

CONTENTS

1. How will you improve the performance of a program in Python?

2. What are the benefits of using Python?

3. How will you specify source code encoding in a Python source file?

4. What is the use of PEP 8 in Python?

5. What is Pickling in Python?

6. How does memory management work in Python?

7. How will you perform Static Analysis on a Python Script?

8. What is the difference between a Tuple and List in Python?

9. What is a Python Decorator?

10. How are arguments passed in a Python method? By value or by
reference?

11. What is the difference between List and Dictionary data types in
Python?

12. What are the different built-in data types available in Python?

13. What is a Namespace in Python?

14. How will you concatenate multiple strings together in Python?

15. What is the use of Pass statement in Python?

16. What is the use of Slicing in Python?

17. What is the difference between Docstring in Python and Javadoc in
Java?

18. How do you perform unit testing for Python code?

19. What is the difference between an Iterator and Iterable in Python?

20. What is the use of Generator in Python?

21. What is the significance of functions that start and end with _
symbol in Python?

22. What is the difference between xrange and range in Python?

23. What is lambda expression in Python?

24. How will you copy an object in Python?

25. What are the main benefits of using Python?

26. What is a metaclass in Python?

27. What is the use of frozenset in Python?

28. What is Python Flask?

29. What is None in Python?

30. What is the use of zip() function in Python?

31. What is the use of // operator in Python?

32. What is a Module in Python?

33. How can we create a dictionary with ordered set of keys in Python?

34. Python is an Object Oriented programming language or a
functional programming language?

35. How can we retrieve data from a MySQL database in a Python
script?

36. What is the difference between append() and extend() functions of a
list in Python?

37. How will you handle an error condition in Python code?

38. What is the difference between split() and slicing in Python?

39. How will you check in Python, if a class is subclass of another class?

40. How will you debug a piece of code in Python?

41. How do you profile a Python script?

42. What is the difference between ‘is’ and ‘==’ in Python?

43. How will you share variables across modules in Python?

44. How can we do Functional programming in Python?

45. What is the improvement in enumerate() function of Python?

46. How will you execute a Python script in Unix?

47. What are the popular Python libraries used in Data analysis?

48. What is the output of following code in Python?

49. What is the output of following code in Python?

50. If you have data with name of customers and their location, which
data type will you use to store it in Python?

ACKNOWLEDGMENTS

We thank our readers who constantly send feedback
and reviews to motivate us in creating these useful

books with the latest information!

INTRODUCTION

This book contains basic to expert level Python interview questions that an
interviewer asks. Each question is accompanied with an answer so that you
can prepare for job interview in short time.

We have compiled this list after attending dozens of technical interviews in
top-notch companies like- Google, Facebook, Netflix, Amazon etc.

Often, these questions and concepts are used in our daily programming
work. But these are most helpful when an Interviewer is trying to test your
deep knowledge of Python.

The difficulty rating on these Questions varies from a Fresher level
software programmer to a Senior software programmer.

Once you go through them in the first pass, mark the questions that you
could not answer by yourself. Then, in second pass go through only the
difficult questions.

After going through this book 2-3 times, you will be well prepared to face a
technical interview on Python for an experienced programmer.

Python Interview Questions

1. How will you improve the performance
of a program in Python?
There are many ways to improve the performance of a Python
program. Some of these are as follows:

i. Data Structure: We have to select the right data structure
for our purpose in a Python program.

ii. Standard Library: Wherever possible, we should use
methods from standard library. Methods implemented in
standard library have much better performance than user
implementation.

iii. Abstraction: At times, a lot of abstraction and
indirection can cause slow performance of a program.
We should remove the redundant abstraction in code.

iv. Algorithm: Use of right algorithm can make a big
difference in a program. We have to find and select the
suitable algorithm to solve our problem with high
performance.

2. What are the benefits of using Python?
Python is strong that even Google uses it. Some of the benefits of using
Python are as follows:

i. Efficient: Python is very efficient in memory
management. For a large data set like Big Data, it is much
easier to program in Python.

ii. Faster: Though Python code is interpreted, still Python
has very fast performance.

iii. Wide usage: Python is widely used among different
organizations for different projects. Due to this wide
usage, there are thousands of add-ons available for use
with Python.

iv. Easy to learn: Python is quite easy to learn. This is the
biggest benefit of using Python. Complex tasks can be
very easily implemented in Python.

3. How will you specify source code
encoding in a Python source file?

By default, every source code file in Python is in UTF-8 encoding. But we
can also specify our own encoding for source files. This can be done by
adding following line after #! line in the source file.

-*- coding: encoding -*-

In the above line we can replace encoding with the encoding that we want
to use.

4. What is the use of PEP 8 in Python?

PEP 8 is a style guide for Python code. This document provides the coding
conventions for writing code in Python. Coding conventions are about
indentation, formatting, tabs, maximum line length, imports organization,
line spacing etc. We use PEP 8 to bring consistency in our code. We
consistency it is easier for other developers to read the code.

5. What is Pickling in Python?

Pickling is a process by which a Python object hierarchy can be converted
into a byte stream. The reverse operation of Pickling is Unpickling.

Python has a module named pickle. This module has the implementation of
a powerful algorithm for serialization and de-serialization of Python object
structure.

Some people also call Pickling as Serialization or Marshalling.

With Serialization we can transfer Python objects over the network. It is
also used in persisting the state of a Python object. We can write it to a file
or a database.

6. How does memory management work in
Python?

There is a private heap space in Python that contains all the Python objects
and data structures. In CPython there is a memory manager responsible for
managing the heap space.

There are different components in Python memory manager that handle
segmentation, sharing, caching, memory pre-allocation etc.

Python memory manager also takes care of garbage collection by using
Reference counting algorithm.

7. How will you perform Static Analysis on
a Python Script?

We can use Static Analysis tool called PyChecker for this purpose.
PyChecker can detect errors in Python code.

PyChecker also gives warnings for any style issues.

Some other tools to find bugs in Python code are pylint and pyflakes.

8. What is the difference between a Tuple
and List in Python?

In Python, Tuple and List are built-in data structures.

Some of the differences between Tuple and List are as follows:

I. Syntax: A Tuple is enclosed in parentheses:
E.g. myTuple = (10, 20, “apple”);
A List is enclosed in brackets:
E.g. myList = [10, 20, 30];

II. Mutable: Tuple is an immutable data structure. Whereas, a List is
a mutable data structure.

III. Size: A Tuple takes much lesser space than a List in Python.

IV. Performance: Tuple is faster than a List in Python. So it gives us
good performance.

V. Use case: Since Tuple is immutable, we can use it in cases like
Dictionary creation. Whereas, a List is preferred in the use case
where data can alter.

9. What is a Python Decorator?

A Python Decorator is a mechanism to wrap a Python function and modify
its behavior by adding more functionality to it. We can use @ symbol to call
a Python Decorator function.

10. How are arguments passed in a Python
method? By value or by reference?

Every argument in a Python method is an Object. All the variables in
Python have reference to an Object. Therefore arguments in Python method
are passed by Reference.

Since some of the objects passed as reference are mutable, we can change
those objects in a method. But for an Immutable object like String, any
change done within a method is not reflected outside.

11. What is the difference between List and
Dictionary data types in Python?

Main differences between List and Dictionary data types in Python are as
follows:

I. Syntax: In a List we store objects in a sequence. In a Dictionary
we store objects in key-value pairs.

II. Reference: In List we access objects by index number. It starts

from 0 index. In a Dictionary we access objects by key specified at
the time of Dictionary creation.

III. Ordering: In a List objects are stored in an ordered sequence. In a
Dictionary objects are not stored in an ordered sequence.

IV. Hashing: In a Dictionary, keys have to be hashable. In a List there
is no need for hashing.

12. What are the different built-in data
types available in Python?

Some of the built-in data types available in Python are as follows:

Numeric types: These are the data types used to represent numbers in
Python.

int: It is used for Integers

long: It is used for very large integers of non-limited length.

float: It is used for decimal numbers.

complex: This one is for representing complex numbers

Sequence types: These data types are used to represent sequence of
characters or objects.

str: This is similar to String in Java. It can represent a sequence of
characters.

bytes: This is a sequence of integers in the range of 0-255.

byte array: like bytes, but mutable (see below); only available in Python 3.x

list: This is a sequence of objects.

tuple: This is a sequence of immutable objects.

Sets: These are unordered collections.

set: This is a collection of unique objects.

frozen set: This is a collection of unique immutable objects.

Mappings: This is similar to a Map in Java.

dict: This is also called hashmap. It has key value pair to store information
by using hashing.

13. What is a Namespace in Python?

A Namespace in Python is a mapping between a name and an object. It is
currently implemented as Python dictionary.

E.g. the set of built-in exception names, the set of built-in names, local
names in a function

At different moments in Python, different Namespaces are created. Each
Namespace in Python can have a different lifetime.

For the list of built-in names, Namespace is created when Python interpreter
starts.

When Python interpreter reads the definition of a module, it creates global
namespace for that module.

When Python interpreter calls a function, it creates local namespace for that
function.

14. How will you concatenate multiple
strings together in Python?

We can use following ways to concatenate multiple string together in
Python:

I. use + operator:

E.g.
>>> fname="John"
>>> lname="Ray"
>>> print fname+lname
JohnRay

II. use join function:

E.g.
>>> ''.join(['John','Ray'])
'JohnRay'

15. What is the use of Pass statement in
Python?

The use of Pass statement is to do nothing. It is just a placeholder for a
statement that is required for syntax purpose. It does not execute any code
or command.

Some of the use cases for pass statement are as follows:

I. Syntax purpose:

>>> while True:

... pass # Wait till user input is received

II. Minimal Class: It can be used for creating minimal classes:

>>> class MyMinimalClass:

... pass

III. Place-holder for TODO work:

We can also use it as a placeholder for TODO work on a function or code
that needs to be implemented at a later point of time.

>>> def initialization():

... pass # TODO

16. What is the use of Slicing in Python?

We can use Slicing in Python to get a substring from a String.

The syntax of Slicing is very convenient to use.

E.g. In following example we are getting a substring out of the name John.

>>> name="John"

>>> name[1:3]

'oh'

In Slicing we can give two indices in the String to create a Substring. If we
do not give first index, then it defaults to 0.

E.g.

>>> name="John"

>>> name[:2]

'Jo'

If we do not give second index, then it defaults to the size of the String.

>>> name="John"

>>> name[3:]

'n'

17. What is the difference between
Docstring in Python and Javadoc in Java?

A Docstring in Python is a string used for adding comments or
summarizing a piece of code in Python.

The main difference between Javadoc and Docstring is that docstring is
available during runtime as well. Whereas, Javadoc is removed from the
Bytecode and it is not present in .class file.

We can even use Docstring comments at run time as an interactive help
manual.

In Python, we have to specify docstring as the first statement of a code
object, just after the def or class statement.

The docstring for a code object can be accessed from the '__doc__' attribute
of that object.

18. How do you perform unit testing for
Python code?

We can use the unit testing modules unittest or unittest2 to create and run
unit tests for Python code.

We can even do automation of tests with these modules. Some of the main
components of unittest are as follows:

I. Test fixture: We use test fixture to create preparation methods
required to run a test. It can even perform post-test cleanup.

II. Test case: This is main unit test that we run on a piece of code. We

can use Testcase base class to create new test cases.

III. Test suite: We can aggregate our unit test cases in a Test suite.

IV. Test runner: We use test runner to execute unit tests and produce
reports of the test run.

19. What is the difference between an
Iterator and Iterable in Python?

An Iterable is an object that can be iterated by an Iterator.

In Python, Iterator object provides _iter_() and next() methods.

In Python, an Iterable object has _iter_ function that returns an Iterator
object.

When we work on a map or a for loop in Python, we can use next() method
to get an Iterable item from the Iterator.

20. What is the use of Generator in
Python?

We can use Generator to create Iterators in Python. A Generator is written
like a regular function. It can make use yield statement to return data during
the function call. In this way we can write complex logic that works as an
Iterator.

A Generator is more compact than an Iterator due to the fact that _iter_()
and next() functions are automatically created in a Generator.

Also within a Generator code, local variables and execution state are saved
between multiple calls. Therefore, there is no need to add extra variables
like self.index etc to keep track of iteration.

Generator also increases the readability of the code written in Python. It is a
very simple implementation of an Iterator.

21. What is the significance of functions
that start and end with _ symbol in
Python?

Python provides many built-in functions that are surrounded by _ symbol at
the start and end of the function name. As per Python documentation,
double _ symbol is used for reserved names of functions.

These are also known as System-defined names.

Some of the important functions are:

Object._new_

Object._init_

Object._del_

22. What is the difference between xrange
and range in Python?

In Python, we use range(0,10) to create a list in memory for 10 numbers.

Python provides another function xrange() that is similar to range() but
xrange() returns a sequence object instead of list object. In xrange() all the
values are not stored simultaneously in memory. It is a lazy loading based
function.

But as per Python documentation, the benefit of xrange() over range() is
very minimal in regular scenarios.

As of version 3.1, xrange is deprecated.

23. What is lambda expression in Python?

A lambda expression in Python is used for creating an anonymous function.

Wherever we need a function, we can also use a lambda expression.

We have to use lambda keyword for creating a lambda expression. Syntax
of lambda function is as follows:

lambda argumentList: expression

E.g. lambda a,b: a+b

The above mentioned lambda expression takes two arguments and returns
their sum.

We can use lambda expression to return a function.

A lambda expression can be used to pass a function as an argument in
another function.

24. How will you copy an object in Python?

In Python we have two options to copy an object. It is similar to cloning an
object in Java.

I. Shallow Copy: To create a shallow copy we call copy.copy(x). In
a shallow copy, Python creates a new compound object based on
the original object. And it tries to put references from the original
object into copy object.

II. Deep Copy: To create a deep copy, we call copy.deepcopy(x). In a

deep copy, Python creates a new object and recursively creates and
inserts copies of the objects from original object into copy object.
In a deep copy, we may face the issue of recursive loop due to
infinite recursion.

25. What are the main benefits of using
Python?

Some of the main benefits of using Python are as follows:

I. Easy to learn: Python is simple language. It is easy to learn for a
new programmer.

II. Large library: There is a large library for utilities in Python that

can be used for different kinds of applications.

III. Readability: Python has a variety of statements and expressions
that are quite readable and very explicit in their use. It increases
the readability of overall code.

IV. Memory management: In Python, memory management is built

into the Interpreter. So a developer does not have to spend effort on
managing memory among objects.

V. Complex built-in Data types: Python has built-in Complex data

types like list, set, dict etc. These data types give very good
performance as well as save time in coding new features.

26. What is a metaclass in Python?

A metaclass in Python is also known as class of a class. A class defines the
behavior of an instance. A metaclass defines the behavior of a class.

One of the most common metaclass in Python is type. We can subclass type
to create our own metaclass.

We can use metaclass as a class-factory to create different types of classes.

27. What is the use of frozenset in Python?

A frozenset is a collection of unique values in Python. In addition to all the
properties of set, a frozenset is immutable and hashable.

Once we have set the values in a frozenset, we cannot change. So we cannot
use and update methods from set on frozenset.

Being hashable, we can use the objects in frozenset as keys in a Dictionary.

28. What is Python Flask?

Python Flask is a micro-framework based on Python to develop a web
application.

It is a very simple application framework that has many extensions to build
an enterprise level application.

Flask does not provide a data abstraction layer or form validation by
default. We can use external libraries on top of Flask to perform such tasks.

29. What is None in Python?

None is a reserved keyword used in Python for null objects. It is neither a
null value nor a null pointer. It is an actual object in Python. But there is
only one instance of None in a Python environment.

We can use None as a default argument in a function.

During comparison we have to use “is” operator instead of “==” for None.

30. What is the use of zip() function in
Python?

In Python, we have a built-in function zip() that can be used to aggregate all
the Iterable objects of an Iterator.

We can use it to aggregate Iterable objects from two iterators as well.

E.g.

list_1 = ['a', 'b', 'c']

list_2 = ['1', '2', '3']

for a, b in zip(list_1, list_2):

print a, b

Output:

a1

b2

c3

By using zip() function we can divide our input data from different sources
into fixed number of sets.

31. What is the use of // operator in
Python?

Python provides // operator to perform floor division of a number by
another. The result of // operator is a whole number (without decimal part)
quotient that we get by dividing left number with right number.

It can also be used floordiv(a,b).

E.g.

10// 4 = 2

-10//4 = -3

32. What is a Module in Python?

A Module is a script written in Python with import statements, classes,
functions etc. We can use a module in another Python script by importing it
or by giving the complete namespace.

With Modules, we can divide the functionality of our application in smaller
chunks that can be easily managed.

33. How can we create a dictionary with
ordered set of keys in Python?

In a normal dictionary in Python, there is no order maintained between
keys. To solve this problem, we can use OrderDict class in Python. This
class is available for use since version 2.7.

It is similar to a dictionary in Python, but it maintains the insertion order of
keys in the dictionary collection.

34. Python is an Object Oriented
programming language or a functional
programming language?

Python uses most of the Object Oriented programming concepts. But we
can also do functional programming in Python. As per the opinion of
experts, Python is a multi-paradigm programming language.

We can do functional, procedural, object-oriented and imperative
programming with the help of Python.

35. How can we retrieve data from a
MySQL database in a Python script?

To retrieve data from a database we have to make use of the module
available for that database. For MySQL database, we import MySQLdb
module in our Python script.

We have to first connect to a specific database by passing URL, username,
password and the name of database.

Once we establish the connection, we can open a cursor with cursor()
function. On an open cursor, we can run fetch() function to execute queries
and retrieve data from the database tables.

36. What is the difference between
append() and extend() functions of a list in
Python?

In Python, we get a built-in sequence called list. We can call standard
functions like append() and extend() on a list.

We call append() method to add an item to the end of a list.

We call extend() method to add another list to the end of a list.

In append() we have to add items one by one. But in extend() multiple items
from another list can be added at the same time.

37. How will you handle an error condition
in Python code?

We can implement exception handling to handle error conditions in Python
code. If we are expecting an error condition that we cannot handle, we can
raise an error with appropriate message.

E.g.

>>> if student_score < 0: raise ValueError(“Score can not be negative”)

If we do not want to stop the program, we can just catch the error condition,
print a message and continue with our program.

E.g. In following code snippet we are catching the error and continuing
with the default value of age.

#!/usr/bin/python
try:

age=18+'duration'
except:

print("duration has to be a number")
age=18
print(age)

38. What is the difference between split()
and slicing in Python?

Both split() function and slicing work on a String object. By using split()
function, we can get the list of words from a String.

E.g. 'a b c '.split() returns [‘a’, ‘b’, ‘c’]

Slicing is a way of getting substring from a String. It returns another String.

E.g. >>> 'a b c'[2:3] returns b

39. How will you check in Python, if a class
is subclass of another class?

Python provides a useful method issubclass(a,b) to check whether class a is
a subclass of b.

E.g. int is not a subclass of long
>>> issubclass(int,long)
False

bool is a subclass of int

>>> issubclass(bool,int)
True

40. How will you debug a piece of code in
Python?

In Python, we can use the debugger pdb for debugging the code. To start
debugging we have to enter following lines on the top of a Python script.

import pdb

pdb.set_trace()

After adding these lines, our code runs in debug mode. Now we can use
commands like breakpoint, step through, step into etc for debugging.

41. How do you profile a Python script?

Python provides a profiler called cProfile that can be used for profiling
Python code.

We can call it from our code as well as from the interpreter.

It gives use the number of function calls as well as the total time taken to
run the script.

We can even write the profile results to a file instead of standard out.

42. What is the difference between ‘is’ and
‘==’ in Python?

We use ‘is’ to check an object against its identity.

We use ‘==’ to check equality of two objects.

E.g.

>>> lst = [10,20, 20]

>>> lst == lst[:]

True

>>> lst is lst[:]

False

43. How will you share variables across
modules in Python?

We can create a common module with variables that we want to share.

This common module can be imported in all the modules in which we want
to share the variables.

In this way, all the shared variables will be in one module and available for
sharing with any new module as well.

44. How can we do Functional
programming in Python?

In Functional Programming, we decompose a program into functions. These
functions take input and after processing give an output. The function does
not maintain any state.

Python provides built-in functions that can be used for Functional
programming. Some of these functions are:

I. Map()
II. reduce()

III. filter()

Event iterators and generators can be used for Functional programming in
Python.

45. What is the improvement in
enumerate() function of Python?

In Python, enumerate() function is an improvement over regular iteration.
The enumerate() function returns an iterator that gives (0, item[0]).

E.g.

>>> thelist=['a','b']
>>> for i,j in enumerate(thelist):
... print i,j
...
0 a
1 b

46. How will you execute a Python script in
Unix?

To execute a Python script in Unix, we need to have Python executor in
Unix environment.

In addition to that we have to add following line as the first line in a Python
script file.

#!/usr/local/bin/python

This will tell Unix to use Python interpreter to execute the script.

47. What are the popular Python libraries
used in Data analysis?

Some of the popular libraries of Python used for Data analysis are:

I. Pandas: Powerful Python Data Analysis Toolkit
II. SciKit: This is a machine learning library in Python.

III. Seaborn: This is a statistical data visualization library in Python.
IV. SciPy: This is an open source system for science, mathematics and

engineering implemented in Python.

48. What is the output of following code in
Python?

>>> thelist=['a','b']

>>> print thelist[3:]

Ans: The output of this code is following:

[]

Even though the list has only 2 elements, the call to thelist with index 3
does not give any index error.

49. What is the output of following code in
Python?

>>>name=’John Smith’

>>>print name[:5] + name[5:]

Ans: Output of this will be

John Smith

This is an example of Slicing. Since we are slicing at the same index, the
first name[:5] gives the substring name upto 5th location excluding 5th

location. The name[5:] gives the rest of the substring of name from the 5th

location. So we get the full name as output.

50. If you have data with name of
customers and their location, which data
type will you use to store it in Python?

In Python, we can use dict data type to store key value pairs. In this
example, customer name can be the key and their location can be the value
in a dict data type.

Dictionary is an efficient way to store data that can be looked up based on a
key.

