
 for _ in range(goal_steps):
 env.render()
 if len(prev_obs)==0:
 action = random.randrange(0,2)
 else:
 �action = np.argmax(model.predict(prev_obs.reshape(-1,len(prev_

obs),1))[0])
 choices.append(action)

 new_observation, reward, done, info = env.step(action)
 prev_obs = new_observation
 game_memory.append([new_observation, action])
 score+=reward
 if done: break
 scores.append(score)
print('Average Score:',sum(scores)/len(scores))
print('choice 1:{} choice 0:{}'.format(choices.count(1)/
len(choices),choices.count(0)/len(choices)))
print(score_requirement)

Chapter 4 ■ Applying Python to Reinforcement Learning

128

Here is the output:

Average Score: 195.9
choice 1:0.5074017355793773 choice 0:0.49259826442062277
50
Solved.

Conclusion
This chapter touched on Q learning and then showed some examples. It also covered the
MDP toolbox, swarm intelligence, and game AI, and ended with a full example. Chapter 5
covers Reinforcement Learning with Keras, TensorFlow, and ChainerRL.

http://dx.doi.org/10.1007/978-1-4842-3285-9_5

129© Abhishek Nandy and Manisha Biswas 2018
A. Nandy and M. Biswas, Reinforcement Learning,
https://doi.org/10.1007/978-1-4842-3285-9_5

CHAPTER 5

Reinforcement Learning
with Keras, TensorFlow,
and ChainerRL

This chapter covers using Keras with Reinforcement Learning and defines how Keras can
be used for Deep Q Learning as well.

What Is Keras?
Keras is an open source frontend library for neural networks. We can say that it works as
a backbone for the neural network, as it has very good capabilities for forming activation
functions. Keras can run different deep learning frameworks as the backend.

Keras runs with lots of deep learning frameworks. The way to change from one
framework to another is to modify the keras.json file, which is located in the same
directory where Keras is installed.

The backend parameter needs to change as follows:

{
"backend" : "tensorflow"
}

You can change the parameter from TensorFlow to another framework if you want.
In the JSON file, if you want to use it with Theano or CNTK, you can do so by

changing the backend parameter.
The structure of a keras.json file looks like this:

{
 "image_data_format": "channels_last",
 "epsilon": 1e-07,
 "floatx": "float32",
 "backend": "tensorflow"
}

https://doi.org/10.1007/978-1-4842-3285-9_5

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

130

The flow of all the Keras frameworks is shown in Figure 5-1.

Using Keras for Reinforcement Learning
This section covers installing Keras and shows an example of Reinforcement Learning.
You first need to install the dependencies.

The dependencies are as follows:

•	 Python

•	 Keras 1.0

•	 Pygame

•	 Scikit-image

Let’s start installing Keras 1.0. This example shows how to install Keras from the
Anaconda environment:

conda install -c jaikumarm keras

Figure 5-1.  Keras and its modification with different frameworks

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

131

It asks for permission to install the new packages. Choose yes to proceed, as shown
in Figure 5-2.

When the package installation is successful and completed, you’ll see the
information shown in Figure 5-3.

You can also install Keras in a different way too. This example shows you how to
install it using pip3.

First, use sudo apt update as follows:

(universe) abhi@ubuntu:~$ sudo apt-get update

Figure 5-2.  The updates to be installed

Figure 5-3.  The package installation is complete

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

132

Then install pip3 as follows:

sudo apt-get -y install python3-pip

Figure 5-4 shows the installation process.

Figure 5-4.  Installing pip3

After the dependencies, you need to install Keras (see Figure 5-5):

(universe) abhi@ubuntu:~$ sudo pip3 install keras

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

133

We will check now if Keras uses the TensorFlow backend or not. From the terminal
Anaconda environment you enabled first, you need to switch to Python mode.

If you get the following result importing Keras, that means everything is working
(see Figure 5-6).

(universe) abhi@ubuntu:~$ python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import keras
Using TensorFlow backend.

Figure 5-5.  Installing Keras

Figure 5-6.  Keras with the TensorFlow backend

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

134

Using ChainerRL
This section covers ChainerRL and explains how to apply Reinforcement Learning using
it. ChainerRL is a deep Reinforcement Learning library especially built with the help of
the Chainer Framework. See Figure 5-7.

Figure 5-7.  ChainerRL

Installing ChainerRL
We will install ChainerRL first from the terminal window. Figure 5-8 shows the Anaconda
environment.

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

135

You can now install ChainerRL. To do so, type this command in the terminal:

pip install chainerrl

Figure 5-9 shows the result of the installation.

Figure 5-8.  Activating the Anaconda environment

Figure 5-9.  Installing ChainerRL

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

136

Now you can git clone the repo. Use this command to do so:

git clone https://github.com/chainer/chainerrl.git

Figure 5-10 shows the result.

Then get inside the chainerrl folder, as shown in Figure 5-11.

Figure 5-10.  Cloning ChainerRL

Figure 5-11.  Inside the chainerrl folder

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

137

Pipeline for Using ChainerRL
Since the library is based on Python, the obvious language of choice is Python. Follow
these steps to set up ChainerRL:

	 1.	 Import the gym, numpy, and supportive chainerrl libraries.

import chainer
import chainer.functions as F
import chainer.links as L
import chainerrl
import gym
import numpy as np

You have to model an environment so that you can use OpenAI Gym (see Figure 5-12).
The environment has two spaces:

•	 Observation space

•	 Action space

They must have two methods, reset and step.

Figure 5-12.  How ChainerRL uses state transitions

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

138

	 2.	 Take a simulation environment such as Cartpole-v0 from the
OpenAI simulation environment.

env = gym.make('CartPole-v0')
print('observation space:', env.observation_space)
print('action space:', env.action_space)
obs = env.reset()
env.render()
print('initial observation:', obs)
action = env.action_space.sample()
obs, r, done, info = env.step(action)
print('next observation:', obs)
print('reward:', r)
print('done:', done)
print('info:', info)

	 3.	 Now define an agent that will run from interactions with the
environment. Here, it’s the QFunction(chainer.Chain) class:

 �def __init__(self, obs_size, n_actions, n_hidden_
channels=50):

 super().__init__(
 l0=L.Linear(obs_size, n_hidden_channels),
 �l1=L.Linear(n_hidden_channels, n_hidden_

channels),
 l2=L.Linear(n_hidden_channels, n_actions))
 def __call__(self, x, test=False):
 """
 Args:
 �x (ndarray or chainer.Variable): An

observation
 �test (bool): a flag indicating whether it

is in test mode
 """
 h = F.tanh(self.l0(x))
 h = F.tanh(self.l1(h))
 �return chainerrl.action_value.

DiscreteActionValue(self.l2(h))
obs_size = env.observation_space.shape[0]
n_actions = env.action_space.n
q_func = QFunction(obs_size, n_actions)
we apply Q learning etc.
We start with the Agent.
gamma = 0.95
Use epsilon-greedy for exploration
explorer = chainerrl.explorers.ConstantEpsilonGreedy(

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

139

 �epsilon=0.3, random_action_func=env.action_space.
sample)

DQN uses Experience Replay.
Specify a replay buffer and its capacity.
replay_buffer = chainerrl.replay_buffer.
ReplayBuffer(capacity=10 ** 6)
Since observations from CartPole-v0 is numpy.float64
while
Chainer only accepts numpy.float32 by default,
specify
a converter as a feature extractor function phi.
phi = lambda x: x.astype(np.float32, copy=False)
Now create an agent that will interact with the
environment.
agent = chainerrl.agents.DoubleDQN(
 q_func, optimizer, replay_buffer, gamma, explorer,
 replay_start_size=500, update_interval=1,
 target_update_interval=100, phi=phi)

	 4.	 Start the Reinforcement Learning process. You have to open
the jupyter notebook first in the Universe environment, as
shown in Figure 5-13.

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$ jupyter notebook

Figure 5-13.  Getting inside jupyter notebook

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

140

Figure 5-14 shows running the code on the final go.

	 5.	 Now you test the agents, as shown in Figure 5-15.

Figure 5-14.  Running the code

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

141

We completed the entire program in the jupyter notebook. Now we will work on one
of the repos for understanding Deep Q Learning with TensorFlow. See Figure 5-16.

Figure 5-15.  Testing the agents

Figure 5-16.  Cloning the GitHub repo

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

142

First you need to install the prerequisites as follows (see Figure 5-17):

pip install -U 'gym[all]' tqdm scipy

Then run the program and train it without using GPU support, as shown in Figure 5-18.

Figure 5-17.  Getting inside the folder

Figure 5-18.  Training the program without GPU support

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

143

The command is as follows:

$ python main.py --network_header_type=nips --env_name=Breakout-v0 --use_
gpu=False

The command uses the main.py Python file and runs the Breakout game simulation
in CPU mode only. You can now open the terminal to get inside the Anaconda
environment, as shown in Figure 5-19.

Now switch to Python mode, as shown in Figure 5-20:

(universe) abhi@ubuntu:~$ python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Figure 5-19.  Activating the environment

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

144

As you switch to Python mode, you first import the utilities:

import gym
import numpy as np

To get the observation along the frozen lake simulation, you have to formulate the Q
table as follows:

Q = np.zeros([env.observation_space.n,env.action_space.n])

After that, you declare the learning rates and create the lists to contain the rewards
for each state.

import gym
import numpy as np
env = gym.make('FrozenLake-v0')
#Initialize table with all zeros
Q = np.zeros([env.observation_space.n,env.action_space.n])
Set learning parameters
lr = .8
y = .95
num_episodes = 2000
#create lists to contain total rewards and steps per episode
#jList = []
rList = []
for i in range(num_episodes):

Figure 5-20.  Switching to Python mode

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

145

 #Reset environment and get first new observation
 s = env.reset()
 rAll = 0
 d = False
 j = 0
 #The Q-Table learning algorithm
 while j < 99:
 j+=1
 #Choose an action by greedily (with noise) picking from Q table
 �a = np.argmax(Q[s,:] + np.random.randn(1,env.action_space.n)*

(1./(i+1)))
 #Get new state and reward from environment
 s1,r,d,_ = env.step(a)
 #Update Q-Table with new knowledge
 Q[s,a] = Q[s,a] + lr*(r + y*np.max(Q[s1,:]) - Q[s,a])
 rAll += r
 s = s1
 if d == True:
 break
 #jList.append(j)
 rList.append(rAll)
print "Score over time: " + str(sum(rList)/num_episodes)
print "Final Q-Table Values"
print Q

After going through all the steps, you can finally print the Q table. Each line should
be placed into Python mode.

Deep Q Learning: Using Keras and TensorFlow
We will touch on Deep Q Learning with Keras. We will clone an important reinforcement
library, which is known as Keras-rl. It has several states of the Deep Q Learning
algorithms. See Figure 5-21.

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

146

Installing Keras-rl
The command for installing Keras-rl is as follows (see Figure 5-22):

pip install keras-rl

Figure 5-21.  Keras-rl representation

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

147

You also need to install h5py if it is not already installed and then you need to clone
the repo, as shown in Figure 5-23.

Figure 5-22.  Installing Keras-rl

Figure 5-23.  Cloning the git repo

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

148

Training with Keras-rl
You will see how to run a program in this section. First, get inside the rl folder, as shown
in Figure 5-24.

abhi@ubuntu:~$ cd keras-rl
abhi@ubuntu:~/keras-rl$ dir
assets examples LICENSE pytest.ini rl setup.py
docs ISSUE_TEMPLATE.md mkdocs.yml README.md setup.cfg tests
abhi@ubuntu:~/keras-rl$ cd examples
abhi@ubuntu:~/keras-rl/examples$ dir
cem_cartpole.py dqn_atari.py duel_dqn_cartpole.py sarsa_cartpole.py
ddpg_pendulum.py dqn_cartpole.py naf_pendulum.py visualize_log.py
abhi@ubuntu:~/keras-rl/examples$

Now you can run one of the examples:

abhi@ubuntu:~/keras-rl/examples$ python dqn_cartpole.py
Activating the anaconda environment
(universe) abhi@ubuntu:~/keras-rl/examples$ python dqn_cartpole.py

See Figure 5-25.

Figure 5-24.  Getting inside the Keras-rl directory

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

149

The simulation will now begin, as shown in Figure 5-26.

Figure 5-25.  Using the TensorFlow backend

Figure 5-26.  Simulation happens

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

150

The simulation occurs and trains the model using Deep Q Learning. With practice,
the cart-pole will balance along the rope; its stability increases with learning.

The entire process creates the following log:

(universe) abhi@ubuntu:~/keras-rl/examples$ python dqn_cartpole.py
Using TensorFlow backend.
[2017-09-24 09:36:27,476] Making new env: CartPole-v0

Layer (type) Output Shape Param #
===
flatten_1 (Flatten) (None, 4) 0

dense_1 (Dense) (None, 16) 80

activation_1 (Activation) (None, 16) 0

dense_2 (Dense) (None, 16) 272

activation_2 (Activation) (None, 16) 0

dense_3 (Dense) (None, 16) 272

activation_3 (Activation) (None, 16) 0

dense_4 (Dense) (None, 2) 34

activation_4 (Activation) (None, 2) 0
===
Total params: 658
Trainable params: 658
Non-trainable params: 0

None
2017-09-24 09:36:27.932219: W tensorflow/core/platform/cpu_feature_guard.
cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but
these are available on your machine and could speed up CPU computations.
...
 712/50000: episode: 38, duration: 0.243s, episode steps: 14, steps per
second: 58, episode reward: 14.000, mean reward: 1.000 [1.000, 1.000], mean
action: 0.500 [0.000, 1.000], mean observation: 0.105 [-0.568, 0.957], loss:
0.291389, mean_absolute_error: 3.054634, mean_q: 5.816398

The episodes are iterations for the simulations. The cartpole.py code is discussed
next. You need to import the utilities first. The utilities included are very useful, as they
have built-in agents for applying Deep Q Learning.

First, declare the environment as follows:

ENV_NAME = 'CartPole-v0'
env = gym.make(ENV_NAME)

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

151

Since we want to implement Deep Q Learning, we use parameters for initializing the
Convolution Neural Network (CNN). We also use an activation function to propagate the
neural network. We keep it sequential.

model = Sequential()
model.add(Flatten(input_shape=(1,) + env.observation_space.shape))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))

You can print the model details too, as follows:

print(model.summary())

Next, configure the model and use all the Reinforcement Learning options with the
help of a function.

import numpy as np
import gym
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from keras.optimizers import Adam
from rl.agents.dqn import DQNAgent
from rl.policy import BoltzmannQPolicy
from rl.memory import SequentialMemory
ENV_NAME = 'CartPole-v0'
Get the environment and extract the number of actions.
env = gym.make(ENV_NAME)
np.random.seed(123)
env.seed(123)
nb_actions = env.action_space.n
Next, we build a very simple model.
model = Sequential()
model.add(Flatten(input_shape=(1,) + env.observation_space.shape))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))
print(model.summary())

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

152

Finally, we configure and compile our agent. You can use every built-in
Keras optimizer and
even the metrics!
memory = SequentialMemory(limit=50000, window_length=1)
policy = BoltzmannQPolicy()
dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_
warmup=10,
 target_model_update=1e-2, policy=policy)
dqn.compile(Adam(lr=1e-3), metrics=['mae'])
Okay, now it's time to learn something! We visualize the training here for
show, but this
slows down training quite a lot. You can always safely abort the training
prematurely using
Ctrl + C.
dqn.fit(env, nb_steps=50000, visualize=True, verbose=2)
After training is done, we save the final weights.
dqn.save_weights('dqn_{}_weights.h5f'.format(ENV_NAME), overwrite=True)
Finally, evaluate our algorithm for 5 episodes.
dqn.test(env, nb_episodes=5, visualize=True)

To get all the capabilities of Keras-rl, you need to run the setup.py file within the
Keras-rl folder, as follows:

(universe) abhi@ubuntu:~/keras-rl$ python setup.py install

You will see that all the dependencies are being installed, one by one:

running install
running bdist_egg
running egg_info
creating keras_rl.egg-info
writing requirements to keras_rl.egg-info/requires.txt
writing dependency_links to keras_rl.egg-info/dependency_links.txt
writing top-level names to keras_rl.egg-info/top_level.txt
writing keras_rl.egg-info/PKG-INFO
writing manifest file 'keras_rl.egg-info/SOURCES.txt'
reading manifest file 'keras_rl.egg-info/SOURCES.txt'
writing manifest file 'keras_rl.egg-info/SOURCES.txt'
installing library code to build/bdist.linux-x86_64/egg
running install_lib
running build_py
creating build
creating build/lib
creating build/lib/tests
copying tests/__init__.py -> build/lib/tests
creating build/lib/rl
copying rl/util.py -> build/lib/rl
copying rl/callbacks.py -> build/lib/rl

Chapter 5 ■ Reinforcement Learning with Keras, TensorFlow, and ChainerRL

153

copying rl/keras_future.py -> build/lib/rl
copying rl/memory.py -> build/lib/rl
copying rl/random.py -> build/lib/rl
copying rl/core.py -> build/lib/rl
copying rl/__init__.py -> build/lib/rl
copying rl/policy.py -> build/lib/rl
creating build/lib/tests/rl
copying tests/rl/test_util.py -> build/lib/tests/rl
copying tests/rl/util.py -> build/lib/tests/rl
copying tests/rl/test_memory.py -> build/lib/tests/rl
copying tests/rl/test_core.py -> build/lib/tests/rl
copying tests/rl/__init__.py -> build/lib/tests/rl
creating build/lib/tests/rl/agents
copying tests/rl/agents/test_cem.py -> build/lib/tests/rl/agents
copying tests/rl/agents/__init__.py -> build/lib/tests/rl/agents
copying tests/rl/agents/test_ddpg.py -> build/lib/tests/rl/agents
copying tests/rl/agents/test_dqn.py -> build/lib/tests/rl/agents
creating build/lib/rl/agents
copying rl/agents/sarsa.py -> build/lib/rl/agents
copying rl/agents/ddpg.py -> build/lib/rl/agents
copying rl/agents/dqn.py -> build/lib/rl/agents
copying rl/agents/cem.py -> build/lib/rl/agents
copying rl/agents/__init__.py -> build/lib/rl/agents

Keras-rl is now set up and you can use the built-in functions to their fullest effect.

Conclusion
This chapter introduced and defined Keras and explained how to use it with
Reinforcement Learning. The chapter also explained how to use TensorFlow with
Reinforcement Learning and discussed using ChainerRL. Chapter 6 covers Google
DeepMind and the future of Reinforcement Learning.

http://dx.doi.org/10.1007/978-1-4842-3285-9_6

155© Abhishek Nandy and Manisha Biswas 2018
A. Nandy and M. Biswas, Reinforcement Learning,
https://doi.org/10.1007/978-1-4842-3285-9_6

CHAPTER 6

Google’s DeepMind and the
Future of Reinforcement
Learning

This chapter discusses Google DeepMind and Google AlphaGo and then moves on to
the future of Reinforcement Learning and compares what’s happening with man versus
machine.

Google DeepMind
Google DeepMind (see Figure 6-1) was formed to take AI to the next level. The aim and
motive of Google in this case is to research and develop programs that can solve complex
problems without needing to teach it the steps for doing so.

Figure 6-1.  Google DeepMind logo

https://doi.org/10.1007/978-1-4842-3285-9_6

Chapter 6 ■ Google’s DeepMind and the Future of Reinforcement Learning

156

The link to visit the DeepMind web site is https://deepmind.com/.
This web site (see Figure 6-2) contains all the details and the future work they are

doing. There are publications and research options available on the site.

You will see that the web site has lots of topics to search and discover.

Google AlphaGo
This section takes a look at AlphaGo (see Figure 6-3), which is one of the best solutions
from the Google DeepMind team.

Figure 6-2.  The DeepMind web site

Figure 6-3.  The Google AlphaGo logo

https://deepmind.com/

Chapter 6 ■ Google’s DeepMind and the Future of Reinforcement Learning

157

What Is AlphaGo?
AlphaGo is the Google program that plays the game Go, which is a traditional abstract
strategy board game for two players. The object of the game is to occupy more territory
than your opponent. Figure 6-4 shows the Go game board.

Despite its simple rules, Go has more possible solutions than the number of atoms in
the visible world!

The concept of the Go game and its underlying mathematical terms included are
illustrated in Figure 6-5.

Figure 6-4.  The Go board (Image courtesy of Jaro Larnos, https://www.flickr.com/
photos/jlarnos/, used under a CC-BY 2.0 license)

https://www.flickr.com/photos/jlarnos/
https://www.flickr.com/photos/jlarnos/

Chapter 6 ■ Google’s DeepMind and the Future of Reinforcement Learning

158

AlphaGo is the first computer program to defeat a professional human Go player, the
first program to defeat a Go world champion, and arguably the best Go player in history.

Figure 6-5.  Concept of the Go game

Chapter 6 ■ Google’s DeepMind and the Future of Reinforcement Learning

159

Figure 6-6 illustrates the AlphaGo approach.

Monte Carlo Search
Monte Carlo Search (MCS) is based on the AI tree traversal approach. It uses a unique set
of behaviors for moving through the tree.

MCS first selects each state it can go through, as mentioned in the declared policy.
After a certain depth, the policy does not allow the state to go through. MCS then expands
from that state to the possible actions that can be taken randomly. This way, you are
using MCS-based simulation to all possible states to get rewards. We you do a random
simulation path, you also get Q state values for random paths if you change from one state
to another. From the Q state received, you can back up information and move to the top.
The entire process is shown in Figure 6-7.

Figure 6-6.  Deep Q approach

Chapter 6 ■ Google’s DeepMind and the Future of Reinforcement Learning

160

AlphaGo relies on two components: A tree search procedure and convolutional
networks that guide the tree search procedure.

In total, three convolutional networks of two different kinds are trained: two policy
networks and one value network.

Figure 6-7.  The Monte Carlo Search tree process

Chapter 6 ■ Google’s DeepMind and the Future of Reinforcement Learning

161

Man vs. Machines
With the advent of Reinforcement Learning, there are many more jobs being automated
and many low-level jobs are being done by machines.

Now the focus is on how Reinforcement Learning can solve different problems and
change the well being of the earth.

For example, Reinforcement Learning can be used in the healthcare field. Instead of
using the same age-old tools for body scans, we can train robots and medical equipment
to scan body parts for different diagnoses purposes much quicker and with greater
accuracy. With repeated training, decisions to perform more complex measurements and
scans can be left to the machines too.

Positive Aspects of AI
Cognitive modeling is applied when we gather information and resources and through
which the system learns. This is called the cognitive way. Technological singularity is
achieved by enhancement of cognitive modeling devices that interact and achieve more
unified goals.

A good strong AI solution is selfless and places the interest of others above all else.
A good AI solution always works for the team. By adding human empathy, as seen with
brainwaves, we can create good AI solutions that appear to be compassionate.

Applying a topological view to the world of AI helps streamline activities and allows
each topology to master a specific, unique task.

Negative Aspects of AI
There can be negative aspects too. For example, what if a machine learns so fast that
it starts talking to other machines and creates an AI of its own? In that case, it would
be difficult for humans to predict the end game. We need to take these scenarios into
consideration. Perhaps every AI solution needs a secret killswitch, as illustrated in
Figure 6-8.

Chapter 6 ■ Google’s DeepMind and the Future of Reinforcement Learning

162

Here are the steps to this basic process:

	 1.	 We start a program.

	 2.	 We apply Machine Learning to it.

	 3.	 The program learns very quickly.

	 4.	 We have to incorporate a killswitch into the process so that we
can allow the program to be rolled back if necessary.

	 5.	 When we see an anomaly or any abrupt behavior, we call the
killswitch to roll the program back to the start.

There is a good chance that machines may learn this way, especially if they work
in tandem. At some transition point, they might start interacting in a way that creates
an AI of their own. We have to be able to avoid collisions of two or more Reinforcement
Learning programs during the transition phase.

Figure 6-8.  Insert a killswitch just in case

Chapter 6 ■ Google’s DeepMind and the Future of Reinforcement Learning

163

Conclusion
We touched on a lot of concepts in this book, especially related to Reinforcement
Learning. The book is an overview of how Reinforcement Learning works and the ideas
you need to understand to get started.

•	 We simplified the RL concepts with the help of the Python
programming language.

•	 We introduced OpenAI Gym and OpenAI Universe.

•	 We introduced a lot of algorithms and touched on Keras and
TensorFlow.

We hope you have liked the book. Thanks again!

165© Abhishek Nandy and Manisha Biswas 2018
A. Nandy and M. Biswas, Reinforcement Learning,
https://doi.org/10.1007/978-1-4842-3285-9

�       � A, B
AlphaGo

definition, 157–159
MCS, 159–160

Ant-based routing, 110
Artificial intelligence (AI)

cognitive modeling, 161
game (see Game AI)
killswitch, 161–162
OpenAI (see OpenAI)

�       � C
ChainerRL

agents, 140–141
execution, 140
GitHub, 141
GPU, 142
installation, 134–136
jupyter notebook, 139
OpenAI Gym, 137
Python, 143–145
QFunction, 138
reset and step, 137

Crowd simulations, 110

�       � D, E
Deep Q Learning

Keras-rl
execution, 148–150,

152–153
installation, 146–147

TensorFlow, 149
Deterministic Finite

Automata (DFA), 14–15

Docker
installation, 37–38
testing, 38
update, 37

Dynamic programming, 68–69

�       � F
Fields of Reinforcement Learning (RL)

delivery management, 22
finance sector, 23
inventory management, 22
manufacturing, 22

�       � G
Game AI

package installation, 121–124
TFLearn, 124–128
virtualenv, 120–121

Google DeepMind
AlphaGo157–160
research and develop

programs, 155

�       � H, I, J
Human swarming, 110

�       � K, L
Keras

definition, 129–130
installation, 133
package installation, 131
pip3, 132
TensorFlow backend, 133

Index

https://doi.org/10.1007/978-1-4842-3285-9

■ INDEX

166

�       � M
Markov Chain

MDPs, 53–54
path probability, 52
Rin detergent state, 49–50
transition probability, 50–53

Markov Decision Process (MDP)
applications, 48
conditional probabilities, 21
implementation, 19–20
model-based, 21
model-free, 21
property, 48

MDP toolbox
Anaconda environment, 98
features, 97
GitHub, 104
installation, 99–103
policy, 106–108
Python mode, 105

Monte Carlo Search (MCS), 159–160

�       � N
Nondeterministic Finite Automaton

(NDFA), 15

�       � O
OpenAI

array, 83
classic arcade, 82
env.render(), 84
jupyter notebook, 81
OpenAI Gym and OpenAI Universe, 72
OpenAI Universe, 84–87
render function, 82

OpenAI Gym and OpenAI
array, 80
gym directory, 77
installation, 73–74
jupyter notebook, 78–79
process, 75–76
Python, 76, 79
universe directory, 76

OpenAI Universe
agent, 85–86
DuskDrive, 85

jupyter notebook, 84–85
keyEvent and Arrowup, 87

�       � P
Python

GitHub repo, 39–40
hyperparameters, 41
Q table, 41–47

�       � Q
Q Learning

execution, 95–97
maze, 90–94
parameters, 57
policy equation, 58
process, 57
Python, 64–68
RL_brain, 94–95
SARSA, 58–62, 64

�       � R
Rastrigin function

depiction, 111
PNG, 115–116
Python, 112–114

Reinforcement Learning (RL)
agents and

environments, 5, 7–9
Anaconda

downloading, 28–30
environment, 32
installing/updating, 33–36
key packages, 31

characteristics, 11–12
deterministic, 14–15
discrete/continuous, 16
gamma, 10
lambda, 10
mazes, 3–4
observable, 15
rewards and punishments, 1–2
rule-based engine, 23
science of decision-making, 7
single agent and multiagent, 16–18
terminal, 24–27

■ INDEX

167

�       � S, T, U, V, W, X, Y, Z
State Action Reward next State and next

Action (SARSA)
Q value, 56
temporal difference learning, 54–55

Swarm intelligence
ant-based routing, 110

crowd simulations, 110
human swarming, 110
interactions, 109
Python, 116–119
rastrigin

function, 111–116
swarm grammars, 111
swarmic art, 111

	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Reinforcement Learning Basics
	What Is Reinforcement Learning?
	Faces of Reinforcement Learning
	The Flow of Reinforcement Learning
	Different Terms in Reinforcement Learning
	Gamma
	Lambda

	Interactions with Reinforcement Learning
	RL Characteristics
	How Reward Works
	Agents
	RL Environments
	Deterministic
	DFA (Deterministic Finite Automata)
	NDFA (Nondeterministic Finite Automaton)

	Observable
	Discrete or Continuous
	Single Agent and Multiagent Environments

	Conclusion

	Chapter 2: RL Theory and Algorithms
	Theoretical Basis of Reinforcement Learning
	Where Reinforcement Learning Is Used
	Manufacturing
	Inventory Management
	Delivery Management
	Finance Sector

	Why Is Reinforcement Learning Difficult?
	Preparing the Machine
	Installing Docker
	An Example of Reinforcement Learning with Python
	What Are Hyperparameters?
	Writing the Code

	What Is MDP?
	The Markov Property
	The Markov Chain
	MDPs

	SARSA
	Temporal Difference Learning
	How SARSA Works

	Q Learning
	What Is Q?
	How to Use Q
	SARSA Implementation in Python
	The Entire Reinforcement Logic in Python

	Dynamic Programming in Reinforcement Learning
	Conclusion

	Chapter 3: OpenAI Basics
	Getting to Know OpenAI
	Installing OpenAI Gym and OpenAI Universe
	Working with OpenAI Gym and OpenAI
	More Simulations
	OpenAI Universe
	Conclusion

	Chapter 4: Applying Python to Reinforcement Learning
	Q Learning with Python
	The Maze Environment Python File
	The RL_Brain Python File
	Updating the Function

	Using the MDP Toolbox in Python
	Understanding Swarm Intelligence
	Applications of Swarm Intelligence
	Ant-Based Routing
	Crowd Simulations
	Human Swarming

	Swarm Grammars
	Swarmic Art

	The Rastrigin Function
	Swarm Intelligence in Python

	Building a Game AI
	The Entire TFLearn Code

	Conclusion

	Chapter 5: Reinforcement Learning with Keras, TensorFlow, and ChainerRL
	What Is Keras?
	Using Keras for Reinforcement Learning
	Using ChainerRL
	Installing ChainerRL
	Pipeline for Using ChainerRL

	Deep Q Learning: Using Keras and TensorFlow
	Installing Keras-rl
	Training with Keras-rl

	Conclusion

	Chapter 6: Google’s DeepMind and the Future of Reinforcement Learning
	Google DeepMind
	Google AlphaGo
	What Is AlphaGo?
	Monte Carlo Search

	Man vs. Machines
	Positive Aspects of AI
	Negative Aspects of AI

	Conclusion

	Index

