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Introduction

Before even starting to write this book, I asked myself a question: Is there 

a need for another book on Machine Learning? I mean that there are so 

many books written on this subject already that this might end up as just 

another book on the shelf. To find the answer, I spent a lot of time thinking 

and after a while, a few patterns started to emerge. The books that have 

been written on Machine Learning were too detailed and lacked a high-

level overview. Most of these would start really easy but after a couple of 

chapters, it felt overwhelming to continue as the content became too deep. 

As a result, readers would give up without getting enough out of the book. 

That’s why I wanted to write this book, which demonstrates the different 

ways of using Machine Learning without getting too deep, yet capturing 

the complete methodology to build an ML model from scratch. The next 

obvious question was this: Why Machine Learning using PySpark? The 

answer to this question did not take too long since I am a practicing Data 

Scientist and well aware of the challenges faced by people dealing with 

data. Most of the packages or modules are often limited as they process 

data on a single machine. Moving from a development to production 

environment becomes a nightmare if ML models are not meant to handle 

Big Data, and finally the processing of data itself needs to be fast and 

scalable. For all these reasons, it made complete sense to write this book 

on Machine Learning using PySpark to understand the process of using 

Machine Learning from a Big Data standpoint.

Now we come to the core of the book Machine Learning with PySpark. 

This book is divided into three different sections. The first section gives 

the introduction to Machine Learning and Spark, the second section talks 

about Machine Learning in detail using Big Data, and finally the third part 
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showcases Recommender Systems and NLP using PySpark. This book 

might also be relevant for Data Analysts and Data Engineers as it covers 

steps of Big Data processing using PySpark as well. The readers who want 

to make a transition to Data Science and the Machine Learning field 

would also find this book easier to start with and can gradually take up 

more complicated stuff later. The case studies and examples given in the 

book make it really easy to follow along and understand the fundamental 

concepts. Moreover, there are very few books available on PySpark out 

there, and this book would certainly add some value to the knowledge 

of the readers. The strength of this book lies in explaining the Machine 

Learning algorithms in the most simplistic ways and uses a practical 

approach toward building them using PySpark.

I have put in my entire experience and learning into this book and feel 

it is precisely relevant to what businesses are seeking out there to solve real 

challenges. I hope you have some useful takeaways from this book.

IntroductionIntroduction
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CHAPTER 1

Evolution of Data
Before understanding Spark, it is imperative to understand the reason 

behind this deluge of data that we are witnessing around us today. In the 

early days, data was generated or accumulated by workers, so only the 

employees of companies entered the data into systems and the data points 

were very limited, capturing only a few fields. Then came the internet, and 

information was made easily accessible to everyone using it. Now, users had 

the power to enter and generate their own data. This was a massive shift as 

the number of internet users grew exponentially, and the data created by 

these users grew at even a higher rate. For example: login/sign-up forms 

allow users to fill in their own details, uploading photos and videos on 

various social platforms. This resulted in huge data generation and the need 

for a fast and scalable framework to process this amount of data.

�Data Generation
This data generation has now gone to the next level as machines are 

generating and accumulating data as shown in Figure 1-1. Every device 

around us is capturing data such as cars, buildings, mobiles, watches, 

flight engines. They are embedded with multiple monitoring sensors and 

recording data every second. This data is even higher in magnitude then 

the user-generated data.
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But imagine if instead of a single toll booth, there are eight toll booths 

on the same freeway and vehicles can use anyone of them to pass through. 

It would take only 1 minute in total for all of the eight vehicles to pass 

through the toll booth because there is no dependency now as shown in 

Figure 1-3. We have parallelized the operations.

Earlier, when the data was still at enterprise level, a relational 

database was good enough to handle the needs of the system, but as 

the size of data increased exponentially over the past couple of decades, 

a tectonic shift happened to handle the big data and it was the birth 

of Spark. Traditionally, we used to take the data and bring it to the 

processer to process it, but now it’s so much data that it overwhelms the 

processor. Now we are bringing multiple processors to the data. This is 

known as parallel processing as data is being processed at a number of 

places at the same time.

Let’s look at an example to understand parallel processing. Assume 

that on a particular freeway, there is only a single toll booth and every 

vehicle has to get in a single row in order to pass through the toll booth 

as shown in Figure 1-2. If, on average, it takes 1 minute for each vehicle 

to pass through the toll gate, for eight vehicles, it would take a total of 8 

minutes. For 100 vehicles, it would take 100 minutes.

Figure 1-1.  Data Evolution

Figure 1-2.  Single Thread Processing

Chapter 1  Evolution of Data
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Figure 1-3.  Parallel Processing

Parallel or Distributed computing works on a similar principle, as it 

parallelizes the tasks and accumulates the final results at the end. Spark is 

a framework to handle massive datasets with parallel processing at high 

speed and is a robust mechanism.

�Spark
Apache Spark started as a research project at the UC Berkeley AMPLab 

in 2009 and was open sourced in early 2010 as shown in Figure 1-4. 

Since then, there has been no looking back. In 2016, Spark released 

TensorFrames for Deep Learning.

Figure 1-4.  Spark Evolution

Chapter 1  Evolution of Data
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Under the hood, Spark uses a different data structure known as RDD 

(Resilient Distributed Dataset). It is resilient in a sense that they have an 

ability to re-create any point of time during the execution process. So 

RDD creates a new RDD using the last one and always has the ability to 

reconstruct in case of any error. They are also immutable as original RDDs 

remain unaltered. As Spark is a distributed framework, it works on master 

and worker node settings as shown in Figure 1-5. The code to execute any of 

the activities is first written on Spark Driver, and that is shared across worker 

nodes where the data actually resides. Each worker node contains Executors 

that will actually execute the code. Cluster Manager keeps a check on the 

availability of various worker nodes for the next task allocation.

Figure 1-5.  Spark Functioning

The prime reason that Spark is hugely popular is due to the fact 

that it’s very easy to use it for data processing, Machine Learning, and 

streaming data; and it’s comparatively very fast since it does all in-memory 

computations. Since Spark is a generic data processing engine, it can easily 

be used with various data sources such as HBase, Cassandra, Amazon S3, 

HDFS, etc. Spark provides the users four language options to use on it: 

Java, Python, Scala, and R.

Chapter 1  Evolution of Data
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�Spark Core
Spark Core is the most fundamental building block of Spark as shown in 

Figure 1-6. It is the backbone of Spark’s supreme functionality features. 

Spark Core enables the in-memory computations that drive the parallel 

and distributed processing of data. All the features of Spark are built 

on top of Spark Core. Spark Core is responsible for managing tasks, I/O 

operations, fault tolerance, and memory management, etc.

Figure 1-6.  Spark Architecture

�Spark Components
Let’s look at the components.

�Spark SQL

This component mainly deals with structured data processing. The key 

idea is to fetch more information about the structure of the data to perform 

additional optimization. It can be considered a distributed SQL query 

engine.

Chapter 1  Evolution of Data
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�Spark Streaming

This component deals with processing the real-time streaming data in 

a scalable and fault tolerant manner. It uses micro batching to read and 

process incoming streams of data. It creates micro batches of streaming 

data, executes batch processing, and passes it to some file storage or live 

dashboard. Spark Streaming can ingest the data from multiple sources like 

Kafka and Flume.

�Spark MLlib

This component is used for building Machine Learning Models on Big 

Data in a distributed manner. The traditional technique of building 

ML models using Python’s scikit learn library faces lot of challenges 

when data size is huge whereas MLlib is designed in a way that offers 

feature engineering and machine learning at scale. MLlib has most of 

the algorithms implemented for classification, regression, clustering, 

recommendation system, and natural language processing.

�Spark GraphX/Graphframe

This component excels in graph analytics and graph parallel execution. 

Graph frames can be used to understand the underlying relationships and 

visualize the insights from data.

�Setting Up Environment
This section of the chapter covers setting up a Spark Environment on the 

system. Based on the operating system, we can choose the option to install 

Spark on the system.

Chapter 1  Evolution of Data
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�Windows
Files to Download:

	 1.	 Anaconda (Python 3.x)

	 2.	 Java (in case not installed)

	 3.	 Apache Spark latest version

	 4.	 Winutils.exe

�Anaconda Installation
Download the Anaconda distribution from the link https://www.

anaconda.com/download/#windows and install it on your system. One 

thing to be careful about while installing it is to enable the option of adding 

Anaconda to the path environment variable so that Windows can find 

relevant files while starting Python.

Once Anaconda is installed, we can use a command prompt and check 

if Python is working fine on the system. You may also want to check if 

Jupyter notebook is also opening up by trying the command below:

[In]: Jupyter notebook

�Java Installation
Visit the https://www.java.com/en/download/link and download Java 

(latest version) and install Java.

�Spark Installation
Create a folder named spark at the location of your choice. Let’s say we 

decide to create a folder named spark in D:/ drive. Go to https://spark.

apache.org/downloads.html and select the Spark release version that you 

want to install on your machine. Choose the package type option of 

Chapter 1  Evolution of Data
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“Pre-built for Apache Hadoop 2.7 and later.” Go ahead and download the 

.tgz file to the spark folder that we created earlier and extract all the files. 

You will also observe that there is a folder named bin in the unzipped files.

The next step is to download winutils.exe and for that you need to go 

to the link https://github.com/steveloughran/winutils/blob/master/

hadoop-2.7.1/bin/winutils.exe and download the .exe file and save it to 

the bin folder of the unzipped spark folder (D:/spark/spark_unzipped/bin).

Now that we have downloaded all the required files, the next step is 

adding environment variables in order to use pyspark.

Go to the start button of Windows and search for “Edit environment 

variables for your account.” Let’s go ahead and create a new environment 

variable for winutils and assign the path for the same. Click on new and 

create a new variable with the name HADOOP_HOME and pass the path 

of the folder (D:/spark/spark_unzipped) in the variable value placeholder.

We repeat the same process for the spark variable and create a new 

variable with name SPARK_HOME and pass the path of spark folder  

(D:/spark/spark_unzipped) in the variable value placeholder.

Let’s add a couple of more variables to use Jupyter notebook. Create a 

new variable with the name PYSPARK_DRIVER_PYTHON and pass Jupyter 

in the variable value placeholder. Create another variable named PYSPARK_

DRIVER_PYTHON_OPTS and pass the notebook in the value field.

In the same window, look for the Path or PATH variable, click edit, 

and add D:/spark/spark_unzipped/bin to it. In Windows 7 you need to 

separate the values in Path with a semicolon between the values.

We need to add Java as well to the environment variable. So, create another 

variable JAVA_HOME and pass the path of the folder where Java is installed.

We can open the cmd window and run Jupyter notebook.

[In]: Import findspark

[In]: findspark.init()

Chapter 1  Evolution of Data
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[In]:import pyspark

[In]:from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.getOrCreate()

�IOS
Assuming we have Anaconda and Java installed on our Mac already, we 

can download the latest version of Spark and save it to the home directory. 

We can open the terminal and go to the home directory using

[In]:  cd ~

Copy the downloaded spark zipped file to the home directory and 

unzip the file contents.

[In]: mv /users/username/Downloads/ spark-2.3.0-bin-hadoop2.7 

/users/username

[In]: tar -zxvf spark-2.3.0-bin-hadoop2.7.tgz

Validate if you have a .bash_profile.

[In]: ls -a

Next, we will edit the .bash_profile so that we can open a Spark 

notebook in any directory.

[In]: nano .bash_profile

Paste the items below in the bash profile.

export SPARK_PATH=~/spark-2.3.0-bin-hadoop2.7

export PYSPARK_DRIVER_PYTHON="jupyter"

export PYSPARK_DRIVER_PYTHON_OPTS="notebook"

alias notebook='$SPARK_PATH/bin/pyspark --master local[2]'

[In]: source  .bash_profile

Chapter 1  Evolution of Data
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Now try opening Jupyter notebook in a terminal and import Pyspark to 

use it.

�Docker
We can directly use PySpark with Docker using an image from the 

repository of Jupyter but that requires Docker installed on your system.

�Databricks
Databricks also offers a community edition account that is free of cost and 

provides 6 GB clusters with PySpark.

�Conclusion
In this chapter, we looked at Spark Architecture, various components, 

and different ways to set up the local environment in order to use Spark. 

In upcoming chapters, we will go deep into various aspects of Spark and 

build a Machine Learning model using the same.

Chapter 1  Evolution of Data
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CHAPTER 2

Introduction to 
Machine Learning
When we are born, we are incapable of doing anything. We can’t even 

hold our head straight at that time, but eventually we start learning. 

Initially we all fumble, make tons of mistakes, fall down, and bang our 

head many times but slowly learn to sit, walk, run, write, and speak. 

As a built-in mechanism, we don’t require a lot of examples to learn 

about something. For example, just by seeing two to three houses along 

the roadside, we can easily learn to recognize a house. We can easily 

differentiate between a car and a bike just by seeing a few cars and bikes 

around. We can easily differentiate between a cat and a dog. Even though 

it seems very easy and intuitive to us as human beings, for machines it 

can be a herculean task.

Machine Learning is the mechanism through which we try to 

make machines learn without explicitly programming them to do so. 

In simple terms, we showcase the machine a lot of pictures of cats and 

dogs, just enough for the machine to learn the difference between 

the two and recognise the new picture correctly. The question here 

might be the following: What is the need of so many pictures to learn 

something as simple as the differntiating between cats and dogs? The 

challenge that the machines face is that they are able to learn the entire 

pattern or abstraction features just from a few images; they would need 

enough examples (different in some ways) to learn as many features 
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as possible to be able to make the right prediction whereas as humans 

we have this amazing ability to draw abstraction at different levels and 

easily recognize objects. This example might be specific to an image 

recognition case, but for other applications as well, machines would 

need a good amount of data to learn from.

Machine Learning is one of the most talked about topics in the last few 

years. More and more businesses want to adopt it to maintain the competitive 

edge; however, very few really have the right resources and the appropriate 

data to implement it. In this chapter, we will cover basic types of Machine 

Learning and how businesses can benefit from using Machine Learning.

There are tons of definitions of Machine Learning on the internet, 

although if I could try to put in in simple terms, it would look something 

like this:

	 1.	 Machine Learning is using statistical techniques 

and sometimes advanced algorithms to either make 

predictions or learn hidden patterns within the data 

and essentially replacing rule-based systems to 

make data-driven systems more powerful.

Let’s go through this definition in detail. Machine Learning, as the 

name suggests, is making a machine learn, although there are many 

components that come into the picture when we talk about making a 

machine learn.

One component is data, which is the backbone for any model. 

Machine Learning thrives on relevant data. The more signals in the 

data, the better are the predictions. Machine Learning can be applied in 

different domains such as financial, retail, health care, and social media. 

The other part is the algorithm. Based on the nature of the problem we 

are trying to solve, we choose the algorithm accordingly. The last part 

consists of the hardware and software. The availability of open sourced, 

distributed computing frameworks like Spark and Tensorflow have made 

Machine Learning more accessible to everyone. The rule-based systems 

Chapter 2  Introduction to Machine Learning
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came into the picture when the scenarios were limited and all the rules 

could be configured manually to handle the situations. Lately, this has 

changed, specifically the number of scenarios part. For example, the 

manner in which a fraud can happen has dramatically changed over the 

past few years, and hence creating manual rules for such conditions is 

practically impossible. Therefore, Machine Learning is being leveraged in 

such scenarios that learn from the data and adapts itself to the new data 

and makes a decision accordingly. This has proven to be of tremendous 

business value for everyone.

Let’s see the different types of machine learning and its applications. 

We can categorize machine learning into four major categories:

	 1.	 Supervised Machine Learning

	 2.	 Unsupervised Machine Learning

	 3.	 Semi-supervised Machine Learning

	 4.	 Reinforcement Learning

Each of the above categories is used for a specific purpose and the 

data that is used also differs from each other. At the end of the day, 

machine learning is learning from data (historical or real time) and making 

decisions (offline or real time) based on the model training.

�Supervised Machine Learning
This is the prime category of machine learning that drives a lot of 

applications and value for businesses. In Supervised Learning, we train 

our models on the labeled data. By labeled, it means having the correct 

answers or outcome for the data. Let’s take an example to illustrate 

supervised learning. If there is a financial company that wants to filter 

customers based on their profiles before accepting their loan requests, 

the machine learning model would get trained on historical data, which 

Chapter 2  Introduction to Machine Learning
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contains information regarding profiles of the past customer and the label 

column if a customer has defaulted on a loan or not. The sample data 

looks like that given in Table 2-1.

Table 2-1.  Customer Details

Customer ID Age Gender Salary Number 
of Loans

Job Type Loan 
Default

AL23 32 M 80K 1 Permanent No

AX43 45 F 105K 2 Permanent No

BG76 51 M 75K 3 Contract Yes

In Supervised Learning, the model learns from the training data that 

also has a label/outcome/target column and uses this to make predictions 

on unseen data. In the above example, the columns such as Age, Gender, 

and Salary are known as attributes or features, whereas the last column 

(Loan Default) is known as the target or label that the model tries to 

predict for unseen data. One complete record with all these values is 

known as an observation. The model would require a sufficient amount of 

observations to get trained and then make predictions on similar kind of 

data. There needs to be at least one input feature/attribute for the model 

to get trained along with the output column in supervised learning. The 

reason that the machine is able to learn from the training data is because of 

the underlying assumption that some of these input features individually 

or in combination have an impact on the output column (Loan Default).

There are many applications that use supervised learning settings 

such as:

Case 1: If any particular customer would buy the product or not?

Case 2: If the visitor would click on the ad or not?

Case 3: If the person would default on the loan or not?

Case 4: What is the expected sale price of a given property?

Case 5: If the person has a malignant tumor or not?

Chapter 2  Introduction to Machine Learning
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Above are some of the applications of Supervised Learning, and 

there are many more. The methodology that is used sometimes varies 

based on the kind of output the model is trying to predict. If the 

target label is a categorical type, then its falls under the Classification 

category; and if the target feature is a numerical value, it would fall 

under the Regression category. Some of the supervised ML algorithms 

are the following:

	 1.	 Linear Regression

	 2.	 Logistic Regression

	 3.	 Support Vector Machines

	 4.	 Naïve Bayesian Classifier

	 5.	 Decision Trees

	 6.	 Ensembling Methods

Another property of Supervised Learning is that the model’s 

performance can be evaluated. Based on the type of model (Classification/

Regression/time series), the evaluation metric can be applied and 

performance results can be measured. This happens mainly by splitting 

the training data into two sets (Train Set and Validation Set) and training 

the model on a train set and testing its performance on a validation set 

since we already know the right label/outcome for the validation set. We 

can then make the changes in the Hyperparameters (covered in later 

chapters) or introduce new features using feature engineering to improve 

the performance of the model.

�Unsupervised Machine Learning
In Unsupervised Learning, we train the models on similar sorts of data 

except for the fact that this dataset does not contain any label or outcome/

target column. Essentially, we train the model on data without any right 

answers. In Unsupervised Learning, the machine tries to find hidden 

Chapter 2  Introduction to Machine Learning
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patterns and useful signals in the data that can be later used for other 

applications. One of the uses is to find patterns within customer data and 

group the customers into different clusters that represent some of the 

properties. For example, let’s look at some customer data in Table  2-2.

Table 2-2.  Customer Details

Customer ID Song Genre

AS12 Romantic

BX54 Hip Hop

BX54 Rock

AS12 Rock

CH87 Hip Hop

CH87 Classical

AS12 Rock

In the above data, we have customers and the kinds of music they 

prefer without any target or output column, simply the customers and 

their music preference data.

We can use unsupervised learning and group these customers into 

meaningful clusters to know more about their group preference and act 

accordingly. We might have to tweak the dataset into other form to actually 

apply the unsupervised learning. We simply take the value counts for each 

customer and it would look like that shown in Table  2-3.

Table 2-3.  Customer Details

Customer ID Romantic Hip Hop Rock Classical

AS12 1 0 2 0

BX54 0 1 1 0

CH87 0 1 0 1
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We can now form some useful groups of users and apply that 

information to recommend and formulate a strategy based on the clusters. 

The information we can certainly extract is which of the customers 

are similar in terms of preferences and can be targeted from a content 

standpoint.

Like what is shown in Figure 2-1, Cluster A can belong to customers 

who prefer only Rock and Cluster B can be of people preferring 

Romantic & Classical music, and the last cluster might be of Hip 

Hop and Rock lovers. One of the other uses of unsupervised learning 

is to find out if there is any unusual activity or anomaly detection. 

Unsupervised learning can help to determine the odd man out from 

the dataset. Most of the time, unsupervised learning can be very 

tricky as there are no clear groups or overlapping values between 

multiple groups, which doesn’t give a clear picture of the clusters. For 

example, as shown in Figure 2-2, there are no clear groups in the data 

and unsupervised learning cannot help with forming real meaningful 

clusters of data points.

Figure 2-1.  Clusters post Unsupervised Learning
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There are many applications that use unsupervised learning settings 

such as

Case 1: What are different groups within the total customer base?

Case 2: Is this transaction an anomaly or normal?

The algorithms used in unsupervised learning are

	 1.	 Clustering Algorithms (K-Means, Hierarchical)

	 2.	 Dimensionality Reduction Techniques

	 3.	 Topic Modeling

	 4.	 Association Rule Mining

The whole idea of Unsupervised learning is to discover and find out 

the patterns rather than making predictions. So, unsupervised learning is 

different from supervised in mainly two aspects.

	 1.	 There is no labeled training data and no predictions.

	 2.	 The performance of models in unsupervised 

learning cannot be evaluated as there are no labels 

or correct answers.

Figure 2-2.  Overlapping Clusters
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�Semi-supervised Learning
As the name suggests, semi-supervised learning lies somewhere in 

between both supervised and unsupervised learning. In fact, it uses 

both of the techniques. This type of learning is mainly relevant in 

scenarios when we are dealing with a mixed sort of dataset, which 

contains both labeled and unlabeled data. Sometimes it’s just 

unlabeled data completely, but we label some part of it manually. The 

semi-supervised learning can be used on this small portion of labeled 

data to train the model and then use it for labeling the other remaining 

part of data, which can then be used for other purposes. This is also 

known as Pseudo-labeling as it labels the unlabeled data. To quote a 

simple example, we have a lot of images of different brands from social 

media and most of it is unlabeled. Now using semi-supervised learning, 

we can label some of these images manually and then train our model 

on the labeled images. We then use the model predictions to label 

the remaining images to transform the unlabeled data to labeled data 

completely.

The next step in semi-supervised learning is to retrain the model on 

the entire labeled dataset. The advantage that it offers is that the model 

gets trained on a bigger dataset, which was not the case earlier, and is now 

more robust and better at predictions. The other advantage is that semi-

supervised learning saves a lot of effort and time that could go to manually 

label the data. The flipside of doing all this is that it’s difficult to get high 

performance of the pseudo-labeling as it uses a small part of the labeled 

data to make the predictions. However, it is still a better option rather 

than manually labeling the data, which can be very expensive and time 

consuming at the same time.
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�Reinforcement Learning
The is the fourth and last kind of learning and is a little different in terms 

of the data usage and its predictions. Reinforcement Learning is a big 

research area in itself, and this entire book can be written just on it. 

We will not go too deep into this as this book focuses more on building 

machine learning models using PySpark. The main difference between 

the other kinds of Learning and Reinforcement Learning is that we need 

data, mainly historical data to training the models whereas Reinforcement 

Learning works on a reward system. It is primarily decision making based 

on certain actions that the agent takes to change its state trying in order to 

maximize the rewards. Let’s break this down to individual elements using a 

visualization.

 

•	 Autonomous Agent: This is the main character in this 

whole learning process who is responsible for taking 

action. If it is a game, the agent makes the moves to 

finish or reach the end goal.

•	 Actions: These are sets of possible steps that the 

agent can take in order to move forward in the task. 

Each action will have some effect on the state of the 

agent and can result in either a reward or penalty. For 

example, in a game of Tennis, actions might be to serve, 

return, move left or right, etc.
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•	 Reward: This is the key to making progress in 

reinforcement learning. Rewards enable the agents 

to take actions based on if it’s positive rewards or 

penalties. It is a feedback mechanism that differentiates 

it from traditional supervised and unsupervised 

learning techniques

•	 Environment: This is the territory in which the agent 

gets to play in. Environment decides whether the 

actions that the agent takes results in rewards or 

penalties.

•	 State: The position the agent is in at any given point 

of time defines the state of the agent. To move 

forward or reach the end goal, the agent has to keep 

changing states in a positive direction to maximize 

the rewards.

The unique thing about Reinforcement Learning is that there is a 

feedback mechanism that drives the next behavior of the agent based 

on maximizing the total discounted reward. Some of the prominent 

applications that use Reinforcement Learning are self-driving cars, 

optimization of energy consumption, and the gaming domain. However, it 

can be also used to build recommender systems as well.

�Conclusion
In this chapter we briefly looked at different types of Machine Learning 

approaches and some of the applications. In upcoming chapters, we 

will look at Supervised and Unsupervised Learning in detail using 

PySpark.
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CHAPTER 3

Data Processing
This chapter tries to cover all the main steps to process and massage data 

using PySpark. Although the data size we consider in this section is relatively 

small, but steps to process large datasets using PySpark remains exactly 

the same. Data processing is a critical step required to perform Machine 

Learning as we need to clean, filter, merge, and transform our data to bring 

it to the desired form so that we are able to train Machine Learning models. 

We will make use of multiple PySpark functions to perform data processing.

�Load and Read Data
Assuming the fact that we have Spark version 2.3 installed, we start with 

importing and creating the SparkSession object first in order to use Spark.

[In]: from pyspark.sql import SparkSession

[In]: �spark=SparkSession.builder.appName('data_processing').

getOrCreate()

[In]: �df=spark.read.csv('sample_data.csv',inferSchema=True, 

header=True)

We need to ensure that the data file is in the same folder where we 

have opened PySpark, or we can specify the path of the folder where the 

data resides along with the data file name. We can read multiple datafile 

formats with PySpark. We just need to update the read format argument in 
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accordance with the file format (csv, JSON, parquet, table, text). For a tab-

separated file, we need to pass an additional argument while reading the 

file to specify the separator (sep='\t'). Setting the argument inferSchema 

to true indicates that Spark in the background will infer the datatypes of 

the values in the dataset on its own.

The above command creates a spark dataframe with the values 

from our sample data file. We can consider this an Excel spreadsheet in 

tabular format with columns and headers. We can now perform multiple 

operations on this Spark dataframe.

[In]: df.columns

[Out]: ['ratings', 'age', 'experience', 'family', 'mobile']

We can print the columns name lists that are present in the dataframe 

using the “columns” method. As we can see, we have five columns in our 

dataframe. To validate the number of columns, we can simply use the 

length function of Python.

[In]: len(df.columns)

[Out]: 5

We can use the count method to get the total number of records in the 

dataframe:

[In]: df.count

[Out] : 33

We have a total of 33 records in our dataframe. It is always a good 

practice to print the shape of the dataframe before proceeding with 

preprocessing as it gives an indication of the total number of rows and 

columns. There isn’t any direct function available in Spark to check 

the shape of data; instead we need to combine the count and length of 

columns to print the shape.

[In]: print((df.count),(len(df.columns))

[Out]: ( 33,5)
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Another way of viewing the columns in the dataframe is the 

printSchema method of spark. It shows the datatypes of the columns along 

with the column names.

[In]:df.printSchema()

[Out]: root

 |-- ratings: integer (nullable = true)

 |-- age: integer (nullable = true)

 |-- experience: double (nullable = true)

 |-- family: double (nullable = true)

 |-- Mobile: string (nullable = true)

The nullable property indicates if the corresponding column can 

assume null values (true) or not (false). We can also change the datatype of 

the columns as per the requirement.

The next step is to have a sneak peek into the dataframe to view the 

content. We can use the Spark show method to view the top rows of the 

dataframe.

[In]: df.show(3)

[Out]:
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We can see only see five records and all of the five columns since 

we passed the value 5 in the show method. In order to view only certain 

columns, we have to use the select method. Let us view only two columns 

(age and mobile):

[In]: df.select('age','mobile').show(5)

[Out]:

 

Select function returned only two columns and five records from the 

dataframe. We will keep using the select function further in this chapter. 

The next function to be used is describe for analyzing the dataframe. It 

returns the statistical measures for each column of the dataframe. We will 

again use show along with describe, since describe returns the results as 

another dataframe.

[In]: df.describe().show()

[Out]:

 

For numerical columns, it returns the measure of the center and 

spread along with the count. For nonnumerical columns, it shows the 

count and the min and max values, which are based on alphabetic order of 

those fields and doesn’t signify any real meaning.
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�Adding a New Column
We can add a new column in the dataframe using the withColumn function 

of spark. Let us add a new column (age after 10 years) to our dataframe 

by using the age column. We simply add 10 years to each value in the age 

column.

[In]: �df.withColumn("age_after_10_yrs",(df["age"]+10)).

show(10,False)

[Out]:

 

As we can observe, we have a new column in the dataframe. The show 

function helps us to view the new column values, but in order to add the 

new column to the dataframe, we will need to assign this to an exisiting or 

new dataframe.

[In]: df= df.withColumn("age_after_10_yrs",(df["age"]+10))

This line of code ensures that the changes takes place and the 

dataframe now contains the new column (age after 10 yrs).
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To change the datatype of the age column from integer to double, 

we can make use of the cast method in Spark. We need to import the 

DoubleType from pyspark.types:

[In]: from pyspark.sql.types import StringType,DoubleType

[In]: �df.withColumn('age_double',df['age'].cast(DoubleType())).

show(10,False)

[Out]:

 

So the above command creates a new column (age_double) that has 

converted values of age from integer to double type.

�Filtering Data
Filtering records based on conditions is a common requirement when 

dealing with data. This helps in cleaning the data and keeping only 

relevant records. Filtering in PySpark is pretty straight-forward and can be 

done using the filter function.
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�Condition 1
This is the most basic type of filtering based on only one column of a 

dataframe. Let us say we want to fetch the records for only ‘Vivo’ mobile:

[In]: df.filter(df['mobile']=='Vivo').show()

[Out]:

 

We have all records for which Mobile column has ‘Vivo’ values. We can 

further select only a few columns after filtering the records. For example, if 

we want to view the age and ratings for people who use ‘Vivo’ mobile, we 

can do that by using the select function after filtering records.

[In]: �df.filter(df['mobile']=='Vivo').select('age','ratings', 

'mobile').show()

[Out]:
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�Condition 2
This involves multiple columns-based filtering and returns records only 

if all conditions are met. This can be done in multiple ways. Let us say, we 

want to filter only ‘Vivo’ users and only those with experience of more than 

10 years.

[In]: �df.filter(df['mobile']=='Vivo').filter(df['experience'] 

>10).show()

[Out]:

 

We use more than one filter function in order to apply those conditions 

on individual columns. There is another approach to achieve the same 

results as mentioned below.

[In]: �df.filter((df['mobile']=='Vivo')&(df['experience'] >10)).

show()

[Out]:
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�Distinct Values in Column
If we want to view the distinct values for any dataframe column, we can 

use the distinct method. Let us view the distinct values for the mobile 

column in the dataframe.

[In]: df.select('mobile').distinct().show()

[Out]:

 

For getting the count of distinct values in the column, we can simply 

use count along with the distinct function.

[In]: df.select('mobile').distinct().count()

[Out]: 5

�Grouping Data
Grouping is a very useful way to understand various aspects of the 

dataset. It helps to group the data based on columns values and extract 

insights. It can be used with multiple other functions as well. Let us see an 

example of the groupBy method using the dataframe.

[In]: df.groupBy('mobile').count().show(5,False)

[Out]:
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Here, we are grouping all the records based on the categorical values in 

the mobile column and counting the number of records for each category 

using the count method. We can further refine these results by making use 

of the orderBy method to sort them in a defined order.

[In]: �df.groupBy('mobile').count().orderBy('count',ascending= 

False).show(5,False)

[Out]:

 

Now, the count of the mobiles are sorted in descending order based on 

each category.

We can also apply the groupBy method to calculate statistical measures 

such as mean value, sum, min, or max value for each category. So let's see 

what is the mean value of the rest of the columns.

[In]: df.groupBy('mobile').mean().show(5,False)

[Out]:
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The mean method gives us the average of age, ratings, experience, and 

family size columns for each mobile brand. We can get the aggregated sum 

as well for each mobile brand by using the sum method along with groupBy.

[In]: df.groupBy('mobile').sum().show(5,False)

[Out]:

 

Let us now view the min and max values of users data for every mobile 

brand.

[In]: df.groupBy('mobile').max().show(5,False)

[Out]:
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[In]:df.groupBy('mobile').min().show(5,False)

[Out]:

 

�Aggregations
We can use the agg function as well to achieve the similar kinds of results 

as above. Let’s use the agg function in PySpark for simply taking the sum of 

total experience for each mobile brand.

[In]: �df.groupBy('mobile').agg({'experience':'sum'}).

show(5,False)

[Out]:

 

So here we simply use the agg function and pass the column name 

(experience) for which we want the aggregation to be done.
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�User-Defined Functions (UDFs)
UDFs are widely used in data processing to apply certain transformations 

to the dataframe. There are two types of UDFs available in PySpark: 

Conventional UDF and Pandas UDF. Pandas UDF are much more powerful 

in terms of speed and processing time. We will see how to use both types of 

UDFs in PySpark. First, we have to import udf from PySpark functions.

[In]: from pyspark.sql.functions import udf

Now we can apply basic UDF either by using a lambda or typical 

Python function.

�Traditional Python Function
We create a simple Python function, which returns the category of price 

range based on the mobile brand:

[In]:

def price_range(brand):

    if brand in ['Samsung','Apple']:

        return 'High Price'

    elif brand =='MI':

        return 'Mid Price'

    else:

        return 'Low Price'

In the next step, we create a UDF (brand_udf) that uses this function 

and also captures its datatype to apply this tranformation on the mobile 

column of the dataframe.

[In]: brand_udf=udf(price_range,StringType())
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In the final step, we apply the udf(brand_udf) to the mobile column 

of dataframe and create a new colum (price_range) with new values.

[In]: �df.withColumn('price_range',brand_udf(df['mobile'])).

show(10,False)

[Out]:

 

�Using Lambda Function
Instead of defining a traditional Python function, we can make use of the 

lambda function and create a UDF in a single line of code as shown below. 

We categorize the age columns into two groups (young, senior) based on 

the age of the user.

[In]: �age_udf = udf(lambda age: "young" if age <= 30 else 

"senior", StringType())

[In]: �df.withColumn("age_group", age_udf(df.age)).

show(10,False) 

[Out]:
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�Pandas UDF (Vectorized UDF)
Like mentioned earlier, Pandas UDFs are way faster and efficient 

compared to their peers. There are two types of Pandas UDFs:

•	 Scalar

•	 GroupedMap

Using Pandas UDF is quite similar to using the basic UDfs. We have 

to first import pandas_udf from PySpark functions and apply it on any 

particular column to be tranformed.

[In]: from pyspark.sql.functions import pandas_udf

In this example, we define a Python function that calculates the 

number of years left in a user’s life assuming a life expectancy of 100 years. 

It is a very simple calculation: we subtract the age of the user from 100 

using a Python function.
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[In]:

def remaining_yrs(age):

    yrs_left=(100-age)

   return yrs_left

[In]: length_udf = pandas_udf(remaining_yrs, IntegerType())

Once we create the Pandas UDF (length_udf) using the Python 

function (remaining_yrs), we can apply it to the age column and create a 

new column yrs_left.

[In]:�df.withColumn("yrs_left", length_udf(df['age'])).

show(10,False)

[Out]:

 

�Pandas UDF (Multiple Columns)
We might face a situation where we need multiple columns as input to 

create a new column. Hence, the below example showcases the method 

of applying a Pandas UDF on multiple columns of a dataframe. Here we 

will create a new column that is simply the product of the ratings and 
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experience columns. As usual, we define a Python function and calculate 

the product of the two columns.

[In]:

def prod(rating,exp):

    x=rating*exp

    return x

[In]: prod_udf = pandas_udf(prod, DoubleType())

After creating the Pandas UDF, we can apply it on both of the columns 

(ratings, experience) to form the new column (product).

[In]:�df.withColumn("product",prod_udf(df['ratings'], 

df['experience'])).show(10,False)

[Out]:

 

�Drop Duplicate Values
We can use the dropDuplicates method in order to remove the duplicate 

records from the dataframe. The total number of records in this dataframe 

are 33, but it also contains 7 duplicate records, which can easily be confirmed 

by droping those duplicate records as we are left with only 26 rows.
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[In]: df.count()

[Out]: 33

[In]: df=df.dropDuplicates()

[In]: df.count()

[Out]: 26

�Delete Column
We can make use of the drop function to remove any of the columns 

from the dataframe. If we want to remove the mobile column from the 

dataframe, we can pass it as an argument inside the drop function.

[In]: df_new=df.drop('mobile')

[In]: df_new.show()

[Out]:
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�Writing Data
Once we have the processing steps completed, we can write the clean 

dataframe to the desired location (local/cloud) in the required format.

�CSV
If we want to save it back in the original csv format as single file, we can use 

the coalesce function in spark.

[In]: pwd

[Out]: ' /home/jovyan/work '

[In]: write_uri= '  /home/jovyan/work/df_csv '

[In]: df.coalesce(1).write.format("csv").

option("header","true").save(write_uri)

�Parquet
If the dataset is huge and involves a lot of columns, we can choose to 

compress it and convert it into a parquet file format. It reduces the overall 

size of the data and optimizes the performance while processing data 

because it works on subsets of required columns instead of the entire data. 

We can convert and save the dataframe into the parquet format easily by 

mentioning the format as parquet as shown below”.

[In]: parquet_uri='/home/jovyan/work/df_parquet'

[In]: df.write.format('parquet').save(parquet_uri)

Note T he complete dataset along with the code is available for 
reference on the GitHub repo of this book and executes best on 
Spark 2.3 and higher versions.
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�Conclusion
In this chapter, we got familiar with a few of the functions and techniques 

to handle and tranform the data using PySpark. There are many more 

methods that can be explored further to preprocess the data using 

PySpark, but the fundamental steps to clean and prepare the data for 

Machine Learning have been covered in this chapter.
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CHAPTER 4

Linear Regression
As we talked about Machine Learning in the previous chapter, it’s a 

very vast field and there are multiple algorithms that fall under various 

categories, but Linear Regression is one of the most fundamental machine 

learning algorithms. This chapter focuses on building a Linear Regression 

model with PySpark and dives deep into the workings of an LR model. It 

will cover various assumptions to be considered before using LR along 

with different evaluation metrics. But before even jumping into trying to 

understand Linear Regression, we must understand the types of variables.

�Variables
Variables capture data information in different forms. There are mainly 

two categories of variables that are used widely as depicted in Figure 4-1.

Figure 4-1.  Types of Variables 
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We can even further break down these variables into sub-categories, 

but we will stick to these two types throughout this book.

Numerical variables are those kinds of values that are quantitative 

in nature such as numbers (integer/floats). For example, salary records, 

exam scores, age or height of a person, and stock prices all fall under the 

category of Numerical variables.

Categorical variables, on the other hand, are qualitative in nature and 

mainly represent categories of data being measured. For example, colors, 

outcome (Yes/No), Ratings (Good/Poor/Avg).

For building any sort of machine learning model we need to have input 

and output variables. Input variables are those values that are used to 

build and train the machine learning model to predict the output or target 

variable. Let’s take a simple example. Suppose we want to predict the 

salary of a person given the age of the person using machine learning. In 

this case, the salary is our output/target/dependent variable as it depends 

on age, which is known as the input or independent variable. Now the 

output variable can be categorical or numerical in nature and depending 

on its type, machine learning models are chosen.

Now coming back to Linear Regression, it is primarily used in the 

cases of when we are trying to predict numerical output variable. Linear 

Regression is used to predict a line that fits the input data, points the best 

possible way, and can help in predictions for unseen data, but the point 

to notice here is how can a model learn just from “age” and predict the 

salary amount for a given person? For sure, there needs to be some sort of 

relationship between these two variables (salary and age). There are two 

major types of variable relationships:

•	 Linear

•	 Nonlinear
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The notion of a linear relationship between any two variables suggests 

that both are proportional to each other in some ways. The correlation 

between any two variables gives us an indication on how strong or weak is 

the linear relationship between them. The correlation coefficient can range 

from -1 to + 1. Negative correlation means that by increasing one of the 

variables, the other variable decreases. For example, power and mileage of 

a vehicle can be negatively correlated because as we increase power, the 

mileage of a vehicle comes down. On the other hand, salary and years of 

work experience are an example of positively correlated variables. Non-linear 

relationships are comparatively complex in nature and hence require an 

extra amount of details to predict the target variables. For example, a self-

driving car, the relationship between input variables such as terrain, signal 

system, and pedestrian to the speed of the car are nonlinear.

Note T he next section includes theory behind Linear Regression 
and might be redundant for many readers. Please feel free to skip the 
section if this is the case.

�Theory
Now that we understand the basics of variables and the relationships 

between them, let’s build on the example of age and salary to understand 

Linear Regression in depth.

The overall objective of Linear Regression is to predict a straight line 

through the data, so that the vertical distance of each of these points is 

minimal from that line. So, in this case, we will predict the salary of a 

person given an age. Let’s assume we have records of four people that 

capture age and their respective salaries as shown in Table 4-1.
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We have an input variable (age) at our disposal to make use of in order 

to predict the salary (which we will do at a later stage of this book), but let’s 

take a step back. Let’s assume that all we have with us at the start is just the 

salary values of these four people. The salary is plotted for each person in 

the Figure 4-2.

Table 4-1.  Example Dataset

Sr. No Age Salary (‘0000 $)

1 20 5

2 30 10

3 40 15

4 50 22

Figure 4-2.  Scatter plot of Salary
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Now, we if we were to predict the salary of the fifth person (new 

person) based on the salaries of these earlier people, the best possible way 

to predict that is to take an average/mean of existing salary values. That 

would be the best prediction given this information. It is like building a 

Machine Learning model but without any input data (since we are using 

the output data as input data).

Let’s go ahead and calculate the average salary for these given salary 

values.

Avg. Salary = 
5 10 15 22

4

+ + +( )
 = 13

So, the best prediction of the salary value for the next person is 13. 

Figure 4-3 showcases the salary values for each person along with the 

mean value (the best fit line in the case of using only one variable).

Figure 4-3.  Best Fit Line plot

Chapter 4  Linear Regression



48

The line for the mean value as shown in Figure 4-3 is possibly the best 

fit line in this scenario for these data points because we are not using any 

other variable apart from salary itself. If we take a look closely, none of 

the earlier salary values lies on this best fit line; there seems to be some 

amount of separation from the mean salary value as shown in Figure 4-4.  

These are also known as errors. If we go ahead and calculate the total sum 

of this distance and add them up, it becomes 0, which makes sense since 

it's the mean value of all the data points. So, instead of simply adding 

them, we square each error and then add them up.

Figure 4-4.  Residuals Plot

Sum of Squared errors = 64 + 9 + 4 + 81 = 158.

So, adding up the squared residuals, it gives us a total value of 158, 

which is known as the sum of squared errors (SSE).

Note  We have not used any input variable so far to calculate the SSE.
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Let us park this score for now and include the input variable (age 

of the person) as well to predict the salary of the person. Let’s start with 

visualizing the relationship between Age and Salary of the person as 

shown in Figure 4-5.

Figure 4-5.  Correlation plot between Salary and Age 

As we can observe, there seems to be a clear positive correlation 

between years of work experience and salary value, and it is a good thing 

for us because it indicates that the model would be able to predict the 

target value (salary) with a good amount of accuracy due to a strong linear 

relationship between input(age) and output(salary). As mentioned earlier, 

the overall aim of Linear Regression is to come up with a straight line that 

fits the data point in such a way that the squared difference between the 

actual target value and predicted value is minimized. Since it is a straight 

line, we know in linear algebra the equation of a straight line is

y= mx + c and the same is shown in Figure 4-6.
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where,

m = slope of the line (
x x

y y
2 1

2 1

-
-

)

x = value at x-axis

y= value at y-axis

c = intercept (value of y at x = 0)

Since Linear Regression is also finding out the straight line, the Linear 

Regression equation becomes

y B B x= + *0 1

(since we are using only 1 input variable, i.e., Age)

where:

y= salary (prediction)

B0=intercept (value of Salary when Age is 0)

B1= slope or coefficient of Salary

x= Age

Figure 4-6.  Straight Line plot
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Now, you may ask, if there can be multiple lines that can be drawn 

through the data points (as shown in Figure 4-7) and how to figure out 

which is the best fit line.

Figure 4-7.  Possible Straight lines through data 

The first criteria to find out the best fit line is that it should pass 

through the centroid of the data points as shown in Figure 4-8. In our case, 

the centroid values are

mean (Age) = 
20 30 40 50

4

+ + +( )
 = 35

mean (Salary) = 
5 10 15 22

4

+ + +( )
 = 13
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The second criteria are that it should be able to minimize the sum of 

squared errors. We know our regression line equation is equal to

y B B x= +0 1*

Now the objective of using Linear Regression is to come up with the 

most optimal values of the Intercept (B0) and Coefficient (B1) so that the 

residuals/errors are minimized to the maximum extent.

We can easily find out values of B0 & B1 for our dataset by using the 

below formulas.

B1= 
å -( )* -( )

å -( )
x x y y

x x
i mean i mean

i mean

2

B0=ymean − B1 ∗ (xmean)

Table 4-2 showcases the calculation of slope and intercept for Linear 

Regression using input data.

Figure 4-8.  Centroids of Data
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Table 4-2.  Calculation of Slope and Intercept

Age Salary Age variance 
(diff from mean)

Salary variance  
(diff. from mean)

Covariance 
(Product)

Age Variance 
(squared)

20 5 -15 -8 120 225

30 10 -5 -3 15 25

40 15 5 2 10 25

50 22 15 9 135 225

Mean (Age) = 35

Mean (Salary) =13

The covariance between any two variables (age and salary) is defined 

as the product of the distances of each variable (age and salary) from their 

mean. In short, the product of the variance of age and salary is known as 

covariance. Now that we have the covariance product and Age variance 

squared values, we can go ahead and calculate the values of slope and 

intercept of the Linear Regression line:

B1 =
å( )

å( )
Covariance

AgeVariance Squared 

=
280

500

=0.56

B0 = 13 – (0.56 * 35)

= -6.6

Our final Linear Regression equation becomes

y B B x= +0 1*
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Figure 4-9.  Regression Line

Salary = -6.6 + (0.56 * Age)

We can now predict any of the salary values using this equation at any 

given age. For example, the model would have predicted the salary of the 

first person to be something like this:

Salary (1st person) = -6.6 + (0.56*20)

= 4.6 ($ ‘0000)

�Interpretation
Slope (B1= 0.56) here means for an increase in 1 year of Age of the person, 

the salary also increases by an amount of $5,600.

Intercept does not always make sense in terms of deriving meaning 

out of its value. Like in this example, the value of negative 6.6 suggests that 

if the person is not yet born (Age =0), the salary of that person would be 

negative $66,000.

Figure 4-9 shows the final regression line for our dataset.
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Table 4-3.  Difference Between Predictions and Actual Values

Age Salary Predicted Salary Difference /Error

20 5 4.6 -0.4

30 10 10.2 0.2

40 15 15.8 0.8

50 22 21.4 -0.6

Let’s predict the salary for all four records in our data using the 

regression equation, and compare the difference from actual salaries as 

shown in Table 4-3.

In a nutshell, Linear Regression comes up with the most optimal 

values for the Intercept (B0) and coefficients (B1, B2) so that the difference 

(error) between the predicted values and the target variables is minimum.

But the question remains: Is it a good fit?

�Evaluation
There are multiple ways to evaluate the goodness of fit of the Regression 

line, but one of the ways is by using the coefficient of determination (rsquare) 

value. Remember we had calculated the sum of squared errors when we 

had only used the output variable itself and its value was 158. Now let us 

recalculate the SSE for this model, which we have built using an input 

variable. Table 4-4 shows the calculation for the new SSE after using 

Linear Regression.
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As we can observe, the total sum of the squared difference has reduced 

significantly from 158 to only 1.2, which has happened because of using 

Linear Regression. The variance in the target variable (Salary) can be 

explained with help of regression (due to usage of input variable – Age). 

So, OLS works toward reducing the overall sum of squared errors. The total 

sum of squared errors is a combination of two types:

TSS (Total Sum of Squared Errors ) = SSE (Sum of squared errors) + 

SSR (Residual Sum of squared errors)

The total sum of squares is the sum of the squared difference between 

the actual and the mean values and is always fixed. This was equal to 

158 in our example.

The SSE is the squared difference from the actual to predicted values of 

the target variable, which reduced to 1.2 after using Linear Regression.

SSR is the sum of squares explained by regression and can be 

calculated by (TSS – SSE).

SSR = 158 – 1.2 =156.8

rsquare (Coefficient of determination) = 
SSR

TSS
 == 

156 8

158

.
 = 0.99

Table 4-4.  Reduction in SSE After Using Linear Regression

Age Salary Predicted Salary Difference /Error Squared Error old SSE

20 5 4.6 -0.4 0.16 64

30 10 10.2 0.2 0.04 9

40 15 15.8 0.8 0.64 4

50 22 21.4 -0.6 0.36 81
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This percentage indicates that our Linear Regression model can predict 

with 99 % accuracy in terms of predicting the salary amount given the age 

of the person. The other 1% can be attributed toward errors that cannot be 

explained by the model. Our Linear Regression line fits the model really well, 

but it can also be a case of overfitting. Overfitting occurs when your model 

predicts with high accuracy on training data, but its performance drops 

on the unseen/test data. The technique to address the issues of overfitting 

is known as regularization, and there are different types of regularization 

techniques. In terms of Linear Regression, one can use Ridge, Lasso, or 

Elasticnet Regularization techniques to handle overfitting.

Ridge Regression is also known as L2 regularization and focuses on 

restricting the coefficient values of input features close to zero whereas 

Lasso regression (L1) makes some of the coefficients zero in order to 

improve generalization of the model. Elasticnet is a combination of both 

techniques.

At the end of the day, Regression is a still a parametric-driven approach 

and assumes few underlying patterns about distributions of input data 

points. If the input data does not affiliate to those assumptions, the Linear 

Regression model does not perform well. Hence it is important to go over 

these assumptions very quickly in order to know them before using the 

Linear Regression model.

Assumptions:

•	 There must be a linear relationship between the input 

variable and output variable.

•	 The independent variables (input features) should not be 

correlated to each other (also known as multicollinearity).

•	 There must be no correlation between the residuals/

error values.
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•	 There must be a linear relationship between the 

residuals and the output variable.

•	 The residuals/error values must be normally 

distributed.

�Code
This section of the chapter focuses on building a Linear Regression Model 

from scratch using PySpark and Jupyter Notebook.

Although we saw a simple example of only one input variable to 

understand Linear Regression, this is seldom the case. The majority of the 

time, the dataset would contain multiple variables and hence building a 

multivariable Regression model makes more sense in such a situation. The 

Linear Regression equation then looks something like this:

y B B X B X B X= + + + +¼0 1 1 2 2 3 3* * *

Note T he complete dataset along with the code is available for 
reference on the GitHub repo of this book and executes best on Spark 
2.3 and higher versions.

Let’s build a Linear Regression model using Spark’s MLlib library and 

predict the target variable using the input features.

�Data Info
The dataset that we are going to use for this example is a dummy 

dataset and contains a total of 1,232 rows and 6 columns. We have to 

use 5 input variables to predict the target variable using the Linear 

Regression model.
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�Step 1: Create the SparkSession Object
We start the Jupyter Notebook and import SparkSession and create a new 

SparkSession object to use Spark:

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('lin_reg').getOrCreate()

�Step 2: Read the Dataset
We then load and read the dataset within Spark using Dataframe. We have 

to make sure we have opened the PySpark from the same directory folder 

where the dataset is available or else we have to mention the directory path 

of the data folder:

[In]: �df=spark.read.csv('Linear_regression_dataset.csv', 

inferSchema=True,header=True)

�Step 3: Exploratory Data Analysis
In this section, we drill deeper into the dataset by viewing the dataset, 

validating the shape of the dataset, various statistical measures, and 

correlations among input and output variables. We start with checking the 

shape of the dataset.

[In]:print((df.count(), len(df.columns)))

[Out]: (1232, 6)

The above output confirms the size of our dataset, and we can validate the 

datatypes of the input values to check if we need to do change/cast any columns 

datatypes. In this example, all columns contain Integer or double values.

[In]: df.printSchema()

[Out]:
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There is a total of six columns out of which five are input columns  

( var_1 to var_5) and target column (output). We can now use describe 

function to go over statistical measures of the dataset.

[In]: df.describe().show(3,False)

[Out]:

 

This allows us to get a sense of distribution, measure of center, and 

spread for our dataset columns. We then take a sneak peek into the dataset 

using the head function and pass the number of rows that we want to view.

[In]: df.head(3)

[Out]:

 

We can check the correlation between input variables and output 

variables using the corr function:
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[In]: from pyspark.sql.functions import corr

[In]: df.select(corr('var_1','output')).show()

[Out] :

 

var_1 seems to be most strongly correlated with the output column.

�Step 4: Feature Engineering
This is the part where we create a single vector combining all input features 

by using Spark’s VectorAssembler. It creates only a single feature that 

captures the input values for that row. So, instead of five input columns, it 

essentially merges all input columns into a single feature vector column.

[In]: from pyspark.ml.linalg import Vector

[In]: from pyspark.ml.feature import VectorAssembler

One can select the number of columns that would be used as input 

features and can pass only those columns through the VectorAssembler. In 

our case, we will pass all the five input columns to create a single feature 

vector column.

[In]: df.columns

[Out]: ['var_1', 'var_2', 'var_3', 'var_4', 'var_5', 'output']

[In]: �vec_assmebler=VectorAssembler(inputCols=['var_1', 

'var_2', 'var_3', 'var_4', 'var_5'],outputCol='features')

[In]: features_df=vec_assmebler.transform(df)

[In]: features_df.printSchema()

[Out]:
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As, we can see, we have an additional column (‘features’) that contains 

the single dense vector for all of the inputs.

[In]: features_df.select('features').show(5,False)

[Out]:

 

We take the subset of the dataframe and select only the features 

column and the output column to build the Linear Regression model.

[In]: model_df=features_df.select('features','output')

[In]: model_df.show(5,False)

[Out]:
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[In]: print((model_df.count(), len(model_df.columns)))

[Out]: (1232, 2) 

�Step 5: Splitting the Dataset
We have to split the dataset into a training and test dataset in order to train 

and evaluate the performance of the Linear Regression model built. We 

split it into a 70/30 ratio and train our model on 70% of the dataset. We can 

print the shape of train and test data to validate the size.

[In]: train_df,test_df=model_df.randomSplit([0.7,0.3])

[In]: print((train_df.count(), len(train_df.columns)))

[Out]: (882, 2)

[In]: print((test_df.count(), len(test_df.columns)))

[Out]: (350, 2)

�Step 6: Build and Train Linear Regression Model
In this part, we build and train the Linear Regression model using features 

of the input and output columns. We can fetch the coefficients (B1, B2, 

B3, B4, B5) and intercept (B0) values of the model as well. We can also 

evaluate the performance of model on training data as well using r2. This 

model gives a very good accuracy (86%) on training datasets.

[In]: from pyspark.ml.regression import LinearRegression

[In]: lin_Reg=LinearRegression(labelCol='output')

[In]: lr_model=lin_Reg.fit(train_df)

[In]: print(lr_model.coefficients)

[Out]: �[0.000345569740987,6.07805293067e-05,0.000269273376209,-

0.713663600176,0.432967466411]
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[In]: print(lr_model.intercept)

[Out]: 0.20596014754214345

[In]: training_predictions=lr_model.evaluate(train_df)

[In]: print(training_predictions.r2)

[Out]: 0.8656062610679494

�Step 7: Evaluate Linear Regression Model 
on Test Data
The final part of this entire exercise is to check the performance of the model 

on unseen or test data. We use the evaluate function to make predictions for 

the test data and can use r2 to check the accuracy of the model on test data. 

The performance seems to be almost similar to that of training.

[In]: test_predictions=lr_model.evaluate(test_df)

[In]: print(test_results.r2)

[Out]: 0.8716898064262081

[In]: print(test_results.meanSquaredError)

[Out]: 0.00014705472365990883

�Conclusion
In this chapter, we went over the process of building a Linear Regression 

model using PySpark and also explained the process behind finding the 

most optimal coefficients and intercept values.
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CHAPTER 5

Logistic Regression
This chapter focuses on building a Logistic Regression Model with 

PySpark along with understanding the ideas behind logistic regression. 

Logistic regression is used for classification problems. We have already 

seen classification details in earlier chapters. Although it is used for 

classification, it’s still called logistic regression. This is due to the fact 

that under the hood, linear regression equations still operate to find the 

relationship between input variables and the target variables. The main 

distinction between linear and logistic regression is that we use some sort 

of nonlinear function to convert the output of the latter into the probability 

to restrict it between 0 and 1. For example, we can use logistic regression 

to predict if a user would buy the product or not. In this case, the model 

would return a buying probability for each user. Logistic regression is used 

widely in many business applications.

�Probability
To understand logistic regression, we will have to go over the concept of 

Probability first. It is defined as the chances of occurrence of a desired 

event or interested outcomes upon all possible outcomes. Take, for an 

example, if we flip a coin, the chances of getting heads or tails are equal 

(50%) as shown in Figure 5-1.
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If we roll a fair dice, then the probability of getting any of the numbers 

between (1 to 6) is equal 16.7%.

If we pick a ball from a bag that contains four green and one blue ball, 

the probability of picking a green ball is 80%.

Logistic regression is used to predict the probability of each target class. 

In case of binary classification (only two classes), it returns the probability 

associated with each class for every record. As mentioned, it uses linear 

regression behind the scenes in order to capture the relationship between 

input and output variables, yet we additionally use one more element 

(nonlinear function) to convert the output from continuous form into 

probability. Let’s understand this with the help of an example. Let’s consider 

that we have to use models to predict if some particular user would buy the 

product or not, and we are using only a single input variable that is time 

spent by the user on the website. The data for the same is given in Table 5-1.

Figure 5-1.  Probability of events

Table 5-1.  Conversion Dataset

Sr. No Time Spent (mins) Converted

1 1 No

2 2 No

3 5 No

4 15 Yes

5 17 Yes

6 18 Yes
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Figure 5-2.  Conversion Status vs. Time Spent

Let us visualize this data in order to see the distinction between 

converted and non-converted users as shown in Figure 5-2.

�Using Linear Regression
Let’s try using linear regression instead of logistic regression to understand 

the reasons why logistic regression makes more sense in classification 

scenarios. In order to use linear regression, we will have to convert the 

target variable from the categorical into numeric form. So, let’s reassign the 

values for the Converted column:

Yes = 1

No = 0

Now, our data looks something like this as given in Table 5-2.
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This process of converting a categorical variable to a numerical one is 

also critical, and we will go over this in detail in a later part of this chapter. 

For now, let’s plot these data points to visualize and understand it better 

(Figure 5-3).

Table 5-2.  Sample Data

Sr. No Time Spent (mins) Converted

1 1 0

2 2 0

3 5 0

4 15 1

5 17 1

6 18 1

Figure 5-3.  Conversion Status (1 and 0) vs. Time spent
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As we can observe, there are only two values in our target column 

(1 and 0), and every point lies on either of these two values. Now, let’s 

suppose we do linear regression on these data points and come up with a 

“Best fit line,” which is shown in Figure 5-4.

Figure 5-4.  Regression Line for users 

The regression equation for this line would be

y B B x= + *0 1

y B B Time Spent1 0 0 1,  ( ) = + *

All looks good so far in terms of coming up with a straight line to 

distinguish between 1 and 0 values. It seems like linear regression is also 

doing a good job of differentiating between converted and non-converted 

users, but there is a slight problem with this approach.

Take for an example, a new user spends 20 seconds on the website and 

we have to predict if this user will convert or not using the linear regression 

line. We use the above regression equation and try to predict the y value for 

20 seconds time spent.
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We can simply calculate the value of y by either calculating

y B B= + *( )0 1 20

or we can also simply draw a perpendicular line from the time spent 

axis onto the best fit line to predict the value of y. Clearly, the predicted 

value of y, which is 1.7, seems way above 1 as shown in Figure 5-5. This 

approach doesn’t make any sense since we want to predict only between 0 

and 1 values.

Figure 5-5.  Predictions using Regression Line 

So, if we use linear regression for classification cases, it creates a 

situation where the predicted output values can range from –infinity to +  

infinity. Hence, we need another approach that can tie these values 

between 0 and 1 only. The notion of values between 0 and 1 is not 

unfamiliar anymore as we have already seen probability. So, essentially 

logistic regression comes up with a decision boundary between positive 

and negative classes that are associated with a probability value.

Chapter 5  Logistic Regression



71

�Using Logit
To accomplish the objective of converting the output value in probability, 

we use something called Logit. Logit is a nonlinear function and does 

a nonlinear transformation of a linear equation to convert the output 

between 0 and 1. In logistic regression, that nonlinear function is the 

Sigmoid function, which looks like this:

1

1+ -e x

and it always produces values between 0 and 1 independent of the 

values of x.

So, going back to our earlier linear regression equation

y B B Time Spent= + *0 1  

we pass our output(y) through this nonlinear function(sigmoid) to 

change its values between 0 and 1.

Probability =
1

1+ -e y

Probability = 
1

1 0 1+ - + *e B B Time Spent( ) 

Using the above equation, the predicted values gets limited between 0 

and 1 and the output now looks as shown in Figure 5-6.
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The advantage of using the nonlinear function is that irrespective of 

any value of input (time spent), the output would always be the probability 

of conversion. This curve is also known as a logistic curve. Logistic 

regression also assumes that there is a linear relationship between the 

input and the target variables, and hence the most optimal values of the 

intercept and coefficients are found out to capture this relationship.

�Interpretation (Coefficients)
The coefficients of the input variables are found using a technique known 

as gradient descent, which looks for optimizing the loss function in such a 

way that the total error is minimized. We can look at the logistic regression 

equation and understand the interpretation of coefficients.

y
e B B x

=
+ - + *

1

1 0 1( )

Figure 5-6.  Logistic Curve
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Let’s say after calculating for the data points in our example, we get the 

coefficient value of time spent as 0.75.

In order to understand what this 0.75 means, we have to take the 

exponential value of this coefficient.

e0.75=2.12

This 2.12 is known as an odd ratio, and it suggests that a per-unit 

increase in time spent on the website increases the odds of customer 

conversion by 112%.

�Dummy Variables
So far, we have only dealt with continuous/numerical variables, but the 

presence of categorical variables in the dataset is inevitable. So, let’s 

understand the approach to use the categorical values for modeling 

purposes. Since machine learning models only consume data in a 

numerical format, we have to adopt some technique to convert the 

categorical data in a numerical form. We have already seen one example 

above where we converted our target class (Yes/No) into numerical 

values (1 or 0). This is known as label encoding where we assign unique 

numerical values to each of the categories present in that particular 

column. There is another approach that works really well and is known 

as dummification or one hot encoding. Let’s understand this with help 

of an example. Let’s add one more column to our existing example data. 

Suppose we have one addition column that contains the search engine 

that the user used. So, our data looks something like this as shown in 

Table 5-3.
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So, to consume the additional information provided in the Search 

Engine column, we have to convert this into a numerical format using 

dummification. As a result, we would get an additional number of dummy 

variables (columns), which would be equal to the number of distinct 

categories in the Search Engine column. The steps below explain the entire 

process of converting a categorical feature into a numerical one.

	 1.	 Find out the distinct number of categories in the 

categorical column. We have only three distinct 

categories as of now (Google, Bing, Yahoo).

	 2.	 Create new columns for each of the distinct 

categories and add value 1 in the category  

column for which it is present or else 0 as shown 

in Table 5-4.

Table 5-3.  Categorical Dataset

Sr. No Time Spent (mins) Search Engine Converted

1 5 Google 0

2 2 Bing 0

3 10 Yahoo 1

4 15 Bing 1

5 1 Yahoo 0

6 12 Google 1
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Table 5-4.  One hot encoding

Sr. No Time Spent 
(mins)

Search  
Engine

SE_Google SE_Bing SE_Yahoo Converted

1 1 Google 1 0 0 0

2 2 Bing 0 1 0 0

3 5 Yahoo 0 0 1 0

4 15 Bing 0 1 0 1

5 17 Yahoo 0 1 0 1

6 18 Google 1 0 0 1

	 3.	 Remove the original categories column. So, 

the dataset now contains five columns in total 

(excluding index) because we have three additional 

dummy variables as shown in Table 5-5.

Table 5-5.  Dummification

Sr. No Time Spent (mins) SE_Google SE_Bing SE_Yahoo Converted

1 1 1 0 0 0

2 2 0 1 0 0

3 5 0 0 1 0

4 15 0 1 0 1

5 17 0 1 0 1

6 18 1 0 0 1

The whole idea is to represent the same information in a different 

manner so that the Machine Learning model can learn from categorical 

values as well.
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�Model Evaluation
To measure the performance of the logistic regression model, we can 

use multiple metrics. The most obvious one is the accuracy parameter. 

Accuracy is the percentage of correct predictions made by the model. 

However, accuracy is not always the preferred approach. To understand 

the performance of the logistic model, we should use a confusion matrix. 

It consists of the value counts for the predictions vs. actual values.  

A confusion matrix for the binary class looks like Table 5-6.

Let us understand the individual values in the confusion matrix.

�True Positives
These are the values that are of a positive class in actuality, and the model 

also correctly predicted them to be of the positive class.

•	 Actual Class: Positive (1)

•	 ML Model Prediction Class: Positive (1)

�True Negatives
These are the values that are of a negative class in actuality, and the model 

also correctly predicted them to be of the negative class.

•	 Actual Class: Negative (0)

•	 ML Model Prediction Class: Negative (1)

Table 5-6.  Confusion Matrix

Actual/Prediction Predicted Class (Yes) Predicted Class (No)

Actual Class (Yes) True Positives (TP) False Negatives (FN)

Actual Class (No) False Positives (FP) True Negatives (TN)
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�False Positives
These are the values that are of the negative class in actuality, but the 

model incorrectly predicted them to be of the positive class.

•	 Actual Class: Negative (0)

•	 ML Model Prediction Class: Positive (1)

�False Negatives
These are the values that are of the positive class in actuality, but the 

model incorrectly predicted them to be of the negative class.

•	 Actual Class: Positive (1)

•	 ML Model Prediction Class: Negative (1) 

�Accuracy
Accuracy is the sum of true positives and true negatives divided by the 

total number of records:

TP TN

Total number of Records

+( )
   

But as said earlier, it is not always the preferred metric because of 

the target class imbalance. Most of the times, target class frequency is 

skewed (larger number of TN examples compared to TP examples). Take, 

for an example, the dataset for fraud detection contains 99 % of genuine 

transactions and only 1% fraudulent ones. Now, if our logistic regression 

model predicts all genuine transactions and no fraud cases, it still ends 

up with 99% accuracy. The whole point is to find out the performance in 

regard to the positive class; hence there are a couple of other evaluation 

metrics that we can use.
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�Recall
The Recall rate helps in evaluating the performance of the model from a 

positive class standpoint. It tells the percentage of actual positive cases  

that the model is able to predict correctly out of the total number of 

positive cases.

TP

TP FN

( )
+( )

It talks about the quality of the machine learning model when it comes 

to predicting a positive class. So out of total positive classes, how many 

was the model able to predict correctly? This metric is widely used as 

evaluation criteria for classification models.

�Precision
Precision is about the number of actual positive cases out of all the positive 

cases predicted by the model:

TP

TP FP

( )
+( )

These can also be used as evaluation criteria.

�F1 Score

F1 Score = 2*
*( )
+( )

Precision Recall

Precision Recall
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�Cut Off /Threshold Probability
Since we know the output of the logistic regression model is the probability 

score, it is very important to decide the cut off or threshold limit of the 

probability for prediction. By default, the probability threshold is set at 

50%. It means that if the probability output of the model is below 50%, 

the model will predict it to be of a negative class (0), and if it is equal and 

above 50%, it would be assigned a positive class (1).

If the threshold limit is very low, then the model will predict a lot 

of positive classes and would have a high recall rate. On the contrary, if 

the threshold probability is very high then, the model might miss out on 

positive cases and the recall rate would be low, but the precision would 

be higher. In this case, the model will predict very few positive cases. 

Deciding a good threshold value is often challenging. A Receiver Operator 

Characteristic curve, or ROC curve, can help to decide which value of the 

threshold is best.

�ROC Curve
The ROC is used to decide the threshold value for the model. It is the plot 

between recall (also known as sensitivity) and precision (specificity) as 

shown in Figure 5-7.
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One would like to pick a threshold that offers a balance between both 

recall and precision. So, now that we understand various components 

associated with Logistic Regression, we can go ahead and build a logistic 

regression model using PySpark.

�Logistic Regression Code
This section of the chapter focuses on building a logistic regression model 

from scratch using PySpark and Jupyter Notebook.

Note A  complete dataset along with the code is available for 
reference on the GitHub repo of this book and executes best on 
Spark 2.3 and higher versions.

Let’s build a logistic regression model using Spark’s MLlib library and 

predict the target class label.

Figure 5-7.  ROC Curve
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�Data Info
The dataset that we are going to use for this example is a dummy dataset 

and contains a total of 20,000 rows and 6 columns. We have to use 5 input 

variables to predict the target class using the logistic regression model. 

This dataset contains information regarding online users of a retail sports 

merchandise website. The data captures the country of user, platform 

used, age, repeat visitor or first-time visitor, and the number of web 

pages viewed on the website. It also has the information if the customer 

ultimately bought the product or not (conversion status).

�Step 1: Create the Spark Session Object
We start the Jupyter Notebook and import SparkSession and create a new 

SparkSession object to use Spark.

[In]: from pyspark.sql import SparkSession

[In]: �spark=SparkSession.builder.appName('log_reg').

getOrCreate()

�Step 2: Read the Dataset
We then load and read the dataset within Spark using Dataframe. We have 

to make sure we have opened the PySpark from the same directory folder 

where the dataset is available or else we have to mention the directory path 

of the data folder.

[In]: �df=spark.read.csv('Log_Reg_dataset.csv',inferSchema=True,

header=True)
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�Step 3: Exploratory Data Analysis
In this section, we drill deeper into the dataset by viewing the dataset 

and validating the shape of the it and various statistical measures of the 

variables. We start with checking the shape of the dataset:

[In]:print((df.count(), len(df.columns)))

[Out]: (20000, 6)

So, the above output confirms the size of our dataset and we can then 

validate the datatypes of the input values to check if we need to change/

cast any columns datatypes.

[In]: df.printSchema()

[Out]: root

 |-- Country: string (nullable = true)

 |-- Age: integer (nullable = true)

 |-- Repeat_Visitor: integer (nullable = true)

 |-- Search_Engine: string (nullable = true)

 |-- Web_pages_viewed: integer (nullable = true)

 |-- Status: integer (nullable = true)

As we can see, there are two such columns (Country, Search_Engine), 

which are categorical in nature and hence need to be converted into 

numerical form. Let’s have a look at the dataset using the show function in 

Spark.

[In]: df.show(5)

[Out]:
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We can now use the describe function to go over statistical measures of 

the dataset.

[In]: df.describe().show()

[Out]:

 

We can observe that the average age of visitors is close to 28 years, and 

they view around 9 web pages during the website visit.

Let us explore individual columns to understand the data in deeper 

details. The groupBy function used along with counts returns the 

frequency of each of the categories in the data.

[In]: df.groupBy('Country').count().show()

[Out]:
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So, the maximum number of visitors are from Indonesia, followed by 

India:

[In]: df.groupBy('Search_Engine').count().show()

[Out]:

 

The Yahoo search engine users are the highest in numbers.

[In]: df.groupBy('Status').count().show()

[Out]:

+------+-----+

|Status|count|

+------+-----+

|     1|10000|

|     0|10000|

+------+-----+

We have an equal number of users who are converted and non-

converted.

Let’s use the groupBy function along with the mean to know more 

about the dataset.

[In]: df.groupBy('Country').mean().show()

[Out]:
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We have the highest conversion rate from Malaysia, followed by India. 

The average number of web page visits is highest in Malaysia and lowest in 

Brazil.

[In]: df.groupBy('Search_Engine').mean().show()

[Out]:

 

We have the highest conversion rate from user visitors use the Google 

search engine.

[In]: df.groupBy(Status).mean().show()

[Out]:

 

We can clearly see there is a strong connection between the conversion 

status and the number of pages viewed along with repeat visits.

�Step 4: Feature Engineering
This is the part where we convert the categorical variable into numerical 

form and create a single vector combining all the input features by using 

Spark’s VectorAssembler.

[In]: from pyspark.ml.feature import StringIndexer

[In]: from pyspark.ml.feature import VectorAssembler
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Since we are dealing with two categorical columns, we will have to 

convert the country and search engine columns into numerical form. The 

machine learning model cannot understand categorical values.

The first step is to label the column using StringIndexer into 

numerical form. It allocates unique values to each of the categories of the 

column. So, in the below example, all of the three values of search engine 

(Yahoo, Google, Bing) are assigned values (0.0,1.0,2.0). This is visible in the 

column named search_engine_num.

[In]: �search_engine_indexer =StringIndexer(inputCol="Search_

Engine", outputCol="Search_Engine_Num").fit(df)

[In]:df = search_engine_indexer.transform(df)

[In]: df.show(3,False)

[Out]:

 

[In]: �df.groupBy('Search_Engine').count().orderBy('count', 

ascending=False).show(5,False)

[Out]: 
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[In]: �df.groupBy(‘Search_Engine_Num').count().orderBy('count', 

ascending=False).show(5,False)

[Out]: 

 

The next step is to represent each of these values into the form of a 

one hot encoded vector. However, this vector is a little different in terms of 

representation as it captures the values and position of the values in the vector.

[In]: from pyspark.ml.feature import OneHotEncoder

[In]:�search_engine_encoder=OneHotEncoder(inputCol="Search_

Engine_Num", outputCol="Search_Engine_Vector")

 [In]: df = search_engine_encoder.transform(df)

[In]: df.show(3,False)

[Out]:

 

[In]: �df.groupBy('Search_Engine_Vector').count().orderBy('count', 

ascending=False).show(5,False)

[Out]:
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The final feature that we would be using for building Logistic 

Regression is Search_Engine_Vector. Let’s understand what these column 

values represent.

 (2,[0],[1.0]) represents a vector of length 2 , with 1 value :

Size of Vector – 2

Value contained in vector – 1.0

Position of 1.0 value in vector – 0th place

This kind of representation allows the saving of computational space 

and hence a faster time to compute. The length of the vector is equal to 

one less than the total number of elements since each value can be easily 

represented with just the help of two columns. For example, if we need to 

represent Search Engine using one hot encoding, conventionally, we can 

do it as represented below.

Search Engine Google Yahoo Bing

Google 1 0 0

Yahoo 0 1 0

Bing 0 0 1

Another way of representing the above information in an optimized 

way is just using two columns instead of three as shown below.
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Search Engine Google Yahoo

Google 1 0

Yahoo 0 1

Bing 0 0

Let’s repeat the same procedure for the other categorical column 

(Country).

[In]:�country_indexer = StringIndexer(inputCol="Country", 

outputCol="Country_Num").fit(df)

[In]: df = country_indexer.transform(df)

[In]: �df.groupBy('Country').count().orderBy('count',ascending= 

False).show(5,False)

[Out]:

 

[In]: �df.groupBy('Country_Num').count().orderBy('count', 

ascending=False).show(5,False)

[Out]:
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[In]: �country_encoder = OneHotEncoder(inputCol="Country_Num", 

outputCol="Country_Vector")

[In]: df = country_encoder.transform(df)

[In]: �df.select(['Country','Country_Num','Country_Vector']).

show(3,False)

[Out]:

 

[In]: �df.groupBy('Country_Vector').count().orderBy('count', 

ascending=False).show(5,False)

[Out]: 

 

Now that we have converted both the categorical columns into 

numerical forms, we need to assemble all of the input columns into a 

single vector that would act as the input feature for the model.
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So, we select the input columns that we need to use to create the single 

feature vector and name the output vector as features.

[In]: �df_assembler = VectorAssembler(inputCols=['Search_Engine_

Vector','Country_Vector','Age', 'Repeat_Visitor', 

'Web_pages_viewed'], outputCol="features")

[In}:df = df_assembler.transform(df)

[In]: df.printSchema()

[Out]:

root

 |-- Country: string (nullable = true)

 |-- Age: integer (nullable = true)

 |-- Repeat_Visitor: integer (nullable = true)

 |-- Search_Engine: string (nullable = true)

 |-- Web_pages_viewed: integer (nullable = true)

 |-- Status: integer (nullable = true)

 |-- Search_Engine_Num: double (nullable = false)

 |-- Search_Engine_Vector: vector (nullable = true)

 |-- Country_Num: double (nullable = false)

 |-- Country_Vector: vector (nullable = true)

 |-- features: vector (nullable = true) 

As we can see, now we have one extra column named features, which 

is nothing but a combination of all the input features represented as a 

single dense vector.

Chapter 5  Logistic Regression



92

[In]: df.select(['features','Status']).show(10,False)

[Out]:

+-----------------------------------+------+

|features                           |Status|

+-----------------------------------+------+

|[1.0,0.0,0.0,1.0,0.0,41.0,1.0,21.0]|1     |

|[1.0,0.0,0.0,0.0,1.0,28.0,1.0,5.0] |0     |

|(8,[1,4,5,7],[1.0,1.0,40.0,3.0])   |0     |

|(8,[2,5,6,7],[1.0,31.0,1.0,15.0])  |1     |

|(8,[1,5,7],[1.0,32.0,15.0])        |1     |

|(8,[1,4,5,7],[1.0,1.0,32.0,3.0])   |0     |

|(8,[1,4,5,7],[1.0,1.0,32.0,6.0])   |0     |

|(8,[1,2,5,7],[1.0,1.0,27.0,9.0])   |0     |

|(8,[0,2,5,7],[1.0,1.0,32.0,2.0])   |0     |

|(8,[2,5,6,7],[1.0,31.0,1.0,16.0])  |1     |

+-----------------------------------+------+

only showing top 10 rows

Let us select only features column as input and the Status column as 

output for training the logistic regression model.

 [In]: model_df=df.select(['features','Status'])

�Step 5: Splitting the Dataset
We have to split the dataset into a training and test dataset in order to train 

and evaluate the performance of the logistic regression model. We split it 

in a 75/25 ratio and train our model on 75% of the dataset. Another use of 

splitting the data is that we can use 75% of the data to apply cross-validation 

in order to come up with the best Hyperparameters. Cross-validation can be 

of a different type where one part of the training data is kept for training and 

the remaining part is used for validation purposes. K-fold cross-validation is 

primarily used to train the model with the best Hyperparameters.
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We can print the shape of train and test data to validate the size.

[In]: training_df,test_df=model_df.randomSplit([0.75,0.25])

[In]: print(training_df.count())

[Out]: (14907)

[In]: training_df.groupBy('Status').count().show()

[Out]:

+------+-----+

|Status|count|

+------+-----+

|     1| 7417|

|     0| 7490|

+------+-----+

This ensures we have a balance set of the target class (Status) into the 

training and test set.

[In]:print(test_df.count())

[Out]: (5093)

[In]: test_df.groupBy('Status').count().show()

[Out]:

+------+-----+

|Status|count|

+------+-----+

|     1| 2583|

|     0| 2510|

+------+-----+

�Step 6: Build and Train Logistic Regression Model
In this part, we build and train the logistic regression model using features 

as the input column and status as the output column.

[In]: from pyspark.ml.classification import LogisticRegression
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[In]: log_reg=LogisticRegression(labelCol='Status').

fit(training_df)

�Training Results
We can access the predictions made by the model using the evaluate 

function in Spark that executes all the steps in an optimized way. That 

gives another Dataframe that contains four columns in total, including 

prediction and probability. The prediction column signifies the class 

label that the model has predicted for the given row and probability 

column contains two probabilities (probability for negative class at 0th 

index and probability for positive class at 1st index).

[In]: train_results=log_reg.evaluate(training_df).predictions

[In]: train_results.filter(train_results['Status']==1).

filter(train_results['prediction']==1).select(['Status', 

'prediction','probability']).show(10,False)

[Out]:

+------+----------+----------------------------------------+

|Status|prediction|probability                             |

+------+----------+----------------------------------------+

|1     |1.0       |[0.2978572628475072,0.7021427371524929] |

|1     |1.0       |[0.2978572628475072,0.7021427371524929] |

|1     |1.0       |[0.16704676975730415,0.8329532302426959]|

|1     |1.0       |[0.16704676975730415,0.8329532302426959]|

|1     |1.0       |[0.16704676975730415,0.8329532302426959]|

|1     |1.0       |[0.08659913656062515,0.9134008634393749]|

|1     |1.0       |[0.08659913656062515,0.9134008634393749]|

|1     |1.0       |[0.08659913656062515,0.9134008634393749]|

|1     |1.0       |[0.08659913656062515,0.9134008634393749]|

|1     |1.0       |[0.08659913656062515,0.9134008634393749]|

+------+----------+----------------------------------------+
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So, in the above results, probability at the 0th index is for Status = 0 

and probability as 1st index is for Status =1.

�Step 7: Evaluate Linear Regression Model 
on Test Data
The final part of the entire exercise is to check the performance of the 

model on unseen or test data. We again make use of the evaluate function 

to make predictions on the test.

We assign the predictions DataFrame to results and results DataFrame 

now contains five columns.

[In]:results=log_reg.evaluate(test_df).predictions

[In]: results.printSchema()

[Out]:

root

 |-- features: vector (nullable = true)

 |-- Status: integer (nullable = true)

 |-- rawPrediction: vector (nullable = true)

 |-- probability: vector (nullable = true)

 |-- prediction: double (nullable = false)

We can filter the columns that we want to see using the select keyword.

[In]: results.select(['Status','prediction']).show(10,False)

[Out]:

+------+----------+

|Status|prediction|

+------+----------+

|0     |0.0       |

|0     |0.0       |

|0     |0.0       |

|0     |0.0       |
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|1     |0.0       |

|0     |0.0       |

|1     |1.0       |

|0     |1.0       |

|1     |1.0       |

|1     |1.0       |

+------+----------+

only showing top 10 rows

Since this is a classification problem, we will use a confusion matrix to 

gauge the performance of the model.

�Confusion Matrix
We will manually create the variables for true positives, true negatives, 

false positives, and false negatives to understand them better rather than 

using the direct inbuilt function.

[In]:tp = �results[(results.Status == 1) & (results.prediction 

== 1)].count()

[In]:tn = �results[(results.Status == 0) & (results.prediction 

== 0)].count()

[In]:fp = �results[(results.Status == 0) & (results.prediction 

== 1)].count()

[In]:fn = �results[(results.Status == 1) & (results.prediction 

== 0)].count()

�Accuracy

As discussed already in the chapter, accuracy is the most basic metric 

for evaluating any classifier; however, this is not the right indicator of 

the performance of the model due to dependency on the target class 

balance.
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TP TN

TP TN FP FN

+( )
+ + +( )

[In]: �accuracy=float((true_postives+true_negatives) /(results.

count()))

[In]:print(accuracy)

[Out]: 0.9374255065554231

The accuracy of the model that we have built is around 94%.

�Recall

Recall rate shows how much of the positive class cases we are able to 

predict correctly out of the total positive class observations.

TP

TP FN+( )

[In]: recall = �float(true_postives)/(true_postives + false_

negatives)

[In]:print(recall)

[Out]: 0.937524870672503

The recall rate of the model is around 0.94. 

�Precision
TP

TP FP+( )

Precision rate talks about the number of true positives predicted 

correctly out of all the predicted positives observations:

[In]: precision = float(true_postives) / (true_postives + 

false_positives)
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[In]: print(precision)

[Out]: 0.9371519490851233

So, the recall rate and precision rate are also in the same range, which 

is due to the fact that our target class was well balanced.

�Conclusion
In this chapter, we went over the process of understanding the building 

blocks of logistic regression, converting categorical columns into 

numerical features, and building a logistic regression model from scratch 

using PySpark.
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CHAPTER 6

Random Forests
This chapter focuses on building Random Forests (RF) with PySpark for 

classification. We will learn about various aspects of them and how the 

predictions take place; but before knowing more about random forests, 

we have to learn the building block of RF that is a decision tree (DT). A 

decision tree is also used for Classification/Regression. but in terms of 

accuracy, random forests beat DT classifiers due to various reasons that we 

will cover later in the chapter. Let’s learn more about decision trees.

�Decision Tree
A decision tree falls under the supervised category of machine learning 

and uses frequency tables for making the predictions. One advantage of a 

decision tree is that it can handle both categorical and numerical variables. 

As the name suggests, it operates in sort of a tree structure and forms these 

rules based on various splits to finally make predictions. The algorithm 

that is used in a decision tree is ID3 developed by J. R. Quinlan.

We can break down the decision tree in different components as 

shown in Figure 6-1.
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The topmost split node from where the tree branches out is known 

as the root node; in the above example Age is the root node. The values 

represented in circles are known as leaf nodes or predictions. Let’s take a 

sample dataset to understand how a decision tree actually works.

The data shown in Table 6-1 contains some sample data from people of 

different age groups and attributes. The final decision to be made based on 

these attributes is whether the insurance premium should be on the higher 

side or not. This is a typical classification case, and we will classify it using 

a decision tree. We have four input columns (Age Group, Smoker, Medical 

Condition, Salary Level).

Figure 6-1.  Decision Tree 
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�Entropy
The decision tree makes subsets of this data in such a way that each 

of those subsets contains the same class values (homogenous); and 

to calculate homogeneity, we use something known as Entropy. This 

can also be calculated using couple of other metrics like the Gini Index 

and Classification error, but we will take up entropy to understand how 

decision trees work. The formula to calculate entropy is

−p log2p –q log2q

Table 6-1.  Example Dataset

Age Group Smoker Medical Condition Salary Level Insurance Premium

Old Yes Yes High High

Teenager Yes Yes Medium High

Young Yes Yes Medium Low

Old No Yes High High

Young Yes Yes High Low

Teenager No Yes Low High

Teenager No No Low Low

Old No No Low High

Teenager No Yes Medium High

Young No Yes Low High

Young Yes No High Low

Teenager Yes No Medium Low

Young No No Medium High

Old Yes No Medium High
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Figure 6-2 shows that entropy is equal to zero if the subset is 

completely pure; that means it belongs to only a single class, and it is equal 

to 1 if the subset is divided equally in two classes

Figure 6-2.  Entropy 

If we want to calculate the entropy of our target variable (Insurance 

Premium), we have to first calculate the probability of each class and then 

use the above formula to calculate entropy.

Insurance Premium

High (9) Low (5)

The probability of a High category is equal to 9/14 =0.64

The probability of Low category is equal to 5/14 =0.36

Entropy = −p(High)log2(p(High)) − p(Low)log2(p(Low))

= −(0.64 ∗ log2(0.64)) − (0.36 ∗ log2(0.36))

= 0.94
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In order to build the decision tree, we need to calculate two kinds of 

entropy:

	 1.	 Entropy of Target (Insurance Premium)

	 2.	 Entropy of Target with Attribute (ex. Insurance 

Premium – Smoker)

We have already seen the entropy of a target, so let’s calculate a second 

entropy of the target with an input feature. Let’s consider the Smoker 

feature, for example.

Entropy Probability EntropyTarget Feature Feature Categori,( ) = * ees

Entropy Calculation

Target – Insurance Premium

Feature – Smoker

Insurance Premium (Target)

High (9) Low (5)

Smoker

(Feature)

Yes (7) 3 4

No (7) 6 1

Entropy P Entropy P EntropyTarget Smoker yes no, , ,( ) ( ) ( )= * + *3 4 6 1

Pyes=
 7

14
= 0.5

Pno
 =

7

14
 = 0.5

Entropy 3 4 2 2

3

7

3

7

4

7

4

7,( ) = - * æ
è
ç

ö
ø
÷ -

æ
è
ç

ö
ø
÷*

æ
è
ç

ö
ø
÷log log

= 0.99
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Entropy 6 1 2 2

6

7

6

7

1

7

1

7,( ) = - * æ
è
ç

ö
ø
÷ -

æ
è
ç

ö
ø
÷*

æ
è
ç

ö
ø
÷log log

= 0.59

Entropy Target Smoker,( ) = +0 55 0 99 0 5 0 59. . . .* *

=0.79

Similarly, we calculate the entropy for all the other attributes:

Entropy(Target, Age Group) = 0.69

Entropy(Target, Medical Condition)= 0.89

Entropy(Target, Salary Level)= 0.91 

�Information Gain
The information gain (IG) is used to make the splits in decision trees. The 

attribute that offers the maximum information gain is used for splitting the 

subset. Information gain tells which is the most important feature out of 

all in terms of making predictions. In terms of entropy, IG is the change in 

entropy of the target before splitting and after splitting of a feature.

Information Gain Entropy EntropyTarget Target Feature ,= -( ) ( )

IG Entropy EntropySmoker Target Target Smoker= -( ) ( ),

= 0.94 − 0.79

= 0.15

IG Entropy EntropyAgeGroup Target Target AgeGroup= -( ) ( ),

= 0.94 – 0.69

=0.25
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IG Entropy EntropyMedical Condition Target Target Medical ,  = -( ) CCondition( )

= 0.94 – 0.89

=0.05

IG Entropy EntropySalary Level Target Target Salary Level ,  = -( ) ( ))

= 0.94 – 0.91

=0.03

As we can observe, the Age group attribute gives the maximum 

information gain; hence the decision tree’s root node would be Age group 

and the first split happens on that attribute as shown in Figure 6-3.

Figure 6-3.  Decision Tree Split

The process of finding the next attribute that offers the largest 

information gain continues recursively and further splits are made in the 

decision tree. Finally, the decision tree might look something like that 

shown in Figure 6-4.
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The advantage that a decision tree offers is that it can be easily 

transformed into set of rules by following the root node to any leaf 

node and hence can be easily used for classification. There are sets of 

Hyperparameters associated with decision trees that give more options to 

build trees in different manners. One of those is Max Depth, which allows 

us to decide the depth of a decision tree; the deeper the tree, the more slits 

the tree has and there are chances of overfitting.

Figure 6-4.  Decision Tree Splits

Chapter 6  Random Forests



107

�Random Forests
Now that we know how a decision tree works, we can move on to a random 

forest. As the name suggests, random forests are made up of many trees: a 

lot of decision trees. They are quite popular and sometimes are the go-

to method for supervised machine learning. Random forests can also be 

used for classification and regression. They combine votes from a lot of 

individual decision trees and then predict the class with majority votes 

or take the average in case of regression. This works really well because 

the weak learners eventually group together to make strong predictions. 

The importance lies in the way these decision trees are formed. The name 

"Random" is there for a reason in RF because the trees are formed with a 

random set of features and a random set of training examples. Now each 

decision tree being trained with a somewhat different set of data points 

tries to learn the relationship between input and output, which eventually 

gets combined with the predictions of other decision trees that used other 

sets of data points to get trained and hence random forests. If we take a 

similar example as above and create a random forest with five decision 

trees, it might look something like in Figure 6-5.
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Now each of these decision trees has used a subset of data to get 

trained as well as a subset of features. This is also known as the “Bagging” 

technique – Bootstrap aggregating. Each tree sort of votes regarding 

the prediction, and the class with the maximum votes is the ultimate 

prediction by a random forest classifier as shown in Figure 6-6.

Figure 6-5.  Individual Decision Trees
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Some of the advantages that random forests offers are mentioned below:

•	 Feature Importance: A random forest can give the 

importance of each feature that has been used for 

training in terms of prediction power. This offers a 

great opportunity to select relevant features and drop 

the weaker ones. The total sum of all the features' 

importance is always equal to 1.

•	 Increased Accuracy: Since it collects the votes from 

individual decision trees, the prediction power of random 

forests is relatively higher compared to a single decision tree.

•	 Less Overfitting: The results of individual classifiers 

gets averaged or max voted and hence reduces the 

chances of overfitting.

Figure 6-6.  Random Forest
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One of the disadvantages of a random forest is that it is difficult to 

visualize compared to a decision tree and involves a little more on the 

computation side as it builds multiple individual classifiers,

�Code
This section of the chapter focuses on building a Random Forest Classifier 

from scratch using PySpark and Jupyter Notebook.

Note A  complete dataset along with the code is available for 
reference on the GitHub repo of this book and executes best on 
Spark 2.0 and higher versions.

Let’s build a random forest model using Spark’s MLlib library and 

predict the target variable using the input features.

�Data Info
The dataset that we are going to use for this example is an open source 

data set with a few thousand rows and six columns. We have to use five 

input variables to predict the target variable using the random forest 

model.

�Step 1: Create the SparkSession Object
We start the Jupyter Notebook and import SparkSession and create a new 

SparkSession object to use Spark.

[In]: from pyspark.sql import SparkSession

[In]: �spark=SparkSession.builder.appName('random_forest').

getOrCreate()
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�Step 2: Read the Dataset
We then load and read the dataset within Spark using Dataframe. We have 

to make sure we have opened the PySpark from the same directory folder 

where the dataset is available or else we have to mention the directory path 

of the data folder.

[In]: df=spark.read.csv('affairs.csv',inferSchema=True,header=True)

�Step 3: Exploratory Data Analysis
In this section, we drill deeper into the dataset by viewing the dataset and 

validating the shape of the dataset and various statistical measures of the 

variables. We start with checking the shape of the dataset.

[In]: print((df.count(), len(df.columns)))

[Out]: (6366, 6)

So, the above output confirms the size of our dataset and we can then 

validate the data types of the input values to check if we need to change/

cast any columns data types.

[In]: df.printSchema()

[Out]: root

 |-- rate_marriage: integer (nullable = true)

 |-- age: double (nullable = true)

 |-- yrs_married: double (nullable = true)

 |-- children: double (nullable = true)

 |-- religious: integer (nullable = true)

 |-- affairs: integer (nullable = true)

As we can see there are no categorical columns which need to be 

converted into numerical form. Let’s have a look at the dataset using show 

function in Spark:
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[In]: df.show(5)

[Out]:

 

We can now use the describe function to go over statistical measures of 

the dataset.

[In]: �df.describe().select('summary','rate_marriage','age', 

'yrs_married','children','religious').show()

[Out]:

 

We can observe that the average age of people is close to 29 years, and 

they have been married for 9 years.

Let us explore individual columns to understand the data in deeper 

detail. The groupBy function used along with counts returns us the 

frequency of each of the categories in the data.
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[In]: df.groupBy('affairs').count().show()

[Out]:

 

So, we have more than 33% of the people who are involved in some 

sort of extramarital affair out of a total number of people.

[In]: df.groupBy('rate_marriage').count().show()

[Out]:

 

The majority of the people rate their marriage very high (4 or 5), and 

the rest rate it on the lower side. Let’s drill down a little bit further to 

understand if the marriage rating is related to the affair variable or not.

[In]: �df.groupBy('rate_marriage','affairs').count().

orderBy('rate_marriage','affairs','count',ascending= 

True).show()

[Out]:
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Clearly, the figures indicate a high percentage of people having affairs 

when rating their marriages low. This might prove to be a useful feature for 

the prediction. We will explore other variables as well in a similar manner.

[In]: �df.groupBy('religious','affairs').count().orderBy('religious', 

'affairs','count',ascending=True).show()

[Out]: 

 

We have a similar story from ratings on religious perspective as well 

as the number of people who have rated lower on religious features and a 

higher percentage of affair involvement.
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[In]: �df.groupBy('children','affairs').count().orderBy('children', 

'affairs','count',ascending=True).show()

[Out]: 

 

The above table does not clearly indicate any of the trends regarding 

the relation between the number of children and chances of being 

involved in an affair. Let us use the groupBy function along with the mean 

to know more about the dataset.

[In]: df.groupBy('affairs').mean().show()

[Out]:

 

So, the people who have affairs rate their marriages low and a little on 

the higher side from an age standpoint. They have also been married for a 

higher number of years and are less religious.
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�Step 4: Feature Engineering
This is the part where we create a single vector combining all input 

features by using Spark’s VectorAssembler.

[In]: from pyspark.ml.feature import VectorAssembler

We need to assemble all of the input columns into a single vector 

that would act as the input feature for the model. So,we select the input 

columns that we need to use to create the single feature vector and name 

the output vector as features.

[In]: �df_assembler = VectorAssembler(inputCols=['ra

te_marriage', 'age', 'yrs_married', 'children', 

'religious'], outputCol="features")

[In}:df = df_assembler.transform(df)

[In]: df.printSchema()

[Out]:

root

 |-- rate_marriage: integer (nullable = true)

 |-- age: double (nullable = true)

 |-- yrs_married: double (nullable = true)

 |-- children: double (nullable = true)

 |-- religious: integer (nullable = true)

 |-- affairs: integer (nullable = true)

 |-- features: vector (nullable = true)

As we can see, now we have one extra column named features, which 

is nothing but a combination of all the input features represented as a 

single dense vector.
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[In]: df.select(['features','affairs']).show(10,False)

[Out]:

 

Let us select only the features column as input and the affairs column 

as output for training the random forest model.

[In]: model_df=df.select(['features','affairs'])

�Step 5: Splitting the Dataset
We have to split the dataset into training and test datasets in order to train 

and evaluate the performance of the random forest model. We split it into 

a 75/25 ratio and train our model on 75% of the dataset. We can print the 

shape of the train and test data to validate the size.

[In]: train_df,test_df=model_df.randomSplit([0.75,0.25])

[In]: print(train_df.count())

[Out]: 4775

[In]: train_df.groupBy('affairs').count().show()

[Out]:
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+-------+-----+

|affairs|count|

+-------+-----+

|      1| 1560|

|      0| 3215|

+-------+-----+

This ensures we have balanced set values for the target class (‘affairs’) 

into the training and test sets.

[In]: test_df.groupBy('affairs').count().show()

[Out]:

+-------+-----+

|affairs|count|

+-------+-----+

|      1|  493|

|      0| 1098|

+-------+-----+

�Step 6: Build and Train Random Forest Model
In this part, we build and train the random forest model using features 

such as input and Status as the output colum.

[In]: �from pyspark.ml.classification import 

RandomForestClassifier

[In]: �rf_classifier=RandomForestClassifier(labelCol='affairs', 

numTrees=50).fit(train_df)

There are many hyperparameters that can be set to tweak the 

performance of the model, but we are chosing the deafault ones here 

except for one that is the number of decision trees that we want to build.
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�Step 7: Evaluation on Test Data
Once we have trained our model on the training dataset, we can evaluate 

its performance on the test set.

[In]: rf_predictions=rf_classifier.transform(test_df)

[In]: rf_predictions.show()

[Out]:

 

The first column in the predictions table is that of input features of the 

test data. The second column is the actual label or output of the test data. 

The third column (rawPrediction) represents the measure of confidence 

for both possible outputs. The fourth column is that of conditional 

probability of each class label, and the final column is the prediction by the 

random forest classifier.We can apply a groupBy function on the prediction 

column to find out the number of predictions made for the positive and 

negative classes.
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[In]: rf_predictions.groupBy('prediction').count().show()

[Out]:

+----------+-----+

|prediction|count|

+----------+-----+

|       0.0| 1257|

|       1.0|  334|

+----------+-----+

To evaluate these preditions, we will import the 

classificationEvaluators.

[In]: �from pyspark.ml.evaluation import 

MulticlassClassificationEvaluator

[In]: �from pyspark.ml.evaluation import 

BinaryClassificationEvaluator

�Accuracy
[In]: �rf_accuracy=MulticlassClassificationEvaluator(labelCol='a

ffairs',metricName='accuracy').evaluate(rf_predictions)

[In]: �print('The accuracy of RF on test data is {0:.0%}'.

format(rf_accuracy))

[Out]: The accuracy of RF on test data is 73%

�Precision
[In]: �rf_precision=MulticlassClassificationEvaluator(labelCol= 

'affairs',metricName='weightedPrecision').evaluate(rf_

predictions)

[In]: �print('The precision rate on test data is {0:.0%}'.

format(rf_precision))

[Out]: The precision rate on test data is 71%
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�AUC
[In]: �rf_auc=BinaryClassificationEvaluator(labelCol='affairs').

evaluate(rf_predictions)

[In]: print( rf_auc)

[Out]: 0.738

As mentioned in the earlier part, RF gives the importance of each 

feature in terms of predictive power, and it is very useful to figure out the 

critical variables that contribute the most to predictions.

[In]: rf_classifier.featureImportances

[Out]: �(5,[0,1,2,3,4],[0.563965247822,0.0367408623003, 

0.243756511958,0.0657893200779,0.0897480578415])

We used five features and the importance can be found out using the 

feature importance function. To know which input feature is mapped to 

which index values, we can use metadata information.

[In]: df.schema["features"].metadata["ml_attr"]["attrs"]

[Out]:

  {'idx': 0, 'name': 'rate_marriage'},

  {'idx': 1, 'name': 'age'},

  {'idx': 2, 'name': 'yrs_married'},

  {'idx': 3, 'name': 'children'},

  {'idx': 4, 'name': 'religious'}}

So, rate_marriage is the most important feature from a prediction 

standpoint followed by yrs_married. The least significant variable seems to 

be Age.
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�Step 8: Saving the Model
Sometimes, after training the model, we just need to call the model for 

preditions, and hence it makes a lot of sense to persist the model object 

and reuse it for predictions. There are two parts to this.

	 1.	 Save the ML model

	 2.	 Load the ML model

[In]: �from pyspark.ml.classification import 

RandomForestClassificationModel

[In]: �rf_classifier.save("/home/jovyan/work/RF_model")

      �This way we saved the model as object locally.The next 

step is to load the model again for predictions

[In]: �rf=RandomForestClassificationModel.load("/home/jovyan/

work/RF_model")

 [In]: new_preditions=rf.transform(new_df)

A new predictions table would contain the column with the model 

predictions

�Conclusion
In this chapter, we went over the process of understanding the building 

blocks of Random Forests and creating an ML model in PySpark for 

classification along with evaluation metrics such as accuracy, precison, 

and auc. We also covered how to save the ML model object locally and 

reuse it for predictions.
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CHAPTER 7

Recommender 
Systems
A common trend that can be observed in brick and mortar stores, is that 

we have salespeople guiding and recommending us relevant products 

while shopping on the other hand, with online retail platforms, there are 

zillions of different products available, and we have to navigate ourselves 

to find the right product. The situation is that users have too many options 

and choices available, yet they don’t like to invest a lot of time going 

through the entire catalogue of items. Hence, the role of Recommender 

Systems (RS) becomes critical for recommending relevant items and 

driving customer conversion.

Traditional physical stores use planograms to arrange the items 

in such a way that can increase the visibility of high-selling items and 

increase revenue whereas online retail stores need to keep it dynamic 

based on preferences of each individual customer rather than keeping it 

the same for everyone.

Recommender systems are mainly used for auto-suggesting the right 

content or product to the right users in a personalized manner to enhance 

the overall experience. Recommender systems are really powerful in terms 

of using huge amounts of data and learning to understand the preferences 

of specific users. Recommendations help users to easily navigate through 

millions of products or tons of content (articles/videos/movies) and show 

them the right item/information that they might like or buy. So, in simple 
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terms, RS help discover information on behalf of the users. Now, it depends 

on the users to decide if RS did a good job at recommendations or not, and 

they can choose to either select the product/content or discard and move 

on. Each of the decisions of users (Positive or Negative) helps to retrain the 

RS on the latest data to be able to give even better recommendations. In this 

chapter, we will go over how RS work and the different types of techniques 

used under the hood for making these recommendations. We will also build 

a recommender system using PySpark.

�Recommendations
Recommender systems can be used for multiple purposes in the sense of 

recommending various things to users. For example, some of them might 

fall in the categories below:

	 1.	 Retail Products

	 2.	 Jobs

	 3.	 Connections/Friends

	 4.	 Movies/Music/Videos/Books/Articles

	 5.	 Ads

The “What to Recommend” part totally depends on the context in which 

RS are used and can help the business to increase revenues by providing 

the most likely items that users can buy or increasing the engagement by 

showcasing relevant content at the right time. RS take care of the critical 

aspect that the product or content that is being recommended should either 

be something which users might like but would not have discovered on their 

own. Along with that, RS also need an element of varied recommendations 

to keep it interesting enough. A few examples of heavy usage of RS by 

businesses today such as Amazon products, Facebook’s friend suggestions, 

LinkedIn’s “People you may know,” Netflix’s movie, YouTube’s videos, 

Spotify’s music, and Coursera’s courses.
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The impact of these recommendations is proving to be immense from 

a business standpoint, and hence more time is being spent in making 

these RS more efficient and relevant. Some of the immediate benefits that 

RS offer in retail settings are:

	 1.	 Increased Revenue

	 2.	 Positive Reviews and Ratings by Users

	 3.	 Increased Engagement

For the other verticals such as ads recommendations and other 

content recommendation, RS help immensely to help them find the right 

thing for users and hence increases adoption and subscriptions. Without 

RS, recommending online content to millions of users in a personalized 

manner or offering generic content to each user can be incredibly off target 

and lead to negative impacts on users.

Now that we know the usage and features of RS, we can take a look at 

different types of RS. There are mainly five types of RS that can be built:

	 1.	 Popularity Based RS

	 2.	 Content Based RS

	 3.	 Collaborative Filtering based RS

	 4.	 Hybrid RS

	 5.	 Association Rule Mining based RS

We will briefly go over each one of these except for the last item, that is, 

Association Rule Mining based RS as it’s out of the scope of this book.

�Popularity Based RS
This is the most basic and simplest RS that can be used to recommend 

products or content to the users. It recommends items/content based 

on bought/viewed/liked/downloaded by most of the users. While it is 
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easy and simple to implement, it doesn’t produce relevant results as 

the recommendations stay the same for every user, but it sometimes 

outperforms some of the more sophisticated RS. The way this RS is 

implemented is by simply ranking the items on various parameters and 

recommending the top-ranked items in the list. As already mentioned, 

items or content can be ranked by the following:

	 1.	 No. of times downloaded

	 2.	 No. of times bought

	 3.	 No. of times viewed

	 4.	 Highest rated

	 5.	 No. of times shared

	 6.	 No. of times liked

This kind of RS directly recommends the best-selling or most watched/

bought items to the customers and hence increases the chances of 

customer conversion. The limitation of this RS is that it is not hyper-

personalized.

�Content Based RS
This type of RS recommends similar items to the users that the user 

has liked in the past. So, the whole idea is to calculate a similarity score 

between any two items and recommended to the user based upon the 

profile of the user’s interests. We start with creating item profiles for each 

of the items. Now these item profiles can be created in multiple ways, but 

the most common approach is to include information regarding the details 

or attributes of the item. For an example, the item profile of a Movie can 

have values on various attributes such as Horror, Art, Comedy, Action, 

Drama, and Commercial as shown below.
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Movie ID Horror Art Comedy Action Drama Commercial

2310 0.01 0.3 0.8 0.0 0.5 0.9

Above is the example of an item profile, and each of the items would 

have a similar vector representing its attributes. Now, let’s assume the user 

has watched 10 such movies and really liked them. So, for that particular 

user, we end up with the item matrix shown in Table 7-1.

�User Profile

The other component in content based RC is the User Profile that is 

created using item profiles that the user has liked or rated. Assuming that 

the user has liked the movie in Table 7-1, the user profile might look like 

a single vector, which is simply the mean of item vectors. The user profile 

might look something like that below.

Table 7-1.  Movie Data

Movie ID Horror Art Comedy Action Drama Commercial

2310 0.01 0.3 0.8 0.0 0.5 0.9

2631 0.0 0.45 0.8 0.0 0.5 0.65

2444 0.2 0.0 0.8 0.0 0.5 0.7

2974 0.6 0.3 0.0 0.6 0.5 0.3

2151 0.9 0.2 0.0 0.7 0.5 0.9

2876 0.0 0.3 0.8 0.0 0.5 0.9

2345 0.0 0.3 0.8 0.0 0.5 0.9

2309 0.7 0.0 0.0 0.8 0.4 0.5

2366 0.1 0.15 0.8 0.0 0.5 0.6

2388 0.0 0.3 0.85 0.0 0.8 0.9
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User ID Horror Art Comedy Action Drama Commercial

1A92 0.251 0.23 0.565 0.21 0.52 0.725

This approach to create the user profile is one of the most baseline 

ones, and there are other sophisticated ways to create more enriched user 

profiles such as normalized values, weighted values, etc. The next step is 

to recommend the items (movies) that this user might like based on the 

earlier preferences. So, the similarity score between the user profile and 

item profile is calculated and ranked accordingly. The more the similarity 

score, the higher the chances of liking the movie by the user. There are a 

couple of ways by which the similarity score can be calculated.

�Euclidean Distance

The user profile and item profile both are high-dimensional vectors and 

hence to calculate the similarity between the two, we need to calculate 

the distance between both vectors. The Euclidean distance can be easily 

calculated for an n-dimensional vector using the formula below:

d x y n n n, x y x y( ) = ( ) +¼+ -( )1

2 2
–

The higher the distance value, the less similar are the two vectors. 

Therefore, the distance between the user profile and all other items 

are calculated and ranked in decreasing order. The top few items are 

recommended to the user in this manner.

�Cosine Similarity

Another way to calculate a similarity score between the user and item 

profile is cosine similarity. Instead of distance, it measures the angle 

between two vectors (user profile vector and item profile vector). The 
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smaller the angle between both vectors, the more similar they are to each 

other. The cosine similarity can be found out using the formula below:

sim(x,y)=cos(θ)= x*y / |x|*|y|

Let’s go over some of the pros and cons of Content based RS.

Advantages:

	 1.	 Content based RC works independently of other 

users’ data and hence can be applied to an 

individual’s historical data.

	 2.	 The rationale behind RC can be easily understood 

as the recommendations are based on the similarity 

score between the User Profile and Item Profile.

	 3.	 New and unknown items can also be recommended 

to users just based on historical interests and 

preferences of users.

Disadvantages:

	 1.	 Item profile can be biased and might not reflect 

exact attribute values and might lead to incorrect 

recommendations.

	 2.	 Recommendations entirely depend on the history of the 

user and can only recommend items that are like the 

historically watched/liked items and do not take into 

consideration the new interests or liking of the visitor.

�Collaborative Filtering Based RS
CF based RS doesn’t require the item attributes or description for 

recommendations; instead it works on user item interactions. These 

interactions can be measured in various ways such as ratings, item bought, 
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time spent, shared on another platform, etc. Before diving deep in CF, let’s 

take a step back and reflect on how we make certain decisions on a day-to-

day basis – decisions such as the following:

	 1.	 Which movie to watch

	 2.	 Which book to read

	 3.	 Which restaurant to go to

	 4.	 Which place to travel to

We ask our friends, right! We ask for recommendations from 

people who are similar to us in some ways and have same tastes and 

likings as ours. Our interests match in some areas and so we trust their 

recommendations. These people can be our family members, friends, 

colleagues, relatives, or community members. In real life, it’s easy to 

know who are the people falling in this circle, but when it comes to online 

recommendations, the key task in collaborative filtering is to find the users 

who are most similar to you. Each user can be represented by a vector that 

contains the feedback value of a user item interaction. Let’s understand 

the user item matrix first to understand the CF approach.

�User Item Matrix

The user item matrix is exactly what the name suggests. In the rows, we 

have all the unique users; and along the columns, we have all the unique 

items. The values are filled with feedback or interaction scores to highlight 

the liking or disliking of the user for that product. A simple User Item 

matrix might look something like shown in Table 7-2.
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As you can observe, the user item matrix is generally very sparse as 

there are millions of items, and each user doesn’t interact with every 

item; so the matrix contains a lot of null values. The values in the matrix 

are generally feedback values deduced based upon the interaction of the 

user with that particular item. There are two types of feedback that can be 

considered in the UI matrix.

�Explicit Feedback
This sort of feedback is generally when the user gives ratings to the item 

after the interaction and has been experiencing the item features. Ratings 

can be of multiple types.

	 1.	 Rating on 1–5 scale

	 2.	 Simple rating item on recommending to others  

(Yes or No or never)

	 3.	 Liked the Item (Yes or No)

Table 7-2.  User Item Matrix

User ID Item 1 Item 2 Item 3 Item 4 Item 5 Item n

14SD 1 4 5

26BB 3 3 1

24DG 1 4 1 5 2

59YU 2 5

21HT 3 2 1 2 5

68BC 1 5

26DF 1 4 3 3

25TR 1 4 5

33XF 5 5 5 1 5 5

73QS 1 3 1
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The Explicit feedback data contains very limited amounts of data 

points as a very small percentage of users take out the time to give ratings 

even after buying or using the item. A perfect example can be of a movie, 

as very few users give the ratings even after watching it. Hence, building RS 

solely on explicit feedback data can put us in a tricky situation, although 

the data itself is less noisy but sometimes not enough to build RS.

�Implicit Feedback

This kind of feedback is not direct and mostly inferred from the activities 

of the user on the online platform and is based on interactions with items. 

For example, if user has bought the item, added it to the cart, viewed, and 

spent a great deal of time on looking at the information about the item, this 

indicates that the user has a higher amount of interest in the item. Implicit 

feedback values are easy to collect, and plenty of data points are available 

for each user as they navigate their way through the online platform. The 

challenges with implicit feedback are that it contains a lot of noisy data and 

therefore doesn’t add too much value in the recommendations.

Now that we understand the UI matrix and types of values that go into 

that matrix, we can see the different types of collaborative filtering (CF). 

There are mainly two kinds of CF:

	 1.	 Nearest Neighbors based CF

	 2.	 Latent Factor based CF

�Nearest Neighbors Based CF

This CF works by finding out the k-nearest neighbors of users by finding 

the most similar users who also like or dislike the same items as the 

active user (for user we are trying to recommend). There are two steps 

involved in the nearest neighbor’s collaborative filtering. The first step is 

to find k-nearest neighbors, and the second step is to predict the rating 

or likelihood of the active user liking a particular item. The k-nearest 
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neighbors can be found out using some of the earlier techniques we have 

discussed in the chapter. Metrics such as cosine similarity or Euclidean 

distance can help us to find most similar users to active users out of the 

total number of users based on the common items that both groups have 

liked or disliked. One of the other metrics that can also be used is Jaccard 

similarity. Let’s look at an example to understand this metric – going back 

to the earlier user item matrix and taking just five users’ data as shown in 

Table 7-3.

Let’s say we have in total five users and we want to find the two nearest 

neighbors to the active user (14SD). The Jaccard similarity can be found 

out using

sim(x,y)=|Rx ∩ Ry|/ | Rx ∪ Ry|

So, this is the number of items that any two users have rated in 

common divided by the total number of items that both users have rated:

sim (user1, user2) = 1 / 5 = 0.2 since they have rated only Item 2 in 

common).

The similarity score for the rest of the four users with active users 

would then look something like that shown in Table 7-4.

Table 7-3.  User Item Matrix

User ID Item 1 Item 2 Item 3 Item 4 Item 5 Item n

14SD 1 4 5

26BB 3 3 1

24DG 1 4 1 5 2

59YU 2 5

26DF 1 4 3 3
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So, according to Jaccard similarity the top two nearest neighbors are the 

fourth and fifth users. There is a major issue with this approach, though, 

because the Jaccard similarity doesn’t consider the feedback value while 

calculating the similarity score and only considers the common items rated. 

So, there could be a possibility that users might have rated many items in 

common, but one might have rated them high and the other might have 

rated them low. The Jaccard similarity score still might end up with a high 

score for both users, which is counterintuitive. In the above example, it is 

clearly evident that the active user is most similar to the third user (24DG) as 

they have the exact same ratings for three common items whereas the third 

user doesn’t even appear in the top two nearest neighbors. Hence, we can 

opt for other metrics to calculate the k-nearest neighbors.

�Missing Values

The user item matrix would contain lot of missing values for the simple 

reason that there are lot of items and not every user interacts with each item. 

There are a couple of ways to deal with missing values in the UI matrix.

	 1.	 Replace the missing value with 0s.

	 2.	 Replace the missing values with average ratings of 

the user.

Table 7-4.  User Similarity Score

User ID Similarity Score

14SD 1

26BB 0.2

24DG 0.6

59YU 0.677

26DF 0.75
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The more similar the ratings on common items, the nearer the 

neighbor is to the active user. There are, again, two categories of Nearest 

Neighbors based CF

	 1.	 User based CF

	 2.	 Item based CF

The only difference between both RS is that in user based we find 

k-nearest users, and in item based CF we find k-nearest items to be 

recommended to users. We will see how recommendations work in user 

based RS.

As the name suggests, in user based CF, the whole idea is to find the 

most similar user to the active user and recommend the items that the 

similar user has bought/rated highly to the active user, which he hasn’t 

seen/bought/tried yet. The assumption that this kind of RS makes is that 

if two or more users have the same opinion about a bunch of items, then 

they are likely to have the same opinion about other items as well. Let’s 

look at an example to understand the user based collaborative filtering: 

there are three users, out of which we want to recommend a new item to 

the active user. The rest of the two users are the top two nearest neighbors 

in terms of likes and dislikes of items with the active user as shown in 

Figure 7-1.

Figure 7-1.  Active User and Nearest Neighbors
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All three users have rated a particular camera brand very highly, and 

the first two users are the most similar users to the active user based on a 

similarity score as shown in Figure 7-2.

Figure 7-2.  All users like a item

Now, the first two users have also rated another item (Xbox 360) very 

highly, which the third user is yet to interact with and has also not seen as 

shown in Figure 7-3. Using this information, we try to predict the rating 

that the active user would give to the new item (Xbox 360), which again is 

the weighted average of ratings of the nearest neighbors for that particular 

item (XBOX 360).
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The user based CF then recommends the other item (XBOX 360) to 

the active user since he is most likely to rate this item higher as the nearest 

neighbors have also rated this item highly as shown in Figure 7-4.

Figure 7-3.  Nearest Neighbors also like the other item

Figure 7-4.  Active User Recommendation
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�Latent Factor Based CF

This kind of collaborative filtering also uses the user item matrix but 

instead of finding the nearest neighbors and predicting ratings, it tries to 

decompose the UI matrix into two latent factor matrices. The latent factors 

are derived values from original values. They are intrinsically related to the 

observed variables. These new matrices are much lower in terms of rank 

and contain latent factors. This is also known as matrix factorization. Let’s 

take an example to understand the matrix factorization process. We can 

decompose an mxn size matrix ‘A’ of rank r into two smaller rank matrices 

X, Y such that the dot product of X and Y results in the original A matrix. If 

we have a matrix A shown in Table 7-5,

then we can write all the column values as linear combinations of the 

first and third columns (A1 and A3).

A1 = 1 * A1 + 0 * A3

A2 = 2 * A1 + 0 * A3

A3 = 0 * A1 + 1 * A3

A4 = 2 * A1 + 1 * A3

Table 7-5.  Latent Factor Calculation

1 2 3 5

2 4 8 12

3 6 7 13
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Now we can create the two small rank matrices in such a way that the 

product between those two would return the original matrix A.

X =

1 3

2 8

3 7

Y =
1 2 0 2

0 0 1 1

X contains columns values of A1 and A3 and Y contains the coefficients 

of linear combinations.

The dot product between X and Y results back into matrix ‘A’ (original 

matrix)

Considering the same user item matrix as shown in Table 7-2, we 

factorize or decompose it into two smaller rank matrices.

	 1.	 Users latent factor matrix

	 2.	 Items latent factor matrix
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User latent Factor Matrix

Item latent Factor Matrix

 

0.23

0.1

0.8  

The user latent factor matrix contains all the users mapped to these 

latent factors, and similarly the item latent factor matrix contains all 

items in columns mapped to each of the latent factors. The process of 

finding these latent factors is done using machine learning optimization 
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techniques such as Alternating Least squares. The user item matrix is 

decomposed into latent factor matrices in such a way that the user rating 

for any item is the product between a user’s latent factor value and the 

item latent factor value. The main objective is to minimize the total sum of 

squared errors over the entire user item matrix ratings and predicted item 

ratings. For example, the predicted rating of the second user (26BB) for 

Item 2 would be

Rating (user2, item2) =

0.24 0.65  

There would be some amount of error on each of the predicted 

ratings, and hence the cost function becomes the overall sum of squared 

errors between predicted ratings and actual ratings. Training the 

recommendation model includes learning these latent factors in such 

a way that it minimizes the SSE for overall ratings. We can use the ALS 

method to find the lowest SSE. The way ALS works is that it fixes first the 

user latent factor values and tries to vary the item latent factor values such 

that the overall SSE reduces. In the next step, the item latent factor values 

are kept fixed, and user latent factor values are updated to further reduce 

the SSE. This keeps alternating between the user matrix and item matrix 

until there can be no more reduction in SSE.

Advantages:

	 1.	 Content information of the item is not required, and 

recommendations can be made based on valuable 

user item interactions.

	 2.	 Personalizing experience based on other users.
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Limitations:

	 1.	 Cold Start Problem: If the user has no historical 

data of item interactions. then RC cannot predict 

the k-nearest neighbors for the new user and cannot 

make recommendations.

	 2.	 Missing values: Since the items are huge in number 

and very few users interact with all the items, 

some items are never rated by users and can’t be 

recommended.

	 3.	 Cannot recommend new or unrated items: If the 

item is new and yet to be seen by the user, it can’t 

be recommended to existing users until other users 

interact with it.

	 4.	 Poor Accuracy: It doesn’t perform that well as many 

components keep changing such as interests of 

users, limited shelf life of items, and very few ratings 

of items.

�Hybrid Recommender Systems
As the name suggests, the hybrid RS include inputs from multiple 

recommender systems, making it more powerful and relevant in terms of 

meaningful recommendations to the users. As we have seen, there are a few 

limitations in using individual RS, but in combination they overcome few 

of those and hence are able to recommend items or information that users 

find more useful and personalized. The hybrid RS can be built in specific 

ways to suit the requirement of the business. One of the approaches is to 

build individual RS and combine the recommendations from multiple RS 

output before recommending them to the user as shown in Figure 7-5.
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The other approach is by leveraging content based recommender 

strengths and using them as input for collaborative filtering based 

recommendations to provide better recommendations to the users. This 

approach can also be reversed, and collaborative filtering can be used as 

input for content based recommendations as shown in Figure 7-6.

Figure 7-5.  Combining Recommendations
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Hybrid recommendations also include using other types of 

recommendations such as demographic based and knowledge based 

to enhance the performance of its recommendations. Hybrid RS have 

become integral parts of various businesses to help their users consume 

the right content, therefore deriving a lot of value.

Figure 7-6.  Hybrid Recommendations
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�Code
This section of the chapter focuses on building an RS from scratch using 

the ALS method in PySpark and Jupyter Notebook.

Note T he complete dataset along with the code is available for 
reference on the GitHub repo of this book and executes best on 
Spark 2.0 and higher versions.

Let’s build a recommender model using Spark’s MLlib library and 

predict the rating of an item for any given user.

�Data Info
The dataset that we are going to use for this chapter is a subset from 

a famous open sourced movie lens dataset and contains a total of 0.1 

million records with three columns (User_Id,title,rating). We will train our 

recommender model using 75% of the data and test it on the rest of the 

25% user ratings.

�Step 1: Create the SparkSession Object
We start the Jupyter Notebook and import SparkSession and create a new 

SparkSession object to use Spark:

[In]: from pyspark.sql import SparkSession

[In]: �spark=SparkSession.builder.appName('lin_reg').

getOrCreate()
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�Step 2: Read the Dataset
We then load and read the dataset within Spark using a dataframe. We 

have to make sure we have opened the PySpark from the same directory 

folder where the dataset is available or else we have to mention the 

directory path of the data folder.

[In]:

df=spark.read.csv('movie_ratings_df.csv',inferSchema=True,

header=True)

�Step 3: Exploratory Data Analysis
In this section, we explore the dataset by viewing the dataset, validating 

the shape of the dataset, and getting a count of the number of movies rated 

and the number of movies that each user rated.

[In]: print((df.count(), len(df.columns)))

[Out]: (100000,3)

So, the above output confirms the size of our dataset and we can then 

validate the datatypes of the input values to check if we need to change/

cast any columns’ datatypes.

[In]: df.printSchema()

[Out]: root

 |-- userId: integer (nullable = true)

 |-- title: string (nullable = true)

 |-- rating: integer (nullable = true)

There is a total of three columns out of which two are numerical and 

the title is categorical. The critical thing with using PySpark for building 

RS is that we need to have user_id and item_id in numerical form. Hence, 

we will convert the movie title to numerical values later. We now view a 

few rows of the dataframe using the rand function to shuffle the records in 

random order.
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[In]: df.orderBy(rand()).show(10,False)

[Out]:

 

[In]: �df.groupBy('userId').count().orderBy('count', 

ascending=False).show(10,False) 

[Out]:
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[In]: �df.groupBy('userId').count().orderBy('count', 

ascending=True).show(10,False)

[Out]:

 

The user with the highest number of records has rated 737 movies, and 

each user has rated at least 20 movies.

[In]: �df.groupBy('title').count().orderBy('count', 

ascending=False).show(10,False)

[Out]:
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The movie with highest number of ratings is Star Wars (1977) and has 

been rated 583 times, and each movie has been rated by at least by 1 user.

�Step 4: Feature Engineering
We now convert the movie title column from categorical to numerical 

values using StringIndexer. We import the stringIndexer and Indextostring 

from the PySpark library.

[In]: from pyspark.sql.functions import *

[In]: �from pyspark.ml.feature import StringIndexer, 

IndexToString

Next, we create the stringindexer object by mentioning the input 

column and output column. Then we fit the object on the dataframe and 

apply it on the movie title column to create new dataframe with numerical 

values.

[In]: �stringIndexer = StringIndexer(inputCol="title", 

outputCol="title_new")

[In]: model = stringIndexer.fit(df)

[In]: indexed = model.transform(df)

Let’s validate the numerical values of the title column by viewing few 

rows of the new dataframe (indexed).

[In]: indexed.show(10)

[Out]:
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As we can see, we now we have an additional column (title_new) with 

numerical values representing the movie titles. We have to repeat the same 

procedure in case the user_id is also a categorical type. Just to validate the 

movie counts, we rerun the groupBy on a new dataframe.

[In]: �indexed.groupBy('title_new').count().orderBy('count', 

ascending=False).show(10,False)

[Out]:
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�Step 5: Splitting the Dataset
Now that we have prepared the data for building the recommender model, 

we can split the dataset into training and test sets. We split it into a 75 to 25 

ratio to train the model and test its accuracy.

[In]: train,test=indexed.randomSplit([0.75,0.25])

[In]: train.count()

[Out]: 75104

[In]: test.count()

[Out]: 24876

�Step 6: Build and Train Recommender Model
We import the ALS function from the PySpark ml library and build the 

model on the training dataset. There are multiple hyperparameters 

that can be tuned to improve the performance of the model. Two of the 

important ones are nonnegative =‘True’ doesn’t create negative ratings in 

recommendations and coldStartStrategy=‘drop’ to prevent any NaN ratings 

predictions.

[In]: from pyspark.ml.recommendation import ALS

[In]: �rec=ALS(maxIter=10,regParam=0.01,userCol='userId', 

itemCol='title_new',ratingCol='rating',nonnegative=True, 

coldStartStrategy="drop")

[In]: rec_model=rec.fit(train)
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�Step 7: Predictions and Evaluation on Test Data
The final part of the entire exercise is to check the performance of the 

model on unseen or test data. We use the transform function to make 

predictions on the test data and RegressionEvaluate to check the RMSE 

value of the model on test data.

[In]: predicted_ratings=rec_model.transform(test)

[In]: predicted_ratings.printSchema()

root

 |-- userId: integer (nullable = true)

 |-- title: string (nullable = true)

 |-- rating: integer (nullable = true)

 |-- title_new: double (nullable = false)

 |-- prediction: float (nullable = false)

[In]: predicted_ratings.orderBy(rand()).show(10)

[Out]:

 

[xIn]: from pyspark.ml.evaluation import RegressionEvaluator
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[In]: �evaluator=RegressionEvaluator(metricName='rmse', 

predictionCol='prediction',labelCol='rating')

[In]: rmse=evaluator.evaluate(predictions)

[In] : print(rmse)

[Out]: 1.0293574739493354

The RMSE is not very high; we are making an error of one point in the 

actual rating and predicted rating. This can be improved further by tuning 

the model parameters and using the hybrid approach.

�Step 8: Recommend Top Movies That Active User 
Might Like
After checking the performance of the model and tuning the hyperparameters, 

we can move ahead to recommend top movies to users that they have not 

seen and might like. The first step is to create a list of unique movies in the 

dataframe.

[In]: unique_movies=indexed.select('title_new').distinct()

[In]: unique_movies.count()

[Out]: 1664

So, we have in total 1,664 distinct movies in the dataframe.

[In]: a = unique_movies.alias('a')

We can select any user within the dataset for which we need to 

recommend other movies. In our case, we go ahead with userId = 85.

[In]: user_id=85
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We will filter the movies that this active user has already rated or seen.

[In]: �watched_movies=indexed.filter(indexed['userId'] ==  

user_id).select('title_new').distinct()

[In]: watched_movies.count()

[Out]: 287

[In]: b=watched_movies.alias('b')

So, there are total of 287 unique movies out of 1,664 movies that this 

active user has already rated. So, we would want to recommend movies 

from the remaining 1,377 items. We now combine both the tables to find 

the movies that we can recommend by filtering null values from the joined 

table.

[In]: �total_movies = a.join(b, a.title_new == b.title_

new,how='left')

[In]: total_movies.show(10,False)

[Out]:
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[In]: �remaining_movies=total_movies.where(col("b.title_new").

isNull()).select(a.title_new).distinct()

[In]: remaining_movies.count()

[Out]: 1377

[In]: �remaining_movies=remaining_movies.withColumn("userId",lit

(int(user_id)))

[In]: remaining_movies.show(10,False)

[Out]:

 

Finally, we can now make the predictions on this remaining movie’s 

dataset for the active user using the recommender model that we built 

earlier. We filter only a few top recommendations that have the highest 

predicted ratings.

[In]: �recommendations=rec_model.transform(remaining_movies). 

orderBy('prediction',ascending=False)

[In]: recommendations.show(5,False)

[Out]:
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So, movie titles 1433 and 1322 have the highest predicted rating for this 

active user (85). We can make it more intuitive by adding the movie title 

back to the recommendations. We use Indextostring function to create an 

additional column that returns the movie title.

[In]:

movie_title = IndexToString(inputCol="title_new", 

outputCol="title",labels=model.labels)

[In]: �final_recommendations=movie_title.

transform(recommendations)

[In]: final_recommendations.show(10,False)

[Out]:
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So, the recommendations for the userId (85) are Boys, Les (1997) 

and Faust (1994). This can be nicely wrapped in a single function that 

executes the above steps in sequence and generates recommendations for 

active users. The complete code is available on the GitHub repo with this 

function built in.

�Conclusion
In this chapter, we went over various types of recommendation models 

along with the strengths and limitations of each. We then created a 

collaborative filtering based recommender system in PySpark using the 

ALS method to recommend movies to the users.
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CHAPTER 8

Clustering
In the previous chapters so far, we have seen supervised Machine Learning 

where the target variable or label is known to us, and we try to predict the 

output based on the input features. Unsupervised Learning is different in 

a sense that there is no labeled data, and we don’t try to predict any output 

as such; instead we try to find interesting patterns and come up with 

groups within the data. The similar values are grouped together.

When we join a new school or college, we come across many new 

faces and everyone looks so different. We hardly know anyone in the 

institute, and there are no groups in place initially. Slowly and gradually, 

we start spending time with other people and the groups start to develop. 

We interact with a lot of different people and figure out how similar and 

dissimilar they are to us. A few months down the line, we are almost settled 

in our own groups of friends. The friends/members within the group 

have similar attributes/likings/tastes and hence stay together. Clustering 

is somewhat similar to this approach of forming groups based on sets of 

attributes that define the groups.

�Starting with Clustering
We can apply clustering on any sort of data where we want to form groups 

of similar observations and use it for better decision making. In the early 

days, customer segmentation used to be done by a Rule-based approach, 

which was much of a manual effort and could only use a limited number  
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of variables. For example, if businesses wanted to do customer 

segmentation, they would consider up to 10 variables such as age, gender, 

salary, location, etc., and create rules-based segments that still gave 

reasonable performance; but in today’s scenario that would become highly 

ineffective. One reason is data availability is in abundance, and the other 

is dynamic customer behavior. There are thousands of other variables 

that can be considered to come up with these machine learning driven 

segments that are more enriched and meaningful.

When we start clustering, each observation is different and doesn’t 

belong to any group but is based on how similar are the attributes of each 

observation. We group them in such a way that each group contains the 

most similar records, and there is as much difference as possible between 

any two groups. So, how do we measure if two observations are similar or 

different?

There are multiple approaches to calculate the distance between any 

two observations. Primarily we represent that any observation is a form of 

vector that contains values of that observation(A) as shown below.

Age Salary ($’0000) Weight (Kgs) Height(Ft.)

32 8 65 6

Now, suppose we want to calculate the distance of this observation/

record from any other observation (B), which also contains similar 

attributes like those shown below.

Age Salary ($’000) Weight (Kgs) Height(Ft.)

40 15 90 5

We can measure the distance using the Euclidean method, which is 

straightforward.
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It is also known as Cartesian distance. We are trying to calculate the 

distance of a straight line between any two points; and if the distance 

between those is points is small, they are more likely to be similar, whereas if 

the distance is large, they are dissimilar to each other as shown in Figure 8-1.

The Euclidean distance between any two points can be calculated 

using the formula below:

	
Dist A B A B A B A BA B,( ) = -( ) + -( ) + -( ) + -( )1 1 2 2 3 3 4 4

2 2 2 2

	

Dist Age diff Salary diff Weight diff HeightA B,    ( ) = ( ) + ( ) + ( ) +2 2 2
ddiff( )2

	
Dist A B,( ) = -( ) + -( ) + -( ) + -( )32 40 8 15 65 90 6 5

2 2 2 2

	

	
Dist A B,( ) = + + +( )64 49 625 1 	

Dist(A, B)= 27.18

Hence, the Euclidean distance between observations A and B is 27.18. 

The other techniques to calculate the distance between observations are 

the following:

	 1.	 Manhattan Distance

	 2.	 Mahalanobis Distance

	 3.	 Minkowski Distances

Figure 8-1.  Euclidean Distance based similarity
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	 4.	 Chebyshev Distance

	 5.	 Cosine Distance

The aim of clustering is to have minimal intracluster distance and 

maximum intercluster difference. We can end up with different groups 

based on the distance approach that we have used to do clustering, 

and hence it's critical to be sure of opting for the right distance metric 

that aligns with the business problem. Before going into different 

clustering techniques, let quickly go over some of the applications of 

clustering.

�Applications
Clustering is used in a variety of use cases these days ranging from 

customer segmentation to anomaly detection. Businesses widely 

use machine learning driven clustering for profiling customer and 

segmentation to create market strategies around these results. Clustering 

drives a lot of search engines' results by finding similar objects in one 

cluster and the dissimilar objects far from each other. It recommends the 

nearest similar result based on a search query

Clustering can be done in multiple ways based on the type of data 

and business requirement. The most used ones are the K-means and 

Hierarchical clustering.

�K-Means
‘K’ stands for a number of clusters or groups that we want to form in the 

given dataset. This type of clustering involves deciding the number of 

clusters in advance. Before looking at how K-means clustering works, let’s 

get familiar with a couple of terms first.

	 1.	 Centroid

	 2.	 Variance
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Centroid refers to the center data point at the center of a cluster or a 

group. It is also the most representative point within the cluster as it’s the 

utmost equidistant data point from the other points within the cluster. The 

centroid (represented by a cross) for three random clusters is shown in 

Figure 8-2.

Each cluster or group contains different number of data points that 

are nearest to the centroid of the cluster. Once the individual data points 

change clusters, the centroid value of the cluster also changes. The center 

position within a group is altered, resulting in a new centroid as shown in 

Figure 8-3.

Figure 8-2.  Centroids of clusters

Figure 8-3.  New Centroids of new clusters
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The whole idea of clustering is to minimize intracluster distance, that 

is, the internal distance of data points from the centroid of cluster and 

maximize the intercluster distance, that is, between the centroid of two 

different clusters.

Variance is the total sum of intracluster distances between centroid 

and data points within that cluster as show in Figure 8-4. The variance 

keeps on decreasing with an increase in the number of clusters. The more 

clusters, the less the number of data points within each cluster and hence 

less variability.

Figure 8-4.  Inracluster Distance

K-means clustering is composed of four steps in total to form the 

internal groups within the dataset. We will consider a sample dataset 

to understand how a K-means clustering algorithm works. The dataset 

contains a few users with their age and weight values as shown in 

Table 8-1. Now we will use K-means clustering to come up with 

meaningful clusters and understand the algorithm.
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If we plot these users in a two-dimensional space, we can see that no 

point belongs to any group initially, and our intention is to find clusters 

(we can try with two or three) within this group of users such that each 

group contains similar users. Each user is represented by the age and 

weight as shown in Figure 8-5.

Table 8-1.  Sample Dataset 

for K-Means

User ID Age Weight

1 18 80

2 40 60

3 35 100

4 20 45

5 45 120

6 32 65

7 17 50

8 55 55

9 60 90

10 90 50
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Figure 8-5.  Users before clustering

�Step I: Decide K

It starts with deciding the number of clusters(K) . Most of the time, we are 

not sure of the right number of groups at the start, but we can find the best 

number of clusters using a method called the Elbow method based on 

variability. For this example, let’s start with K=2 to keep things simple. So, 

we are looking for two clusters within this sample data.

�Step 2: Random Initialization of Centroids

The next step is to randomly consider any two of the points to be a centroid 

of new clusters. These can be chosen randomly, so we select user number 

5 and user number 10 as the two centroids on the new clusters as shown in 

Table 8-2.
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The centroids can be represented by weight and age values as shown 

in Figure 8-6.

Table 8-2.  Sample Dataset for K-Means

User ID Age Weight

1 18 80

2 40 60

3 35 100

4 20 45

5 (Centroid 1) 45 120

6 32 65

7 17 50

8 55 55

9 60 90

10 (centroid 2) 90 50

Figure 8-6.  Random Centroids of two clusters
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�Step 3: Assigning Cluster Number to each Value

In this step, we calculate the distance of each point from the centroid. 

In this example, we calculate the Euclidean squared distance of each 

user from the two centroid points. Based on the distance value, we go 

ahead and decide which particular cluster the user belongs to (1 or 2). 

Whichever centroid the user is near to (less distance) would become part 

of that cluster. The Euclidean squared distance is calculated for each user 

shown in Table 8-3. The distance of user 5 and user 10 would be zero from 

respective centroids as they are the same points as centroids.

Table 8-3.  Cluster Assignment Based on Distance from Centroids

User ID Age Weight ED* from Centroid 1 ED* from Centroid 2 Cluster

1 18 80 48 78 1

2 40 60 60 51 2

3 35 100 22 74 1

4 20 45 79 70 2

5 45 120 0 83 1

6 32 65 57 60 1

7 17 50 75 73 2

8 55 55 66 35 2

9 60 90 34 50 1

10 90 50 83 0 2

(*Euclidean Distance)

So, as per the distance from centroids, we have allocated each user to 

either Cluster 1 or Cluster 2. Cluster 1 contains five users and Cluster 2 also 

contains five users. The initial clusters are shown in Figure 8-7.
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As discussed earlier, the centroids of the clusters are bound to change 

after inclusion or exclusion of new data points in the cluster. As the earlier 

centroids (C1, C2) are no longer at the center of clusters, we calculate new 

centroids in the next step.

�Step 4: Calculate New Centroids and Reassign Clusters

The final step in K-means clustering is to calculate the new centroids of 

clusters and reassign the clusters to each value based on the distance 

from new centroids. Let’s calculate the new centroid of Cluster 1 and 

Cluster 2. To calculate the centroid of Cluster 1, we simply take the 

mean of age and weight for only those values that belong to Cluster 1 as 

shown in Table 8-4.

Figure 8-7.  Initial clusters and centroids
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The centroid calculation for Cluster 2 is also done in a similar manner 

and shown in Table 8-5.

Table 8-4.  New Centroid Calculation 

of Cluster 1

User ID Age Weight

1 18 80

3 35 100

5 45 120

6 32 65

9 60 90

Mean Value 38 91

Table 8-5.  New Centroid calculation 

of Cluster 2

User ID Age Weight

2 40 60

4 20 45

7 17 50

8 55 55

10 90 50

Mean Value 44.4 52

Now we have new centroid values for each cluster represented by a 

cross as shown in Figure 8-8. The arrow signifies the movement of the 

centroid within the cluster.
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With centroids of each cluster, we repeat step 3 of calculating the 

Euclidean squared distance of each user from new centroids and find 

out the nearest centroid. We then reassign the users to either Cluster 1 or 

Cluster 2 based on the distance from the centroid. In this case, only one 

value (User 6) changes its cluster from 1 to 2 as shown in Table 8-6.

Figure 8-8.  New Centroids of both clusters

Table 8-6.  Reallcoation of Clusters

User ID Age Weight ED* from 
Centroid 1

ED* from 
Centroid 2

Cluster

1 18 80 23 38 1

2 40 60 31 9 2

3 35 100 9 49 1

4 20 45 49 25 2

5 45 120 30 68 1

(continued)
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Now, Cluster 1 is left with only four users and Cluster 2 contains six 

users based on the distance from each cluster's centroid as shown in 

Figure 8-9.

Figure 8-9.  Reallocation of clusters

User ID Age Weight ED* from 
Centroid 1

ED* from 
Centroid 2

Cluster

6 32 65 27 18 2

7 17 50 46 27 2

8 55 55 40 11 2

9 60 90 22 41 1

10 90 50 66 46 2

Table 8-6.  (continued)
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We keep repeating the above steps until there is no more change in 

cluster allocations. The centroids of new clusters are shown in Table 8-7.

Table 8-7.  Calculation of Centroids

User ID Age Weight

1 18 80

3 35 100

5 45 120

9 60 90

Mean Value 39.5 97.5

User ID Age Weight

2 40 60

4 20 45

6 32 65

7 17 50

8 55 55

10 90 50

Mean Value 42.33 54.17

As we go through the steps, the centroid movements keep becoming 

small, and the values almost become part of that particular cluster as 

shown in Figure 8-10.
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As we can observe, there is no more change in the points even after the 

change in centroids, which completes the K-means clustering. The results 

can vary as it’s based on the first set of random centroids. To reproduce the 

results, we can set the starting points ourselves as well. The final clusters 

with values are shown in Figure 8-11.

Figure 8-10.  Reallocation of clusters

Figure 8-11.  Final clusters
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Cluster 1 contains the users that are average on the height attribute 

but seem to be very high on the weight variable whereas Cluster 2 seems 

to be grouping those users together who are taller than average but very 

conscious of their weight as shown in Figure 8-12.

�Deciding on Number of Clusters (K)

Selecting an optimal number of clusters is quite tricky most of the time as 

we need a deep understanding of the dataset and the context of the business 

problem. Additionally, there is no right or wrong answer when it comes to 

unsupervised learning. One approach might result in a different number of 

clusters compared to another approach. We have to try and figure out which 

approach works the best and if the clusters created are relevant enough 

for decision making. Each cluster can be represented with a few important 

attributes that signify or give information about that particular cluster. 

However, there is a method to pick the best possible number of clusters with 

a dataset. This method is known as the elbow method.

The elbow method helps us to measure the total variance in the data 

with a number of clusters. The higher the number of clusters, the less the 

variance would become. If we have an equal number of clusters to the 

number of records in a dataset, then the variability would be zero because 

the distance of each point from itself is zero. The variability or SSE (Sum of 

Squared Errors) along with ‘K’ values is shown in Figure 8-13.

Figure 8-12.  Attributes of final clusters
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As we can observe, there is sort of elbow formation between K values 

of 3 and 4. There is a sudden reduction in total variance (intra-cluster 

difference), and the variance sort of declines very slowly after that. In fact, 

it flattens after the K=9 value. So, the value of K =3 makes the most sense 

if we go with the elbow method as it captures the most variability with a 

lesser number of clusters.

�Hierarchical Clustering
This is another type of unsupervised machine learning technique and 

is different from K-means in the sense that we don’t have to know the 

number of clusters in advance. There are two types of Hierarchical 

clustering.

•	 Agglomerative Clustering (Bottom-Up Approach)

•	 Divisive Clustering (Top-Down Approach)

We’ll discuss agglomerative clustering as it is the main type. This 

starts with the assumption that each data point is a separate cluster and 

gradually keeps combining the nearest values into the same clusters 

Figure 8-13.  Elbow Method
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until all the values become part of one cluster. This is a bottom-up 

approach that calculates the distance between each cluster and merges 

the two closest clusters into one. Let’s understand the agglomerative 

clustering with help of visualization. Let’s say we have seven data 

points initially (A1–A7), and they need to be grouped into clusters 

that contain similar values together using agglomerative clustering as 

shown in Figure 8-14.

At the initial stage (step 1), each point is treated as an individual 

cluster. In the next step, the distance between every point is calculated 

and the nearest points are combined together into a single cluster. In this 

example, A1 and A2, A5 and A6 are nearest to each other and hence form a 

single cluster as shown in Figure 8-15.

Figure 8-14.  Each value as individual cluster

Figure 8-15.  Nearest clusters merged together
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Deciding the most optimal number of clusters while using Hierarchical 

clustering can be done in multiple ways. One way is to use the elbow 

method itself and the other option is by making use of something known 

as a Dendrogram. It is used to visualize the variability between clusters 

(Euclidean distance). In a Dendrogram, the height of the vertical lines 

represents the distance between points or clusters and data points listed 

along the bottom. Each point is plotted on the X-axis and the distance is 

represented on the Y-axis (length). It is the hierarchical representation of 

the data points. In this example, the Dendrogram at step 2 looks like the 

one shown in Figure 8-16.

In step 3, the exercise of calculating the distance between clusters 

is repeated and the nearest clusters are combined into a single cluster. 

This time A3 gets merged with (A1, A2) and A4 with (A5, A6) as shown in 

Figure 8-17.

Figure 8-16.  Dendrogram
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The Dendrogram after step 3 is shown in Figure 8-18.

Figure 8-17.  Nearest clusters merged together

Figure 8-18.  Dendrogram post step 3

In step 4, the distance between the only remaining point A7 gets 

calculated and found nearer to Cluster (A4, A5, A6). It is merged with the 

same cluster as shown in Figure 8-19.
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At the last stage (step 5), all the points get combined into a single 

Cluster (A1, A2, A3, A4, A5, A6, A7) as shown in Figure 8-20.

Figure 8-19.  Cluster formation
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Figure 8-20.  Agglomerative clustering

Sometimes it is difficult to identify the right number of clusters by the 

Dendrogram as it can become very complicated and difficult to interpret 

depending on the dataset being used to do clustering. The Hierarchical 

clustering doesn’t work well on large datasets compared to K-means. 
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Clustering is also very sensitive to the scale of data points, so it's always 

advised to do data scaling before clustering. There are other types of 

clustering that can be used to group the similar data points together such 

as the following:

	 1.	 Gaussian Mixture Model Clustering

	 2.	 Fuzzy C-Means Clustering

But the above methods are beyond the scope of this book. We now 

jump into using a dataset for building clusters using K-means in PySpark.

�Code
This section of the chapter covers K-Means clustering using PySpark and 

Jupyter Notebook.

Note T he complete dataset along with the code is available for 
reference on the GitHub repo of this book and executes best on 
Spark 2.0 and higher versions.

For this exercise, we consider the most standardized open sourced 

dataset out there – an IRIS dataset to capture the cluster number and 

compare supervised and unsupervised performance.

�Data Info
The dataset that we are going to use for this chapter is the famous open 

sourced IRIS dataset and contains a total of 150 records with 5 columns 

(sepal length, sepal width, petal length, petal width, species). There are 

50 records for each type of species. We will try to group these into clusters 

without using the species label information.
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�Step 1: Create the SparkSession Object
We start Jupyter Notebook and import SparkSession and create a new 

SparkSession object to use Spark:

[In]: from pyspark.sql import SparkSession

[In]: spark=SparkSession.builder.appName('K_means').

getOrCreate()

�Step 2: Read the Dataset
We then load and read the dataset within Spark using a dataframe. We 

have to make sure we have opened PySpark from the same directory folder 

where the dataset is available or else we have to mention the directory path 

of the data folder.

[In]:

df=spark.read.csv('iris_dataset.csv',inferSchema=True,header=True)

�Step 3: Exploratory Data Analysis
In this section, we explore the dataset by viewing it and validating its 

shape.

[In]:print((df.count(), len(df.columns)))

[Out]: (150,3)

So, the above output confirms the size of our dataset and we can then 

validate the datatypes of the input values to check if we need to change/

cast any columns' datatypes.

[In]: df.printSchema()

[Out]: root

 |-- sepal_length: double (nullable = true)
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 |-- sepal_width: double (nullable = true)

 |-- petal_length: double (nullable = true)

 |-- petal_width: double (nullable = true)

 |-- species: string (nullable = true)

There is a total of five columns out of which four are numerical and the 

label column is categorical.

[In]: from pyspark.sql.functions import rand

[In]: df.orderBy(rand()).show(10,False)

[Out]:

+------------+-----------+------------+-----------+----------+

|sepal_length|sepal_width|petal_length|petal_width|species   |

+------------+-----------+------------+-----------+----------+

|5.5         |2.6        |4.4         |1.2        |versicolor|

|4.5         |2.3        |1.3         |0.3        |setosa    |

|5.1         |3.7        |1.5         |0.4        |setosa    |

|7.7         |3.0        |6.1         |2.3        |virginica |

|5.5         |2.5        |4.0         |1.3        |versicolor|

|6.3         |2.3        |4.4         |1.3        |versicolor|

|6.2         |2.9        |4.3         |1.3        |versicolor|

|6.3         |2.5        |4.9         |1.5        |versicolor|

|4.7         |3.2        |1.3         |0.2        |setosa    |

|6.1         |2.8        |4.0         |1.3        |versicolor|

+------------+-----------+------------+-----------+----------+

[In]: �df.groupBy('species').count().orderBy('count').

show(10,False)

Chapter 8  Clustering



185

[Out]:

+----------+-----+

|species   |count|

+----------+-----+

|virginica |50   |

|setosa    |50   |

|versicolor|50   |

+----------+-----+

So, it confirms that there are an equal number of records for each 

species available in the dataset

�Step 4: Feature Engineering
This is the part where we create a single vector combining all input 

features by using Spark’s VectorAssembler. It creates only a single 

feature that captures the input values for that particular row. So, 

instead of four input columns (we are not considering a label column 

since it's an unsupervised machine learning technique), it essentially 

translates it into a single column with four input values in the form  

of a list.

[In]: from pyspark.ml.linalg import Vector

[In]: from pyspark.ml.feature import VectorAssembler

[In]: �input_cols=['sepal_length', 'sepal_width', 'petal_

length', 'petal_width']

[In]: �vec_assembler = VectorAssembler(inputCols = input_cols, 

outputCol='features')

[In]: final_data = vec_assembler.transform(df)

Chapter 8  Clustering



186

�Step 5: Build K-Means Clustering Model
The final data contains the input vector that can be used to run K-means 

clustering. Since we need to declare the value of ‘K’ in advance before 

using K-means, we can use elbow method to figure out the right value 

of ‘K’. In order to use the elbow method, we run K-means clustering for 

different values of ‘K’. First, we import K-means from the PySpark library 

and create an empty list that would capture the variability or SSE (within 

cluster distance) for each value of K.

[In]:from pyspark.ml.clustering import KMeans

[In]:errors=[]

[In]:

for k in range(2,10):

    kmeans = KMeans(featuresCol='features',k=k)

    model = kmeans.fit(final_data)

    intra_distance = model.computeCost(final_data)

    errors.append(intra_distance)

Note T he ‘K’ should have a minimum value of 2 to be able to build 
clusters.

Now, we can plot the intracluster distance with the number of clusters 

using numpy and matplotlib.

[In]: import pandas as pd

[In]: import numpy as np

[In]: import matplotlib.pyplot as plt

[In]: cluster_number = range(2,10)

[In]: plt.xlabel('Number of Clusters (K)')

[In]: plt.ylabel('SSE')
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[In]: plt.scatter(cluster_number,errors)

[In]: plt.show()

[Out]:

 

In this case, k=3 seems to be the best number of clusters as we can see 

a sort of elbow formation between three and four values. We build final 

clusters using k=3.

[In]: kmeans = KMeans(featuresCol='features',k=3)

[In]: model = kmeans.fit(final_data)

[In]: �model.transform(final_data).groupBy('prediction').

count().show()

[Out]:

+----------+-----+

|prediction|count|

+----------+-----+

|         1|   50|

|         2|   38|

|         0|   62|

+----------+-----+
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K-Means clustering gives us three different clusters based on the IRIS 

data set. We certainly are making a few of the allocations wrong as only 

one category has 50 records in the group, and the rest of the categories 

are mixed up. We can use the transform function to assign the cluster 

number to the original dataset and use a groupBy function to validate the 

groupings.

[In]: predictions=model.transform(final_data)

[In]: predictions.groupBy('species','prediction').count().

show()

[Out]:

+----------+----------+-----+

|   species|prediction|count|

+----------+----------+-----+

| virginica|         2|   14|

|    setosa|         0|   50|

| virginica|         1|   36|

|versicolor|         1|    3|

|versicolor|         2|   47|

+----------+----------+-----+

As it can be observed, the setosa species is perfectly grouped 

along with versicolor, almost being captured in the same cluster, 

but verginica seems to fall within two different groups. K-means can 

produce different results every time as it chooses the starting point 

(centroid) randomly every time. Hence, the results that you might get 

in you K-means clustering might be totally different from these results 

unless we use a seed to reproduce the results. The seed ensures the 

split and the initial centroid values remain consistent throughout the 

analysis.
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�Step 6: Visualization of Clusters
In the final step, we can visualize the new clusters with the help of Python’s 

matplotlib library. In order to do that, we convert our Spark dataframe into 

a Pandas dataframe first.

[In]: pandas_df = predictions.toPandas()

[In]: pandas_df.head()

 

We import the required libraries to plot the third visualization and 

observe the clusters.

[In]: from mpl_toolkits.mplot3d import Axes3D

[In]: �cluster_vis = plt.figure(figsize=(12,10)).

gca(projection='3d')

[In]: �cluster_vis.scatter(pandas_df.sepal_length, pandas_

df.sepal_width, pandas_df.petal_length, c=pandas_ 

df.prediction,depthshade=False)

[In]: plt.show()
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�Conclusion
In this chapter, we went over different types of unsupervised machine 

learning techniques and also built clusters using the K-means 

algorithms in PySpark. K-Means groups the data points using random 

centroid initialization whereas Hierarchical clustering focuses on 

merging entire datapoints into a single cluster. We also covered various 

techniques to decide the optimal number of clusters like the Elbow 

method and Dendrogram, which use variance optimization while 

grouping the data points.
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CHAPTER 9

Natural Language 
Processing
�Introduction
This chapter uncovers some of the basic techniques to tackle text data 

using PySpark. Today's textual form of data is being generated at a 

lightning pace with multiple social media platforms offering users the 

options to share their opinions, suggestions, comments, etc. The area 

that focuses on making machines learn and understand the textual data 

in order to perform some useful tasks is known as Natural Language 

Processing (NLP). The text data could be structured or unstructured, and 

we have to apply multiple steps in order to make it analysis ready. NLP 

is already a huge contributor to multiple applications. There are many 

applications of NLP that are heavily used by businesses these days such as 

chatbot, speech recognition, language translation, recommender systems, 

spam detection, and sentiment analysis. This chapter demonstrates a 

series of steps in order to process text data and apply a Machine Learning 

Algorithm on it. It also showcases the sequence embeddings that can be 

used as an alternative to traditional input features for classification.
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�Steps Involved in NLP
There is no right way to do NLP analysis as one can explore multiple 

ways and take different approaches to handle text data. However, from a 

Machine Learning standpoint, there are five major steps that one should 

take to make the text data ready for analysis. The five major steps involved 

in NLP are:

	 1.	 Reading the corpus

	 2.	 Tokenization

	 3.	 Cleaning /Stopword removal

	 4.	 Stemming

	 5.	 Converting into Numerical Form 

Before jumping into the steps to load and clean text data, let’s get 

familiar with a term known as Corpus as this would keep appearing in the 

rest of the chapter.

�Corpus
A corpus is known as the entire collection of text documents. For example, 

suppose we have thousands of emails in a collection that we need to 

process and analyze for our use. This group of emails is known as a corpus 

as it contains all the text documents. The next step in text processing is 

tokenization.

�Tokenize
The method of dividing the given sentence or collection of words of a text 

document into separate /individual words is known as tokenization. It 

removes the unnecessary characters such as punctuation. For example, if 

we have a sentence such as:
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Input: He really liked the London City. He is there for two more days.

Tokens:

He, really, liked, the, London, City, He, is, there, for, two, more, days

We end up with 13 tokens for the above input sentence.

Let us see how we can do tokenization using PySpark. The first step is 

to create a dataframe that has text data.

[In]: df=spark.createDataFrame([(1,'I really liked this movie'),

              (2,'I would recommend this movie to my friends'),

              (3,'movie was alright but acting was horrible'),

              (4,'I am never watching that movie ever again')],

              ['user_id','review'])

[In]: df.show(4,False)

[Out]:

+-------+------------------------------------------+

|user_id|review                                    |

+-------+------------------------------------------+

|1      |I really liked this movie                 |

|2      |I would recommend this movie to my friends|

|3      |movie was alright but acting was horrible |

|4      |I am never watching that movie ever again |

+-------+------------------------------------------+

In this dataframe, we have four sentences for tokenization. The next 

step is to import Tokenizer from the Spark library. We have to then pass the 

input column and name the output column after tokenization. We use the 

transform function in order to apply tokenization to the review column.

[In]: from pyspark.ml.feature import Tokenizer

[In]: tokenization=Tokenizer(inputCol='review',outputCol='tokens')

[In]: tokenized_df=tokenization.transform(df)

[In]: tokenized_df.show(4,False)

[Out]:
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We get a new column named tokens that contains the tokens for each 

sentence.

�Stopwords Removal
As you can observe, the tokens column contains very common words such as 

‘this’, ‘the’, ‘to’ , ‘was’, ‘that’, etc. These words are known as stopwords and they 

seem to add very little value to the analysis. If they are to be used in analysis, it 

increases the computation overhead without adding too much value or insight. 

Hence, it's always considered a good idea to drop these stopwords from the 

tokens. In PySpark, we use StopWordsRemover to remove the stopwords.

[In]: from pyspark.ml.feature import StopWordsRemover

[In]: �stopword_removal=StopWordsRemover(inputCol='tokens', 

outputCol='refined_tokens')

We then pass the tokens as the input column and name the 

output column as refined tokens.

[In]: refined_df=stopword_removal.transform(tokenized_df)

[In]: �refined_df.select(['user_id','tokens','refined_tokens']).

show(4,False)

[Out]:

 

As you can observe, the stopwords like ‘I’, ‘this’, ‘was’, ‘am’, ‘but’, ‘that’ are 

removed from the tokens column.

Chapter 9  Natural Language Processing



195

�Bag of Words
This is the methodology through which we can represent the text data 

into numerical form for it to be used by Machine Learning or any other 

analysis. Text data is generally unstructured and varies in its length. BOW 

(Bag of Words) allows us to convert the text form into a numerical vector 

form by considering the occurrence of the words in text documents. For 

example,

Doc 1: The best thing in life is to travel

Doc 2: Travel is the best medicine

Doc 3: One should travel more often

Vocabulary:

The list of unique words appearing in all the documents in known as a 

vocabulary. In the above example, we have 13 unique words that are part 

of the vocabulary. Each document can be represented by this vector of 

fixed size 13.

The best thing in life is to travel medicine one should more often

Another element is the representation of the word in the particular 

document using a Boolean value. 

(1 or 0).

Doc 1:

The best thing in life is to travel medicine one should more often

1 1 1 1 1 1 1 1 0 0 0 0 0

Doc 2:

The best thing in life is to travel medicine one should more often

1 1 0 0 0 1 0 1 1 0 0 0 0
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Doc 3:

The best thing in life is to travel medicine one should more often

0 0 0 0 0 0 0 1 0 1 1 1 1

The BOW does not consider the order of words in the document and 

the semantic meaning of the word and hence is the most baseline method 

to represent the text data into numerical form. There are other ways by 

which we can convert the textual data into numerical form, which are 

mentioned in the next section. We will use PySpark to go through each one 

of these methods.

�Count Vectorizer
In BOW, we saw the representation of occurrence of words by simply 1 or 

0 and did not consider the frequency of the words. The count vectorizer 

instead takes count of the word appearing in the particular document. 

We will use the same text documents that we created earlier while using 

tokenization. We first import the Count Vectorizer.

[In]: from pyspark.ml.feature import CountVectorizer

[In]: �count_vec=CountVectorizer(inputCol='refined_tokens', 

outputCol='features')

[In]: cv_df=count_vec.fit(refined_df).transform(refined_df)

[In]: �cv_df.select(['user_id','refined_tokens','features']).

show(4,False)

[Out]:
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As we can observe, each sentence is represented as a dense vector. It 

shows that the vector length is 11 and the first sentence contains 3 values 

at the 0th, 4th, and 9th indexes.

To validate the vocabulary of the count vectorizer, we can simply use 

the vocabulary function.

[In]: count_vec.fit(refined_df).vocabulary

[Out]:

['movie',

 'horrible',

 'really',

 'alright',

 'liked',

 'friends',

 'recommend',

 'never',

 'ever',

 'acting',

 'watching']

So, the vocabulary size for the above sentences is 11 and if you look at 

the features carefully, they are similar to the input feature vector that we 

have been using for Machine Learning in PySpark. The drawback of using 

the Count Vectorizer method is that it doesn’t consider the co-occurrences 

of words in other documents. In simple terms, the words appearing more 

often would have a larger impact on the feature vector. Hence, another 

approach to convert text data into numerical form is known as Term 

Frequency – inverse Document Frequency (TF-IDF).
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�TF-IDF
This method tries to normalize the frequency of word occurrence based 

on other documents. The whole idea is to give more weight to the word if 

appearing a high number of times in the same document but penalize if 

it is appearing a higher number of times in other documents as well. This 

indicates that a word is common across the corpus and is not as important 

as its frequency in the current document indicates.

Term Frequency: Score based on the frequency of word in current 

document.

Inverse Document Frequency: Scoring based on frequency of 

documents that contains the current word.

Now, we create features based on TF-IDF in PySpark using the same 

refined df dataframe.

[In]: from pyspark.ml.feature import HashingTF,IDF

[In]: �hashing_vec=HashingTF(inputCol='refined_tokens', 

outputCol='tf_features')

[In]: hashing_df=hashing_vec.transform(refined_df)

[In]: �hashing_df.select(['user_id','refined_tokens', 

'tf_features']).show(4,False)

[Out]:

 

[In]: �tf_idf_vec=IDF(inputCol='tf_features',outputCol='tf_idf_

features')

[In]: tf_idf_df=tf_idf_vec.fit(hashing_df).transform(hashing_df)

[In]: tf_idf_df.select(['user_id','tf_idf_features']).show(4,False)

[Out]:
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�Text Classification Using Machine Learning
Now that we have a basic understanding of the steps involved in dealing 

with text processing and feature vectorization, we can build a text 

classification model and use it for predictions on text data. The dataset 

that we are going to use is the open source labeled Movie Lens reviews 

data, and we are going to predict the sentiment class of any given review 

(positive or negative). Let’s start with reading the text data first and 

creating a Spark dataframe.

[In]: �text_df=spark.read.csv('Movie_reviews.csv',inferSchema= 

True,header=True,sep=',')

[In]: text_df.printSchema()

[Out]:

root

 |-- Review: string (nullable = true)

 |-- Sentiment: string (nullable = true)

You can observe the Sentiment column in StringType, and we will 

need it to convert it into an Integer or float type going forward.

[In]: text_df.count()

[Out]: 7087

We have close to seven thousand records out of which some might not 

be labeled properly. Hence, we filter only those records that are labeled 

correctly.
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[In]: �text_df=text_df.filter(((text_df.Sentiment =='1') | 

(text_df.Sentiment =='0')))

[In]: text_df.count()

[Out]: 6990

Some of the records got filtered out and we are now left with 6,990 records 

for the analysis. The next step is to validate a number of reviews for each class.

[In]: text_df.groupBy('Sentiment').count().show()

[Out]:

+---------+-----+

|Sentiment|count|

+---------+-----+

|        0| 3081|

|        1| 3909|

+---------+-----+

We are dealing with a balanced dataset here as both classes have 

almost a similar number of reviews. Let us look at a few of the records in 

the dataset.

[In]: from pyspark.sql.functions import rand

[In]: text_df.orderBy(rand()).show(10,False)

[Out]:
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In the next step, we create a new label column as an Integer type and 

drop the original Sentiment column, which was a String type.

[In]: �text_df=text_df.withColumn("Label", text_df.Sentiment.

cast('float')).drop('Sentiment')

[In]: text_df.orderBy(rand()).show(10,False)

[Out]:

 

We also include an additional column that captures the length of the 

review.

[In]: from pyspark.sql.functions import length

[In]: text_df=text_df.withColumn('length',length(text_df['Review']))

[In]: text_df.orderBy(rand()).show(10,False)

[Out]:
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[In]: text_df.groupBy('Label').agg({'Length':'mean'}).show()

[Out]:

+-----+-----------------+

|Label|      avg(Length)|

+-----+-----------------+

|  1.0|47.61882834484523|

|  0.0|50.95845504706264|

+-----+-----------------+

There is no major difference between the average length of the positive 

and negative reviews. The next step is to start the tokenization process and 

remove stopwords.

[In]: tokenization=Tokenizer(inputCol='Review',outputCol='tokens')

[In]: tokenized_df=tokenization.transform(text_df)

[In]: �stopword_removal=StopWordsRemover(inputCol='tokens', 

outputCol='refined_tokens')

[In]: refined_text_df=stopword_removal.transform(tokenized_df)

Since we are now dealing with tokens only instead of an entire review, 

it would make more sense to capture a number of tokens in each review 

rather than using the length of the review. We create another column 

(token count) that gives the number of tokens in each row.

[In]: from pyspark.sql.functions import udf

[In]: from pyspark.sql.types import IntegerType

[In]: from pyspark.sql.functions import *

[In]: len_udf = udf(lambda s: len(s), IntegerType())

[In]: �refined_text_df = refined_text_df.withColumn("token_count", 

len_udf(col('refined_tokens')))

[In]: refined_text_df.orderBy(rand()).show(10)

[Out]:
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Now that we have the refined tokens after stopword removal, we can 

use any of the above approaches to convert text into numerical features. 

In this case, we use a countvectorizer for feature vectorization for the 

Machine Learning Model.

[In]:�count_vec=CountVectorizer(inputCol='refined_tokens', 

outputCol='features')

[In]: �cv_text_df=count_vec.fit(refined_text_df).transform 

(refined_text_df)

[In]: �cv_text_df.select(['refined_tokens','token_count','features', 

'Label']).show(10)

[Out]:

+--------------------+-----------+--------------------+-----+

|      refined_tokens|token_count|            features|Label|

+--------------------+-----------+--------------------+-----+

|[da, vinci, code,...|          5|(2302,[0,1,4,43,2...|  1.0|

|[first, clive, cu...|          9|(2302,[11,51,229,...|  1.0|

|[liked, da, vinci...|          5|(2302,[0,1,4,53,3...|  1.0|

|[liked, da, vinci...|          5|(2302,[0,1,4,53,3...|  1.0|

|[liked, da, vinci...|          8|(2302,[0,1,4,53,6...|  1.0|

|[even, exaggerati...|          6|(2302,[46,229,271...|  1.0|

|[loved, da, vinci...|          8|(2302,[0,1,22,30,...|  1.0|

|[thought, da, vin...|          7|(2302,[0,1,4,228,...|  1.0|

|[da, vinci, code,...|          6|(2302,[0,1,4,33,2...|  1.0|

|[thought, da, vin...|          7|(2302,[0,1,4,223,...|  1.0|

+--------------------+-----------+--------------------+-----+
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[In]: �model_text_df=cv_text_df.select(['features', 

'token_count','Label'])

Once we have the feature vector for each row, we can make use of 

VectorAssembler to create input features for the machine learning model.

[In]: from pyspark.ml.feature import VectorAssembler

[In]: �df_assembler = VectorAssembler(inputCols=['features', 

'token_count'],outputCol='features_vec')

[In]: model_text_df = df_assembler.transform(model_text_df)

[In]: model_text_df.printSchema()

[Out]:

 root

 |-- features: vector (nullable = true)

 |-- token_count: integer (nullable = true)

 |-- Label: float (nullable = true)

 |-- features_vec: vector (nullable = true)

We can use any of the classification models on this data, but we 

proceed with training the Logistic Regression Model.

[In]: from pyspark.ml.classification import LogisticRegression

[In]: training_df,test_df=model_text_df.randomSplit([0.75,0.25])

To validate the presence of enough records for both classes in the train 

and test dataset, we can apply the groupBy function on the Label column.

[In]: training_df.groupBy('Label').count().show()

[Out]:

+-----+-----+

|Label|count|

+-----+-----+

|  1.0| 2979|

|  0.0| 2335|

+-----+-----+
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[In]: test_df.groupBy('Label').count().show()

[Out]:

+-----+-----+

|Label|count|

+-----+-----+

|  1.0|  930|

|  0.0|  746|

+-----+-----+

[In]: �log_reg=LogisticRegression(featuresCol='features_vec', 

labelCol='Label').fit(training_df)

After training the model, we evaluate the performance of the model on 

the test dataset.

[In]: results=log_reg.evaluate(test_df).predictions

[In]: results.show()

[Out]:

 

[In]: �from pyspark.ml.evaluation import 

BinaryClassificationEvaluator

[In]: �true_postives = results[(results.Label == 1) & (results.

prediction == 1)].count()
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[In]: �true_negatives = results[(results.Label == 0) & (results.

prediction == 0)].count()

[In]: �false_positives = results[(results.Label == 0) & 

(results.prediction == 1)].count()

[In]: �false_negatives = results[(results.Label == 1) & 

(results.prediction == 0)].count()

The performance of the model seems reasonably good, and it is able to 

differentiate between positive and negative reviews easily.

[In]: �recall = float(true_postives)/(true_postives + false_

negatives)

[In]:print(recall)

[Out]: 0.986021505376344

[In]: �precision = float(true_postives) / (true_postives + 

false_positives)

[In]: print(precision)

[Out]: 0.9572025052192067

[In]: �accuracy=float((true_postives+true_negatives) /(results.

count()))

[In]: print(accuracy)

[Out]: 0.9677804295942721

�Sequence Embeddings
Millions of people visit business websites every day, and each one of them 

takes a different set of steps in order to seek the right information/product. 

Yet most of them leave disappointed or dejected for some reason, and 

very few get to the right page within the website. In this kind of situation, 

it becomes difficult to find out if the potential customer actually got the 

information that he was looking for. Also, the individual journeys of these 
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viewers can’t be compared to each other since every person has done a 

different set of activities. So, how can we know more about these journeys 

and compare these visitors to each other? Sequence Embedding is a 

powerful way that offers us the flexibility to not only compare any two 

distinct viewers' entire journeys in terms of similarity but also to predict 

the probability of their conversion. Sequence embeddings essentially help 

us to move away from using traditional features to make predictions and 

considers not only the order of the activities of a user but also the average 

time spent on each of the unique pages to translate into more robust 

features; and it also used in Supervised Machine Learning across multiple 

use cases (next possible action prediction, converted vs. non-converted, 

product classification). Using traditional machine learning models on the 

advanced features like sequence embeddings, we can achieve tremendous 

results in terms of prediction accuracy, but the real benefit lies in 

visualizing all these user journeys and observing how distinct these paths 

are from the ideal ones.

This part of the chapter will unfold the process creating sequence 

embeddings for each user’s journey in PySpark.

�Embeddings
So far, we have seen representation of text data into numerical form using 

techniques like count vectorizer, TF-IDF, and hashing vectorization. 

However, none of the above techniques consider semantic meanings of the 

words or the context in which words are present. Embeddings are unique 

in terms of capturing the context of the words and representing them in 

such a way that words with similar meanings are represented with similar 

sort of embeddings. There are two ways to calculate the embeddings.

	 1.	 Skip Gram

	 2.	 Continuous Bag of Words (CBOW)
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Both methods give the embedding values that are nothing but weights 

of the hidden layer in a neural network. These embedding vectors can be 

of size 100 or more depending on the requirement. The word2vec gives the 

embedding values for each word where as doc2vec gives the embeddings 

for the entire sentence. Sequence Embeddings are similar to doc2vec and 

are the result of weighted means of the individual embedding of the word 

appearing in the sentence.

Let’s take a sample dataset to illustrate how we can create sequence 

embeddings from an online retail journey of users.

[In]: �spark=SparkSession.builder.appName('seq_embedding').

getOrCreate()

[In]:

df = �spark.read.csv('embedding_dataset.csv',header=True, 

inferSchema=True)

[In]: df.count()

[Out]: 1096955

The total number of records in the dataset is close to one million, and 

there are 0.1 million unique users. The time spent by each user on each of 

the web pages is also tracked along with the final status if the user bought 

the product or not.

[In]: df.printSchema()

[Out]:

root

 |-- user_id: string (nullable = true)

 |-- page: string (nullable = true)

 |-- timestamp: timestamp (nullable = true)

 |-- visit_number: integer (nullable = true)

 |-- time_spent: double (nullable = true)

 |-- converted: integer (nullable = true)
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[In]: df.select('user_id').distinct().count()

[Out]: 104087

[In]: �df.groupBy('page').count().orderBy('count', 

ascending=False).show(10,False) 

[Out]:

+-------------+------+

|page         |count |

+-------------+------+

|product info |767131|

|homepage     |142456|

|added to cart|67087 |

|others       |39919 |

|offers       |32003 |

|buy          |24916 |

|reviews      |23443 |

+-------------+------+

[In]: �df.select(['user_id','page','visit_number','time_spent', 

'converted']).show(10,False)

[Out]:

 

The whole idea of sequence embeddings is to translate the series 

of steps taken by the user during his or her online journey into a page 

sequence, which can be used for calculating embedding scores. The 

first step is to remove any of the consecutive duplicate pages during 

the journey of a user. We create an additional column that captures the 
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previous page of a user. Window is a function in spark that helps to apply 

certain logic specific to individual or group of rows in the dataset.

[In]:w = Window.partitionBy("user_id").orderBy('timestamp')

[In]: �df = df.withColumn("previous_page", lag("page", 1, 

'started').over(w))

[In]: �df.select('user_id','timestamp','previous_page','page').

show(10,False)

[Out]:

 

[In]:

def indicator(page, prev_page):

    if page == prev_page:

        return 0

    else:

        return 1

[In]:page_udf = udf(indicator,IntegerType())

[In]: �df = df.withColumn("indicator",page_udf(col('page'), 

col('previous_page'))) \

        .�withColumn('indicator_cummulative', 

sum(col('indicator')).over(w))

Now, we create a function to check if the current page is similar to the 

previous page and indicate the same in a new column indicator. Indicator 

cumulative is the column to track the number of distinct pages during the 

user's journey.
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[In]: �df.select('previous_page','page','indicator', 

'indicator_cummulative').show(20,False)

[Out]:

 

We keep creating new windows object to partition the data further in 

order to build the sequences for eadch user.

[In]: �w2=Window.partitionBy(["user_id",'indicator_

cummulative']).orderBy('timestamp')

[In]: �df= df.withColumn('time_spent_cummulative', 

sum(col('time_spent')).over(w2))

[In]: �df.select('timestamp','previous_page','page', 

'indicator','indicator_cummulative','time_spent', 

'time_spent_cummulative').show(20,False)
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[Out]: 

In the next stage, we calculate the aggregated time spent on similar 

pages so that only a single record can be kept for representing consecutive 

pages.

[In]: �w3 = Window.partitionBy(["user_id",'indicator_

cummulative']).orderBy(col('timestamp').desc())

[In]: df = df.withColumn('final_page',first('page').over(w3))\

     .�withColumn('final_time_spent',first('time_spent_

cummulative').over(w3))

[In]: �df.select(['time_spent_cummulative','indicator_cummulative', 

'page','final_page','final_time_spent']).show(10,False)

[Out]:
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[In]: aggregations=[]

[In]: aggregations.append(max(col('final_page')).alias('page_emb'))

[In]: �aggregations.append(max(col('final_time_spent')).

alias('time_spent_emb'))

[In]: �aggregations.append(max(col('converted')).

alias('converted_emb'))

[In]: �df_embedding = df.select(['user_id','indicator_cummulative', 

'final_page','final_time_spent','converted']).groupBy 

(['user_id','indicator_cummulative']).agg(*aggregations)

[In]: �w4 = Window.partitionBy(["user_id"]).orderBy('indicator_

cummulative')

[In]: �w5 = Window.partitionBy(["user_id"]).orderBy(col 

('indicator_cummulative').desc())

Finally, we use a collect list to combine all the pages of a user's journey 

into a single list and for time spent as well. As a result, we end with the user 

journey in the form of a page list and time spent list.

[In]:df_embedding = df_embedding.withColumn('journey_page', 

collect_list(col('page_emb')).over(w4))\

                         .withColumn('journey_time_temp', 

collect_list(col('time_spent_emb')).over(w4)) \

                         .withColumn('journey_page_final', 

first('journey_page').over(w5))\

                        .withColumn('journey_time_final', 

first('journey_time_temp').over(w5)) \

                        .select(['user_id','journey_page_final', 

'journey_time_final','converted_emb'])

We continue with only unique user journeys. Each user is represented 

by a single journey and time spent vector.
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[In]: df_embedding = df_embedding.dropDuplicates()

[In]: df_embedding.count()

[Out]: 104087

[In]: df_embedding.select('user_id').distinct().count()

[Out]: 104087

[In]: �df_embedding.select('user_id','journey_page_

final','journey_time_final').show(10)

[Out]:

Now that we have the user journeys and time spent list, we convert this 

dataframe to a Pandas dataframe and build a word2vec model using these 

journey sequences. We have to install a gensim library first in order to use 

word2vec.We use the embedding size of 100 to keep it simple.

[In]: pd_df_emb0 = df_embedding.toPandas()

[In]: pd_df_embedding = pd_df_embedding.reset_index(drop=True)

[In]: !pip install gensim

[In]: from gensim.models import Word2Vec

[In]: EMBEDDING_SIZE = 100
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[In]: �model = Word2Vec(pd_df_embedding['journey_page_final'], 

size=EMBEDDING_SIZE)

[In]: print(model)

[Out]: Word2Vec(vocab=7, size=100, alpha=0.025)

As we can observe, the vocabulary size is 7 because we were dealing 

with 7 page categories only. Each of these pages category now can be 

represented with help of an embedding vector of size 100.

[In]: page_categories = list(model.wv.vocab)

[In]: print(page_categories)

[Out]:

['product info', 'homepage', 'added to cart', 'others', 

'reviews', 'offers', 'buy']

[In]: print(model['reviews'])

[Out]:

[In]: model['offers'].shape

[Out]: (100,)
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To create the embedding matrix, we can use a model and pass the 

model vocabulary; it would result in a matrix of size (7,100.)

[In]: X = model[model.wv.vocab]

[In]: X.shape

[Out]: (7,100)

In order to better understand the relation between these page 

categories, we can use a dimensionality reduction technique (PCA) and 

plot these seven page embeddings on a two-dimensional space.

[In]: pca = PCA(n_components=2)

[In]: result = pca.fit_transform(X)

[In]: plt.figure(figsize=(10,10))

[In]: plt.scatter(result[:, 0], result[:, 1])

[In]: for i,page_category in enumerate(page_categories):

      �plt.annotate(page_category,horizontalalignment='right',  

verticalalignment='top',xy=(result[i, 0], result[i, 1]))

[In]: plt.show()
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As we can clearly see, the embeddings of buy and added to cart are 

near to each other in terms of similarity whereas homepage and product 

info are also closer to each other. Offers and reviews are totally separate 

when it comes to representation through embeddings. These individual 

embeddings can be combined and used for user journey comparison and 

classification using Machine Learning.
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Note A  complete dataset along with the code is available for 
reference on the GitHub repo of this book and executes best on  
Spark 2.3 and higher versions.

�Conclusion
In this chapter, we became familiar with the steps to do text processing 

and create feature vectors for Machine Learning. We also went through the 

process of creating sequence embeddings from online user journey data 

for comparing various user journeys.
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