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Introduction

This book is primarily based on a Machine Learning subset known as Reinforcement
Learning. We cover the basics of Reinforcement Learning with the help of the Python
programming language and touch on several aspects, such as Q learning, MDP, RL with
Keras, and OpenAI Gym and OpenAI Environment, and also cover algorithms related
to RL.

Users need a basic understanding of programming in Python to benefit from this
book.

The book is meant for people who want to get into Machine Learning and learn more
about Reinforcement Learning.
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CHAPTER 1

Reinforcement Learning
Basics

This chapter is a brief introduction to Reinforcement Learning (RL) and includes some
key concepts associated with it.

In this chapter, we talk about Reinforcement Learning as a core concept and then
define it further. We show a complete flow of how Reinforcement Learning works. We
discuss exactly where Reinforcement Learning fits into artificial intelligence (AI). After
that we define key terms related to Reinforcement Learning. We start with agents and
then touch on environments and then finally talk about the connection between agents
and environments.

What Is Reinforcement Learning?

We use Machine Learning to constantly improve the performance of machines or
programs over time. The simplified way of implementing a process that improves
machine performance with time is using Reinforcement Learning (RL). Reinforcement
Learning is an approach through which intelligent programs, known as agents, work
in a known or unknown environment to constantly adapt and learn based on giving
points. The feedback might be positive, also known as rewards, or negative, also
called punishments. Considering the agents and the environment interaction, we then
determine which action to take.
In a nutshell, Reinforcement Learning is based on rewards and punishments.
Some important points about Reinforcement Learning:

e  Itdiffers from normal Machine Learning, as we do not look at
training datasets.

e Interaction happens not with data but with environments,
through which we depict real-world scenarios.

© Abhishek Nandy and Manisha Biswas 2018
A. Nandy and M. Biswas, Reinforcement Learning,
https://doi.org/10.1007/978-1-4842-3285-9_1
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e  AsReinforcement Learning is based on environments, many
parameters come in to play. It takes lots of information to learn
and act accordingly.

e  Environments in Reinforcement Learning are real-world
scenarios that might be 2D or 3D simulated worlds or game-
based scenarios.

e Reinforcement Learning is broader in a sense because the
environments can be large in scale and there might be a lot of
factors associated with them.

e  The objective of Reinforcement Learning is to reach a goal.

e  Rewards in Reinforcement Learning are obtained from the
environment.

The Reinforcement Learning cycle is depicted in Figure 1-1 with the help of a robot.

From State 5,take
action a

ENVIRONMENT
AGENT

Get reward R, move to
new state '

Figure 1-1. Reinforcement Learning cycle
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A maze is a good example that can be studied using Reinforcement Learning, in
order to determine the exact right moves to complete the maze (see Figure 1-2).

I _I : I

Figure 1-2. Reinforcement Learning can be applied to mazes

In Figure 1-3, we are applying Reinforcement Learning and we call it the
Reinforcement Learning box because within its vicinity the process of RL works. RL starts
with an intelligent program, known as agents, and when they interact with environments,
there are rewards and punishments associated. An environment can be either known
or unknown to the agents. The agents take actions to move to the next state in order to
maximize rewards.
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Figure 1-3. Reinforcement Learning flow

In the maze, the centralized concept is to keep moving. The goal is to clear the maze
and reach the end as quickly as possible.

The following concepts of Reinforcement Learning and the working scenario are
discussed later this chapter.

e  The agent is the intelligent program

e The environment is the maze

e  The state is the place in the maze where the agent is

e The action is the move we take to move to the next state

e  Thereward is the points associated with reaching a particular
state. It can be positive, negative, or zero

We use the maze example to apply concepts of Reinforcement Learning. We will be
describing the following steps:

1. The concept of the maze is given to the agent.

2. There is a task associated with the agent and Reinforcement
Learning is applied to it.

3. The agentreceives (a-1) reinforcement for every move it
makes from one state to other.

4. There is a reward system in place for the agent when it moves
from one state to another.
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The rewards predictions are made iteratively, where we update the value of each
state in a maze based on the value of the best subsequent state and the immediate reward
obtained. This is called the update rule.

The constant movement of the Reinforcement Learning process is based on
decision-making.

Reinforcement Learning works on a trial-and-error basis because it is very difficult to
predict which action to take when it is in one state. From the maze problem itself, you can
see that in order get the optimal path for the next move, you have to weigh a lot of factors.
It is always on the basis of state action and rewards. For the maze, we have to compute
and account for probability to take the step.

The maze also does not consider the reward of the previous step; it is specifically
considering the move to the next state. The concept is the same for all Reinforcement
Learning processes.

Here are the steps of this process:

1.  We have a problem.
2. We have to apply Reinforcement Learning.

3. We consider applying Reinforcement Learning as a
Reinforcement Learning box.

4. The Reinforcement Learning box contains all essential
components needed for applying the Reinforcement Learning
process.

5. The Reinforcement Learning box contains agents,
environments, rewards, punishments, and actions.

Reinforcement Learning works well with intelligent program agents that give rewards
and punishments when interacting with an environment.

The interaction happens between the agents and the environments, as shown in
Figure 1-4.

. —
—
Figure 1-4. Interaction between agents and environments

From Figure 1-4, you can see that there is a direct interaction between the agents and
its environments. This interaction is very important because through these exchanges,
the agent adapts to the environments. When a Machine Learning program, robot, or
Reinforcement Learning program starts working, the agents are exposed to known or
unknown environments and the Reinforcement Learning technique allows the agents to
interact and adapt according to the environment’s features.

Accordingly, the agents work and the Reinforcement Learning robot learns. In order
to get to a desired position, we assign rewards and punishments.



CHAPTER 1 * REINFORCEMENT LEARNING BASICS

Now, the program has to work around the optimal path to get maximum rewards if
it fails (that is, it takes punishments or receives negative points). In order to reach a new
position, which also is known as a state, it must perform what we call an action.

To perform an action, we implement a function, also known as a policy. A policy is
therefore a function that does some work.

Faces of Reinforcement Learning

As you see from the Venn diagram in Figure 1-5, Reinforcement Learning sits at the
intersection of many different fields of science.

Computer Science

Engineering Neuroscience

Mathematics Psychology

Figure 1-5. All the faces of Reinforcement Learning
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The intersection points reveal a very strong feature of Reinforcement Learning—it
shows the science of decision-making. If we have two paths and have to decide which
path to take so that some point is met, a scientific decision-making process can be
designed.

Reinforcement Learning is the fundamental science of optimal decision-making.

If we focus on the computer science part of the Venn diagram in Figure 1-5, we
see that if we want to learn, it falls under the category of Machine Learning, which is
specifically mapped to Reinforcement Learning.

Reinforcement Learning can be applied to many different fields of science. In
engineering, we have devices that focus mostly on optimal control. In neuroscience, we
are concerned with how the brain works as a stimulant for making decisions and study
the reward system that works on the brain (the dopamine system).

Psychologists can apply Reinforcement Learning to determine how animals make
decisions. In mathematics, we have a lot of data applying Reinforcement Learning in
operations research.

The Flow of Reinforcement Learning

Figure 1-6 connects agents and environments.

> il sl s I_‘—-——-._
State g — Reward Action

) s

Figure 1-6. RL structure

The interaction happens from one state to another. The exact connection starts
between an agent and the environment. Rewards are happening on a regular basis.

We take appropriate actions to move from one state to another.

The key points of consideration after going through the details are the following:

e  The Reinforcement Learning cycle works in an interconnected
manner.

e  There is distinct communication between the agent and the
environment.

e  The distinct communication happens with rewards in mind.
e The object or robot moves from one state to another.

e  An action is taken to move from one state to another
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Figure 1-7 simplifies the interaction process.

=-

===
s
—Y

Figure 1-7. The entire interaction process

An agent is always learning and finally makes a decision. An agent is a learner, which
means there might be different paths. When the agent starts training, it starts to adapt and
intelligently learns from its surroundings.

The agent is also a decision maker because it tries to take an action that will get it the
maximum reward.

When the agent starts interacting with the environment, it can choose an action and
respond accordingly.

From then on, new scenes are created. When the agent changes from one place to
another in an environment, every change results in some kind of modification. These
changes are depicted as scenes. The transition that happens in each step helps the agent
solve the Reinforcement Learning problem more effectively.
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Let’s look at another scenario of state transitioning, as shown in Figures 1-8 and 1-9.

State ; /Reward \ Action

Figure 1-8. Scenario of state changes

ao/ o 31/ ry 82/ r2

So » S »S) >

Figure 1-9. The state transition process

Learn to choose actions that maximize the following:
TO +YT1 +Y2T2 +evennnnennennns where 0< y<1

At each state transition, the reward is a different value, hence we describe reward
with varying values in each step, such as 10, r1, 12, etc. Gamma (y) is called a discount
Jactor and it determines what future reward types we get:

e Agamma value of 0 means the reward is associated with the
current state only

e Agamma value of 1 means that the reward is long-term

Different Terms in Reinforcement Learning

Now we cover some common terms associated with Reinforcement Learning.
There are two constants that are important in this case—gamma (y) and lambda (1),
as shown in Figure 1-10.
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r N

Figure 1-10. Showing values of constants

Gamma is common in Reinforcement Learning problems but lambda is used
generally in terms of temporal difference problems.

Gamma

Gamma is used in each state transition and is a constant value at each state change.
Gamma allows you to give information about the type of reward you will be getting in
every state. Generally, the values determine whether we are looking for reward values in
each state only (in which case, it’s 0) or if we are looking for long-term reward values (in
which case it’s 1).

Lambda

Lambda is generally used when we are dealing with temporal difference problems. It is
more involved with predictions in successive states.
Increasing values of lambda in each state shows that our algorithm is learning fast.
The faster algorithm yields better results when using Reinforcement Learning techniques.
Asyou’ll learn later, temporal differences can be generalized to what we call
TD(Lambda). We discuss it in greater depth later.

Interactions with Reinforcement Learning

Let’s now talk about Reinforcement Learning and its interactions. As shown in
Figure 1-11, the interactions between the agent and the environment occur with a reward.
We need to take an action to move from one state to another.

10
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— »

R

StateS, RewardR,

Actiona

Reet

S|+1

Figure 1-11. Reinforcement Learning interactions

Reinforcement Learning is a way of implementing how to map situations to actions
so as to maximize and find a way to get the highest rewards.

The machine or robot is not told which actions to take, as with other forms of
Machine Learning, but instead the machine must discover which actions yield the
maximum reward by trying them.

In the most interesting and challenging cases, actions affect not only the immediate
reward but also the next situation and all subsequent rewards.

RL Characteristics

We talk about characteristics next. The characteristics are generally what the agent does
to move to the next state. The agent considers which approach works best to make the
next move.

The two characteristics are

e  Trial and error search.
e  Delayed reward.

As you probably have gathered, Reinforcement Learning works on three things
combined:

(S,A,R)

Where S represents state, A represents action, and R represents reward.

If you are in a state S, you perform an action A so that you get a reward R at time
frame #+1. Now, the most important part is when you move to the next state. In this case,
we do not use the reward we just earned to decide where to move next. Each transition
has a unique reward and no reward from any previous state is used to determine the next
move. See Figure 1-12.

11
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Gaining reward

—_——

- |

The T change (the time frame) is important in terms of Reinforcement Learning.
Every occurrence of what we do is always a combination of what we perform in terms

of states, actions, and rewards. See Figure 1-13.

Figure 1-13. Another way of representing the state transition

Tchange

Figure 1-12. State change with time

How Reward Works

A reward is some motivator we receive when we transition from one state to another. It
can be points, as in a video game. The more we train, the more accurate we become, and
the greater our reward.

12
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Agents

In terms of Reinforcement Learning, agents are the software programs that make
intelligent decisions. Agents should be able to perceive what is happening in the
environment. Here are the basic steps of the agents:

1. When the agent can perceive the environment, it can make
better decisions.

2. The decision the agents take results in an action.

3. The action that the agents perform must be the best, the
optimal, one.

Software agents might be autonomous or they might work together with other agents
or with people. Figure 1-14 shows how the agent works.

|

A4

A4

A4

Figure 1-14. The flow of the environment

13
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RL Environments

The environments in the Reinforcement Learning space are comprised of certain factors
that determine the impact on the Reinforcement Learning agent. The agent must adapt
accordingly to the environment. These environments can be 2D worlds or grids or even a
3D world.

Here are some important features of environments:

° Deterministic
e  Observable
e  Discrete or continuous

e  Single or multiagent.

Deterministic

If we can infer and predict what will happen with a certain scenario in the future, we say
the scenario is deterministic.

It is easier for RL problems to be deterministic because we don’t rely on the
decision-making process to change state. It's an immediate effect that happens with state
transitions when we are moving from one state to another. The life of a Reinforcement
Learning problem becomes easier.

When we are dealing with RL, the state model we get will be either deterministic or
non-deterministic. That means we need to understand the mechanisms behind how DFA
and NDFA work.

DFA (Deterministic Finite Automata)

DFA goes through a finite number of steps. It can only perform one action for a state. See
Figure 1-15.

v

SO

Figure 1-15. Showing DFA

14
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We are showing a state transition from a start state to a final state with the help of
a diagram. It is a simple depiction where we can say that, with some input value that is
assumed as 1 and 0, the state transition occurs. The self-loop is created when it gets a
value and stays in the same state.

NDFA (Nondeterministic Finite Automaton)

If we are working in a scenario where we don’t know exactly which state a machine will
move into, this is a case of NDFA. See Figure 1-16.

0,1

SO

v

Figure 1-16. NDFA

The working principle of the state diagram in Figure 1-16 can be explained as
follows. In NDFA the issue is when we are transitioning from one state to another, there is
more than one option available, as we can see in Figure 1-16. From State SO after getting
an input such as 0, it can stay in state SO or move to state S1. There is decision-making
involved here, so it becomes difficult to know which action to take.

Observable

If we can say that the environment around us is fully observable, we have a perfect
scenario for implementing Reinforcement Learning.

An example of perfect observability is a chess game. An example of partial
observability is a poker game, where some of the cards are unknown to any one player.
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Discrete or Continuous

If there is more than one choice for transitioning to the next state, that is a continuous
scenario. When there are a limited number of choices, that’s called a discrete scenario.

Single Agent and Multiagent Environments

Solutions in Reinforcement Learning can be of single agent types or multiagent types.

Let’s take a look at multiagent Reinforcement Learning first.

When we are dealing with complex problems, we use multiagent Reinforcement
Learning. Complex problems might have different environments where the agent is doing
different jobs to get involved in RL and the agent also wants to interact. This introduces
different complications in determining transitions in states.

Multiagent solutions are based on the non-deterministic approach.

They are non-deterministic because when the multiagents interact, there might be
more than one option to change or move to the next state and we have to make decisions
based on that ambiguity.

In multiagent solutions, the agent interactions between different environments are
enormous. They are enormous because the amount of activity involved in references to
environments is very large. This is because the environments might be different types and
the multiagents might have different tasks to do in each state transition.

The difference between single-agent and multiagent solutions are as follows:

e Single-agent scenarios involve intelligent software in which the
interaction happens in one environment only. If there is another
environment simultaneously, it cannot interact with the first
environment.

e  When there is little bit of convergence in Reinforcement
Learning. Convergence is when the agent needs to interact far
more often in different environments to make a decision. This
scenario is tackled by multiagents, as single agents cannot tackle
convergence. Single agents cannot tackle convergence because
it connects to other environments when there might be different
scenarios involving simultaneous decision-making.

e  Multiagents have dynamic environments compared to
single agents. Dynamic environments can involve changing
environments in the places to interact with.

16
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Figure 1-17 shows the single-agent scenario.

Environment

Figure 1-17. Single agent

Figure 1-18 shows how multiagents work. There is an interaction between two agents
in order to make the decision.

17
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Environment

Agent

Figure 1-18. Multiagent scenario

Conclusion

This chapter touched on the basics of Reinforcement Learning and covered some key
concepts. We covered states and environments and how the structure of Reinforcement
Learning looks.

We also touched on the different kinds of interactions and learned about single-
agent and multiagent solutions.

The next chapter covers algorithms and discusses the building blocks of
Reinforcement Learning.
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CHAPTER 2

RL Theory and Algorithms )

This chapter covers how Reinforcement Learning works and explains the concepts
behind it, including the different algorithms that form the basis of Reinforcement
Learning.

The chapter explains these algorithms, but to start with, you will learn why
Reinforcement Learning can be hard and see some different scenarios. The chapter also
covers different ways that Reinforcement Learning can be implemented.

Along the way, the chapter formulates the Markov Decision Process (MDP) and
describes it. The chapter also covers SARSA and touches on temporal differences. Then,
the chapter touches on Q Learning and dynamic programming.

Theoretical Basis of Reinforcement Learning

This section touches on the theoretical basis of Reinforcement Learning. Figure 2-1 shows
how you are going to implement MDP, which is described later.
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Figure 2-1. Theoretical basis of MDP
Environments in Reinforcement Learning are represented by the Markov Decision
Process (discussed later in this chapter).
e  SSisafinite set of states. AA is a finite set of actions.

e  T:SxAxS—[0,1]T:SxAxS—[0,1] is a transition model that maps
(state, action, state) triples to probabilities.

e T(s,a,s’)T(s,a,s’) is the probability that you'll land in state s’s’
if you were in state ss and took action aa.
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In terms of conditional probabilities, the following is true:
T(s,a,s/)=P(s’ | s,a)T(s,a,s’):P(s/ | S:a)

R:SxS—RR:SxS—Ris a reward function that gives a real number that represents
the amount of reward (or punishment) the environment will grant for a state transition.
R(s,s")R(s,s’) is the reward received after transitioning to state s’s’ from state ss.

If the transition model is known to the agent, i.e., the agent knows where it would
probably go from where it stands, it’s fairly easy for the agent to know how to act in a way
that maximizes its expected utility from its experience with the environment.

We can define the expected utility for the agent to be the accumulated rewards it
gets throughout its experience with the environment. If the agent goes through the states
s0,s1,...,sn-1,sns0,s1,...,sn-1,sn, you could formally define its expected utility as follows:

Int=1ytE[R(st-1,st)]It=1nytE[R(st-1,st)]

where yy is a discount factor used to decrease the values (and hence the importance) of
past rewards, and EE is the expected value.

The problem arises when the agents have no clue about the probabilistic model
behind the transitions, and this where RL comes in. The RL problem can formally be
defined now as the problem of learning a set of parameters in order to maximize the
expected utility.

RL comes in two flavors:

e Model-based: The agent attempts to sample and learn the
probabilistic model and use it to determine the best actions it can
take. In this flavor, the set of parameters that was vaguely referred
to is the MDP model.

e Model-free: The agent doesn’t bother with the MDP model and
instead attempts to develop a control function that looks at
the state and decides the best action to take. In that case, the
parameters to be learned are the ones that define the control
function.

Where Reinforcement Learning Is Used

This section discusses the different fields of Reinforcement Learning, as shown in
Figure 2-2.
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Figure 2-2. Different fields of Reinforcement Learning

Manufacturing

In manufacturing, factory robots use Reinforcement Learning to move an object from one
box and then keep it in another container.

If it fails or finds success upon delivering, the robot remembers the object and learns
again, with the end result to get the best results with the greatest accuracy.

Inventory Management

In terms of inventory management, Reinforcement Learning can be used to reduce
transit time in stocking and can be applied to placing products in warehouses for utilizing
space optimally.

Delivery Management

Reinforcement Learning is applied to solve the problem of split delivery vehicle routing.
Q Learning is used to serve appropriate customers with one vehicle.
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Finance Sector

Reinforcement Learning is being used for accounting, using trading strategies.

Why Is Reinforcement Learning Difficult?

One of the toughest parts of Reinforcement Learning is having to map the environment
and include all possible moves. For example, consider a board game.

You have to apply artificial intelligence to what is learned. In theory, Reinforcement
Learning should work perfectly because there are a lot of state jumps and complex moves
in a board game. However, applying Reinforcement Learning by itself becomes difficult.

To get the best results, we apply a rule-based engine with Reinforcement Learning.
If we don’t apply a rule-based engine, there are so many options in board games that the
agent will take forever to discover the path.

First of all, we apply simple rules so that the Al learns quickly and then, as the
complexity increases, we apply Reinforcement Learning.

Figure 2-3 shows how applying Reinforcement Learning can be difficult.

Figure 2-3. Reinforcement Learning with rules
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Preparing the Machine

Before you can run the examples, you need to perform certain steps to install the
software. The examples in this book use the Anaconda version of Python, so this section
explains how to find and download it. First, you need to open a terminal. The process of
starting the terminal is shown in Figure 2-4.

& (@) File Edit View VM Tabs Help

@ ® terminal

)
A Applications

—

Terminal UXTerm

Figure 2-4. Opening the terminal

Next, you need to update the packages. Write the following command in the terminal
to do so. See Figure 2-5.

sudo apt-get update
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inal Terminal <3 File Edit View VM Tabs Help

openai@ubuntu: ~

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root” for details.

openai@ubuntu:~5 sudo apt-get updatel]

Figure 2-5. Updating the packages

After you run the update command, the required installation content is installed, as
shown in Figure 2-6.

Terminal #|[@ File Edit View VM Tabs Help

openai@ubuntu: ~

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root"” for details.

openai@ubuntu:~$ sudo apt-get update

[sudo] password for openai:

Get:1 http://security.ubuntu.com/ubuntu xenial-security InRelease [162 kB]
Hit:2 http://us.archive.ubuntu.com/ubuntu xenial InRelease

Hit:3 http://us.archive.ubuntu.comfubuntu xenial-updates InRelease

Hit:4 http:/fus.archive.ubuntu.com/ubuntu xenial-backports InRelease
Fetched 182 kB in 2s (40.3 kB/s)

Reading package lists... Done

openai@ubuntu:~$ l

TITIEREDE

a

Figure 2-6. Everything has been updated

Now you can use another command for installing the required packages. Figure 2-7
shows the process.
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sudo apt-get install golang python3-dev python-dev libcupti-dev libjpeg-
turbo8-dev make tmux htop chromium-browser git cmake zlibig-dev libjpeg-dev
xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig.

Terminal = 4 File Edit View VM Tabs Help nm-~| o +-'

openai@ubuntu: ~

openai@ubuntu:~$ sudo apt-get install golang python3-dev python-dev libcupti-dev

libjpeg-turboB8-dev make tmux htop chromium-browser git cmake zlibig-dev libjpeg

-dev xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig

Reading package lists... Done

Building dependency tree

Reading state information... Done

make is already the newest version (4.1-6).

make set to manually installed.

The following package was automatically installed and is no longer required:
libmircommons

Use 'sudo apt autoremove' to remove it.

The following additional packages will be installed:

autotools-dev chromium-browser-116n chromium-codecs-ffmpeg-extra cmake-data

dbus dbus-x11 ffmpeg fontconfig-config freeglut3 git-man golang-1.6

golang-1.6-doc golang-1.6-go golang-1.6-race-detector-runtime golang-1.6-src

golang-doc golang-go golang-race-detector-runtime golang-src 1965-va-driver

icu-devtools libaacse® libasound2-dev libass5 libavcodec-ffmpeg56

libavdevice-ffmpeg56 libavfilter-ffmpegS libavformat-ffmpeg56

libavresample-ffmpeg2 libavutil-ffmpeg54 1ibbdpluse libblurayi

libboost-atomic-dev libboost-atomicl.58-dev libboost-atomic1.58.0

libboost-chrono-dev libboost-chronol.58-dev libboost-chronol.58.0

libboost-context-dev libboost-contextl.58-dev libboost-context1.58.6

libboost-coroutine-dev libboost-coroutinel.58-dev libboost-coroutinel.58.80

libboost-date-time-dev libboost-date-timel.58-dev libboost-dev

TITEELE

-

Figure 2-7. Fetching the updates

As shown in Figure 2-8, you'll need to type y and then press Enter to continue.

& File Edit View VM Tabs Help | Bl ~ | & | (O £ = &

openai@ubuntu: ~

a
e :
[

vdpau-driver-all vdpau-va-driver xliproto-bigreqs-dev xliproto-composite-dev

x11lproto-core-dev xllproto-damage-dev x1lproto-dmx-dev x1lproto-dri2-dev

x1iproto-dri3-dev xl1lproto-fixes-dev x11proto-fonts-dev x1llproto-gl-dev

x1iproto-input-dev xliproto-kb-dev xliproto-present-dev xllproto-randr-dev

x11lproto-record-dev x1lproto-render-dev xliproto-resource-dev

x1iproto-scrnsaver-dev xllproto-video-dev xllproto-xcmisc-dev

x11lproto-xext-dev xllproto-xf86bigfont-dev x1lproto-xfB86dga-dev

x11proto-xf86dri-dev xlilproto-xf86vidmode-dev x1lproto-xinerama-dev xorg-dev

xorg-sgml-doctools xserver-xorg-dev xtrans-dev xvfb zlibig-dev

The following packages will be upgraded:
dbus dbus-x11 fontconfig-config libdbus-1-3 libdrm-amdgpul libdrm-intel1
libdrm-nouveau2 libdrm-radeoni libdrm2 libeglil-mesa libexpatil libfontconfigl
libfreetypeé libgbmi 1libgli-mesa-dri libgli-mesa-glx libglapi-mesa
1ibglibz.0-6 libglib2.®-bin libicu55 libmirclient9 libmirprotobuf3
libpulse-mainloop-glib® libpulse® libpulsedsp libpython2.7
1ibpython2.7-minimal libpython2.7-stdlib libpython3.5 libpython3.5-minimal
libpython3.5-stdlib libudevl libwayland-client® libwayland-cursor@
libwayland-egli-mesa libwayland-server® libxpm4 pulseaudio
pulseaudio-module-bluetooth pulseaudio-module-x11 pulseaudio-utils python2.7
python2.7-minimal python3.5 python3.5-minimal udev xserver-common zlibilg

48 upgraded, 366 newly installed, ® to remove and 445 not upgraded.

Need to get 283 MB of archives.

I After this operation, 1,109 MB of additional disk space will be used.

a Do you want to continue? [Y/n] yli

=
T
B
)
A

Figure 2-8. Continue with the installation
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In the next step, the essential packages are downloaded and updated accordingly, as
shown in Figure 2-9.

Preparing
Unpacking
Selecting
Preparing
Unpacking
Selecting
Preparing
Unpacking
Selecting
Preparing
Unpacking
Selecting
Preparing
unpacking
Selecting
Preparing
unpacking
Selecting
Preparing
Unpacking
Selecting
Preparing
unpacking
selecting
Preparing
unpacking
Preparing
unpacking

®
=
)
5
L
a
z
B
=]

Selecting
Preparing
Unpacking
Selecting

Preparing
Unpacking

#|(@) Fle Edit View VM Tabs Hep | [ ~ L -
T UNRpack .../LiDTODZ_4.3~20151115-0UDUNTU3_amaos.dep ...
1ibtbb2:amd64 (4.4-20151115-0ubuntu3) ...

previously unselected package libopencv-core2.dv5:amd6d.
to unpack .../libopencv-core2.4v5_2.4.9.1+dfsg-1.5ubuntul_amd6d.deb ...
libopencv-core2.4v5:amd64 (2.4.9.1+dfsg-1.5ubuntul) ...

previously unselected package libopencv-imgproc2.4vs:amd6d.

to unpack .../libopencv-imgproc2.4v5_2.4.9.1+dfsg-1.5ubuntul_amd64.deb ...
libopencv-imgproc2.dvS:amd64 (2.4.9.1+dfsg-1.5ubuntul) ...

previously unselected package libpostproc-ffmpeg53:amd6d.

to unpack .../libpostproc-ffmpeg53_7%3a2.8.11-0ubuntu®.16.64.1_and64.deb ...
1ibpostproc- ffmpeg53:amd6d (7:2.8.11-8ubuntud.16.04.1) ...

previously unselected package libswscale-ffmpeg3:amdéd.

to unpack ... /libswscale-ffmpeg3_7%3a2.8.11-6ubuntu@.16.04.1_amd64.deb ...
1ibswscale-ffmpeg3:and64 (7:2.8.11-0ubuntu®.16.84.1) ...

previously unselected package libsodiumig:amdé4.

to unpack .../flibsodium18_1.0.8-5_amd64.deb ...

1ibsodiumiB:amd64 (1.6.8-5) ...

previously unselected package libzmqS:amds4.

te unpack ... flibzmq5_4.1.4-7_amd64.deb ...

1ibzmg5:amd64 (4.1.4-7) ...

previously unselected package libavfilter-ffmpeg5:amd6s.

to unpack ... /libavfilter-ffmpeg5_7%322.8.11-8ubuntud.16.04.1_and64.deb ...
libavfilter-ffmpeg5:and64 (7:2.8.11-6ubuntud.16.84.1) ...

previously unselected package 1ibdc1394-22:amd64.

to unpack .../libdc1394-22_2.2.4-1_amd64.deb ...

1ibdc1394-22:amd64 (2.2.4-1) ...

to unpack .../[libpulsedsp_1%3a8.8-0ubuntu3.3_amd64.deb ...
1ibpulsedsp:amnd64 (1:8.8-Bubuntu3.3) over (1:8.8-Bubuntu3) ...

to unpack .../pulseaudio-utils_1%3a8.8-6ubuntu3.3_amd64.deb ...
pulseaudio-utils (1:8.8-Bubuntu3.3) over (1:8.8-Bubuntu3) ...

to unpack .../pulseaudio-module-bluetooth_1%3a8.0-0ubuntu3.3_amd64.deb ...
pulseaudio-module-bluetooth (1:8.8-0ubuntu3.3) over (1:8.0-8ubuntu3) ...
to unpack .../pulseaudio-module-x11_1%3a8.0-8ubuntu3.3_amnd64.deb ...
pulseaudio-module-x11 (1:8.0-8ubuntu3.3) over (1:8.8-8ubuntu3) ...

to unpack ... /pulseaudio_1%3a8.08-0ubuntu3.3_amd64.deb ...

pulseaudio (1:8.0-8ubuntu3.3) over (1:8.8-0ubuntu3) ...

to unpack .../libpulse-mainloop-glib®_1%3a8.0-0ubuntu3.3_amd64.deb ...
libpulse-mainloop-glib@:amd64 (1:8.0-8ubuntu3.3) over (1:8.8-Bubuntu3) ...
to unpack .../libpulse®_1%3a8.6-0ubuntu3.3_amd64.deb ...

1ibpulse@:amd64 (1:8.0-8ubuntu3.3) over (1:8.8-Bubuntu3) ...

previously unselected package libsdli.2debian:amd64.

to unpack .../libsdl1.2debian_1.2.15+dfsg1-3_amd64.deb ...
libsdli.2debian:amd64 (1.2.15+dfsgl-3) ...

previously unselected package libavdevice-ffmpeg56:amd6d.

to unpack .../libavdevice-ffmpeg56_7%3a2.8.11-6ubuntu®.16.64.1_and64.deb ...
libavdevice-ffmpeg56:amd64 (7:2.8.11-8ubuntue.16.04.1) ...

previously unselected package libvdpaul:amdéd.

to unpack ... libvdpaul_1.1.1-3ubuntul_anmd64.deb ...

1libvdpaul:amd64 (1.1.1-3ubuntul) ...

previously unselected package ffmpeg.

to unpack .../ffmpeg_7%3a2.8.11-6ubuntu®.16.64.1_andé4.deb ...

ffmpeg (7:2.8.11-8ubuntuf.16.64.1) ...

Figure 2-9. Downloading and extracting the packages

You have now installed the Anaconda distribution of Python. Next, you need to
open a browser window for Ubuntu. This example shows Mozilla Firefox. Search for the
Anaconda installation, as shown in Figure 2-10.
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anaconda installation - Google Search - Mozilla Firefox

E

G anaconda installati...

i @ | https w.google.co.in/search?client=ubuntu&channel=fs&q=anaco

Al Videos News Images Maps More Settings Tools

About 4,69.000 results (0.36 seconds)

Installation | Anaconda Documenlauon
hitps:iidocs Im. I -
On Windows, macOS, and Linux, it is best to install Anaconda for the local user, which does not
require administrator permissions and is the mast robust type of
g on Linux g on Updating from older versions

Download Anaconda Now! | Continuum
hnps hwww.continuum.io/downloads ~
017 - DOWNLOAD ANACONDA DISTRIBUTION ... Easily install 1,000+ data science
mcknges- Anaconda 4.4.0 For Windows Graphical Installer
Anaconda - Developer Blog - Our Story - Anaconda Commurnity

Installing on Windows | Anaconda: Documenlallon

hitps:i/docs.continuum.io/anacondali 1w v

D the NOTE: If you encounter any issues during installation,
temporarily disabile your antl-virus software during Install, then

Figure 2-10. Downloading Anaconda

Now you have to find the download that’s appropriate for your particular operating
system. The Anaconda page is shown in Figure 2-11.

D Downloads | Anaco,.. =

* & anaconds com,

O ANACOMDA

Download Anaconda Distribution

Version 4.4.0 | Release Date: May 31, 2017

wDEPDD e

HIgh-Performance Distrioution Package Management Portal to Data Sclence

Easily install 1000+ fata scimsnce Maringe pac kages, depasiddens s

Igghits. iy yous chata and
packages AN v onmeEnts with corda

b iociive: it Tt
B wincow & mocos & Unux

Anacanda 4. 4.0 For Linux Installer

Figure 2-11. Anaconda page

Select the appropriate distribution of Anaconda, as shown in Figure 2-12.
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{J ANACONDA Whatis A : . [ Bownioad |

High-Performance Distribution Package Management Portal to Data Sclence

= [ 1 A Unux

For Linux Installer

n
n
n
&
B
L7
=

Python 3.6 version * Python 2.7 version *

Figure 2-12. Selecting the Anaconda version

Save the file next, as shown in Figure 2-13.

anaconda.com P %

Opening Anaconda3-4.4.0-Linux-x86_64.sh

You have chosen to open:
Anaconda3-4.4.0-Linux-x86_64.sh
which is: SH File (499 MB)

From: https://repo.continuum.io

What should Firefox do with this file?

Work Er

Open with | Browse...

© saveFile

Do this automatically For files like this from now on.

Cancel

Figure 2-13. Saving the file
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Now, using the terminal, you have to get inside the downloads folder. You should also
check for the file that was being saved. See Figure 2-14.

bash: cd: downloads: No such file or di
openai@ubuntu:~$ cd Downloads
openai@ubuntu:~/Downloads$ dir
Anaconda3-4.4.0-Linux-x86_64.sh
openai@ubuntu:~/Downloads$

Figure 2-14. Getting inside the downloads folder

You now have to use the bash command to run the shell script (see Figure 2-15):

bash Anaconda3-4.4.0-Linux-x86_64.sh
Anaconda3-4.4.8-Linux-x86_64.sh
onenai@ubuntu:~/DownloadsS bash Anaconda3-4.4.8-Linux-x86 64.shll

Figure 2-15. Running the shell script

To select the platform, type yes and press Enter. Anaconda will be installed into the
home location, as shown in Figure 2-16.

Please answer 'yes' or 'no':
>>> yes

Anaconda3 will now be installed into this location:
/home fopenai/anaconda3

- Press ENTER to confirm the location

- Press CTRL-C to abort the installation

- Or specify a different location below
[/home/openai/anaconda3] >>> ]

Figure 2-16. Setting up the Anaconda environment
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The next step, shown in Figure 2-17, will install all the important packages for
Anaconda so that it is configured properly.

: python-3.6.1-2 ...
_license-1.1-py36_1 ...

: alabaster-0.7.10-py36_0 ...

: anaconda-client-1.6.3-py36_0 ..

: anaconda-navigator-1.6.2-py36_0 ...

: anaconda-project-0.6.0-py36_0 ...

: asnlcrypto-0.22.0-py36_0 ...

: astroid-1.4.9-py36_0 ...

: astropy-1.3.2-np112py36_0 ...

: babel-2.4.0-py36_0 ...

: backports-1.0-py36_0 ...

: beautifulsoup4-4.6.0-py36_0 ...

: bitarray-0.8.1-py36 0 ...

: blaze-0.10.1-py36_0 ...

: bleach-1.5.0-py36 0 ...

: bokeh-0.12.5-py36_ 1 ...

: boto-2.46.1-py36_0 ...

: bottleneck-1.2.1-np112py36_0 ...

: cairo-1.14.8-0 ...

cffi-1.10.0-py36_0 ...

chardet-3.0.3-py36_0 ...

click-6.7-py36_0 ...

: cloudpickle-0.2.2-py36 0 ...

: clyent-1.2.2-py36_0 ...

: colorama-0.3.9-py36_0 ...

: contextlib2-0.5.5-py36_0 ...

: cryptography-1.8.1-py36_0 ...

: curl-7.52.1-0 ...

: cycler-0.10.0-py36_0 ...

: cython-0.25.2-py36_0 ...

: cytoolz-0.8.2-py36_0 ...

: dask-0.14.3-py36_1 ...

: datashape-0.5.4-py36_0 ...

: dbus-1.10.10-0 ...

: decorator-4.6.11-py36 0 ...

installing: distributed-1.16.3-py36 0 ...

installing: docutils-0.13.1-py36_0 ...

installing: entrypoints-0.2.2-py36_1 ...

installing: et_xmlfile-1.0.1-py36 0 ...

i i + exnat-2.1.0-60 ...

Figure 2-17. Installing the key packages for Anaconda
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After the Anaconda installation is complete, you need to open a new terminal to set
up your Anaconda environment. You have to create a new environment for Anaconda
using the conda create command (see Figure 2-18).

# (@ File Edit View VM Tabs Help

openai@ubuntu: ~
openai@ubuntu:~$ conda create --name universe python=3.6 anaconda

e e i I L | S

Figure 2-18. Creating an environment

This command keeps all the packages in an isolated place.
conda create --name universe python=3.6 anaconda

In the next step, the Anaconda environment will install the necessary packages. See
Figure 2-19.
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R A L LI LR N ] Tiosw pyso v

qtpy: 1.2.1-py35_0
readline: 6.2-2
requests: 2.14.2-py35_0
rope: 0.9.4-py35_1
ruamel_yaml: 0.11.14-py35_1
scikit-image: 0.13.0-np112py35_ 0
scikit-learn: 0.18.1-np112py35_1
scipy: 0.19.0-np112py35_0
seaborn: 0.7.1-py35 0
setuptools: 27.2.0-py35_0
simplegeneric: 0.8.1-py35_1
singledispatch: 3.4.0.3-py35_0
sip: 4.18-py35_0
six: 1.10.0-py35_0
snowballstemmer: 1.2.1-py35_0
sortedcollections: ©.5.3-py35 0
sortedcontainers: 1.5.7-py35_0
sphinx: 1.5.6-py35_0
spyder: 3.1.4-py35 0
sqlalchemy: 1.1.9-py35_0
sqlite: 3.13.0-0
statsmodels: 0.8.0-np112py35_0
sympy: 1.0-py35_0
tblib: 1.3.2-py35_0
terminado: 0.6-py35_0
testpath: 0.3-py35_0

tk: 8.5.18-0

toolz 0.8.2-py35_0
tornado 4.5.1-py35 0
traitlets: 4.3.2-py35_0
unicodecsv: 0.14.1-py35_0
unixodbc: 2.3.4-0
wcwidth: 0.1.7-py35_0
werkzeug: 0.12.2-py35_0
wheel: 0.29.0-py35_0
widgetsnbextension: 2.0.0-py35_0
wrapt: 1.10.10-py35_0
xlrd: 1.0.0-py35_0
Xlsxwriter: 0.9.6-py35_0
xlwt: 1.2.0-py35 0
XZ: Delus=1

yaml: 0.1.6-6
zeromq: 4.1.5-0

Zicth: 0.1.2-py35_0
z1lib: 1.2.8-3

Proceed ([y]l/n)? |

Figure 2-19. The packages for installing or updating Anaconda
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Typey and then press Enter to continue. Then the entire process will be
complete after every package is updated in the environment. You can now activate the
environment. See Figure 2-20.

Time: 0:00:04 727.89 kB/s
Time: 0:00:00 1.67 MB/s
Time: 0:00:00 625.68 kB/s
Time: 0:00:00 7.77 kB/s

spyder-3.1.4-p 100%
widgetsnbexten 180%
ipywidgets-6.6 160%
anaconda-4.4.0 100%
Extracting packages

[ COMPLETE ] |#ans # P # e
Linking packages ...
COMPLETE 11

To activate this environment, use:
> source activate universe

To deactivate this environment, use:
> source deactivate universe

RN RN R

openaigubuntu:~$ I

Figure 2-20. The packages for installing or updating Anaconda

Some additional updates might need to be installed. You also need to install Swig, as
shown in Figure 2-21.

conda install pip six libgcc swig

openai@ubuntu:~$ source activate universe

(universe) openai@ubuntu:~5 conda install pip six libgcc swig
Fetching package metadata .......

solving package specifications: ..........

Package plan for installation in environment /home/openai/anaconda3/envs/universe:

The following packages will be downloaded:

package | build

........................... [2m=mmmmamaaaiaaas

libgcc-5.2.0 | ] 1.1 MB

anaconda-custom | py35_0 3 KB

swig-3.6.10 | e 2.7 MB
Total: 3.8 MB

The following NEW packages will be INSTALLED:
swig: 3.0.10-0
The following packages will be UPDATED:

. anaconda: 4.4.0-np112py35_6 --> custom-py35_©
s libgcc: 4.8.5-2 ==> 5.2.0-8

Proceed ([y]l/n)? ¥y

Figure 2-21. Installing Swig too
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You will also have to install OpenCV in order to update certain packages, as shown in
Figure 2-22.

Libgcc-5.2.0-0 40% |#HHAHRHHARRRBRRARBAHABBBHHAHBRHBRBHHBRGRBRRARRBRBHHAL
1ibgcc-5.2.0-0 100% |###HRAHHHEHRUEHIHHERBHEHHHRREHHBRBHEREHRBRRARBRA G
anaconda-custo 100% |H####HE#HHHAAHREREHBBRBBHBRHHHBHHURRBBBERBRBHBUBRBRERL
swig-3.0.10-0. 100% |#HSHHREHEHEHRATHREHERRH AR HHRR R AR R R R R
Extracting packages ...
[ COMPLETE ] | BRSO R R U RN UR R R AR URGRBRBR RGN
Unlinking packages ...

COMPLETE B2 2ss0 2o i e s p s e S e
Linking packages ...
[ COMPLETE ] | BHRBH BB R R R R
(universe) openai@ubuntu:~$
(universe) openai@ubuntu:~$ conda install opencvl]

Figure 2-22. Installing OpenCV

If there are updates to OpenCV, type y to install them too. See Figure 2-23.

LUNLVErSE ) OPEN3aLguDuntu;~3 CONUd LNSLaLL Upency
Fetching package metadata .......

Solving package specifications: ..........

Package plan for installation in environment [home/openaifanacondadfenvs/universe:

The following packages will be downloaded:

package | build

opencv-3.1.8 | npll2py35_1 36.6 MB

pillow-3.4.2 1 py35_e 885 KB

qt-5.6.2 ] 2 44.2 MB
Total 81.7 MB

The following MEW packages will be INSTALLED:
opencv: 3.1.8-npli2py35_1
The following packages will be DOWNGRADED due to dependency conflicts:

jpeg: 9b-8 -» 8d-2
Libtiff: 4.0.6-3 > 4.0.6-2
pillow: 4.1.1-py35 @ -> 3.4.2-py35_0
qt: 5.6.2-4 => 5.6.2-2

M rroceed ([y]/n)? y

ST

Figure 2-23. Installing OpenCV

Next, you need to install TensorFlow. This chapter shows how to install the CPU
version. See Figure 2-24.

pip install --upgrade tensorflow
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inking packages .

[ COMPLETE #2
Linking packages ...
[ COMPLETE 11

(universe) openalgubuntu:~$ pip install --upgrade tensorflow
ollecting tensorflow

Downloading tensorflow-1.3.0-cp35-cp35m-manylinuxl_x86_64.whl (43.1M8)
61% | | 26.6MB 1.5MB/S eta 0:00:12

Figure 2-24. Installing TensorFlow

Figure 2-25 shows the packages being installed for TensorFlow.

FiledotFoundirror: [Errno 2] Ne such file or dlrectory: | S/site- pockages/ «2.8-py0. 505"
(ivarse) optartpubonte:-5 plp Lnstall --uparade unseﬂlw
nrnn, tensoe L 5fun verse/ 551
iy e (fron tensorflow
egulrenent a:rndy wp-to-date: prntm : o in . y 5, mo n:kqﬂ :l'fu- tmwfr\wl
A s

vaine126 1n lanumdn{nw;mlwruﬂlwpytm} Sfuu packages Trren v Tanserfion)
ensorf / site-packages (frem tensorflom)
n B 5 {fren protebuf>=3.3.8->tensorfLow)

10,18 in . v rae i) u\t:e packages (from tensorflow-tensorboardcn, 2.0,350,1.8- ){!nwl fla-)
»rk«n-. s.u s Sisite-packages rl'm- enso -tensorkoard. e, 1,85
/o 5 ile ~tencort
5 Mnlsub--a.usm in sef han3.5site-) mdanﬂ (fl.q tensor Flow-tensarbaard<s. 2. a #e0.1.0- atensorflmd

[{(untverse) spenatubuntui

Figure 2-25. TensorFlow installs the packages

The next step, shown in Figure 2-26, asks for the privileges to install the other
packages. Type y to continue.

[ v 5) opana AR bm ez ~5  Sda ApE-DE ARBRRLL N 221 e e e e e o o
b apt-transport-hetps |

> ca-certificates |
> curl \
> scftware-properties-comman

[sudo] password for openal:

Reading package 11sts... Done

Bullding dependency tree

Feading state informatios..

ca-certificates is already the nmst version (2ele81saubuntul}.

ca-certificates set to manually installed.

The followilng package was automatically installed and Us no longer required:
libmircommons

Use ‘sudo apt autoremove’' to remove it

The following additional packages will “be Anstalled:
Tibcalra-perl 1ibeurli-gnutls Libglib-perl 1ibgtk?-perl 1ibpango-perl pythond-software-properties software-properties-gtk

ges ckages:
1lbl'nnt-|’reelyﬂe-raer1 1ibgtk2-perl-doc
The following NOW packages will be installed:
libcatra-perl libglib-perl libgtk2-perl Libpange-perl
The following packages will be upgraded:
apt-transpart-https curl Libcurll-gautls python3-software-properties software-properties-conmon software-properties-gtk
| © upgraded, 4 newly installed, 0 to remove and 439 not upqraded.
Need to get 1,528 kB of archives.
| After this operation, 4,815 kB of additional disk space will be wsed.
Do you want te continue? [¥/n] [l

&1

Figure 2-26. Package installation happens

In the next section, we install Docker. We will first learn what Docker is.

Installing Docker

When you want to keep your containers in the cloud, Docker is the best option.
Developers generally use Docker to minimize workloads on a single machine, because
the entire architecture can be hosted on the developer environment. Enterprises use
Docker to maintain an agile environment. Operators generally use Docker to keep an eye
on apps and to run and manage them effectively.
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Now you will install Docker, as it is essential for OpenAI Gym and Universe to work.
You need to install Docker because, when you are training an environment, Docker is
very responsive to simulations since it runs with low resources.

The command to be entered in the terminal is shown here:

$ sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
software-properties-common

The next command to enter is:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add

You use curl and the http link so that Docker can access these trusted key values.
Now download the Docker type using this command:

$ sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/1linux/ubuntu \
$(1sb_release -cs) \
stable"

Type this command to update Docker, as shown in Figure 2-27:

$ sudo apt-get update

_— U

(universe) openaigubuntu:~5 sudo add-apt-repository

> "deb [arch=amd64] https:[/download.docker.comflinux/ubuntu \

> $(1lsb_release -cs) \

> stable”

(universe) openaigubuntu:-5 sudo apt-get update

Get:1 http://security.ubuntu.comjubuntu xenial-security InRelease [182 kB]
Hit:2 http:/fus.archive.ubuntu.com/ubuntu xenial InRelease

Get:3 http:/fus.archive.ubuntu.comfubuntu xenial-updates InRelease [182 kB]

Get:4 https://download.docker.com/linux/ubunty xenial InRelease [38.9 kB

Get:5 https://download.docker.com/linux/ubuntu xenial/stable amd64 Packages [2,346 B]

Get:6 http:/fus.archive.ubuntu.com/ubuntu xenial-backports InRelease [102 kB]

Get:7 http://security.ubuntu.com/ubuntu xenial-security/main amd64 DEP-11 Metadata [60.1 kB]

Get:8 http://security.ubuntu.com/ubuntu xenial-security/main DEP-11 64x64 Icons [57.8 kB]

Get:9 http://security.ubuntu.comjubuntu xenial-security/universe amd64 DEP-11 Metadata [48.7 kB]
(Get:10 http:[/security.ubuntu.com/ubuntu xenilal-security/universe DEP-11 64x64 Icons [69.1 kB]
(Get:11 http://us.archive.ubuntu.comfubuntu xenial-updates/main amd64 Packages [628 kB]

Get:12 http://us.archive.ubuntu.comf/ubuntu xenial-updates/main 1386 Packages [603 kB]

Get:13 http:/fus.archive.ubuntu.com/ubuntu xenial-updates/main Translation-en [259 kB]

Get:14 http:/fus.archive.ubuntu.comfubuntu xenial-updates/main amd64 DEP-11 Metadata [305 kB]

Get:15 http:/fus.archive.ubuntu.comfubuntu xenial-updates/main DEP-11 64x64 Icons [208 kB]

Get:16 http:/fus.archive.ubuntu.comfubuntu xenial-updates/universe amd64 DEP-11 Metadata [171 kB]
Get:17 http:/fus.archive.ubuntu.comfubuntu xenial-updatesfuniverse DEP-11 64x64 Icons [226 kB]
Get:18 http://us.archive.ubuntu.com/ubuntu xenlal-updates/multiverse amd64 DEP-11 Metadata [5,888 B)
Get:19 http:/fus.archive.ubuntu.comfubuntu xenial-backports/main amd64 DEP-11 Metadata [3,328 B]
Get:2@ http:[fus.archive.ubuntu.comfubuntu xental-backportsfuniverse amd64 DEP-11 Metadata [5,136 B]
Fetched 2,997 kB in 125 (239 kB/s)

ippstrean cache update completed, but some metadata was ignored due to errors.

Figure 2-27. Updating the package
Type this command to install Docker, as shown in Figure 2-28:

$ sudo apt-get install docker-ce
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{vnlverse) nbga;llubnnt ~% sudo apt-get Lnstall docker-ce
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following package was automatically installed and is no longer required:
libnircommans
Use 'sudo apt autoremove' to remove it
The following additional packages will he installed:
aufs-tools cgroupfls-mount
The followlng NEW packages will be installed:
aufs-tools cgroupfs-mount docker-ce
J° upgraded, 3 newly installed, ® to remove and 439 not upgraded.
Meed to get 20.3 MB of archlw:s
fter this operation, 96.6 MB of additional disk space will be used.
Do you want to contlnue? [¥/n] y
Get:1 http://us.archive.ubuntu.confubuntu xenial/universe amd64 aufs-tools amd64 1:3.2+20136722-1.1ubuntul [92.9 kB]
Get:2 https:/download.docker.com/Linuxfubuntu xenial/fstable amdéd docker-ce amnd6d 17.06.1-ce-B-ubuntu [206.2 MB]
Get:3 http:/fus.archive.ubuntu.conjubuntu xenlal/universe amds4 cgroupfs-mount all 1.2 [4,970 B]
Fetched 20.3 MB tn 145 (1,381 kB/s)
Selecting previously unselected package aufs-tools.
(Reading database ... 203817 flles and directories currently installed.)
Preparing to unpack ...faufs-tools_1%3a3.2+20138722-1.1ubuntul_and&4.debk ...
Unpacking aufs-tools 13.2+28136722-1.1ubuntul) .
Selecting previously unselected package cgroupfs- nwnt
Preparing to unpack ... egroupfs-mount_1.2_all.deb .
Unpacking cgroupfs- Aount {1.2) .
selecting previously unselected na:kage docker-ce.
Preparing to unpack ... fdocker-ce_17.06.1-ce-0-ubuntu_andsd.deb ...
unpacking docker-ce (17.06.1~(!‘0-ubuntu) aen
Processing triggers for libc-bin (2.23-8ubuntu3) ...
Processing triggers for man-db (2.7.5-1)
triggers for ureadahead (0.100.8-19) ...
triggers for systemd (229-4ubuntu?) ...
aufs-tools (1:3.2+20130722-1.1ubuntul) ...

cgroupfs-mount (1.2) ...

docker-ce (17.86.1-Ce-8-ubuntu) ...

triggers for libc-bin (2.23-8ubuntu3) ...
Processing triggers for systemd (229-4ubuntu?) ...
Processing triggers for ureadahead (0.180.0-19) ...
{universe) opemalgubuntu:~5 I

Figure 2-28. Docker installation

To test Docker, use this command (see Figure 2-29):

$ sudo service docker start
$ sudo docker run hello-world

'(untverse) openai@ubuntu:~5 sudo service docker start

(universe) openai@ubuntu:~$ sudo docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

be4784fba78d: Pull complete

Digest: sha256:f3b3b28a45160805bb16542c9531888519430e%e6d6TfcO9d72261bad26TF74f
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world” image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you cam run an Ubuntu container with:
S docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://cloud.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

(universe) openai@ubuntu:~$ [J

Figure 2-29. Testing docker

38



CHAPTER 2 © RL THEORY AND ALGORITHMS

An Example of Reinforcement Learning with
Python

This section goes through an example of Reinforcement Learning and explains the flow of
the algorithm. You'll see how Reinforcement Learning can be applied. This section uses
an open source GitHub repo that has a very good example of Reinforcement Learning.
You will need to clone it to work with it.

The GitHub repo link is https://github.com/MorvanZhou/Reinforcement-
learning-with-tensorflow. Within the Ubuntu module, get inside the terminal and start
cloning the repo, as shown in Figure 2-30.

Terminal File Edit View Search Terminal %:lp
abhi@ubuntu:~$ source activate universe

(universe) abhi@ubuntu:~5 git clone https://github.com/MorvanZhou/Reinforcement-
learning-with-tensorflow.gitf]

Ty 2 @) &s9am %

Figure 2-30. Cloning the repo
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Figure 2-31 shows how the repo is replicated.

Terminal File Edit rch -rminal 9:00 AM 1t
abhi@ubuntu:~5 source activate universe
(universe) abhi@ubuntu:~$ git clone https://github.com/MorvanZhou/Reinforcement-
learning-with-tensorflow.git

Cloning into 'Reinforcement-learning-with-tensorflow'...

remote: Counting objects: 463, done.

remote: Compressing objects: 100% (8/8), done.

remote: Total 403 (delta 2), reused 5 (delta 2), pack-reused 393

Receiving objects: 106% (483/463), 278.53 KiB | 66.080 KiB/s, done.

Resolving deltas: 106% (217/217), done.

Checking connectivity... done.

(universe) abhi@ubuntu:~$ [J

Help

L 3 4

Figure 2-31. Replication of the repo

You will next get inside the folder that you used, as shown in Figure 2-32.

Terminal File Edit View Search Termin® Help Ty £ 4) 202am I
Receiving objects: 188% (403/483), 278.53 KiB | 66.00 KiB/s, done.
Resolving deltas: 10e% (217/217), done.

Checking connectivity... done.

(universe) abhi@ubuntu:~$ dir

anaconda3 Pictures

Anaconda3-4.2.0-Linux-x86_64.sh Public

Desktop Reinforcement-learning-with-tensorflow
Documents Templates

Downloads universe

examples.desktop Untitledl.ipynb

Untitled.ipynb

Videos

(universe) abhi@ubuntu:~$ cd Reinforcement-learning-with-tensorflow
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflows dir
contents experiments LICENCE README.md RL_cover.]jpg

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow$ cd contents
(universe) abhigubuntu:~/Reinforcement-learning-with-tensorflow/contents$ dir
10_A3C

11_Dyna_Q

12_Proximal_Policy_Optimization

1_command_line_reinforcement_learning

2_Q_Learning_maze

3_Sarsa_maze

4_Sarsa_lambda_maze

5.1_Double_DQN

5.2_Prioritized_Replay_DQN

5.3 _Dueling_DQN

5_Deep_Q_Network

6_OpenAI_gym

7_Policy_gradient_softmax

8_Actor_Critic_Advantage

9_Deep_Deterministic_Policy_Gradient_DDPG

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents$ I

(

Figure 2-32. Getting inside the folder
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We are working with a scenario of Reinforcement Learning where we are applying
the letter O as a wanderer. That wanderer wants to get the treasure T as fast as it can.
The condition looks like this:

The wanderer tries to find the quickest path to reach the treasure. During each
episode, the steps the wanderer takes to reach the treasure are counted. With each
episode, the condition improves and the number of steps declines.

Here are some of the basic steps in terms of Reinforcement Learning:

e  The program tries to work with actions, as actions are very
important in terms of Reinforcement Learning.

e The available actions for this wanderer is moving left or right:
ACTIONS = ['left','right']

e  The wanderer can be considered the agent.

e  The number of states (also called the number of steps) is limited
to 6 in this example:

N States = 6;

Now you need to apply hyperparameters for Reinforcement Learning.

What Are Hyperparameters?

Hyperparameters are variables that were set before setting the model’s parameters.
Generally, they are different from the parameters of the model for the underlying system
under analysis.

We introduce epsilon, alpha, and gamma.

e  Epsilon is the greedy factor
e Alphais the learning rate
e Gamma is the discount factor

The maximum number of episodes in this case is 13. The refresh rate is when the
scenario is refreshed.

Writing the Code

To create the process from which the computer learns, we have to formulate a table. This
process is known as Q Learning and the table is called a Q table (You will learn more
about Q Learning in the next chapter.) All the key elements are stored in the Q table and
all the decisions are made based on the Q table.
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def

def

build q table(n states, actions):

table = pd.DataFrame(
np.zeros((n_states, len(actions))), # g_table initial values
columns=actions, # actions's name

)

# print(table) # show table

return table

Now we have to take actions. To do so, we use this code:

choose_action(state, q_table):
# This is how to choose an action
state actions = q_table.iloc[state, :]
if (np.random.uniform() > EPSILON) or (state actions.all() == 0): # act
non-greedy or state-action have no value
action_name = np.random.choice(ACTIONS)
else: # act greedy
action_name = state actions.argmax()
return action_name

Now we create the environment and determine how the agents will work within the

environment:

def

def

42

get_env_feedback(S, A):
# This is how the agent will interact with the environment

if A == 'right': # move right
if S == N_STATES - 2: # terminate
S_ = 'terminal'
R=1
else:
S =S+1
R=0
else:  # move left
R=0
if S == o:
S =S # reach the wall
else:
S =S5-1

return S_, R
This function prints the wanderer and treasure hunt conditions:

update _env(S, episode, step counter):
# This is how the environment be updated

env_list = ["-"]*(N_STATES-1) + ['T'] # '--------- T' our environment
if S == "terminal':
interaction = 'Episode %s: total steps = %s' % (episode+1, step
counter)



CHAPTER 2 © RL THEORY AND ALGORITHMS

print('\r{}'.format(interaction), end="")

time.sleep(2)

print('\r ', end="")
else:

env_1ist[S] = "o’

interaction = ''.join(env_list)

print('\r{}'.format(interaction), end="")

time.sleep(FRESH _TIME)

The r1() method calls the Q Learning scenario, which we discuss in next chapter:

def r1():

# main part of RL loop

q_table = build q_table(N STATES, ACTIONS)

for episode in range(MAX EPISODES):
step_counter = 0
S=0
is_terminated = False
update env(S, episode, step counter)
while not is_terminated:

A = choose_action(S, q table)
S_, R = get_env_feedback(S, A) # take action & get next state

and reward
q_predict = q_table.ix[S, A]
if S_!= "terminal':

q_target = R + GAMMA * q_table.iloc[S , :].max() # next
state is not terminal
else:
q_target = R # next state is terminal
is_terminated = True # terminate this episode

q_table.ix[S, A] += ALPHA * (q_target - q_predict) # update
S =S_ # move to next state

update_env(S, episode, step counter+1)
step_counter += 1
return q_table

if _name__ == "_main_":
q_table = rl()
print('\r\nQ-table:\n")
print(q_table)
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The full code looks like this:

import numpy as np
import pandas as pd
import time

np.random.seed(2) # reproducible

N_STATES = 6 # the length of the 1 dimensional world
ACTIONS = ['left', 'right'] # available actions
EPSILON = 0.9 # greedy police

ALPHA = 0.1 # learning rate

GAMMA = 0.9 # discount factor

MAX_EPISODES = 13  # maximum episodes

FRESH TIME = 0.3 # fresh time for one move

def build q table(n_states, actions):
table = pd.DataFrame(
np.zeros((n_states, len(actions))), # q_table initial values
columns=actions, # actions's name
)
# print(table) # show table
return table

def choose action(state, q table):
# This is how to choose an action
state actions = q_table.iloc[state, :]
if (np.random.uniform() > EPSILON) or (state actions.all() == 0): # act
non-greedy or state-action have no value
action _name = np.random.choice(ACTIONS)
else: # act greedy
action _name = state actions.argmax()
return action_name

def get_env_feedback(S, A):
# This is how agent will interact with the environment

if A == 'right': # move right
if S == N_STATES - 2: # terminate
S = 'terminal'
R=1
else:
S =S5S+1
R=0
else:  # move left
R=0
if S == o:
S_ =S # reach the wall
else:
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if _name_ == "_ main_":
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S =S5-1
return S_, R

update_env(S, episode, step counter):
# This is how environment be updated
env_list = ["-"]*(N_STATES-1) + ['T"'] # "--------- T' our environment
if S == "terminal':
interaction = 'Episode %s: total steps = %s' % (episode+1, step_
counter)
print('\r{}'.format(interaction), end="")
time.sleep(2)
print('\r ', end="")
else:
env_list[S] = 'o'
interaction = ''.join(env_list)
print('\r{}'.format(interaction), end="")
time.sleep(FRESH TIME)

rl():
# main part of RL loop
q_table = build q table(N_STATES, ACTIONS)
for episode in range(MAX EPISODES):
step_counter = 0
S=0
is_terminated = False
update_env(S, episode, step counter)
while not is terminated:

A = choose _action(S, q_table)
S , R = get_env_feedback(S, A) # take action & get next state

and reward
q_predict = q_table.ix[S, A]
if S_ != "terminal':

q_target = R + GAMMA * q_table.iloc[S , :].max() # next
state is not terminal
else:
q_target = R # next state is terminal
is_terminated = True # terminate this episode

q_table.ix[S, A] += ALPHA * (q_target - q_predict) # update
S =S_ # move to next state

update_env(S, episode, step counter+1)
step_counter += 1
return q_table

q_table = r1()
print('\r\nQ-table:\n")
print(q_table)
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Let’s now run the program and analyze the output. You need to get inside the cloned
GitHub repo and into the required folder, as shown in Figure 2-33.

Terminal File Edit Vie rch TerminX Help
Receiving objects: 108% (403/483), 278.53 KiB | 66.00 KiB/s, done.
Resolving deltas: 10e% (217/217), done.

Checking connectivity... done.

(universe) abhigubuntu:~$ dir

anaconda3 Pictures
Anaconda3-4.2.0-Linux-x86_64.sh Public

Desktop Reinforcement-learning-with-tensorflow
Documents Templates

—

Downloads universe

examples.desktop Untitledl.ipynb
Untitled.ipynb
Videos

(universe) abhi@ubuntu:~$ cd Reinforcement-learning-with-tensorflow
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflows dir
contents experiments LICENCE README.md RL_cover.jpg
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow$ cd contents
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents$ dir
10_A3C
11_Dyna_Q
12_Proximal_Policy_Optimization
1_command_line_reinforcement_learning
2_Q_Learning_maze
&l 3_Sarsa_maze
4_Sarsa_lambda_maze
5.1_Double_DQN
5.2_Prioritized_Replay_DQN
5.3_Dueling_DQN
5_Deep_Q_Network
6_OpenAI_gym
7_Policy_gradient_softmax
8_Actor_Critic_Advantage
9_Deep_Deterministic_Policy_Gradient_DDPG
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents$ I

QO

4
-

Figure 2-33. Getting inside the cloned repo

Now you need to get inside the directory to run the program, as shown in Figure 2-34.

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/1_comma
nd_line_reinforcement_learning$ dir

treasure_on_right.py

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/1_comma
nd_line_reinforcement_learning$

Figure 2-34. Checking the directory

Now you have to run the program called treasure_on_right.py, which places the
treasure to the right of the agent. See Figure 2-35.
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oomand_line_reinforcement_learning

bash: cd: 1_coomand_line_reinforcement_learning: No such file or directory
(universe) abhigubuntu:~/Reinforcement-learning-with-tensorflow/contents$ cd 1_c
omand_line_reinforcement_learning

bash: cd: 1_comand_line_reinforcement_learning: No such file or directory
(universe) abhigubuntu:~/Reinforcement-learning-with-tensorflow/contents$ cd 1_c
ommand_line_reinforcement_learning

(universe) abhigubuntu:~/Reinforcement-learning-with-tensorflow/contents/1_comma
nd_line_reinforcement_learning$ dir

treasure_on_right.py

(universe) abhigubuntu:~/Reinforcement-learning-with-tensorflow/contents/1_comma
nd_line_reinforcement_learning$ python treasure_on_right.py

Figure 2-35. Running the Python file

The program is running iterations, as shown in Figure 2-36.

treasure_on_right.py

.universe) abhigubuntu:~/Reinforcement-learning-with-tensorflow/contents/1_comma
vd_line_reinforcement_learning$ python treasure_on_right.py

--o--

Figure 2-36. As the iteration happens

As the program and the simulation complete, the final result is interpreted as a
Q table, where on each step of completing the cycle, the values reflect how much time
it spent in the left and right directions. Figure 2-37 shows the completed Q table.

Q-table:
left right
O 0.000001 0.005728
1 0.000271 0.032612
2 0.002454 0.111724
3 0.000073 0.343331
4 0.000810 ©0.745813
5 0.00000 0.000000
LicmBismmma A\ abbLzna..hicad... IRl afcacaacacaman da T a-w

Figure 2-37. The Q table created as a result

What Is MDP?

MDP (Markov Decision Process) is a framework that involves creating mathematical
formulas and models for decision making where part of it is random and part of it
remains in the hands of a decision maker.
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MDPs have many different applications, as shown in Figure 2-38.

Figure 2-38. MDP and its applications

Every state in MDP satisfies the Markov property.

The Markov Property

In the world of Reinforcement Learning, the Markov property refers to a memory-less
property that is stochastic. Stochastic means a general mathematical object consisting of
random variables. When we are not storing a value of a variable because in each iteration
there is a change, we call it stochastic. See Figure 2-39.

Figure 2-39. The Markov property process

We talk about the Markov Chain in the next section.
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The Markov Chain

If a mathematical property has either a discrete state space or a discrete index set, it is
known as a Markov Chain. The Markov Chain works in two ways, as shown in Figure 2-40.

Figure 2-40. Markov Chain

Let’s look at Markov Chains using an example. This example compares sales of Rin
detergent versus the other detergents in the market. Assume that sales of Rin is 20 percent
of the total detergent sales, which means the rest comprise 80 percent. People who use
Rin detergent are defined as A; the others are A'.

Now we define a rule. Of the people who use Rin detergent, 90% of them continue to
use it after a week whereas 10% shift to another brand.

Similarly, 70% of the people who use another detergent shift to Rin after a week, and
the rest continue to use the other detergent.
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To analyze these conditions, we need a state diagram. See Figure 2-41.

Figure 2-41. Rin detergent state diagram

In the state diagram, we have created a scenario where the circular points represent
states. From this state diagram, we have to assign a transition probability matrix.
The transition probability matrix we get from the state diagram is shown in Figure 2-42.

A A
A 9 1

p=
A J 3

Figure 2-42. The transition probability matrix
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To determine the use of Rin after two weeks, we have to apply a principle. This
principle is common for each and every process you try.
It can be shown as a line connection, as shown in Figure 2-43.

3 A

Figure 2-43. A connected graph

From the origin, we have two paths—one for Rin detergent (through A) and the other
for the rest (that is A"). Here is how the path is created.

1. From the origin, we create a path for A, so we have to focus on
the transition probability matrix.

2. We trace the path of A.

3. From the starting market share, the detergent Rin has a
market value of 20%.

4. From the starting point A, we focus on the transition
probability matrix.

There is a 90% probability of staying on A, so the other 10% change to the alternate
path (to A").

51



CHAPTER 2 © RL THEORY AND ALGORITHMS

Figure 2-44 shows this path calculation graphically.

AI

&k A

Figure 2-44. Path calculation

The total path probability is determined as so: P=.2*.9 + .8*.7 =.18 + .56 =.74.

This is the percentage of people using Rin after one week.

This formula can also be conceptualized as the current market share (SO) and
transition probability (P):

SO * P = market share after one week
See Figure 2-45.

Figure 2-45. The matrix created for the next week
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The calculationis .2 *.9 + .8*.7 =.74
2*1+.8%.3=.26
[.74 26]=S1

Let’s work on a first state matrix. After one week, the sale of Rin detergent is 74% of
the market. The other brands then make up 26% of the market.

Now try to find the percentage of people using Rin detergent after two weeks.
Figure 2-46 shows the calculation that we need to do after two weeks.

$:.P
= A A’
.74 .26 A .9 A
A’ g .3

Figure 2-46. The next transition matrix

So the result is:

A A

=[.848.152]

After two weeks, 84.8% of the people will use Rin and 15.2% will use other detergents.

One question you might have is whether the sale of Rin will ever maximize to 100%
of the market. As we go along, the matrix will become stationary after a certain number of
iterations and finally settle at:

AN

=[.75 .25]

After going through the basics of the Markov state and the Markov Chain, it’s time to
focus on MDPs again.

MDPs

Almost all Reinforcement Learning problems can be formalized as MDPs. MDPs create a
condition that’s prevalent for applying Reinforcement Learning. The essentials of MDPs
are a continued Markov process.
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A state (St) is Markov if and only if it meets the criteria shown in Figure 2-47.

p[5t+1|5t] = P[S:ulsl, ...... St]

Figure 2-47. The Markov state property

The state captures all relevant information from the history. We do not have to retain
everything in history because only the previous state determines what will happen now.

For a Markov state (s) and successor state (s’), the state transition probability is
defined in Figure 2-48.

Pw =P[Su1=5"| Sed

P: Pli__.........-------------pin

Figure 2-48. The transitive probability

MDP is a Markov reward process with a decision factor in it. It is a type of
environment where all the states are Markov.
An MDP is a five tuple < S, A, P, R, Gamma>:

e  Sstands for state

e  Astands for action
e Pisapolicy

e R stands for reward

Policy (m) is a distribution over actions in a given state. A policy is a function or a
decision-making process that allows transitions from one state to another.

SARSA

SARSA stands for State Action Reward next State and next Action. It is a different kind
of Reinforcement Learning approach and is generally derived from temporal difference
learning. We'll discuss temporal difference learning first.

Temporal Difference Learning

This type of learning is based on its own vicinity or its own range. We generally apply
temporal difference learning when we are in a state and want to know what is happening
in successive states.
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The general idea is that we want to predict the best path over a period of time.
We go from state SO to state SE. We get rewards in each state. We will be trying to
predict the discounted sum of rewards. See Figure 2-49.

SG Fer >S1 F—> Sé Fr—» SF

Figure 2-49. State transition

We start by looking at the Markov Chain, as shown in Figure 2-50.

B
>
\

A\ 4

Q\
o

Stochastic Transition

Figure 2-50. The Markov Chain

The equation states that the value function maps the state to some number. This
number is set to 0 if it is in the final state (see Figure 2-51).

V(s) = 0, if S=S¢
E[r+vyv(s’)], otherwise

Figure 2-51. The value function
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For any state, the value is the expected value of the reward (r) and the discounted
value of the ending state.

How SARSA Works

Now we get into SARSA. SARSA is known as an own policy Reinforcement Learning. An
own policy means that we can see only our own experiences.

It accumulates updates in one or more steps and learns to update from its
experiences.

From the current state, we choose an action and then get to the next state. At the next
state, we choose another state and use the current state and the current action with the
next state and next action. We then update all the values together as a Q value.

Here is the algorithm:

1. Initialize Q(s, a) arbitrarily.
2. Initialize s.

3. Choose a from s using the policy derived from Q. Repeat these
two steps for each episode.

4. Take action a and observe r and s.

5. Choose @’ from s’ using the policy derived from Q (for
example, ----E-greedy).

Q(s, a) &#x00DF;----- Q(s, a) + a[r +yQ(s', a") - Q(s,a)]
S&#X00DF;---s"'; al#x00DF;-- a';

6. Repeat these steps for each episode until s is terminal.

Q Learning

Q Learning is a model-free Reinforcement Learning technique. Figure 2-52 illustrates the
general procedure for Q Learning.
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Figure 2-52. The Q Learning process

What Is Q?

Q can be stated as a function that consists of two parameters—s and a. The a parameter
can also be referred to as a table.
Q represents the value that an action a takes with state s.

Q[s, a] = Immediate reward + discounted reward

The immediate reward is the point given when the agent moves from one state to
another while doing an action.
The discounted reward is the point given for future references.

How to Use Q

We generally come up with scenarios where we have to find out where we can utilize the
Q table values or the Q value so Q is implemented in this process.

We are looking at what action to take or which policy to implement when we are in
state s. We use the Q table to get the best result.
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If we are in state s, we need to determine which action is the best. We do not change
s, but we go through all the values of a and determine which one is the largest. That
will be the action we should take. Mathematically, this idea is represented as shown in
Figures 2-53 and 2-54.

M(s) = argmax, (Qls, al)

Figure 2-53. The policy equation

M(a |s)= P [At=a]|St=s]

We decide where to go

v

Stochastic Matrix

When we have a policy we can say how the agent will behave

Figure 2-54. How policy works

For MDP, the policy we should implement depends on the current state. We
maximize the rewards to get the optimal solution.

SARSA Implementation in Python

Recall that SARSA is as self policy Reinforcement Learning approach.
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For example, SARSA can be used to solve a maze. Using the SARSA approach, we
cannot compare two different maze environments. We have to stick to one maze and we'll
use the previous as an example. Also, we cannot compare this maze with another outside
maze; we have to stick to the maze that we are working on.

The best thing about SARSA is that it can learn from the current state compared to
the next state or to subsequent states. We accumulate all the experiences and learn from
them.

Let’s break this idea down more. This scenario states that the update can be done
on a Q table by comparing the changes in subsequent steps and then making a decision.
This idea is illustrated in Figure 2-55.

Figure 2-55. Updating results using the SARSA table
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The learning method in Python is different for SARSA. It looks like this:
def learn(self, s, a, r, s , a )

This method depends on the state, the action, the reward, the next state, and the next
action.

If we compare the algorithm and convert it to Python, the construct for this equation
is shown in Figure 2-56.

Q(SJ 8)4—— Q(S:a) +a[r +VQ(S'ra’ ) - Q(s,a)]

Figure 2-56. The SARSA equation

It's converted to the following:
q_target = r + self.gamma * self.q_table.ix [s_, a_]

The difference between this equation and Q Learning is the change in this equation:
q_target = r + self.gamma * self.q table.ix [s_, :].max()

The max() value is present in Q Learning but not in SARSA.
The logic for implementing a policy using SARSA is shown here:

# on-policy
class SarsaTable(RL):

def _init (self, actions, learning rate=0.01, reward decay=0.9, e_
greedy=0.9):
super(SarsaTable, self). init (actions, learning rate, reward
decay, e _greedy)

def learn(self, s, a, r, s, a ):

self.check state exist(s )

q_predict = self.q_table.ix[s, a]

if s != "terminal':
q_target = r + self.gamma * self.q table.ix[s , a_] # next
state is not terminal

else:
q_target = r # next state is terminal

self.q table.ix[s, a] += self.lr * (q_target - q predict) # update

The learning process is somewhat different than with Q Learning. The logic works
according to the principle discussed previously.

60



CHAPTER 2 © RL THEORY AND ALGORITHMS

We combine the state and action of the current status with the next state and next
action. This in turn updates the Q table. This is the way the learning works.

def update():
for episode in range(100):
# initial observation
observation = env.reset()

# RL choose action based on observation
action = RL.choose action(str(observation))

while True:
# fresh env
env.render()

# RL take action and get next observation and reward
observation , reward, done = env.step(action)

# RL choose action based on next observation
action_ = RL.choose action(str(observation ))

# RL learn from this transition (s, a, r, s, a) ==> Sarsa
RL.learn(str(observation), action, reward, str(observation ),
action )

# swap observation and action
observation = observation_
action = action_

# break while loop when end of this episode
if done:
break

Here is the code for creating the maze:

import numpy as np

import time

import sys

if sys.version_info.major == 2:
import Tkinter as tk

else:
import tkinter as tk

UNIT = 40 # pixels
MAZE H = 4 # grid height
MAZE W = 4 # grid width
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class Maze(tk.Tk, object):
def init (self):

super(Maze, self). init ()
self.action_space = ['u", 'd', 'l", 'r']
self.n actions = len(self.action_space)
self.title('maze")
self.geometry('{0}x{1}".format(MAZE H * UNIT, MAZE H * UNIT))
self. build maze()

def build maze(self):
self.canvas = tk.Canvas(self, bg='white',
height=MAZE H * UNIT,
width=MAZE W * UNIT)

# create grids
for ¢ in range(0, MAZE W * UNIT, UNIT):
x0, yo0, x1, y1 = c, 0, c, MAZE_H * UNIT
self.canvas.create line(x0, yo, x1, y1)
for r in range(0, MAZE H * UNIT, UNIT):
x0, y0, x1, y1 = 0, r, MAZE H * UNIT, r
self.canvas.create line(x0, yo, x1, y1)

# create origin
origin = np.array([20, 20])

# hell

helll center = origin + np.array([UNIT * 2, UNIT])

self.helll = self.canvas.create rectangle(
helli center[o0] - 15, helll center[1] - 15,
hell1l center[o] + 15, hell1l center[1] + 15,
fill="black')

# hell

hell2 center = origin + np.array([UNIT, UNIT * 2])

self.hell2 = self.canvas.create rectangle(
hell2 center[o] - 15, hell2 center[1] - 15,
hell2 center[o] + 15, hell2 center[1] + 15,
fill="black")

# create oval

oval_center = origin + UNIT * 2

self.oval = self.canvas.create_oval(
oval center[o] - 15, oval center[1] - 15,
oval center[o] + 15, oval center[1] + 15,
fill="yellow")
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# create red rect

self.rect = self.canvas.create rectangle(
origin[o] - 15, origin[1] - 15,
origin[0] + 15, origin[1] + 15,
fill="red")

# pack all
self.canvas.pack()

reset(self):

self.update()

time.sleep(0.5)

self.canvas.delete(self.rect)

origin = np.array([20, 20])

self.rect = self.canvas.create rectangle(
origin[o0] - 15, origin[1] - 15,
origin[o] + 15, origin[1] + 15,
fill="red")

# return observation

return self.canvas.coords(self.rect)

step(self, action):
s = self.canvas.coords(self.rect)
base action = np.array([0, 0])
if action == 0: # up
if s[1] > UNIT:
base action[1] -= UNIT
elif action == 1: # down
if s[1] < (MAZE_H - 1) * UNIT:
base action[1] += UNIT
elif action == 2: # right
if s[0] < (MAZE_ W - 1) * UNIT:
base_action[0] += UNIT
elif action == 3: # left
if s[0] > UNIT:
base action[0] -= UNIT

RL THEORY AND ALGORITHMS

self.canvas.move(self.rect, base action[0], base action[1]) # move

agent
s_ = self.canvas.coords(self.rect) # next state

# reward function
if s_ == self.canvas.coords(self.oval):
reward = 1
done = True
elif s in [self.canvas.coords(self.hell1l), self
(self.hell2)]:

.canvas.coords
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reward = -1

done = True
else:

reward = 0

done = False

return s_, reward, done

def render(self):
time.sleep(0.1)
self.update()

The Entire Reinforcement Logic in Python

When you are implementing the algorithm in Python, the structure looks like the
following. The content is in the repo.

import numpy as np
import pandas as pd

class RL(object):
def _init (self, action space, learning rate=0.01, reward decay=0.9,
e greedy=0.9):
self.actions = action_space # a list
self.1r = learning rate
self.gamma = reward decay
self.epsilon = e_greedy

self.q_table

pd.DataFrame(columns=self.actions)

def check state exist(self, state):
if state not in self.q_table.index:
# append new state to q table
self.q table = self.q table.append(
pd.Series(

[0]*1en(self.actions),
index=self.q_table.columns,
name=state,

)

def choose action(self, observation):
self.check state exist(observation)
# action selection
if np.random.rand() < self.epsilon:
# choose best action
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state _action = self.q_table.ix[observation, :]
state action = state action.reindex(np.random.permutation(state
action.index)) # some actions have the same value
action = state_action.argmax()
else:
# choose random action
action = np.random.choice(self.actions)
return action

learn(self, *args):
Pass

# off-policy
class QLearningTable(RL):

def

__init_ (self, actions, learning rate=0.01, reward decay=0.9, e_

greedy=0.9):

def

super(QLearningTable, self). init (actions, learning rate, reward_
decay, e _greedy)

learn(self, s, a, 1, s ):

self.check state exist(s )

q_predict = self.q_table.ix[s, a]

if s_ != "terminal':
q _target = r + self.gamma * self.q table.ix[s , :].max() # next
state is not terminal

else:
q_target = r # next state is terminal

self.q table.ix[s, a] += self.lr * (q_target - q predict) # update

# on-policy
class SarsaTable(RL):

def

__init_ (self, actions, learning rate=0.01, reward decay=0.9, e_

greedy=0.9):

def

super(SarsaTable, self). init (actions, learning rate, reward
decay, e_greedy)

learn(self, s, a, r, s, a_):

self.check state exist(s )

q_predict = self.q_table.ix[s, a]

if s_ != "terminal':
q_target = r + self.gamma * self.q table.ix[s , a_ ] # next
state is not terminal

else:
q_target = r # next state is terminal

self.q table.ix[s, a] += self.lr * (q_target - q predict) # update
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The learning process in its entirety looks like this in the code (RL_brain.py):

from maze_env import Maze
from RL_brain import SarsaTable

def update():
for episode in range(100):
# initial observation
observation = env.reset()

# RL choose action based on observation
action = RL.choose action(str(observation))

while True:
# fresh env
env.render()

# RL take action and get next observation and reward
observation , reward, done = env.step(action)

# RL choose action based on next observation
action_ = RL.choose action(str(observation ))

# RL learn from this transition (s, a, r, s, a) ==> Sarsa
RL.learn(str(observation), action, reward, str(observation ),
action )

# swap observation and action
observation = observation_
action = action_

# break while loop when end of this episode
if done:
break

# end of game
print('game over')
env.destroy()

if _name_ == " main_":
env = Maze()

RL = SarsaTable(actions=1ist(range(env.n actions)))

env.after(100, update)
env.mainloop()
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Let’s run the program and check it.
You can do this in the Anaconda environment, as shown in Figure 2-57.

Terminal 13 £ Q) 11:17PM

abhi@ubuntu: ~
abhi@ubuntu:~$ source activate universe

Figure 2-57. Activating the environment

You then have to consider the SARSA maze, as shown in Figure 2-58.

abhi@ubuntu: ~/Reinforcement-learning-with-tensorflow/contents

examples.desktop Untitledl.ipynb

Untitled.ipynb

Videos

(universe) abhi@ubuntu:~5 cd Reinforcement-learning-with-tensorflow
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow$ dir
contents experiments LICENCE README.md RL_cover.jpg

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow$ cd contents
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contentsS dir
16_A3C

11_Dyna_Q

12_Proximal_Policy_Optimization

1_command_line_reinforcement_learning

2_Q_Learning_maze

5.1_Double_DQN

5.2_Prioritized_Replay_DQN

5.3_Dueling_DQN

5_Deep_Q_Network

6_OpenAI_gym

7_Policy_gradient_softmax

B_Actor_Critic_Advantage

9 Deep_Deterministic_Policy Gradient_DDPG

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents$ I

Figure 2-58. Considering the SARSA maze

Now you have to call the run_this.py file to get the program running, as shown in
Figure 2-59.

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents$ cd 3_S
arsa_maze

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/3_Sarsa
_maze$ dir

maze_env.py __pycache__ RL_brain.py run_this.py

(univerie) abhigubuntu:~/Reinforcement-learning-with-tensorflow/contents/3_Sarsa
_maze$

Figure 2-59. Running run_this.py
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To run the program from the terminal, use this command:
python run_this.py

After running the code, the program will play the maze, as shown in Figure 2-60.

13 2 @) 11:36PM I3

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents$ dir

4_Sarsa_lambda_maze
5.1_Double_DQN
5.2_Prioritized_Replay_DQN

5.3_Dueling_DQN
5_Deep_Q_Network . .

6_OpenAl_gym

7_Policy_gradient_softmax . O
8_Actor_Critic_Advantage
9_Deep_Deterministic_Policy_Gradient_DDPG
(universe) abhi@ubuntu:~/Reinforcement-learning-w tents$ cd 3_5
arsa_maze

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/3_Sarsa
maze$ dir

aze_env.py __pycache__ RL_brain.py run_this.py

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/3_Sarsa
maze$ python run_this.py

BDPDONe:

a

Figure 2-60. The program playing maze

Dynamic Programming in Reinforcement
Learning

Problems that are sequential or temporal can be solved using dynamic programming.
If you have a complex problem, you have to break it down into subproblems. Dynamic
programming is the process of breaking a problem into subproblems, solving those
subproblems, and finally combining them to solve the overall problem. The optimal
substructure and the principle of optimality apply. The solution can be cached and
reused. See Figure 2-61.
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iz Y ‘

-

Figure 2-61. Dynamic problem-solving approach

Conclusion

This chapter went through different algorithms related to Reinforcement Learning. You
also saw a simple example of Reinforcement Learning using Python. You then learned
about SARSA with the help of an example in Python. The chapter ended by discussing
dynamic programming basics.
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CHAPTER 3

OpenAl Basics

This chapter introduces the world of OpenAI and uses it in relation to Reinforcement
Learning.

First, we go through environments that are important to Reinforcement Learning. We
talk about two supportive platforms that are useful for Reinforcement Learning—Google
DeepMind and OpenAl, the latter of which is supported by Elon Musk. The completely
open sourced OpenAl is discussed in this chapter and Google DeepMind is discussed in
Chapter 6.

The chapter first covers OpenAl basics and then moves toward describing them and
discusses the OpenAI Gym and OpenAl Universe environments. Then we cover installing
OpenAl Gym and OpenAl Universe on the Ubuntu and Anaconda distributions. Finally, we
discuss using OpenAI Gym and OpenAlI Universe for the purpose of Reinforcement Learning.

Getting to Know OpenAl

To start, you need to access the OpenAl web site at https://openai.com/.
The web site is shown in Figure 3-1.

N [T ® 0

OpenAl Baselines:
| ACKTR & A2C

OpenAI

Discovering and enacting
the path to safe artificial
general intelligence.

O REsEABEs O EvETEN

Figure 3-1. The OpenAlI web site
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The OpenAl web site is full of content and resources. It has lots of resources for you
to learn and research accordingly. Let’s see schematically how OpenAl Gym and OpenAl
Universe are connected. See Figure 3-2.

OpenAl

UNIVERSE

©)

Figure 3-2. OpenAl Gym and OpenAl Universe

Figure 3-2 shows how OpenAl Gym and OpenAl Universe are connected, by using
their icons.
The OpenAl Gym page of the web site is shown in Figure 3-3.

€| 8 s | g, gy npaeaian Gl

A toolkit for developing and comparing reinforcement
learning algorithms. It supports teaching agents

everything from walking to playing games like Pong

Wiew on GitHub »

Figure 3-3. OpenAl Gym web site

OpenAl Gym is a toolkit that helps you run simulation games and scenarios to
apply Reinforcement Learning as well as to apply Reinforcement Learning algorithms. It
supports teaching agents for doing lots of activities, such as playing, walking, etc.
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The OpenAl Universe web site is shown in Figure 3-4.

Learn. Grow. Get Smarter.

Figure 3-4. The OpenAI Universe web site

OpenAl Universe is a software platform that measures and trains an AI's general
intelligence across different kinds of games and applications.

Installing OpenAl Gym and OpenAl Universe

In this section, you learn how to install OpenAI Gym and OpenAI Universe in an Ubuntu
machine using version 16.04.

Go into the Anaconda environment to install OpenAlI Gym from GitHub. See
Figure 3-5.

(universe) openai@ubuntu:~$ cd ~

(universe) openail@ubuntu:~$ git clone https://github.com/openai/gym.git
Cloning into 'gym'...

remote: Counting objects: 5981, done.

remote: Total 5901 (delta @), reused ® (delta 0), pack-reused 5901
Receiving objects: 100% (5901/5901), 1.46 MiB | 437.60 KiB/s, done.
Resolving deltas: 100% (3977/3977), done.

Checking connectivity... done.

(universe) openaigubuntu:~$ i

Figure 3-5. Cloning OpenAI Gym

You can clone and install OpenAl Gym from GitHub using this command:

$ source activate universe

(universe) $ cd ~

(universe) $ git clone https://github.com/openai/gym.git
(universe) $ cd gym

(universe) $ pip install -e '.[all]’

73



CHAPTER 3 * OPENAI BASICS

Now install OpenAl Universe as follows:

(universe) $ cd ~

(universe) $ git clone https://github.com/openai/universe.git
(universe) $ cd universe

(universe) $ pip install -e

The packages are being installed. Figure 3-6 shows the cloning process for OpenAl
Universe.

(universe) openaigubuntu:~5 cd gyn
(universe) openaigubuntu:-/gyn$ pip install -e '.[all]"
Obtaining file:// /home /openal fgym

Requirement already satisfled: nunpy>=1.18.4 in [hone/openal/ da3 ) 1) se/ L1l 5[50 k (from gym==8.9.2)
Requirement already satisfied: req 2.8 in [home/openal f w!llb{pythenj 5/site-packages (from gym==8.9.2)
Requirement already satisfied: six in fhome/openal/ fenvs/universe/lib (fron gyn==8.9.2)

Collecting pyglet>=1.2.8 (fron gyn==8.9.2)
Downloadin let-1.2.4-py3-none-any.whl (964kB)
100% | | 972kB 270kB/s
follecting nchl-:yme 8,19 {from gym==0.9.2}
Downloadin -0.8.21. tar.gr (1148
108% | | 1.148 751kB/s
tollecting keras (from gym==8.5.2)
Downloading Keras-2.8.8-py2.py3-none-any.whl (276kB)
| 276ke 1.ZMB/s
Collecting theano (from gyms==8.5.2)
Downloading Theano-0.9.8.tar.gz (3.1M8
100% | | 3.1MB 2T1kBfs
Collecting mujoco_py<1.0.8,2=0.4.3 (from gym==0.9.2)

Figure 3-6. Cloning OpenAl Universe

The entire process, with all the important files, is downloaded, as shown in Figure 3-7.

se/Lib/py 5 packages (fron gyma=s.$.2)
I e/ S/site-package " 8.9.2]
sfied: packages (fron ki e 5.2}
Bullding whesls Tor :ou.noﬂ packages: p):hhpy, tMu\n_ mujoco-py, imagelc, Box2D- kmgz, ,yopcnr.L atari-py

Burning setup.py bilst sheel for pachi-p:
Stored in directory: /B
Rusning Fetup.py bilst wheel for mﬂno = duu

Stored (n dlrectory fi Up/nheels /ds (ERTE
Rurning setup.py Mtn _wheel far mujoco-py ... done
Stored in director I PR/ [
FURRLAG ERTUR. Y N\u wheel for imagels done
stored in directory: fhone openal [2a]87 fcf [Tcoanal fac2227
Rurnlng setup.py bdlst -hnl far BexiD- m: - done
Stored in directory: ! Ls /50 el fed)
Runn\ng cetup.py bdist wheel for PyopencL ... iun(
ored in directory 1 heels/1c/17/58/
Runn\nn setup. py List -ml far atari- » ... dane
Stored in directory: /b iy [wheels 9d]

successfully bullt pachl-py theans mujoco-py imagels BoxT0. h»qz PYOpEnGL atari-py
Installing collected n«logn vnlet pachl-py, keras, theana, Pydpenti, sujoco-py, Lmagelo, Boxi0-kengr, atari-py, gym
Rurning setup.py develop
Successtully ARSTALles Bonzd Kenge-2.3.3 PYOPERCL-3.1.8 SLari-py-0.1.1 gym 1nagelo-2.2.0 Keras-2.0.8 mujoco-py-8.5.7 pachi-py-0.0.21 pyglet-1.2.4 theano 0.9.0
(universe) opeaailgubunty: mﬂinl

Figure 3-7. Important steps of the installation process

The process installation continues, as shown in Figure 3-8.

i
/apanatfmactntulfamvafumtvarse Lih/pribent. jsita- pickages (#1en toge. FX] 50 n.4
¥ reniverseecd. 21 5)

pach, Fovishariight,
sotup py BALEE e Tor i

» Srectery et
Il\nn-l'-r'--nﬂn .. dae

ki, twsted, wjien

reai
samet s rasrce
Low Eoiecied perbopen; 1ant steba, Gocker -pyoreds, websocbet-client, repeests, docker-py, Fastrieriight, go-vacds leer, roge. Unterface, comstastly, Lacrmmestel, stiry, detomst, bypeciisd

Voa, syead, watmcss
Howed amiatiag tsatatlatie: ¢
ing reewests 1.

TSRaNA-17 5.1 €ORTAAELY 13

Socher pyCrefu-8 1.1 TRTINAFILGAE-8.5. 14 JB-vACH Leer -8 4. TF Mpperileb-17.3 | \ecremestal-1r.3.0
verie mbsschet-cliant-8 84 2

i_

Figure 3-8. More steps of the installation process
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In the next section, you learn how to start working in the OpenAI Gym and OpenAlI
environment.

Working with OpenAl Gym and OpenAl

The OpenAl cycle for a sample process is shown in Figure 3-9.

=
—

Figure 3-9. The basic OpenAI Gym structure
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The process works this way. We are dealing with a simple Gym project. The language
of choice here is Python, but we are more focused on the logic of how an environment is
being utilized.

1. Weimport the Gym library.

2. We create an instance of the simulation to perform using the
make function.

3.  Wereset the simulation so that the condition that we are going
to apply can be realized.

4.  We do looping and then render.

The output is a simulated result of the environment using OpenAl Reinforcement
Learning techniques.

The program using Python is shown here, whereby we are using the cart-pole
simulation example:

import gym

env = gym.make('CartPole-v0"')

env.reset()

for _ in range(1000):

env.render()

env.step(env.action_space.sample()) # take a random action

The program that we created runs from the terminal; we can also run the program on
a jupyter notebook. Jupyter notebook is a special place where you can run Python code
very easily.

To use the properties or the file structure of OpenAl, you need to be in the universe
directory, as shown in Figure 3-10.

Termina! Terminal File Edit Viev arch Termi®sl Help 13 2 @) 243aM I

abhi@ubuntu: ~funiverse

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$ cd universe
(universe) abhi@ubuntu:~/universes [§

] & DB O @

Figure 3-10. Inside the universe directory
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To work with the Gym components, you need to get inside the gym directory, as
shown in Figure 3-11.

Terminal 1y % 1k} 12:35PM %
abhi@ubuntu: ~fgym

Ml abhi@ubuntu:~$ source activate universe
(universe) abhigubuntu:~$ cd gym
(universe) abhigubuntu:~/gym$

Figure 3-11. Inside the gym directory

You then need to open the jupyter notebook. Enter this command from the terminal
to open the jupyter notebook (see Figure 3-12):

jupyter notebook
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Termina! Terminal File Edit View Search Terminal Help & 3 £ @) 12:38PM

abhi@ubuntu: ~/gym

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$ cd gym
(universe) abhigubuntu:~/gym$ jupyter notebook

VDD O N @

>

Figure 3-12. Using the jupyter notebook

When you issue the command, the jupyter notebook engine side-loads essential
components so that everything related to the jupyter notebook is loaded, as shown in
Figure 3-13.

al Terminal File Edit View Search Terminal Help 3 4!]} 12:40 PM (1}

abhi@ubuntu: ~/gym

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$ cd gym
(untverse) abhi@ubuntu:~/gym$ jupyter notebook

[I 12:40:14.506 NotebookApp] Writing notebook server cookie secret to frunfuser/
1eeefjupyterfnotebnok cookie_secret

[T 12:40:20.969 NotebookApp] Serving notebooks from local directory: /homefabhif
gym

[I 12:40:20. =bookApp] © active kernels

[T 12:40:20.970 NotebookApp] The Jupyter Notebook is running at: http://localhos

t:8888/?token=dlebec2dfad779a7e840b547e6b0df4ba3170f6e3a838cf4

[T 12:40:20.976 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

[C 12:40:20.971 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
http://localhost:8888/?token=dlebec2df8d779a7e840b547e6b0df4ba3176f6e3a8
38cf4a

=
5
B
=

Figure 3-13. The essential components of jupyter notebooks

78



CHAPTER 3 * OPENAI BASICS

Once the jupyter notebook is loaded, you will see that the interface has an option for
working with Python files. The type of distribution you have for Python is shown in the
interface. Figure 3-14 shows that Python 3 is installed in this case.

Upload lNeW '_l z

Python 3 p

10

Text File b1
Folder

Terminal e

4 days ago

Figure 3-14. Opening a new Python file

You can now start working with the Gym interface and start importing Gym libraries,
as shown in Figure 3-15.

File Edit View History Bookmarks Tools Help Ty ) 12:45PM
about nrestore » Home — Untitled1

localhost:8888/not k : ¢ ||Q sea B8 3 » =
‘_:'Jupyter Untitled1 A Logo
File Edit View Insert Cell Keme! Widgets Helf Trusled # |Python3 C
B+ % @B 4+ ¥ A EC coe | =

In [1]: dimport gym

In [2]: env = gym.make('CartPole-vo')

[2017-09-67 12:45:13,631] Making new env: CartPole-v@

| In[]: |

Figure 3-15. Working with Gym inside the jupyter notebook

The process continues until the program flow is completed. Figure 3-16 shows the
process flow.
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Untitled1 - Mozilla Firefox

about:sessionrestore Home — Untitled1
localhost:8888/note k i ¢ | |Q search wBe & » =
 Jupyter Untitled1 A Logout
File Ec View Insert Cel Kemel Widgets Help Trusted & | Python 3 O
B + & B 4+ 4 N B C code j =

In [1]: dimport gym

In [2]): env = gym.make('CartPole-ve')
[2017-89-87 12:45:13,631] Making new env: CartPole-v@

In [ ]: for in range(1060):

env.render()
env.steplenv.action_space.sample()

Figure 3-16. The flow of the program

After being reset, the environment shows an array, as shown in Figure 3-17.

untitled4 - Mozilla Firefox

about:sessionrestore > Home
i) | localhost ks/Untitled ¢ ||Q sea "B & » =
— Jupyter untitiedd
P Edit View Insert Cell Keme Widgets Help s | Python |
B+ x @B 4+ + H B C cCode | = celfoobar & @ ©

In [1]: dmport gym
In [2]: env = gym.make('CartPole-ve')
[2617-09-11 ©8:22:58,958] Making new env: CartPole-v@

In [3]: env.reset

Out[3]: array([-0.01685733, ©.01958176, -0.62386482, ©.82559802])

| In[ ):||

Figure 3-17. An array is being created
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Figure 3-18 shows the simulation. The cart-pole shifts by a margin that’s reflected by
the array’s values.

\
N

Figure 3-18. The simulation in action

More Simulations

This section shows you how to try different simulations. There are many different
environment types in OpenAl. One of them is the logarithmic type, discussed next.

There is variety of tasks involved in algorithms. Run this code to include the
environment in the jupyter notebook (see Figure 3-19):

import gym

env = gym.make('Copy-v0")
env.reset()

env.render()

File Edit View ty 2 ) 9:41PM
= Untitleds
localhost: & ¢ ke ed @ | Q search B ¥ » =
Z Jupyter untieds
File Edit View Insert Cel Kemea Widgets Help Python [conda env:universe] O
e[+ @0 [+ % [0 B C|coe |/ = | ceoovar @ | 0 @

In [1]: import gym
In [2]: env = gym.make('Copy-v@')
[2017-89-12 21:39:35,789] Making new env: Copy-ve

In [3]: env.reset()
Out[3]: 1

PP D 3N

In [ ]: env.render

a

Figure 3-19. Including the environment in the jupyter notebook
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The output looks like Figure 3-20. The prime motive for this simulation is to copy
symbols from an input sequence.

In [6]: env.render

Total length of input instance: 2, step: ©

Observation Tape A
OQutput Tape 2
Targets HE -

Figure 3-20. The output after running the render function

This section uses an example of classic arcade games. First, open the required
Anaconda environment using the following command:

source activate universe

Then go to the appropriate directory, say gym:
cd gym

From the terminal, start the jupyter notebook using this command:
jupyter notebook

This enables you to start working with the Python option. Figure 3-21 shows the
process using the classic arcade games.

~ Jupyter Untitled9 A, Logout
File Edit View Insert Cell Kemel Widgets Help Trusted & |"‘}'”"OP 30
B+ % @B 4+ MW E Ccoe ] =

In [1]: import gym

In [2]: env = gym.make('SpaceInvaders-ve')

[2617-09-12 22:08:02,665] Making new env: Spacelnvaders-v@

Figure 3-21. Using classic arcade games
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After using env.reset(), an array is generated, as shown in Figure 3-22.

uUntitleds - Mozilla Firefox il

Home — Untitled9
localhost ’ K ¢ ¢ ||Q, searct T B ¥ » =

-':‘ JUP)’ter Untitled9 P Logout

File Edit View Insert Ce Kemel Trusted | # |Python3 O

B+ « @B 4+ 4+ W B C|cCode
In [2]: env = gym.make('SpaceInvaders-ve')

[2017-09-12 22:08:02,665] Making new env: Spacelnvaders-ve

In [3]:  env.reset
out[2]: array([[[ ©, ©, @],
[6, 8, 6],
é [e, 8, o],
— 6. 0, ol
,.Q.. [e, o, 6],
é [e, o, 8],
:

e],
. el
[e, o, 0],

[e, o, @],
[e, o, e]],

Figure 3-22. The array is being created
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If you use env.render (), you'll generate the output shown in Figure 3-23.

“——
) localhost ¢ || B8 ¥ »
~ Jupyter Untitied9 A
File Edit View nsert Kemel Widgets Helr Trusted | Pythe
B + x g B 4 + M B C code :J =
[8e, 89, 22],
[8o, 89, 22],

[8e, 89, 22]],

([80, 89, 22],
(e, 89, 22],
[se, 89, 22],

{80: 89, 22],
[8e, 89, 22],
[80, 89, 22]]], dtype=uint8)

In [4]: env.render

| In[ ]:

Figure 3-23. Rendering the output

This example is simply simulating different kinds of game environments and setting
them up for Reinforcement Learning.
Here is the code to simulate the Space Invaders game:

import gym

env = gym.make('SpaceInvaders-vo')
env.reset()

env.render ()

In the next section, you will learn how to work with OpenAlI Universe.

OpenAl Universe

In this example, you will be using the jupyter notebook to simulate a game environment
and then will apply Reinforcement Learning to it. Go to the universe directory and start
the jupyter notebook.

import gym
import universe # register the universe environments

env = gym.make('flashgames.DuskDrive-v0")
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env.configure(remotes=1) # automatically creates a local docker container
observation n = env.reset()

while True:
action n = [[('KeyEvent', 'ArrowUp', True)] for ob in observation n] #
your agent here
observation n, reward n, done n, info = env.step(action n)
env.render()

Figure 3-24 shows the code needed to set up the environment for the DuskDrive
game.

Untitled1 - Mozilla Firefox 1y k2 4) 436AM It

Home = Untitled1

i) | localhost-8888 books/Untitled @ ||Q search T Ba 4+ » =

: Jupyter Untitled1 A Logout

File Edit View Insert Cell Keme Help Trusted 4 |Python3 @

B+ | x B 4+ ¥+ N B C coe +] =

In [1]: dimport gym

In [2]: import universe

@ In [3]: env = gym.make('flashgames.DuskDrive-ve')
F\
A

£

[2017-89-13 04:35:02,675] Making new env: flashgames.DuskDrive-ve

In [*]: env.configure(remotes=1
[2017-69-13 04:35:23,855] Writing logs to file: /tmp/universe-2752.lo

g

[2017-09-13 ©4:35:25,017] Ports used: dict keys([])

[2017-69-13 04:35:25,025] [@] Creating container: image=quay.io/opena
ifuniverse.flashgames:©.26.28. Run the same thing by hand as: docker
run -p 5960:5900 -p 15900:1590 --privileged --cap-add SYS ADMIN --ip
c host quay.io/openai/universe.flashgames:8.20.28

[2017-09-13 04:35:25,333] Image quay.io/openai/universe.flashgames:0.
20.28 not present locally; pulling

Figure 3-24. Setting up the environment for the DuskDrive game

Now it will access the image and start the image remotely. It will run the game and
start playing remotely with the help of an agent. See Figure 3-25.

85



CHAPTER 3 * OPENAI BASICS

[ localhostflashgar # x

C | @ localhosf . € s

00 :15 10
Score 236460

flashgames.DuskDrive-v0

This game is being played by an Al. This browser is not just for you: it's what the Al sees too. You can play the original game here:
hitp://www.kongregate.com/games/LongAnimals/dusk-drive

Pressed keys: AmowUp Mouse: x=0 y=0

Figure 3-25. The game played by the agent

First, you import the gym library, which is the base on which OpenAI Universe is
built. You also must import universe, which registers all the Universe environments.
You import the gymlibrary, as you will simulate on OpenAI Gym and Universe:

import gym
import universe # register the universe environments

After that, you create an environment for loading the Flash game that will be
simulated (in this case, the DuskDrive game).

env = gym.make('flashgames.DuskDrive-v0")
env = gym.make('flashgames.DuskDrive-v0")

You call configure, which creates a dockerized environment for running the
simulation locally.

env.configure(remotes=1)
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You then call Env.reset () to instantiate the proper simulation environment
asynchronously

observation n = env.reset()

You then define the keyEvent and Arrowup actions to move the car in the simulated
environment:

action n = [[('KeyEvent', 'ArrowUp', True)] for ob in observation n]

To get rewards and to check the status of the episodes, you use the following code
and render accordingly.

observation n, reward n, done n, info = env.step(action n)
env.render()

Conclusion

This chapter explained the details of OpenAl. First, it described OpenAl in general and
then described OpenAI Gym and OpenAlI Universe.

We touched on installing OpenAI Gym and OpenAI Universe and then started
coding for them using the Python language. Finally, we looked at some examples of both
OpenAlI Gym and OpenAl Universe.
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CHAPTER 4

Applying Python to
Reinforcement Learning

This chapter explores the world of Reinforcement Learning in terms of Python. First
we go through Q learning with Python and then cover a more in-depth analysis of
Reinforcement Learning. We start off by going through Q learning in terms of Python.
Then we describe Swarm intelligence in Python, with an introduction to what exactly
Swarm intelligence is. The chapter also covers the Markov decision process (MDP)
toolbox.

Finally, you will be implementing a Game AI and will apply Reinforcement Learning
to it. The chapter will be a good experience, so let’s begin!

Q Learning with Python

Let’s start with a maze problem. The object of the game is to reach the yellow circle while
avoiding the black squares. Figure 4-1 shows the maze. We use the numpy library in this
example.

© Abhishek Nandy and Manisha Biswas 2018 89
A. Nandy and M. Biswas, Reinforcement Learning,
https://doi.org/10.1007/978-1-4842-3285-9_4



https://doi.org/10.1007/978-1-4842-3285-9_4

CHAPTER 4 * APPLYING PYTHON TO REINFORCEMENT LEARNING

O ® maze

Figure 4-1. The maze that demonstrates Q learning

We have to choose an action based on the Q table, which is why we have the function
called choose_action. When we want to move from one state to another, we apply the
decision-making process to the choose_action method as follows.

def choose_action(self,observation):

The learning process function takes the transition from state, award, reward and goes
to the next state.

def check State exist(self,state)

The check_State_exist function allows us to check if the state exists and then to
append it to the Q table if it does.

The content of the function we have discussed is actually for RL_brain, which
is the basis of the project. The rules are updated for Q learning, as shown in the run
_this.pyfile.
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The Maze Environment Python File

The maze environment Python file, shown here, lists all the concepts for making moves.
We declare rewards as well as ability to take the next step.

Reinforcement learning maze example.

Red rectangle: explorer.

Black rectangles: hells [reward = -1].
Yellow bin circle: paradise [reward = +1].
All other states: ground [reward = 0].

This script is the environment part of this example. The RL is in RL_brain.
py-

View more on my tutorial page: https://morvanzhou.github.io/tutorials/

import numpy as np
import time
import sys
if sys.version_info.major ==
import Tkinter as tk
else:
import tkinter as tk

UNIT = 40 # pixels
MAZE H = 4 # grid height
MAZE W = 4 # grid width

class Maze(tk.Tk, object):
def _init_ (self):

super(Maze, self). init ()
self.action space = ['u', 'd', '1l', 'r']
self.n actions = len(self.action_space)
self.title('maze")
self.geometry('{0}x{1}".format(MAZE H * UNIT, MAZE_H * UNIT))
self. build maze()

def build maze(self):
self.canvas = tk.Canvas(self, bg='white',
height=MAZE H * UNIT,
width=MAZE W * UNIT)

91



CHAPTER 4 * APPLYING PYTHON TO REINFORCEMENT LEARNING

# create grids
for ¢ in range(0, MAZE W * UNIT, UNIT):
x0, y0, x1, y1 = c, 0, c, MAZE H * UNIT
self.canvas.create line(x0, yo, x1, y1)
for r in range(0, MAZE H * UNIT, UNIT):
x0, y0, x1, y1 = 0, r, MAZE_ H * UNIT, r
self.canvas.create line(x0, yo, x1, y1)

# create origin
origin = np.array([20, 20])

# hell

helll center = origin + np.array([UNIT * 2, UNIT])

self.helll = self.canvas.create rectangle(
hell1l center[o] - 15, helll center[1] - 15,
hell1l center[o] + 15, helll center[1] + 15,
fill="black")

# hell

hell2 center = origin + np.array([UNIT, UNIT * 2])

self.hell2 = self.canvas.create_rectangle(
hell2 center[o] - 15, hell2 center[1] - 15,
hell2 center[o] + 15, hell2 center[1] + 15,
fill="black")

# create oval

oval center = origin + UNIT * 2

self.oval = self.canvas.create oval(
oval center[0] - 15, oval center[1] - 15,
oval center[0] + 15, oval center[1] + 15,
fill="yellow")

# create red rect

self.rect = self.canvas.create rectangle(
origin[o] - 15, origin[1] - 15,
origin[o] + 15, origin[1] + 15,
fill="red")

# pack all
self.canvas.pack()

def reset(self):

self.update()

time.sleep(0.5)

self.canvas.delete(self.rect)

origin = np.array([20, 20])

self.rect = self.canvas.create_rectangle(
origin[o] - 15, origin[1] - 15,
origin[o] + 15, origin[1] + 15,
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fill="red")
# return observation
return self.canvas.coords(self.rect)

def step(self, action):
s = self.canvas.coords(self.rect)
base action = np.array([0, 0])
if action == 0: # up
if s[1] > UNIT:
base_action[1] -= UNIT
elif action == 1: # down
if s[1] < (MAZE_H - 1) * UNIT:
base action[1] += UNIT
elif action == 2: # right
if s[0] < (MAZE_W - 1) * UNIT:
base_action[0] += UNIT

elif action == 3: # left
if s[0] > UNIT:
base action[0] -= UNIT

self.canvas.move(self.rect, base action[0], base action[1]) # move
agent

s_ = self.canvas.coords(self.rect) # next state

# reward function
if s_ == self.canvas.coords(self.oval):
reward = 1
done = True
elif s in [self.canvas.coords(self.hell1l), self.canvas.coords(self.
hell2)]:
reward = -1
done = True
else:
reward = 0
done = False

return s_, reward, done

def render(self):
time.sleep(0.1)
self.update()

def update():
for t in range(10):
s = env.reset()
while True:
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env.render ()
a=1
s, r, done = env.step(a)
if done:
break
if _name_ =="' main_':
env = Maze()
env.after(100, update)
env.mainloop()

The RL_Brain Python File

Now for the RL_brain Python file. We define the Q learning table structure that is
generated while moving from one state to another. In the QLearningTable class, we
structure the way the entire maze learns. We also declare hyperparameters for learning
and determine the rate at which the program learns in the next chunk of code:

import numpy as np
import pandas as pd

class QLearningTable:
def _init (self, actions, learning rate=0.01, reward decay=0.9, e_
greedy=0.9):
self.actions = actions # a list
self.1r = learning rate
self.gamma = reward decay
self.epsilon = e_greedy
self.q table = pd.DataFrame(columns=self.actions)

def choose action(self, observation):

self.check state exist(observation)

# action selection

if np.random.uniform() < self.epsilon:
# choose best action
state action = self.q table.ix[observation, :]
state_action = state action.reindex(np.random.permutation(state
action.index)) # some actions have same value
action = state action.argmax()

else:
# choose random action
action = np.random.choice(self.actions)

return action

def learn(self, s, a, r, s ):
self.check state exist(s )
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q_predict = self.q_table.ix[s, a]

if s != "terminal':
q_target = r + self.gamma * self.q table.ix[s_, :].max() # next
state is not terminal

else:
q_target = r # next state is terminal

self.q table.ix[s, a] += self.lr * (q_target - q predict) # update

def check state exist(self, state):
if state not in self.q_table.index:
# append new state to q table
self.q table = self.q table.append(
pd.Series(

[0]*1en(self.actions),
index=self.q_table.columns,
name=state,

Updating the Function

This code segment declares a function that receives updates on the movement in the
maze from one state to another. It also gives out rewards when the player transitions from
one state to another.

from maze_env import Maze
from RL_brain import QLearningTable
def update():
for episode in range(100):

# initial observation

observation = env.reset()

while True:

# fresh env

env.render()

# RL choose action based on observation
action = RL.choose action(str(observation))

# RL take action and get next observation and reward
observation , reward, done = env.step(action)

# RL learn from this transition
RL.learn(str(observation), action, reward, str(observation ))
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# swap observation
observation = observation_

# break while loop when end of this episode
if done:
break

# end of game
print('game over')
env.destroy()

if _name__ == "_main_ ":
env = Maze()

RL = QLearningTable(actions=1ist(range(env.n_actions)))

env.after(100, update)
env.mainloop()

If you get inside the folder, you'll see the run_this.py file and can get the output, as
shown in Figure 4-2.

Terminal Terminal File Edit V search Terminal Help 3 2

abhi@ubuntu: ~/Reinforcement-learning-with-tensorflow/contents/2_Q_Learning_maze

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow$ cd contents
(universe) abhigubuntu:~/Reinforcement-learning-with-tensorflow/contents$ dir
18_A3C

11 _Dyna_Q

12_Proximal_Policy_Optimization

1_command_line_reinforcement_learning

2_Q_Learning_maze

3_Sarsa_maze

4_Sarsa_lambda_maze

5.1_Double_DQN

5.2_Prioritized_Replay_DQN

5.3_Dueling_DQN

=
”
% 5_Deep_Q_Network
B
,.5:

6_OpenAl_gym
7_Policy_gradient_softmax
8_Actor_cCritic_Advantage
9_Deep_Deterministic_Policy_Gradient_DDPG
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contentsS cd 2_Q
Learning_maze
(universe) abhi@ubuntu:~/Reinforcemefit-learning-with-tensorflow/contents/2_Q_Lea
rning_maze$ dir -
aze_env.py RL_brain.py run_this.py
B (universe) abhigubuntu:~/Reinforcement-learning-with-tensorflow/contents/2_Q_Lea
o~ Bning _razes [

Figure 4-2. Running the file
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Figure 4-3 shows the code running.

iy £ @) as4aMm {ft

12_Proximal_Policy_oOptimization
1_command_line_reinforcement_learning
2_Q_Learning_maze

3_Sarsa_maze

4_sarsa_lambda_maze

5.1_Double_DQN

5.2_Prioritized_Replay_DQN
5.3_Dueling_DQN

5_Deep_Q_Network

6_OpenAl_gym

7_Policy_gradient_softmax
B_Actor_Critic_Advantage
9_Deep_Deterministic_Policy_Gradient_DDPG
{universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contentss cd 2_Q
_Learning_maze

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/2_Q_Lea
rning_maze$ dir

maze_env.py RL_brain.py run_this.py

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/2_0Q_Lea
rning_maze$ python run_this.py

game over

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/2_Q_Lea
intng_mazes python run_this.py

Figure 4-3. The maze file being run

Using the MDP Toolbox in Python

The MDP toolbox provides classes and functions for the resolution of discrete time
Markov decision processes. The list of algorithms that have been implemented includes
backwards induction, linear programming, policy iteration, Q learning, and value
iteration along with several variations.

The following are the features of the MDP toolbox (see Figure 4-4):

e  Eight MDP algorithms
e  Fastarray manipulation using NumPy
e  Full sparse matrix support using Scipy’s sparse package

e  Optional linear programming support using cvxopt
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Figure 4-4. MDP toolbox features

Next, you see how to install and configure MDP toolbox for Python. First, switch to
the Anaconda environment, as shown in Figure 4-5.

Termina' Terminal File Edit

abhi@ubuntu: ~
abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$5

ol |W.. MB J| (ﬂ[] O

Figure 4-5. Activating the Anaconda environment
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Now install the dependencies using this command (see Figure 4-6):

sudo apt-get install python3-numpy python3-scipy liblapack-dev libatlas-
base-dev libgslo-dev fftw-dev libglpk-dev libdsdp-dev

al File Edit ch TRminal Help ty 3 4) s:20AM ¢

abhi@ubuntu: ~
abhi@ubuntu:~$ source activate universe

(universe) abhi@ubuntu:~$ sudo apt-get install python3-numpy python3-scipy libla
pack-dev libatlas-base-dev libgsle-dev fftw-dev libglpk-dev libdsdp-devl]

Figure 4-6. Installing the dependencies

When it asks you if it should install the dependencies, choose yes, as shown in
Figure 4-7.
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Terminal 1 3 &) g23AMR %

abhi@ubuntu: ~

libblas-common libblas-dev libblas3 1ibbtf1.2.1 libcamd2.4.1 libccolamd2.9.1

libcholmod3.08.6 libcsparse3.1.4 libcxsparse3.1.4 libdsdp-5.8gf

libgfortran-5-dev libgfortran3 1libglpk36 libgmp-dev libgmpxx4ldbl libgsl2

libklu1.3.3 liblapack3 1libld12.2.1 libspqr2.6.2 libsuitesparse-dev

libumfpack5.7.1 python3-decorator

Suggested packages:

mpi-defaults-bin gfortran-multilib gfortran-doc gfortran-5-multilib

gfortran-5-doc libgfortran3-dbg libblas-doc liblapack-doc liblapack-doc-man

liblodbc2-dev libmysqlclient-dev gmp-doc libgmp1@-doc 1ibmpfr-dev

gsl-ref-psdoc | gsl-doc-pdf | gsl-doc-info | gsl-ref-html python-numpy-doc

python3-nose python3-numpy-dbg python-scipy-doc

The following NEW packages will be installed:
fftw-dev fftw2 gfortran gfortran-5 libamd2.4.1 libatlas-base-dev
libatlas-dev libatlas3-base libblas-common libblas-dev libblas3 libbtf1.2.1
libcamd2.4.1 libccolamd2.9.1 libcholmod3.8.6 libcsparse3.1.4
libcxsparse3.1.4 libdsdp-5.8gf libdsdp-dev libgfortran-5-dev libgfortran3
1ibglpk-dev 1ibglpk36 libgmp-dev 1libgmpxx41dbl libgsl-dev libgsl2
1ibklu1.3.3 liblapack-dev liblapack3 1ibldl2.2.1 libspqr2.0.2
libsuitesparse-dev libumfpack5.7.1 python3-decorator python3-numpy
python3-scipy

© upgraded, 37 newly installed, © to remove and 264 not upgraded.

Need to get 34.7 MB of archives.

After this operation, 155 MB of additi6nal disk space will be used.

Do you want to continue? [Y/n] %"

I T EIE

-

Figure 4-7. Choose yes to proceed

All the dependencies are then installed, as shown in Figure 4-8.

Terminal Terminal File Edit Vi rch Terminal Help Rty 2 @) 243AM %
abhi@ubuntu:

Setting up gfortran-
Setting up gfortran
update-alternatives:
to mode
update-alternatives: using fusr/bin/gfortran to provide fusr/bin/f77 (f77) in au
to mode

Setting up libblas-common (3.6.0-2ubuntu2) ...

Setting up libblas3 (3.6.8-2ubuntu2) ...

update-alternatives: using fusr/lib/libblas/libblas.so.3 to provide Jfusr/lib/lib
blas.so.3 (libblas.so.3) in auto mode

Setting up libblas-dev (3.6.8-2ubuntu2) ...

update-alternatives: using fusr/lib/libblas/libblas.so to provide jfusrflib/libbl
as.so (libblas.so) in auto mode

Setting up liblapack3 (3.6.0-2ubuntu2) .

update-alternatives: using /usrfltbflapackiltblapack s0.3 to provide fusr/lib/li
blapack.so.3 (liblapack.so0.3) in auto mode

setting up liblapack-dev (3.6.8-2ubuntu2) ...

update-alternatives: using /usr/lib/lapack/liblapack.so to provide fusr/lib/libl
apack.so (liblapack.so) in auto mode

Setting up python3-decorator (4.0.6-1) ...

setting up python3-numpy (1:1.11.8-1ubuntul) ...

Setting up python3-scipy (©.17.0-1) ...

MProcessing triggers for libc-bin (2.23-0ubuntug) ...

(universe) abhi@ubuntu:~S [i

5 (5.4.0-6ubuntul~16.04.4) ...
(4:5.3.1-1ubuntul) ...
using fusr/bin/gfortran to provide fusr/bin/f95 (f95) in au

a

Figure 4-8. The dependencies are installed
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Now you can go ahead and install the MDP toolbox, as shown in Figure 4-9.

Termina! Terminal File Edit View S5earch Terminal Help 3 2 4) 246AM I

abhi@ubuntu: ~

Setting up gfortran-5 (5.4.0-6ubuntul~16.84.4) ...
Setting up gfortran (4:5.3.1-1ubuntul) ...
update-alternatives: using fusr/binfgfortran to provide fusr/bin/f95 (f95) in au
to mode

update-alternatives: using fusr/binfgfortran to provide fusr/bin/f77 (f77) in au
to mode

Setting up libblas-common (3.6.8-2ubuntu2) ...

setting up libblas3 (3.6.0-2ubuntu2) ...

update-alternatives: using fusr/lib/libblas/1libblas.so.3 to provide fusr/lib/lib
blas.so.3 (libblas.so.3) in auto mode

Setting up libblas-dev (3.6.0-2ubuntu2) ...

update-alternatives: using fusr/lib/libblas/1libblas.so to provide fusr/lib/libbl
as.so (libblas.so) in auto mode

setting up liblapack3 (3.6.8-2ubuntu2) ...

update-alternatives: using fusr/lib/lapack/liblapack.so.3 to provide fusr/lib/1li
blapack.so.3 (liblapack.so0.3) in auto mode

Setting up liblapack-dev (3.6.8-2ubuntu2) ...

update-alternatives: using /usr/lib/lapack/liblapack.so to provide jfusr/lib/1ibl
apack.so (liblapack.so) in auto mode

python3-decorator (4.6.6-1) ...

python3-numpy (1:1.11.0-1ubuntul) ...
python3-scipy (0.17.0-1) ...

triggers for libc-bin (2.23-8ubuntu9) ...
abhigubuntu:~5 pip install "pymdptoolbox[LP]"

Figure 4-9. Installing the MDP toolbox
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The important packages are being installed, as shown in Figure 4-10.

Terminal

abhi@ubuntu: ~

blas.so.3 (libblas.so.3) in auto mode
Setting up libblas-dev (3.6.8-2ubuntu2) ..

pdate-alternatives: using /usr/lib[libblasfltbblas so to provide fusr/lib/libbl
as.so (libblas.so) in auto mode

Setting up liblapack3 (3.6.08-2ubuntu2) .

pdate-alternatives: using fusrllibllapack{ltblapack s0.3 to provide fusr{LLb{Lt
blapack.so.3 (liblapack.s0.3) in auto mode

Setting up liblapack-dev (3.6.8-2ubuntu2) .

pdate-alternatives: using ;usr[ltb/lapack/ltblapack so to provide fusr/lib/1ibl
apack.so (liblapack.so) in auto mode

Setting up python3-decorator (4.0.6-1) ...

Setting up python3-numpy (1:1.11.8-1ubuntul) ...

Setting up python3-scipy (0.17.6-1)

Processing triggers for libc-bin (2.23-8ubuntu9) .

universe) abhi@ubuntu:~$ pip install pyndptoolbox[LP]“

ollecting pymdptoolbox[LP]

Downloading pymdptoolbox-4.8-b3.tar.gz

Requirement already satisfied: numpy in ./anaconda3/envs/funiverse/lib/python3.5/
site-packages (from pymdptoolbox[LP])

Requirement already satisfied: scipy in ./anaconda3/envs/universe/lib/python3.5/
site-packages (from pymdptoolbox[LP])
ollecting cvxopt (from pymdptoolbox[LP])

Downloading cvxopt-1.1.9-cp35-cp35m-manylinuxl_x86_64.whl (16.1MB)
3.5MB 136kB/s eta ©:081:37

Figure 4-10. Installing the important packages
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If everything works as expected, you'll get all the packages installed, as shown in
Figure 4-11.

Terminal

abhi@ubuntu: ~

update-alternatives: using fusr/libflapack/liblapack.so to provide fusr/lib/libl
apack.so (liblapack.so) in auto mode
Setting up python3-decorator (4.0.6-1) ...
Setting up python3-numpy (1:1.11.0-1ubuntul) ...
Setting up python3-scipy (0.17.8-1) ...
Processing triggers for libc-bin (2.23-8ubuntus) ...
{universe) abhi@ubuntu:~5 pip install "pymdptoolbox[LP]”
Collecting pymdptoolbox[LP]

Downloading pymdptoolbox-4.8-b3.tar.gz
Requirement already satisfied: numpy in ./anaconda3/envs/universe/lib/python3.5/
site-packages (from pymdptoolbox[LP])
Requirement already satisfied: scipy in ./anaconda3/envs/universe/lib/python3.5/
site-packages (from pymdptoolbox[LP])
Collecting cvxopt (from pymdptoolbox[LP])

Downloading cvxopt-1.1.9-cp35-cp35m-manylinux1_x86_64.whl (16.1MB)

100% | | 16.1MB 36kB/s

Building wheels for collected packages: pymdptoolbox
Running setup.py bdist_wheel for pymdptoolbox ... done
Stored in directory: /home/abhi/.cache/pip/wheels/Bc/a6/45/do63bf4230efdadaesd
5db99dc8b36ccf3fo679d27320187b3
Successfully built pymdptoolbox
Installing collected packages: cvxopt, pymdptoolbox
successfully installed cwxopt-1.1.9 pymdptoolbox-4.6b3

universe) abhi@ubuntu:~$

a

DD D O @

Figure 4-11. All the packages have been installed
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Now you need to clone the repo from GitHub (see Figure 4-12):

git clone https://github.com/sawcordwell/pymdptoolbox.git

Termina! Terminal File Edit V search Terminal Help 13 2 4) 301aM

abhi@ubuntu:

Downloading pymdptoolbox-4.8-b3.tar.gz
Requirement already satisfied: numpy in ./anaconda3/fenvs/universe/lib/python3.5/
site-packages (from pymdptoolbox[LP])
Requirement already satisfied: scipy in ./anaconda3/envs/universe/lib/python3.5/
site-packages (from pymdptoolbox[LP])
Collecting cvxopt (from pymdptoolbox[LP])
Downloading cvxopt-1.1.9-cp35-cp35m-manylinuxl_x86_64.whl (16.1MB)

100% | | 16.1MB 36kB/s
Building wheels for collected packages: pymdptoolbox
Running setup.py bdist_wheel for pymdptoolbox ... done
Stored in directory: /home/abhi/.cache/pip/wheels/8c/a6/45/d063bf4230efdadae64
5db99dc8b36ccf3fO679d27320187b3
successfully built pymdptoolbox
Installing collected packages: cvxopt, pymdptoolbox
Ssuccessfully installed cvxopt-1.1.9 pymdptoolbox-4.6b3
(universe) abhi@ubuntu:~5 git clone https://github.com/sawcordwell/pymdptoolbox.
git
Cloning into 'pymdptoolbox'...
remote: Counting objects: 1305, done.
Receiving objects: 100% (1305/1385), 346.52 KiB | 104.00 KiB/s, done.
remote: Total 1305 (delta @), reused ® (delta ©), pack-reused 1305
Resolving deltas: 180% (835/835), done.
MChecking connectivity... done.
(universe) abhi@ubuntu:~$ [j

Figure 4-12. Cloning the repo
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Switch to the mdptoolbox folder to see the details shown in Figure 4-13.

Terminal

abhi@ubuntu: ~

Stored in directory: [home/fabhi/.cache/pip/wheels/8c/a6/45/d863bf423efdadae6d
5db99dc8b36ccf3fO679d27326187b3
Successfully built pymdptoolbox
Installing collected packages: cvxopt, pymdptoolbox

successfully installed cvxopt-1.1.9 pymdptoolbox-4.8b3

(universe) abhi@ubuntu:~S git clone https://github.com/sawcordwell/pymdptoolbox.
git

Cloning into 'pymdptoolbox'...

remote: Counting objects: 1365, done.

Receiving objects: 100% (1305/1305), 346.52 KiB | 104.80 KiB/s, done.

remote: Total 1305 (delta ©), reused © (delta ©), pack-reused 1305

Resolving deltas: 100% (B835/835), done.

Checking connectivity... done.

(universe) abhi@ubuntu:~$ dir

anaconda3 Public

Anaconda3-4.2.0-Linux-x86_64.sh pymdptoolbox
Reinforcement-learning-with-tensorflow
Templates

universe

Untitled1.ipynb

Untitled.ipynb

Videos

(universe) abhi@ubuntu:-~5 cd pyndptuolbaxl

Figure 4-13. Getting inside the folder

You now need to switch to Python mode, as shown in Figure 4-14.

. O — A — T |

cd~: command not found

(universe) abhi@ubuntu:~/pymdptoolbox/docs$ cd ~

(universe) abhi@ubuntu:~5 python

Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1]] on linux

Type "help"”, "copyright”, "credits" or "license" for more information.
~ >3

Figure 4-14. Inside Python mode
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We will now use an example to see how the MDP toolbox works. First, import the
MDP example, as shown in Figure 4-15.

cd~: command not found

(universe) abhig@ubuntu:~/pymdptoolbox/docs$ cd ~

(universe) abhigubuntu:~$ python

Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help”, "copyright”, "credits” or "license” for more information.
>>> import mdptoolbox.example o ~

B

Figure 4-15. Importing the modules

A Markov problem assumes that future states depend only on the current state, not
on the events that occurred before. We will set up an example Markov problem using
a discount value of 0.8. To use the built-in examples in the MDP toolbox, you need to
import the mdptoolbox.example and solve it using a value iteration algorithm. Then you’ll
need to check the optimal policy. The optimal policy is a function that allows the state to
transition to the next state with maximum rewards.

You can check the policy with the vi.policy command, as shown in Figure 4-16.

(universe) abhi@ubuntu:~S python

Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import mdptoolbox.example

>>> P, R = mdptoolbox.example.forest()

>>> vi = mdptoolbox.mdp.valuelteration(P, R, 0.8)

>>> vi.run()

>>> vi.policy

(e, 9, 0)

>>> ]

Figure 4-16. Doing operations

The output for the policy is (0,0,0). The results show the discounted reward for the
implemented policy.
Here is the full program:

import mdptoolbox.example

P, R = mdptoolbox.example.forest()

vi = mdptoolbox.mdp.ValueIteration(P, R, 0.8)
vi.run()

vi.policy # result is (0, 0, 0)

Let’s consider another example. First you need to import the toolbox and the toolbox
example. Using the import example, you are bringing in the built-in examples that are in

the MDP toolbox (see Figure 4-17).

import mdptoolbox, mdptoolbox.example
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Termina! Terminal File Edit ew Search Termikal Help

abhi@ubuntu: ~

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$ python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import mdptoolbox, mdptoolbox.example

=>> P, R = mdptoolbox.example.forest()

= mdptoolbox.mdp.FiniteHorizon(P, R, 0.9, 3)

array([[ 2.6973, ©.81 ,

] S Gl T
[E5:9373 324 B8 TN SR 6 B )
[ 9.9373, 7.24 , 4 , 0. 1

=>> fh.policy

array([[e, o, €],
[at a} 1]!
[e, e, e]])

Figure 4-17. Another example of MDP

We implemented verbose mode in the previous example so we can display the
current stage and policy transpose.

>>> import mdptoolbox, mdptoolbox.example
>>> P, R = mdptoolbox.example.forest()
>>> fh = mdptoolbox.mdp.FiniteHorizon(P, R, 0.9, 3)
>>> fh.run()

>>> th.v

array([[ 2.6973, 0.81 , 0. , 0. ],

[ 5.9373, 3.24 , 1. , 0. ],

[ 9.9373, 7.24 , 4. , 0. 1])

>>> fh.policy

array([[0, 0, o],

[0) 0, 1]1

[0, 0, o]])

The next example is also in verbose mode and each iteration displays the number of
different actions between policy n-1 and n (see Figure 4-18).
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Termina Terminal File Edit Miew Search Terminal Help

13 £ «) 840aM {%

abhi@ubuntu: ~

[ 5.9373, 3.24 , 1. =0 it
[ 9.9373, 7.24 , 4. 6 1D
>>> fh.policy
array([[e, 0, 8],

(e, o, 1],

o, o, 011)
>

(universe) abhi@ubuntu:~5 python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import mdptoolbox, mdptoolbox.example

>>> P, R = mdptoolbox.example.rand(10, 3)

pl = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)

pi.run()

P, R = mdptoolbox.example.forest()

pi = mdptoolbox.mdp.PolicyIteration(P, R, 08.9)

pi.run()

expected = (26.244000000000014, 29.484000000000016, 33.484000000000016)
all(expected[k] - pi.V[k] < 1le-12 for k in range(len(expected)))

Figure 4-18. Policy between n-1 and n

We are getting help from the built-in example of MDP, where we are trying to find
the discounted MDP using a value iteration. As is the case with MDP, some of the values
are randomly generated by using rand(10, 3) and some of the values are provided by the
decision-making process.

We try to solve an MDP by applying RL with a value iteration in this example:

>>> import mdptoolbox, mdptoolbox.example

>>> P, R = mdptoolbox.example.rand(10, 3)

>>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)

>>> pi.run()

>>> P, R = mdptoolbox.example.forest()

>>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)

>>> pi.run()

>>> expected = (26.244000000000014, 29.484000000000016, 33.484000000000016)

>>> all(expected[k] - pi.V[k] < 1e-12 for k in range(len(expected)))
True

8.2. Markov Decision Process (MDP) Toolbox: mdp module 21

Python Markov Decision Process Toolbox Documentation, Release 4.0-b4

>>> pi.policy

(0, 0, 0)
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Understanding Swarm Intelligence

Swarm intelligence is an important part of AL It is the collective behavior of a
decentralized, self-organized system, whether it be natural or artificial.

Swarm intelligence typically consists of a population of simple agents or boids
(artificial life programs) interacting locally with one another and with their environment,
as illustrated in Figure 4-19.

=

I
. CY

Figure 4-19. Swarm intelligence interactions

Applications of Swarm Intelligence

Figure 4-20 shows some applications of swarm intelligence.
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=

v

Figure 4-20. Applications of swarm intelligence

Ant-Based Routing

When you are dealing with something similar to telecommunication networks, this is
called ant-based routing. The idea of ant based routing is based on RL, as there is lot of
forward and backward movement along a particular network packet, which can be called
the ant. This results in flooding the entire network.

Crowd Simulations

In the movies, crowd simulations are done with the help of swarm optimization.

Human Swarming

The concept of human swarming is based on the collective usage of different minds to
predict an answer. It’s when all of the brains of different human beings attempt to find a
particular solution to a complex problem. Using collective brains in the form of human
swarming results in more accurate results.
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Swarm Grammars

Swarm grammars are particular characteristics that act as different swarms working
together to get varied results. The results can be similar to art or architecture.

Swarmic Art

Combining different characteristics of swarm behaviors between different species of birds
and fish can lead to swarmic art that shows patterns in swarm behavior.

Before we cover swarm intelligence in more detail, we touch on the Rastrigin
function. Swarm optimization is based on different functions, one of which is the
Rastrigin function, so you need to understand how it works.

The Rastrigin Function

In mathematical optimization problems, the Rastrigin function is a nonconvex function
used as a performance test problem for optimization algorithms.
The formula is shown in Figure 4-21 and Figure 4-22 shows its typical output.

On an n-dimensional domain it is defined by:
n
f(x) = An+ ) [2} — Acos(2na;)]
i=1

where A = 10 and 2; € [—5.12,5.12]. It has a global minimum at x = 0 where f(x) = 0.

Figure 4-21. Depiction of the Rastrigin function
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Figure 4-22. Rastrigin function output

Let’s get started with using the Rastrigin function in Python.
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You need to activate the Anaconda environment first:

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$

Now switch to Python mode:

(universe) abhi@ubuntu:~$ python

Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

As we start building important libraries, Python will cache them if they are not
created, as shown in Figure 4-23.

ninal File Edit View Search Terminal }-:elp..:

abhi@ubuntu: ~

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$ python

Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help”, "copyright”, "credits” or "license" for more information.

>>> from matplotlib import cm

>>> from mpl_toolkits.mplot3d import Axes3D

/home fabhi/anaconda3/envs/universe/lib/python3.5/site-packages /matplotlib/font_m
anager.py:280: UserWarning: Matplotlib is building the font cache using fc-list.
This may take a moment.

'Matplotlib is building the font cache using fc-list. '

Figure 4-23. Cache being created

The entire flow of the Python program is as follows:

python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from matplotlib import cm
>>> from mpl_toolkits.mplot3d import Axes3D
/home/abhi/anaconda3/envs/universe/lib/python3.5/site-packages/matplotlib/
font_manager.py:280: UserWarning: Matplotlib is building the font cache
using fc-list. This may take a moment.
'Matplotlib is building the font cache using fc-list. '

>>> import math
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def rastrigin(*X, **kwargs):

A = kwargs.get('A", 10)
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return A + sum([(x**2 - A * np.cos(2 * math.pi * x)) for x in X])
>>> if _name__ == "'_main_ ":
X = np.linspace(-4, 4, 200)
Y = np.linspace(-4, 4, 200)

>>> X, Y = np.meshgrid(X, Y)
File "<stdin>", line 1
X, Y = np.meshgrid(X, Y)

IndentationError: unexpected indent
>>>
>>> Z = rastrigin(X, Y, A=10)
File "<stdin>", line 1
Z = rastrigin(X, Y, A=10)
IndentationError: unexpected indent
>>>
>>> fig = plt.figure()
File "<stdin>", line 1
fig = plt.figure()

IndentationError: unexpected indent
>>> ax = fig.gca(projection="3d")
File "<stdin>", line 1
ax = fig.gca(projection="3d")
N

IndentationError: unexpected indent
>>>
>>> ax.plot surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.plasma,
linewidth=0, antialiased=False)
File "<stdin>", line 1
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.plasma,
linewidth=0, antialiased=False)
IndentationError: unexpected indent
>>> plt.savefig('rastrigin.png")
File "<stdin>", line 1
plt.savefig('rastrigin.png')

IndentationError: unexpected indent
>>> if _name_ == "'_main_ ':
X = np.linspace(-4, 4, 200)

Y = np.linspace(-4, 4, 200)

>>> X, Y = np.meshgrid(X, Y)
>>> Z = rastrigin(X, Y, A=10)
>>> fig = plt.figure()
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>>> ax = fig.gca(projection="3d")

>>> ax.plot surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.plasma,
linewidth=0, antialiased=False)
<mpl_toolkits.mplot3d.art3d.Poly3DCollection object at 0x7f79cfc73780>
>>> plt.savefig('rastrigin.png")

>>>

If you go back to the folder, you can see that the rastrigin.png file was created, as
shown in Figure 4-24.

Termina! Terminal File Edit View Search Terminal Help 3 2 ) 404AM
abhi@ubuntu: ~

np.linspace(-4, 4, 200)
np.linspace(-4, 4, 200)

=>> X, Y = np.meshgrid(X, Y)

>>> Z = rastrigin(X, Y, A=10)

=>> fig = plt.figure()

=>> ax = fig.gca(projection='3d")

>>> ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.plasma, linewidth=0,
antialiased=False)

<mpl_toolkits.mplot3d.art3d.Poly3DCollection object at @x7f79cfc73780>

=>> plt.savefig('rastrigin.png')

>3

(universe) abhi@ubuntu:~$ dir
anaconda3 Public /,,/’f#’

Anaconda3-4.2.0-Linux-x86_64.sh pymdptoolbox —
Desktop rastrigin.png | .~
Documents Reinforcement- tearning-with-tensorflow

Downloads Templates
examples.desktop universe

gym Untitled1.ipynb
- WMusic Untitled.ipynb
particleswarm.py Videos
MPictures

(universe) abhi@ubuntu:~$ l

Figure 4-24. Rastrigin function PNG file being saved

The rastrigin.png file’s output from the problem shows the minima, as shown in
Figure 4-25. It is very difficult to find the global optimum.
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Image Edit View Go Help 13 2 ) 408AM {t

Figure 4-25. The Rastrigin function PNG file

Swarm Intelligence in Python

This section looks at a program in Python that works with the concept of swarm
intelligence. You will therefore get to know particle swarm optimization (PSO) within
Python. You can achieve this with the help of a research toolkit known as PySwarms.

PySwarms is a good tool to implement optimization algorithms with the PSO
method, such as:

e  Star topology
¢ Ringtopology

First, you need to install PySwarms. Get inside the terminal and activate the
Anaconda environment using the following command.

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$

The dependencies prior to installing PySwarms are as follows:

numpy >= 1.13.0
scipy »= 0.17.0
matplotlib >= 1.3.1
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Now install PySwarms as follows:
(universe) abhi@ubuntu:~$ pip install pyswarms

Now the process is complete.
Figure 4-26 shows that PySwarms is completely installed.

Terminal Ty 3 1)

abhi@ubuntu: ~

Requirement already satisfied: matplotlib>=1.3.1 in ./anaconda3/envs/universe/li
b/python3.5/site-packages (from pyswarms)

Requirement already satisfied: PyYAML==3.12 in ./fanaconda3/envs/funiverse/lib/py1t
hon3.5/site-packages (from pyswarms)

Requirement already satisfied: future==0.16.8 in ./anaconda3/envs/universe/lib/f
ython3.5/site-packages (from pyswarms)

Requirement already satisfied: mock==2.06.8 in ./anaconda3/envs/universe/lib/pytt
on3.5/site-packages (from pyswarms)

Requirement already satisfied: six»>=1.10 in ./anaconda3/envs/universe/lib/pythor
3.5/site-packages (from matplotlib>=1.3.1->pyswarms)

Requirement already satisfied: python-dateutil in ./anaconda3/envs/funiverse/lib;
python3.5/site-packages (from matplotlib>=1.3.1->pyswarms)

Requirement already satisfied: pytz in ./anaconda3/envs/funiverse/lib/python3.5/¢
ite-packages (from matplotlib>=1.3.1->pyswarms)

Requirement already satisfied: cycler>=0.18 in .fanaconda3/envs/universe/lib/py1
hon3.5/site-packages (from matplotlibs>=1.3.1->pyswarms)

Requirement already satisfied: pyparsing!=2.6.4,!=2.1.2,1=2.1.6,>=1.5.6 in ./an:z
cogdaafenvs!untverseflibfpython3.sfsite-packages (from matplotlib>=1.3.1->pyswar
ms

Requirement already satisfied: pbr>=0.11 in ./anaconda3/envs/universe/lib/pythor
3.5/site-packages (from mock==2.0.0->pyswarms)

Installing collected packages: pyswarms

Successfully installed pyswarms-0.1.7 \\_//

(universe) abhi@ubuntu:~S [}

ECLEELE

Figure 4-26. PySwarms are installed

Now we move to Python mode.
(universe) abhi@ubuntu:~$ python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

First, you need to import the PySwarms utilities as follows:

>>> import pyswarms as ps

There are different functions that you can use in PySwarms for that you have to
import:

>>> from pyswarms.utils.functions import single obj as fx
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Next, you need to declare these hyperparameters:

>>> options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}
In this case, we are configuring the swarm as a dictionary, so call it a dictionary.
In the next step, you create the instance of the optimizer by passing the dictionary

with the necessary arguments.

>>> optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2,
options=options)

After that, call the optimizer method and store the optimal cost and position after
optimization. Figure 4-27 shows the results.

Termina! Terminal File Edit V k:h Terminal Help Ty £ 4)

abhi@ubuntu: ~

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'Sphere' is not defined
= {'c1': 8.5, 'c2': 0.3, 'w':08.9}
= ps.single.GlobalBestP50(n_particles=18, dimensions=2, options=op

pos = optimizer.optimize(fx.sphere_func, print_step=100, iters=1660, v
:pyswarms.single.global_best:Iteration 1/1000, cost: 0.80484200467257
:pyswarms.single.global_best:Iteration 101/1000, cost: 7.27947358732e-08
:pyswarms.single.global_best:Iteration 201/1000, cost: 1.81892575892e-11
:pyswarms.single.global_best:Iteration 361/1000, cost: 4.16911485318e-15
:pyswarms.single.global_best:Iteration 401/1000, cost: 2.29654721117e-18
:pyswarms.single.global_best:Iteration 501/1000, cost: 4.79472341834e-27
:pyswarms.single.global_best:Iteration 601/1000, cost: 6.21001311664e-29
:pyswarms.single.global_best:Iteration 701/1000, cost: 7.31203631529%e-33
:pyswarms.single.global_best:Iteration 801/1000, cost: 2.79635558631e-37

[l e = R R S - Y]

:pyswarms.single.global_best:Iteration 901/1000, cost: 1.49522773605e-38
:pyswarms.single.global_best:
Optimization finished!

Final cost: 0.0000

Best value: [-1.4778614812387442e-21, 4.1614019808683758e-23]

>>> I

1B DD ON @

Figure 4-27. Showing the result

After going through the results, you can see that optimizer was able to find a good
minima.

You will now do the same using the local best PSO. You configure and similarly
declare a dictionary as follows:
>>> options = {'c1': 0.5, 'c2': 0.3, 'w':0.9, 'k': 2, 'p': 2}

Create the instance of the optimizer:

>>> optimizer = ps.single.LocalBestPSO(n_particles=10, dimensions=2,
options=options)
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Now you call the optimize method to store the value as you did before.
By using the verbose argument, you can control the verbosity of the argument and
use print_step to count after a certain number of steps.

>>> cost, pos = optimizer.optimize(fx.sphere func, print_step=50,
iters=1000, verbose=3)

The output is shown in Figure 4-28.

Terminal 3 £ @) s:q0am kly

abhi@ubuntu: ~

INFO:pyswarms.single.local_best:Iteration 101/100€0, 5.23906936789e-09
INFO:pyswarms.single.local_best:Iteration 151/1080, cost: 5.2390693678%e-09
INFO:pyswarms.single.local_best:Iteration 201/1000, cost: 3.42754097041e-11
INFO:pyswarms.single.local_best:Iteration 251/1080, cost: 4.87698744261e-13
INFO:pyswarms.single.local_best:Iteration 301/1000, cost: 1.17127041628e-15
INFO:pyswarms.single.local_best:Iteration 351/1660, cost: 7.77361753342e-17
INFO:pyswarms.single.local_best:Iteration 401/1688, cost: 1.15779203915e-19
INFO:pyswarms.single.local_best:Iteration 451/1000, cost: 8.06250742945e-23
INFO:pyswarms.single.local_best:Iteration 501/1008, cost: 1.29238852896e-24
INFO:pyswarms.single.local_best:Iteration 551/1600, cost: 5.49052246208e-25
INFO:pyswarms.single.local_best:Iteration 601/1680, cost: 2.641804024Be-26
INFO:pyswarms.single.local_best:Iteration 651/1600, cost: 2.33629179646e-27
INFO:pyswarms.single.local_best:Iteration 761/1600, cost: 4.958442106e-30
INFO:pyswarms.single.local_best:Iteration 751/1660, cost: 1.09274586004e-30
INFO:pyswarms.single.local_best:Iteration 801/1680, cost: 1.99752386102e-33
INFO:pyswarms.single.local_best:Iteration 851/1006, cost: 1.50932673836e-34
INFO:pyswarms.single.local_best:Iteration 901/1608, cost: 1.767256541e-37
INFO:pyswarms.single.local_best:Iteration 951/1608, cost: 2.78089013652e-38
INFO:pyswarms.single.local_best:
Optimization finished!

Final cost: ©.0000

Best value: [-4.3602931623247001e-21, 6.2213234147793694e-22]

> I

Figure 4-28. The output of the swarm optimization

Building a Game Al

We have already discussed the game AI with OpenAl Gym and environment simulation,
but we take it further in this section. First, we will clone one of the most important and
simplest examples of game Al, as shown in Figure 4-29.
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I L e L VIEY =Edill i idl 1 1,
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow$ dir
contents experiments LICENCE README.md RL_cover.jpg
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow$ cd contents
(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents$ dir

11_Dyna_Q
12_Proximal_Policy_oOptimization
1_command_line_reinforcement_learning

5.2_Prioritized_Replay_DQN

5.3_Dueling_DQN

5_Deep_Q_Network

6_OpenAl_gym

7_Policy_gradient_softmax

8_Actor_Critic_Advantage

9 _Deep_Deterministic_Policy_Gradient_DDPG

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contentsS cd 2_Q
Learning_maze

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/2_Q_Lea
rning_maze$ dir

maze_env.py RL_brain.py run_this.py

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/2_(_Lea
rning_maze$ python run_this.py

game over

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/2_Q_Lea

rning_maze$ python run_this.py
game over
|

DD DON®

(universe) abhi@ubuntu:~/Reinforcement-learning-with-tensorflow/contents/2_Q_Lea
rning_maze$ cd -
M(universe) abhi@ubuntu:~5 git clone https://github.com/115Sourcell/Game-AI.git

Figure 4-29. Cloning the repo

You first need to set up the environment. The requirements are as follows:
e  TensorFlow
e  OpenAl Gym
e virtualenv
e TFLearn

There is one dependency to install—the virtual environment. You install it using this
command:

conda install -c anaconda virtualenv

It will ask you whether you want to install the new virtualenv package, as shown in
Figure 4-30. Choose yes.
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nnal File Edit reR Terminal Help
gym Untitled1.ipynb
Music Untitled.ipynb
particleswarm.py Videos
(universe) abhi@ubuntu:~5 cd Game-AI
(universe) abhi@ubuntu:~/Game-AIS dir
atari.py convnet.py environment.py README.md
buff.py dgn.py memory.py train.py
(universe) abhi@ubuntu:-/Game-AIS cd ~
(universe) abhi@ubuntu:~5 [sudo] pip install virtualenv
[sudo]: command not found
(universe) abhi@ubuntu:-$ sudo pip install virtualenv
[sudo] password for abhi:
sudo: pip: command not found
(universe) abhi@ubuntu:~5 sudo install pip
install: missing destination file operand after 'pip’
Try 'install --help' for more information.
(universe) abhi@ubuntu:-$ conda install -c anaconda virtualenv
Fetching package metadata .........
Solving package specifications: ..........

= Package plan for installation in environment [home/abhi/anaconda3/envs/universe:
The following packages will be downloaded:

package | build

virtualenv-15.1.0 g py35_6 1.8 M8 anaconda
The following NEW packages will be INSTALLED:

virtualenv: 15.1.8-py35_8 anaconda

drroceed ([y1/n)? vl

Figure 4-30. Getting the virtualenv package

When the package installation is successful and complete, you'll see the screen in
Figure 4-31.
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Terminal File Edit rch Rarminal Help
(universe) abhi@ubuntu:~$ [sudo] pip install virtualenv
[sudo]: command not found

(universe) abhi@ubuntu:~$ sudo pip install virtualenv

[sudo] password for abhi:

sudo: pip: command not found

(universe) abhi@ubuntu:~$ sudo install pip

install: missing destination file operand after 'pip'

Try 'install --help' for more information.

(universe) abhi@ubuntu:~$ conda install -c anaconda virtualenv
Fetching package metadata .........

Solving package specifications: ..........

Package plan for installation in environment /homefabhi/anaconda3/envs/universe:
The following packages will be downloaded:

package | build

virtualenv-15.1.0 | py35_0 1.8 MB anaconda

The following NEW packages will be INSTALLED:

virtualenv: 15.1.8-py35_6 anaconda

Proceed ([y]/n)? vy

Fetching packages ...

virtualenv-15. 100% |##geassannsunannennnnnnsnennnnnns| Tine: 0:00:38 47.62 kB/s
Extracting packages ...

[ COMPLETE 11 # | 100%
Linking packages ...
COMPLETE 1 | RERRRB BRI RRRRRAA R ERRARRAUNAN | 100%

Y(universe) abhi@ubuntu:~$ I

Figure 4-31. Package installation is complete

Now you can install TFLearn using this command:
conda install -c derickl tflearn

When you attempt to install TFLearn, you may get this error about an OS version
mismatch:

conda install -c derickl tflearn
Fetching package metadata .........
Solving package specifications:
PackageNotFoundError: Package not found:
linux-64 channels:
- tflearn

You can search for packages on anaconda.org with

anaconda search -t conda tflearn
(universe) abhi@ubuntu:~$ anaconda search -t conda tflearn
Using Anaconda API: https://api.anaconda.org
Run "anaconda show <USER/PACKAGE>' to get more details:

Package missing in current
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Packages:
Name | Version | Package Types | Platforms
------------------------- e
asherp/tflearn | 0.2.2 | conda | osx-64
contango/tflearn | 0.3.2 | conda | linux-64
derickl/tflearn | 0.2.2 | conda | osx-64

Found 3 packages
If this happens, be sure to install the one that’s for 1inux-64:

(universe) abhi@ubuntu:~$ anaconda show contango/tflearn
Using Anaconda API: https://api.anaconda.org
Name: tflearn
Summary:
Access: public
Package Types: conda
Versions:
+ 0.3.2

To install this package with Anaconda, run the following command:
conda install --channel https://conda.anaconda.org/contango tflearn

It will ask for installation of other packages, as shown in Figure 4-32.

Terminal File Edit View Search Terminal Helpk ty £ ) 748AM {3
+ 0.3.2

To install this package with conda run:
conda install --channel https://conda.anaconda.org/contango tflearn

(universe) abhi@ubuntu:~$ conda install --channel https://conda.anaconda.org/con
tango tflearn
Fetching package metadata
solving package specifications: ..........
Warning: 2 possible package resolutions (only showing differing packages):

- contango::tflearn-06.3.2-py35ho5ed11d_0.tar.bz2

- contango::tflearn-0.3.2-py35_0.tar.bz2

Package plan for installation in environment /home/abhi/anaconda3/envs/universe:
The following packages will be downloaded:

package

o
D
B

libprotobuf-3.4.0 4.3 MB
protobuf-3.4.0 479 KB
tensorflow-1.1.0 np112py35_6 23.5 MB
tflearn-0.3.2 py35heSediid_e 292 KB contango

following NEW packages will be INSTALLED:

libprotobuf: 3.4.0-8
protobuf: .4.8-p
tensorflow: 1.1.8-n
tflearn: .3.2-py35he5ed11d_8 contango

Figure 4-32. Installation of other packages
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Now import the relevant libraries using this command:

(universe) abhi@ubuntu:~$ python

Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import gym

>>> import random

>>> import numpy as np

>>> import tflearn

>>> from tflearn.layers.core import input_data, dropout, fully connected
>>> from tflearn.layers.estimator import regression

>>> from statistics import median, mean

>>> from collections import Counter

>>> LR = 1e-3

>>> env = gym.make("CartPole-v0")

[2017-09-22 08:22:15,933] Making new env: CartPole-vo

>>> env.reset()

array([-0.03283849, -0.04877971, 0.0408221 , -0.01600674])

The Entire TFLearn Code

To start with, you need to import the important libraries. TFLearn creates the prototyping
so the program can implement RL very quickly.

Add alearning rate. You do this by initializing a simulated environment and then
indicating the movement pattern with the following command:

action = env.action_space.sample()

This example pairs the observation with is the movement of the balanced cart-
pole (moving left or right). In the given problem, the basis of RL is the score that we are
referencing.

After applying the RL, we are training the model with TFLearn, a module for
TensorFlow that’s used to create a fully connected neural network and produce a faster
training process.

import gym

import random

import numpy as np

import tflearn

from tflearn.layers.core import input_data, dropout, fully connected
from tflearn.layers.estimator import regression

from statistics import median, mean

from collections import Counter

LR = 1e-3

env = gym.make("CartPole-vo")
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500

score_requirement = 50
initial_games = 10000
def some_random_games first():
# Each of these is its own game.
for episode in range(5):

env.

reset()

# this is each frame, up to 200...but we wont make it that far.

for

some_random_
def initial |

# [0BS,

t in range(200):

# This will display the environment

# Only display if you really want to see it.
# Takes much longer to display it.
env.render()

# This will just create a sample action in any environment.

# In this environment, the action can be 0 or 1, which is left
or right

action = env.action space.sample()

# this executes the environment with an action,
# and returns the observation of the environment,
# the reward, if the env is over, and other info.
observation, reward, done, info = env.step(action)
if done:

break

games_first()
population():
MOVES]

training data = []
# all scores:
scores = []
# just the scores that met our threshold:
accepted scores = []
# iterate through however many games we want:
for _ in range(initial games):
score = 0
# moves specifically from this environment:
game_memory = []
# previous observation that we saw
prev_observation = []
# for each frame in 200

for _

in range(goal steps):

# choose random action (0 or 1)

action = random.randrange(0,2)

# do it!

observation, reward, done, info = env.step(action)
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# notice that the observation is returned FROM the action
# so we'll store the previous observation here, pairing
# the prev observation to the action we'll take.
if len(prev_observation) > 0 :
game_memoxry.append([prev_observation, action])
prev_observation = observation
score+=reward
if done: break
# IF our score is higher than our threshold, we'd like to save
# every move we made
# NOTE the reinforcement methodology here.
# all we're doing is reinforcing the score, we're not trying
# to influence the machine in any way as to HOW that score is
# reached.
if score >= score_requirement:
accepted_scores.append(score)
for data in game_memory:
# convert to one-hot (this is the output layer for our
neural network)
if data[1] ==
output = [
elif data[1] =
output = [

# saving our training data
training data.append([data[0], output])
# reset env to play again
env.reset()
# save overall scores
scores.append(score)

# just in case you wanted to reference later
training data_save = np.array(training data)
np.save('saved.npy',training data_save)

# some stats here, to further illustrate the neural network magic!
print('Average accepted score:',mean(accepted scores))
print('Median score for accepted scores:',median(accepted scores))
print(Counter(accepted scores))

return training data

def neural network model(input size):

network = input_data(shape=[None, input size, 1], name='input")
network = fully connected(network, 128, activation='relu')
network = dropout(network, 0.8)

network = fully connected(network, 256, activation='relu")
network = dropout(network, 0.8)

network = fully connected(network, 512, activation='relu')



def
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network = dropout(network, 0.8)
network = fully connected(network, 256, activation='relu")
network = dropout(network, 0.8)
network = fully connected(network, 128, activation="relu")
network = dropout(network, 0.8)
network = fully connected(network, 2, activation='softmax")
network = regression(network, optimizer='adam', learning rate=LR,
loss="categorical crossentropy', name='targets')
model = tflearn.DNN(network, tensorboard dir='log')
return model
train_model(training data, model=False):
X = np.array([i[o] for i in training data]).reshape(-1,len(training_
data[0][0]),1)
y = [i[1] for i in training data]
if not model:

model = neural network model(input size = len(X[0]))

x = np.reshape(x, (-1, 30, 9))

model.fit({ input': X}, {'targets': y}, n_epoch=5, snapshot step=500,
show_metric=True, run_id='openai_learning')

return model

model = train model(training data)

scores = []

choices = []

for

each_game in range(10):
score = 0
game_memory = []
prev_obs = []
env.reset()
for _ in range(goal steps):
env.render()
if len(prev_obs)==0:
action = random.randrange(0,2)
else:
action = np.argmax(model.predict(prev_obs.reshape(-1,len(prev_
obs),1))[0])

choices.append(action)

new_observation, reward, done, info = env.step(action)
prev_obs = new_observation
game_memory.append([new_observation, action])
score+=reward
if done: break

scores.append(score)

print('Average Score:',sum(scores)/len(scores))
print('choice 1:{} choice 0:{}".format(choices.count(1)/
len(choices),choices.count(0)/1len(choices)))

print(score requirement)
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Here is the output:

Average Score: 195.9

choice 1:0.5074017355793773 choice 0:0.49259826442062277
50

Solved.

Conclusion

This chapter touched on Q learning and then showed some examples. It also covered the
MDP toolbox, swarm intelligence, and game Al, and ended with a full example. Chapter 5
covers Reinforcement Learning with Keras, TensorFlow, and ChainerRL.
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CHAPTER 5

Reinforcement Learning
with Keras, TensorFlow,
and ChainerRL

This chapter covers using Keras with Reinforcement Learning and defines how Keras can
be used for Deep Q Learning as well.

What Is Keras?

Keras is an open source frontend library for neural networks. We can say that it works as
a backbone for the neural network, as it has very good capabilities for forming activation
functions. Keras can run different deep learning frameworks as the backend.

Keras runs with lots of deep learning frameworks. The way to change from one
framework to another is to modify the keras. json file, which is located in the same
directory where Keras is installed.

The backend parameter needs to change as follows:

{

"backend" : "tensorflow"

}

You can change the parameter from TensorFlow to another framework if you want.

In the JSON file, if you want to use it with Theano or CNTK, you can do so by
changing the backend parameter.

The structure of a keras. json file looks like this:

{
"image data_format": "channels last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
© Abhishek Nandy and Manisha Biswas 2018 129
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The flow of all the Keras frameworks is shown in Figure 5-1.

I
K

=
==
.

I

Figure 5-1. Keras and its modification with different frameworks

Using Keras for Reinforcement Learning

This section covers installing Keras and shows an example of Reinforcement Learning.
You first need to install the dependencies.
The dependencies are as follows:

e  Python
e Keras1.0
e  Pygame

e  Scikit-image

Let’s start installing Keras 1.0. This example shows how to install Keras from the
Anaconda environment:

conda install -c jaikumarm keras
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It asks for permission to install the new packages. Choose yes to proceed, as shown
in Figure 5-2.

(universe) abhi@ubuntu:~$ conda install -c jatkumarm keras

Fetching package metadata .........

Solving package specifications: ..........

Package plan for installation in environment /[home/abhi/anaconda3/envs/universe

The following packages will be downloaded:

package | build

........................... R

theano-0.9.0.dev4 | py35_6 4.0 MB jaikumarm

keras-2.0.8 | py35h94dbabe_o 5.7 MB jaikumarm
Total: 9.7 MB

The following NEW packages will be INSTALLED:

keras: 2.0.8-py35h94dbdbe_0 jaikumarm
theano: 6.9.0.dev4-py35_0 jaikumarm

Proceed (ryl/m)z i

Figure 5-2. The updates to be installed

When the package installation is successful and completed, you'll see the
information shown in Figure 5-3.

Proceed ([y]/n)? y

Fetching packages ...

theano-0.9.0.d 100% | | Time: ©:01:07 61.88 kB/s
keras-2.0.8-py 100% |##% RARRARREABARBARAET ##| Time: 0:01:29 67.55 kB/s
Extracting packages ...

COMPLETE 11 #| 100%
Linking packages ...
COMPLETE ]| #eranngn apaRRRIRn LR #88| 100%

(universe) abhigubuntu:-~$

Figure 5-3. The package installation is complete

You can also install Keras in a different way too. This example shows you how to
install it using pip3.
First, use sudo apt update as follows:

(universe) abhi@ubuntu:~$ sudo apt-get update
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Then install pip3 as follows:
sudo apt-get -y install python3-pip

Figure 5-4 shows the installation process.

(universe) abhi@ubuntu:~$ sudo apt-get -y install python3-pip

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages were automatically installed and are no longer required:
1inux-headers-4.4.8-31 linux-headers-4.4.0-31-generic
linux-image-4.4.0-31-generic linux-image-extra-4.4.0-31-generic

Use 'sudo apt autoremove' to remove them.

The following additional packages will be installed:

python-pip-whl python3-setuptools python3-wheel

Suggested packages:

python-setuptools-doc

The following NEW packages will be installed:

python-pip-whl python3-pip python3-setuptools python3-wheel

© upgraded, 4 newly installed, 0 to remove and 272 not upgraded.

Need to get 1,356 kB of archives.

After this operation, 2,439 kB of additional disk space will be used.

MGet:1 http:/fus.archive.ubuntu.comfubuntu xenial-updates/universe amd64 python-p
ip-whl all 8.1.1-2ubuntuf.4 [1,118 kB]

Get:2 http://us.archive.ubuntu.comfubuntu xenial-updates/universe amd64 python3-
pip all 8.1.1-2ubuntu6.4 [109 kB]

Get:3 http://us.archive.ubuntu.comfubuntu xenial/main amd64 python3-setuptools a
11 20.7.0-1 [88.0 kB]

Get:4 http://us.archive.ubuntu.comfubuntu xenial/universe amd64 python3-wheel al
1 0.29.0-1 [48.1 kB]

Fetched 1,356 kB in 28s (67.3 kB/s)

Figure 5-4. Installing pip3

After the dependencies, you need to install Keras (see Figure 5-5):

(universe) abhi@ubuntu:~$ sudo pip3 install keras
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Terminal File Edit View Search Terminal Help

Preparing to unpack .../python3-wheel_0.29.0-1_all.deb ...

Unpacking python3-wheel (6.29.0-1) ...

Processing triggers for man-db (2.7.5-1) ...

setting up python-pip-whl (8.1.1-2ubuntue.4) ...

Setting up python3-pip (8.1.1-2ubuntue.4) e

Setting up python3-setuptools (20.7.8-1) . —

Setting up python3-wheel (0.29.6-1) . —

J(universe) abhi@ubuntu ~$ sudo pip3 tnstall keras Sl

The directory '/home/abhi/.cache/pip/http' or its parent directory is not owned

by the current user and the cache has been disabled. Please check the permission

s and owner of that directory. If executing pip with sudo, you may want sudo's -

H flag.

The directory '/home/abhi/.cache/pip' or its parent directory is not owned by th

e current user and caching wheels has been disabled. check the permissions and o

wner of that directory. If executing pip with sudo, you may want sudo's -H flag.

Collecting keras

Downloading Keras-2.0.8-py2.py3-none-any.whl (276kB)

100% | | 276kB 177kB/s

Collecting pyyaml (from keras)

aownloadtni PiVAML-a.IZ.tar.iz i253k8i
100% | | 256kB 272kB/s

Requirement already satisfied (use --upgrade to upgrade): six>=1.9.8 in fusr/lib
/python3/dist-packages (from keras)
MRequirement already satisfied (use --upgrade to upgrade): numpy>=1.9.1 in Jjusr/1l
ib/python3/dist-packages (from keras)
Requirement already satisfied (use --upgrade to upgrade): scipy>=6.14 in Jfusr/li
b/python3/dist-packages (from keras)
Installing collected packages: pyyaml, keras

Running setup.py install for pyyaml ... done
Successfully installed keras-2.0.8 pyyaml-3.12
You are using pip version 8.1.1, however version 9.8.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
f(universe) abhi@ubuntu:~$ [i

3 3 €) 10:58AM it

Figure 5-5. Installing Keras

We will check now if Keras uses the TensorFlow backend or not. From the terminal
Anaconda environment you enabled first, you need to switch to Python mode.

If you get the following result importing Keras, that means everything is working
(see Figure 5-6).

(universe) abhi@ubuntu:~$ python

Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import keras

Using TensorFlow backend.

(universe) abhi@ubuntu:~$ python

Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import keras

| Ustni TensorFlow backend.

Figure 5-6. Keras with the TensorFlow backend
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Using ChainerRL

This section covers ChainerRL and explains how to apply Reinforcement Learning using
it. ChainerRL is a deep Reinforcement Learning library especially built with the help of
the Chainer Framework. See Figure 5-7.

Figure 5-7. ChainerRL

Installing ChainerRL

We will install ChainerRL first from the terminal window. Figure 5-8 shows the Anaconda
environment.
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Termina! Terminal File Edit View Search Terminal Help Ty £ @) 64a4am I

abhi@ubuntu: ~
examples.desktop Reinforcement-learning-with-tensorflow

Templates
— universe
= 5

Untitledi.ipynb
Untitled2.ipynb
Untitled.ipynb
Videos
particleswarm.py

abhi@ubuntu:~5% source activate universe
(universe) abhi@ubuntu:-S dir

anaconda3 Pictures
Anaconda3-4.2.0-Linux-x86_64.sh Public

Desktop pymdptoolbox
glearning.py
rastrigin.png
Reinforcement-learning-with-tensorflow
Templates
universe
Untitledi.ipynb
Untitled2.ipynb
Untitled.ipynb
Videos

ay
particleswarm.py
(universe) abhi@ubuntu:~$ [§

o

Figure 5-8. Activating the Anaconda environment

You can now install ChainerRL. To do so, type this command in the terminal:

pip install chainerrl

Figure 5-9 shows the result of the installation.

Terminal Terminal File Edit View Search Terminal Help k 13 2 ) 647AM I

abhi@ubuntu: ~

gym Untitled1.ipynb
Keras-FlappyBird Untitled2.ipynb
keras-rl Untitled.ipynb
Videos
particleswarm.py

abhi@ubuntu:~S source activate universe
(universe) abhi@ubuntu:~$ dir

anaconda3 Pictures
Anaconda3-4.2.0-Linux-x86_64.sh Public
pymdptoolbox
qlearning.py
rastrigin.png
Reinforcement-learning-with-tensorflow
Templates

universe

Untitled1.ipynb

Untitled2.ipynb

Untitled.ipynb

gym
Keras-FlappyBird
keras-rl

usic Videos g
particleswarm.py L
(universe) abhi@ubuntu:~$ pip install chainerrl H=—"""""
Collecting chainerrl

= Downloading chainerrl-8.2.0.tar.gz (56kB)
72% | | 46kB 26kB/s eta ©:00:01

Figure 5-9. Installing ChainerRL

135



CHAPTER 5 * REINFORCEMENT LEARNING WITH KERAS, TENSORFLOW, AND CHAINERRL

Now you can git clone the repo. Use this command to do so:

git clone https://github.com/chainer/chainerrl.git

Figure 5-10 shows the result.

Terminal Terminal File Edit View Msearch Terminal Help 13 2 ) 7.22AM I

abhi@ubuntu: ~

Successfully installed cached-property-1.3.1 chainer-2.1.0 chainerrl-0.2.0 filel
ock-2.0.12 future-0.16.0 mock-2.0.6 pbr-3.1.1

(universe) abhi@ubuntu:~$ dir

anaconda3 Pictures
Anaconda3-4.2.08-Linux-xB6_64.sh Public

Desktop pymdptoolbox

Documents qlearning.py

Downloads rastrigin.png

examples.desktop Reinforcement-learning-with-tensorflow
Templates

universe

Untitled1.ipynb

Untitled2.ipynb

Untitled.ipynb

Videos

particleswarm.py

(universe) abhi@ubuntu:~$% git clone https:/fgithub.com/chainerfchainerrl.git
Cloning into 'chainerrl'...

remote: Counting objects: 5998, done.

remote: Total 5998 (delta @), reused & (delta @), pack-reused 5998

Receiving objects: 106% (5998/5998), 6.65 MiB | 41.86 KiB/s, done.

Resolving deltas: 100% (4385/4385), done.

Checking connectivity... done.

(universe) abhi@ubuntu:~5 i

Figure 5-10. Cloning ChainerRL

Then get inside the chainerr] folder, as shown in Figure 5-11.

abhi@ubuntu: ~/chainerrl

remote: Total 5998 (delta @), reused © (delta 0), pack-reused 5998
Receiving objects: 100% (5998/5998), 6.65 MiB | 41.00 KiB/s, done.
Resolving deltas: 180% (4385/4385), done.

Checking connectivity... done.

(universe) abhi@ubuntu:~$ dir

anaconda3 particleswarm.py
Anaconda3-4.2.0-Linux-x86_64.sh Pictures

chainerrl Public

pymdptoolbox

qlearning.py

rastrigin.png
Reinforcement-learning-with-tensorflow
Templates

universe

Untitled1.ipynb

Untitled2.ipynb

Untitled.ipynb

Videos

(universe) abhi@ubuntu:~$ cd chainerrl

(universe) abhi@ubuntu:~/chainerrl$ dir

assets docs README .md setup.py tools
chainerrl examples readthedocs.yml  test_examples.sh
MICONTRIBUTING.md LICENSE requirements.txt tests

(universe) abhi@ubuntu:~/chainerrls [§

Figure 5-11. Inside the chainerrl folder
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Pipeline for Using ChainerRL

Since the library is based on Python, the obvious language of choice is Python. Follow
these steps to set up ChainerRL:

1. Import the gym, numpy, and supportive chainerr] libraries.

import chainer

import chainer.functions as F
import chainer.links as L
import chainerrl

import gym

import numpy as np

You have to model an environment so that you can use OpenAl Gym (see Figure 5-12).
The environment has two spaces:

e  Observation space
e Action space

They must have two methods, reset and step.

|

s

Figure 5-12. How ChainerRL uses state transitions
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Take a simulation environment such as Cartpole-vo0 from the
OpenAl simulation environment.

env = gym.make('CartPole-vo"')
print('observation space:', env.observation space)
print('action space:', env.action space)
obs = env.reset()

env.render ()

print('initial observation:', obs)
action = env.action_space.sample()

obs, r, done, info = env.step(action)
print('next observation:', obs)
print('reward:', 1)

print('done:"', done)

print('info:', info)

Now define an agent that will run from interactions with the
environment. Here, it’s the QFunction(chainer.Chain) class:

def __init_ (self, obs_size, n_actions, n_hidden_
channels=50):
super(). init (
lo=L.Linear(obs_size, n_hidden channels),
l1=L.Linear(n_hidden channels, n_hidden_
channels),
12=L.Linear(n_hidden_channels, n_actions))
def call (self, x, test=False):
Args:
x (ndarray or chainer.Variable): An
observation
test (bool): a flag indicating whether it
is in test mode
h = F.tanh(self.lo(x))
h = F.tanh(self.11(h))
return chainerrl.action_value.
DiscreteActionValue(self.12(h))
obs size = env.observation space.shape[0]
n_actions = env.action_space.n
g_func = QFunction(obs_size, n_actions)
we apply Q learning etc.
We start with the Agent.
gamma = 0.95
# Use epsilon-greedy for exploration
explorer = chainerrl.explorers.ConstantEpsilonGreedy(
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epsilon=0.3, random action_func=env.action_space.
sample)
# DON uses Experience Replay.
# Specify a replay buffer and its capacity.
replay buffer = chainerrl.replay buffer.
ReplayBuffer(capacity=10 ** 6)
# Since observations from CartPole-v0 is numpy.float64
while
# Chainer only accepts numpy.float32 by default,
specify
# a converter as a feature extractor function phi.
phi = lambda x: x.astype(np.float32, copy=False)
# Now create an agent that will interact with the
environment.
agent = chainerrl.agents.DoubleDON(
q_func, optimizer, replay buffer, gamma, explorer,
replay start size=500, update interval=1,
target update_interval=100, phi=phi)

4, Start the Reinforcement Learning process. You have to open
the jupyter notebook first in the Universe environment, as
shown in Figure 5-13.

Terminal Terminal File Edit Vv 1 Terminal Help
abhi@ubuntu: ~

usic Videos
abhi@ubuntu:~$ cd chainerrl
abhi@ubuntu:~/chainerrls dir
docs README . md setup.py tools
examples readthedocs.yml  test_examples.sh
ONTRIBUTING.md LICENSE requirements.txt tests
abhi@ubuntu:~/chainerrls cd chainerrl
abhi@ubuntu:~/chainerrl/chainerrl$ cd ~
:~5 jupyter notebook
5 NotebookApp] [nb_conda_kernels] enabled, 3 kernels found
2: 1 Notebookfpp] Writing notebook server :ookte secret to frunfuser/
leaefjupyterfnotehook cookie_secret
[I 12:54:54.617 NotebookApp] + nbpresent HTML export ENABLED
[W 12:54: 54 617 NotebookApp] X nbpresent PDF export DISABLED: No module named 'n

9 Notebookapp] [nb_anacondacloud] enabled

5 Note kapp] [nb_conda] enabled

76 Notebookspp] Serving notebooks from local directory: fhome/abhi
7 NotebookApp] @ active kernels

7 NotebookApp] The Jupyter Notebook is running at: http://localhos

5”’1-9' il 4 @ W ol Ko

7 NWotebookspp] Use Control-C to stop this server and shut down all
kernels (tntce to skip confirmation).

Figure 5-13. Getting inside jupyter notebook

abhi@ubuntu:~$ source activate universe
(universe) abhi@ubuntu:~$ jupyter notebook
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Figure 5-14 shows running the code on the final go.

Untitled3 - Mozilla Firefox

P R o Z Untitled3
€ @ localhost:8888/note ! . & || Q searct B & » =
— Jupyter Untitied3 & Logou
File = dit View Insert Ce Kemel Widgets Help Trusted | Python 3 O
o + 3 a B + v W EC coe i =

In [7]: n_episodes = 260
max_episode len = 260
for i in range(1, n_episodes + 1):
obs = env.reset()
reward = 0
done = False
R=8 # return (sum of rewards)
t=808 # time step
while not done and t < max_episode_len:
# Uncomment to watch the behaviour

T T RERT

= = # env.render()
P; action = agent.act_and_train(obs, reward)
—_ obs, reward, done, _ = env.step(action)
= R += reward
a t+=1

ifisle=ae:
print('episode:', i,
‘Rz R,
‘statistics:', agent.get statistics())
agent.stop episode and train(obs, reward, done)
print('Finished.")

t[‘]Q+

episode: 10 R: 10.0 statistics: [('average q', 0.01421286518821945),

Figure 5-14. Running the code

5. Now you test the agents, as shown in Figure 5-15.
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Untitled3 - Mozilla Firefox 3 £ 4) 11ipm i
@ ™ Restore Session % Home i i & Inbox (17,731 x| -+
€ @ localhost k ¢ e || Q searct vt Ba 3+ » =
E _ Jupyter Untitled3 A Logou
'ﬁ File Edit View Insert Cell Keme: Widgets Help Trusted !?".':'"..". 30
1 r
B+ %< & B |4+ ¥+ M B C cCoe 1 =
action = agent.act(obs)
obs, r, done, = env.step(action)
R+=r
t+=1
S print(‘'test episode:', i, 'R:', R)
@ agent.stop episode()
. test episode: © R: 148.0 I
. test episode: 1 R: 188.0
@ test episode: 2 R: 200.0
test episode: 3 R: 180.0
_W test episode: 4 R: 200.0
test episode: 5 R: 156.0
[R5 test episode: 6 R: 181.0
— test episode: 7 R: 172.0
test episode: 8 R: 163.9
test episode: 9 R: 150.0
In [9]): # Save an agent to the ‘'agent' directory
agent.save('agent')
,!_’ Y # Uncomment to load an agent from the 'agent’' directory

agent.load('agent’)

Figure 5-15. Testing the agents

We completed the entire program in the jupyter notebook. Now we will work on one
of the repos for understanding Deep Q Learning with TensorFlow. See Figure 5-16.

Terminal k3 @) 118PM %

abhi@ubuntu: ~

~CACServing notebooks from local directory: fhome/abhi
1 active kernels

he Jupyter Notebook is running at: http://localhost:8888/?token=36ead76c858dead
7454296e0a4bd43caa39e286696c1c83e

Shutdown this notebook server (y/[n])? Serving notebooks from local directory: / !
Shome [abhi

1 active kernels

The Jupyter Notebook is running at: http://localhost:8888/?token=36ead76c858dead
7454296e0a4bd43caa3ve286696c1c8le

Shutdown this notebook server (y/[n])? [C 13:17:55.321 NotebookApp] recelved sig
nal 2, stopping

fc 13 1T7:53. 938 NotebookApp] received signal 2, stopping

[I 13:17:55.878 =bookApp] Shutting down kernels

*C[C 13:17:58 211 NotebookApp] received signal 2, stopping

No answer for 5s: resuming operation..

No answer for 5s: resuming operation...

AC[C 13:18:01.2082 NotebookApp] received signal 2, stopping

AC[C 13:18:01.579 NotebookApp] received signal 2, stopping

[I 13:18:02.0 p] Kernel shutdown: a254c920-6ele-4d29-9272-66b88cocha

160 Notebook!

(universe) abhi@ubuntu:~$ ~C
(univerie) abhi@ubuntu:~$ git clone https://github.com/carpedm28/deep-rl-tensorf
low.git

Figure 5-16. Cloning the GitHub repo
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First you need to install the prerequisites as follows (see Figure 5-17):

pip install -U 'gym[all]' tqdm scipy

1:54PM %
abhi@ubuntu: ~/deep-rl-tensorflow

idna-2.6 keras-2.0.8 requests-2.18.4 six-1.11.8 tqdm-4.17.1 urllib3-1.22
(universe) abhi@ubuntu:~$ dir

particleswarm.py

Pictures
MAnaconda3-4.2.0-Linux-x86_64.sh Public
Schainerrl pymdptoolbox
deep-rl-tensorflow qlearning.py
Desktop rastrigin.png
Documents Reinforcement-learning-with-tensorflow
Downloads Templates
universe
Untitled1.ipynb
Untitled2.ipynb
Untitled3.ipynb
Untitled.ipynb
Videos

(universe) abhi@ubuntu:~$ cd deep-rl_tensorflow

bash: cd: deep-rl_tensorflow: No such file or directory
(universe) abhi@ubuntu:~$ cd deep-rl-tensorflow
(universe) abhi@ubuntu:~/deep-rl-tensorflows dir
environments main.py README.md utils.py
Mlassets LICENSE networks test.sh

(universe) abhi@ubuntu:~/deep-ril-tensorflow$ B

Figure 5-17. Getting inside the folder

Then run the program and train it without using GPU support, as shown in Figure 5-18.

Terminal tyhkE @) 157PM I

particleswarm.py
Pictures
- _64. Public
pymdptoolbox
qlearning.py
rastrigin.png
Reinforcement-learning-with-tensorflow
Templates
universe
Untitled1.ipynb
Untitled2.ipynb
Untitled3.ipynb
Untitled.ipynb
Videos

(universe) abhig@ubuntu:~5 cd deep-rl_tensorflow

bash: cd: deep-rl_tensorflow: No such file or directory

(universe) abhi@ubuntu:~$ cd deep-rl-tensorflow

(universe) abhi@ubuntu:~/deep-rl-tensorflow$ dir

agents environments main.py README.md utils.py

assets LICENSE networks test.sh

(universe) abhi@ubuntu:~/deep-rl-tensorflow$ python main.py --network_header_typ
[le=nips --env_name=Breakout-v@® --use_gpu=False

Figure 5-18. Training the program without GPU support
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The command is as follows:

$ python main.py --network header type=nips --env_name=Breakout-vO --use_
gpu=False

The command uses the main.py Python file and runs the Breakout game simulation
in CPU mode only. You can now open the terminal to get inside the Anaconda
environment, as shown in Figure 5-19.

Terminal Terminal File Edit View Search R:rminal Help 3 2 ) 219aM %

abhi@ubuntu: ~

abhi@ubuntu:~5 source activate universe
(universe) abhi@ubuntu:-$

Figure 5-19. Activating the environment

Now switch to Python mode, as shown in Figure 5-20:

(universe) abhi@ubuntu:~$ python

Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 2017, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>
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Terminal gy & ok 224AM %

abhi@ubuntu: ~

abhi@ubuntu:~$ source activate universe
(universe) abhigubuntu:~$ python
Python 3.5.3 |Anaconda custom (64-bit)| (default, Mar 6 20617, 11:58:13)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help”, "copyright”, "credits” or "license"” for more imformation.
>

T LLEEIE

Figure 5-20. Switching to Python mode

As you switch to Python mode, you first import the utilities:

import gym
import numpy as np

To get the observation along the frozen lake simulation, you have to formulate the Q
table as follows:

Q = np.zeros([env.observation_space.n,env.action_space.n])

After that, you declare the learning rates and create the lists to contain the rewards
for each state.

import gym

import numpy as np

env = gym.make('FrozenlLake-v0")

#Initialize table with all zeros

Q = np.zeros([env.observation_space.n,env.action_space.n])
# Set learning parameters

1r = .8

y = .95

num_episodes = 2000

#create lists to contain total rewards and steps per episode
#jlist = []

rlist = []

for i in range(num_episodes):
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#Reset environment and get first new observation
s = env.reset()
rAll = 0
d = False
j=o0
#The Q-Table learning algorithm
while j < 99:
j+=1
#Choose an action by greedily (with noise) picking from Q table
a = np.argmax(Q[s,:] + np.random.randn(1,env.action_space.n)*
(1./(i+1)))
#Get new state and reward from environment
si,r,d, = env.step(a)
#Update Q-Table with new knowledge
0s,a] = Q[s,a] + Lr*(xr + y*np.max(Q[s1,:]) - Q[s,a])
rAll += 1
s =s1
if d == True:
break
#jList.append(j)
rList.append(rAll)
print "Score over time: " + str(sum(rList)/num episodes)
print "Final Q-Table Values"
print Q

After going through all the steps, you can finally print the Q table. Each line should
be placed into Python mode.

Deep Q Learning: Using Keras and TensorFlow

We will touch on Deep Q Learning with Keras. We will clone an important reinforcement
library, which is known as Keras-1l. It has several states of the Deep Q Learning
algorithms. See Figure 5-21.
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e
/ \
B

Figure 5-21. Keras-rl representation

Installing Keras-rl

The command for installing Keras-1l is as follows (see Figure 5-22):

pip install keras-rl
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ninal File Edit Vi rch Terminal Help Ty £ @) 3:19aM It

abhi@ubuntu: ~

Requirement already satisfied: theano in ./fanaconda3/envs/universe/lib/python3.5
/site-packages (from keras<2.0.7,>=1.0.7->keras-rl)
Requirement already satisfied: pyyaml in ./anaconda3/envs/universe/lib/python3.5
/site-packages (from keras<2.0.7,>=1.08.7->keras-rl)
Requirement already satisfied: six in ./anaconda3/envs/universe/lib/python3.5/si
te-packages (from keras<2.8.7,»=1.0.7->keras-rl)
Requirement already satisfied: numpy>=1.9.1 in ./anaconda3/envs/funiverse/lib/pyt
hon3.5/site-packages (from theano->keras<2.0.7,»>=1.6.7->keras-rl)
Requirement already satisfied: scipy>=0.14 in ./anaconda3/envs/universe/lib/pyth
on3.5/site-packages (from theano->keras<2.0.7,>=1.0.7->keras-rl)
Building wheels for collected packages: keras-rl, keras

Running setup.py bdist_wheel for keras-rl ... done

Stored in directory: fhome/abhi/.cache/pip/wheels/8b/3f/0e/dodbbcddddf6di4b412
935b2286098872de5464123fdaeb7d9
Running setup.py bdist_wheel for keras ... done
Stored in directory: fhome/abhi/.cache/pip/wheels/c2/808/ba/2beab8c2131e2dcc391
eeBa2f55e648af66348115c245e0839
Successfully built keras-rl keras
Installing collected packages: keras, keras-rl

Found existing installation: Keras 2.0.8

Uninstalling Keras-2.6.8:
successfully uninstalled Keras-2.0.8

M successfully installed keras-2.0.6 keras-rl-0.3.1
(universe) abhigubuntu:~5S Jj

Figure 5-22. Installing Keras-rl

You also need to install h5py if it is not already installed and then you need to clone
the repo, as shown in Figure 5-23.

Terminal 1y 2h4) 3:21AM %

abhi@ubuntu: ~

Stored in directory: /homefabhi/.cache/pip/wheels/8b/3f/6e/dbdbbcddddf6di4b41z2
935b2286098872de5464123Fdaeb7d9
Running setup.py bdist_wheel for keras ... done
Stored in directory: /homefabhi/.cache/pip/wheels/c2/80/ba/2beab8c2131e2dcc391
ee8a2f55e648af66348115c245e8839
Successfully built keras-rl keras
Installing collected packages: keras, keras-rl
Found existing installation: Keras 2.0.8
Uninstalling Keras-2.0.8:
Successfully uninstalled Keras-2.0.8
Successfully installed keras-2.6.6 keras-rl-8.3.1
(universe) abhi@ubuntu:~$ pip install hSpy
Requirement already satisfied: h5py in ./anaconda3/envs/universe/lib/python3.5/s
ite-packages
Requirement already satisfied: numpy>=1.7 in ./anaconda3/envsfuniverse/lib/pytho
n3.5/site-packages (from h5py)
Requirement already satisfied: six in ./anaconda3/envs/universe/lib/python3.5/si
te-packages (from hSpy)
(universe) abhi@ubuntu:~$ git clone https://github.com/matthiasplappert/keras-rl
.git
Cloning into 'keras-rl'...
remote: Counting objects: 1309, done.
BN remote: Compressing objects: 100% (48/48), done.
P Beceiving objects: 17% (234/1309), 476.01 KiB | 75.00 KiB/s

Figure 5-23. Cloning the git repo
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Training with Keras-rl

You will see how to run a program in this section. First, get inside the r1 folder, as shown
in Figure 5-24.

abhi@ubuntu:~$ cd keras-rl

abhi@ubuntu:~/keras-rl$ dir

assets examples LICENSE pytest.ini rl setup.py
docs ISSUE_TEMPLATE.md mkdocs.yml README.md setup.cfg tests
abhi@ubuntu:~/keras-rl$ cd examples

abhi@ubuntu:~/keras-rl/examples$ dir

cem_cartpole.py dgn_atari.py duel dgn_cartpole.py sarsa_cartpole.py
ddpg_pendulum.py dgn_cartpole.py naf_pendulum.py visualize log.py
abhi@ubuntu:~/keras-rl/examples$

Terminal Terminal File Edit View Search TerRinal Help ty 2 ) 9:29AM

abhi@ubuntu: ~/keras-rl

Pictures
x86_64.sh Public
pymdptoolbox

qlearning.py

rastrigin.png
Reinforcement-learning-with-tensorflow
Templates

universe

Untitledi.ipynb

Untitled2.ipynb

Untitled.ipynb

Videos

particleswarm.py
abhi@ubuntu:~$ cd keras-rl
abhi@ubuntu:~/keras-r15 i

PP D O H

Y

Figure 5-24. Getting inside the Keras-rl directory

Now you can run one of the examples:
abhi@ubuntu:~/keras-rl/examples$ python dqn_cartpole.py
Activating the anaconda environment

(universe) abhi@ubuntu:~/keras-rl/examples$ python dqn_cartpole.py

See Figure 5-25.
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abhi@ubuntu: ~/keras-rlfexamples

Templates

universe

Untitled1.ipynb

Untitled2.ipynb

Untitled.ipynb

Videos

particleswarm.py -
abhi@ubuntu:~S cd keras-rl

abhi@ubuntu:~/keras-r1$ dir

assets examples LICENSE pytest.ini rl setup.py
docs ISSUE_TEMPLATE.md mkdocs.yml README.md setup.cfg tests
abhi@ubuntu:~/keras-r1% cd examples

abhi@ubuntu:~/keras-rl/examples$ dir

cem_cartpole.py dgn_atari.py duel_dgn_cartpole.py sarsa_cartpole.py
ddpg_pendulum.py dgn_cartpole.py naf_pendulum.py visualize_log.py
abhi@ubuntu:~/keras-rl/examplesS python dqn_cartpole.py

Traceback (most recent call last):

File "dgn_cartpole.py”, line 2, in <module>

import gym

ImportError: No module named 'gym'

abhi@ubuntu:~/keras-rl/examples$ source activate universe

(universe) abhi@ubuntu:~/keras-rl/examples$ python dgn_cartpole.py

Using TensorFlow backend.

1B DD D O m]]: @

Figure 5-25. Using the TensorFlow backend

The simulation will now begin, as shown in Figure 5-26.

dqn_cartpole.py T3 2 ) 9:37AM I

-

&
0.485 [0.0 ;
?) mean_absolu
- 3967 /5000 on
=
B

d: 61, episode reward: 200.000, mean reward: 1.800 [1.808, 1.000], mean action:
0.495 [0.000, 1.000], mean observation: -0.633 [-0.931, 0.815], loss: 1.808246,
mean_absolute_error: 15.392527, mean_q: 31.264473

3767/50000: episode: 71, duratiol , episode steps: 200, steps per secon

d: 60, epis =

d: 54, epis i :

4567 /5008 § on
d: 55, epis | -
0.465 [0.00 | 2

Mrean_absolu -

Figure 5-26. Simulation happens
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The simulation occurs and trains the model using Deep Q Learning. With practice,
the cart-pole will balance along the rope; its stability increases with learning.
The entire process creates the following log:

(universe) abhi@ubuntu:~/keras-rl/examples$ python dgn_cartpole.py
Using TensorFlow backend.
[2017-09-24 09:36:27,476] Making new env: CartPole-vO

Layer (type) Output Shape Param #
flatten 1 (Flatten)  (None, 4 o
dense_1 (Dense) (None, 16) 80
activation 1 (Activation) (None, 16) 0

dense_2 (Dense) (None, 16) 272
activation 2 (Activation) (None, 16) 0

dense_3 (Dense) (None, 16) 272
activation 3 (Activation) (None, 16) 0

dense_4 (Dense) (None, 2) 34
activation 4 (Activation) (None, 2) 0

Total params: 658
Trainable params: 658
Non-trainable params: 0

None

2017-09-24 09:36:27.932219: W tensorflow/core/platform/cpu_feature guard.
cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but
these are available on your machine and could speed up CPU computations.

712/50000: episode: 38, duration: 0.243s, episode steps: 14, steps per
second: 58, episode reward: 14.000, mean reward: 1.000 [1.000, 1.000], mean
action: 0.500 [0.000, 1.000], mean observation: 0.105 [-0.568, 0.957], loss:
0.291389, mean_absolute error: 3.054634, mean_q: 5.816398

The episodes are iterations for the simulations. The cartpole.py code is discussed
next. You need to import the utilities first. The utilities included are very useful, as they
have built-in agents for applying Deep Q Learning.

First, declare the environment as follows:

ENV_NAME = 'CartPole-vo'
env = gym.make(ENV_NAME)

150



CHAPTER 5 * REINFORCEMENT LEARNING WITH KERAS, TENSORFLOW, AND CHAINERRL

Since we want to implement Deep Q Learning, we use parameters for initializing the
Convolution Neural Network (CNN). We also use an activation function to propagate the
neural network. We keep it sequential.

model = Sequential()

model.add(Flatten(input_shape=(1,) + env.observation_ space.shape))
model.add(Dense(16))

model.add(Activation('relu'))

model.add(Dense(16))

model.add(Activation('relu"))

model.add(Dense(16))

model.add(Activation('relu'))

model.add(Dense(nb_actions))

model.add(Activation('linear"'))

You can print the model details too, as follows:
print(model.summary())

Next, configure the model and use all the Reinforcement Learning options with the
help of a function.

import numpy as np

import gym

from keras.models import Sequential

from keras.layers import Dense, Activation, Flatten
from keras.optimizers import Adam

from rl.agents.dqn import DQNAgent

from rl.policy import BoltzmannQPolicy

from rl.memory import SequentialMemory

ENV_NAME = 'CartPole-vo'

# Get the environment and extract the number of actions.
env = gym.make(ENV_NAME)

np.random.seed(123)

env.seed(123)

nb_actions = env.action_space.n

# Next, we build a very simple model.

model = Sequential()
model.add(Flatten(input_shape=(1,) + env.observation space.shape))
model.add(Dense(16))

model.add(Activation('relu'))

model.add(Dense(16))

model.add(Activation('relu'))

model.add(Dense(16))

model.add(Activation('relu"))
model.add(Dense(nb_actions))
model.add(Activation('linear"'))
print(model.summary())
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# Finally, we configure and compile our agent. You can use every built-in
Keras optimizer and
# even the metrics!
memory = SequentialMemory(1imit=50000, window length=1)
policy = BoltzmannQPolicy()
dgn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_
warmup=10,
target model update=1e-2, policy=policy)
dgn.compile(Adam(lr=1e-3), metrics=['mae'])
# Okay, now it's time to learn something! We visualize the training here for
show, but this
# slows down training quite a lot. You can always safely abort the training
prematurely using
# Ctrl + C.
dgn.fit(env, nb_steps=50000, visualize=True, verbose=2)
# After training is done, we save the final weights.
dgn.save weights('dgn {} weights.h5f'.format(ENV_NAME), overwrite=True)
# Finally, evaluate our algorithm for 5 episodes.
dgn.test(env, nb_episodes=5, visualize=True)

To get all the capabilities of Keras-rl, you need to run the setup. py file within the
Keras-rl folder, as follows:

(universe) abhi@ubuntu:~/keras-rl$ python setup.py install
You will see that all the dependencies are being installed, one by one:

running install

running bdist_egg

running egg_info

creating keras rl.egg-info

writing requirements to keras_rl.egg-info/requires.txt
writing dependency links to keras_rl.egg-info/dependency links.txt
writing top-level names to keras rl.egg-info/top_level.txt
writing keras_rl.egg-info/PKG-INFO

writing manifest file 'keras_rl.egg-info/SOURCES.txt'
reading manifest file 'keras_rl.egg-info/SOURCES.txt'
writing manifest file 'keras_rl.egg-info/SOURCES.txt'
installing library code to build/bdist.linux-x86_64/egg
running install_lib

running build_py

creating build

creating build/lib

creating build/lib/tests

copying tests/__init__.py -> build/lib/tests

creating build/lib/rl

copying rl/util.py -> build/lib/rl

copying rl/callbacks.py -> build/lib/rl
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copying rl/keras_future.py -> build/lib/rl

copying rl/memory.py -> build/lib/rl

copying rl/random.py -> build/1ib/rl

copying rl/core.py -> build/lib/rl

copying rl/__init_ .py -> build/lib/rl

copying rl/policy.py -> build/lib/rl

creating build/lib/tests/rl

copying tests/rl/test util.py -> build/lib/tests/rl

copying tests/rl/util.py -> build/lib/tests/rl

copying tests/rl/test_memory.py -> build/lib/tests/rl

copying tests/rl/test _core.py -> build/lib/tests/rl

copying tests/rl/__init_ .py -> build/lib/tests/rl

creating build/lib/tests/rl/agents

copying tests/rl/agents/test cem.py -> build/lib/tests/rl/agents
copying tests/rl/agents/__init .py -> build/lib/tests/rl/agents
copying tests/rl/agents/test ddpg.py -> build/lib/tests/r1l/agents
copying tests/rl/agents/test _dgn.py -> build/lib/tests/rl/agents
creating build/lib/rl/agents

copying rl/agents/sarsa.py -> build/lib/rl/agents

copying rl/agents/ddpg.py -> build/lib/rl/agents

copying rl/agents/dgn.py -> build/lib/rl/agents

copying rl/agents/cem.py -> build/lib/rl/agents

copying rl/agents/__init__.py -> build/lib/rl/agents

Keras-rl is now set up and you can use the built-in functions to their fullest effect.

Conclusion

This chapter introduced and defined Keras and explained how to use it with
Reinforcement Learning. The chapter also explained how to use TensorFlow with
Reinforcement Learning and discussed using ChainerRL. Chapter 6 covers Google
DeepMind and the future of Reinforcement Learning.
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CHAPTER 6

Google’s DeepMind and the
Future of Reinforcement
Learning

This chapter discusses Google DeepMind and Google AlphaGo and then moves on to
the future of Reinforcement Learning and compares what'’s happening with man versus
machine.

Google DeepMind

Google DeepMind (see Figure 6-1) was formed to take Al to the next level. The aim and
motive of Google in this case is to research and develop programs that can solve complex
problems without needing to teach it the steps for doing so.

DeepMind

Figure 6-1. Google DeepMind logo
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The link to visit the DeepMind web site is https://deepmind.com/.
This web site (see Figure 6-2) contains all the details and the future work they are
doing. There are publications and research options available on the site.

o DeepMind

Committed to Al that benefits
everyone.

Figure 6-2. The DeepMind web site

You will see that the web site has lots of topics to search and discover.

Google AlphaGo

This section takes a look at AlphaGo (see Figure 6-3), which is one of the best solutions
from the Google DeepMind team.

000

02 AlphaGo

Figure 6-3. The Google AlphaGo logo
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What Is AlphaGo?

AlphaGo is the Google program that plays the game Go, which is a traditional abstract
strategy board game for two players. The object of the game is to occupy more territory
than your opponent. Figure 6-4 shows the Go game board.

Figure 6-4. The Go board (Image courtesy of Jaro Larnos, https://www. f1ickzr.com/
photos/jlarnos/, used under a CC-BY 2.0 license)

Despite its simple rules, Go has more possible solutions than the number of atoms in
the visible world!

The concept of the Go game and its underlying mathematical terms included are
illustrated in Figure 6-5.
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v
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Figure 6-5. Concept of the Go game

AlphaGo is the first computer program to defeat a professional human Go player, the
first program to defeat a Go world champion, and arguably the best Go player in history.
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Figure 6-6 illustrates the AlphaGo approach.

e

Figure 6-6. Deep Q approach

Monte Carlo Search

Monte Carlo Search (MCS) is based on the Al tree traversal approach. It uses a unique set
of behaviors for moving through the tree.

MCS first selects each state it can go through, as mentioned in the declared policy.
After a certain depth, the policy does not allow the state to go through. MCS then expands
from that state to the possible actions that can be taken randomly. This way, you are
using MCS-based simulation to all possible states to get rewards. We you do a random
simulation path, you also get Q state values for random paths if you change from one state
to another. From the Q state received, you can back up information and move to the top.
The entire process is shown in Figure 6-7.
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Figure 6-7. The Monte Carlo Search tree process

AlphaGo relies on two components: A tree search procedure and convolutional
networks that guide the tree search procedure.

In total, three convolutional networks of two different kinds are trained: two policy
networks and one value network.
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Man vs. Machines

With the advent of Reinforcement Learning, there are many more jobs being automated
and many low-level jobs are being done by machines.

Now the focus is on how Reinforcement Learning can solve different problems and
change the well being of the earth.

For example, Reinforcement Learning can be used in the healthcare field. Instead of
using the same age-old tools for body scans, we can train robots and medical equipment
to scan body parts for different diagnoses purposes much quicker and with greater
accuracy. With repeated training, decisions to perform more complex measurements and
scans can be left to the machines too.

Positive Aspects of Al

Cognitive modeling is applied when we gather information and resources and through
which the system learns. This is called the cognitive way. Technological singularity is
achieved by enhancement of cognitive modeling devices that interact and achieve more
unified goals.

A good strong Al solution is selfless and places the interest of others above all else.
A good Al solution always works for the team. By adding human empathy, as seen with
brainwaves, we can create good Al solutions that appear to be compassionate.

Applying a topological view to the world of AT helps streamline activities and allows
each topology to master a specific, unique task.

Negative Aspects of Al

There can be negative aspects too. For example, what if a machine learns so fast that
it starts talking to other machines and creates an Al of its own? In that case, it would
be difficult for humans to predict the end game. We need to take these scenarios into
consideration. Perhaps every Al solution needs a secret killswitch, as illustrated in
Figure 6-8.
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ROLLBACK

z
.

Figure 6-8. Insert a killswitch just in case

v

Here are the steps to this basic process:
1. We start a program.
We apply Machine Learning to it.

The program learns very quickly.

> wn

We have to incorporate a killswitch into the process so that we
can allow the program to be rolled back if necessary.

5. When we see an anomaly or any abrupt behavior, we call the
killswitch to roll the program back to the start.

There is a good chance that machines may learn this way, especially if they work
in tandem. At some transition point, they might start interacting in a way that creates
an Al of their own. We have to be able to avoid collisions of two or more Reinforcement
Learning programs during the transition phase.
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Conclusion

We touched on a lot of concepts in this book, especially related to Reinforcement
Learning. The book is an overview of how Reinforcement Learning works and the ideas
you need to understand to get started.

e  We simplified the RL concepts with the help of the Python
programming language.

e  Weintroduced OpenAl Gym and OpenAl Universe.

e  Weintroduced a lot of algorithms and touched on Keras and
TensorFlow.

We hope you have liked the book. Thanks again!
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