
Apply Functions to Elements
in a List

any: Check if Any Element of an Iterable is True

If you want to check if any element of an iterable is True, use any. In the code below, I
use any to find if any element in the text is in uppercase.

text = "abcdE"

any(c for c in text if c.isupper())

True

all: Check if All Elements of an Interable Are Strings

If you want to check if all elements of an iterable are strings, use all and isinstance.

l = ['a', 'b', 1, 2]

all(isinstance(item, str) for item in l)

False

filter: Get the Elements of an Iterable that a Function
Returns True

If you want to get the elements of an iterable that a function returns true, use filter.

In the code below, I use the filter method to get items that are fruits.

def get_fruit(val: str):

 fruits = ['apple', 'orange', 'grape']

 if val in fruits:

 return True

 else:

 return False

items = ['chair', 'apple', 'water', 'table', 'orange']

fruits = filter(get_fruit, items)

print(list(fruits))

['apple', 'orange']

map method: Apply a Function to Each Item of an
Iterable

If you want to apply the given function to each item of a given iterable, use map.

nums = [1, 2, 3]

list(map(str, nums))

['1', '2', '3']

def multiply_by_two(num: float):

 return num * 2

list(map(multiply_by_two, nums))

[2, 4, 6]

Get Elements

random.choice: Get a Randomly Selected Element from
a Python List

Besides getting a random number, you can also get a random element from a Python list
using random. In the code below, “stay at home” was picked randomly from a list of
options.

import random

to_do_tonight = ['stay at home', 'attend party', 'do

exercise']

random.choice(to_do_tonight)

'attend party'

random.sample: Get Multiple Random Elements from a
Python List

If you want to get n random elements from a list, use random.sample.

import random

random.seed(1)

nums = [1, 2, 3, 4, 5]

random_nums = random.sample(nums, 2)

random_nums

[2, 1]

heapq: Find n Max Values of a Python List

If you want to extract n max values from a large Python list, using heapq will speed up
the code.

In the code below, using heapq is more than 2 times faster than using sorting and
indexing. Both methods try to find the max values of a list of 10000 items.

import heapq

import random

from timeit import timeit

random.seed(0)

l = random.sample(range(0, 10000), 10000)

def get_n_max_sorting(l: list, n: int):

 l = sorted(l, reverse=True)

 return l[:n]

def get_n_max_heapq(l: list, n: int):

 return heapq.nlargest(n, l)

expSize = 1000

n = 100

time_sorting = timeit("get_n_max_sorting(l, n)",

number=expSize,

 globals=globals())

time_heapq = timeit('get_n_max_heapq(l, n)', number=expSize,

 globals=globals())

ratio = round(time_sorting/time_heapq, 3)

print(f'Run {expSize} experiments. Using heapq is {ratio}

times'

' faster than using sorting')

Run 1000 experiments. Using heapq is 2.827 times faster than

using sorting

Good Practices

Stop using = operator to create a copy of a Python list.
Use copy method instead

When you create a copy of a Python list using the = operator, a change in the new list will
lead to the change in the old list. It is because both lists point to the same object.

Instead of using = operator, use copy() method. Now your old list will not change when
you change your new list.

>>> l1 = [1, 2, 3]

>>> l2 = l1

>>> l2.append(4)

>>> l2

[1, 2, 3, 4]

>>> l1

[1, 2, 3, 4]

>>> l1 = [1, 2, 3]

>>> l2 = l1.copy()

>>> l2.append(4)

>>> l2

[1, 2, 3, 4]

>>> l1

[1, 2, 3]

Enumerate: Get Counter and Value While Looping

Are you using for i in range(len(array)) to access both the index and the value
of the array? If so, use enumerate instead. It produces the same result but it is much
cleaner.

arr = ['a', 'b', 'c', 'd', 'e']

Instead of this

for i in range(len(arr)):

 print(i, arr[i])

0 a

1 b

2 c

3 d

4 e

Use this

for i, val in enumerate(arr):

 print(i, val)

0 a

1 b

2 c

3 d

4 e

Difference between list append and list extend

If you want to add a list to another list, use the append method. To add elements of a list
to another list, use the extend method.

Add a list to a list

>>> a = [1, 2, 3, 4]

>>> a.append([5, 6])

>>> a

[1, 2, 3, 4, [5, 6]]

>>> a = [1, 2, 3, 4]

>>> a.extend([5, 6])

>>> a

[1, 2, 3, 4, 5, 6]

Interaction Between 2 Lists

set.intersection: Find the Intersection Between 2 Sets

If you want to get the common elements between 2 lists, convert lists to sets then use
set.intersection to find the intersection between 2 sets.

requirement1 = ['pandas', 'numpy', 'statsmodel']

requirement2 = ['numpy', 'statsmodel', 'sympy', 'matplotlib']

intersection = set.intersection(set(requirement1),

set(requirement2))

list(intersection)

['statsmodel', 'numpy']

Set Difference: Find the Difference Between 2 Sets

If you want to find the difference between 2 lists, turn those lists into sets then apply the
difference() method to the sets.

a = [1, 2, 3, 4]

b = [1, 3, 4, 5, 6]

Find elements in a but not in b

diff = set(a).difference(set(b))

print(list(diff))

[2]

Find elements in b but not in a

diff = set(b).difference(set(a))

print(list(diff)) # [5, 6]

[5, 6]

Join Iterables

join method: Turn an Iterable into a Python String

If you want to turn an iterable into a string, use join().

In the code below, I join elements in the list fruits using “, “.

fruits = ['apples', 'oranges', 'grapes']

fruits_str = ', '.join(fruits)

print(f"Today, I need to get some {fruits_str} in the grocery

store")

Today, I need to get some apples, oranges, grapes in the

grocery store

Zip: Associate Elements from Two Iterators based on
the Order

If you want to associate elements from two iterators based on the order, combine list
and zip.

nums = [1, 2, 3, 4]

string = "abcd"

combinations = list(zip(nums, string))

combinations

[(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]

Zip Function: Create Pairs of Elements from Two Lists
in Python

If you want to create pairs of elements from two lists, use zip. zip() function takes
iterables and aggregates them in a tuple.

You can also unzip the list of tuples by using zip(*list_of_tuples).

nums = [1, 2, 3, 4]

chars = ['a', 'b', 'c', 'd']

comb = list(zip(nums, chars))

comb

[(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]

nums_2, chars_2 = zip(*comb)

nums_2, chars_2

((1, 2, 3, 4), ('a', 'b', 'c', 'd'))

Unpack Iterables

How to Unpack Iterables in Python

To assign items of a Python iterables (such as list, tuple, string) to different variables, you
can unpack the iterable like below.

nested_arr = [[1, 2, 3], ["a", "b"], 4]

num_arr, char_arr, num = nested_arr

num_arr

[1, 2, 3]

char_arr

['a', 'b']

Extended Iterable Unpacking: Ignore Multiple Values
when Unpacking a Python Iterable

If you want to ignore multiple values when unpacking a Python iterable, add * to _ as
shown below.

This is called “Extended Iterable Unpacking” and is available in Python 3.x.

a, *_, b = [1, 2, 3, 4]

print(a)

1

b

4

_

[2, 3]

	Apply Functions to Elements in a List
	any: Check if Any Element of an Iterable is True
	all: Check if All Elements of an Interable Are Strings
	filter: Get the Elements of an Iterable that a Function Returns True
	map method: Apply a Function to Each Item of an Iterable

	Get Elements
	random.choice: Get a Randomly Selected Element from a Python List
	random.sample: Get Multiple Random Elements from a Python List
	heapq: Find n Max Values of a Python List

	Good Practices
	Stop using = operator to create a copy of a Python list. Use copy method instead
	Enumerate: Get Counter and Value While Looping
	Difference between list append and list extend

	Interaction Between 2 Lists
	set.intersection: Find the Intersection Between 2 Sets
	Set Difference: Find the Difference Between 2 Sets

	Join Iterables
	join method: Turn an Iterable into a Python String
	Zip: Associate Elements from Two Iterators based on the Order
	Zip Function: Create Pairs of Elements from Two Lists in Python

	Unpack Iterables
	How to Unpack Iterables in Python	
	Extended Iterable Unpacking: Ignore Multiple Values when Unpacking a Python Iterable

